2010-01-28 Sami Wagiaalla <swagiaal@redhat.com>
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 static int linux_parent_pid;
274
275 struct simple_pid_list
276 {
277 int pid;
278 int status;
279 struct simple_pid_list *next;
280 };
281 struct simple_pid_list *stopped_pids;
282
283 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
284 can not be used, 1 if it can. */
285
286 static int linux_supports_tracefork_flag = -1;
287
288 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
289 can not be used, 1 if it can. */
290
291 static int linux_supports_tracesysgood_flag = -1;
292
293 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
294 PTRACE_O_TRACEVFORKDONE. */
295
296 static int linux_supports_tracevforkdone_flag = -1;
297
298 /* Async mode support */
299
300 /* Zero if the async mode, although enabled, is masked, which means
301 linux_nat_wait should behave as if async mode was off. */
302 static int linux_nat_async_mask_value = 1;
303
304 /* Stores the current used ptrace() options. */
305 static int current_ptrace_options = 0;
306
307 /* The read/write ends of the pipe registered as waitable file in the
308 event loop. */
309 static int linux_nat_event_pipe[2] = { -1, -1 };
310
311 /* Flush the event pipe. */
312
313 static void
314 async_file_flush (void)
315 {
316 int ret;
317 char buf;
318
319 do
320 {
321 ret = read (linux_nat_event_pipe[0], &buf, 1);
322 }
323 while (ret >= 0 || (ret == -1 && errno == EINTR));
324 }
325
326 /* Put something (anything, doesn't matter what, or how much) in event
327 pipe, so that the select/poll in the event-loop realizes we have
328 something to process. */
329
330 static void
331 async_file_mark (void)
332 {
333 int ret;
334
335 /* It doesn't really matter what the pipe contains, as long we end
336 up with something in it. Might as well flush the previous
337 left-overs. */
338 async_file_flush ();
339
340 do
341 {
342 ret = write (linux_nat_event_pipe[1], "+", 1);
343 }
344 while (ret == -1 && errno == EINTR);
345
346 /* Ignore EAGAIN. If the pipe is full, the event loop will already
347 be awakened anyway. */
348 }
349
350 static void linux_nat_async (void (*callback)
351 (enum inferior_event_type event_type, void *context),
352 void *context);
353 static int linux_nat_async_mask (int mask);
354 static int kill_lwp (int lwpid, int signo);
355
356 static int stop_callback (struct lwp_info *lp, void *data);
357
358 static void block_child_signals (sigset_t *prev_mask);
359 static void restore_child_signals_mask (sigset_t *prev_mask);
360
361 struct lwp_info;
362 static struct lwp_info *add_lwp (ptid_t ptid);
363 static void purge_lwp_list (int pid);
364 static struct lwp_info *find_lwp_pid (ptid_t ptid);
365
366 \f
367 /* Trivial list manipulation functions to keep track of a list of
368 new stopped processes. */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
373 new_pid->pid = pid;
374 new_pid->status = status;
375 new_pid->next = *listp;
376 *listp = new_pid;
377 }
378
379 static int
380 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
381 {
382 struct simple_pid_list **p;
383
384 for (p = listp; *p != NULL; p = &(*p)->next)
385 if ((*p)->pid == pid)
386 {
387 struct simple_pid_list *next = (*p)->next;
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 int ret;
409
410 ptrace (PTRACE_TRACEME, 0, 0, 0);
411 kill (getpid (), SIGSTOP);
412 fork ();
413 _exit (0);
414 }
415
416 /* Wrapper function for waitpid which handles EINTR. */
417
418 static int
419 my_waitpid (int pid, int *status, int flags)
420 {
421 int ret;
422
423 do
424 {
425 ret = waitpid (pid, status, flags);
426 }
427 while (ret == -1 && errno == EINTR);
428
429 return ret;
430 }
431
432 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
433
434 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
435 we know that the feature is not available. This may change the tracing
436 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
437
438 However, if it succeeds, we don't know for sure that the feature is
439 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
440 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
441 fork tracing, and let it fork. If the process exits, we assume that we
442 can't use TRACEFORK; if we get the fork notification, and we can extract
443 the new child's PID, then we assume that we can. */
444
445 static void
446 linux_test_for_tracefork (int original_pid)
447 {
448 int child_pid, ret, status;
449 long second_pid;
450 sigset_t prev_mask;
451
452 /* We don't want those ptrace calls to be interrupted. */
453 block_child_signals (&prev_mask);
454
455 linux_supports_tracefork_flag = 0;
456 linux_supports_tracevforkdone_flag = 0;
457
458 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
459 if (ret != 0)
460 {
461 restore_child_signals_mask (&prev_mask);
462 return;
463 }
464
465 child_pid = fork ();
466 if (child_pid == -1)
467 perror_with_name (("fork"));
468
469 if (child_pid == 0)
470 linux_tracefork_child ();
471
472 ret = my_waitpid (child_pid, &status, 0);
473 if (ret == -1)
474 perror_with_name (("waitpid"));
475 else if (ret != child_pid)
476 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
477 if (! WIFSTOPPED (status))
478 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
479
480 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
481 if (ret != 0)
482 {
483 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
484 if (ret != 0)
485 {
486 warning (_("linux_test_for_tracefork: failed to kill child"));
487 restore_child_signals_mask (&prev_mask);
488 return;
489 }
490
491 ret = my_waitpid (child_pid, &status, 0);
492 if (ret != child_pid)
493 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
494 else if (!WIFSIGNALED (status))
495 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
496 "killed child"), status);
497
498 restore_child_signals_mask (&prev_mask);
499 return;
500 }
501
502 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
503 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
504 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
505 linux_supports_tracevforkdone_flag = (ret == 0);
506
507 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
508 if (ret != 0)
509 warning (_("linux_test_for_tracefork: failed to resume child"));
510
511 ret = my_waitpid (child_pid, &status, 0);
512
513 if (ret == child_pid && WIFSTOPPED (status)
514 && status >> 16 == PTRACE_EVENT_FORK)
515 {
516 second_pid = 0;
517 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
518 if (ret == 0 && second_pid != 0)
519 {
520 int second_status;
521
522 linux_supports_tracefork_flag = 1;
523 my_waitpid (second_pid, &second_status, 0);
524 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
525 if (ret != 0)
526 warning (_("linux_test_for_tracefork: failed to kill second child"));
527 my_waitpid (second_pid, &status, 0);
528 }
529 }
530 else
531 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
532 "(%d, status 0x%x)"), ret, status);
533
534 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
535 if (ret != 0)
536 warning (_("linux_test_for_tracefork: failed to kill child"));
537 my_waitpid (child_pid, &status, 0);
538
539 restore_child_signals_mask (&prev_mask);
540 }
541
542 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
543
544 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
545 we know that the feature is not available. This may change the tracing
546 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
547
548 static void
549 linux_test_for_tracesysgood (int original_pid)
550 {
551 int ret;
552 sigset_t prev_mask;
553
554 /* We don't want those ptrace calls to be interrupted. */
555 block_child_signals (&prev_mask);
556
557 linux_supports_tracesysgood_flag = 0;
558
559 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
560 if (ret != 0)
561 goto out;
562
563 linux_supports_tracesysgood_flag = 1;
564 out:
565 restore_child_signals_mask (&prev_mask);
566 }
567
568 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
569 This function also sets linux_supports_tracesysgood_flag. */
570
571 static int
572 linux_supports_tracesysgood (int pid)
573 {
574 if (linux_supports_tracesysgood_flag == -1)
575 linux_test_for_tracesysgood (pid);
576 return linux_supports_tracesysgood_flag;
577 }
578
579 /* Return non-zero iff we have tracefork functionality available.
580 This function also sets linux_supports_tracefork_flag. */
581
582 static int
583 linux_supports_tracefork (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracefork_flag;
588 }
589
590 static int
591 linux_supports_tracevforkdone (int pid)
592 {
593 if (linux_supports_tracefork_flag == -1)
594 linux_test_for_tracefork (pid);
595 return linux_supports_tracevforkdone_flag;
596 }
597
598 static void
599 linux_enable_tracesysgood (ptid_t ptid)
600 {
601 int pid = ptid_get_lwp (ptid);
602
603 if (pid == 0)
604 pid = ptid_get_pid (ptid);
605
606 if (linux_supports_tracesysgood (pid) == 0)
607 return;
608
609 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
612 }
613
614 \f
615 void
616 linux_enable_event_reporting (ptid_t ptid)
617 {
618 int pid = ptid_get_lwp (ptid);
619
620 if (pid == 0)
621 pid = ptid_get_pid (ptid);
622
623 if (! linux_supports_tracefork (pid))
624 return;
625
626 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
627 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
628
629 if (linux_supports_tracevforkdone (pid))
630 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
631
632 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
633 read-only process state. */
634
635 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
636 }
637
638 static void
639 linux_child_post_attach (int pid)
640 {
641 linux_enable_event_reporting (pid_to_ptid (pid));
642 check_for_thread_db ();
643 linux_enable_tracesysgood (pid_to_ptid (pid));
644 }
645
646 static void
647 linux_child_post_startup_inferior (ptid_t ptid)
648 {
649 linux_enable_event_reporting (ptid);
650 check_for_thread_db ();
651 linux_enable_tracesysgood (ptid);
652 }
653
654 static int
655 linux_child_follow_fork (struct target_ops *ops, int follow_child)
656 {
657 sigset_t prev_mask;
658 int has_vforked;
659 int parent_pid, child_pid;
660
661 block_child_signals (&prev_mask);
662
663 has_vforked = (inferior_thread ()->pending_follow.kind
664 == TARGET_WAITKIND_VFORKED);
665 parent_pid = ptid_get_lwp (inferior_ptid);
666 if (parent_pid == 0)
667 parent_pid = ptid_get_pid (inferior_ptid);
668 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
669
670 if (!detach_fork)
671 linux_enable_event_reporting (pid_to_ptid (child_pid));
672
673 if (has_vforked
674 && !non_stop /* Non-stop always resumes both branches. */
675 && (!target_is_async_p () || sync_execution)
676 && !(follow_child || detach_fork || sched_multi))
677 {
678 /* The parent stays blocked inside the vfork syscall until the
679 child execs or exits. If we don't let the child run, then
680 the parent stays blocked. If we're telling the parent to run
681 in the foreground, the user will not be able to ctrl-c to get
682 back the terminal, effectively hanging the debug session. */
683 fprintf_filtered (gdb_stderr, _("\
684 Can not resume the parent process over vfork in the foreground while \n\
685 holding the child stopped. Try \"set detach-on-fork\" or \
686 \"set schedule-multiple\".\n"));
687 return 1;
688 }
689
690 if (! follow_child)
691 {
692 struct lwp_info *child_lp = NULL;
693
694 /* We're already attached to the parent, by default. */
695
696 /* Detach new forked process? */
697 if (detach_fork)
698 {
699 /* Before detaching from the child, remove all breakpoints
700 from it. If we forked, then this has already been taken
701 care of by infrun.c. If we vforked however, any
702 breakpoint inserted in the parent is visible in the
703 child, even those added while stopped in a vfork
704 catchpoint. This will remove the breakpoints from the
705 parent also, but they'll be reinserted below. */
706 if (has_vforked)
707 {
708 /* keep breakpoints list in sync. */
709 remove_breakpoints_pid (GET_PID (inferior_ptid));
710 }
711
712 if (info_verbose || debug_linux_nat)
713 {
714 target_terminal_ours ();
715 fprintf_filtered (gdb_stdlog,
716 "Detaching after fork from child process %d.\n",
717 child_pid);
718 }
719
720 ptrace (PTRACE_DETACH, child_pid, 0, 0);
721 }
722 else
723 {
724 struct inferior *parent_inf, *child_inf;
725 struct cleanup *old_chain;
726
727 /* Add process to GDB's tables. */
728 child_inf = add_inferior (child_pid);
729
730 parent_inf = current_inferior ();
731 child_inf->attach_flag = parent_inf->attach_flag;
732 copy_terminal_info (child_inf, parent_inf);
733
734 old_chain = save_inferior_ptid ();
735 save_current_program_space ();
736
737 inferior_ptid = ptid_build (child_pid, child_pid, 0);
738 add_thread (inferior_ptid);
739 child_lp = add_lwp (inferior_ptid);
740 child_lp->stopped = 1;
741 child_lp->resumed = 1;
742
743 /* If this is a vfork child, then the address-space is
744 shared with the parent. */
745 if (has_vforked)
746 {
747 child_inf->pspace = parent_inf->pspace;
748 child_inf->aspace = parent_inf->aspace;
749
750 /* The parent will be frozen until the child is done
751 with the shared region. Keep track of the
752 parent. */
753 child_inf->vfork_parent = parent_inf;
754 child_inf->pending_detach = 0;
755 parent_inf->vfork_child = child_inf;
756 parent_inf->pending_detach = 0;
757 }
758 else
759 {
760 child_inf->aspace = new_address_space ();
761 child_inf->pspace = add_program_space (child_inf->aspace);
762 child_inf->removable = 1;
763 set_current_program_space (child_inf->pspace);
764 clone_program_space (child_inf->pspace, parent_inf->pspace);
765
766 /* Let the shared library layer (solib-svr4) learn about
767 this new process, relocate the cloned exec, pull in
768 shared libraries, and install the solib event
769 breakpoint. If a "cloned-VM" event was propagated
770 better throughout the core, this wouldn't be
771 required. */
772 solib_create_inferior_hook (0);
773 }
774
775 /* Let the thread_db layer learn about this new process. */
776 check_for_thread_db ();
777
778 do_cleanups (old_chain);
779 }
780
781 if (has_vforked)
782 {
783 struct lwp_info *lp;
784 struct inferior *parent_inf;
785
786 parent_inf = current_inferior ();
787
788 /* If we detached from the child, then we have to be careful
789 to not insert breakpoints in the parent until the child
790 is done with the shared memory region. However, if we're
791 staying attached to the child, then we can and should
792 insert breakpoints, so that we can debug it. A
793 subsequent child exec or exit is enough to know when does
794 the child stops using the parent's address space. */
795 parent_inf->waiting_for_vfork_done = detach_fork;
796 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
797
798 lp = find_lwp_pid (pid_to_ptid (parent_pid));
799 gdb_assert (linux_supports_tracefork_flag >= 0);
800 if (linux_supports_tracevforkdone (0))
801 {
802 if (debug_linux_nat)
803 fprintf_unfiltered (gdb_stdlog,
804 "LCFF: waiting for VFORK_DONE on %d\n",
805 parent_pid);
806
807 lp->stopped = 1;
808 lp->resumed = 1;
809
810 /* We'll handle the VFORK_DONE event like any other
811 event, in target_wait. */
812 }
813 else
814 {
815 /* We can't insert breakpoints until the child has
816 finished with the shared memory region. We need to
817 wait until that happens. Ideal would be to just
818 call:
819 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
820 - waitpid (parent_pid, &status, __WALL);
821 However, most architectures can't handle a syscall
822 being traced on the way out if it wasn't traced on
823 the way in.
824
825 We might also think to loop, continuing the child
826 until it exits or gets a SIGTRAP. One problem is
827 that the child might call ptrace with PTRACE_TRACEME.
828
829 There's no simple and reliable way to figure out when
830 the vforked child will be done with its copy of the
831 shared memory. We could step it out of the syscall,
832 two instructions, let it go, and then single-step the
833 parent once. When we have hardware single-step, this
834 would work; with software single-step it could still
835 be made to work but we'd have to be able to insert
836 single-step breakpoints in the child, and we'd have
837 to insert -just- the single-step breakpoint in the
838 parent. Very awkward.
839
840 In the end, the best we can do is to make sure it
841 runs for a little while. Hopefully it will be out of
842 range of any breakpoints we reinsert. Usually this
843 is only the single-step breakpoint at vfork's return
844 point. */
845
846 if (debug_linux_nat)
847 fprintf_unfiltered (gdb_stdlog,
848 "LCFF: no VFORK_DONE support, sleeping a bit\n");
849
850 usleep (10000);
851
852 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
853 and leave it pending. The next linux_nat_resume call
854 will notice a pending event, and bypasses actually
855 resuming the inferior. */
856 lp->status = 0;
857 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
858 lp->stopped = 0;
859 lp->resumed = 1;
860
861 /* If we're in async mode, need to tell the event loop
862 there's something here to process. */
863 if (target_can_async_p ())
864 async_file_mark ();
865 }
866 }
867 }
868 else
869 {
870 struct thread_info *tp;
871 struct inferior *parent_inf, *child_inf;
872 struct lwp_info *lp;
873 struct program_space *parent_pspace;
874
875 if (info_verbose || debug_linux_nat)
876 {
877 target_terminal_ours ();
878 if (has_vforked)
879 fprintf_filtered (gdb_stdlog, _("\
880 Attaching after process %d vfork to child process %d.\n"),
881 parent_pid, child_pid);
882 else
883 fprintf_filtered (gdb_stdlog, _("\
884 Attaching after process %d fork to child process %d.\n"),
885 parent_pid, child_pid);
886 }
887
888 /* Add the new inferior first, so that the target_detach below
889 doesn't unpush the target. */
890
891 child_inf = add_inferior (child_pid);
892
893 parent_inf = current_inferior ();
894 child_inf->attach_flag = parent_inf->attach_flag;
895 copy_terminal_info (child_inf, parent_inf);
896
897 parent_pspace = parent_inf->pspace;
898
899 /* If we're vforking, we want to hold on to the parent until the
900 child exits or execs. At child exec or exit time we can
901 remove the old breakpoints from the parent and detach or
902 resume debugging it. Otherwise, detach the parent now; we'll
903 want to reuse it's program/address spaces, but we can't set
904 them to the child before removing breakpoints from the
905 parent, otherwise, the breakpoints module could decide to
906 remove breakpoints from the wrong process (since they'd be
907 assigned to the same address space). */
908
909 if (has_vforked)
910 {
911 gdb_assert (child_inf->vfork_parent == NULL);
912 gdb_assert (parent_inf->vfork_child == NULL);
913 child_inf->vfork_parent = parent_inf;
914 child_inf->pending_detach = 0;
915 parent_inf->vfork_child = child_inf;
916 parent_inf->pending_detach = detach_fork;
917 parent_inf->waiting_for_vfork_done = 0;
918 }
919 else if (detach_fork)
920 target_detach (NULL, 0);
921
922 /* Note that the detach above makes PARENT_INF dangling. */
923
924 /* Add the child thread to the appropriate lists, and switch to
925 this new thread, before cloning the program space, and
926 informing the solib layer about this new process. */
927
928 inferior_ptid = ptid_build (child_pid, child_pid, 0);
929 add_thread (inferior_ptid);
930 lp = add_lwp (inferior_ptid);
931 lp->stopped = 1;
932 lp->resumed = 1;
933
934 /* If this is a vfork child, then the address-space is shared
935 with the parent. If we detached from the parent, then we can
936 reuse the parent's program/address spaces. */
937 if (has_vforked || detach_fork)
938 {
939 child_inf->pspace = parent_pspace;
940 child_inf->aspace = child_inf->pspace->aspace;
941 }
942 else
943 {
944 child_inf->aspace = new_address_space ();
945 child_inf->pspace = add_program_space (child_inf->aspace);
946 child_inf->removable = 1;
947 set_current_program_space (child_inf->pspace);
948 clone_program_space (child_inf->pspace, parent_pspace);
949
950 /* Let the shared library layer (solib-svr4) learn about
951 this new process, relocate the cloned exec, pull in
952 shared libraries, and install the solib event breakpoint.
953 If a "cloned-VM" event was propagated better throughout
954 the core, this wouldn't be required. */
955 solib_create_inferior_hook (0);
956 }
957
958 /* Let the thread_db layer learn about this new process. */
959 check_for_thread_db ();
960 }
961
962 restore_child_signals_mask (&prev_mask);
963 return 0;
964 }
965
966 \f
967 static void
968 linux_child_insert_fork_catchpoint (int pid)
969 {
970 if (! linux_supports_tracefork (pid))
971 error (_("Your system does not support fork catchpoints."));
972 }
973
974 static void
975 linux_child_insert_vfork_catchpoint (int pid)
976 {
977 if (!linux_supports_tracefork (pid))
978 error (_("Your system does not support vfork catchpoints."));
979 }
980
981 static void
982 linux_child_insert_exec_catchpoint (int pid)
983 {
984 if (!linux_supports_tracefork (pid))
985 error (_("Your system does not support exec catchpoints."));
986 }
987
988 static int
989 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
990 int table_size, int *table)
991 {
992 if (! linux_supports_tracesysgood (pid))
993 error (_("Your system does not support syscall catchpoints."));
994 /* On GNU/Linux, we ignore the arguments. It means that we only
995 enable the syscall catchpoints, but do not disable them.
996
997 Also, we do not use the `table' information because we do not
998 filter system calls here. We let GDB do the logic for us. */
999 return 0;
1000 }
1001
1002 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1003 are processes sharing the same VM space. A multi-threaded process
1004 is basically a group of such processes. However, such a grouping
1005 is almost entirely a user-space issue; the kernel doesn't enforce
1006 such a grouping at all (this might change in the future). In
1007 general, we'll rely on the threads library (i.e. the GNU/Linux
1008 Threads library) to provide such a grouping.
1009
1010 It is perfectly well possible to write a multi-threaded application
1011 without the assistance of a threads library, by using the clone
1012 system call directly. This module should be able to give some
1013 rudimentary support for debugging such applications if developers
1014 specify the CLONE_PTRACE flag in the clone system call, and are
1015 using the Linux kernel 2.4 or above.
1016
1017 Note that there are some peculiarities in GNU/Linux that affect
1018 this code:
1019
1020 - In general one should specify the __WCLONE flag to waitpid in
1021 order to make it report events for any of the cloned processes
1022 (and leave it out for the initial process). However, if a cloned
1023 process has exited the exit status is only reported if the
1024 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1025 we cannot use it since GDB must work on older systems too.
1026
1027 - When a traced, cloned process exits and is waited for by the
1028 debugger, the kernel reassigns it to the original parent and
1029 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1030 library doesn't notice this, which leads to the "zombie problem":
1031 When debugged a multi-threaded process that spawns a lot of
1032 threads will run out of processes, even if the threads exit,
1033 because the "zombies" stay around. */
1034
1035 /* List of known LWPs. */
1036 struct lwp_info *lwp_list;
1037 \f
1038
1039 /* Original signal mask. */
1040 static sigset_t normal_mask;
1041
1042 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1043 _initialize_linux_nat. */
1044 static sigset_t suspend_mask;
1045
1046 /* Signals to block to make that sigsuspend work. */
1047 static sigset_t blocked_mask;
1048
1049 /* SIGCHLD action. */
1050 struct sigaction sigchld_action;
1051
1052 /* Block child signals (SIGCHLD and linux threads signals), and store
1053 the previous mask in PREV_MASK. */
1054
1055 static void
1056 block_child_signals (sigset_t *prev_mask)
1057 {
1058 /* Make sure SIGCHLD is blocked. */
1059 if (!sigismember (&blocked_mask, SIGCHLD))
1060 sigaddset (&blocked_mask, SIGCHLD);
1061
1062 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1063 }
1064
1065 /* Restore child signals mask, previously returned by
1066 block_child_signals. */
1067
1068 static void
1069 restore_child_signals_mask (sigset_t *prev_mask)
1070 {
1071 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1072 }
1073 \f
1074
1075 /* Prototypes for local functions. */
1076 static int stop_wait_callback (struct lwp_info *lp, void *data);
1077 static int linux_thread_alive (ptid_t ptid);
1078 static char *linux_child_pid_to_exec_file (int pid);
1079 static int cancel_breakpoint (struct lwp_info *lp);
1080
1081 \f
1082 /* Convert wait status STATUS to a string. Used for printing debug
1083 messages only. */
1084
1085 static char *
1086 status_to_str (int status)
1087 {
1088 static char buf[64];
1089
1090 if (WIFSTOPPED (status))
1091 {
1092 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1093 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1094 strsignal (SIGTRAP));
1095 else
1096 snprintf (buf, sizeof (buf), "%s (stopped)",
1097 strsignal (WSTOPSIG (status)));
1098 }
1099 else if (WIFSIGNALED (status))
1100 snprintf (buf, sizeof (buf), "%s (terminated)",
1101 strsignal (WSTOPSIG (status)));
1102 else
1103 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1104
1105 return buf;
1106 }
1107
1108 /* Remove all LWPs belong to PID from the lwp list. */
1109
1110 static void
1111 purge_lwp_list (int pid)
1112 {
1113 struct lwp_info *lp, *lpprev, *lpnext;
1114
1115 lpprev = NULL;
1116
1117 for (lp = lwp_list; lp; lp = lpnext)
1118 {
1119 lpnext = lp->next;
1120
1121 if (ptid_get_pid (lp->ptid) == pid)
1122 {
1123 if (lp == lwp_list)
1124 lwp_list = lp->next;
1125 else
1126 lpprev->next = lp->next;
1127
1128 xfree (lp);
1129 }
1130 else
1131 lpprev = lp;
1132 }
1133 }
1134
1135 /* Return the number of known LWPs in the tgid given by PID. */
1136
1137 static int
1138 num_lwps (int pid)
1139 {
1140 int count = 0;
1141 struct lwp_info *lp;
1142
1143 for (lp = lwp_list; lp; lp = lp->next)
1144 if (ptid_get_pid (lp->ptid) == pid)
1145 count++;
1146
1147 return count;
1148 }
1149
1150 /* Add the LWP specified by PID to the list. Return a pointer to the
1151 structure describing the new LWP. The LWP should already be stopped
1152 (with an exception for the very first LWP). */
1153
1154 static struct lwp_info *
1155 add_lwp (ptid_t ptid)
1156 {
1157 struct lwp_info *lp;
1158
1159 gdb_assert (is_lwp (ptid));
1160
1161 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1162
1163 memset (lp, 0, sizeof (struct lwp_info));
1164
1165 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1166
1167 lp->ptid = ptid;
1168 lp->core = -1;
1169
1170 lp->next = lwp_list;
1171 lwp_list = lp;
1172
1173 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1174 linux_nat_new_thread (ptid);
1175
1176 return lp;
1177 }
1178
1179 /* Remove the LWP specified by PID from the list. */
1180
1181 static void
1182 delete_lwp (ptid_t ptid)
1183 {
1184 struct lwp_info *lp, *lpprev;
1185
1186 lpprev = NULL;
1187
1188 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1189 if (ptid_equal (lp->ptid, ptid))
1190 break;
1191
1192 if (!lp)
1193 return;
1194
1195 if (lpprev)
1196 lpprev->next = lp->next;
1197 else
1198 lwp_list = lp->next;
1199
1200 xfree (lp);
1201 }
1202
1203 /* Return a pointer to the structure describing the LWP corresponding
1204 to PID. If no corresponding LWP could be found, return NULL. */
1205
1206 static struct lwp_info *
1207 find_lwp_pid (ptid_t ptid)
1208 {
1209 struct lwp_info *lp;
1210 int lwp;
1211
1212 if (is_lwp (ptid))
1213 lwp = GET_LWP (ptid);
1214 else
1215 lwp = GET_PID (ptid);
1216
1217 for (lp = lwp_list; lp; lp = lp->next)
1218 if (lwp == GET_LWP (lp->ptid))
1219 return lp;
1220
1221 return NULL;
1222 }
1223
1224 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1225 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1226 a process (ptid_is_pid returns true), in which case, all lwps of
1227 that give process match, lwps of other process do not; or, it can
1228 represent a specific thread, in which case, only that thread will
1229 match true. PTID must represent an LWP, it can never be a wild
1230 card. */
1231
1232 static int
1233 ptid_match (ptid_t ptid, ptid_t filter)
1234 {
1235 /* Since both parameters have the same type, prevent easy mistakes
1236 from happening. */
1237 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1238 && !ptid_equal (ptid, null_ptid));
1239
1240 if (ptid_equal (filter, minus_one_ptid))
1241 return 1;
1242 if (ptid_is_pid (filter)
1243 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1244 return 1;
1245 else if (ptid_equal (ptid, filter))
1246 return 1;
1247
1248 return 0;
1249 }
1250
1251 /* Call CALLBACK with its second argument set to DATA for every LWP in
1252 the list. If CALLBACK returns 1 for a particular LWP, return a
1253 pointer to the structure describing that LWP immediately.
1254 Otherwise return NULL. */
1255
1256 struct lwp_info *
1257 iterate_over_lwps (ptid_t filter,
1258 int (*callback) (struct lwp_info *, void *),
1259 void *data)
1260 {
1261 struct lwp_info *lp, *lpnext;
1262
1263 for (lp = lwp_list; lp; lp = lpnext)
1264 {
1265 lpnext = lp->next;
1266
1267 if (ptid_match (lp->ptid, filter))
1268 {
1269 if ((*callback) (lp, data))
1270 return lp;
1271 }
1272 }
1273
1274 return NULL;
1275 }
1276
1277 /* Update our internal state when changing from one checkpoint to
1278 another indicated by NEW_PTID. We can only switch single-threaded
1279 applications, so we only create one new LWP, and the previous list
1280 is discarded. */
1281
1282 void
1283 linux_nat_switch_fork (ptid_t new_ptid)
1284 {
1285 struct lwp_info *lp;
1286
1287 purge_lwp_list (GET_PID (inferior_ptid));
1288
1289 lp = add_lwp (new_ptid);
1290 lp->stopped = 1;
1291
1292 /* This changes the thread's ptid while preserving the gdb thread
1293 num. Also changes the inferior pid, while preserving the
1294 inferior num. */
1295 thread_change_ptid (inferior_ptid, new_ptid);
1296
1297 /* We've just told GDB core that the thread changed target id, but,
1298 in fact, it really is a different thread, with different register
1299 contents. */
1300 registers_changed ();
1301 }
1302
1303 /* Handle the exit of a single thread LP. */
1304
1305 static void
1306 exit_lwp (struct lwp_info *lp)
1307 {
1308 struct thread_info *th = find_thread_ptid (lp->ptid);
1309
1310 if (th)
1311 {
1312 if (print_thread_events)
1313 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1314
1315 delete_thread (lp->ptid);
1316 }
1317
1318 delete_lwp (lp->ptid);
1319 }
1320
1321 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1322
1323 int
1324 linux_proc_get_tgid (int lwpid)
1325 {
1326 FILE *status_file;
1327 char buf[100];
1328 int tgid = -1;
1329
1330 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1331 status_file = fopen (buf, "r");
1332 if (status_file != NULL)
1333 {
1334 while (fgets (buf, sizeof (buf), status_file))
1335 {
1336 if (strncmp (buf, "Tgid:", 5) == 0)
1337 {
1338 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1339 break;
1340 }
1341 }
1342
1343 fclose (status_file);
1344 }
1345
1346 return tgid;
1347 }
1348
1349 /* Detect `T (stopped)' in `/proc/PID/status'.
1350 Other states including `T (tracing stop)' are reported as false. */
1351
1352 static int
1353 pid_is_stopped (pid_t pid)
1354 {
1355 FILE *status_file;
1356 char buf[100];
1357 int retval = 0;
1358
1359 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1360 status_file = fopen (buf, "r");
1361 if (status_file != NULL)
1362 {
1363 int have_state = 0;
1364
1365 while (fgets (buf, sizeof (buf), status_file))
1366 {
1367 if (strncmp (buf, "State:", 6) == 0)
1368 {
1369 have_state = 1;
1370 break;
1371 }
1372 }
1373 if (have_state && strstr (buf, "T (stopped)") != NULL)
1374 retval = 1;
1375 fclose (status_file);
1376 }
1377 return retval;
1378 }
1379
1380 /* Wait for the LWP specified by LP, which we have just attached to.
1381 Returns a wait status for that LWP, to cache. */
1382
1383 static int
1384 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1385 int *signalled)
1386 {
1387 pid_t new_pid, pid = GET_LWP (ptid);
1388 int status;
1389
1390 if (pid_is_stopped (pid))
1391 {
1392 if (debug_linux_nat)
1393 fprintf_unfiltered (gdb_stdlog,
1394 "LNPAW: Attaching to a stopped process\n");
1395
1396 /* The process is definitely stopped. It is in a job control
1397 stop, unless the kernel predates the TASK_STOPPED /
1398 TASK_TRACED distinction, in which case it might be in a
1399 ptrace stop. Make sure it is in a ptrace stop; from there we
1400 can kill it, signal it, et cetera.
1401
1402 First make sure there is a pending SIGSTOP. Since we are
1403 already attached, the process can not transition from stopped
1404 to running without a PTRACE_CONT; so we know this signal will
1405 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1406 probably already in the queue (unless this kernel is old
1407 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1408 is not an RT signal, it can only be queued once. */
1409 kill_lwp (pid, SIGSTOP);
1410
1411 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1412 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1413 ptrace (PTRACE_CONT, pid, 0, 0);
1414 }
1415
1416 /* Make sure the initial process is stopped. The user-level threads
1417 layer might want to poke around in the inferior, and that won't
1418 work if things haven't stabilized yet. */
1419 new_pid = my_waitpid (pid, &status, 0);
1420 if (new_pid == -1 && errno == ECHILD)
1421 {
1422 if (first)
1423 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1424
1425 /* Try again with __WCLONE to check cloned processes. */
1426 new_pid = my_waitpid (pid, &status, __WCLONE);
1427 *cloned = 1;
1428 }
1429
1430 gdb_assert (pid == new_pid);
1431
1432 if (!WIFSTOPPED (status))
1433 {
1434 /* The pid we tried to attach has apparently just exited. */
1435 if (debug_linux_nat)
1436 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1437 pid, status_to_str (status));
1438 return status;
1439 }
1440
1441 if (WSTOPSIG (status) != SIGSTOP)
1442 {
1443 *signalled = 1;
1444 if (debug_linux_nat)
1445 fprintf_unfiltered (gdb_stdlog,
1446 "LNPAW: Received %s after attaching\n",
1447 status_to_str (status));
1448 }
1449
1450 return status;
1451 }
1452
1453 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1454 if the new LWP could not be attached. */
1455
1456 int
1457 lin_lwp_attach_lwp (ptid_t ptid)
1458 {
1459 struct lwp_info *lp;
1460 sigset_t prev_mask;
1461
1462 gdb_assert (is_lwp (ptid));
1463
1464 block_child_signals (&prev_mask);
1465
1466 lp = find_lwp_pid (ptid);
1467
1468 /* We assume that we're already attached to any LWP that has an id
1469 equal to the overall process id, and to any LWP that is already
1470 in our list of LWPs. If we're not seeing exit events from threads
1471 and we've had PID wraparound since we last tried to stop all threads,
1472 this assumption might be wrong; fortunately, this is very unlikely
1473 to happen. */
1474 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1475 {
1476 int status, cloned = 0, signalled = 0;
1477
1478 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1479 {
1480 /* If we fail to attach to the thread, issue a warning,
1481 but continue. One way this can happen is if thread
1482 creation is interrupted; as of Linux kernel 2.6.19, a
1483 bug may place threads in the thread list and then fail
1484 to create them. */
1485 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1486 safe_strerror (errno));
1487 restore_child_signals_mask (&prev_mask);
1488 return -1;
1489 }
1490
1491 if (debug_linux_nat)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1494 target_pid_to_str (ptid));
1495
1496 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1497 if (!WIFSTOPPED (status))
1498 return -1;
1499
1500 lp = add_lwp (ptid);
1501 lp->stopped = 1;
1502 lp->cloned = cloned;
1503 lp->signalled = signalled;
1504 if (WSTOPSIG (status) != SIGSTOP)
1505 {
1506 lp->resumed = 1;
1507 lp->status = status;
1508 }
1509
1510 target_post_attach (GET_LWP (lp->ptid));
1511
1512 if (debug_linux_nat)
1513 {
1514 fprintf_unfiltered (gdb_stdlog,
1515 "LLAL: waitpid %s received %s\n",
1516 target_pid_to_str (ptid),
1517 status_to_str (status));
1518 }
1519 }
1520 else
1521 {
1522 /* We assume that the LWP representing the original process is
1523 already stopped. Mark it as stopped in the data structure
1524 that the GNU/linux ptrace layer uses to keep track of
1525 threads. Note that this won't have already been done since
1526 the main thread will have, we assume, been stopped by an
1527 attach from a different layer. */
1528 if (lp == NULL)
1529 lp = add_lwp (ptid);
1530 lp->stopped = 1;
1531 }
1532
1533 restore_child_signals_mask (&prev_mask);
1534 return 0;
1535 }
1536
1537 static void
1538 linux_nat_create_inferior (struct target_ops *ops,
1539 char *exec_file, char *allargs, char **env,
1540 int from_tty)
1541 {
1542 #ifdef HAVE_PERSONALITY
1543 int personality_orig = 0, personality_set = 0;
1544 #endif /* HAVE_PERSONALITY */
1545
1546 /* The fork_child mechanism is synchronous and calls target_wait, so
1547 we have to mask the async mode. */
1548
1549 #ifdef HAVE_PERSONALITY
1550 if (disable_randomization)
1551 {
1552 errno = 0;
1553 personality_orig = personality (0xffffffff);
1554 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1555 {
1556 personality_set = 1;
1557 personality (personality_orig | ADDR_NO_RANDOMIZE);
1558 }
1559 if (errno != 0 || (personality_set
1560 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1561 warning (_("Error disabling address space randomization: %s"),
1562 safe_strerror (errno));
1563 }
1564 #endif /* HAVE_PERSONALITY */
1565
1566 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1567
1568 #ifdef HAVE_PERSONALITY
1569 if (personality_set)
1570 {
1571 errno = 0;
1572 personality (personality_orig);
1573 if (errno != 0)
1574 warning (_("Error restoring address space randomization: %s"),
1575 safe_strerror (errno));
1576 }
1577 #endif /* HAVE_PERSONALITY */
1578 }
1579
1580 static void
1581 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1582 {
1583 struct lwp_info *lp;
1584 int status;
1585 ptid_t ptid;
1586
1587 linux_ops->to_attach (ops, args, from_tty);
1588
1589 /* The ptrace base target adds the main thread with (pid,0,0)
1590 format. Decorate it with lwp info. */
1591 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1592 thread_change_ptid (inferior_ptid, ptid);
1593
1594 /* Add the initial process as the first LWP to the list. */
1595 lp = add_lwp (ptid);
1596
1597 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1598 &lp->signalled);
1599 if (!WIFSTOPPED (status))
1600 {
1601 if (WIFEXITED (status))
1602 {
1603 int exit_code = WEXITSTATUS (status);
1604
1605 target_terminal_ours ();
1606 target_mourn_inferior ();
1607 if (exit_code == 0)
1608 error (_("Unable to attach: program exited normally."));
1609 else
1610 error (_("Unable to attach: program exited with code %d."),
1611 exit_code);
1612 }
1613 else if (WIFSIGNALED (status))
1614 {
1615 enum target_signal signo;
1616
1617 target_terminal_ours ();
1618 target_mourn_inferior ();
1619
1620 signo = target_signal_from_host (WTERMSIG (status));
1621 error (_("Unable to attach: program terminated with signal "
1622 "%s, %s."),
1623 target_signal_to_name (signo),
1624 target_signal_to_string (signo));
1625 }
1626
1627 internal_error (__FILE__, __LINE__,
1628 _("unexpected status %d for PID %ld"),
1629 status, (long) GET_LWP (ptid));
1630 }
1631
1632 lp->stopped = 1;
1633
1634 /* Save the wait status to report later. */
1635 lp->resumed = 1;
1636 if (debug_linux_nat)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "LNA: waitpid %ld, saving status %s\n",
1639 (long) GET_PID (lp->ptid), status_to_str (status));
1640
1641 lp->status = status;
1642
1643 if (target_can_async_p ())
1644 target_async (inferior_event_handler, 0);
1645 }
1646
1647 /* Get pending status of LP. */
1648 static int
1649 get_pending_status (struct lwp_info *lp, int *status)
1650 {
1651 enum target_signal signo = TARGET_SIGNAL_0;
1652
1653 /* If we paused threads momentarily, we may have stored pending
1654 events in lp->status or lp->waitstatus (see stop_wait_callback),
1655 and GDB core hasn't seen any signal for those threads.
1656 Otherwise, the last signal reported to the core is found in the
1657 thread object's stop_signal.
1658
1659 There's a corner case that isn't handled here at present. Only
1660 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1661 stop_signal make sense as a real signal to pass to the inferior.
1662 Some catchpoint related events, like
1663 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1664 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1665 those traps are debug API (ptrace in our case) related and
1666 induced; the inferior wouldn't see them if it wasn't being
1667 traced. Hence, we should never pass them to the inferior, even
1668 when set to pass state. Since this corner case isn't handled by
1669 infrun.c when proceeding with a signal, for consistency, neither
1670 do we handle it here (or elsewhere in the file we check for
1671 signal pass state). Normally SIGTRAP isn't set to pass state, so
1672 this is really a corner case. */
1673
1674 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1675 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1676 else if (lp->status)
1677 signo = target_signal_from_host (WSTOPSIG (lp->status));
1678 else if (non_stop && !is_executing (lp->ptid))
1679 {
1680 struct thread_info *tp = find_thread_ptid (lp->ptid);
1681 signo = tp->stop_signal;
1682 }
1683 else if (!non_stop)
1684 {
1685 struct target_waitstatus last;
1686 ptid_t last_ptid;
1687
1688 get_last_target_status (&last_ptid, &last);
1689
1690 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1691 {
1692 struct thread_info *tp = find_thread_ptid (lp->ptid);
1693 signo = tp->stop_signal;
1694 }
1695 }
1696
1697 *status = 0;
1698
1699 if (signo == TARGET_SIGNAL_0)
1700 {
1701 if (debug_linux_nat)
1702 fprintf_unfiltered (gdb_stdlog,
1703 "GPT: lwp %s has no pending signal\n",
1704 target_pid_to_str (lp->ptid));
1705 }
1706 else if (!signal_pass_state (signo))
1707 {
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog, "\
1710 GPT: lwp %s had signal %s, but it is in no pass state\n",
1711 target_pid_to_str (lp->ptid),
1712 target_signal_to_string (signo));
1713 }
1714 else
1715 {
1716 *status = W_STOPCODE (target_signal_to_host (signo));
1717
1718 if (debug_linux_nat)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "GPT: lwp %s has pending signal %s\n",
1721 target_pid_to_str (lp->ptid),
1722 target_signal_to_string (signo));
1723 }
1724
1725 return 0;
1726 }
1727
1728 static int
1729 detach_callback (struct lwp_info *lp, void *data)
1730 {
1731 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1732
1733 if (debug_linux_nat && lp->status)
1734 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1735 strsignal (WSTOPSIG (lp->status)),
1736 target_pid_to_str (lp->ptid));
1737
1738 /* If there is a pending SIGSTOP, get rid of it. */
1739 if (lp->signalled)
1740 {
1741 if (debug_linux_nat)
1742 fprintf_unfiltered (gdb_stdlog,
1743 "DC: Sending SIGCONT to %s\n",
1744 target_pid_to_str (lp->ptid));
1745
1746 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1747 lp->signalled = 0;
1748 }
1749
1750 /* We don't actually detach from the LWP that has an id equal to the
1751 overall process id just yet. */
1752 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1753 {
1754 int status = 0;
1755
1756 /* Pass on any pending signal for this LWP. */
1757 get_pending_status (lp, &status);
1758
1759 errno = 0;
1760 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1761 WSTOPSIG (status)) < 0)
1762 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1763 safe_strerror (errno));
1764
1765 if (debug_linux_nat)
1766 fprintf_unfiltered (gdb_stdlog,
1767 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1768 target_pid_to_str (lp->ptid),
1769 strsignal (WSTOPSIG (status)));
1770
1771 delete_lwp (lp->ptid);
1772 }
1773
1774 return 0;
1775 }
1776
1777 static void
1778 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1779 {
1780 int pid;
1781 int status;
1782 enum target_signal sig;
1783 struct lwp_info *main_lwp;
1784
1785 pid = GET_PID (inferior_ptid);
1786
1787 if (target_can_async_p ())
1788 linux_nat_async (NULL, 0);
1789
1790 /* Stop all threads before detaching. ptrace requires that the
1791 thread is stopped to sucessfully detach. */
1792 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1793 /* ... and wait until all of them have reported back that
1794 they're no longer running. */
1795 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1796
1797 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1798
1799 /* Only the initial process should be left right now. */
1800 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1801
1802 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1803
1804 /* Pass on any pending signal for the last LWP. */
1805 if ((args == NULL || *args == '\0')
1806 && get_pending_status (main_lwp, &status) != -1
1807 && WIFSTOPPED (status))
1808 {
1809 /* Put the signal number in ARGS so that inf_ptrace_detach will
1810 pass it along with PTRACE_DETACH. */
1811 args = alloca (8);
1812 sprintf (args, "%d", (int) WSTOPSIG (status));
1813 fprintf_unfiltered (gdb_stdlog,
1814 "LND: Sending signal %s to %s\n",
1815 args,
1816 target_pid_to_str (main_lwp->ptid));
1817 }
1818
1819 delete_lwp (main_lwp->ptid);
1820
1821 if (forks_exist_p ())
1822 {
1823 /* Multi-fork case. The current inferior_ptid is being detached
1824 from, but there are other viable forks to debug. Detach from
1825 the current fork, and context-switch to the first
1826 available. */
1827 linux_fork_detach (args, from_tty);
1828
1829 if (non_stop && target_can_async_p ())
1830 target_async (inferior_event_handler, 0);
1831 }
1832 else
1833 linux_ops->to_detach (ops, args, from_tty);
1834 }
1835
1836 /* Resume LP. */
1837
1838 static int
1839 resume_callback (struct lwp_info *lp, void *data)
1840 {
1841 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1842
1843 if (lp->stopped && inf->vfork_child != NULL)
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming %s (vfork parent)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 else if (lp->stopped && lp->status == 0)
1851 {
1852 if (debug_linux_nat)
1853 fprintf_unfiltered (gdb_stdlog,
1854 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1855 target_pid_to_str (lp->ptid));
1856
1857 linux_ops->to_resume (linux_ops,
1858 pid_to_ptid (GET_LWP (lp->ptid)),
1859 0, TARGET_SIGNAL_0);
1860 if (debug_linux_nat)
1861 fprintf_unfiltered (gdb_stdlog,
1862 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1863 target_pid_to_str (lp->ptid));
1864 lp->stopped = 0;
1865 lp->step = 0;
1866 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1867 lp->stopped_by_watchpoint = 0;
1868 }
1869 else if (lp->stopped && debug_linux_nat)
1870 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1871 target_pid_to_str (lp->ptid));
1872 else if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1874 target_pid_to_str (lp->ptid));
1875
1876 return 0;
1877 }
1878
1879 static int
1880 resume_clear_callback (struct lwp_info *lp, void *data)
1881 {
1882 lp->resumed = 0;
1883 return 0;
1884 }
1885
1886 static int
1887 resume_set_callback (struct lwp_info *lp, void *data)
1888 {
1889 lp->resumed = 1;
1890 return 0;
1891 }
1892
1893 static void
1894 linux_nat_resume (struct target_ops *ops,
1895 ptid_t ptid, int step, enum target_signal signo)
1896 {
1897 sigset_t prev_mask;
1898 struct lwp_info *lp;
1899 int resume_many;
1900
1901 if (debug_linux_nat)
1902 fprintf_unfiltered (gdb_stdlog,
1903 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1904 step ? "step" : "resume",
1905 target_pid_to_str (ptid),
1906 signo ? strsignal (signo) : "0",
1907 target_pid_to_str (inferior_ptid));
1908
1909 block_child_signals (&prev_mask);
1910
1911 /* A specific PTID means `step only this process id'. */
1912 resume_many = (ptid_equal (minus_one_ptid, ptid)
1913 || ptid_is_pid (ptid));
1914
1915 if (!non_stop)
1916 {
1917 /* Mark the lwps we're resuming as resumed. */
1918 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1919 iterate_over_lwps (ptid, resume_set_callback, NULL);
1920 }
1921 else
1922 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
1923
1924 /* See if it's the current inferior that should be handled
1925 specially. */
1926 if (resume_many)
1927 lp = find_lwp_pid (inferior_ptid);
1928 else
1929 lp = find_lwp_pid (ptid);
1930 gdb_assert (lp != NULL);
1931
1932 /* Remember if we're stepping. */
1933 lp->step = step;
1934
1935 /* If we have a pending wait status for this thread, there is no
1936 point in resuming the process. But first make sure that
1937 linux_nat_wait won't preemptively handle the event - we
1938 should never take this short-circuit if we are going to
1939 leave LP running, since we have skipped resuming all the
1940 other threads. This bit of code needs to be synchronized
1941 with linux_nat_wait. */
1942
1943 if (lp->status && WIFSTOPPED (lp->status))
1944 {
1945 int saved_signo;
1946 struct inferior *inf;
1947
1948 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1949 gdb_assert (inf);
1950 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1951
1952 /* Defer to common code if we're gaining control of the
1953 inferior. */
1954 if (inf->stop_soon == NO_STOP_QUIETLY
1955 && signal_stop_state (saved_signo) == 0
1956 && signal_print_state (saved_signo) == 0
1957 && signal_pass_state (saved_signo) == 1)
1958 {
1959 if (debug_linux_nat)
1960 fprintf_unfiltered (gdb_stdlog,
1961 "LLR: Not short circuiting for ignored "
1962 "status 0x%x\n", lp->status);
1963
1964 /* FIXME: What should we do if we are supposed to continue
1965 this thread with a signal? */
1966 gdb_assert (signo == TARGET_SIGNAL_0);
1967 signo = saved_signo;
1968 lp->status = 0;
1969 }
1970 }
1971
1972 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1973 {
1974 /* FIXME: What should we do if we are supposed to continue
1975 this thread with a signal? */
1976 gdb_assert (signo == TARGET_SIGNAL_0);
1977
1978 if (debug_linux_nat)
1979 fprintf_unfiltered (gdb_stdlog,
1980 "LLR: Short circuiting for status 0x%x\n",
1981 lp->status);
1982
1983 restore_child_signals_mask (&prev_mask);
1984 if (target_can_async_p ())
1985 {
1986 target_async (inferior_event_handler, 0);
1987 /* Tell the event loop we have something to process. */
1988 async_file_mark ();
1989 }
1990 return;
1991 }
1992
1993 /* Mark LWP as not stopped to prevent it from being continued by
1994 resume_callback. */
1995 lp->stopped = 0;
1996
1997 if (resume_many)
1998 iterate_over_lwps (ptid, resume_callback, NULL);
1999
2000 /* Convert to something the lower layer understands. */
2001 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2002
2003 linux_ops->to_resume (linux_ops, ptid, step, signo);
2004 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2005 lp->stopped_by_watchpoint = 0;
2006
2007 if (debug_linux_nat)
2008 fprintf_unfiltered (gdb_stdlog,
2009 "LLR: %s %s, %s (resume event thread)\n",
2010 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2011 target_pid_to_str (ptid),
2012 signo ? strsignal (signo) : "0");
2013
2014 restore_child_signals_mask (&prev_mask);
2015 if (target_can_async_p ())
2016 target_async (inferior_event_handler, 0);
2017 }
2018
2019 /* Send a signal to an LWP. */
2020
2021 static int
2022 kill_lwp (int lwpid, int signo)
2023 {
2024 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2025 fails, then we are not using nptl threads and we should be using kill. */
2026
2027 #ifdef HAVE_TKILL_SYSCALL
2028 {
2029 static int tkill_failed;
2030
2031 if (!tkill_failed)
2032 {
2033 int ret;
2034
2035 errno = 0;
2036 ret = syscall (__NR_tkill, lwpid, signo);
2037 if (errno != ENOSYS)
2038 return ret;
2039 tkill_failed = 1;
2040 }
2041 }
2042 #endif
2043
2044 return kill (lwpid, signo);
2045 }
2046
2047 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2048 event, check if the core is interested in it: if not, ignore the
2049 event, and keep waiting; otherwise, we need to toggle the LWP's
2050 syscall entry/exit status, since the ptrace event itself doesn't
2051 indicate it, and report the trap to higher layers. */
2052
2053 static int
2054 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2055 {
2056 struct target_waitstatus *ourstatus = &lp->waitstatus;
2057 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2058 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2059
2060 if (stopping)
2061 {
2062 /* If we're stopping threads, there's a SIGSTOP pending, which
2063 makes it so that the LWP reports an immediate syscall return,
2064 followed by the SIGSTOP. Skip seeing that "return" using
2065 PTRACE_CONT directly, and let stop_wait_callback collect the
2066 SIGSTOP. Later when the thread is resumed, a new syscall
2067 entry event. If we didn't do this (and returned 0), we'd
2068 leave a syscall entry pending, and our caller, by using
2069 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2070 itself. Later, when the user re-resumes this LWP, we'd see
2071 another syscall entry event and we'd mistake it for a return.
2072
2073 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2074 (leaving immediately with LWP->signalled set, without issuing
2075 a PTRACE_CONT), it would still be problematic to leave this
2076 syscall enter pending, as later when the thread is resumed,
2077 it would then see the same syscall exit mentioned above,
2078 followed by the delayed SIGSTOP, while the syscall didn't
2079 actually get to execute. It seems it would be even more
2080 confusing to the user. */
2081
2082 if (debug_linux_nat)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "LHST: ignoring syscall %d "
2085 "for LWP %ld (stopping threads), "
2086 "resuming with PTRACE_CONT for SIGSTOP\n",
2087 syscall_number,
2088 GET_LWP (lp->ptid));
2089
2090 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2091 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2092 return 1;
2093 }
2094
2095 if (catch_syscall_enabled ())
2096 {
2097 /* Always update the entry/return state, even if this particular
2098 syscall isn't interesting to the core now. In async mode,
2099 the user could install a new catchpoint for this syscall
2100 between syscall enter/return, and we'll need to know to
2101 report a syscall return if that happens. */
2102 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2103 ? TARGET_WAITKIND_SYSCALL_RETURN
2104 : TARGET_WAITKIND_SYSCALL_ENTRY);
2105
2106 if (catching_syscall_number (syscall_number))
2107 {
2108 /* Alright, an event to report. */
2109 ourstatus->kind = lp->syscall_state;
2110 ourstatus->value.syscall_number = syscall_number;
2111
2112 if (debug_linux_nat)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "LHST: stopping for %s of syscall %d"
2115 " for LWP %ld\n",
2116 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2117 ? "entry" : "return",
2118 syscall_number,
2119 GET_LWP (lp->ptid));
2120 return 0;
2121 }
2122
2123 if (debug_linux_nat)
2124 fprintf_unfiltered (gdb_stdlog,
2125 "LHST: ignoring %s of syscall %d "
2126 "for LWP %ld\n",
2127 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2128 ? "entry" : "return",
2129 syscall_number,
2130 GET_LWP (lp->ptid));
2131 }
2132 else
2133 {
2134 /* If we had been syscall tracing, and hence used PT_SYSCALL
2135 before on this LWP, it could happen that the user removes all
2136 syscall catchpoints before we get to process this event.
2137 There are two noteworthy issues here:
2138
2139 - When stopped at a syscall entry event, resuming with
2140 PT_STEP still resumes executing the syscall and reports a
2141 syscall return.
2142
2143 - Only PT_SYSCALL catches syscall enters. If we last
2144 single-stepped this thread, then this event can't be a
2145 syscall enter. If we last single-stepped this thread, this
2146 has to be a syscall exit.
2147
2148 The points above mean that the next resume, be it PT_STEP or
2149 PT_CONTINUE, can not trigger a syscall trace event. */
2150 if (debug_linux_nat)
2151 fprintf_unfiltered (gdb_stdlog,
2152 "LHST: caught syscall event with no syscall catchpoints."
2153 " %d for LWP %ld, ignoring\n",
2154 syscall_number,
2155 GET_LWP (lp->ptid));
2156 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2157 }
2158
2159 /* The core isn't interested in this event. For efficiency, avoid
2160 stopping all threads only to have the core resume them all again.
2161 Since we're not stopping threads, if we're still syscall tracing
2162 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2163 subsequent syscall. Simply resume using the inf-ptrace layer,
2164 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2165
2166 /* Note that gdbarch_get_syscall_number may access registers, hence
2167 fill a regcache. */
2168 registers_changed ();
2169 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2170 lp->step, TARGET_SIGNAL_0);
2171 return 1;
2172 }
2173
2174 /* Handle a GNU/Linux extended wait response. If we see a clone
2175 event, we need to add the new LWP to our list (and not report the
2176 trap to higher layers). This function returns non-zero if the
2177 event should be ignored and we should wait again. If STOPPING is
2178 true, the new LWP remains stopped, otherwise it is continued. */
2179
2180 static int
2181 linux_handle_extended_wait (struct lwp_info *lp, int status,
2182 int stopping)
2183 {
2184 int pid = GET_LWP (lp->ptid);
2185 struct target_waitstatus *ourstatus = &lp->waitstatus;
2186 struct lwp_info *new_lp = NULL;
2187 int event = status >> 16;
2188
2189 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2190 || event == PTRACE_EVENT_CLONE)
2191 {
2192 unsigned long new_pid;
2193 int ret;
2194
2195 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2196
2197 /* If we haven't already seen the new PID stop, wait for it now. */
2198 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2199 {
2200 /* The new child has a pending SIGSTOP. We can't affect it until it
2201 hits the SIGSTOP, but we're already attached. */
2202 ret = my_waitpid (new_pid, &status,
2203 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2204 if (ret == -1)
2205 perror_with_name (_("waiting for new child"));
2206 else if (ret != new_pid)
2207 internal_error (__FILE__, __LINE__,
2208 _("wait returned unexpected PID %d"), ret);
2209 else if (!WIFSTOPPED (status))
2210 internal_error (__FILE__, __LINE__,
2211 _("wait returned unexpected status 0x%x"), status);
2212 }
2213
2214 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2215
2216 if (event == PTRACE_EVENT_FORK
2217 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2218 {
2219 struct fork_info *fp;
2220
2221 /* Handle checkpointing by linux-fork.c here as a special
2222 case. We don't want the follow-fork-mode or 'catch fork'
2223 to interfere with this. */
2224
2225 /* This won't actually modify the breakpoint list, but will
2226 physically remove the breakpoints from the child. */
2227 detach_breakpoints (new_pid);
2228
2229 /* Retain child fork in ptrace (stopped) state. */
2230 fp = find_fork_pid (new_pid);
2231 if (!fp)
2232 fp = add_fork (new_pid);
2233
2234 /* Report as spurious, so that infrun doesn't want to follow
2235 this fork. We're actually doing an infcall in
2236 linux-fork.c. */
2237 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2238 linux_enable_event_reporting (pid_to_ptid (new_pid));
2239
2240 /* Report the stop to the core. */
2241 return 0;
2242 }
2243
2244 if (event == PTRACE_EVENT_FORK)
2245 ourstatus->kind = TARGET_WAITKIND_FORKED;
2246 else if (event == PTRACE_EVENT_VFORK)
2247 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2248 else
2249 {
2250 struct cleanup *old_chain;
2251
2252 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2253 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2254 new_lp->cloned = 1;
2255 new_lp->stopped = 1;
2256
2257 if (WSTOPSIG (status) != SIGSTOP)
2258 {
2259 /* This can happen if someone starts sending signals to
2260 the new thread before it gets a chance to run, which
2261 have a lower number than SIGSTOP (e.g. SIGUSR1).
2262 This is an unlikely case, and harder to handle for
2263 fork / vfork than for clone, so we do not try - but
2264 we handle it for clone events here. We'll send
2265 the other signal on to the thread below. */
2266
2267 new_lp->signalled = 1;
2268 }
2269 else
2270 status = 0;
2271
2272 if (non_stop)
2273 {
2274 /* Add the new thread to GDB's lists as soon as possible
2275 so that:
2276
2277 1) the frontend doesn't have to wait for a stop to
2278 display them, and,
2279
2280 2) we tag it with the correct running state. */
2281
2282 /* If the thread_db layer is active, let it know about
2283 this new thread, and add it to GDB's list. */
2284 if (!thread_db_attach_lwp (new_lp->ptid))
2285 {
2286 /* We're not using thread_db. Add it to GDB's
2287 list. */
2288 target_post_attach (GET_LWP (new_lp->ptid));
2289 add_thread (new_lp->ptid);
2290 }
2291
2292 if (!stopping)
2293 {
2294 set_running (new_lp->ptid, 1);
2295 set_executing (new_lp->ptid, 1);
2296 }
2297 }
2298
2299 /* Note the need to use the low target ops to resume, to
2300 handle resuming with PT_SYSCALL if we have syscall
2301 catchpoints. */
2302 if (!stopping)
2303 {
2304 int signo;
2305
2306 new_lp->stopped = 0;
2307 new_lp->resumed = 1;
2308
2309 signo = (status
2310 ? target_signal_from_host (WSTOPSIG (status))
2311 : TARGET_SIGNAL_0);
2312
2313 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2314 0, signo);
2315 }
2316
2317 if (debug_linux_nat)
2318 fprintf_unfiltered (gdb_stdlog,
2319 "LHEW: Got clone event from LWP %ld, resuming\n",
2320 GET_LWP (lp->ptid));
2321 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2322 0, TARGET_SIGNAL_0);
2323
2324 return 1;
2325 }
2326
2327 return 0;
2328 }
2329
2330 if (event == PTRACE_EVENT_EXEC)
2331 {
2332 if (debug_linux_nat)
2333 fprintf_unfiltered (gdb_stdlog,
2334 "LHEW: Got exec event from LWP %ld\n",
2335 GET_LWP (lp->ptid));
2336
2337 ourstatus->kind = TARGET_WAITKIND_EXECD;
2338 ourstatus->value.execd_pathname
2339 = xstrdup (linux_child_pid_to_exec_file (pid));
2340
2341 return 0;
2342 }
2343
2344 if (event == PTRACE_EVENT_VFORK_DONE)
2345 {
2346 if (current_inferior ()->waiting_for_vfork_done)
2347 {
2348 if (debug_linux_nat)
2349 fprintf_unfiltered (gdb_stdlog, "\
2350 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2351 GET_LWP (lp->ptid));
2352
2353 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2354 return 0;
2355 }
2356
2357 if (debug_linux_nat)
2358 fprintf_unfiltered (gdb_stdlog, "\
2359 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2360 GET_LWP (lp->ptid));
2361 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2362 return 1;
2363 }
2364
2365 internal_error (__FILE__, __LINE__,
2366 _("unknown ptrace event %d"), event);
2367 }
2368
2369 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2370 exited. */
2371
2372 static int
2373 wait_lwp (struct lwp_info *lp)
2374 {
2375 pid_t pid;
2376 int status;
2377 int thread_dead = 0;
2378
2379 gdb_assert (!lp->stopped);
2380 gdb_assert (lp->status == 0);
2381
2382 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2383 if (pid == -1 && errno == ECHILD)
2384 {
2385 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2386 if (pid == -1 && errno == ECHILD)
2387 {
2388 /* The thread has previously exited. We need to delete it
2389 now because, for some vendor 2.4 kernels with NPTL
2390 support backported, there won't be an exit event unless
2391 it is the main thread. 2.6 kernels will report an exit
2392 event for each thread that exits, as expected. */
2393 thread_dead = 1;
2394 if (debug_linux_nat)
2395 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2396 target_pid_to_str (lp->ptid));
2397 }
2398 }
2399
2400 if (!thread_dead)
2401 {
2402 gdb_assert (pid == GET_LWP (lp->ptid));
2403
2404 if (debug_linux_nat)
2405 {
2406 fprintf_unfiltered (gdb_stdlog,
2407 "WL: waitpid %s received %s\n",
2408 target_pid_to_str (lp->ptid),
2409 status_to_str (status));
2410 }
2411 }
2412
2413 /* Check if the thread has exited. */
2414 if (WIFEXITED (status) || WIFSIGNALED (status))
2415 {
2416 thread_dead = 1;
2417 if (debug_linux_nat)
2418 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2419 target_pid_to_str (lp->ptid));
2420 }
2421
2422 if (thread_dead)
2423 {
2424 exit_lwp (lp);
2425 return 0;
2426 }
2427
2428 gdb_assert (WIFSTOPPED (status));
2429
2430 /* Handle GNU/Linux's syscall SIGTRAPs. */
2431 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2432 {
2433 /* No longer need the sysgood bit. The ptrace event ends up
2434 recorded in lp->waitstatus if we care for it. We can carry
2435 on handling the event like a regular SIGTRAP from here
2436 on. */
2437 status = W_STOPCODE (SIGTRAP);
2438 if (linux_handle_syscall_trap (lp, 1))
2439 return wait_lwp (lp);
2440 }
2441
2442 /* Handle GNU/Linux's extended waitstatus for trace events. */
2443 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2444 {
2445 if (debug_linux_nat)
2446 fprintf_unfiltered (gdb_stdlog,
2447 "WL: Handling extended status 0x%06x\n",
2448 status);
2449 if (linux_handle_extended_wait (lp, status, 1))
2450 return wait_lwp (lp);
2451 }
2452
2453 return status;
2454 }
2455
2456 /* Save the most recent siginfo for LP. This is currently only called
2457 for SIGTRAP; some ports use the si_addr field for
2458 target_stopped_data_address. In the future, it may also be used to
2459 restore the siginfo of requeued signals. */
2460
2461 static void
2462 save_siginfo (struct lwp_info *lp)
2463 {
2464 errno = 0;
2465 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2466 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2467
2468 if (errno != 0)
2469 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2470 }
2471
2472 /* Send a SIGSTOP to LP. */
2473
2474 static int
2475 stop_callback (struct lwp_info *lp, void *data)
2476 {
2477 if (!lp->stopped && !lp->signalled)
2478 {
2479 int ret;
2480
2481 if (debug_linux_nat)
2482 {
2483 fprintf_unfiltered (gdb_stdlog,
2484 "SC: kill %s **<SIGSTOP>**\n",
2485 target_pid_to_str (lp->ptid));
2486 }
2487 errno = 0;
2488 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2489 if (debug_linux_nat)
2490 {
2491 fprintf_unfiltered (gdb_stdlog,
2492 "SC: lwp kill %d %s\n",
2493 ret,
2494 errno ? safe_strerror (errno) : "ERRNO-OK");
2495 }
2496
2497 lp->signalled = 1;
2498 gdb_assert (lp->status == 0);
2499 }
2500
2501 return 0;
2502 }
2503
2504 /* Return non-zero if LWP PID has a pending SIGINT. */
2505
2506 static int
2507 linux_nat_has_pending_sigint (int pid)
2508 {
2509 sigset_t pending, blocked, ignored;
2510 int i;
2511
2512 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2513
2514 if (sigismember (&pending, SIGINT)
2515 && !sigismember (&ignored, SIGINT))
2516 return 1;
2517
2518 return 0;
2519 }
2520
2521 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2522
2523 static int
2524 set_ignore_sigint (struct lwp_info *lp, void *data)
2525 {
2526 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2527 flag to consume the next one. */
2528 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2529 && WSTOPSIG (lp->status) == SIGINT)
2530 lp->status = 0;
2531 else
2532 lp->ignore_sigint = 1;
2533
2534 return 0;
2535 }
2536
2537 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2538 This function is called after we know the LWP has stopped; if the LWP
2539 stopped before the expected SIGINT was delivered, then it will never have
2540 arrived. Also, if the signal was delivered to a shared queue and consumed
2541 by a different thread, it will never be delivered to this LWP. */
2542
2543 static void
2544 maybe_clear_ignore_sigint (struct lwp_info *lp)
2545 {
2546 if (!lp->ignore_sigint)
2547 return;
2548
2549 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2550 {
2551 if (debug_linux_nat)
2552 fprintf_unfiltered (gdb_stdlog,
2553 "MCIS: Clearing bogus flag for %s\n",
2554 target_pid_to_str (lp->ptid));
2555 lp->ignore_sigint = 0;
2556 }
2557 }
2558
2559 /* Fetch the possible triggered data watchpoint info and store it in
2560 LP.
2561
2562 On some archs, like x86, that use debug registers to set
2563 watchpoints, it's possible that the way to know which watched
2564 address trapped, is to check the register that is used to select
2565 which address to watch. Problem is, between setting the watchpoint
2566 and reading back which data address trapped, the user may change
2567 the set of watchpoints, and, as a consequence, GDB changes the
2568 debug registers in the inferior. To avoid reading back a stale
2569 stopped-data-address when that happens, we cache in LP the fact
2570 that a watchpoint trapped, and the corresponding data address, as
2571 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2572 registers meanwhile, we have the cached data we can rely on. */
2573
2574 static void
2575 save_sigtrap (struct lwp_info *lp)
2576 {
2577 struct cleanup *old_chain;
2578
2579 if (linux_ops->to_stopped_by_watchpoint == NULL)
2580 {
2581 lp->stopped_by_watchpoint = 0;
2582 return;
2583 }
2584
2585 old_chain = save_inferior_ptid ();
2586 inferior_ptid = lp->ptid;
2587
2588 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2589
2590 if (lp->stopped_by_watchpoint)
2591 {
2592 if (linux_ops->to_stopped_data_address != NULL)
2593 lp->stopped_data_address_p =
2594 linux_ops->to_stopped_data_address (&current_target,
2595 &lp->stopped_data_address);
2596 else
2597 lp->stopped_data_address_p = 0;
2598 }
2599
2600 do_cleanups (old_chain);
2601 }
2602
2603 /* See save_sigtrap. */
2604
2605 static int
2606 linux_nat_stopped_by_watchpoint (void)
2607 {
2608 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2609
2610 gdb_assert (lp != NULL);
2611
2612 return lp->stopped_by_watchpoint;
2613 }
2614
2615 static int
2616 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2617 {
2618 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2619
2620 gdb_assert (lp != NULL);
2621
2622 *addr_p = lp->stopped_data_address;
2623
2624 return lp->stopped_data_address_p;
2625 }
2626
2627 /* Wait until LP is stopped. */
2628
2629 static int
2630 stop_wait_callback (struct lwp_info *lp, void *data)
2631 {
2632 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2633
2634 /* If this is a vfork parent, bail out, it is not going to report
2635 any SIGSTOP until the vfork is done with. */
2636 if (inf->vfork_child != NULL)
2637 return 0;
2638
2639 if (!lp->stopped)
2640 {
2641 int status;
2642
2643 status = wait_lwp (lp);
2644 if (status == 0)
2645 return 0;
2646
2647 if (lp->ignore_sigint && WIFSTOPPED (status)
2648 && WSTOPSIG (status) == SIGINT)
2649 {
2650 lp->ignore_sigint = 0;
2651
2652 errno = 0;
2653 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2654 if (debug_linux_nat)
2655 fprintf_unfiltered (gdb_stdlog,
2656 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2657 target_pid_to_str (lp->ptid),
2658 errno ? safe_strerror (errno) : "OK");
2659
2660 return stop_wait_callback (lp, NULL);
2661 }
2662
2663 maybe_clear_ignore_sigint (lp);
2664
2665 if (WSTOPSIG (status) != SIGSTOP)
2666 {
2667 if (WSTOPSIG (status) == SIGTRAP)
2668 {
2669 /* If a LWP other than the LWP that we're reporting an
2670 event for has hit a GDB breakpoint (as opposed to
2671 some random trap signal), then just arrange for it to
2672 hit it again later. We don't keep the SIGTRAP status
2673 and don't forward the SIGTRAP signal to the LWP. We
2674 will handle the current event, eventually we will
2675 resume all LWPs, and this one will get its breakpoint
2676 trap again.
2677
2678 If we do not do this, then we run the risk that the
2679 user will delete or disable the breakpoint, but the
2680 thread will have already tripped on it. */
2681
2682 /* Save the trap's siginfo in case we need it later. */
2683 save_siginfo (lp);
2684
2685 save_sigtrap (lp);
2686
2687 /* Now resume this LWP and get the SIGSTOP event. */
2688 errno = 0;
2689 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2690 if (debug_linux_nat)
2691 {
2692 fprintf_unfiltered (gdb_stdlog,
2693 "PTRACE_CONT %s, 0, 0 (%s)\n",
2694 target_pid_to_str (lp->ptid),
2695 errno ? safe_strerror (errno) : "OK");
2696
2697 fprintf_unfiltered (gdb_stdlog,
2698 "SWC: Candidate SIGTRAP event in %s\n",
2699 target_pid_to_str (lp->ptid));
2700 }
2701 /* Hold this event/waitstatus while we check to see if
2702 there are any more (we still want to get that SIGSTOP). */
2703 stop_wait_callback (lp, NULL);
2704
2705 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2706 there's another event, throw it back into the
2707 queue. */
2708 if (lp->status)
2709 {
2710 if (debug_linux_nat)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "SWC: kill %s, %s\n",
2713 target_pid_to_str (lp->ptid),
2714 status_to_str ((int) status));
2715 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2716 }
2717
2718 /* Save the sigtrap event. */
2719 lp->status = status;
2720 return 0;
2721 }
2722 else
2723 {
2724 /* The thread was stopped with a signal other than
2725 SIGSTOP, and didn't accidentally trip a breakpoint. */
2726
2727 if (debug_linux_nat)
2728 {
2729 fprintf_unfiltered (gdb_stdlog,
2730 "SWC: Pending event %s in %s\n",
2731 status_to_str ((int) status),
2732 target_pid_to_str (lp->ptid));
2733 }
2734 /* Now resume this LWP and get the SIGSTOP event. */
2735 errno = 0;
2736 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2737 if (debug_linux_nat)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2740 target_pid_to_str (lp->ptid),
2741 errno ? safe_strerror (errno) : "OK");
2742
2743 /* Hold this event/waitstatus while we check to see if
2744 there are any more (we still want to get that SIGSTOP). */
2745 stop_wait_callback (lp, NULL);
2746
2747 /* If the lp->status field is still empty, use it to
2748 hold this event. If not, then this event must be
2749 returned to the event queue of the LWP. */
2750 if (lp->status)
2751 {
2752 if (debug_linux_nat)
2753 {
2754 fprintf_unfiltered (gdb_stdlog,
2755 "SWC: kill %s, %s\n",
2756 target_pid_to_str (lp->ptid),
2757 status_to_str ((int) status));
2758 }
2759 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2760 }
2761 else
2762 lp->status = status;
2763 return 0;
2764 }
2765 }
2766 else
2767 {
2768 /* We caught the SIGSTOP that we intended to catch, so
2769 there's no SIGSTOP pending. */
2770 lp->stopped = 1;
2771 lp->signalled = 0;
2772 }
2773 }
2774
2775 return 0;
2776 }
2777
2778 /* Return non-zero if LP has a wait status pending. */
2779
2780 static int
2781 status_callback (struct lwp_info *lp, void *data)
2782 {
2783 /* Only report a pending wait status if we pretend that this has
2784 indeed been resumed. */
2785 if (!lp->resumed)
2786 return 0;
2787
2788 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2789 {
2790 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2791 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2792 0', so a clean process exit can not be stored pending in
2793 lp->status, it is indistinguishable from
2794 no-pending-status. */
2795 return 1;
2796 }
2797
2798 if (lp->status != 0)
2799 return 1;
2800
2801 return 0;
2802 }
2803
2804 /* Return non-zero if LP isn't stopped. */
2805
2806 static int
2807 running_callback (struct lwp_info *lp, void *data)
2808 {
2809 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2810 }
2811
2812 /* Count the LWP's that have had events. */
2813
2814 static int
2815 count_events_callback (struct lwp_info *lp, void *data)
2816 {
2817 int *count = data;
2818
2819 gdb_assert (count != NULL);
2820
2821 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2822 if (lp->status != 0 && lp->resumed
2823 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2824 (*count)++;
2825
2826 return 0;
2827 }
2828
2829 /* Select the LWP (if any) that is currently being single-stepped. */
2830
2831 static int
2832 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2833 {
2834 if (lp->step && lp->status != 0)
2835 return 1;
2836 else
2837 return 0;
2838 }
2839
2840 /* Select the Nth LWP that has had a SIGTRAP event. */
2841
2842 static int
2843 select_event_lwp_callback (struct lwp_info *lp, void *data)
2844 {
2845 int *selector = data;
2846
2847 gdb_assert (selector != NULL);
2848
2849 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2850 if (lp->status != 0 && lp->resumed
2851 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2852 if ((*selector)-- == 0)
2853 return 1;
2854
2855 return 0;
2856 }
2857
2858 static int
2859 cancel_breakpoint (struct lwp_info *lp)
2860 {
2861 /* Arrange for a breakpoint to be hit again later. We don't keep
2862 the SIGTRAP status and don't forward the SIGTRAP signal to the
2863 LWP. We will handle the current event, eventually we will resume
2864 this LWP, and this breakpoint will trap again.
2865
2866 If we do not do this, then we run the risk that the user will
2867 delete or disable the breakpoint, but the LWP will have already
2868 tripped on it. */
2869
2870 struct regcache *regcache = get_thread_regcache (lp->ptid);
2871 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2872 CORE_ADDR pc;
2873
2874 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2875 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2876 {
2877 if (debug_linux_nat)
2878 fprintf_unfiltered (gdb_stdlog,
2879 "CB: Push back breakpoint for %s\n",
2880 target_pid_to_str (lp->ptid));
2881
2882 /* Back up the PC if necessary. */
2883 if (gdbarch_decr_pc_after_break (gdbarch))
2884 regcache_write_pc (regcache, pc);
2885
2886 return 1;
2887 }
2888 return 0;
2889 }
2890
2891 static int
2892 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2893 {
2894 struct lwp_info *event_lp = data;
2895
2896 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2897 if (lp == event_lp)
2898 return 0;
2899
2900 /* If a LWP other than the LWP that we're reporting an event for has
2901 hit a GDB breakpoint (as opposed to some random trap signal),
2902 then just arrange for it to hit it again later. We don't keep
2903 the SIGTRAP status and don't forward the SIGTRAP signal to the
2904 LWP. We will handle the current event, eventually we will resume
2905 all LWPs, and this one will get its breakpoint trap again.
2906
2907 If we do not do this, then we run the risk that the user will
2908 delete or disable the breakpoint, but the LWP will have already
2909 tripped on it. */
2910
2911 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2912 && lp->status != 0
2913 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2914 && cancel_breakpoint (lp))
2915 /* Throw away the SIGTRAP. */
2916 lp->status = 0;
2917
2918 return 0;
2919 }
2920
2921 /* Select one LWP out of those that have events pending. */
2922
2923 static void
2924 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2925 {
2926 int num_events = 0;
2927 int random_selector;
2928 struct lwp_info *event_lp;
2929
2930 /* Record the wait status for the original LWP. */
2931 (*orig_lp)->status = *status;
2932
2933 /* Give preference to any LWP that is being single-stepped. */
2934 event_lp = iterate_over_lwps (filter,
2935 select_singlestep_lwp_callback, NULL);
2936 if (event_lp != NULL)
2937 {
2938 if (debug_linux_nat)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "SEL: Select single-step %s\n",
2941 target_pid_to_str (event_lp->ptid));
2942 }
2943 else
2944 {
2945 /* No single-stepping LWP. Select one at random, out of those
2946 which have had SIGTRAP events. */
2947
2948 /* First see how many SIGTRAP events we have. */
2949 iterate_over_lwps (filter, count_events_callback, &num_events);
2950
2951 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2952 random_selector = (int)
2953 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2954
2955 if (debug_linux_nat && num_events > 1)
2956 fprintf_unfiltered (gdb_stdlog,
2957 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2958 num_events, random_selector);
2959
2960 event_lp = iterate_over_lwps (filter,
2961 select_event_lwp_callback,
2962 &random_selector);
2963 }
2964
2965 if (event_lp != NULL)
2966 {
2967 /* Switch the event LWP. */
2968 *orig_lp = event_lp;
2969 *status = event_lp->status;
2970 }
2971
2972 /* Flush the wait status for the event LWP. */
2973 (*orig_lp)->status = 0;
2974 }
2975
2976 /* Return non-zero if LP has been resumed. */
2977
2978 static int
2979 resumed_callback (struct lwp_info *lp, void *data)
2980 {
2981 return lp->resumed;
2982 }
2983
2984 /* Stop an active thread, verify it still exists, then resume it. */
2985
2986 static int
2987 stop_and_resume_callback (struct lwp_info *lp, void *data)
2988 {
2989 struct lwp_info *ptr;
2990
2991 if (!lp->stopped && !lp->signalled)
2992 {
2993 stop_callback (lp, NULL);
2994 stop_wait_callback (lp, NULL);
2995 /* Resume if the lwp still exists. */
2996 for (ptr = lwp_list; ptr; ptr = ptr->next)
2997 if (lp == ptr)
2998 {
2999 resume_callback (lp, NULL);
3000 resume_set_callback (lp, NULL);
3001 }
3002 }
3003 return 0;
3004 }
3005
3006 /* Check if we should go on and pass this event to common code.
3007 Return the affected lwp if we are, or NULL otherwise. */
3008 static struct lwp_info *
3009 linux_nat_filter_event (int lwpid, int status, int options)
3010 {
3011 struct lwp_info *lp;
3012
3013 lp = find_lwp_pid (pid_to_ptid (lwpid));
3014
3015 /* Check for stop events reported by a process we didn't already
3016 know about - anything not already in our LWP list.
3017
3018 If we're expecting to receive stopped processes after
3019 fork, vfork, and clone events, then we'll just add the
3020 new one to our list and go back to waiting for the event
3021 to be reported - the stopped process might be returned
3022 from waitpid before or after the event is. */
3023 if (WIFSTOPPED (status) && !lp)
3024 {
3025 linux_record_stopped_pid (lwpid, status);
3026 return NULL;
3027 }
3028
3029 /* Make sure we don't report an event for the exit of an LWP not in
3030 our list, i.e. not part of the current process. This can happen
3031 if we detach from a program we original forked and then it
3032 exits. */
3033 if (!WIFSTOPPED (status) && !lp)
3034 return NULL;
3035
3036 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3037 CLONE_PTRACE processes which do not use the thread library -
3038 otherwise we wouldn't find the new LWP this way. That doesn't
3039 currently work, and the following code is currently unreachable
3040 due to the two blocks above. If it's fixed some day, this code
3041 should be broken out into a function so that we can also pick up
3042 LWPs from the new interface. */
3043 if (!lp)
3044 {
3045 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3046 if (options & __WCLONE)
3047 lp->cloned = 1;
3048
3049 gdb_assert (WIFSTOPPED (status)
3050 && WSTOPSIG (status) == SIGSTOP);
3051 lp->signalled = 1;
3052
3053 if (!in_thread_list (inferior_ptid))
3054 {
3055 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3056 GET_PID (inferior_ptid));
3057 add_thread (inferior_ptid);
3058 }
3059
3060 add_thread (lp->ptid);
3061 }
3062
3063 /* Handle GNU/Linux's syscall SIGTRAPs. */
3064 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3065 {
3066 /* No longer need the sysgood bit. The ptrace event ends up
3067 recorded in lp->waitstatus if we care for it. We can carry
3068 on handling the event like a regular SIGTRAP from here
3069 on. */
3070 status = W_STOPCODE (SIGTRAP);
3071 if (linux_handle_syscall_trap (lp, 0))
3072 return NULL;
3073 }
3074
3075 /* Handle GNU/Linux's extended waitstatus for trace events. */
3076 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3077 {
3078 if (debug_linux_nat)
3079 fprintf_unfiltered (gdb_stdlog,
3080 "LLW: Handling extended status 0x%06x\n",
3081 status);
3082 if (linux_handle_extended_wait (lp, status, 0))
3083 return NULL;
3084 }
3085
3086 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3087 {
3088 /* Save the trap's siginfo in case we need it later. */
3089 save_siginfo (lp);
3090
3091 save_sigtrap (lp);
3092 }
3093
3094 /* Check if the thread has exited. */
3095 if ((WIFEXITED (status) || WIFSIGNALED (status))
3096 && num_lwps (GET_PID (lp->ptid)) > 1)
3097 {
3098 /* If this is the main thread, we must stop all threads and verify
3099 if they are still alive. This is because in the nptl thread model
3100 on Linux 2.4, there is no signal issued for exiting LWPs
3101 other than the main thread. We only get the main thread exit
3102 signal once all child threads have already exited. If we
3103 stop all the threads and use the stop_wait_callback to check
3104 if they have exited we can determine whether this signal
3105 should be ignored or whether it means the end of the debugged
3106 application, regardless of which threading model is being
3107 used. */
3108 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3109 {
3110 lp->stopped = 1;
3111 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3112 stop_and_resume_callback, NULL);
3113 }
3114
3115 if (debug_linux_nat)
3116 fprintf_unfiltered (gdb_stdlog,
3117 "LLW: %s exited.\n",
3118 target_pid_to_str (lp->ptid));
3119
3120 if (num_lwps (GET_PID (lp->ptid)) > 1)
3121 {
3122 /* If there is at least one more LWP, then the exit signal
3123 was not the end of the debugged application and should be
3124 ignored. */
3125 exit_lwp (lp);
3126 return NULL;
3127 }
3128 }
3129
3130 /* Check if the current LWP has previously exited. In the nptl
3131 thread model, LWPs other than the main thread do not issue
3132 signals when they exit so we must check whenever the thread has
3133 stopped. A similar check is made in stop_wait_callback(). */
3134 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3135 {
3136 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3137
3138 if (debug_linux_nat)
3139 fprintf_unfiltered (gdb_stdlog,
3140 "LLW: %s exited.\n",
3141 target_pid_to_str (lp->ptid));
3142
3143 exit_lwp (lp);
3144
3145 /* Make sure there is at least one thread running. */
3146 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3147
3148 /* Discard the event. */
3149 return NULL;
3150 }
3151
3152 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3153 an attempt to stop an LWP. */
3154 if (lp->signalled
3155 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3156 {
3157 if (debug_linux_nat)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "LLW: Delayed SIGSTOP caught for %s.\n",
3160 target_pid_to_str (lp->ptid));
3161
3162 /* This is a delayed SIGSTOP. */
3163 lp->signalled = 0;
3164
3165 registers_changed ();
3166
3167 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3168 lp->step, TARGET_SIGNAL_0);
3169 if (debug_linux_nat)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3172 lp->step ?
3173 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3174 target_pid_to_str (lp->ptid));
3175
3176 lp->stopped = 0;
3177 gdb_assert (lp->resumed);
3178
3179 /* Discard the event. */
3180 return NULL;
3181 }
3182
3183 /* Make sure we don't report a SIGINT that we have already displayed
3184 for another thread. */
3185 if (lp->ignore_sigint
3186 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3187 {
3188 if (debug_linux_nat)
3189 fprintf_unfiltered (gdb_stdlog,
3190 "LLW: Delayed SIGINT caught for %s.\n",
3191 target_pid_to_str (lp->ptid));
3192
3193 /* This is a delayed SIGINT. */
3194 lp->ignore_sigint = 0;
3195
3196 registers_changed ();
3197 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3198 lp->step, TARGET_SIGNAL_0);
3199 if (debug_linux_nat)
3200 fprintf_unfiltered (gdb_stdlog,
3201 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3202 lp->step ?
3203 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3204 target_pid_to_str (lp->ptid));
3205
3206 lp->stopped = 0;
3207 gdb_assert (lp->resumed);
3208
3209 /* Discard the event. */
3210 return NULL;
3211 }
3212
3213 /* An interesting event. */
3214 gdb_assert (lp);
3215 lp->status = status;
3216 return lp;
3217 }
3218
3219 static ptid_t
3220 linux_nat_wait_1 (struct target_ops *ops,
3221 ptid_t ptid, struct target_waitstatus *ourstatus,
3222 int target_options)
3223 {
3224 static sigset_t prev_mask;
3225 struct lwp_info *lp = NULL;
3226 int options = 0;
3227 int status = 0;
3228 pid_t pid;
3229
3230 if (debug_linux_nat_async)
3231 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3232
3233 /* The first time we get here after starting a new inferior, we may
3234 not have added it to the LWP list yet - this is the earliest
3235 moment at which we know its PID. */
3236 if (ptid_is_pid (inferior_ptid))
3237 {
3238 /* Upgrade the main thread's ptid. */
3239 thread_change_ptid (inferior_ptid,
3240 BUILD_LWP (GET_PID (inferior_ptid),
3241 GET_PID (inferior_ptid)));
3242
3243 lp = add_lwp (inferior_ptid);
3244 lp->resumed = 1;
3245 }
3246
3247 /* Make sure SIGCHLD is blocked. */
3248 block_child_signals (&prev_mask);
3249
3250 if (ptid_equal (ptid, minus_one_ptid))
3251 pid = -1;
3252 else if (ptid_is_pid (ptid))
3253 /* A request to wait for a specific tgid. This is not possible
3254 with waitpid, so instead, we wait for any child, and leave
3255 children we're not interested in right now with a pending
3256 status to report later. */
3257 pid = -1;
3258 else
3259 pid = GET_LWP (ptid);
3260
3261 retry:
3262 lp = NULL;
3263 status = 0;
3264
3265 /* Make sure there is at least one LWP that has been resumed. */
3266 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
3267
3268 /* First check if there is a LWP with a wait status pending. */
3269 if (pid == -1)
3270 {
3271 /* Any LWP that's been resumed will do. */
3272 lp = iterate_over_lwps (ptid, status_callback, NULL);
3273 if (lp)
3274 {
3275 if (debug_linux_nat && lp->status)
3276 fprintf_unfiltered (gdb_stdlog,
3277 "LLW: Using pending wait status %s for %s.\n",
3278 status_to_str (lp->status),
3279 target_pid_to_str (lp->ptid));
3280 }
3281
3282 /* But if we don't find one, we'll have to wait, and check both
3283 cloned and uncloned processes. We start with the cloned
3284 processes. */
3285 options = __WCLONE | WNOHANG;
3286 }
3287 else if (is_lwp (ptid))
3288 {
3289 if (debug_linux_nat)
3290 fprintf_unfiltered (gdb_stdlog,
3291 "LLW: Waiting for specific LWP %s.\n",
3292 target_pid_to_str (ptid));
3293
3294 /* We have a specific LWP to check. */
3295 lp = find_lwp_pid (ptid);
3296 gdb_assert (lp);
3297
3298 if (debug_linux_nat && lp->status)
3299 fprintf_unfiltered (gdb_stdlog,
3300 "LLW: Using pending wait status %s for %s.\n",
3301 status_to_str (lp->status),
3302 target_pid_to_str (lp->ptid));
3303
3304 /* If we have to wait, take into account whether PID is a cloned
3305 process or not. And we have to convert it to something that
3306 the layer beneath us can understand. */
3307 options = lp->cloned ? __WCLONE : 0;
3308 pid = GET_LWP (ptid);
3309
3310 /* We check for lp->waitstatus in addition to lp->status,
3311 because we can have pending process exits recorded in
3312 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3313 an additional lp->status_p flag. */
3314 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3315 lp = NULL;
3316 }
3317
3318 if (lp && lp->signalled)
3319 {
3320 /* A pending SIGSTOP may interfere with the normal stream of
3321 events. In a typical case where interference is a problem,
3322 we have a SIGSTOP signal pending for LWP A while
3323 single-stepping it, encounter an event in LWP B, and take the
3324 pending SIGSTOP while trying to stop LWP A. After processing
3325 the event in LWP B, LWP A is continued, and we'll never see
3326 the SIGTRAP associated with the last time we were
3327 single-stepping LWP A. */
3328
3329 /* Resume the thread. It should halt immediately returning the
3330 pending SIGSTOP. */
3331 registers_changed ();
3332 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3333 lp->step, TARGET_SIGNAL_0);
3334 if (debug_linux_nat)
3335 fprintf_unfiltered (gdb_stdlog,
3336 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3337 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3338 target_pid_to_str (lp->ptid));
3339 lp->stopped = 0;
3340 gdb_assert (lp->resumed);
3341
3342 /* Catch the pending SIGSTOP. */
3343 status = lp->status;
3344 lp->status = 0;
3345
3346 stop_wait_callback (lp, NULL);
3347
3348 /* If the lp->status field isn't empty, we caught another signal
3349 while flushing the SIGSTOP. Return it back to the event
3350 queue of the LWP, as we already have an event to handle. */
3351 if (lp->status)
3352 {
3353 if (debug_linux_nat)
3354 fprintf_unfiltered (gdb_stdlog,
3355 "LLW: kill %s, %s\n",
3356 target_pid_to_str (lp->ptid),
3357 status_to_str (lp->status));
3358 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3359 }
3360
3361 lp->status = status;
3362 }
3363
3364 if (!target_can_async_p ())
3365 {
3366 /* Causes SIGINT to be passed on to the attached process. */
3367 set_sigint_trap ();
3368 }
3369
3370 /* Translate generic target_wait options into waitpid options. */
3371 if (target_options & TARGET_WNOHANG)
3372 options |= WNOHANG;
3373
3374 while (lp == NULL)
3375 {
3376 pid_t lwpid;
3377
3378 lwpid = my_waitpid (pid, &status, options);
3379
3380 if (lwpid > 0)
3381 {
3382 gdb_assert (pid == -1 || lwpid == pid);
3383
3384 if (debug_linux_nat)
3385 {
3386 fprintf_unfiltered (gdb_stdlog,
3387 "LLW: waitpid %ld received %s\n",
3388 (long) lwpid, status_to_str (status));
3389 }
3390
3391 lp = linux_nat_filter_event (lwpid, status, options);
3392
3393 if (lp
3394 && ptid_is_pid (ptid)
3395 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3396 {
3397 if (debug_linux_nat)
3398 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3399 ptid_get_lwp (lp->ptid), status);
3400
3401 if (WIFSTOPPED (lp->status))
3402 {
3403 if (WSTOPSIG (lp->status) != SIGSTOP)
3404 {
3405 stop_callback (lp, NULL);
3406
3407 /* Resume in order to collect the sigstop. */
3408 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
3409
3410 stop_wait_callback (lp, NULL);
3411 }
3412 else
3413 {
3414 lp->stopped = 1;
3415 lp->signalled = 0;
3416 }
3417 }
3418 else if (WIFEXITED (status) || WIFSIGNALED (status))
3419 {
3420 if (debug_linux_nat)
3421 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3422 ptid_get_lwp (lp->ptid));
3423
3424 /* This was the last lwp in the process. Since
3425 events are serialized to GDB core, and we can't
3426 report this one right now, but GDB core and the
3427 other target layers will want to be notified
3428 about the exit code/signal, leave the status
3429 pending for the next time we're able to report
3430 it. */
3431
3432 /* Prevent trying to stop this thread again. We'll
3433 never try to resume it because it has a pending
3434 status. */
3435 lp->stopped = 1;
3436
3437 /* Dead LWP's aren't expected to reported a pending
3438 sigstop. */
3439 lp->signalled = 0;
3440
3441 /* Store the pending event in the waitstatus as
3442 well, because W_EXITCODE(0,0) == 0. */
3443 store_waitstatus (&lp->waitstatus, lp->status);
3444 }
3445
3446 /* Keep looking. */
3447 lp = NULL;
3448 continue;
3449 }
3450
3451 if (lp)
3452 break;
3453 else
3454 {
3455 if (pid == -1)
3456 {
3457 /* waitpid did return something. Restart over. */
3458 options |= __WCLONE;
3459 }
3460 continue;
3461 }
3462 }
3463
3464 if (pid == -1)
3465 {
3466 /* Alternate between checking cloned and uncloned processes. */
3467 options ^= __WCLONE;
3468
3469 /* And every time we have checked both:
3470 In async mode, return to event loop;
3471 In sync mode, suspend waiting for a SIGCHLD signal. */
3472 if (options & __WCLONE)
3473 {
3474 if (target_options & TARGET_WNOHANG)
3475 {
3476 /* No interesting event. */
3477 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3478
3479 if (debug_linux_nat_async)
3480 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3481
3482 restore_child_signals_mask (&prev_mask);
3483 return minus_one_ptid;
3484 }
3485
3486 sigsuspend (&suspend_mask);
3487 }
3488 }
3489 else if (target_options & TARGET_WNOHANG)
3490 {
3491 /* No interesting event for PID yet. */
3492 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3493
3494 if (debug_linux_nat_async)
3495 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3496
3497 restore_child_signals_mask (&prev_mask);
3498 return minus_one_ptid;
3499 }
3500
3501 /* We shouldn't end up here unless we want to try again. */
3502 gdb_assert (lp == NULL);
3503 }
3504
3505 if (!target_can_async_p ())
3506 clear_sigint_trap ();
3507
3508 gdb_assert (lp);
3509
3510 status = lp->status;
3511 lp->status = 0;
3512
3513 /* Don't report signals that GDB isn't interested in, such as
3514 signals that are neither printed nor stopped upon. Stopping all
3515 threads can be a bit time-consuming so if we want decent
3516 performance with heavily multi-threaded programs, especially when
3517 they're using a high frequency timer, we'd better avoid it if we
3518 can. */
3519
3520 if (WIFSTOPPED (status))
3521 {
3522 int signo = target_signal_from_host (WSTOPSIG (status));
3523 struct inferior *inf;
3524
3525 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3526 gdb_assert (inf);
3527
3528 /* Defer to common code if we get a signal while
3529 single-stepping, since that may need special care, e.g. to
3530 skip the signal handler, or, if we're gaining control of the
3531 inferior. */
3532 if (!lp->step
3533 && inf->stop_soon == NO_STOP_QUIETLY
3534 && signal_stop_state (signo) == 0
3535 && signal_print_state (signo) == 0
3536 && signal_pass_state (signo) == 1)
3537 {
3538 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3539 here? It is not clear we should. GDB may not expect
3540 other threads to run. On the other hand, not resuming
3541 newly attached threads may cause an unwanted delay in
3542 getting them running. */
3543 registers_changed ();
3544 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3545 lp->step, signo);
3546 if (debug_linux_nat)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "LLW: %s %s, %s (preempt 'handle')\n",
3549 lp->step ?
3550 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3551 target_pid_to_str (lp->ptid),
3552 signo ? strsignal (signo) : "0");
3553 lp->stopped = 0;
3554 goto retry;
3555 }
3556
3557 if (!non_stop)
3558 {
3559 /* Only do the below in all-stop, as we currently use SIGINT
3560 to implement target_stop (see linux_nat_stop) in
3561 non-stop. */
3562 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3563 {
3564 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3565 forwarded to the entire process group, that is, all LWPs
3566 will receive it - unless they're using CLONE_THREAD to
3567 share signals. Since we only want to report it once, we
3568 mark it as ignored for all LWPs except this one. */
3569 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3570 set_ignore_sigint, NULL);
3571 lp->ignore_sigint = 0;
3572 }
3573 else
3574 maybe_clear_ignore_sigint (lp);
3575 }
3576 }
3577
3578 /* This LWP is stopped now. */
3579 lp->stopped = 1;
3580
3581 if (debug_linux_nat)
3582 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3583 status_to_str (status), target_pid_to_str (lp->ptid));
3584
3585 if (!non_stop)
3586 {
3587 /* Now stop all other LWP's ... */
3588 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3589
3590 /* ... and wait until all of them have reported back that
3591 they're no longer running. */
3592 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3593
3594 /* If we're not waiting for a specific LWP, choose an event LWP
3595 from among those that have had events. Giving equal priority
3596 to all LWPs that have had events helps prevent
3597 starvation. */
3598 if (pid == -1)
3599 select_event_lwp (ptid, &lp, &status);
3600 }
3601
3602 /* Now that we've selected our final event LWP, cancel any
3603 breakpoints in other LWPs that have hit a GDB breakpoint. See
3604 the comment in cancel_breakpoints_callback to find out why. */
3605 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3606
3607 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3608 {
3609 if (debug_linux_nat)
3610 fprintf_unfiltered (gdb_stdlog,
3611 "LLW: trap ptid is %s.\n",
3612 target_pid_to_str (lp->ptid));
3613 }
3614
3615 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3616 {
3617 *ourstatus = lp->waitstatus;
3618 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3619 }
3620 else
3621 store_waitstatus (ourstatus, status);
3622
3623 if (debug_linux_nat_async)
3624 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3625
3626 restore_child_signals_mask (&prev_mask);
3627 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3628 return lp->ptid;
3629 }
3630
3631 static ptid_t
3632 linux_nat_wait (struct target_ops *ops,
3633 ptid_t ptid, struct target_waitstatus *ourstatus,
3634 int target_options)
3635 {
3636 ptid_t event_ptid;
3637
3638 if (debug_linux_nat)
3639 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3640
3641 /* Flush the async file first. */
3642 if (target_can_async_p ())
3643 async_file_flush ();
3644
3645 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3646
3647 /* If we requested any event, and something came out, assume there
3648 may be more. If we requested a specific lwp or process, also
3649 assume there may be more. */
3650 if (target_can_async_p ()
3651 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3652 || !ptid_equal (ptid, minus_one_ptid)))
3653 async_file_mark ();
3654
3655 /* Get ready for the next event. */
3656 if (target_can_async_p ())
3657 target_async (inferior_event_handler, 0);
3658
3659 return event_ptid;
3660 }
3661
3662 static int
3663 kill_callback (struct lwp_info *lp, void *data)
3664 {
3665 errno = 0;
3666 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3667 if (debug_linux_nat)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3670 target_pid_to_str (lp->ptid),
3671 errno ? safe_strerror (errno) : "OK");
3672
3673 return 0;
3674 }
3675
3676 static int
3677 kill_wait_callback (struct lwp_info *lp, void *data)
3678 {
3679 pid_t pid;
3680
3681 /* We must make sure that there are no pending events (delayed
3682 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3683 program doesn't interfere with any following debugging session. */
3684
3685 /* For cloned processes we must check both with __WCLONE and
3686 without, since the exit status of a cloned process isn't reported
3687 with __WCLONE. */
3688 if (lp->cloned)
3689 {
3690 do
3691 {
3692 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3693 if (pid != (pid_t) -1)
3694 {
3695 if (debug_linux_nat)
3696 fprintf_unfiltered (gdb_stdlog,
3697 "KWC: wait %s received unknown.\n",
3698 target_pid_to_str (lp->ptid));
3699 /* The Linux kernel sometimes fails to kill a thread
3700 completely after PTRACE_KILL; that goes from the stop
3701 point in do_fork out to the one in
3702 get_signal_to_deliever and waits again. So kill it
3703 again. */
3704 kill_callback (lp, NULL);
3705 }
3706 }
3707 while (pid == GET_LWP (lp->ptid));
3708
3709 gdb_assert (pid == -1 && errno == ECHILD);
3710 }
3711
3712 do
3713 {
3714 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3715 if (pid != (pid_t) -1)
3716 {
3717 if (debug_linux_nat)
3718 fprintf_unfiltered (gdb_stdlog,
3719 "KWC: wait %s received unk.\n",
3720 target_pid_to_str (lp->ptid));
3721 /* See the call to kill_callback above. */
3722 kill_callback (lp, NULL);
3723 }
3724 }
3725 while (pid == GET_LWP (lp->ptid));
3726
3727 gdb_assert (pid == -1 && errno == ECHILD);
3728 return 0;
3729 }
3730
3731 static void
3732 linux_nat_kill (struct target_ops *ops)
3733 {
3734 struct target_waitstatus last;
3735 ptid_t last_ptid;
3736 int status;
3737
3738 /* If we're stopped while forking and we haven't followed yet,
3739 kill the other task. We need to do this first because the
3740 parent will be sleeping if this is a vfork. */
3741
3742 get_last_target_status (&last_ptid, &last);
3743
3744 if (last.kind == TARGET_WAITKIND_FORKED
3745 || last.kind == TARGET_WAITKIND_VFORKED)
3746 {
3747 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3748 wait (&status);
3749 }
3750
3751 if (forks_exist_p ())
3752 linux_fork_killall ();
3753 else
3754 {
3755 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3756 /* Stop all threads before killing them, since ptrace requires
3757 that the thread is stopped to sucessfully PTRACE_KILL. */
3758 iterate_over_lwps (ptid, stop_callback, NULL);
3759 /* ... and wait until all of them have reported back that
3760 they're no longer running. */
3761 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3762
3763 /* Kill all LWP's ... */
3764 iterate_over_lwps (ptid, kill_callback, NULL);
3765
3766 /* ... and wait until we've flushed all events. */
3767 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3768 }
3769
3770 target_mourn_inferior ();
3771 }
3772
3773 static void
3774 linux_nat_mourn_inferior (struct target_ops *ops)
3775 {
3776 purge_lwp_list (ptid_get_pid (inferior_ptid));
3777
3778 if (! forks_exist_p ())
3779 /* Normal case, no other forks available. */
3780 linux_ops->to_mourn_inferior (ops);
3781 else
3782 /* Multi-fork case. The current inferior_ptid has exited, but
3783 there are other viable forks to debug. Delete the exiting
3784 one and context-switch to the first available. */
3785 linux_fork_mourn_inferior ();
3786 }
3787
3788 /* Convert a native/host siginfo object, into/from the siginfo in the
3789 layout of the inferiors' architecture. */
3790
3791 static void
3792 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3793 {
3794 int done = 0;
3795
3796 if (linux_nat_siginfo_fixup != NULL)
3797 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3798
3799 /* If there was no callback, or the callback didn't do anything,
3800 then just do a straight memcpy. */
3801 if (!done)
3802 {
3803 if (direction == 1)
3804 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3805 else
3806 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3807 }
3808 }
3809
3810 static LONGEST
3811 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3812 const char *annex, gdb_byte *readbuf,
3813 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3814 {
3815 int pid;
3816 struct siginfo siginfo;
3817 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3818
3819 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3820 gdb_assert (readbuf || writebuf);
3821
3822 pid = GET_LWP (inferior_ptid);
3823 if (pid == 0)
3824 pid = GET_PID (inferior_ptid);
3825
3826 if (offset > sizeof (siginfo))
3827 return -1;
3828
3829 errno = 0;
3830 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3831 if (errno != 0)
3832 return -1;
3833
3834 /* When GDB is built as a 64-bit application, ptrace writes into
3835 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3836 inferior with a 64-bit GDB should look the same as debugging it
3837 with a 32-bit GDB, we need to convert it. GDB core always sees
3838 the converted layout, so any read/write will have to be done
3839 post-conversion. */
3840 siginfo_fixup (&siginfo, inf_siginfo, 0);
3841
3842 if (offset + len > sizeof (siginfo))
3843 len = sizeof (siginfo) - offset;
3844
3845 if (readbuf != NULL)
3846 memcpy (readbuf, inf_siginfo + offset, len);
3847 else
3848 {
3849 memcpy (inf_siginfo + offset, writebuf, len);
3850
3851 /* Convert back to ptrace layout before flushing it out. */
3852 siginfo_fixup (&siginfo, inf_siginfo, 1);
3853
3854 errno = 0;
3855 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3856 if (errno != 0)
3857 return -1;
3858 }
3859
3860 return len;
3861 }
3862
3863 static LONGEST
3864 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3865 const char *annex, gdb_byte *readbuf,
3866 const gdb_byte *writebuf,
3867 ULONGEST offset, LONGEST len)
3868 {
3869 struct cleanup *old_chain;
3870 LONGEST xfer;
3871
3872 if (object == TARGET_OBJECT_SIGNAL_INFO)
3873 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3874 offset, len);
3875
3876 /* The target is connected but no live inferior is selected. Pass
3877 this request down to a lower stratum (e.g., the executable
3878 file). */
3879 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3880 return 0;
3881
3882 old_chain = save_inferior_ptid ();
3883
3884 if (is_lwp (inferior_ptid))
3885 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3886
3887 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3888 offset, len);
3889
3890 do_cleanups (old_chain);
3891 return xfer;
3892 }
3893
3894 static int
3895 linux_thread_alive (ptid_t ptid)
3896 {
3897 int err;
3898
3899 gdb_assert (is_lwp (ptid));
3900
3901 /* Send signal 0 instead of anything ptrace, because ptracing a
3902 running thread errors out claiming that the thread doesn't
3903 exist. */
3904 err = kill_lwp (GET_LWP (ptid), 0);
3905
3906 if (debug_linux_nat)
3907 fprintf_unfiltered (gdb_stdlog,
3908 "LLTA: KILL(SIG0) %s (%s)\n",
3909 target_pid_to_str (ptid),
3910 err ? safe_strerror (err) : "OK");
3911
3912 if (err != 0)
3913 return 0;
3914
3915 return 1;
3916 }
3917
3918 static int
3919 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3920 {
3921 return linux_thread_alive (ptid);
3922 }
3923
3924 static char *
3925 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3926 {
3927 static char buf[64];
3928
3929 if (is_lwp (ptid)
3930 && (GET_PID (ptid) != GET_LWP (ptid)
3931 || num_lwps (GET_PID (ptid)) > 1))
3932 {
3933 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3934 return buf;
3935 }
3936
3937 return normal_pid_to_str (ptid);
3938 }
3939
3940 /* Accepts an integer PID; Returns a string representing a file that
3941 can be opened to get the symbols for the child process. */
3942
3943 static char *
3944 linux_child_pid_to_exec_file (int pid)
3945 {
3946 char *name1, *name2;
3947
3948 name1 = xmalloc (MAXPATHLEN);
3949 name2 = xmalloc (MAXPATHLEN);
3950 make_cleanup (xfree, name1);
3951 make_cleanup (xfree, name2);
3952 memset (name2, 0, MAXPATHLEN);
3953
3954 sprintf (name1, "/proc/%d/exe", pid);
3955 if (readlink (name1, name2, MAXPATHLEN) > 0)
3956 return name2;
3957 else
3958 return name1;
3959 }
3960
3961 /* Service function for corefiles and info proc. */
3962
3963 static int
3964 read_mapping (FILE *mapfile,
3965 long long *addr,
3966 long long *endaddr,
3967 char *permissions,
3968 long long *offset,
3969 char *device, long long *inode, char *filename)
3970 {
3971 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3972 addr, endaddr, permissions, offset, device, inode);
3973
3974 filename[0] = '\0';
3975 if (ret > 0 && ret != EOF)
3976 {
3977 /* Eat everything up to EOL for the filename. This will prevent
3978 weird filenames (such as one with embedded whitespace) from
3979 confusing this code. It also makes this code more robust in
3980 respect to annotations the kernel may add after the filename.
3981
3982 Note the filename is used for informational purposes
3983 only. */
3984 ret += fscanf (mapfile, "%[^\n]\n", filename);
3985 }
3986
3987 return (ret != 0 && ret != EOF);
3988 }
3989
3990 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3991 regions in the inferior for a corefile. */
3992
3993 static int
3994 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3995 unsigned long,
3996 int, int, int, void *), void *obfd)
3997 {
3998 int pid = PIDGET (inferior_ptid);
3999 char mapsfilename[MAXPATHLEN];
4000 FILE *mapsfile;
4001 long long addr, endaddr, size, offset, inode;
4002 char permissions[8], device[8], filename[MAXPATHLEN];
4003 int read, write, exec;
4004 int ret;
4005 struct cleanup *cleanup;
4006
4007 /* Compose the filename for the /proc memory map, and open it. */
4008 sprintf (mapsfilename, "/proc/%d/maps", pid);
4009 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4010 error (_("Could not open %s."), mapsfilename);
4011 cleanup = make_cleanup_fclose (mapsfile);
4012
4013 if (info_verbose)
4014 fprintf_filtered (gdb_stdout,
4015 "Reading memory regions from %s\n", mapsfilename);
4016
4017 /* Now iterate until end-of-file. */
4018 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4019 &offset, &device[0], &inode, &filename[0]))
4020 {
4021 size = endaddr - addr;
4022
4023 /* Get the segment's permissions. */
4024 read = (strchr (permissions, 'r') != 0);
4025 write = (strchr (permissions, 'w') != 0);
4026 exec = (strchr (permissions, 'x') != 0);
4027
4028 if (info_verbose)
4029 {
4030 fprintf_filtered (gdb_stdout,
4031 "Save segment, %lld bytes at %s (%c%c%c)",
4032 size, paddress (target_gdbarch, addr),
4033 read ? 'r' : ' ',
4034 write ? 'w' : ' ', exec ? 'x' : ' ');
4035 if (filename[0])
4036 fprintf_filtered (gdb_stdout, " for %s", filename);
4037 fprintf_filtered (gdb_stdout, "\n");
4038 }
4039
4040 /* Invoke the callback function to create the corefile
4041 segment. */
4042 func (addr, size, read, write, exec, obfd);
4043 }
4044 do_cleanups (cleanup);
4045 return 0;
4046 }
4047
4048 static int
4049 find_signalled_thread (struct thread_info *info, void *data)
4050 {
4051 if (info->stop_signal != TARGET_SIGNAL_0
4052 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4053 return 1;
4054
4055 return 0;
4056 }
4057
4058 static enum target_signal
4059 find_stop_signal (void)
4060 {
4061 struct thread_info *info =
4062 iterate_over_threads (find_signalled_thread, NULL);
4063
4064 if (info)
4065 return info->stop_signal;
4066 else
4067 return TARGET_SIGNAL_0;
4068 }
4069
4070 /* Records the thread's register state for the corefile note
4071 section. */
4072
4073 static char *
4074 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4075 char *note_data, int *note_size,
4076 enum target_signal stop_signal)
4077 {
4078 gdb_gregset_t gregs;
4079 gdb_fpregset_t fpregs;
4080 unsigned long lwp = ptid_get_lwp (ptid);
4081 struct gdbarch *gdbarch = target_gdbarch;
4082 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4083 const struct regset *regset;
4084 int core_regset_p;
4085 struct cleanup *old_chain;
4086 struct core_regset_section *sect_list;
4087 char *gdb_regset;
4088
4089 old_chain = save_inferior_ptid ();
4090 inferior_ptid = ptid;
4091 target_fetch_registers (regcache, -1);
4092 do_cleanups (old_chain);
4093
4094 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4095 sect_list = gdbarch_core_regset_sections (gdbarch);
4096
4097 if (core_regset_p
4098 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4099 sizeof (gregs))) != NULL
4100 && regset->collect_regset != NULL)
4101 regset->collect_regset (regset, regcache, -1,
4102 &gregs, sizeof (gregs));
4103 else
4104 fill_gregset (regcache, &gregs, -1);
4105
4106 note_data = (char *) elfcore_write_prstatus (obfd,
4107 note_data,
4108 note_size,
4109 lwp,
4110 stop_signal, &gregs);
4111
4112 /* The loop below uses the new struct core_regset_section, which stores
4113 the supported section names and sizes for the core file. Note that
4114 note PRSTATUS needs to be treated specially. But the other notes are
4115 structurally the same, so they can benefit from the new struct. */
4116 if (core_regset_p && sect_list != NULL)
4117 while (sect_list->sect_name != NULL)
4118 {
4119 /* .reg was already handled above. */
4120 if (strcmp (sect_list->sect_name, ".reg") == 0)
4121 {
4122 sect_list++;
4123 continue;
4124 }
4125 regset = gdbarch_regset_from_core_section (gdbarch,
4126 sect_list->sect_name,
4127 sect_list->size);
4128 gdb_assert (regset && regset->collect_regset);
4129 gdb_regset = xmalloc (sect_list->size);
4130 regset->collect_regset (regset, regcache, -1,
4131 gdb_regset, sect_list->size);
4132 note_data = (char *) elfcore_write_register_note (obfd,
4133 note_data,
4134 note_size,
4135 sect_list->sect_name,
4136 gdb_regset,
4137 sect_list->size);
4138 xfree (gdb_regset);
4139 sect_list++;
4140 }
4141
4142 /* For architectures that does not have the struct core_regset_section
4143 implemented, we use the old method. When all the architectures have
4144 the new support, the code below should be deleted. */
4145 else
4146 {
4147 if (core_regset_p
4148 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4149 sizeof (fpregs))) != NULL
4150 && regset->collect_regset != NULL)
4151 regset->collect_regset (regset, regcache, -1,
4152 &fpregs, sizeof (fpregs));
4153 else
4154 fill_fpregset (regcache, &fpregs, -1);
4155
4156 note_data = (char *) elfcore_write_prfpreg (obfd,
4157 note_data,
4158 note_size,
4159 &fpregs, sizeof (fpregs));
4160 }
4161
4162 return note_data;
4163 }
4164
4165 struct linux_nat_corefile_thread_data
4166 {
4167 bfd *obfd;
4168 char *note_data;
4169 int *note_size;
4170 int num_notes;
4171 enum target_signal stop_signal;
4172 };
4173
4174 /* Called by gdbthread.c once per thread. Records the thread's
4175 register state for the corefile note section. */
4176
4177 static int
4178 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4179 {
4180 struct linux_nat_corefile_thread_data *args = data;
4181
4182 args->note_data = linux_nat_do_thread_registers (args->obfd,
4183 ti->ptid,
4184 args->note_data,
4185 args->note_size,
4186 args->stop_signal);
4187 args->num_notes++;
4188
4189 return 0;
4190 }
4191
4192 /* Enumerate spufs IDs for process PID. */
4193
4194 static void
4195 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4196 {
4197 char path[128];
4198 DIR *dir;
4199 struct dirent *entry;
4200
4201 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4202 dir = opendir (path);
4203 if (!dir)
4204 return;
4205
4206 rewinddir (dir);
4207 while ((entry = readdir (dir)) != NULL)
4208 {
4209 struct stat st;
4210 struct statfs stfs;
4211 int fd;
4212
4213 fd = atoi (entry->d_name);
4214 if (!fd)
4215 continue;
4216
4217 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4218 if (stat (path, &st) != 0)
4219 continue;
4220 if (!S_ISDIR (st.st_mode))
4221 continue;
4222
4223 if (statfs (path, &stfs) != 0)
4224 continue;
4225 if (stfs.f_type != SPUFS_MAGIC)
4226 continue;
4227
4228 callback (data, fd);
4229 }
4230
4231 closedir (dir);
4232 }
4233
4234 /* Generate corefile notes for SPU contexts. */
4235
4236 struct linux_spu_corefile_data
4237 {
4238 bfd *obfd;
4239 char *note_data;
4240 int *note_size;
4241 };
4242
4243 static void
4244 linux_spu_corefile_callback (void *data, int fd)
4245 {
4246 struct linux_spu_corefile_data *args = data;
4247 int i;
4248
4249 static const char *spu_files[] =
4250 {
4251 "object-id",
4252 "mem",
4253 "regs",
4254 "fpcr",
4255 "lslr",
4256 "decr",
4257 "decr_status",
4258 "signal1",
4259 "signal1_type",
4260 "signal2",
4261 "signal2_type",
4262 "event_mask",
4263 "event_status",
4264 "mbox_info",
4265 "ibox_info",
4266 "wbox_info",
4267 "dma_info",
4268 "proxydma_info",
4269 };
4270
4271 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4272 {
4273 char annex[32], note_name[32];
4274 gdb_byte *spu_data;
4275 LONGEST spu_len;
4276
4277 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4278 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4279 annex, &spu_data);
4280 if (spu_len > 0)
4281 {
4282 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4283 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4284 args->note_size, note_name,
4285 NT_SPU, spu_data, spu_len);
4286 xfree (spu_data);
4287 }
4288 }
4289 }
4290
4291 static char *
4292 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4293 {
4294 struct linux_spu_corefile_data args;
4295 args.obfd = obfd;
4296 args.note_data = note_data;
4297 args.note_size = note_size;
4298
4299 iterate_over_spus (PIDGET (inferior_ptid),
4300 linux_spu_corefile_callback, &args);
4301
4302 return args.note_data;
4303 }
4304
4305 /* Fills the "to_make_corefile_note" target vector. Builds the note
4306 section for a corefile, and returns it in a malloc buffer. */
4307
4308 static char *
4309 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4310 {
4311 struct linux_nat_corefile_thread_data thread_args;
4312 struct cleanup *old_chain;
4313 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4314 char fname[16] = { '\0' };
4315 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4316 char psargs[80] = { '\0' };
4317 char *note_data = NULL;
4318 ptid_t current_ptid = inferior_ptid;
4319 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4320 gdb_byte *auxv;
4321 int auxv_len;
4322
4323 if (get_exec_file (0))
4324 {
4325 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4326 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4327 if (get_inferior_args ())
4328 {
4329 char *string_end;
4330 char *psargs_end = psargs + sizeof (psargs);
4331
4332 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4333 strings fine. */
4334 string_end = memchr (psargs, 0, sizeof (psargs));
4335 if (string_end != NULL)
4336 {
4337 *string_end++ = ' ';
4338 strncpy (string_end, get_inferior_args (),
4339 psargs_end - string_end);
4340 }
4341 }
4342 note_data = (char *) elfcore_write_prpsinfo (obfd,
4343 note_data,
4344 note_size, fname, psargs);
4345 }
4346
4347 /* Dump information for threads. */
4348 thread_args.obfd = obfd;
4349 thread_args.note_data = note_data;
4350 thread_args.note_size = note_size;
4351 thread_args.num_notes = 0;
4352 thread_args.stop_signal = find_stop_signal ();
4353 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4354 gdb_assert (thread_args.num_notes != 0);
4355 note_data = thread_args.note_data;
4356
4357 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4358 NULL, &auxv);
4359 if (auxv_len > 0)
4360 {
4361 note_data = elfcore_write_note (obfd, note_data, note_size,
4362 "CORE", NT_AUXV, auxv, auxv_len);
4363 xfree (auxv);
4364 }
4365
4366 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4367
4368 make_cleanup (xfree, note_data);
4369 return note_data;
4370 }
4371
4372 /* Implement the "info proc" command. */
4373
4374 static void
4375 linux_nat_info_proc_cmd (char *args, int from_tty)
4376 {
4377 /* A long is used for pid instead of an int to avoid a loss of precision
4378 compiler warning from the output of strtoul. */
4379 long pid = PIDGET (inferior_ptid);
4380 FILE *procfile;
4381 char **argv = NULL;
4382 char buffer[MAXPATHLEN];
4383 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4384 int cmdline_f = 1;
4385 int cwd_f = 1;
4386 int exe_f = 1;
4387 int mappings_f = 0;
4388 int environ_f = 0;
4389 int status_f = 0;
4390 int stat_f = 0;
4391 int all = 0;
4392 struct stat dummy;
4393
4394 if (args)
4395 {
4396 /* Break up 'args' into an argv array. */
4397 argv = gdb_buildargv (args);
4398 make_cleanup_freeargv (argv);
4399 }
4400 while (argv != NULL && *argv != NULL)
4401 {
4402 if (isdigit (argv[0][0]))
4403 {
4404 pid = strtoul (argv[0], NULL, 10);
4405 }
4406 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4407 {
4408 mappings_f = 1;
4409 }
4410 else if (strcmp (argv[0], "status") == 0)
4411 {
4412 status_f = 1;
4413 }
4414 else if (strcmp (argv[0], "stat") == 0)
4415 {
4416 stat_f = 1;
4417 }
4418 else if (strcmp (argv[0], "cmd") == 0)
4419 {
4420 cmdline_f = 1;
4421 }
4422 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4423 {
4424 exe_f = 1;
4425 }
4426 else if (strcmp (argv[0], "cwd") == 0)
4427 {
4428 cwd_f = 1;
4429 }
4430 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4431 {
4432 all = 1;
4433 }
4434 else
4435 {
4436 /* [...] (future options here) */
4437 }
4438 argv++;
4439 }
4440 if (pid == 0)
4441 error (_("No current process: you must name one."));
4442
4443 sprintf (fname1, "/proc/%ld", pid);
4444 if (stat (fname1, &dummy) != 0)
4445 error (_("No /proc directory: '%s'"), fname1);
4446
4447 printf_filtered (_("process %ld\n"), pid);
4448 if (cmdline_f || all)
4449 {
4450 sprintf (fname1, "/proc/%ld/cmdline", pid);
4451 if ((procfile = fopen (fname1, "r")) != NULL)
4452 {
4453 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4454 if (fgets (buffer, sizeof (buffer), procfile))
4455 printf_filtered ("cmdline = '%s'\n", buffer);
4456 else
4457 warning (_("unable to read '%s'"), fname1);
4458 do_cleanups (cleanup);
4459 }
4460 else
4461 warning (_("unable to open /proc file '%s'"), fname1);
4462 }
4463 if (cwd_f || all)
4464 {
4465 sprintf (fname1, "/proc/%ld/cwd", pid);
4466 memset (fname2, 0, sizeof (fname2));
4467 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4468 printf_filtered ("cwd = '%s'\n", fname2);
4469 else
4470 warning (_("unable to read link '%s'"), fname1);
4471 }
4472 if (exe_f || all)
4473 {
4474 sprintf (fname1, "/proc/%ld/exe", pid);
4475 memset (fname2, 0, sizeof (fname2));
4476 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4477 printf_filtered ("exe = '%s'\n", fname2);
4478 else
4479 warning (_("unable to read link '%s'"), fname1);
4480 }
4481 if (mappings_f || all)
4482 {
4483 sprintf (fname1, "/proc/%ld/maps", pid);
4484 if ((procfile = fopen (fname1, "r")) != NULL)
4485 {
4486 long long addr, endaddr, size, offset, inode;
4487 char permissions[8], device[8], filename[MAXPATHLEN];
4488 struct cleanup *cleanup;
4489
4490 cleanup = make_cleanup_fclose (procfile);
4491 printf_filtered (_("Mapped address spaces:\n\n"));
4492 if (gdbarch_addr_bit (target_gdbarch) == 32)
4493 {
4494 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4495 "Start Addr",
4496 " End Addr",
4497 " Size", " Offset", "objfile");
4498 }
4499 else
4500 {
4501 printf_filtered (" %18s %18s %10s %10s %7s\n",
4502 "Start Addr",
4503 " End Addr",
4504 " Size", " Offset", "objfile");
4505 }
4506
4507 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4508 &offset, &device[0], &inode, &filename[0]))
4509 {
4510 size = endaddr - addr;
4511
4512 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4513 calls here (and possibly above) should be abstracted
4514 out into their own functions? Andrew suggests using
4515 a generic local_address_string instead to print out
4516 the addresses; that makes sense to me, too. */
4517
4518 if (gdbarch_addr_bit (target_gdbarch) == 32)
4519 {
4520 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4521 (unsigned long) addr, /* FIXME: pr_addr */
4522 (unsigned long) endaddr,
4523 (int) size,
4524 (unsigned int) offset,
4525 filename[0] ? filename : "");
4526 }
4527 else
4528 {
4529 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4530 (unsigned long) addr, /* FIXME: pr_addr */
4531 (unsigned long) endaddr,
4532 (int) size,
4533 (unsigned int) offset,
4534 filename[0] ? filename : "");
4535 }
4536 }
4537
4538 do_cleanups (cleanup);
4539 }
4540 else
4541 warning (_("unable to open /proc file '%s'"), fname1);
4542 }
4543 if (status_f || all)
4544 {
4545 sprintf (fname1, "/proc/%ld/status", pid);
4546 if ((procfile = fopen (fname1, "r")) != NULL)
4547 {
4548 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4549 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4550 puts_filtered (buffer);
4551 do_cleanups (cleanup);
4552 }
4553 else
4554 warning (_("unable to open /proc file '%s'"), fname1);
4555 }
4556 if (stat_f || all)
4557 {
4558 sprintf (fname1, "/proc/%ld/stat", pid);
4559 if ((procfile = fopen (fname1, "r")) != NULL)
4560 {
4561 int itmp;
4562 char ctmp;
4563 long ltmp;
4564 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4565
4566 if (fscanf (procfile, "%d ", &itmp) > 0)
4567 printf_filtered (_("Process: %d\n"), itmp);
4568 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4569 printf_filtered (_("Exec file: %s\n"), buffer);
4570 if (fscanf (procfile, "%c ", &ctmp) > 0)
4571 printf_filtered (_("State: %c\n"), ctmp);
4572 if (fscanf (procfile, "%d ", &itmp) > 0)
4573 printf_filtered (_("Parent process: %d\n"), itmp);
4574 if (fscanf (procfile, "%d ", &itmp) > 0)
4575 printf_filtered (_("Process group: %d\n"), itmp);
4576 if (fscanf (procfile, "%d ", &itmp) > 0)
4577 printf_filtered (_("Session id: %d\n"), itmp);
4578 if (fscanf (procfile, "%d ", &itmp) > 0)
4579 printf_filtered (_("TTY: %d\n"), itmp);
4580 if (fscanf (procfile, "%d ", &itmp) > 0)
4581 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4582 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4583 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4584 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4585 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4586 (unsigned long) ltmp);
4587 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4588 printf_filtered (_("Minor faults, children: %lu\n"),
4589 (unsigned long) ltmp);
4590 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4591 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4592 (unsigned long) ltmp);
4593 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4594 printf_filtered (_("Major faults, children: %lu\n"),
4595 (unsigned long) ltmp);
4596 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4597 printf_filtered (_("utime: %ld\n"), ltmp);
4598 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4599 printf_filtered (_("stime: %ld\n"), ltmp);
4600 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4601 printf_filtered (_("utime, children: %ld\n"), ltmp);
4602 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4603 printf_filtered (_("stime, children: %ld\n"), ltmp);
4604 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4605 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4606 ltmp);
4607 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4608 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4609 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4610 printf_filtered (_("jiffies until next timeout: %lu\n"),
4611 (unsigned long) ltmp);
4612 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4613 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4614 (unsigned long) ltmp);
4615 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4616 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4617 ltmp);
4618 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4619 printf_filtered (_("Virtual memory size: %lu\n"),
4620 (unsigned long) ltmp);
4621 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4622 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4623 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4624 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4625 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4626 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4627 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4628 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4629 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4630 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4631 #if 0 /* Don't know how architecture-dependent the rest is...
4632 Anyway the signal bitmap info is available from "status". */
4633 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4634 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4635 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4636 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4637 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4638 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4639 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4640 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4641 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4642 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4643 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4644 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4645 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4646 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4647 #endif
4648 do_cleanups (cleanup);
4649 }
4650 else
4651 warning (_("unable to open /proc file '%s'"), fname1);
4652 }
4653 }
4654
4655 /* Implement the to_xfer_partial interface for memory reads using the /proc
4656 filesystem. Because we can use a single read() call for /proc, this
4657 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4658 but it doesn't support writes. */
4659
4660 static LONGEST
4661 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4662 const char *annex, gdb_byte *readbuf,
4663 const gdb_byte *writebuf,
4664 ULONGEST offset, LONGEST len)
4665 {
4666 LONGEST ret;
4667 int fd;
4668 char filename[64];
4669
4670 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4671 return 0;
4672
4673 /* Don't bother for one word. */
4674 if (len < 3 * sizeof (long))
4675 return 0;
4676
4677 /* We could keep this file open and cache it - possibly one per
4678 thread. That requires some juggling, but is even faster. */
4679 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4680 fd = open (filename, O_RDONLY | O_LARGEFILE);
4681 if (fd == -1)
4682 return 0;
4683
4684 /* If pread64 is available, use it. It's faster if the kernel
4685 supports it (only one syscall), and it's 64-bit safe even on
4686 32-bit platforms (for instance, SPARC debugging a SPARC64
4687 application). */
4688 #ifdef HAVE_PREAD64
4689 if (pread64 (fd, readbuf, len, offset) != len)
4690 #else
4691 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4692 #endif
4693 ret = 0;
4694 else
4695 ret = len;
4696
4697 close (fd);
4698 return ret;
4699 }
4700
4701
4702 /* Enumerate spufs IDs for process PID. */
4703 static LONGEST
4704 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4705 {
4706 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4707 LONGEST pos = 0;
4708 LONGEST written = 0;
4709 char path[128];
4710 DIR *dir;
4711 struct dirent *entry;
4712
4713 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4714 dir = opendir (path);
4715 if (!dir)
4716 return -1;
4717
4718 rewinddir (dir);
4719 while ((entry = readdir (dir)) != NULL)
4720 {
4721 struct stat st;
4722 struct statfs stfs;
4723 int fd;
4724
4725 fd = atoi (entry->d_name);
4726 if (!fd)
4727 continue;
4728
4729 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4730 if (stat (path, &st) != 0)
4731 continue;
4732 if (!S_ISDIR (st.st_mode))
4733 continue;
4734
4735 if (statfs (path, &stfs) != 0)
4736 continue;
4737 if (stfs.f_type != SPUFS_MAGIC)
4738 continue;
4739
4740 if (pos >= offset && pos + 4 <= offset + len)
4741 {
4742 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4743 written += 4;
4744 }
4745 pos += 4;
4746 }
4747
4748 closedir (dir);
4749 return written;
4750 }
4751
4752 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4753 object type, using the /proc file system. */
4754 static LONGEST
4755 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4756 const char *annex, gdb_byte *readbuf,
4757 const gdb_byte *writebuf,
4758 ULONGEST offset, LONGEST len)
4759 {
4760 char buf[128];
4761 int fd = 0;
4762 int ret = -1;
4763 int pid = PIDGET (inferior_ptid);
4764
4765 if (!annex)
4766 {
4767 if (!readbuf)
4768 return -1;
4769 else
4770 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4771 }
4772
4773 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4774 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4775 if (fd <= 0)
4776 return -1;
4777
4778 if (offset != 0
4779 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4780 {
4781 close (fd);
4782 return 0;
4783 }
4784
4785 if (writebuf)
4786 ret = write (fd, writebuf, (size_t) len);
4787 else if (readbuf)
4788 ret = read (fd, readbuf, (size_t) len);
4789
4790 close (fd);
4791 return ret;
4792 }
4793
4794
4795 /* Parse LINE as a signal set and add its set bits to SIGS. */
4796
4797 static void
4798 add_line_to_sigset (const char *line, sigset_t *sigs)
4799 {
4800 int len = strlen (line) - 1;
4801 const char *p;
4802 int signum;
4803
4804 if (line[len] != '\n')
4805 error (_("Could not parse signal set: %s"), line);
4806
4807 p = line;
4808 signum = len * 4;
4809 while (len-- > 0)
4810 {
4811 int digit;
4812
4813 if (*p >= '0' && *p <= '9')
4814 digit = *p - '0';
4815 else if (*p >= 'a' && *p <= 'f')
4816 digit = *p - 'a' + 10;
4817 else
4818 error (_("Could not parse signal set: %s"), line);
4819
4820 signum -= 4;
4821
4822 if (digit & 1)
4823 sigaddset (sigs, signum + 1);
4824 if (digit & 2)
4825 sigaddset (sigs, signum + 2);
4826 if (digit & 4)
4827 sigaddset (sigs, signum + 3);
4828 if (digit & 8)
4829 sigaddset (sigs, signum + 4);
4830
4831 p++;
4832 }
4833 }
4834
4835 /* Find process PID's pending signals from /proc/pid/status and set
4836 SIGS to match. */
4837
4838 void
4839 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4840 {
4841 FILE *procfile;
4842 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4843 int signum;
4844 struct cleanup *cleanup;
4845
4846 sigemptyset (pending);
4847 sigemptyset (blocked);
4848 sigemptyset (ignored);
4849 sprintf (fname, "/proc/%d/status", pid);
4850 procfile = fopen (fname, "r");
4851 if (procfile == NULL)
4852 error (_("Could not open %s"), fname);
4853 cleanup = make_cleanup_fclose (procfile);
4854
4855 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4856 {
4857 /* Normal queued signals are on the SigPnd line in the status
4858 file. However, 2.6 kernels also have a "shared" pending
4859 queue for delivering signals to a thread group, so check for
4860 a ShdPnd line also.
4861
4862 Unfortunately some Red Hat kernels include the shared pending
4863 queue but not the ShdPnd status field. */
4864
4865 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4866 add_line_to_sigset (buffer + 8, pending);
4867 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4868 add_line_to_sigset (buffer + 8, pending);
4869 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4870 add_line_to_sigset (buffer + 8, blocked);
4871 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4872 add_line_to_sigset (buffer + 8, ignored);
4873 }
4874
4875 do_cleanups (cleanup);
4876 }
4877
4878 static LONGEST
4879 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4880 const char *annex, gdb_byte *readbuf,
4881 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4882 {
4883 /* We make the process list snapshot when the object starts to be
4884 read. */
4885 static const char *buf;
4886 static LONGEST len_avail = -1;
4887 static struct obstack obstack;
4888
4889 DIR *dirp;
4890
4891 gdb_assert (object == TARGET_OBJECT_OSDATA);
4892
4893 if (strcmp (annex, "processes") != 0)
4894 return 0;
4895
4896 gdb_assert (readbuf && !writebuf);
4897
4898 if (offset == 0)
4899 {
4900 if (len_avail != -1 && len_avail != 0)
4901 obstack_free (&obstack, NULL);
4902 len_avail = 0;
4903 buf = NULL;
4904 obstack_init (&obstack);
4905 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4906
4907 dirp = opendir ("/proc");
4908 if (dirp)
4909 {
4910 struct dirent *dp;
4911 while ((dp = readdir (dirp)) != NULL)
4912 {
4913 struct stat statbuf;
4914 char procentry[sizeof ("/proc/4294967295")];
4915
4916 if (!isdigit (dp->d_name[0])
4917 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4918 continue;
4919
4920 sprintf (procentry, "/proc/%s", dp->d_name);
4921 if (stat (procentry, &statbuf) == 0
4922 && S_ISDIR (statbuf.st_mode))
4923 {
4924 char *pathname;
4925 FILE *f;
4926 char cmd[MAXPATHLEN + 1];
4927 struct passwd *entry;
4928
4929 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4930 entry = getpwuid (statbuf.st_uid);
4931
4932 if ((f = fopen (pathname, "r")) != NULL)
4933 {
4934 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4935 if (len > 0)
4936 {
4937 int i;
4938 for (i = 0; i < len; i++)
4939 if (cmd[i] == '\0')
4940 cmd[i] = ' ';
4941 cmd[len] = '\0';
4942
4943 obstack_xml_printf (
4944 &obstack,
4945 "<item>"
4946 "<column name=\"pid\">%s</column>"
4947 "<column name=\"user\">%s</column>"
4948 "<column name=\"command\">%s</column>"
4949 "</item>",
4950 dp->d_name,
4951 entry ? entry->pw_name : "?",
4952 cmd);
4953 }
4954 fclose (f);
4955 }
4956
4957 xfree (pathname);
4958 }
4959 }
4960
4961 closedir (dirp);
4962 }
4963
4964 obstack_grow_str0 (&obstack, "</osdata>\n");
4965 buf = obstack_finish (&obstack);
4966 len_avail = strlen (buf);
4967 }
4968
4969 if (offset >= len_avail)
4970 {
4971 /* Done. Get rid of the obstack. */
4972 obstack_free (&obstack, NULL);
4973 buf = NULL;
4974 len_avail = 0;
4975 return 0;
4976 }
4977
4978 if (len > len_avail - offset)
4979 len = len_avail - offset;
4980 memcpy (readbuf, buf + offset, len);
4981
4982 return len;
4983 }
4984
4985 static LONGEST
4986 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4987 const char *annex, gdb_byte *readbuf,
4988 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4989 {
4990 LONGEST xfer;
4991
4992 if (object == TARGET_OBJECT_AUXV)
4993 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4994 offset, len);
4995
4996 if (object == TARGET_OBJECT_OSDATA)
4997 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4998 offset, len);
4999
5000 if (object == TARGET_OBJECT_SPU)
5001 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5002 offset, len);
5003
5004 /* GDB calculates all the addresses in possibly larget width of the address.
5005 Address width needs to be masked before its final use - either by
5006 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5007
5008 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5009
5010 if (object == TARGET_OBJECT_MEMORY)
5011 {
5012 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5013
5014 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5015 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5016 }
5017
5018 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5019 offset, len);
5020 if (xfer != 0)
5021 return xfer;
5022
5023 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5024 offset, len);
5025 }
5026
5027 /* Create a prototype generic GNU/Linux target. The client can override
5028 it with local methods. */
5029
5030 static void
5031 linux_target_install_ops (struct target_ops *t)
5032 {
5033 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5034 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5035 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5036 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5037 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5038 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5039 t->to_post_attach = linux_child_post_attach;
5040 t->to_follow_fork = linux_child_follow_fork;
5041 t->to_find_memory_regions = linux_nat_find_memory_regions;
5042 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5043
5044 super_xfer_partial = t->to_xfer_partial;
5045 t->to_xfer_partial = linux_xfer_partial;
5046 }
5047
5048 struct target_ops *
5049 linux_target (void)
5050 {
5051 struct target_ops *t;
5052
5053 t = inf_ptrace_target ();
5054 linux_target_install_ops (t);
5055
5056 return t;
5057 }
5058
5059 struct target_ops *
5060 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5061 {
5062 struct target_ops *t;
5063
5064 t = inf_ptrace_trad_target (register_u_offset);
5065 linux_target_install_ops (t);
5066
5067 return t;
5068 }
5069
5070 /* target_is_async_p implementation. */
5071
5072 static int
5073 linux_nat_is_async_p (void)
5074 {
5075 /* NOTE: palves 2008-03-21: We're only async when the user requests
5076 it explicitly with the "set target-async" command.
5077 Someday, linux will always be async. */
5078 if (!target_async_permitted)
5079 return 0;
5080
5081 /* See target.h/target_async_mask. */
5082 return linux_nat_async_mask_value;
5083 }
5084
5085 /* target_can_async_p implementation. */
5086
5087 static int
5088 linux_nat_can_async_p (void)
5089 {
5090 /* NOTE: palves 2008-03-21: We're only async when the user requests
5091 it explicitly with the "set target-async" command.
5092 Someday, linux will always be async. */
5093 if (!target_async_permitted)
5094 return 0;
5095
5096 /* See target.h/target_async_mask. */
5097 return linux_nat_async_mask_value;
5098 }
5099
5100 static int
5101 linux_nat_supports_non_stop (void)
5102 {
5103 return 1;
5104 }
5105
5106 /* True if we want to support multi-process. To be removed when GDB
5107 supports multi-exec. */
5108
5109 int linux_multi_process = 1;
5110
5111 static int
5112 linux_nat_supports_multi_process (void)
5113 {
5114 return linux_multi_process;
5115 }
5116
5117 /* target_async_mask implementation. */
5118
5119 static int
5120 linux_nat_async_mask (int new_mask)
5121 {
5122 int curr_mask = linux_nat_async_mask_value;
5123
5124 if (curr_mask != new_mask)
5125 {
5126 if (new_mask == 0)
5127 {
5128 linux_nat_async (NULL, 0);
5129 linux_nat_async_mask_value = new_mask;
5130 }
5131 else
5132 {
5133 linux_nat_async_mask_value = new_mask;
5134
5135 /* If we're going out of async-mask in all-stop, then the
5136 inferior is stopped. The next resume will call
5137 target_async. In non-stop, the target event source
5138 should be always registered in the event loop. Do so
5139 now. */
5140 if (non_stop)
5141 linux_nat_async (inferior_event_handler, 0);
5142 }
5143 }
5144
5145 return curr_mask;
5146 }
5147
5148 static int async_terminal_is_ours = 1;
5149
5150 /* target_terminal_inferior implementation. */
5151
5152 static void
5153 linux_nat_terminal_inferior (void)
5154 {
5155 if (!target_is_async_p ())
5156 {
5157 /* Async mode is disabled. */
5158 terminal_inferior ();
5159 return;
5160 }
5161
5162 terminal_inferior ();
5163
5164 /* Calls to target_terminal_*() are meant to be idempotent. */
5165 if (!async_terminal_is_ours)
5166 return;
5167
5168 delete_file_handler (input_fd);
5169 async_terminal_is_ours = 0;
5170 set_sigint_trap ();
5171 }
5172
5173 /* target_terminal_ours implementation. */
5174
5175 static void
5176 linux_nat_terminal_ours (void)
5177 {
5178 if (!target_is_async_p ())
5179 {
5180 /* Async mode is disabled. */
5181 terminal_ours ();
5182 return;
5183 }
5184
5185 /* GDB should never give the terminal to the inferior if the
5186 inferior is running in the background (run&, continue&, etc.),
5187 but claiming it sure should. */
5188 terminal_ours ();
5189
5190 if (async_terminal_is_ours)
5191 return;
5192
5193 clear_sigint_trap ();
5194 add_file_handler (input_fd, stdin_event_handler, 0);
5195 async_terminal_is_ours = 1;
5196 }
5197
5198 static void (*async_client_callback) (enum inferior_event_type event_type,
5199 void *context);
5200 static void *async_client_context;
5201
5202 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5203 so we notice when any child changes state, and notify the
5204 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5205 above to wait for the arrival of a SIGCHLD. */
5206
5207 static void
5208 sigchld_handler (int signo)
5209 {
5210 int old_errno = errno;
5211
5212 if (debug_linux_nat_async)
5213 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5214
5215 if (signo == SIGCHLD
5216 && linux_nat_event_pipe[0] != -1)
5217 async_file_mark (); /* Let the event loop know that there are
5218 events to handle. */
5219
5220 errno = old_errno;
5221 }
5222
5223 /* Callback registered with the target events file descriptor. */
5224
5225 static void
5226 handle_target_event (int error, gdb_client_data client_data)
5227 {
5228 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5229 }
5230
5231 /* Create/destroy the target events pipe. Returns previous state. */
5232
5233 static int
5234 linux_async_pipe (int enable)
5235 {
5236 int previous = (linux_nat_event_pipe[0] != -1);
5237
5238 if (previous != enable)
5239 {
5240 sigset_t prev_mask;
5241
5242 block_child_signals (&prev_mask);
5243
5244 if (enable)
5245 {
5246 if (pipe (linux_nat_event_pipe) == -1)
5247 internal_error (__FILE__, __LINE__,
5248 "creating event pipe failed.");
5249
5250 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5251 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5252 }
5253 else
5254 {
5255 close (linux_nat_event_pipe[0]);
5256 close (linux_nat_event_pipe[1]);
5257 linux_nat_event_pipe[0] = -1;
5258 linux_nat_event_pipe[1] = -1;
5259 }
5260
5261 restore_child_signals_mask (&prev_mask);
5262 }
5263
5264 return previous;
5265 }
5266
5267 /* target_async implementation. */
5268
5269 static void
5270 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5271 void *context), void *context)
5272 {
5273 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5274 internal_error (__FILE__, __LINE__,
5275 "Calling target_async when async is masked");
5276
5277 if (callback != NULL)
5278 {
5279 async_client_callback = callback;
5280 async_client_context = context;
5281 if (!linux_async_pipe (1))
5282 {
5283 add_file_handler (linux_nat_event_pipe[0],
5284 handle_target_event, NULL);
5285 /* There may be pending events to handle. Tell the event loop
5286 to poll them. */
5287 async_file_mark ();
5288 }
5289 }
5290 else
5291 {
5292 async_client_callback = callback;
5293 async_client_context = context;
5294 delete_file_handler (linux_nat_event_pipe[0]);
5295 linux_async_pipe (0);
5296 }
5297 return;
5298 }
5299
5300 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5301 event came out. */
5302
5303 static int
5304 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5305 {
5306 if (!lwp->stopped)
5307 {
5308 int pid, status;
5309 ptid_t ptid = lwp->ptid;
5310
5311 if (debug_linux_nat)
5312 fprintf_unfiltered (gdb_stdlog,
5313 "LNSL: running -> suspending %s\n",
5314 target_pid_to_str (lwp->ptid));
5315
5316
5317 stop_callback (lwp, NULL);
5318 stop_wait_callback (lwp, NULL);
5319
5320 /* If the lwp exits while we try to stop it, there's nothing
5321 else to do. */
5322 lwp = find_lwp_pid (ptid);
5323 if (lwp == NULL)
5324 return 0;
5325
5326 /* If we didn't collect any signal other than SIGSTOP while
5327 stopping the LWP, push a SIGNAL_0 event. In either case, the
5328 event-loop will end up calling target_wait which will collect
5329 these. */
5330 if (lwp->status == 0)
5331 lwp->status = W_STOPCODE (0);
5332 async_file_mark ();
5333 }
5334 else
5335 {
5336 /* Already known to be stopped; do nothing. */
5337
5338 if (debug_linux_nat)
5339 {
5340 if (find_thread_ptid (lwp->ptid)->stop_requested)
5341 fprintf_unfiltered (gdb_stdlog, "\
5342 LNSL: already stopped/stop_requested %s\n",
5343 target_pid_to_str (lwp->ptid));
5344 else
5345 fprintf_unfiltered (gdb_stdlog, "\
5346 LNSL: already stopped/no stop_requested yet %s\n",
5347 target_pid_to_str (lwp->ptid));
5348 }
5349 }
5350 return 0;
5351 }
5352
5353 static void
5354 linux_nat_stop (ptid_t ptid)
5355 {
5356 if (non_stop)
5357 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5358 else
5359 linux_ops->to_stop (ptid);
5360 }
5361
5362 static void
5363 linux_nat_close (int quitting)
5364 {
5365 /* Unregister from the event loop. */
5366 if (target_is_async_p ())
5367 target_async (NULL, 0);
5368
5369 /* Reset the async_masking. */
5370 linux_nat_async_mask_value = 1;
5371
5372 if (linux_ops->to_close)
5373 linux_ops->to_close (quitting);
5374 }
5375
5376 /* When requests are passed down from the linux-nat layer to the
5377 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5378 used. The address space pointer is stored in the inferior object,
5379 but the common code that is passed such ptid can't tell whether
5380 lwpid is a "main" process id or not (it assumes so). We reverse
5381 look up the "main" process id from the lwp here. */
5382
5383 struct address_space *
5384 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5385 {
5386 struct lwp_info *lwp;
5387 struct inferior *inf;
5388 int pid;
5389
5390 pid = GET_LWP (ptid);
5391 if (GET_LWP (ptid) == 0)
5392 {
5393 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5394 tgid. */
5395 lwp = find_lwp_pid (ptid);
5396 pid = GET_PID (lwp->ptid);
5397 }
5398 else
5399 {
5400 /* A (pid,lwpid,0) ptid. */
5401 pid = GET_PID (ptid);
5402 }
5403
5404 inf = find_inferior_pid (pid);
5405 gdb_assert (inf != NULL);
5406 return inf->aspace;
5407 }
5408
5409 int
5410 linux_nat_core_of_thread_1 (ptid_t ptid)
5411 {
5412 struct cleanup *back_to;
5413 char *filename;
5414 FILE *f;
5415 char *content = NULL;
5416 char *p;
5417 char *ts = 0;
5418 int content_read = 0;
5419 int i;
5420 int core;
5421
5422 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5423 GET_PID (ptid), GET_LWP (ptid));
5424 back_to = make_cleanup (xfree, filename);
5425
5426 f = fopen (filename, "r");
5427 if (!f)
5428 {
5429 do_cleanups (back_to);
5430 return -1;
5431 }
5432
5433 make_cleanup_fclose (f);
5434
5435 for (;;)
5436 {
5437 int n;
5438 content = xrealloc (content, content_read + 1024);
5439 n = fread (content + content_read, 1, 1024, f);
5440 content_read += n;
5441 if (n < 1024)
5442 {
5443 content[content_read] = '\0';
5444 break;
5445 }
5446 }
5447
5448 make_cleanup (xfree, content);
5449
5450 p = strchr (content, '(');
5451 p = strchr (p, ')') + 2; /* skip ")" and a whitespace. */
5452
5453 /* If the first field after program name has index 0, then core number is
5454 the field with index 36. There's no constant for that anywhere. */
5455 p = strtok_r (p, " ", &ts);
5456 for (i = 0; i != 36; ++i)
5457 p = strtok_r (NULL, " ", &ts);
5458
5459 if (sscanf (p, "%d", &core) == 0)
5460 core = -1;
5461
5462 do_cleanups (back_to);
5463
5464 return core;
5465 }
5466
5467 /* Return the cached value of the processor core for thread PTID. */
5468
5469 int
5470 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5471 {
5472 struct lwp_info *info = find_lwp_pid (ptid);
5473 if (info)
5474 return info->core;
5475 return -1;
5476 }
5477
5478 void
5479 linux_nat_add_target (struct target_ops *t)
5480 {
5481 /* Save the provided single-threaded target. We save this in a separate
5482 variable because another target we've inherited from (e.g. inf-ptrace)
5483 may have saved a pointer to T; we want to use it for the final
5484 process stratum target. */
5485 linux_ops_saved = *t;
5486 linux_ops = &linux_ops_saved;
5487
5488 /* Override some methods for multithreading. */
5489 t->to_create_inferior = linux_nat_create_inferior;
5490 t->to_attach = linux_nat_attach;
5491 t->to_detach = linux_nat_detach;
5492 t->to_resume = linux_nat_resume;
5493 t->to_wait = linux_nat_wait;
5494 t->to_xfer_partial = linux_nat_xfer_partial;
5495 t->to_kill = linux_nat_kill;
5496 t->to_mourn_inferior = linux_nat_mourn_inferior;
5497 t->to_thread_alive = linux_nat_thread_alive;
5498 t->to_pid_to_str = linux_nat_pid_to_str;
5499 t->to_has_thread_control = tc_schedlock;
5500 t->to_thread_address_space = linux_nat_thread_address_space;
5501 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5502 t->to_stopped_data_address = linux_nat_stopped_data_address;
5503
5504 t->to_can_async_p = linux_nat_can_async_p;
5505 t->to_is_async_p = linux_nat_is_async_p;
5506 t->to_supports_non_stop = linux_nat_supports_non_stop;
5507 t->to_async = linux_nat_async;
5508 t->to_async_mask = linux_nat_async_mask;
5509 t->to_terminal_inferior = linux_nat_terminal_inferior;
5510 t->to_terminal_ours = linux_nat_terminal_ours;
5511 t->to_close = linux_nat_close;
5512
5513 /* Methods for non-stop support. */
5514 t->to_stop = linux_nat_stop;
5515
5516 t->to_supports_multi_process = linux_nat_supports_multi_process;
5517
5518 t->to_core_of_thread = linux_nat_core_of_thread;
5519
5520 /* We don't change the stratum; this target will sit at
5521 process_stratum and thread_db will set at thread_stratum. This
5522 is a little strange, since this is a multi-threaded-capable
5523 target, but we want to be on the stack below thread_db, and we
5524 also want to be used for single-threaded processes. */
5525
5526 add_target (t);
5527 }
5528
5529 /* Register a method to call whenever a new thread is attached. */
5530 void
5531 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5532 {
5533 /* Save the pointer. We only support a single registered instance
5534 of the GNU/Linux native target, so we do not need to map this to
5535 T. */
5536 linux_nat_new_thread = new_thread;
5537 }
5538
5539 /* Register a method that converts a siginfo object between the layout
5540 that ptrace returns, and the layout in the architecture of the
5541 inferior. */
5542 void
5543 linux_nat_set_siginfo_fixup (struct target_ops *t,
5544 int (*siginfo_fixup) (struct siginfo *,
5545 gdb_byte *,
5546 int))
5547 {
5548 /* Save the pointer. */
5549 linux_nat_siginfo_fixup = siginfo_fixup;
5550 }
5551
5552 /* Return the saved siginfo associated with PTID. */
5553 struct siginfo *
5554 linux_nat_get_siginfo (ptid_t ptid)
5555 {
5556 struct lwp_info *lp = find_lwp_pid (ptid);
5557
5558 gdb_assert (lp != NULL);
5559
5560 return &lp->siginfo;
5561 }
5562
5563 /* Provide a prototype to silence -Wmissing-prototypes. */
5564 extern initialize_file_ftype _initialize_linux_nat;
5565
5566 void
5567 _initialize_linux_nat (void)
5568 {
5569 sigset_t mask;
5570
5571 add_info ("proc", linux_nat_info_proc_cmd, _("\
5572 Show /proc process information about any running process.\n\
5573 Specify any process id, or use the program being debugged by default.\n\
5574 Specify any of the following keywords for detailed info:\n\
5575 mappings -- list of mapped memory regions.\n\
5576 stat -- list a bunch of random process info.\n\
5577 status -- list a different bunch of random process info.\n\
5578 all -- list all available /proc info."));
5579
5580 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5581 &debug_linux_nat, _("\
5582 Set debugging of GNU/Linux lwp module."), _("\
5583 Show debugging of GNU/Linux lwp module."), _("\
5584 Enables printf debugging output."),
5585 NULL,
5586 show_debug_linux_nat,
5587 &setdebuglist, &showdebuglist);
5588
5589 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5590 &debug_linux_nat_async, _("\
5591 Set debugging of GNU/Linux async lwp module."), _("\
5592 Show debugging of GNU/Linux async lwp module."), _("\
5593 Enables printf debugging output."),
5594 NULL,
5595 show_debug_linux_nat_async,
5596 &setdebuglist, &showdebuglist);
5597
5598 /* Save this mask as the default. */
5599 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5600
5601 /* Install a SIGCHLD handler. */
5602 sigchld_action.sa_handler = sigchld_handler;
5603 sigemptyset (&sigchld_action.sa_mask);
5604 sigchld_action.sa_flags = SA_RESTART;
5605
5606 /* Make it the default. */
5607 sigaction (SIGCHLD, &sigchld_action, NULL);
5608
5609 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5610 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5611 sigdelset (&suspend_mask, SIGCHLD);
5612
5613 sigemptyset (&blocked_mask);
5614
5615 add_setshow_boolean_cmd ("disable-randomization", class_support,
5616 &disable_randomization, _("\
5617 Set disabling of debuggee's virtual address space randomization."), _("\
5618 Show disabling of debuggee's virtual address space randomization."), _("\
5619 When this mode is on (which is the default), randomization of the virtual\n\
5620 address space is disabled. Standalone programs run with the randomization\n\
5621 enabled by default on some platforms."),
5622 &set_disable_randomization,
5623 &show_disable_randomization,
5624 &setlist, &showlist);
5625 }
5626 \f
5627
5628 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5629 the GNU/Linux Threads library and therefore doesn't really belong
5630 here. */
5631
5632 /* Read variable NAME in the target and return its value if found.
5633 Otherwise return zero. It is assumed that the type of the variable
5634 is `int'. */
5635
5636 static int
5637 get_signo (const char *name)
5638 {
5639 struct minimal_symbol *ms;
5640 int signo;
5641
5642 ms = lookup_minimal_symbol (name, NULL, NULL);
5643 if (ms == NULL)
5644 return 0;
5645
5646 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5647 sizeof (signo)) != 0)
5648 return 0;
5649
5650 return signo;
5651 }
5652
5653 /* Return the set of signals used by the threads library in *SET. */
5654
5655 void
5656 lin_thread_get_thread_signals (sigset_t *set)
5657 {
5658 struct sigaction action;
5659 int restart, cancel;
5660
5661 sigemptyset (&blocked_mask);
5662 sigemptyset (set);
5663
5664 restart = get_signo ("__pthread_sig_restart");
5665 cancel = get_signo ("__pthread_sig_cancel");
5666
5667 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5668 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5669 not provide any way for the debugger to query the signal numbers -
5670 fortunately they don't change! */
5671
5672 if (restart == 0)
5673 restart = __SIGRTMIN;
5674
5675 if (cancel == 0)
5676 cancel = __SIGRTMIN + 1;
5677
5678 sigaddset (set, restart);
5679 sigaddset (set, cancel);
5680
5681 /* The GNU/Linux Threads library makes terminating threads send a
5682 special "cancel" signal instead of SIGCHLD. Make sure we catch
5683 those (to prevent them from terminating GDB itself, which is
5684 likely to be their default action) and treat them the same way as
5685 SIGCHLD. */
5686
5687 action.sa_handler = sigchld_handler;
5688 sigemptyset (&action.sa_mask);
5689 action.sa_flags = SA_RESTART;
5690 sigaction (cancel, &action, NULL);
5691
5692 /* We block the "cancel" signal throughout this code ... */
5693 sigaddset (&blocked_mask, cancel);
5694 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5695
5696 /* ... except during a sigsuspend. */
5697 sigdelset (&suspend_mask, cancel);
5698 }
This page took 0.145711 seconds and 4 git commands to generate.