* symtab.c (domain_name, search_domain_name): New functions.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include "gdb_string.h"
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include "gdbthread.h" /* for struct thread_info etc. */
50 #include "gdb_stat.h" /* for struct stat */
51 #include <fcntl.h> /* for O_RDONLY */
52 #include "inf-loop.h"
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include <pwd.h>
56 #include <sys/types.h>
57 #include "gdb_dirent.h"
58 #include "xml-support.h"
59 #include "terminal.h"
60 #include <sys/vfs.h>
61 #include "solib.h"
62 #include "linux-osdata.h"
63 #include "linux-tdep.h"
64 #include "symfile.h"
65 #include "agent.h"
66 #include "tracepoint.h"
67 #include "exceptions.h"
68 #include "linux-ptrace.h"
69 #include "buffer.h"
70 #include "target-descriptions.h"
71 #include "filestuff.h"
72
73 #ifndef SPUFS_MAGIC
74 #define SPUFS_MAGIC 0x23c9b64e
75 #endif
76
77 #ifdef HAVE_PERSONALITY
78 # include <sys/personality.h>
79 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
80 # define ADDR_NO_RANDOMIZE 0x0040000
81 # endif
82 #endif /* HAVE_PERSONALITY */
83
84 /* This comment documents high-level logic of this file.
85
86 Waiting for events in sync mode
87 ===============================
88
89 When waiting for an event in a specific thread, we just use waitpid, passing
90 the specific pid, and not passing WNOHANG.
91
92 When waiting for an event in all threads, waitpid is not quite good. Prior to
93 version 2.4, Linux can either wait for event in main thread, or in secondary
94 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
95 miss an event. The solution is to use non-blocking waitpid, together with
96 sigsuspend. First, we use non-blocking waitpid to get an event in the main
97 process, if any. Second, we use non-blocking waitpid with the __WCLONED
98 flag to check for events in cloned processes. If nothing is found, we use
99 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
100 happened to a child process -- and SIGCHLD will be delivered both for events
101 in main debugged process and in cloned processes. As soon as we know there's
102 an event, we get back to calling nonblocking waitpid with and without
103 __WCLONED.
104
105 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
106 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
107 blocked, the signal becomes pending and sigsuspend immediately
108 notices it and returns.
109
110 Waiting for events in async mode
111 ================================
112
113 In async mode, GDB should always be ready to handle both user input
114 and target events, so neither blocking waitpid nor sigsuspend are
115 viable options. Instead, we should asynchronously notify the GDB main
116 event loop whenever there's an unprocessed event from the target. We
117 detect asynchronous target events by handling SIGCHLD signals. To
118 notify the event loop about target events, the self-pipe trick is used
119 --- a pipe is registered as waitable event source in the event loop,
120 the event loop select/poll's on the read end of this pipe (as well on
121 other event sources, e.g., stdin), and the SIGCHLD handler writes a
122 byte to this pipe. This is more portable than relying on
123 pselect/ppoll, since on kernels that lack those syscalls, libc
124 emulates them with select/poll+sigprocmask, and that is racy
125 (a.k.a. plain broken).
126
127 Obviously, if we fail to notify the event loop if there's a target
128 event, it's bad. OTOH, if we notify the event loop when there's no
129 event from the target, linux_nat_wait will detect that there's no real
130 event to report, and return event of type TARGET_WAITKIND_IGNORE.
131 This is mostly harmless, but it will waste time and is better avoided.
132
133 The main design point is that every time GDB is outside linux-nat.c,
134 we have a SIGCHLD handler installed that is called when something
135 happens to the target and notifies the GDB event loop. Whenever GDB
136 core decides to handle the event, and calls into linux-nat.c, we
137 process things as in sync mode, except that the we never block in
138 sigsuspend.
139
140 While processing an event, we may end up momentarily blocked in
141 waitpid calls. Those waitpid calls, while blocking, are guarantied to
142 return quickly. E.g., in all-stop mode, before reporting to the core
143 that an LWP hit a breakpoint, all LWPs are stopped by sending them
144 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
145 Note that this is different from blocking indefinitely waiting for the
146 next event --- here, we're already handling an event.
147
148 Use of signals
149 ==============
150
151 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
152 signal is not entirely significant; we just need for a signal to be delivered,
153 so that we can intercept it. SIGSTOP's advantage is that it can not be
154 blocked. A disadvantage is that it is not a real-time signal, so it can only
155 be queued once; we do not keep track of other sources of SIGSTOP.
156
157 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
158 use them, because they have special behavior when the signal is generated -
159 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
160 kills the entire thread group.
161
162 A delivered SIGSTOP would stop the entire thread group, not just the thread we
163 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
164 cancel it (by PTRACE_CONT without passing SIGSTOP).
165
166 We could use a real-time signal instead. This would solve those problems; we
167 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
168 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
169 generates it, and there are races with trying to find a signal that is not
170 blocked. */
171
172 #ifndef O_LARGEFILE
173 #define O_LARGEFILE 0
174 #endif
175
176 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
177 the use of the multi-threaded target. */
178 static struct target_ops *linux_ops;
179 static struct target_ops linux_ops_saved;
180
181 /* The method to call, if any, when a new thread is attached. */
182 static void (*linux_nat_new_thread) (struct lwp_info *);
183
184 /* The method to call, if any, when a new fork is attached. */
185 static linux_nat_new_fork_ftype *linux_nat_new_fork;
186
187 /* The method to call, if any, when a process is no longer
188 attached. */
189 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
190
191 /* Hook to call prior to resuming a thread. */
192 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
193
194 /* The method to call, if any, when the siginfo object needs to be
195 converted between the layout returned by ptrace, and the layout in
196 the architecture of the inferior. */
197 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
198 gdb_byte *,
199 int);
200
201 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
202 Called by our to_xfer_partial. */
203 static LONGEST (*super_xfer_partial) (struct target_ops *,
204 enum target_object,
205 const char *, gdb_byte *,
206 const gdb_byte *,
207 ULONGEST, LONGEST);
208
209 static unsigned int debug_linux_nat;
210 static void
211 show_debug_linux_nat (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
215 value);
216 }
217
218 struct simple_pid_list
219 {
220 int pid;
221 int status;
222 struct simple_pid_list *next;
223 };
224 struct simple_pid_list *stopped_pids;
225
226 /* Async mode support. */
227
228 /* The read/write ends of the pipe registered as waitable file in the
229 event loop. */
230 static int linux_nat_event_pipe[2] = { -1, -1 };
231
232 /* Flush the event pipe. */
233
234 static void
235 async_file_flush (void)
236 {
237 int ret;
238 char buf;
239
240 do
241 {
242 ret = read (linux_nat_event_pipe[0], &buf, 1);
243 }
244 while (ret >= 0 || (ret == -1 && errno == EINTR));
245 }
246
247 /* Put something (anything, doesn't matter what, or how much) in event
248 pipe, so that the select/poll in the event-loop realizes we have
249 something to process. */
250
251 static void
252 async_file_mark (void)
253 {
254 int ret;
255
256 /* It doesn't really matter what the pipe contains, as long we end
257 up with something in it. Might as well flush the previous
258 left-overs. */
259 async_file_flush ();
260
261 do
262 {
263 ret = write (linux_nat_event_pipe[1], "+", 1);
264 }
265 while (ret == -1 && errno == EINTR);
266
267 /* Ignore EAGAIN. If the pipe is full, the event loop will already
268 be awakened anyway. */
269 }
270
271 static void linux_nat_async (void (*callback)
272 (enum inferior_event_type event_type,
273 void *context),
274 void *context);
275 static int kill_lwp (int lwpid, int signo);
276
277 static int stop_callback (struct lwp_info *lp, void *data);
278
279 static void block_child_signals (sigset_t *prev_mask);
280 static void restore_child_signals_mask (sigset_t *prev_mask);
281
282 struct lwp_info;
283 static struct lwp_info *add_lwp (ptid_t ptid);
284 static void purge_lwp_list (int pid);
285 static void delete_lwp (ptid_t ptid);
286 static struct lwp_info *find_lwp_pid (ptid_t ptid);
287
288 \f
289 /* Trivial list manipulation functions to keep track of a list of
290 new stopped processes. */
291 static void
292 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
293 {
294 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
295
296 new_pid->pid = pid;
297 new_pid->status = status;
298 new_pid->next = *listp;
299 *listp = new_pid;
300 }
301
302 static int
303 in_pid_list_p (struct simple_pid_list *list, int pid)
304 {
305 struct simple_pid_list *p;
306
307 for (p = list; p != NULL; p = p->next)
308 if (p->pid == pid)
309 return 1;
310 return 0;
311 }
312
313 static int
314 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
315 {
316 struct simple_pid_list **p;
317
318 for (p = listp; *p != NULL; p = &(*p)->next)
319 if ((*p)->pid == pid)
320 {
321 struct simple_pid_list *next = (*p)->next;
322
323 *statusp = (*p)->status;
324 xfree (*p);
325 *p = next;
326 return 1;
327 }
328 return 0;
329 }
330
331 /* Initialize ptrace warnings and check for supported ptrace
332 features given PID. */
333
334 static void
335 linux_init_ptrace (pid_t pid)
336 {
337 linux_enable_event_reporting (pid);
338 linux_ptrace_init_warnings ();
339 }
340
341 static void
342 linux_child_post_attach (int pid)
343 {
344 linux_init_ptrace (pid);
345 }
346
347 static void
348 linux_child_post_startup_inferior (ptid_t ptid)
349 {
350 linux_init_ptrace (ptid_get_pid (ptid));
351 }
352
353 /* Return the number of known LWPs in the tgid given by PID. */
354
355 static int
356 num_lwps (int pid)
357 {
358 int count = 0;
359 struct lwp_info *lp;
360
361 for (lp = lwp_list; lp; lp = lp->next)
362 if (ptid_get_pid (lp->ptid) == pid)
363 count++;
364
365 return count;
366 }
367
368 /* Call delete_lwp with prototype compatible for make_cleanup. */
369
370 static void
371 delete_lwp_cleanup (void *lp_voidp)
372 {
373 struct lwp_info *lp = lp_voidp;
374
375 delete_lwp (lp->ptid);
376 }
377
378 static int
379 linux_child_follow_fork (struct target_ops *ops, int follow_child,
380 int detach_fork)
381 {
382 int has_vforked;
383 int parent_pid, child_pid;
384
385 has_vforked = (inferior_thread ()->pending_follow.kind
386 == TARGET_WAITKIND_VFORKED);
387 parent_pid = ptid_get_lwp (inferior_ptid);
388 if (parent_pid == 0)
389 parent_pid = ptid_get_pid (inferior_ptid);
390 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
391
392 if (has_vforked
393 && !non_stop /* Non-stop always resumes both branches. */
394 && (!target_is_async_p () || sync_execution)
395 && !(follow_child || detach_fork || sched_multi))
396 {
397 /* The parent stays blocked inside the vfork syscall until the
398 child execs or exits. If we don't let the child run, then
399 the parent stays blocked. If we're telling the parent to run
400 in the foreground, the user will not be able to ctrl-c to get
401 back the terminal, effectively hanging the debug session. */
402 fprintf_filtered (gdb_stderr, _("\
403 Can not resume the parent process over vfork in the foreground while\n\
404 holding the child stopped. Try \"set detach-on-fork\" or \
405 \"set schedule-multiple\".\n"));
406 /* FIXME output string > 80 columns. */
407 return 1;
408 }
409
410 if (! follow_child)
411 {
412 struct lwp_info *child_lp = NULL;
413
414 /* We're already attached to the parent, by default. */
415
416 /* Detach new forked process? */
417 if (detach_fork)
418 {
419 struct cleanup *old_chain;
420
421 /* Before detaching from the child, remove all breakpoints
422 from it. If we forked, then this has already been taken
423 care of by infrun.c. If we vforked however, any
424 breakpoint inserted in the parent is visible in the
425 child, even those added while stopped in a vfork
426 catchpoint. This will remove the breakpoints from the
427 parent also, but they'll be reinserted below. */
428 if (has_vforked)
429 {
430 /* keep breakpoints list in sync. */
431 remove_breakpoints_pid (GET_PID (inferior_ptid));
432 }
433
434 if (info_verbose || debug_linux_nat)
435 {
436 target_terminal_ours ();
437 fprintf_filtered (gdb_stdlog,
438 "Detaching after fork from "
439 "child process %d.\n",
440 child_pid);
441 }
442
443 old_chain = save_inferior_ptid ();
444 inferior_ptid = ptid_build (child_pid, child_pid, 0);
445
446 child_lp = add_lwp (inferior_ptid);
447 child_lp->stopped = 1;
448 child_lp->last_resume_kind = resume_stop;
449 make_cleanup (delete_lwp_cleanup, child_lp);
450
451 if (linux_nat_prepare_to_resume != NULL)
452 linux_nat_prepare_to_resume (child_lp);
453 ptrace (PTRACE_DETACH, child_pid, 0, 0);
454
455 do_cleanups (old_chain);
456 }
457 else
458 {
459 struct inferior *parent_inf, *child_inf;
460 struct cleanup *old_chain;
461
462 /* Add process to GDB's tables. */
463 child_inf = add_inferior (child_pid);
464
465 parent_inf = current_inferior ();
466 child_inf->attach_flag = parent_inf->attach_flag;
467 copy_terminal_info (child_inf, parent_inf);
468 child_inf->gdbarch = parent_inf->gdbarch;
469 copy_inferior_target_desc_info (child_inf, parent_inf);
470
471 old_chain = save_inferior_ptid ();
472 save_current_program_space ();
473
474 inferior_ptid = ptid_build (child_pid, child_pid, 0);
475 add_thread (inferior_ptid);
476 child_lp = add_lwp (inferior_ptid);
477 child_lp->stopped = 1;
478 child_lp->last_resume_kind = resume_stop;
479 child_inf->symfile_flags = SYMFILE_NO_READ;
480
481 /* If this is a vfork child, then the address-space is
482 shared with the parent. */
483 if (has_vforked)
484 {
485 child_inf->pspace = parent_inf->pspace;
486 child_inf->aspace = parent_inf->aspace;
487
488 /* The parent will be frozen until the child is done
489 with the shared region. Keep track of the
490 parent. */
491 child_inf->vfork_parent = parent_inf;
492 child_inf->pending_detach = 0;
493 parent_inf->vfork_child = child_inf;
494 parent_inf->pending_detach = 0;
495 }
496 else
497 {
498 child_inf->aspace = new_address_space ();
499 child_inf->pspace = add_program_space (child_inf->aspace);
500 child_inf->removable = 1;
501 set_current_program_space (child_inf->pspace);
502 clone_program_space (child_inf->pspace, parent_inf->pspace);
503
504 /* Let the shared library layer (solib-svr4) learn about
505 this new process, relocate the cloned exec, pull in
506 shared libraries, and install the solib event
507 breakpoint. If a "cloned-VM" event was propagated
508 better throughout the core, this wouldn't be
509 required. */
510 solib_create_inferior_hook (0);
511 }
512
513 /* Let the thread_db layer learn about this new process. */
514 check_for_thread_db ();
515
516 do_cleanups (old_chain);
517 }
518
519 if (has_vforked)
520 {
521 struct lwp_info *parent_lp;
522 struct inferior *parent_inf;
523
524 parent_inf = current_inferior ();
525
526 /* If we detached from the child, then we have to be careful
527 to not insert breakpoints in the parent until the child
528 is done with the shared memory region. However, if we're
529 staying attached to the child, then we can and should
530 insert breakpoints, so that we can debug it. A
531 subsequent child exec or exit is enough to know when does
532 the child stops using the parent's address space. */
533 parent_inf->waiting_for_vfork_done = detach_fork;
534 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
535
536 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
537 gdb_assert (linux_supports_tracefork () >= 0);
538
539 if (linux_supports_tracevforkdone ())
540 {
541 if (debug_linux_nat)
542 fprintf_unfiltered (gdb_stdlog,
543 "LCFF: waiting for VFORK_DONE on %d\n",
544 parent_pid);
545 parent_lp->stopped = 1;
546
547 /* We'll handle the VFORK_DONE event like any other
548 event, in target_wait. */
549 }
550 else
551 {
552 /* We can't insert breakpoints until the child has
553 finished with the shared memory region. We need to
554 wait until that happens. Ideal would be to just
555 call:
556 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
557 - waitpid (parent_pid, &status, __WALL);
558 However, most architectures can't handle a syscall
559 being traced on the way out if it wasn't traced on
560 the way in.
561
562 We might also think to loop, continuing the child
563 until it exits or gets a SIGTRAP. One problem is
564 that the child might call ptrace with PTRACE_TRACEME.
565
566 There's no simple and reliable way to figure out when
567 the vforked child will be done with its copy of the
568 shared memory. We could step it out of the syscall,
569 two instructions, let it go, and then single-step the
570 parent once. When we have hardware single-step, this
571 would work; with software single-step it could still
572 be made to work but we'd have to be able to insert
573 single-step breakpoints in the child, and we'd have
574 to insert -just- the single-step breakpoint in the
575 parent. Very awkward.
576
577 In the end, the best we can do is to make sure it
578 runs for a little while. Hopefully it will be out of
579 range of any breakpoints we reinsert. Usually this
580 is only the single-step breakpoint at vfork's return
581 point. */
582
583 if (debug_linux_nat)
584 fprintf_unfiltered (gdb_stdlog,
585 "LCFF: no VFORK_DONE "
586 "support, sleeping a bit\n");
587
588 usleep (10000);
589
590 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
591 and leave it pending. The next linux_nat_resume call
592 will notice a pending event, and bypasses actually
593 resuming the inferior. */
594 parent_lp->status = 0;
595 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
596 parent_lp->stopped = 1;
597
598 /* If we're in async mode, need to tell the event loop
599 there's something here to process. */
600 if (target_can_async_p ())
601 async_file_mark ();
602 }
603 }
604 }
605 else
606 {
607 struct inferior *parent_inf, *child_inf;
608 struct lwp_info *child_lp;
609 struct program_space *parent_pspace;
610
611 if (info_verbose || debug_linux_nat)
612 {
613 target_terminal_ours ();
614 if (has_vforked)
615 fprintf_filtered (gdb_stdlog,
616 _("Attaching after process %d "
617 "vfork to child process %d.\n"),
618 parent_pid, child_pid);
619 else
620 fprintf_filtered (gdb_stdlog,
621 _("Attaching after process %d "
622 "fork to child process %d.\n"),
623 parent_pid, child_pid);
624 }
625
626 /* Add the new inferior first, so that the target_detach below
627 doesn't unpush the target. */
628
629 child_inf = add_inferior (child_pid);
630
631 parent_inf = current_inferior ();
632 child_inf->attach_flag = parent_inf->attach_flag;
633 copy_terminal_info (child_inf, parent_inf);
634 child_inf->gdbarch = parent_inf->gdbarch;
635 copy_inferior_target_desc_info (child_inf, parent_inf);
636
637 parent_pspace = parent_inf->pspace;
638
639 /* If we're vforking, we want to hold on to the parent until the
640 child exits or execs. At child exec or exit time we can
641 remove the old breakpoints from the parent and detach or
642 resume debugging it. Otherwise, detach the parent now; we'll
643 want to reuse it's program/address spaces, but we can't set
644 them to the child before removing breakpoints from the
645 parent, otherwise, the breakpoints module could decide to
646 remove breakpoints from the wrong process (since they'd be
647 assigned to the same address space). */
648
649 if (has_vforked)
650 {
651 gdb_assert (child_inf->vfork_parent == NULL);
652 gdb_assert (parent_inf->vfork_child == NULL);
653 child_inf->vfork_parent = parent_inf;
654 child_inf->pending_detach = 0;
655 parent_inf->vfork_child = child_inf;
656 parent_inf->pending_detach = detach_fork;
657 parent_inf->waiting_for_vfork_done = 0;
658 }
659 else if (detach_fork)
660 target_detach (NULL, 0);
661
662 /* Note that the detach above makes PARENT_INF dangling. */
663
664 /* Add the child thread to the appropriate lists, and switch to
665 this new thread, before cloning the program space, and
666 informing the solib layer about this new process. */
667
668 inferior_ptid = ptid_build (child_pid, child_pid, 0);
669 add_thread (inferior_ptid);
670 child_lp = add_lwp (inferior_ptid);
671 child_lp->stopped = 1;
672 child_lp->last_resume_kind = resume_stop;
673
674 /* If this is a vfork child, then the address-space is shared
675 with the parent. If we detached from the parent, then we can
676 reuse the parent's program/address spaces. */
677 if (has_vforked || detach_fork)
678 {
679 child_inf->pspace = parent_pspace;
680 child_inf->aspace = child_inf->pspace->aspace;
681 }
682 else
683 {
684 child_inf->aspace = new_address_space ();
685 child_inf->pspace = add_program_space (child_inf->aspace);
686 child_inf->removable = 1;
687 child_inf->symfile_flags = SYMFILE_NO_READ;
688 set_current_program_space (child_inf->pspace);
689 clone_program_space (child_inf->pspace, parent_pspace);
690
691 /* Let the shared library layer (solib-svr4) learn about
692 this new process, relocate the cloned exec, pull in
693 shared libraries, and install the solib event breakpoint.
694 If a "cloned-VM" event was propagated better throughout
695 the core, this wouldn't be required. */
696 solib_create_inferior_hook (0);
697 }
698
699 /* Let the thread_db layer learn about this new process. */
700 check_for_thread_db ();
701 }
702
703 return 0;
704 }
705
706 \f
707 static int
708 linux_child_insert_fork_catchpoint (int pid)
709 {
710 return !linux_supports_tracefork ();
711 }
712
713 static int
714 linux_child_remove_fork_catchpoint (int pid)
715 {
716 return 0;
717 }
718
719 static int
720 linux_child_insert_vfork_catchpoint (int pid)
721 {
722 return !linux_supports_tracefork ();
723 }
724
725 static int
726 linux_child_remove_vfork_catchpoint (int pid)
727 {
728 return 0;
729 }
730
731 static int
732 linux_child_insert_exec_catchpoint (int pid)
733 {
734 return !linux_supports_tracefork ();
735 }
736
737 static int
738 linux_child_remove_exec_catchpoint (int pid)
739 {
740 return 0;
741 }
742
743 static int
744 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
745 int table_size, int *table)
746 {
747 if (!linux_supports_tracesysgood ())
748 return 1;
749
750 /* On GNU/Linux, we ignore the arguments. It means that we only
751 enable the syscall catchpoints, but do not disable them.
752
753 Also, we do not use the `table' information because we do not
754 filter system calls here. We let GDB do the logic for us. */
755 return 0;
756 }
757
758 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
759 are processes sharing the same VM space. A multi-threaded process
760 is basically a group of such processes. However, such a grouping
761 is almost entirely a user-space issue; the kernel doesn't enforce
762 such a grouping at all (this might change in the future). In
763 general, we'll rely on the threads library (i.e. the GNU/Linux
764 Threads library) to provide such a grouping.
765
766 It is perfectly well possible to write a multi-threaded application
767 without the assistance of a threads library, by using the clone
768 system call directly. This module should be able to give some
769 rudimentary support for debugging such applications if developers
770 specify the CLONE_PTRACE flag in the clone system call, and are
771 using the Linux kernel 2.4 or above.
772
773 Note that there are some peculiarities in GNU/Linux that affect
774 this code:
775
776 - In general one should specify the __WCLONE flag to waitpid in
777 order to make it report events for any of the cloned processes
778 (and leave it out for the initial process). However, if a cloned
779 process has exited the exit status is only reported if the
780 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
781 we cannot use it since GDB must work on older systems too.
782
783 - When a traced, cloned process exits and is waited for by the
784 debugger, the kernel reassigns it to the original parent and
785 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
786 library doesn't notice this, which leads to the "zombie problem":
787 When debugged a multi-threaded process that spawns a lot of
788 threads will run out of processes, even if the threads exit,
789 because the "zombies" stay around. */
790
791 /* List of known LWPs. */
792 struct lwp_info *lwp_list;
793 \f
794
795 /* Original signal mask. */
796 static sigset_t normal_mask;
797
798 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
799 _initialize_linux_nat. */
800 static sigset_t suspend_mask;
801
802 /* Signals to block to make that sigsuspend work. */
803 static sigset_t blocked_mask;
804
805 /* SIGCHLD action. */
806 struct sigaction sigchld_action;
807
808 /* Block child signals (SIGCHLD and linux threads signals), and store
809 the previous mask in PREV_MASK. */
810
811 static void
812 block_child_signals (sigset_t *prev_mask)
813 {
814 /* Make sure SIGCHLD is blocked. */
815 if (!sigismember (&blocked_mask, SIGCHLD))
816 sigaddset (&blocked_mask, SIGCHLD);
817
818 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
819 }
820
821 /* Restore child signals mask, previously returned by
822 block_child_signals. */
823
824 static void
825 restore_child_signals_mask (sigset_t *prev_mask)
826 {
827 sigprocmask (SIG_SETMASK, prev_mask, NULL);
828 }
829
830 /* Mask of signals to pass directly to the inferior. */
831 static sigset_t pass_mask;
832
833 /* Update signals to pass to the inferior. */
834 static void
835 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
836 {
837 int signo;
838
839 sigemptyset (&pass_mask);
840
841 for (signo = 1; signo < NSIG; signo++)
842 {
843 int target_signo = gdb_signal_from_host (signo);
844 if (target_signo < numsigs && pass_signals[target_signo])
845 sigaddset (&pass_mask, signo);
846 }
847 }
848
849 \f
850
851 /* Prototypes for local functions. */
852 static int stop_wait_callback (struct lwp_info *lp, void *data);
853 static int linux_thread_alive (ptid_t ptid);
854 static char *linux_child_pid_to_exec_file (int pid);
855
856 \f
857 /* Convert wait status STATUS to a string. Used for printing debug
858 messages only. */
859
860 static char *
861 status_to_str (int status)
862 {
863 static char buf[64];
864
865 if (WIFSTOPPED (status))
866 {
867 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
868 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
869 strsignal (SIGTRAP));
870 else
871 snprintf (buf, sizeof (buf), "%s (stopped)",
872 strsignal (WSTOPSIG (status)));
873 }
874 else if (WIFSIGNALED (status))
875 snprintf (buf, sizeof (buf), "%s (terminated)",
876 strsignal (WTERMSIG (status)));
877 else
878 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
879
880 return buf;
881 }
882
883 /* Destroy and free LP. */
884
885 static void
886 lwp_free (struct lwp_info *lp)
887 {
888 xfree (lp->arch_private);
889 xfree (lp);
890 }
891
892 /* Remove all LWPs belong to PID from the lwp list. */
893
894 static void
895 purge_lwp_list (int pid)
896 {
897 struct lwp_info *lp, *lpprev, *lpnext;
898
899 lpprev = NULL;
900
901 for (lp = lwp_list; lp; lp = lpnext)
902 {
903 lpnext = lp->next;
904
905 if (ptid_get_pid (lp->ptid) == pid)
906 {
907 if (lp == lwp_list)
908 lwp_list = lp->next;
909 else
910 lpprev->next = lp->next;
911
912 lwp_free (lp);
913 }
914 else
915 lpprev = lp;
916 }
917 }
918
919 /* Add the LWP specified by PTID to the list. PTID is the first LWP
920 in the process. Return a pointer to the structure describing the
921 new LWP.
922
923 This differs from add_lwp in that we don't let the arch specific
924 bits know about this new thread. Current clients of this callback
925 take the opportunity to install watchpoints in the new thread, and
926 we shouldn't do that for the first thread. If we're spawning a
927 child ("run"), the thread executes the shell wrapper first, and we
928 shouldn't touch it until it execs the program we want to debug.
929 For "attach", it'd be okay to call the callback, but it's not
930 necessary, because watchpoints can't yet have been inserted into
931 the inferior. */
932
933 static struct lwp_info *
934 add_initial_lwp (ptid_t ptid)
935 {
936 struct lwp_info *lp;
937
938 gdb_assert (is_lwp (ptid));
939
940 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
941
942 memset (lp, 0, sizeof (struct lwp_info));
943
944 lp->last_resume_kind = resume_continue;
945 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
946
947 lp->ptid = ptid;
948 lp->core = -1;
949
950 lp->next = lwp_list;
951 lwp_list = lp;
952
953 return lp;
954 }
955
956 /* Add the LWP specified by PID to the list. Return a pointer to the
957 structure describing the new LWP. The LWP should already be
958 stopped. */
959
960 static struct lwp_info *
961 add_lwp (ptid_t ptid)
962 {
963 struct lwp_info *lp;
964
965 lp = add_initial_lwp (ptid);
966
967 /* Let the arch specific bits know about this new thread. Current
968 clients of this callback take the opportunity to install
969 watchpoints in the new thread. We don't do this for the first
970 thread though. See add_initial_lwp. */
971 if (linux_nat_new_thread != NULL)
972 linux_nat_new_thread (lp);
973
974 return lp;
975 }
976
977 /* Remove the LWP specified by PID from the list. */
978
979 static void
980 delete_lwp (ptid_t ptid)
981 {
982 struct lwp_info *lp, *lpprev;
983
984 lpprev = NULL;
985
986 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
987 if (ptid_equal (lp->ptid, ptid))
988 break;
989
990 if (!lp)
991 return;
992
993 if (lpprev)
994 lpprev->next = lp->next;
995 else
996 lwp_list = lp->next;
997
998 lwp_free (lp);
999 }
1000
1001 /* Return a pointer to the structure describing the LWP corresponding
1002 to PID. If no corresponding LWP could be found, return NULL. */
1003
1004 static struct lwp_info *
1005 find_lwp_pid (ptid_t ptid)
1006 {
1007 struct lwp_info *lp;
1008 int lwp;
1009
1010 if (is_lwp (ptid))
1011 lwp = GET_LWP (ptid);
1012 else
1013 lwp = GET_PID (ptid);
1014
1015 for (lp = lwp_list; lp; lp = lp->next)
1016 if (lwp == GET_LWP (lp->ptid))
1017 return lp;
1018
1019 return NULL;
1020 }
1021
1022 /* Call CALLBACK with its second argument set to DATA for every LWP in
1023 the list. If CALLBACK returns 1 for a particular LWP, return a
1024 pointer to the structure describing that LWP immediately.
1025 Otherwise return NULL. */
1026
1027 struct lwp_info *
1028 iterate_over_lwps (ptid_t filter,
1029 int (*callback) (struct lwp_info *, void *),
1030 void *data)
1031 {
1032 struct lwp_info *lp, *lpnext;
1033
1034 for (lp = lwp_list; lp; lp = lpnext)
1035 {
1036 lpnext = lp->next;
1037
1038 if (ptid_match (lp->ptid, filter))
1039 {
1040 if ((*callback) (lp, data))
1041 return lp;
1042 }
1043 }
1044
1045 return NULL;
1046 }
1047
1048 /* Update our internal state when changing from one checkpoint to
1049 another indicated by NEW_PTID. We can only switch single-threaded
1050 applications, so we only create one new LWP, and the previous list
1051 is discarded. */
1052
1053 void
1054 linux_nat_switch_fork (ptid_t new_ptid)
1055 {
1056 struct lwp_info *lp;
1057
1058 purge_lwp_list (GET_PID (inferior_ptid));
1059
1060 lp = add_lwp (new_ptid);
1061 lp->stopped = 1;
1062
1063 /* This changes the thread's ptid while preserving the gdb thread
1064 num. Also changes the inferior pid, while preserving the
1065 inferior num. */
1066 thread_change_ptid (inferior_ptid, new_ptid);
1067
1068 /* We've just told GDB core that the thread changed target id, but,
1069 in fact, it really is a different thread, with different register
1070 contents. */
1071 registers_changed ();
1072 }
1073
1074 /* Handle the exit of a single thread LP. */
1075
1076 static void
1077 exit_lwp (struct lwp_info *lp)
1078 {
1079 struct thread_info *th = find_thread_ptid (lp->ptid);
1080
1081 if (th)
1082 {
1083 if (print_thread_events)
1084 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1085
1086 delete_thread (lp->ptid);
1087 }
1088
1089 delete_lwp (lp->ptid);
1090 }
1091
1092 /* Wait for the LWP specified by LP, which we have just attached to.
1093 Returns a wait status for that LWP, to cache. */
1094
1095 static int
1096 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1097 int *signalled)
1098 {
1099 pid_t new_pid, pid = GET_LWP (ptid);
1100 int status;
1101
1102 if (linux_proc_pid_is_stopped (pid))
1103 {
1104 if (debug_linux_nat)
1105 fprintf_unfiltered (gdb_stdlog,
1106 "LNPAW: Attaching to a stopped process\n");
1107
1108 /* The process is definitely stopped. It is in a job control
1109 stop, unless the kernel predates the TASK_STOPPED /
1110 TASK_TRACED distinction, in which case it might be in a
1111 ptrace stop. Make sure it is in a ptrace stop; from there we
1112 can kill it, signal it, et cetera.
1113
1114 First make sure there is a pending SIGSTOP. Since we are
1115 already attached, the process can not transition from stopped
1116 to running without a PTRACE_CONT; so we know this signal will
1117 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1118 probably already in the queue (unless this kernel is old
1119 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1120 is not an RT signal, it can only be queued once. */
1121 kill_lwp (pid, SIGSTOP);
1122
1123 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1124 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1125 ptrace (PTRACE_CONT, pid, 0, 0);
1126 }
1127
1128 /* Make sure the initial process is stopped. The user-level threads
1129 layer might want to poke around in the inferior, and that won't
1130 work if things haven't stabilized yet. */
1131 new_pid = my_waitpid (pid, &status, 0);
1132 if (new_pid == -1 && errno == ECHILD)
1133 {
1134 if (first)
1135 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1136
1137 /* Try again with __WCLONE to check cloned processes. */
1138 new_pid = my_waitpid (pid, &status, __WCLONE);
1139 *cloned = 1;
1140 }
1141
1142 gdb_assert (pid == new_pid);
1143
1144 if (!WIFSTOPPED (status))
1145 {
1146 /* The pid we tried to attach has apparently just exited. */
1147 if (debug_linux_nat)
1148 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1149 pid, status_to_str (status));
1150 return status;
1151 }
1152
1153 if (WSTOPSIG (status) != SIGSTOP)
1154 {
1155 *signalled = 1;
1156 if (debug_linux_nat)
1157 fprintf_unfiltered (gdb_stdlog,
1158 "LNPAW: Received %s after attaching\n",
1159 status_to_str (status));
1160 }
1161
1162 return status;
1163 }
1164
1165 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1166 the new LWP could not be attached, or 1 if we're already auto
1167 attached to this thread, but haven't processed the
1168 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1169 its existance, without considering it an error. */
1170
1171 int
1172 lin_lwp_attach_lwp (ptid_t ptid)
1173 {
1174 struct lwp_info *lp;
1175 int lwpid;
1176
1177 gdb_assert (is_lwp (ptid));
1178
1179 lp = find_lwp_pid (ptid);
1180 lwpid = GET_LWP (ptid);
1181
1182 /* We assume that we're already attached to any LWP that has an id
1183 equal to the overall process id, and to any LWP that is already
1184 in our list of LWPs. If we're not seeing exit events from threads
1185 and we've had PID wraparound since we last tried to stop all threads,
1186 this assumption might be wrong; fortunately, this is very unlikely
1187 to happen. */
1188 if (lwpid != GET_PID (ptid) && lp == NULL)
1189 {
1190 int status, cloned = 0, signalled = 0;
1191
1192 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1193 {
1194 if (linux_supports_tracefork ())
1195 {
1196 /* If we haven't stopped all threads when we get here,
1197 we may have seen a thread listed in thread_db's list,
1198 but not processed the PTRACE_EVENT_CLONE yet. If
1199 that's the case, ignore this new thread, and let
1200 normal event handling discover it later. */
1201 if (in_pid_list_p (stopped_pids, lwpid))
1202 {
1203 /* We've already seen this thread stop, but we
1204 haven't seen the PTRACE_EVENT_CLONE extended
1205 event yet. */
1206 return 0;
1207 }
1208 else
1209 {
1210 int new_pid;
1211 int status;
1212
1213 /* See if we've got a stop for this new child
1214 pending. If so, we're already attached. */
1215 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1216 if (new_pid == -1 && errno == ECHILD)
1217 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1218 if (new_pid != -1)
1219 {
1220 if (WIFSTOPPED (status))
1221 add_to_pid_list (&stopped_pids, lwpid, status);
1222 return 1;
1223 }
1224 }
1225 }
1226
1227 /* If we fail to attach to the thread, issue a warning,
1228 but continue. One way this can happen is if thread
1229 creation is interrupted; as of Linux kernel 2.6.19, a
1230 bug may place threads in the thread list and then fail
1231 to create them. */
1232 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1233 safe_strerror (errno));
1234 return -1;
1235 }
1236
1237 if (debug_linux_nat)
1238 fprintf_unfiltered (gdb_stdlog,
1239 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1240 target_pid_to_str (ptid));
1241
1242 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1243 if (!WIFSTOPPED (status))
1244 return 1;
1245
1246 lp = add_lwp (ptid);
1247 lp->stopped = 1;
1248 lp->cloned = cloned;
1249 lp->signalled = signalled;
1250 if (WSTOPSIG (status) != SIGSTOP)
1251 {
1252 lp->resumed = 1;
1253 lp->status = status;
1254 }
1255
1256 target_post_attach (GET_LWP (lp->ptid));
1257
1258 if (debug_linux_nat)
1259 {
1260 fprintf_unfiltered (gdb_stdlog,
1261 "LLAL: waitpid %s received %s\n",
1262 target_pid_to_str (ptid),
1263 status_to_str (status));
1264 }
1265 }
1266 else
1267 {
1268 /* We assume that the LWP representing the original process is
1269 already stopped. Mark it as stopped in the data structure
1270 that the GNU/linux ptrace layer uses to keep track of
1271 threads. Note that this won't have already been done since
1272 the main thread will have, we assume, been stopped by an
1273 attach from a different layer. */
1274 if (lp == NULL)
1275 lp = add_lwp (ptid);
1276 lp->stopped = 1;
1277 }
1278
1279 lp->last_resume_kind = resume_stop;
1280 return 0;
1281 }
1282
1283 static void
1284 linux_nat_create_inferior (struct target_ops *ops,
1285 char *exec_file, char *allargs, char **env,
1286 int from_tty)
1287 {
1288 #ifdef HAVE_PERSONALITY
1289 int personality_orig = 0, personality_set = 0;
1290 #endif /* HAVE_PERSONALITY */
1291
1292 /* The fork_child mechanism is synchronous and calls target_wait, so
1293 we have to mask the async mode. */
1294
1295 #ifdef HAVE_PERSONALITY
1296 if (disable_randomization)
1297 {
1298 errno = 0;
1299 personality_orig = personality (0xffffffff);
1300 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1301 {
1302 personality_set = 1;
1303 personality (personality_orig | ADDR_NO_RANDOMIZE);
1304 }
1305 if (errno != 0 || (personality_set
1306 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1307 warning (_("Error disabling address space randomization: %s"),
1308 safe_strerror (errno));
1309 }
1310 #endif /* HAVE_PERSONALITY */
1311
1312 /* Make sure we report all signals during startup. */
1313 linux_nat_pass_signals (0, NULL);
1314
1315 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1316
1317 #ifdef HAVE_PERSONALITY
1318 if (personality_set)
1319 {
1320 errno = 0;
1321 personality (personality_orig);
1322 if (errno != 0)
1323 warning (_("Error restoring address space randomization: %s"),
1324 safe_strerror (errno));
1325 }
1326 #endif /* HAVE_PERSONALITY */
1327 }
1328
1329 static void
1330 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1331 {
1332 struct lwp_info *lp;
1333 int status;
1334 ptid_t ptid;
1335 volatile struct gdb_exception ex;
1336
1337 /* Make sure we report all signals during attach. */
1338 linux_nat_pass_signals (0, NULL);
1339
1340 TRY_CATCH (ex, RETURN_MASK_ERROR)
1341 {
1342 linux_ops->to_attach (ops, args, from_tty);
1343 }
1344 if (ex.reason < 0)
1345 {
1346 pid_t pid = parse_pid_to_attach (args);
1347 struct buffer buffer;
1348 char *message, *buffer_s;
1349
1350 message = xstrdup (ex.message);
1351 make_cleanup (xfree, message);
1352
1353 buffer_init (&buffer);
1354 linux_ptrace_attach_warnings (pid, &buffer);
1355
1356 buffer_grow_str0 (&buffer, "");
1357 buffer_s = buffer_finish (&buffer);
1358 make_cleanup (xfree, buffer_s);
1359
1360 throw_error (ex.error, "%s%s", buffer_s, message);
1361 }
1362
1363 /* The ptrace base target adds the main thread with (pid,0,0)
1364 format. Decorate it with lwp info. */
1365 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1366 thread_change_ptid (inferior_ptid, ptid);
1367
1368 /* Add the initial process as the first LWP to the list. */
1369 lp = add_initial_lwp (ptid);
1370
1371 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1372 &lp->signalled);
1373 if (!WIFSTOPPED (status))
1374 {
1375 if (WIFEXITED (status))
1376 {
1377 int exit_code = WEXITSTATUS (status);
1378
1379 target_terminal_ours ();
1380 target_mourn_inferior ();
1381 if (exit_code == 0)
1382 error (_("Unable to attach: program exited normally."));
1383 else
1384 error (_("Unable to attach: program exited with code %d."),
1385 exit_code);
1386 }
1387 else if (WIFSIGNALED (status))
1388 {
1389 enum gdb_signal signo;
1390
1391 target_terminal_ours ();
1392 target_mourn_inferior ();
1393
1394 signo = gdb_signal_from_host (WTERMSIG (status));
1395 error (_("Unable to attach: program terminated with signal "
1396 "%s, %s."),
1397 gdb_signal_to_name (signo),
1398 gdb_signal_to_string (signo));
1399 }
1400
1401 internal_error (__FILE__, __LINE__,
1402 _("unexpected status %d for PID %ld"),
1403 status, (long) GET_LWP (ptid));
1404 }
1405
1406 lp->stopped = 1;
1407
1408 /* Save the wait status to report later. */
1409 lp->resumed = 1;
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "LNA: waitpid %ld, saving status %s\n",
1413 (long) GET_PID (lp->ptid), status_to_str (status));
1414
1415 lp->status = status;
1416
1417 if (target_can_async_p ())
1418 target_async (inferior_event_handler, 0);
1419 }
1420
1421 /* Get pending status of LP. */
1422 static int
1423 get_pending_status (struct lwp_info *lp, int *status)
1424 {
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426
1427 /* If we paused threads momentarily, we may have stored pending
1428 events in lp->status or lp->waitstatus (see stop_wait_callback),
1429 and GDB core hasn't seen any signal for those threads.
1430 Otherwise, the last signal reported to the core is found in the
1431 thread object's stop_signal.
1432
1433 There's a corner case that isn't handled here at present. Only
1434 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1435 stop_signal make sense as a real signal to pass to the inferior.
1436 Some catchpoint related events, like
1437 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1438 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1439 those traps are debug API (ptrace in our case) related and
1440 induced; the inferior wouldn't see them if it wasn't being
1441 traced. Hence, we should never pass them to the inferior, even
1442 when set to pass state. Since this corner case isn't handled by
1443 infrun.c when proceeding with a signal, for consistency, neither
1444 do we handle it here (or elsewhere in the file we check for
1445 signal pass state). Normally SIGTRAP isn't set to pass state, so
1446 this is really a corner case. */
1447
1448 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1449 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1450 else if (lp->status)
1451 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1452 else if (non_stop && !is_executing (lp->ptid))
1453 {
1454 struct thread_info *tp = find_thread_ptid (lp->ptid);
1455
1456 signo = tp->suspend.stop_signal;
1457 }
1458 else if (!non_stop)
1459 {
1460 struct target_waitstatus last;
1461 ptid_t last_ptid;
1462
1463 get_last_target_status (&last_ptid, &last);
1464
1465 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1466 {
1467 struct thread_info *tp = find_thread_ptid (lp->ptid);
1468
1469 signo = tp->suspend.stop_signal;
1470 }
1471 }
1472
1473 *status = 0;
1474
1475 if (signo == GDB_SIGNAL_0)
1476 {
1477 if (debug_linux_nat)
1478 fprintf_unfiltered (gdb_stdlog,
1479 "GPT: lwp %s has no pending signal\n",
1480 target_pid_to_str (lp->ptid));
1481 }
1482 else if (!signal_pass_state (signo))
1483 {
1484 if (debug_linux_nat)
1485 fprintf_unfiltered (gdb_stdlog,
1486 "GPT: lwp %s had signal %s, "
1487 "but it is in no pass state\n",
1488 target_pid_to_str (lp->ptid),
1489 gdb_signal_to_string (signo));
1490 }
1491 else
1492 {
1493 *status = W_STOPCODE (gdb_signal_to_host (signo));
1494
1495 if (debug_linux_nat)
1496 fprintf_unfiltered (gdb_stdlog,
1497 "GPT: lwp %s has pending signal %s\n",
1498 target_pid_to_str (lp->ptid),
1499 gdb_signal_to_string (signo));
1500 }
1501
1502 return 0;
1503 }
1504
1505 static int
1506 detach_callback (struct lwp_info *lp, void *data)
1507 {
1508 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1509
1510 if (debug_linux_nat && lp->status)
1511 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1512 strsignal (WSTOPSIG (lp->status)),
1513 target_pid_to_str (lp->ptid));
1514
1515 /* If there is a pending SIGSTOP, get rid of it. */
1516 if (lp->signalled)
1517 {
1518 if (debug_linux_nat)
1519 fprintf_unfiltered (gdb_stdlog,
1520 "DC: Sending SIGCONT to %s\n",
1521 target_pid_to_str (lp->ptid));
1522
1523 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1524 lp->signalled = 0;
1525 }
1526
1527 /* We don't actually detach from the LWP that has an id equal to the
1528 overall process id just yet. */
1529 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1530 {
1531 int status = 0;
1532
1533 /* Pass on any pending signal for this LWP. */
1534 get_pending_status (lp, &status);
1535
1536 if (linux_nat_prepare_to_resume != NULL)
1537 linux_nat_prepare_to_resume (lp);
1538 errno = 0;
1539 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1540 WSTOPSIG (status)) < 0)
1541 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1542 safe_strerror (errno));
1543
1544 if (debug_linux_nat)
1545 fprintf_unfiltered (gdb_stdlog,
1546 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1547 target_pid_to_str (lp->ptid),
1548 strsignal (WSTOPSIG (status)));
1549
1550 delete_lwp (lp->ptid);
1551 }
1552
1553 return 0;
1554 }
1555
1556 static void
1557 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1558 {
1559 int pid;
1560 int status;
1561 struct lwp_info *main_lwp;
1562
1563 pid = GET_PID (inferior_ptid);
1564
1565 /* Don't unregister from the event loop, as there may be other
1566 inferiors running. */
1567
1568 /* Stop all threads before detaching. ptrace requires that the
1569 thread is stopped to sucessfully detach. */
1570 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1571 /* ... and wait until all of them have reported back that
1572 they're no longer running. */
1573 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1574
1575 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1576
1577 /* Only the initial process should be left right now. */
1578 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1579
1580 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1581
1582 /* Pass on any pending signal for the last LWP. */
1583 if ((args == NULL || *args == '\0')
1584 && get_pending_status (main_lwp, &status) != -1
1585 && WIFSTOPPED (status))
1586 {
1587 /* Put the signal number in ARGS so that inf_ptrace_detach will
1588 pass it along with PTRACE_DETACH. */
1589 args = alloca (8);
1590 sprintf (args, "%d", (int) WSTOPSIG (status));
1591 if (debug_linux_nat)
1592 fprintf_unfiltered (gdb_stdlog,
1593 "LND: Sending signal %s to %s\n",
1594 args,
1595 target_pid_to_str (main_lwp->ptid));
1596 }
1597
1598 if (linux_nat_prepare_to_resume != NULL)
1599 linux_nat_prepare_to_resume (main_lwp);
1600 delete_lwp (main_lwp->ptid);
1601
1602 if (forks_exist_p ())
1603 {
1604 /* Multi-fork case. The current inferior_ptid is being detached
1605 from, but there are other viable forks to debug. Detach from
1606 the current fork, and context-switch to the first
1607 available. */
1608 linux_fork_detach (args, from_tty);
1609 }
1610 else
1611 linux_ops->to_detach (ops, args, from_tty);
1612 }
1613
1614 /* Resume LP. */
1615
1616 static void
1617 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1618 {
1619 if (lp->stopped)
1620 {
1621 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1622
1623 if (inf->vfork_child != NULL)
1624 {
1625 if (debug_linux_nat)
1626 fprintf_unfiltered (gdb_stdlog,
1627 "RC: Not resuming %s (vfork parent)\n",
1628 target_pid_to_str (lp->ptid));
1629 }
1630 else if (lp->status == 0
1631 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1632 {
1633 if (debug_linux_nat)
1634 fprintf_unfiltered (gdb_stdlog,
1635 "RC: Resuming sibling %s, %s, %s\n",
1636 target_pid_to_str (lp->ptid),
1637 (signo != GDB_SIGNAL_0
1638 ? strsignal (gdb_signal_to_host (signo))
1639 : "0"),
1640 step ? "step" : "resume");
1641
1642 if (linux_nat_prepare_to_resume != NULL)
1643 linux_nat_prepare_to_resume (lp);
1644 linux_ops->to_resume (linux_ops,
1645 pid_to_ptid (GET_LWP (lp->ptid)),
1646 step, signo);
1647 lp->stopped = 0;
1648 lp->step = step;
1649 lp->stopped_by_watchpoint = 0;
1650 }
1651 else
1652 {
1653 if (debug_linux_nat)
1654 fprintf_unfiltered (gdb_stdlog,
1655 "RC: Not resuming sibling %s (has pending)\n",
1656 target_pid_to_str (lp->ptid));
1657 }
1658 }
1659 else
1660 {
1661 if (debug_linux_nat)
1662 fprintf_unfiltered (gdb_stdlog,
1663 "RC: Not resuming sibling %s (not stopped)\n",
1664 target_pid_to_str (lp->ptid));
1665 }
1666 }
1667
1668 /* Resume LWP, with the last stop signal, if it is in pass state. */
1669
1670 static int
1671 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1672 {
1673 enum gdb_signal signo = GDB_SIGNAL_0;
1674
1675 if (lp->stopped)
1676 {
1677 struct thread_info *thread;
1678
1679 thread = find_thread_ptid (lp->ptid);
1680 if (thread != NULL)
1681 {
1682 if (signal_pass_state (thread->suspend.stop_signal))
1683 signo = thread->suspend.stop_signal;
1684 thread->suspend.stop_signal = GDB_SIGNAL_0;
1685 }
1686 }
1687
1688 resume_lwp (lp, 0, signo);
1689 return 0;
1690 }
1691
1692 static int
1693 resume_clear_callback (struct lwp_info *lp, void *data)
1694 {
1695 lp->resumed = 0;
1696 lp->last_resume_kind = resume_stop;
1697 return 0;
1698 }
1699
1700 static int
1701 resume_set_callback (struct lwp_info *lp, void *data)
1702 {
1703 lp->resumed = 1;
1704 lp->last_resume_kind = resume_continue;
1705 return 0;
1706 }
1707
1708 static void
1709 linux_nat_resume (struct target_ops *ops,
1710 ptid_t ptid, int step, enum gdb_signal signo)
1711 {
1712 struct lwp_info *lp;
1713 int resume_many;
1714
1715 if (debug_linux_nat)
1716 fprintf_unfiltered (gdb_stdlog,
1717 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1718 step ? "step" : "resume",
1719 target_pid_to_str (ptid),
1720 (signo != GDB_SIGNAL_0
1721 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1722 target_pid_to_str (inferior_ptid));
1723
1724 /* A specific PTID means `step only this process id'. */
1725 resume_many = (ptid_equal (minus_one_ptid, ptid)
1726 || ptid_is_pid (ptid));
1727
1728 /* Mark the lwps we're resuming as resumed. */
1729 iterate_over_lwps (ptid, resume_set_callback, NULL);
1730
1731 /* See if it's the current inferior that should be handled
1732 specially. */
1733 if (resume_many)
1734 lp = find_lwp_pid (inferior_ptid);
1735 else
1736 lp = find_lwp_pid (ptid);
1737 gdb_assert (lp != NULL);
1738
1739 /* Remember if we're stepping. */
1740 lp->step = step;
1741 lp->last_resume_kind = step ? resume_step : resume_continue;
1742
1743 /* If we have a pending wait status for this thread, there is no
1744 point in resuming the process. But first make sure that
1745 linux_nat_wait won't preemptively handle the event - we
1746 should never take this short-circuit if we are going to
1747 leave LP running, since we have skipped resuming all the
1748 other threads. This bit of code needs to be synchronized
1749 with linux_nat_wait. */
1750
1751 if (lp->status && WIFSTOPPED (lp->status))
1752 {
1753 if (!lp->step
1754 && WSTOPSIG (lp->status)
1755 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1756 {
1757 if (debug_linux_nat)
1758 fprintf_unfiltered (gdb_stdlog,
1759 "LLR: Not short circuiting for ignored "
1760 "status 0x%x\n", lp->status);
1761
1762 /* FIXME: What should we do if we are supposed to continue
1763 this thread with a signal? */
1764 gdb_assert (signo == GDB_SIGNAL_0);
1765 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1766 lp->status = 0;
1767 }
1768 }
1769
1770 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1771 {
1772 /* FIXME: What should we do if we are supposed to continue
1773 this thread with a signal? */
1774 gdb_assert (signo == GDB_SIGNAL_0);
1775
1776 if (debug_linux_nat)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "LLR: Short circuiting for status 0x%x\n",
1779 lp->status);
1780
1781 if (target_can_async_p ())
1782 {
1783 target_async (inferior_event_handler, 0);
1784 /* Tell the event loop we have something to process. */
1785 async_file_mark ();
1786 }
1787 return;
1788 }
1789
1790 /* Mark LWP as not stopped to prevent it from being continued by
1791 linux_nat_resume_callback. */
1792 lp->stopped = 0;
1793
1794 if (resume_many)
1795 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1796
1797 /* Convert to something the lower layer understands. */
1798 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1799
1800 if (linux_nat_prepare_to_resume != NULL)
1801 linux_nat_prepare_to_resume (lp);
1802 linux_ops->to_resume (linux_ops, ptid, step, signo);
1803 lp->stopped_by_watchpoint = 0;
1804
1805 if (debug_linux_nat)
1806 fprintf_unfiltered (gdb_stdlog,
1807 "LLR: %s %s, %s (resume event thread)\n",
1808 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1809 target_pid_to_str (ptid),
1810 (signo != GDB_SIGNAL_0
1811 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1812
1813 if (target_can_async_p ())
1814 target_async (inferior_event_handler, 0);
1815 }
1816
1817 /* Send a signal to an LWP. */
1818
1819 static int
1820 kill_lwp (int lwpid, int signo)
1821 {
1822 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1823 fails, then we are not using nptl threads and we should be using kill. */
1824
1825 #ifdef HAVE_TKILL_SYSCALL
1826 {
1827 static int tkill_failed;
1828
1829 if (!tkill_failed)
1830 {
1831 int ret;
1832
1833 errno = 0;
1834 ret = syscall (__NR_tkill, lwpid, signo);
1835 if (errno != ENOSYS)
1836 return ret;
1837 tkill_failed = 1;
1838 }
1839 }
1840 #endif
1841
1842 return kill (lwpid, signo);
1843 }
1844
1845 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1846 event, check if the core is interested in it: if not, ignore the
1847 event, and keep waiting; otherwise, we need to toggle the LWP's
1848 syscall entry/exit status, since the ptrace event itself doesn't
1849 indicate it, and report the trap to higher layers. */
1850
1851 static int
1852 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1853 {
1854 struct target_waitstatus *ourstatus = &lp->waitstatus;
1855 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1856 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1857
1858 if (stopping)
1859 {
1860 /* If we're stopping threads, there's a SIGSTOP pending, which
1861 makes it so that the LWP reports an immediate syscall return,
1862 followed by the SIGSTOP. Skip seeing that "return" using
1863 PTRACE_CONT directly, and let stop_wait_callback collect the
1864 SIGSTOP. Later when the thread is resumed, a new syscall
1865 entry event. If we didn't do this (and returned 0), we'd
1866 leave a syscall entry pending, and our caller, by using
1867 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1868 itself. Later, when the user re-resumes this LWP, we'd see
1869 another syscall entry event and we'd mistake it for a return.
1870
1871 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1872 (leaving immediately with LWP->signalled set, without issuing
1873 a PTRACE_CONT), it would still be problematic to leave this
1874 syscall enter pending, as later when the thread is resumed,
1875 it would then see the same syscall exit mentioned above,
1876 followed by the delayed SIGSTOP, while the syscall didn't
1877 actually get to execute. It seems it would be even more
1878 confusing to the user. */
1879
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "LHST: ignoring syscall %d "
1883 "for LWP %ld (stopping threads), "
1884 "resuming with PTRACE_CONT for SIGSTOP\n",
1885 syscall_number,
1886 GET_LWP (lp->ptid));
1887
1888 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1889 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1890 return 1;
1891 }
1892
1893 if (catch_syscall_enabled ())
1894 {
1895 /* Always update the entry/return state, even if this particular
1896 syscall isn't interesting to the core now. In async mode,
1897 the user could install a new catchpoint for this syscall
1898 between syscall enter/return, and we'll need to know to
1899 report a syscall return if that happens. */
1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1901 ? TARGET_WAITKIND_SYSCALL_RETURN
1902 : TARGET_WAITKIND_SYSCALL_ENTRY);
1903
1904 if (catching_syscall_number (syscall_number))
1905 {
1906 /* Alright, an event to report. */
1907 ourstatus->kind = lp->syscall_state;
1908 ourstatus->value.syscall_number = syscall_number;
1909
1910 if (debug_linux_nat)
1911 fprintf_unfiltered (gdb_stdlog,
1912 "LHST: stopping for %s of syscall %d"
1913 " for LWP %ld\n",
1914 lp->syscall_state
1915 == TARGET_WAITKIND_SYSCALL_ENTRY
1916 ? "entry" : "return",
1917 syscall_number,
1918 GET_LWP (lp->ptid));
1919 return 0;
1920 }
1921
1922 if (debug_linux_nat)
1923 fprintf_unfiltered (gdb_stdlog,
1924 "LHST: ignoring %s of syscall %d "
1925 "for LWP %ld\n",
1926 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? "entry" : "return",
1928 syscall_number,
1929 GET_LWP (lp->ptid));
1930 }
1931 else
1932 {
1933 /* If we had been syscall tracing, and hence used PT_SYSCALL
1934 before on this LWP, it could happen that the user removes all
1935 syscall catchpoints before we get to process this event.
1936 There are two noteworthy issues here:
1937
1938 - When stopped at a syscall entry event, resuming with
1939 PT_STEP still resumes executing the syscall and reports a
1940 syscall return.
1941
1942 - Only PT_SYSCALL catches syscall enters. If we last
1943 single-stepped this thread, then this event can't be a
1944 syscall enter. If we last single-stepped this thread, this
1945 has to be a syscall exit.
1946
1947 The points above mean that the next resume, be it PT_STEP or
1948 PT_CONTINUE, can not trigger a syscall trace event. */
1949 if (debug_linux_nat)
1950 fprintf_unfiltered (gdb_stdlog,
1951 "LHST: caught syscall event "
1952 "with no syscall catchpoints."
1953 " %d for LWP %ld, ignoring\n",
1954 syscall_number,
1955 GET_LWP (lp->ptid));
1956 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1957 }
1958
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1965
1966 /* Note that gdbarch_get_syscall_number may access registers, hence
1967 fill a regcache. */
1968 registers_changed ();
1969 if (linux_nat_prepare_to_resume != NULL)
1970 linux_nat_prepare_to_resume (lp);
1971 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
1972 lp->step, GDB_SIGNAL_0);
1973 return 1;
1974 }
1975
1976 /* Handle a GNU/Linux extended wait response. If we see a clone
1977 event, we need to add the new LWP to our list (and not report the
1978 trap to higher layers). This function returns non-zero if the
1979 event should be ignored and we should wait again. If STOPPING is
1980 true, the new LWP remains stopped, otherwise it is continued. */
1981
1982 static int
1983 linux_handle_extended_wait (struct lwp_info *lp, int status,
1984 int stopping)
1985 {
1986 int pid = GET_LWP (lp->ptid);
1987 struct target_waitstatus *ourstatus = &lp->waitstatus;
1988 int event = status >> 16;
1989
1990 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1991 || event == PTRACE_EVENT_CLONE)
1992 {
1993 unsigned long new_pid;
1994 int ret;
1995
1996 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1997
1998 /* If we haven't already seen the new PID stop, wait for it now. */
1999 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2000 {
2001 /* The new child has a pending SIGSTOP. We can't affect it until it
2002 hits the SIGSTOP, but we're already attached. */
2003 ret = my_waitpid (new_pid, &status,
2004 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2005 if (ret == -1)
2006 perror_with_name (_("waiting for new child"));
2007 else if (ret != new_pid)
2008 internal_error (__FILE__, __LINE__,
2009 _("wait returned unexpected PID %d"), ret);
2010 else if (!WIFSTOPPED (status))
2011 internal_error (__FILE__, __LINE__,
2012 _("wait returned unexpected status 0x%x"), status);
2013 }
2014
2015 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2016
2017 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2018 {
2019 /* The arch-specific native code may need to know about new
2020 forks even if those end up never mapped to an
2021 inferior. */
2022 if (linux_nat_new_fork != NULL)
2023 linux_nat_new_fork (lp, new_pid);
2024 }
2025
2026 if (event == PTRACE_EVENT_FORK
2027 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2028 {
2029 /* Handle checkpointing by linux-fork.c here as a special
2030 case. We don't want the follow-fork-mode or 'catch fork'
2031 to interfere with this. */
2032
2033 /* This won't actually modify the breakpoint list, but will
2034 physically remove the breakpoints from the child. */
2035 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2036
2037 /* Retain child fork in ptrace (stopped) state. */
2038 if (!find_fork_pid (new_pid))
2039 add_fork (new_pid);
2040
2041 /* Report as spurious, so that infrun doesn't want to follow
2042 this fork. We're actually doing an infcall in
2043 linux-fork.c. */
2044 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2045
2046 /* Report the stop to the core. */
2047 return 0;
2048 }
2049
2050 if (event == PTRACE_EVENT_FORK)
2051 ourstatus->kind = TARGET_WAITKIND_FORKED;
2052 else if (event == PTRACE_EVENT_VFORK)
2053 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2054 else
2055 {
2056 struct lwp_info *new_lp;
2057
2058 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2059
2060 if (debug_linux_nat)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "LHEW: Got clone event "
2063 "from LWP %d, new child is LWP %ld\n",
2064 pid, new_pid);
2065
2066 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2067 new_lp->cloned = 1;
2068 new_lp->stopped = 1;
2069
2070 if (WSTOPSIG (status) != SIGSTOP)
2071 {
2072 /* This can happen if someone starts sending signals to
2073 the new thread before it gets a chance to run, which
2074 have a lower number than SIGSTOP (e.g. SIGUSR1).
2075 This is an unlikely case, and harder to handle for
2076 fork / vfork than for clone, so we do not try - but
2077 we handle it for clone events here. We'll send
2078 the other signal on to the thread below. */
2079
2080 new_lp->signalled = 1;
2081 }
2082 else
2083 {
2084 struct thread_info *tp;
2085
2086 /* When we stop for an event in some other thread, and
2087 pull the thread list just as this thread has cloned,
2088 we'll have seen the new thread in the thread_db list
2089 before handling the CLONE event (glibc's
2090 pthread_create adds the new thread to the thread list
2091 before clone'ing, and has the kernel fill in the
2092 thread's tid on the clone call with
2093 CLONE_PARENT_SETTID). If that happened, and the core
2094 had requested the new thread to stop, we'll have
2095 killed it with SIGSTOP. But since SIGSTOP is not an
2096 RT signal, it can only be queued once. We need to be
2097 careful to not resume the LWP if we wanted it to
2098 stop. In that case, we'll leave the SIGSTOP pending.
2099 It will later be reported as GDB_SIGNAL_0. */
2100 tp = find_thread_ptid (new_lp->ptid);
2101 if (tp != NULL && tp->stop_requested)
2102 new_lp->last_resume_kind = resume_stop;
2103 else
2104 status = 0;
2105 }
2106
2107 if (non_stop)
2108 {
2109 /* Add the new thread to GDB's lists as soon as possible
2110 so that:
2111
2112 1) the frontend doesn't have to wait for a stop to
2113 display them, and,
2114
2115 2) we tag it with the correct running state. */
2116
2117 /* If the thread_db layer is active, let it know about
2118 this new thread, and add it to GDB's list. */
2119 if (!thread_db_attach_lwp (new_lp->ptid))
2120 {
2121 /* We're not using thread_db. Add it to GDB's
2122 list. */
2123 target_post_attach (GET_LWP (new_lp->ptid));
2124 add_thread (new_lp->ptid);
2125 }
2126
2127 if (!stopping)
2128 {
2129 set_running (new_lp->ptid, 1);
2130 set_executing (new_lp->ptid, 1);
2131 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2132 resume_stop. */
2133 new_lp->last_resume_kind = resume_continue;
2134 }
2135 }
2136
2137 if (status != 0)
2138 {
2139 /* We created NEW_LP so it cannot yet contain STATUS. */
2140 gdb_assert (new_lp->status == 0);
2141
2142 /* Save the wait status to report later. */
2143 if (debug_linux_nat)
2144 fprintf_unfiltered (gdb_stdlog,
2145 "LHEW: waitpid of new LWP %ld, "
2146 "saving status %s\n",
2147 (long) GET_LWP (new_lp->ptid),
2148 status_to_str (status));
2149 new_lp->status = status;
2150 }
2151
2152 /* Note the need to use the low target ops to resume, to
2153 handle resuming with PT_SYSCALL if we have syscall
2154 catchpoints. */
2155 if (!stopping)
2156 {
2157 new_lp->resumed = 1;
2158
2159 if (status == 0)
2160 {
2161 gdb_assert (new_lp->last_resume_kind == resume_continue);
2162 if (debug_linux_nat)
2163 fprintf_unfiltered (gdb_stdlog,
2164 "LHEW: resuming new LWP %ld\n",
2165 GET_LWP (new_lp->ptid));
2166 if (linux_nat_prepare_to_resume != NULL)
2167 linux_nat_prepare_to_resume (new_lp);
2168 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2169 0, GDB_SIGNAL_0);
2170 new_lp->stopped = 0;
2171 }
2172 }
2173
2174 if (debug_linux_nat)
2175 fprintf_unfiltered (gdb_stdlog,
2176 "LHEW: resuming parent LWP %d\n", pid);
2177 if (linux_nat_prepare_to_resume != NULL)
2178 linux_nat_prepare_to_resume (lp);
2179 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2180 0, GDB_SIGNAL_0);
2181
2182 return 1;
2183 }
2184
2185 return 0;
2186 }
2187
2188 if (event == PTRACE_EVENT_EXEC)
2189 {
2190 if (debug_linux_nat)
2191 fprintf_unfiltered (gdb_stdlog,
2192 "LHEW: Got exec event from LWP %ld\n",
2193 GET_LWP (lp->ptid));
2194
2195 ourstatus->kind = TARGET_WAITKIND_EXECD;
2196 ourstatus->value.execd_pathname
2197 = xstrdup (linux_child_pid_to_exec_file (pid));
2198
2199 return 0;
2200 }
2201
2202 if (event == PTRACE_EVENT_VFORK_DONE)
2203 {
2204 if (current_inferior ()->waiting_for_vfork_done)
2205 {
2206 if (debug_linux_nat)
2207 fprintf_unfiltered (gdb_stdlog,
2208 "LHEW: Got expected PTRACE_EVENT_"
2209 "VFORK_DONE from LWP %ld: stopping\n",
2210 GET_LWP (lp->ptid));
2211
2212 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2213 return 0;
2214 }
2215
2216 if (debug_linux_nat)
2217 fprintf_unfiltered (gdb_stdlog,
2218 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2219 "from LWP %ld: resuming\n",
2220 GET_LWP (lp->ptid));
2221 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2222 return 1;
2223 }
2224
2225 internal_error (__FILE__, __LINE__,
2226 _("unknown ptrace event %d"), event);
2227 }
2228
2229 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2230 exited. */
2231
2232 static int
2233 wait_lwp (struct lwp_info *lp)
2234 {
2235 pid_t pid;
2236 int status = 0;
2237 int thread_dead = 0;
2238 sigset_t prev_mask;
2239
2240 gdb_assert (!lp->stopped);
2241 gdb_assert (lp->status == 0);
2242
2243 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2244 block_child_signals (&prev_mask);
2245
2246 for (;;)
2247 {
2248 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2249 was right and we should just call sigsuspend. */
2250
2251 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2252 if (pid == -1 && errno == ECHILD)
2253 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2254 if (pid == -1 && errno == ECHILD)
2255 {
2256 /* The thread has previously exited. We need to delete it
2257 now because, for some vendor 2.4 kernels with NPTL
2258 support backported, there won't be an exit event unless
2259 it is the main thread. 2.6 kernels will report an exit
2260 event for each thread that exits, as expected. */
2261 thread_dead = 1;
2262 if (debug_linux_nat)
2263 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2264 target_pid_to_str (lp->ptid));
2265 }
2266 if (pid != 0)
2267 break;
2268
2269 /* Bugs 10970, 12702.
2270 Thread group leader may have exited in which case we'll lock up in
2271 waitpid if there are other threads, even if they are all zombies too.
2272 Basically, we're not supposed to use waitpid this way.
2273 __WCLONE is not applicable for the leader so we can't use that.
2274 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2275 process; it gets ESRCH both for the zombie and for running processes.
2276
2277 As a workaround, check if we're waiting for the thread group leader and
2278 if it's a zombie, and avoid calling waitpid if it is.
2279
2280 This is racy, what if the tgl becomes a zombie right after we check?
2281 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2282 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2283
2284 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2285 && linux_proc_pid_is_zombie (GET_LWP (lp->ptid)))
2286 {
2287 thread_dead = 1;
2288 if (debug_linux_nat)
2289 fprintf_unfiltered (gdb_stdlog,
2290 "WL: Thread group leader %s vanished.\n",
2291 target_pid_to_str (lp->ptid));
2292 break;
2293 }
2294
2295 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2296 get invoked despite our caller had them intentionally blocked by
2297 block_child_signals. This is sensitive only to the loop of
2298 linux_nat_wait_1 and there if we get called my_waitpid gets called
2299 again before it gets to sigsuspend so we can safely let the handlers
2300 get executed here. */
2301
2302 sigsuspend (&suspend_mask);
2303 }
2304
2305 restore_child_signals_mask (&prev_mask);
2306
2307 if (!thread_dead)
2308 {
2309 gdb_assert (pid == GET_LWP (lp->ptid));
2310
2311 if (debug_linux_nat)
2312 {
2313 fprintf_unfiltered (gdb_stdlog,
2314 "WL: waitpid %s received %s\n",
2315 target_pid_to_str (lp->ptid),
2316 status_to_str (status));
2317 }
2318
2319 /* Check if the thread has exited. */
2320 if (WIFEXITED (status) || WIFSIGNALED (status))
2321 {
2322 thread_dead = 1;
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2325 target_pid_to_str (lp->ptid));
2326 }
2327 }
2328
2329 if (thread_dead)
2330 {
2331 exit_lwp (lp);
2332 return 0;
2333 }
2334
2335 gdb_assert (WIFSTOPPED (status));
2336
2337 /* Handle GNU/Linux's syscall SIGTRAPs. */
2338 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2339 {
2340 /* No longer need the sysgood bit. The ptrace event ends up
2341 recorded in lp->waitstatus if we care for it. We can carry
2342 on handling the event like a regular SIGTRAP from here
2343 on. */
2344 status = W_STOPCODE (SIGTRAP);
2345 if (linux_handle_syscall_trap (lp, 1))
2346 return wait_lwp (lp);
2347 }
2348
2349 /* Handle GNU/Linux's extended waitstatus for trace events. */
2350 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2351 {
2352 if (debug_linux_nat)
2353 fprintf_unfiltered (gdb_stdlog,
2354 "WL: Handling extended status 0x%06x\n",
2355 status);
2356 if (linux_handle_extended_wait (lp, status, 1))
2357 return wait_lwp (lp);
2358 }
2359
2360 return status;
2361 }
2362
2363 /* Send a SIGSTOP to LP. */
2364
2365 static int
2366 stop_callback (struct lwp_info *lp, void *data)
2367 {
2368 if (!lp->stopped && !lp->signalled)
2369 {
2370 int ret;
2371
2372 if (debug_linux_nat)
2373 {
2374 fprintf_unfiltered (gdb_stdlog,
2375 "SC: kill %s **<SIGSTOP>**\n",
2376 target_pid_to_str (lp->ptid));
2377 }
2378 errno = 0;
2379 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2380 if (debug_linux_nat)
2381 {
2382 fprintf_unfiltered (gdb_stdlog,
2383 "SC: lwp kill %d %s\n",
2384 ret,
2385 errno ? safe_strerror (errno) : "ERRNO-OK");
2386 }
2387
2388 lp->signalled = 1;
2389 gdb_assert (lp->status == 0);
2390 }
2391
2392 return 0;
2393 }
2394
2395 /* Request a stop on LWP. */
2396
2397 void
2398 linux_stop_lwp (struct lwp_info *lwp)
2399 {
2400 stop_callback (lwp, NULL);
2401 }
2402
2403 /* Return non-zero if LWP PID has a pending SIGINT. */
2404
2405 static int
2406 linux_nat_has_pending_sigint (int pid)
2407 {
2408 sigset_t pending, blocked, ignored;
2409
2410 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2411
2412 if (sigismember (&pending, SIGINT)
2413 && !sigismember (&ignored, SIGINT))
2414 return 1;
2415
2416 return 0;
2417 }
2418
2419 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2420
2421 static int
2422 set_ignore_sigint (struct lwp_info *lp, void *data)
2423 {
2424 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2425 flag to consume the next one. */
2426 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2427 && WSTOPSIG (lp->status) == SIGINT)
2428 lp->status = 0;
2429 else
2430 lp->ignore_sigint = 1;
2431
2432 return 0;
2433 }
2434
2435 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2436 This function is called after we know the LWP has stopped; if the LWP
2437 stopped before the expected SIGINT was delivered, then it will never have
2438 arrived. Also, if the signal was delivered to a shared queue and consumed
2439 by a different thread, it will never be delivered to this LWP. */
2440
2441 static void
2442 maybe_clear_ignore_sigint (struct lwp_info *lp)
2443 {
2444 if (!lp->ignore_sigint)
2445 return;
2446
2447 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2448 {
2449 if (debug_linux_nat)
2450 fprintf_unfiltered (gdb_stdlog,
2451 "MCIS: Clearing bogus flag for %s\n",
2452 target_pid_to_str (lp->ptid));
2453 lp->ignore_sigint = 0;
2454 }
2455 }
2456
2457 /* Fetch the possible triggered data watchpoint info and store it in
2458 LP.
2459
2460 On some archs, like x86, that use debug registers to set
2461 watchpoints, it's possible that the way to know which watched
2462 address trapped, is to check the register that is used to select
2463 which address to watch. Problem is, between setting the watchpoint
2464 and reading back which data address trapped, the user may change
2465 the set of watchpoints, and, as a consequence, GDB changes the
2466 debug registers in the inferior. To avoid reading back a stale
2467 stopped-data-address when that happens, we cache in LP the fact
2468 that a watchpoint trapped, and the corresponding data address, as
2469 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2470 registers meanwhile, we have the cached data we can rely on. */
2471
2472 static void
2473 save_sigtrap (struct lwp_info *lp)
2474 {
2475 struct cleanup *old_chain;
2476
2477 if (linux_ops->to_stopped_by_watchpoint == NULL)
2478 {
2479 lp->stopped_by_watchpoint = 0;
2480 return;
2481 }
2482
2483 old_chain = save_inferior_ptid ();
2484 inferior_ptid = lp->ptid;
2485
2486 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2487
2488 if (lp->stopped_by_watchpoint)
2489 {
2490 if (linux_ops->to_stopped_data_address != NULL)
2491 lp->stopped_data_address_p =
2492 linux_ops->to_stopped_data_address (&current_target,
2493 &lp->stopped_data_address);
2494 else
2495 lp->stopped_data_address_p = 0;
2496 }
2497
2498 do_cleanups (old_chain);
2499 }
2500
2501 /* See save_sigtrap. */
2502
2503 static int
2504 linux_nat_stopped_by_watchpoint (void)
2505 {
2506 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2507
2508 gdb_assert (lp != NULL);
2509
2510 return lp->stopped_by_watchpoint;
2511 }
2512
2513 static int
2514 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2515 {
2516 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2517
2518 gdb_assert (lp != NULL);
2519
2520 *addr_p = lp->stopped_data_address;
2521
2522 return lp->stopped_data_address_p;
2523 }
2524
2525 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2526
2527 static int
2528 sigtrap_is_event (int status)
2529 {
2530 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2531 }
2532
2533 /* SIGTRAP-like events recognizer. */
2534
2535 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2536
2537 /* Check for SIGTRAP-like events in LP. */
2538
2539 static int
2540 linux_nat_lp_status_is_event (struct lwp_info *lp)
2541 {
2542 /* We check for lp->waitstatus in addition to lp->status, because we can
2543 have pending process exits recorded in lp->status
2544 and W_EXITCODE(0,0) == 0. We should probably have an additional
2545 lp->status_p flag. */
2546
2547 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2548 && linux_nat_status_is_event (lp->status));
2549 }
2550
2551 /* Set alternative SIGTRAP-like events recognizer. If
2552 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2553 applied. */
2554
2555 void
2556 linux_nat_set_status_is_event (struct target_ops *t,
2557 int (*status_is_event) (int status))
2558 {
2559 linux_nat_status_is_event = status_is_event;
2560 }
2561
2562 /* Wait until LP is stopped. */
2563
2564 static int
2565 stop_wait_callback (struct lwp_info *lp, void *data)
2566 {
2567 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2568
2569 /* If this is a vfork parent, bail out, it is not going to report
2570 any SIGSTOP until the vfork is done with. */
2571 if (inf->vfork_child != NULL)
2572 return 0;
2573
2574 if (!lp->stopped)
2575 {
2576 int status;
2577
2578 status = wait_lwp (lp);
2579 if (status == 0)
2580 return 0;
2581
2582 if (lp->ignore_sigint && WIFSTOPPED (status)
2583 && WSTOPSIG (status) == SIGINT)
2584 {
2585 lp->ignore_sigint = 0;
2586
2587 errno = 0;
2588 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2589 if (debug_linux_nat)
2590 fprintf_unfiltered (gdb_stdlog,
2591 "PTRACE_CONT %s, 0, 0 (%s) "
2592 "(discarding SIGINT)\n",
2593 target_pid_to_str (lp->ptid),
2594 errno ? safe_strerror (errno) : "OK");
2595
2596 return stop_wait_callback (lp, NULL);
2597 }
2598
2599 maybe_clear_ignore_sigint (lp);
2600
2601 if (WSTOPSIG (status) != SIGSTOP)
2602 {
2603 /* The thread was stopped with a signal other than SIGSTOP. */
2604
2605 save_sigtrap (lp);
2606
2607 if (debug_linux_nat)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "SWC: Pending event %s in %s\n",
2610 status_to_str ((int) status),
2611 target_pid_to_str (lp->ptid));
2612
2613 /* Save the sigtrap event. */
2614 lp->status = status;
2615 gdb_assert (!lp->stopped);
2616 gdb_assert (lp->signalled);
2617 lp->stopped = 1;
2618 }
2619 else
2620 {
2621 /* We caught the SIGSTOP that we intended to catch, so
2622 there's no SIGSTOP pending. */
2623
2624 if (debug_linux_nat)
2625 fprintf_unfiltered (gdb_stdlog,
2626 "SWC: Delayed SIGSTOP caught for %s.\n",
2627 target_pid_to_str (lp->ptid));
2628
2629 lp->stopped = 1;
2630
2631 /* Reset SIGNALLED only after the stop_wait_callback call
2632 above as it does gdb_assert on SIGNALLED. */
2633 lp->signalled = 0;
2634 }
2635 }
2636
2637 return 0;
2638 }
2639
2640 /* Return non-zero if LP has a wait status pending. */
2641
2642 static int
2643 status_callback (struct lwp_info *lp, void *data)
2644 {
2645 /* Only report a pending wait status if we pretend that this has
2646 indeed been resumed. */
2647 if (!lp->resumed)
2648 return 0;
2649
2650 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2651 {
2652 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2653 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2654 0', so a clean process exit can not be stored pending in
2655 lp->status, it is indistinguishable from
2656 no-pending-status. */
2657 return 1;
2658 }
2659
2660 if (lp->status != 0)
2661 return 1;
2662
2663 return 0;
2664 }
2665
2666 /* Return non-zero if LP isn't stopped. */
2667
2668 static int
2669 running_callback (struct lwp_info *lp, void *data)
2670 {
2671 return (!lp->stopped
2672 || ((lp->status != 0
2673 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2674 && lp->resumed));
2675 }
2676
2677 /* Count the LWP's that have had events. */
2678
2679 static int
2680 count_events_callback (struct lwp_info *lp, void *data)
2681 {
2682 int *count = data;
2683
2684 gdb_assert (count != NULL);
2685
2686 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2687 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2688 (*count)++;
2689
2690 return 0;
2691 }
2692
2693 /* Select the LWP (if any) that is currently being single-stepped. */
2694
2695 static int
2696 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2697 {
2698 if (lp->last_resume_kind == resume_step
2699 && lp->status != 0)
2700 return 1;
2701 else
2702 return 0;
2703 }
2704
2705 /* Select the Nth LWP that has had a SIGTRAP event. */
2706
2707 static int
2708 select_event_lwp_callback (struct lwp_info *lp, void *data)
2709 {
2710 int *selector = data;
2711
2712 gdb_assert (selector != NULL);
2713
2714 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2715 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2716 if ((*selector)-- == 0)
2717 return 1;
2718
2719 return 0;
2720 }
2721
2722 static int
2723 cancel_breakpoint (struct lwp_info *lp)
2724 {
2725 /* Arrange for a breakpoint to be hit again later. We don't keep
2726 the SIGTRAP status and don't forward the SIGTRAP signal to the
2727 LWP. We will handle the current event, eventually we will resume
2728 this LWP, and this breakpoint will trap again.
2729
2730 If we do not do this, then we run the risk that the user will
2731 delete or disable the breakpoint, but the LWP will have already
2732 tripped on it. */
2733
2734 struct regcache *regcache = get_thread_regcache (lp->ptid);
2735 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2736 CORE_ADDR pc;
2737
2738 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2739 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2740 {
2741 if (debug_linux_nat)
2742 fprintf_unfiltered (gdb_stdlog,
2743 "CB: Push back breakpoint for %s\n",
2744 target_pid_to_str (lp->ptid));
2745
2746 /* Back up the PC if necessary. */
2747 if (gdbarch_decr_pc_after_break (gdbarch))
2748 regcache_write_pc (regcache, pc);
2749
2750 return 1;
2751 }
2752 return 0;
2753 }
2754
2755 static int
2756 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2757 {
2758 struct lwp_info *event_lp = data;
2759
2760 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2761 if (lp == event_lp)
2762 return 0;
2763
2764 /* If a LWP other than the LWP that we're reporting an event for has
2765 hit a GDB breakpoint (as opposed to some random trap signal),
2766 then just arrange for it to hit it again later. We don't keep
2767 the SIGTRAP status and don't forward the SIGTRAP signal to the
2768 LWP. We will handle the current event, eventually we will resume
2769 all LWPs, and this one will get its breakpoint trap again.
2770
2771 If we do not do this, then we run the risk that the user will
2772 delete or disable the breakpoint, but the LWP will have already
2773 tripped on it. */
2774
2775 if (linux_nat_lp_status_is_event (lp)
2776 && cancel_breakpoint (lp))
2777 /* Throw away the SIGTRAP. */
2778 lp->status = 0;
2779
2780 return 0;
2781 }
2782
2783 /* Select one LWP out of those that have events pending. */
2784
2785 static void
2786 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2787 {
2788 int num_events = 0;
2789 int random_selector;
2790 struct lwp_info *event_lp;
2791
2792 /* Record the wait status for the original LWP. */
2793 (*orig_lp)->status = *status;
2794
2795 /* Give preference to any LWP that is being single-stepped. */
2796 event_lp = iterate_over_lwps (filter,
2797 select_singlestep_lwp_callback, NULL);
2798 if (event_lp != NULL)
2799 {
2800 if (debug_linux_nat)
2801 fprintf_unfiltered (gdb_stdlog,
2802 "SEL: Select single-step %s\n",
2803 target_pid_to_str (event_lp->ptid));
2804 }
2805 else
2806 {
2807 /* No single-stepping LWP. Select one at random, out of those
2808 which have had SIGTRAP events. */
2809
2810 /* First see how many SIGTRAP events we have. */
2811 iterate_over_lwps (filter, count_events_callback, &num_events);
2812
2813 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2814 random_selector = (int)
2815 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2816
2817 if (debug_linux_nat && num_events > 1)
2818 fprintf_unfiltered (gdb_stdlog,
2819 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2820 num_events, random_selector);
2821
2822 event_lp = iterate_over_lwps (filter,
2823 select_event_lwp_callback,
2824 &random_selector);
2825 }
2826
2827 if (event_lp != NULL)
2828 {
2829 /* Switch the event LWP. */
2830 *orig_lp = event_lp;
2831 *status = event_lp->status;
2832 }
2833
2834 /* Flush the wait status for the event LWP. */
2835 (*orig_lp)->status = 0;
2836 }
2837
2838 /* Return non-zero if LP has been resumed. */
2839
2840 static int
2841 resumed_callback (struct lwp_info *lp, void *data)
2842 {
2843 return lp->resumed;
2844 }
2845
2846 /* Stop an active thread, verify it still exists, then resume it. If
2847 the thread ends up with a pending status, then it is not resumed,
2848 and *DATA (really a pointer to int), is set. */
2849
2850 static int
2851 stop_and_resume_callback (struct lwp_info *lp, void *data)
2852 {
2853 int *new_pending_p = data;
2854
2855 if (!lp->stopped)
2856 {
2857 ptid_t ptid = lp->ptid;
2858
2859 stop_callback (lp, NULL);
2860 stop_wait_callback (lp, NULL);
2861
2862 /* Resume if the lwp still exists, and the core wanted it
2863 running. */
2864 lp = find_lwp_pid (ptid);
2865 if (lp != NULL)
2866 {
2867 if (lp->last_resume_kind == resume_stop
2868 && lp->status == 0)
2869 {
2870 /* The core wanted the LWP to stop. Even if it stopped
2871 cleanly (with SIGSTOP), leave the event pending. */
2872 if (debug_linux_nat)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "SARC: core wanted LWP %ld stopped "
2875 "(leaving SIGSTOP pending)\n",
2876 GET_LWP (lp->ptid));
2877 lp->status = W_STOPCODE (SIGSTOP);
2878 }
2879
2880 if (lp->status == 0)
2881 {
2882 if (debug_linux_nat)
2883 fprintf_unfiltered (gdb_stdlog,
2884 "SARC: re-resuming LWP %ld\n",
2885 GET_LWP (lp->ptid));
2886 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2887 }
2888 else
2889 {
2890 if (debug_linux_nat)
2891 fprintf_unfiltered (gdb_stdlog,
2892 "SARC: not re-resuming LWP %ld "
2893 "(has pending)\n",
2894 GET_LWP (lp->ptid));
2895 if (new_pending_p)
2896 *new_pending_p = 1;
2897 }
2898 }
2899 }
2900 return 0;
2901 }
2902
2903 /* Check if we should go on and pass this event to common code.
2904 Return the affected lwp if we are, or NULL otherwise. If we stop
2905 all lwps temporarily, we may end up with new pending events in some
2906 other lwp. In that case set *NEW_PENDING_P to true. */
2907
2908 static struct lwp_info *
2909 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2910 {
2911 struct lwp_info *lp;
2912
2913 *new_pending_p = 0;
2914
2915 lp = find_lwp_pid (pid_to_ptid (lwpid));
2916
2917 /* Check for stop events reported by a process we didn't already
2918 know about - anything not already in our LWP list.
2919
2920 If we're expecting to receive stopped processes after
2921 fork, vfork, and clone events, then we'll just add the
2922 new one to our list and go back to waiting for the event
2923 to be reported - the stopped process might be returned
2924 from waitpid before or after the event is.
2925
2926 But note the case of a non-leader thread exec'ing after the
2927 leader having exited, and gone from our lists. The non-leader
2928 thread changes its tid to the tgid. */
2929
2930 if (WIFSTOPPED (status) && lp == NULL
2931 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2932 {
2933 /* A multi-thread exec after we had seen the leader exiting. */
2934 if (debug_linux_nat)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "LLW: Re-adding thread group leader LWP %d.\n",
2937 lwpid);
2938
2939 lp = add_lwp (BUILD_LWP (lwpid, lwpid));
2940 lp->stopped = 1;
2941 lp->resumed = 1;
2942 add_thread (lp->ptid);
2943 }
2944
2945 if (WIFSTOPPED (status) && !lp)
2946 {
2947 add_to_pid_list (&stopped_pids, lwpid, status);
2948 return NULL;
2949 }
2950
2951 /* Make sure we don't report an event for the exit of an LWP not in
2952 our list, i.e. not part of the current process. This can happen
2953 if we detach from a program we originally forked and then it
2954 exits. */
2955 if (!WIFSTOPPED (status) && !lp)
2956 return NULL;
2957
2958 /* Handle GNU/Linux's syscall SIGTRAPs. */
2959 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2960 {
2961 /* No longer need the sysgood bit. The ptrace event ends up
2962 recorded in lp->waitstatus if we care for it. We can carry
2963 on handling the event like a regular SIGTRAP from here
2964 on. */
2965 status = W_STOPCODE (SIGTRAP);
2966 if (linux_handle_syscall_trap (lp, 0))
2967 return NULL;
2968 }
2969
2970 /* Handle GNU/Linux's extended waitstatus for trace events. */
2971 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2972 {
2973 if (debug_linux_nat)
2974 fprintf_unfiltered (gdb_stdlog,
2975 "LLW: Handling extended status 0x%06x\n",
2976 status);
2977 if (linux_handle_extended_wait (lp, status, 0))
2978 return NULL;
2979 }
2980
2981 if (linux_nat_status_is_event (status))
2982 save_sigtrap (lp);
2983
2984 /* Check if the thread has exited. */
2985 if ((WIFEXITED (status) || WIFSIGNALED (status))
2986 && num_lwps (GET_PID (lp->ptid)) > 1)
2987 {
2988 /* If this is the main thread, we must stop all threads and verify
2989 if they are still alive. This is because in the nptl thread model
2990 on Linux 2.4, there is no signal issued for exiting LWPs
2991 other than the main thread. We only get the main thread exit
2992 signal once all child threads have already exited. If we
2993 stop all the threads and use the stop_wait_callback to check
2994 if they have exited we can determine whether this signal
2995 should be ignored or whether it means the end of the debugged
2996 application, regardless of which threading model is being
2997 used. */
2998 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2999 {
3000 lp->stopped = 1;
3001 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3002 stop_and_resume_callback, new_pending_p);
3003 }
3004
3005 if (debug_linux_nat)
3006 fprintf_unfiltered (gdb_stdlog,
3007 "LLW: %s exited.\n",
3008 target_pid_to_str (lp->ptid));
3009
3010 if (num_lwps (GET_PID (lp->ptid)) > 1)
3011 {
3012 /* If there is at least one more LWP, then the exit signal
3013 was not the end of the debugged application and should be
3014 ignored. */
3015 exit_lwp (lp);
3016 return NULL;
3017 }
3018 }
3019
3020 /* Check if the current LWP has previously exited. In the nptl
3021 thread model, LWPs other than the main thread do not issue
3022 signals when they exit so we must check whenever the thread has
3023 stopped. A similar check is made in stop_wait_callback(). */
3024 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3025 {
3026 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3027
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "LLW: %s exited.\n",
3031 target_pid_to_str (lp->ptid));
3032
3033 exit_lwp (lp);
3034
3035 /* Make sure there is at least one thread running. */
3036 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3037
3038 /* Discard the event. */
3039 return NULL;
3040 }
3041
3042 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3043 an attempt to stop an LWP. */
3044 if (lp->signalled
3045 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3046 {
3047 if (debug_linux_nat)
3048 fprintf_unfiltered (gdb_stdlog,
3049 "LLW: Delayed SIGSTOP caught for %s.\n",
3050 target_pid_to_str (lp->ptid));
3051
3052 lp->signalled = 0;
3053
3054 if (lp->last_resume_kind != resume_stop)
3055 {
3056 /* This is a delayed SIGSTOP. */
3057
3058 registers_changed ();
3059
3060 if (linux_nat_prepare_to_resume != NULL)
3061 linux_nat_prepare_to_resume (lp);
3062 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3063 lp->step, GDB_SIGNAL_0);
3064 if (debug_linux_nat)
3065 fprintf_unfiltered (gdb_stdlog,
3066 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3067 lp->step ?
3068 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3069 target_pid_to_str (lp->ptid));
3070
3071 lp->stopped = 0;
3072 gdb_assert (lp->resumed);
3073
3074 /* Discard the event. */
3075 return NULL;
3076 }
3077 }
3078
3079 /* Make sure we don't report a SIGINT that we have already displayed
3080 for another thread. */
3081 if (lp->ignore_sigint
3082 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3083 {
3084 if (debug_linux_nat)
3085 fprintf_unfiltered (gdb_stdlog,
3086 "LLW: Delayed SIGINT caught for %s.\n",
3087 target_pid_to_str (lp->ptid));
3088
3089 /* This is a delayed SIGINT. */
3090 lp->ignore_sigint = 0;
3091
3092 registers_changed ();
3093 if (linux_nat_prepare_to_resume != NULL)
3094 linux_nat_prepare_to_resume (lp);
3095 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3096 lp->step, GDB_SIGNAL_0);
3097 if (debug_linux_nat)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3100 lp->step ?
3101 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3102 target_pid_to_str (lp->ptid));
3103
3104 lp->stopped = 0;
3105 gdb_assert (lp->resumed);
3106
3107 /* Discard the event. */
3108 return NULL;
3109 }
3110
3111 /* An interesting event. */
3112 gdb_assert (lp);
3113 lp->status = status;
3114 return lp;
3115 }
3116
3117 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3118 their exits until all other threads in the group have exited. */
3119
3120 static void
3121 check_zombie_leaders (void)
3122 {
3123 struct inferior *inf;
3124
3125 ALL_INFERIORS (inf)
3126 {
3127 struct lwp_info *leader_lp;
3128
3129 if (inf->pid == 0)
3130 continue;
3131
3132 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3133 if (leader_lp != NULL
3134 /* Check if there are other threads in the group, as we may
3135 have raced with the inferior simply exiting. */
3136 && num_lwps (inf->pid) > 1
3137 && linux_proc_pid_is_zombie (inf->pid))
3138 {
3139 if (debug_linux_nat)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "CZL: Thread group leader %d zombie "
3142 "(it exited, or another thread execd).\n",
3143 inf->pid);
3144
3145 /* A leader zombie can mean one of two things:
3146
3147 - It exited, and there's an exit status pending
3148 available, or only the leader exited (not the whole
3149 program). In the latter case, we can't waitpid the
3150 leader's exit status until all other threads are gone.
3151
3152 - There are 3 or more threads in the group, and a thread
3153 other than the leader exec'd. On an exec, the Linux
3154 kernel destroys all other threads (except the execing
3155 one) in the thread group, and resets the execing thread's
3156 tid to the tgid. No exit notification is sent for the
3157 execing thread -- from the ptracer's perspective, it
3158 appears as though the execing thread just vanishes.
3159 Until we reap all other threads except the leader and the
3160 execing thread, the leader will be zombie, and the
3161 execing thread will be in `D (disc sleep)'. As soon as
3162 all other threads are reaped, the execing thread changes
3163 it's tid to the tgid, and the previous (zombie) leader
3164 vanishes, giving place to the "new" leader. We could try
3165 distinguishing the exit and exec cases, by waiting once
3166 more, and seeing if something comes out, but it doesn't
3167 sound useful. The previous leader _does_ go away, and
3168 we'll re-add the new one once we see the exec event
3169 (which is just the same as what would happen if the
3170 previous leader did exit voluntarily before some other
3171 thread execs). */
3172
3173 if (debug_linux_nat)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "CZL: Thread group leader %d vanished.\n",
3176 inf->pid);
3177 exit_lwp (leader_lp);
3178 }
3179 }
3180 }
3181
3182 static ptid_t
3183 linux_nat_wait_1 (struct target_ops *ops,
3184 ptid_t ptid, struct target_waitstatus *ourstatus,
3185 int target_options)
3186 {
3187 static sigset_t prev_mask;
3188 enum resume_kind last_resume_kind;
3189 struct lwp_info *lp;
3190 int status;
3191
3192 if (debug_linux_nat)
3193 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3194
3195 /* The first time we get here after starting a new inferior, we may
3196 not have added it to the LWP list yet - this is the earliest
3197 moment at which we know its PID. */
3198 if (ptid_is_pid (inferior_ptid))
3199 {
3200 /* Upgrade the main thread's ptid. */
3201 thread_change_ptid (inferior_ptid,
3202 BUILD_LWP (GET_PID (inferior_ptid),
3203 GET_PID (inferior_ptid)));
3204
3205 lp = add_initial_lwp (inferior_ptid);
3206 lp->resumed = 1;
3207 }
3208
3209 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3210 block_child_signals (&prev_mask);
3211
3212 retry:
3213 lp = NULL;
3214 status = 0;
3215
3216 /* First check if there is a LWP with a wait status pending. */
3217 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3218 {
3219 /* Any LWP in the PTID group that's been resumed will do. */
3220 lp = iterate_over_lwps (ptid, status_callback, NULL);
3221 if (lp)
3222 {
3223 if (debug_linux_nat && lp->status)
3224 fprintf_unfiltered (gdb_stdlog,
3225 "LLW: Using pending wait status %s for %s.\n",
3226 status_to_str (lp->status),
3227 target_pid_to_str (lp->ptid));
3228 }
3229 }
3230 else if (is_lwp (ptid))
3231 {
3232 if (debug_linux_nat)
3233 fprintf_unfiltered (gdb_stdlog,
3234 "LLW: Waiting for specific LWP %s.\n",
3235 target_pid_to_str (ptid));
3236
3237 /* We have a specific LWP to check. */
3238 lp = find_lwp_pid (ptid);
3239 gdb_assert (lp);
3240
3241 if (debug_linux_nat && lp->status)
3242 fprintf_unfiltered (gdb_stdlog,
3243 "LLW: Using pending wait status %s for %s.\n",
3244 status_to_str (lp->status),
3245 target_pid_to_str (lp->ptid));
3246
3247 /* We check for lp->waitstatus in addition to lp->status,
3248 because we can have pending process exits recorded in
3249 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3250 an additional lp->status_p flag. */
3251 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3252 lp = NULL;
3253 }
3254
3255 if (!target_can_async_p ())
3256 {
3257 /* Causes SIGINT to be passed on to the attached process. */
3258 set_sigint_trap ();
3259 }
3260
3261 /* But if we don't find a pending event, we'll have to wait. */
3262
3263 while (lp == NULL)
3264 {
3265 pid_t lwpid;
3266
3267 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3268 quirks:
3269
3270 - If the thread group leader exits while other threads in the
3271 thread group still exist, waitpid(TGID, ...) hangs. That
3272 waitpid won't return an exit status until the other threads
3273 in the group are reapped.
3274
3275 - When a non-leader thread execs, that thread just vanishes
3276 without reporting an exit (so we'd hang if we waited for it
3277 explicitly in that case). The exec event is reported to
3278 the TGID pid. */
3279
3280 errno = 0;
3281 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3282 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3283 lwpid = my_waitpid (-1, &status, WNOHANG);
3284
3285 if (debug_linux_nat)
3286 fprintf_unfiltered (gdb_stdlog,
3287 "LNW: waitpid(-1, ...) returned %d, %s\n",
3288 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3289
3290 if (lwpid > 0)
3291 {
3292 /* If this is true, then we paused LWPs momentarily, and may
3293 now have pending events to handle. */
3294 int new_pending;
3295
3296 if (debug_linux_nat)
3297 {
3298 fprintf_unfiltered (gdb_stdlog,
3299 "LLW: waitpid %ld received %s\n",
3300 (long) lwpid, status_to_str (status));
3301 }
3302
3303 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3304
3305 /* STATUS is now no longer valid, use LP->STATUS instead. */
3306 status = 0;
3307
3308 if (lp && !ptid_match (lp->ptid, ptid))
3309 {
3310 gdb_assert (lp->resumed);
3311
3312 if (debug_linux_nat)
3313 fprintf (stderr,
3314 "LWP %ld got an event %06x, leaving pending.\n",
3315 ptid_get_lwp (lp->ptid), lp->status);
3316
3317 if (WIFSTOPPED (lp->status))
3318 {
3319 if (WSTOPSIG (lp->status) != SIGSTOP)
3320 {
3321 /* Cancel breakpoint hits. The breakpoint may
3322 be removed before we fetch events from this
3323 process to report to the core. It is best
3324 not to assume the moribund breakpoints
3325 heuristic always handles these cases --- it
3326 could be too many events go through to the
3327 core before this one is handled. All-stop
3328 always cancels breakpoint hits in all
3329 threads. */
3330 if (non_stop
3331 && linux_nat_lp_status_is_event (lp)
3332 && cancel_breakpoint (lp))
3333 {
3334 /* Throw away the SIGTRAP. */
3335 lp->status = 0;
3336
3337 if (debug_linux_nat)
3338 fprintf (stderr,
3339 "LLW: LWP %ld hit a breakpoint while"
3340 " waiting for another process;"
3341 " cancelled it\n",
3342 ptid_get_lwp (lp->ptid));
3343 }
3344 lp->stopped = 1;
3345 }
3346 else
3347 {
3348 lp->stopped = 1;
3349 lp->signalled = 0;
3350 }
3351 }
3352 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3353 {
3354 if (debug_linux_nat)
3355 fprintf (stderr,
3356 "Process %ld exited while stopping LWPs\n",
3357 ptid_get_lwp (lp->ptid));
3358
3359 /* This was the last lwp in the process. Since
3360 events are serialized to GDB core, and we can't
3361 report this one right now, but GDB core and the
3362 other target layers will want to be notified
3363 about the exit code/signal, leave the status
3364 pending for the next time we're able to report
3365 it. */
3366
3367 /* Prevent trying to stop this thread again. We'll
3368 never try to resume it because it has a pending
3369 status. */
3370 lp->stopped = 1;
3371
3372 /* Dead LWP's aren't expected to reported a pending
3373 sigstop. */
3374 lp->signalled = 0;
3375
3376 /* Store the pending event in the waitstatus as
3377 well, because W_EXITCODE(0,0) == 0. */
3378 store_waitstatus (&lp->waitstatus, lp->status);
3379 }
3380
3381 /* Keep looking. */
3382 lp = NULL;
3383 }
3384
3385 if (new_pending)
3386 {
3387 /* Some LWP now has a pending event. Go all the way
3388 back to check it. */
3389 goto retry;
3390 }
3391
3392 if (lp)
3393 {
3394 /* We got an event to report to the core. */
3395 break;
3396 }
3397
3398 /* Retry until nothing comes out of waitpid. A single
3399 SIGCHLD can indicate more than one child stopped. */
3400 continue;
3401 }
3402
3403 /* Check for zombie thread group leaders. Those can't be reaped
3404 until all other threads in the thread group are. */
3405 check_zombie_leaders ();
3406
3407 /* If there are no resumed children left, bail. We'd be stuck
3408 forever in the sigsuspend call below otherwise. */
3409 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3410 {
3411 if (debug_linux_nat)
3412 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3413
3414 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3415
3416 if (!target_can_async_p ())
3417 clear_sigint_trap ();
3418
3419 restore_child_signals_mask (&prev_mask);
3420 return minus_one_ptid;
3421 }
3422
3423 /* No interesting event to report to the core. */
3424
3425 if (target_options & TARGET_WNOHANG)
3426 {
3427 if (debug_linux_nat)
3428 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3429
3430 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3431 restore_child_signals_mask (&prev_mask);
3432 return minus_one_ptid;
3433 }
3434
3435 /* We shouldn't end up here unless we want to try again. */
3436 gdb_assert (lp == NULL);
3437
3438 /* Block until we get an event reported with SIGCHLD. */
3439 sigsuspend (&suspend_mask);
3440 }
3441
3442 if (!target_can_async_p ())
3443 clear_sigint_trap ();
3444
3445 gdb_assert (lp);
3446
3447 status = lp->status;
3448 lp->status = 0;
3449
3450 /* Don't report signals that GDB isn't interested in, such as
3451 signals that are neither printed nor stopped upon. Stopping all
3452 threads can be a bit time-consuming so if we want decent
3453 performance with heavily multi-threaded programs, especially when
3454 they're using a high frequency timer, we'd better avoid it if we
3455 can. */
3456
3457 if (WIFSTOPPED (status))
3458 {
3459 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3460
3461 /* When using hardware single-step, we need to report every signal.
3462 Otherwise, signals in pass_mask may be short-circuited. */
3463 if (!lp->step
3464 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3465 {
3466 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3467 here? It is not clear we should. GDB may not expect
3468 other threads to run. On the other hand, not resuming
3469 newly attached threads may cause an unwanted delay in
3470 getting them running. */
3471 registers_changed ();
3472 if (linux_nat_prepare_to_resume != NULL)
3473 linux_nat_prepare_to_resume (lp);
3474 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3475 lp->step, signo);
3476 if (debug_linux_nat)
3477 fprintf_unfiltered (gdb_stdlog,
3478 "LLW: %s %s, %s (preempt 'handle')\n",
3479 lp->step ?
3480 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3481 target_pid_to_str (lp->ptid),
3482 (signo != GDB_SIGNAL_0
3483 ? strsignal (gdb_signal_to_host (signo))
3484 : "0"));
3485 lp->stopped = 0;
3486 goto retry;
3487 }
3488
3489 if (!non_stop)
3490 {
3491 /* Only do the below in all-stop, as we currently use SIGINT
3492 to implement target_stop (see linux_nat_stop) in
3493 non-stop. */
3494 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3495 {
3496 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3497 forwarded to the entire process group, that is, all LWPs
3498 will receive it - unless they're using CLONE_THREAD to
3499 share signals. Since we only want to report it once, we
3500 mark it as ignored for all LWPs except this one. */
3501 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3502 set_ignore_sigint, NULL);
3503 lp->ignore_sigint = 0;
3504 }
3505 else
3506 maybe_clear_ignore_sigint (lp);
3507 }
3508 }
3509
3510 /* This LWP is stopped now. */
3511 lp->stopped = 1;
3512
3513 if (debug_linux_nat)
3514 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3515 status_to_str (status), target_pid_to_str (lp->ptid));
3516
3517 if (!non_stop)
3518 {
3519 /* Now stop all other LWP's ... */
3520 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3521
3522 /* ... and wait until all of them have reported back that
3523 they're no longer running. */
3524 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3525
3526 /* If we're not waiting for a specific LWP, choose an event LWP
3527 from among those that have had events. Giving equal priority
3528 to all LWPs that have had events helps prevent
3529 starvation. */
3530 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3531 select_event_lwp (ptid, &lp, &status);
3532
3533 /* Now that we've selected our final event LWP, cancel any
3534 breakpoints in other LWPs that have hit a GDB breakpoint.
3535 See the comment in cancel_breakpoints_callback to find out
3536 why. */
3537 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3538
3539 /* We'll need this to determine whether to report a SIGSTOP as
3540 TARGET_WAITKIND_0. Need to take a copy because
3541 resume_clear_callback clears it. */
3542 last_resume_kind = lp->last_resume_kind;
3543
3544 /* In all-stop, from the core's perspective, all LWPs are now
3545 stopped until a new resume action is sent over. */
3546 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3547 }
3548 else
3549 {
3550 /* See above. */
3551 last_resume_kind = lp->last_resume_kind;
3552 resume_clear_callback (lp, NULL);
3553 }
3554
3555 if (linux_nat_status_is_event (status))
3556 {
3557 if (debug_linux_nat)
3558 fprintf_unfiltered (gdb_stdlog,
3559 "LLW: trap ptid is %s.\n",
3560 target_pid_to_str (lp->ptid));
3561 }
3562
3563 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3564 {
3565 *ourstatus = lp->waitstatus;
3566 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3567 }
3568 else
3569 store_waitstatus (ourstatus, status);
3570
3571 if (debug_linux_nat)
3572 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3573
3574 restore_child_signals_mask (&prev_mask);
3575
3576 if (last_resume_kind == resume_stop
3577 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3578 && WSTOPSIG (status) == SIGSTOP)
3579 {
3580 /* A thread that has been requested to stop by GDB with
3581 target_stop, and it stopped cleanly, so report as SIG0. The
3582 use of SIGSTOP is an implementation detail. */
3583 ourstatus->value.sig = GDB_SIGNAL_0;
3584 }
3585
3586 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3587 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3588 lp->core = -1;
3589 else
3590 lp->core = linux_common_core_of_thread (lp->ptid);
3591
3592 return lp->ptid;
3593 }
3594
3595 /* Resume LWPs that are currently stopped without any pending status
3596 to report, but are resumed from the core's perspective. */
3597
3598 static int
3599 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3600 {
3601 ptid_t *wait_ptid_p = data;
3602
3603 if (lp->stopped
3604 && lp->resumed
3605 && lp->status == 0
3606 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3607 {
3608 struct regcache *regcache = get_thread_regcache (lp->ptid);
3609 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3610 CORE_ADDR pc = regcache_read_pc (regcache);
3611
3612 gdb_assert (is_executing (lp->ptid));
3613
3614 /* Don't bother if there's a breakpoint at PC that we'd hit
3615 immediately, and we're not waiting for this LWP. */
3616 if (!ptid_match (lp->ptid, *wait_ptid_p))
3617 {
3618 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3619 return 0;
3620 }
3621
3622 if (debug_linux_nat)
3623 fprintf_unfiltered (gdb_stdlog,
3624 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3625 target_pid_to_str (lp->ptid),
3626 paddress (gdbarch, pc),
3627 lp->step);
3628
3629 registers_changed ();
3630 if (linux_nat_prepare_to_resume != NULL)
3631 linux_nat_prepare_to_resume (lp);
3632 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3633 lp->step, GDB_SIGNAL_0);
3634 lp->stopped = 0;
3635 lp->stopped_by_watchpoint = 0;
3636 }
3637
3638 return 0;
3639 }
3640
3641 static ptid_t
3642 linux_nat_wait (struct target_ops *ops,
3643 ptid_t ptid, struct target_waitstatus *ourstatus,
3644 int target_options)
3645 {
3646 ptid_t event_ptid;
3647
3648 if (debug_linux_nat)
3649 {
3650 char *options_string;
3651
3652 options_string = target_options_to_string (target_options);
3653 fprintf_unfiltered (gdb_stdlog,
3654 "linux_nat_wait: [%s], [%s]\n",
3655 target_pid_to_str (ptid),
3656 options_string);
3657 xfree (options_string);
3658 }
3659
3660 /* Flush the async file first. */
3661 if (target_can_async_p ())
3662 async_file_flush ();
3663
3664 /* Resume LWPs that are currently stopped without any pending status
3665 to report, but are resumed from the core's perspective. LWPs get
3666 in this state if we find them stopping at a time we're not
3667 interested in reporting the event (target_wait on a
3668 specific_process, for example, see linux_nat_wait_1), and
3669 meanwhile the event became uninteresting. Don't bother resuming
3670 LWPs we're not going to wait for if they'd stop immediately. */
3671 if (non_stop)
3672 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3673
3674 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3675
3676 /* If we requested any event, and something came out, assume there
3677 may be more. If we requested a specific lwp or process, also
3678 assume there may be more. */
3679 if (target_can_async_p ()
3680 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3681 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3682 || !ptid_equal (ptid, minus_one_ptid)))
3683 async_file_mark ();
3684
3685 /* Get ready for the next event. */
3686 if (target_can_async_p ())
3687 target_async (inferior_event_handler, 0);
3688
3689 return event_ptid;
3690 }
3691
3692 static int
3693 kill_callback (struct lwp_info *lp, void *data)
3694 {
3695 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3696
3697 errno = 0;
3698 kill (GET_LWP (lp->ptid), SIGKILL);
3699 if (debug_linux_nat)
3700 fprintf_unfiltered (gdb_stdlog,
3701 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3702 target_pid_to_str (lp->ptid),
3703 errno ? safe_strerror (errno) : "OK");
3704
3705 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3706
3707 errno = 0;
3708 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3709 if (debug_linux_nat)
3710 fprintf_unfiltered (gdb_stdlog,
3711 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3712 target_pid_to_str (lp->ptid),
3713 errno ? safe_strerror (errno) : "OK");
3714
3715 return 0;
3716 }
3717
3718 static int
3719 kill_wait_callback (struct lwp_info *lp, void *data)
3720 {
3721 pid_t pid;
3722
3723 /* We must make sure that there are no pending events (delayed
3724 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3725 program doesn't interfere with any following debugging session. */
3726
3727 /* For cloned processes we must check both with __WCLONE and
3728 without, since the exit status of a cloned process isn't reported
3729 with __WCLONE. */
3730 if (lp->cloned)
3731 {
3732 do
3733 {
3734 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3735 if (pid != (pid_t) -1)
3736 {
3737 if (debug_linux_nat)
3738 fprintf_unfiltered (gdb_stdlog,
3739 "KWC: wait %s received unknown.\n",
3740 target_pid_to_str (lp->ptid));
3741 /* The Linux kernel sometimes fails to kill a thread
3742 completely after PTRACE_KILL; that goes from the stop
3743 point in do_fork out to the one in
3744 get_signal_to_deliever and waits again. So kill it
3745 again. */
3746 kill_callback (lp, NULL);
3747 }
3748 }
3749 while (pid == GET_LWP (lp->ptid));
3750
3751 gdb_assert (pid == -1 && errno == ECHILD);
3752 }
3753
3754 do
3755 {
3756 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3757 if (pid != (pid_t) -1)
3758 {
3759 if (debug_linux_nat)
3760 fprintf_unfiltered (gdb_stdlog,
3761 "KWC: wait %s received unk.\n",
3762 target_pid_to_str (lp->ptid));
3763 /* See the call to kill_callback above. */
3764 kill_callback (lp, NULL);
3765 }
3766 }
3767 while (pid == GET_LWP (lp->ptid));
3768
3769 gdb_assert (pid == -1 && errno == ECHILD);
3770 return 0;
3771 }
3772
3773 static void
3774 linux_nat_kill (struct target_ops *ops)
3775 {
3776 struct target_waitstatus last;
3777 ptid_t last_ptid;
3778 int status;
3779
3780 /* If we're stopped while forking and we haven't followed yet,
3781 kill the other task. We need to do this first because the
3782 parent will be sleeping if this is a vfork. */
3783
3784 get_last_target_status (&last_ptid, &last);
3785
3786 if (last.kind == TARGET_WAITKIND_FORKED
3787 || last.kind == TARGET_WAITKIND_VFORKED)
3788 {
3789 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3790 wait (&status);
3791
3792 /* Let the arch-specific native code know this process is
3793 gone. */
3794 linux_nat_forget_process (PIDGET (last.value.related_pid));
3795 }
3796
3797 if (forks_exist_p ())
3798 linux_fork_killall ();
3799 else
3800 {
3801 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3802
3803 /* Stop all threads before killing them, since ptrace requires
3804 that the thread is stopped to sucessfully PTRACE_KILL. */
3805 iterate_over_lwps (ptid, stop_callback, NULL);
3806 /* ... and wait until all of them have reported back that
3807 they're no longer running. */
3808 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3809
3810 /* Kill all LWP's ... */
3811 iterate_over_lwps (ptid, kill_callback, NULL);
3812
3813 /* ... and wait until we've flushed all events. */
3814 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3815 }
3816
3817 target_mourn_inferior ();
3818 }
3819
3820 static void
3821 linux_nat_mourn_inferior (struct target_ops *ops)
3822 {
3823 int pid = ptid_get_pid (inferior_ptid);
3824
3825 purge_lwp_list (pid);
3826
3827 if (! forks_exist_p ())
3828 /* Normal case, no other forks available. */
3829 linux_ops->to_mourn_inferior (ops);
3830 else
3831 /* Multi-fork case. The current inferior_ptid has exited, but
3832 there are other viable forks to debug. Delete the exiting
3833 one and context-switch to the first available. */
3834 linux_fork_mourn_inferior ();
3835
3836 /* Let the arch-specific native code know this process is gone. */
3837 linux_nat_forget_process (pid);
3838 }
3839
3840 /* Convert a native/host siginfo object, into/from the siginfo in the
3841 layout of the inferiors' architecture. */
3842
3843 static void
3844 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3845 {
3846 int done = 0;
3847
3848 if (linux_nat_siginfo_fixup != NULL)
3849 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3850
3851 /* If there was no callback, or the callback didn't do anything,
3852 then just do a straight memcpy. */
3853 if (!done)
3854 {
3855 if (direction == 1)
3856 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3857 else
3858 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3859 }
3860 }
3861
3862 static LONGEST
3863 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3864 const char *annex, gdb_byte *readbuf,
3865 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3866 {
3867 int pid;
3868 siginfo_t siginfo;
3869 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3870
3871 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3872 gdb_assert (readbuf || writebuf);
3873
3874 pid = GET_LWP (inferior_ptid);
3875 if (pid == 0)
3876 pid = GET_PID (inferior_ptid);
3877
3878 if (offset > sizeof (siginfo))
3879 return -1;
3880
3881 errno = 0;
3882 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3883 if (errno != 0)
3884 return -1;
3885
3886 /* When GDB is built as a 64-bit application, ptrace writes into
3887 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3888 inferior with a 64-bit GDB should look the same as debugging it
3889 with a 32-bit GDB, we need to convert it. GDB core always sees
3890 the converted layout, so any read/write will have to be done
3891 post-conversion. */
3892 siginfo_fixup (&siginfo, inf_siginfo, 0);
3893
3894 if (offset + len > sizeof (siginfo))
3895 len = sizeof (siginfo) - offset;
3896
3897 if (readbuf != NULL)
3898 memcpy (readbuf, inf_siginfo + offset, len);
3899 else
3900 {
3901 memcpy (inf_siginfo + offset, writebuf, len);
3902
3903 /* Convert back to ptrace layout before flushing it out. */
3904 siginfo_fixup (&siginfo, inf_siginfo, 1);
3905
3906 errno = 0;
3907 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3908 if (errno != 0)
3909 return -1;
3910 }
3911
3912 return len;
3913 }
3914
3915 static LONGEST
3916 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3917 const char *annex, gdb_byte *readbuf,
3918 const gdb_byte *writebuf,
3919 ULONGEST offset, LONGEST len)
3920 {
3921 struct cleanup *old_chain;
3922 LONGEST xfer;
3923
3924 if (object == TARGET_OBJECT_SIGNAL_INFO)
3925 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3926 offset, len);
3927
3928 /* The target is connected but no live inferior is selected. Pass
3929 this request down to a lower stratum (e.g., the executable
3930 file). */
3931 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3932 return 0;
3933
3934 old_chain = save_inferior_ptid ();
3935
3936 if (is_lwp (inferior_ptid))
3937 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3938
3939 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3940 offset, len);
3941
3942 do_cleanups (old_chain);
3943 return xfer;
3944 }
3945
3946 static int
3947 linux_thread_alive (ptid_t ptid)
3948 {
3949 int err, tmp_errno;
3950
3951 gdb_assert (is_lwp (ptid));
3952
3953 /* Send signal 0 instead of anything ptrace, because ptracing a
3954 running thread errors out claiming that the thread doesn't
3955 exist. */
3956 err = kill_lwp (GET_LWP (ptid), 0);
3957 tmp_errno = errno;
3958 if (debug_linux_nat)
3959 fprintf_unfiltered (gdb_stdlog,
3960 "LLTA: KILL(SIG0) %s (%s)\n",
3961 target_pid_to_str (ptid),
3962 err ? safe_strerror (tmp_errno) : "OK");
3963
3964 if (err != 0)
3965 return 0;
3966
3967 return 1;
3968 }
3969
3970 static int
3971 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3972 {
3973 return linux_thread_alive (ptid);
3974 }
3975
3976 static char *
3977 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3978 {
3979 static char buf[64];
3980
3981 if (is_lwp (ptid)
3982 && (GET_PID (ptid) != GET_LWP (ptid)
3983 || num_lwps (GET_PID (ptid)) > 1))
3984 {
3985 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3986 return buf;
3987 }
3988
3989 return normal_pid_to_str (ptid);
3990 }
3991
3992 static char *
3993 linux_nat_thread_name (struct thread_info *thr)
3994 {
3995 int pid = ptid_get_pid (thr->ptid);
3996 long lwp = ptid_get_lwp (thr->ptid);
3997 #define FORMAT "/proc/%d/task/%ld/comm"
3998 char buf[sizeof (FORMAT) + 30];
3999 FILE *comm_file;
4000 char *result = NULL;
4001
4002 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4003 comm_file = gdb_fopen_cloexec (buf, "r");
4004 if (comm_file)
4005 {
4006 /* Not exported by the kernel, so we define it here. */
4007 #define COMM_LEN 16
4008 static char line[COMM_LEN + 1];
4009
4010 if (fgets (line, sizeof (line), comm_file))
4011 {
4012 char *nl = strchr (line, '\n');
4013
4014 if (nl)
4015 *nl = '\0';
4016 if (*line != '\0')
4017 result = line;
4018 }
4019
4020 fclose (comm_file);
4021 }
4022
4023 #undef COMM_LEN
4024 #undef FORMAT
4025
4026 return result;
4027 }
4028
4029 /* Accepts an integer PID; Returns a string representing a file that
4030 can be opened to get the symbols for the child process. */
4031
4032 static char *
4033 linux_child_pid_to_exec_file (int pid)
4034 {
4035 char *name1, *name2;
4036
4037 name1 = xmalloc (PATH_MAX);
4038 name2 = xmalloc (PATH_MAX);
4039 make_cleanup (xfree, name1);
4040 make_cleanup (xfree, name2);
4041 memset (name2, 0, PATH_MAX);
4042
4043 sprintf (name1, "/proc/%d/exe", pid);
4044 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4045 return name2;
4046 else
4047 return name1;
4048 }
4049
4050 /* Records the thread's register state for the corefile note
4051 section. */
4052
4053 static char *
4054 linux_nat_collect_thread_registers (const struct regcache *regcache,
4055 ptid_t ptid, bfd *obfd,
4056 char *note_data, int *note_size,
4057 enum gdb_signal stop_signal)
4058 {
4059 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4060 const struct regset *regset;
4061 int core_regset_p;
4062 gdb_gregset_t gregs;
4063 gdb_fpregset_t fpregs;
4064
4065 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4066
4067 if (core_regset_p
4068 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4069 sizeof (gregs)))
4070 != NULL && regset->collect_regset != NULL)
4071 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4072 else
4073 fill_gregset (regcache, &gregs, -1);
4074
4075 note_data = (char *) elfcore_write_prstatus
4076 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4077 gdb_signal_to_host (stop_signal), &gregs);
4078
4079 if (core_regset_p
4080 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4081 sizeof (fpregs)))
4082 != NULL && regset->collect_regset != NULL)
4083 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4084 else
4085 fill_fpregset (regcache, &fpregs, -1);
4086
4087 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4088 &fpregs, sizeof (fpregs));
4089
4090 return note_data;
4091 }
4092
4093 /* Fills the "to_make_corefile_note" target vector. Builds the note
4094 section for a corefile, and returns it in a malloc buffer. */
4095
4096 static char *
4097 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4098 {
4099 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4100 converted to gdbarch_core_regset_sections, this function can go away. */
4101 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4102 linux_nat_collect_thread_registers);
4103 }
4104
4105 /* Implement the to_xfer_partial interface for memory reads using the /proc
4106 filesystem. Because we can use a single read() call for /proc, this
4107 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4108 but it doesn't support writes. */
4109
4110 static LONGEST
4111 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4112 const char *annex, gdb_byte *readbuf,
4113 const gdb_byte *writebuf,
4114 ULONGEST offset, LONGEST len)
4115 {
4116 LONGEST ret;
4117 int fd;
4118 char filename[64];
4119
4120 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4121 return 0;
4122
4123 /* Don't bother for one word. */
4124 if (len < 3 * sizeof (long))
4125 return 0;
4126
4127 /* We could keep this file open and cache it - possibly one per
4128 thread. That requires some juggling, but is even faster. */
4129 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4130 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4131 if (fd == -1)
4132 return 0;
4133
4134 /* If pread64 is available, use it. It's faster if the kernel
4135 supports it (only one syscall), and it's 64-bit safe even on
4136 32-bit platforms (for instance, SPARC debugging a SPARC64
4137 application). */
4138 #ifdef HAVE_PREAD64
4139 if (pread64 (fd, readbuf, len, offset) != len)
4140 #else
4141 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4142 #endif
4143 ret = 0;
4144 else
4145 ret = len;
4146
4147 close (fd);
4148 return ret;
4149 }
4150
4151
4152 /* Enumerate spufs IDs for process PID. */
4153 static LONGEST
4154 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4155 {
4156 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4157 LONGEST pos = 0;
4158 LONGEST written = 0;
4159 char path[128];
4160 DIR *dir;
4161 struct dirent *entry;
4162
4163 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4164 dir = opendir (path);
4165 if (!dir)
4166 return -1;
4167
4168 rewinddir (dir);
4169 while ((entry = readdir (dir)) != NULL)
4170 {
4171 struct stat st;
4172 struct statfs stfs;
4173 int fd;
4174
4175 fd = atoi (entry->d_name);
4176 if (!fd)
4177 continue;
4178
4179 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4180 if (stat (path, &st) != 0)
4181 continue;
4182 if (!S_ISDIR (st.st_mode))
4183 continue;
4184
4185 if (statfs (path, &stfs) != 0)
4186 continue;
4187 if (stfs.f_type != SPUFS_MAGIC)
4188 continue;
4189
4190 if (pos >= offset && pos + 4 <= offset + len)
4191 {
4192 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4193 written += 4;
4194 }
4195 pos += 4;
4196 }
4197
4198 closedir (dir);
4199 return written;
4200 }
4201
4202 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4203 object type, using the /proc file system. */
4204 static LONGEST
4205 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4206 const char *annex, gdb_byte *readbuf,
4207 const gdb_byte *writebuf,
4208 ULONGEST offset, LONGEST len)
4209 {
4210 char buf[128];
4211 int fd = 0;
4212 int ret = -1;
4213 int pid = PIDGET (inferior_ptid);
4214
4215 if (!annex)
4216 {
4217 if (!readbuf)
4218 return -1;
4219 else
4220 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4221 }
4222
4223 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4224 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4225 if (fd <= 0)
4226 return -1;
4227
4228 if (offset != 0
4229 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4230 {
4231 close (fd);
4232 return 0;
4233 }
4234
4235 if (writebuf)
4236 ret = write (fd, writebuf, (size_t) len);
4237 else if (readbuf)
4238 ret = read (fd, readbuf, (size_t) len);
4239
4240 close (fd);
4241 return ret;
4242 }
4243
4244
4245 /* Parse LINE as a signal set and add its set bits to SIGS. */
4246
4247 static void
4248 add_line_to_sigset (const char *line, sigset_t *sigs)
4249 {
4250 int len = strlen (line) - 1;
4251 const char *p;
4252 int signum;
4253
4254 if (line[len] != '\n')
4255 error (_("Could not parse signal set: %s"), line);
4256
4257 p = line;
4258 signum = len * 4;
4259 while (len-- > 0)
4260 {
4261 int digit;
4262
4263 if (*p >= '0' && *p <= '9')
4264 digit = *p - '0';
4265 else if (*p >= 'a' && *p <= 'f')
4266 digit = *p - 'a' + 10;
4267 else
4268 error (_("Could not parse signal set: %s"), line);
4269
4270 signum -= 4;
4271
4272 if (digit & 1)
4273 sigaddset (sigs, signum + 1);
4274 if (digit & 2)
4275 sigaddset (sigs, signum + 2);
4276 if (digit & 4)
4277 sigaddset (sigs, signum + 3);
4278 if (digit & 8)
4279 sigaddset (sigs, signum + 4);
4280
4281 p++;
4282 }
4283 }
4284
4285 /* Find process PID's pending signals from /proc/pid/status and set
4286 SIGS to match. */
4287
4288 void
4289 linux_proc_pending_signals (int pid, sigset_t *pending,
4290 sigset_t *blocked, sigset_t *ignored)
4291 {
4292 FILE *procfile;
4293 char buffer[PATH_MAX], fname[PATH_MAX];
4294 struct cleanup *cleanup;
4295
4296 sigemptyset (pending);
4297 sigemptyset (blocked);
4298 sigemptyset (ignored);
4299 sprintf (fname, "/proc/%d/status", pid);
4300 procfile = gdb_fopen_cloexec (fname, "r");
4301 if (procfile == NULL)
4302 error (_("Could not open %s"), fname);
4303 cleanup = make_cleanup_fclose (procfile);
4304
4305 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4306 {
4307 /* Normal queued signals are on the SigPnd line in the status
4308 file. However, 2.6 kernels also have a "shared" pending
4309 queue for delivering signals to a thread group, so check for
4310 a ShdPnd line also.
4311
4312 Unfortunately some Red Hat kernels include the shared pending
4313 queue but not the ShdPnd status field. */
4314
4315 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4316 add_line_to_sigset (buffer + 8, pending);
4317 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4318 add_line_to_sigset (buffer + 8, pending);
4319 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4320 add_line_to_sigset (buffer + 8, blocked);
4321 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4322 add_line_to_sigset (buffer + 8, ignored);
4323 }
4324
4325 do_cleanups (cleanup);
4326 }
4327
4328 static LONGEST
4329 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4330 const char *annex, gdb_byte *readbuf,
4331 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4332 {
4333 gdb_assert (object == TARGET_OBJECT_OSDATA);
4334
4335 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4336 }
4337
4338 static LONGEST
4339 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4340 const char *annex, gdb_byte *readbuf,
4341 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4342 {
4343 LONGEST xfer;
4344
4345 if (object == TARGET_OBJECT_AUXV)
4346 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4347 offset, len);
4348
4349 if (object == TARGET_OBJECT_OSDATA)
4350 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4351 offset, len);
4352
4353 if (object == TARGET_OBJECT_SPU)
4354 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4355 offset, len);
4356
4357 /* GDB calculates all the addresses in possibly larget width of the address.
4358 Address width needs to be masked before its final use - either by
4359 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4360
4361 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4362
4363 if (object == TARGET_OBJECT_MEMORY)
4364 {
4365 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4366
4367 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4368 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4369 }
4370
4371 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4372 offset, len);
4373 if (xfer != 0)
4374 return xfer;
4375
4376 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4377 offset, len);
4378 }
4379
4380 static void
4381 cleanup_target_stop (void *arg)
4382 {
4383 ptid_t *ptid = (ptid_t *) arg;
4384
4385 gdb_assert (arg != NULL);
4386
4387 /* Unpause all */
4388 target_resume (*ptid, 0, GDB_SIGNAL_0);
4389 }
4390
4391 static VEC(static_tracepoint_marker_p) *
4392 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4393 {
4394 char s[IPA_CMD_BUF_SIZE];
4395 struct cleanup *old_chain;
4396 int pid = ptid_get_pid (inferior_ptid);
4397 VEC(static_tracepoint_marker_p) *markers = NULL;
4398 struct static_tracepoint_marker *marker = NULL;
4399 char *p = s;
4400 ptid_t ptid = ptid_build (pid, 0, 0);
4401
4402 /* Pause all */
4403 target_stop (ptid);
4404
4405 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4406 s[sizeof ("qTfSTM")] = 0;
4407
4408 agent_run_command (pid, s, strlen (s) + 1);
4409
4410 old_chain = make_cleanup (free_current_marker, &marker);
4411 make_cleanup (cleanup_target_stop, &ptid);
4412
4413 while (*p++ == 'm')
4414 {
4415 if (marker == NULL)
4416 marker = XCNEW (struct static_tracepoint_marker);
4417
4418 do
4419 {
4420 parse_static_tracepoint_marker_definition (p, &p, marker);
4421
4422 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4423 {
4424 VEC_safe_push (static_tracepoint_marker_p,
4425 markers, marker);
4426 marker = NULL;
4427 }
4428 else
4429 {
4430 release_static_tracepoint_marker (marker);
4431 memset (marker, 0, sizeof (*marker));
4432 }
4433 }
4434 while (*p++ == ','); /* comma-separated list */
4435
4436 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4437 s[sizeof ("qTsSTM")] = 0;
4438 agent_run_command (pid, s, strlen (s) + 1);
4439 p = s;
4440 }
4441
4442 do_cleanups (old_chain);
4443
4444 return markers;
4445 }
4446
4447 /* Create a prototype generic GNU/Linux target. The client can override
4448 it with local methods. */
4449
4450 static void
4451 linux_target_install_ops (struct target_ops *t)
4452 {
4453 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4454 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4455 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4456 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4457 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4458 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4459 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4460 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4461 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4462 t->to_post_attach = linux_child_post_attach;
4463 t->to_follow_fork = linux_child_follow_fork;
4464 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4465
4466 super_xfer_partial = t->to_xfer_partial;
4467 t->to_xfer_partial = linux_xfer_partial;
4468
4469 t->to_static_tracepoint_markers_by_strid
4470 = linux_child_static_tracepoint_markers_by_strid;
4471 }
4472
4473 struct target_ops *
4474 linux_target (void)
4475 {
4476 struct target_ops *t;
4477
4478 t = inf_ptrace_target ();
4479 linux_target_install_ops (t);
4480
4481 return t;
4482 }
4483
4484 struct target_ops *
4485 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4486 {
4487 struct target_ops *t;
4488
4489 t = inf_ptrace_trad_target (register_u_offset);
4490 linux_target_install_ops (t);
4491
4492 return t;
4493 }
4494
4495 /* target_is_async_p implementation. */
4496
4497 static int
4498 linux_nat_is_async_p (void)
4499 {
4500 /* NOTE: palves 2008-03-21: We're only async when the user requests
4501 it explicitly with the "set target-async" command.
4502 Someday, linux will always be async. */
4503 return target_async_permitted;
4504 }
4505
4506 /* target_can_async_p implementation. */
4507
4508 static int
4509 linux_nat_can_async_p (void)
4510 {
4511 /* NOTE: palves 2008-03-21: We're only async when the user requests
4512 it explicitly with the "set target-async" command.
4513 Someday, linux will always be async. */
4514 return target_async_permitted;
4515 }
4516
4517 static int
4518 linux_nat_supports_non_stop (void)
4519 {
4520 return 1;
4521 }
4522
4523 /* True if we want to support multi-process. To be removed when GDB
4524 supports multi-exec. */
4525
4526 int linux_multi_process = 1;
4527
4528 static int
4529 linux_nat_supports_multi_process (void)
4530 {
4531 return linux_multi_process;
4532 }
4533
4534 static int
4535 linux_nat_supports_disable_randomization (void)
4536 {
4537 #ifdef HAVE_PERSONALITY
4538 return 1;
4539 #else
4540 return 0;
4541 #endif
4542 }
4543
4544 static int async_terminal_is_ours = 1;
4545
4546 /* target_terminal_inferior implementation. */
4547
4548 static void
4549 linux_nat_terminal_inferior (void)
4550 {
4551 if (!target_is_async_p ())
4552 {
4553 /* Async mode is disabled. */
4554 terminal_inferior ();
4555 return;
4556 }
4557
4558 terminal_inferior ();
4559
4560 /* Calls to target_terminal_*() are meant to be idempotent. */
4561 if (!async_terminal_is_ours)
4562 return;
4563
4564 delete_file_handler (input_fd);
4565 async_terminal_is_ours = 0;
4566 set_sigint_trap ();
4567 }
4568
4569 /* target_terminal_ours implementation. */
4570
4571 static void
4572 linux_nat_terminal_ours (void)
4573 {
4574 if (!target_is_async_p ())
4575 {
4576 /* Async mode is disabled. */
4577 terminal_ours ();
4578 return;
4579 }
4580
4581 /* GDB should never give the terminal to the inferior if the
4582 inferior is running in the background (run&, continue&, etc.),
4583 but claiming it sure should. */
4584 terminal_ours ();
4585
4586 if (async_terminal_is_ours)
4587 return;
4588
4589 clear_sigint_trap ();
4590 add_file_handler (input_fd, stdin_event_handler, 0);
4591 async_terminal_is_ours = 1;
4592 }
4593
4594 static void (*async_client_callback) (enum inferior_event_type event_type,
4595 void *context);
4596 static void *async_client_context;
4597
4598 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4599 so we notice when any child changes state, and notify the
4600 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4601 above to wait for the arrival of a SIGCHLD. */
4602
4603 static void
4604 sigchld_handler (int signo)
4605 {
4606 int old_errno = errno;
4607
4608 if (debug_linux_nat)
4609 ui_file_write_async_safe (gdb_stdlog,
4610 "sigchld\n", sizeof ("sigchld\n") - 1);
4611
4612 if (signo == SIGCHLD
4613 && linux_nat_event_pipe[0] != -1)
4614 async_file_mark (); /* Let the event loop know that there are
4615 events to handle. */
4616
4617 errno = old_errno;
4618 }
4619
4620 /* Callback registered with the target events file descriptor. */
4621
4622 static void
4623 handle_target_event (int error, gdb_client_data client_data)
4624 {
4625 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4626 }
4627
4628 /* Create/destroy the target events pipe. Returns previous state. */
4629
4630 static int
4631 linux_async_pipe (int enable)
4632 {
4633 int previous = (linux_nat_event_pipe[0] != -1);
4634
4635 if (previous != enable)
4636 {
4637 sigset_t prev_mask;
4638
4639 /* Block child signals while we create/destroy the pipe, as
4640 their handler writes to it. */
4641 block_child_signals (&prev_mask);
4642
4643 if (enable)
4644 {
4645 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4646 internal_error (__FILE__, __LINE__,
4647 "creating event pipe failed.");
4648
4649 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4650 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4651 }
4652 else
4653 {
4654 close (linux_nat_event_pipe[0]);
4655 close (linux_nat_event_pipe[1]);
4656 linux_nat_event_pipe[0] = -1;
4657 linux_nat_event_pipe[1] = -1;
4658 }
4659
4660 restore_child_signals_mask (&prev_mask);
4661 }
4662
4663 return previous;
4664 }
4665
4666 /* target_async implementation. */
4667
4668 static void
4669 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4670 void *context), void *context)
4671 {
4672 if (callback != NULL)
4673 {
4674 async_client_callback = callback;
4675 async_client_context = context;
4676 if (!linux_async_pipe (1))
4677 {
4678 add_file_handler (linux_nat_event_pipe[0],
4679 handle_target_event, NULL);
4680 /* There may be pending events to handle. Tell the event loop
4681 to poll them. */
4682 async_file_mark ();
4683 }
4684 }
4685 else
4686 {
4687 async_client_callback = callback;
4688 async_client_context = context;
4689 delete_file_handler (linux_nat_event_pipe[0]);
4690 linux_async_pipe (0);
4691 }
4692 return;
4693 }
4694
4695 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4696 event came out. */
4697
4698 static int
4699 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4700 {
4701 if (!lwp->stopped)
4702 {
4703 if (debug_linux_nat)
4704 fprintf_unfiltered (gdb_stdlog,
4705 "LNSL: running -> suspending %s\n",
4706 target_pid_to_str (lwp->ptid));
4707
4708
4709 if (lwp->last_resume_kind == resume_stop)
4710 {
4711 if (debug_linux_nat)
4712 fprintf_unfiltered (gdb_stdlog,
4713 "linux-nat: already stopping LWP %ld at "
4714 "GDB's request\n",
4715 ptid_get_lwp (lwp->ptid));
4716 return 0;
4717 }
4718
4719 stop_callback (lwp, NULL);
4720 lwp->last_resume_kind = resume_stop;
4721 }
4722 else
4723 {
4724 /* Already known to be stopped; do nothing. */
4725
4726 if (debug_linux_nat)
4727 {
4728 if (find_thread_ptid (lwp->ptid)->stop_requested)
4729 fprintf_unfiltered (gdb_stdlog,
4730 "LNSL: already stopped/stop_requested %s\n",
4731 target_pid_to_str (lwp->ptid));
4732 else
4733 fprintf_unfiltered (gdb_stdlog,
4734 "LNSL: already stopped/no "
4735 "stop_requested yet %s\n",
4736 target_pid_to_str (lwp->ptid));
4737 }
4738 }
4739 return 0;
4740 }
4741
4742 static void
4743 linux_nat_stop (ptid_t ptid)
4744 {
4745 if (non_stop)
4746 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4747 else
4748 linux_ops->to_stop (ptid);
4749 }
4750
4751 static void
4752 linux_nat_close (void)
4753 {
4754 /* Unregister from the event loop. */
4755 if (linux_nat_is_async_p ())
4756 linux_nat_async (NULL, 0);
4757
4758 if (linux_ops->to_close)
4759 linux_ops->to_close ();
4760 }
4761
4762 /* When requests are passed down from the linux-nat layer to the
4763 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4764 used. The address space pointer is stored in the inferior object,
4765 but the common code that is passed such ptid can't tell whether
4766 lwpid is a "main" process id or not (it assumes so). We reverse
4767 look up the "main" process id from the lwp here. */
4768
4769 static struct address_space *
4770 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4771 {
4772 struct lwp_info *lwp;
4773 struct inferior *inf;
4774 int pid;
4775
4776 pid = GET_LWP (ptid);
4777 if (GET_LWP (ptid) == 0)
4778 {
4779 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4780 tgid. */
4781 lwp = find_lwp_pid (ptid);
4782 pid = GET_PID (lwp->ptid);
4783 }
4784 else
4785 {
4786 /* A (pid,lwpid,0) ptid. */
4787 pid = GET_PID (ptid);
4788 }
4789
4790 inf = find_inferior_pid (pid);
4791 gdb_assert (inf != NULL);
4792 return inf->aspace;
4793 }
4794
4795 /* Return the cached value of the processor core for thread PTID. */
4796
4797 static int
4798 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4799 {
4800 struct lwp_info *info = find_lwp_pid (ptid);
4801
4802 if (info)
4803 return info->core;
4804 return -1;
4805 }
4806
4807 void
4808 linux_nat_add_target (struct target_ops *t)
4809 {
4810 /* Save the provided single-threaded target. We save this in a separate
4811 variable because another target we've inherited from (e.g. inf-ptrace)
4812 may have saved a pointer to T; we want to use it for the final
4813 process stratum target. */
4814 linux_ops_saved = *t;
4815 linux_ops = &linux_ops_saved;
4816
4817 /* Override some methods for multithreading. */
4818 t->to_create_inferior = linux_nat_create_inferior;
4819 t->to_attach = linux_nat_attach;
4820 t->to_detach = linux_nat_detach;
4821 t->to_resume = linux_nat_resume;
4822 t->to_wait = linux_nat_wait;
4823 t->to_pass_signals = linux_nat_pass_signals;
4824 t->to_xfer_partial = linux_nat_xfer_partial;
4825 t->to_kill = linux_nat_kill;
4826 t->to_mourn_inferior = linux_nat_mourn_inferior;
4827 t->to_thread_alive = linux_nat_thread_alive;
4828 t->to_pid_to_str = linux_nat_pid_to_str;
4829 t->to_thread_name = linux_nat_thread_name;
4830 t->to_has_thread_control = tc_schedlock;
4831 t->to_thread_address_space = linux_nat_thread_address_space;
4832 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4833 t->to_stopped_data_address = linux_nat_stopped_data_address;
4834
4835 t->to_can_async_p = linux_nat_can_async_p;
4836 t->to_is_async_p = linux_nat_is_async_p;
4837 t->to_supports_non_stop = linux_nat_supports_non_stop;
4838 t->to_async = linux_nat_async;
4839 t->to_terminal_inferior = linux_nat_terminal_inferior;
4840 t->to_terminal_ours = linux_nat_terminal_ours;
4841 t->to_close = linux_nat_close;
4842
4843 /* Methods for non-stop support. */
4844 t->to_stop = linux_nat_stop;
4845
4846 t->to_supports_multi_process = linux_nat_supports_multi_process;
4847
4848 t->to_supports_disable_randomization
4849 = linux_nat_supports_disable_randomization;
4850
4851 t->to_core_of_thread = linux_nat_core_of_thread;
4852
4853 /* We don't change the stratum; this target will sit at
4854 process_stratum and thread_db will set at thread_stratum. This
4855 is a little strange, since this is a multi-threaded-capable
4856 target, but we want to be on the stack below thread_db, and we
4857 also want to be used for single-threaded processes. */
4858
4859 add_target (t);
4860 }
4861
4862 /* Register a method to call whenever a new thread is attached. */
4863 void
4864 linux_nat_set_new_thread (struct target_ops *t,
4865 void (*new_thread) (struct lwp_info *))
4866 {
4867 /* Save the pointer. We only support a single registered instance
4868 of the GNU/Linux native target, so we do not need to map this to
4869 T. */
4870 linux_nat_new_thread = new_thread;
4871 }
4872
4873 /* See declaration in linux-nat.h. */
4874
4875 void
4876 linux_nat_set_new_fork (struct target_ops *t,
4877 linux_nat_new_fork_ftype *new_fork)
4878 {
4879 /* Save the pointer. */
4880 linux_nat_new_fork = new_fork;
4881 }
4882
4883 /* See declaration in linux-nat.h. */
4884
4885 void
4886 linux_nat_set_forget_process (struct target_ops *t,
4887 linux_nat_forget_process_ftype *fn)
4888 {
4889 /* Save the pointer. */
4890 linux_nat_forget_process_hook = fn;
4891 }
4892
4893 /* See declaration in linux-nat.h. */
4894
4895 void
4896 linux_nat_forget_process (pid_t pid)
4897 {
4898 if (linux_nat_forget_process_hook != NULL)
4899 linux_nat_forget_process_hook (pid);
4900 }
4901
4902 /* Register a method that converts a siginfo object between the layout
4903 that ptrace returns, and the layout in the architecture of the
4904 inferior. */
4905 void
4906 linux_nat_set_siginfo_fixup (struct target_ops *t,
4907 int (*siginfo_fixup) (siginfo_t *,
4908 gdb_byte *,
4909 int))
4910 {
4911 /* Save the pointer. */
4912 linux_nat_siginfo_fixup = siginfo_fixup;
4913 }
4914
4915 /* Register a method to call prior to resuming a thread. */
4916
4917 void
4918 linux_nat_set_prepare_to_resume (struct target_ops *t,
4919 void (*prepare_to_resume) (struct lwp_info *))
4920 {
4921 /* Save the pointer. */
4922 linux_nat_prepare_to_resume = prepare_to_resume;
4923 }
4924
4925 /* See linux-nat.h. */
4926
4927 int
4928 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4929 {
4930 int pid;
4931
4932 pid = GET_LWP (ptid);
4933 if (pid == 0)
4934 pid = GET_PID (ptid);
4935
4936 errno = 0;
4937 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4938 if (errno != 0)
4939 {
4940 memset (siginfo, 0, sizeof (*siginfo));
4941 return 0;
4942 }
4943 return 1;
4944 }
4945
4946 /* Provide a prototype to silence -Wmissing-prototypes. */
4947 extern initialize_file_ftype _initialize_linux_nat;
4948
4949 void
4950 _initialize_linux_nat (void)
4951 {
4952 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4953 &debug_linux_nat, _("\
4954 Set debugging of GNU/Linux lwp module."), _("\
4955 Show debugging of GNU/Linux lwp module."), _("\
4956 Enables printf debugging output."),
4957 NULL,
4958 show_debug_linux_nat,
4959 &setdebuglist, &showdebuglist);
4960
4961 /* Save this mask as the default. */
4962 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4963
4964 /* Install a SIGCHLD handler. */
4965 sigchld_action.sa_handler = sigchld_handler;
4966 sigemptyset (&sigchld_action.sa_mask);
4967 sigchld_action.sa_flags = SA_RESTART;
4968
4969 /* Make it the default. */
4970 sigaction (SIGCHLD, &sigchld_action, NULL);
4971
4972 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4973 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4974 sigdelset (&suspend_mask, SIGCHLD);
4975
4976 sigemptyset (&blocked_mask);
4977 }
4978 \f
4979
4980 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4981 the GNU/Linux Threads library and therefore doesn't really belong
4982 here. */
4983
4984 /* Read variable NAME in the target and return its value if found.
4985 Otherwise return zero. It is assumed that the type of the variable
4986 is `int'. */
4987
4988 static int
4989 get_signo (const char *name)
4990 {
4991 struct minimal_symbol *ms;
4992 int signo;
4993
4994 ms = lookup_minimal_symbol (name, NULL, NULL);
4995 if (ms == NULL)
4996 return 0;
4997
4998 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4999 sizeof (signo)) != 0)
5000 return 0;
5001
5002 return signo;
5003 }
5004
5005 /* Return the set of signals used by the threads library in *SET. */
5006
5007 void
5008 lin_thread_get_thread_signals (sigset_t *set)
5009 {
5010 struct sigaction action;
5011 int restart, cancel;
5012
5013 sigemptyset (&blocked_mask);
5014 sigemptyset (set);
5015
5016 restart = get_signo ("__pthread_sig_restart");
5017 cancel = get_signo ("__pthread_sig_cancel");
5018
5019 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5020 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5021 not provide any way for the debugger to query the signal numbers -
5022 fortunately they don't change! */
5023
5024 if (restart == 0)
5025 restart = __SIGRTMIN;
5026
5027 if (cancel == 0)
5028 cancel = __SIGRTMIN + 1;
5029
5030 sigaddset (set, restart);
5031 sigaddset (set, cancel);
5032
5033 /* The GNU/Linux Threads library makes terminating threads send a
5034 special "cancel" signal instead of SIGCHLD. Make sure we catch
5035 those (to prevent them from terminating GDB itself, which is
5036 likely to be their default action) and treat them the same way as
5037 SIGCHLD. */
5038
5039 action.sa_handler = sigchld_handler;
5040 sigemptyset (&action.sa_mask);
5041 action.sa_flags = SA_RESTART;
5042 sigaction (cancel, &action, NULL);
5043
5044 /* We block the "cancel" signal throughout this code ... */
5045 sigaddset (&blocked_mask, cancel);
5046 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5047
5048 /* ... except during a sigsuspend. */
5049 sigdelset (&suspend_mask, cancel);
5050 }
This page took 0.134545 seconds and 4 git commands to generate.