964337884e088394e41c961b05f88288354e6242
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52
53 /* This comment documents high-level logic of this file.
54
55 Waiting for events in sync mode
56 ===============================
57
58 When waiting for an event in a specific thread, we just use waitpid, passing
59 the specific pid, and not passing WNOHANG.
60
61 When waiting for an event in all threads, waitpid is not quite good. Prior to
62 version 2.4, Linux can either wait for event in main thread, or in secondary
63 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
64 miss an event. The solution is to use non-blocking waitpid, together with
65 sigsuspend. First, we use non-blocking waitpid to get an event in the main
66 process, if any. Second, we use non-blocking waitpid with the __WCLONED
67 flag to check for events in cloned processes. If nothing is found, we use
68 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
69 happened to a child process -- and SIGCHLD will be delivered both for events
70 in main debugged process and in cloned processes. As soon as we know there's
71 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
72
73 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
74 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
75 blocked, the signal becomes pending and sigsuspend immediately
76 notices it and returns.
77
78 Waiting for events in async mode
79 ================================
80
81 In async mode, GDB should always be ready to handle both user input and target
82 events, so neither blocking waitpid nor sigsuspend are viable
83 options. Instead, we should notify the GDB main event loop whenever there's
84 unprocessed event from the target. The only way to notify this event loop is
85 to make it wait on input from a pipe, and write something to the pipe whenever
86 there's event. Obviously, if we fail to notify the event loop if there's
87 target event, it's bad. If we notify the event loop when there's no event
88 from target, linux-nat.c will detect that there's no event, actually, and
89 report event of type TARGET_WAITKIND_IGNORE, but it will waste time and
90 better avoided.
91
92 The main design point is that every time GDB is outside linux-nat.c, we have a
93 SIGCHLD handler installed that is called when something happens to the target
94 and notifies the GDB event loop. Also, the event is extracted from the target
95 using waitpid and stored for future use. Whenever GDB core decides to handle
96 the event, and calls into linux-nat.c, we disable SIGCHLD and process things
97 as in sync mode, except that before waitpid call we check if there are any
98 previously read events.
99
100 It could happen that during event processing, we'll try to get more events
101 than there are events in the local queue, which will result to waitpid call.
102 Those waitpid calls, while blocking, are guarantied to always have
103 something for waitpid to return. E.g., stopping a thread with SIGSTOP, and
104 waiting for the lwp to stop.
105
106 The event loop is notified about new events using a pipe. SIGCHLD handler does
107 waitpid and writes the results in to a pipe. GDB event loop has the other end
108 of the pipe among the sources. When event loop starts to process the event
109 and calls a function in linux-nat.c, all events from the pipe are transferred
110 into a local queue and SIGCHLD is blocked. Further processing goes as in sync
111 mode. Before we return from linux_nat_wait, we transfer all unprocessed events
112 from local queue back to the pipe, so that when we get back to event loop,
113 event loop will notice there's something more to do.
114
115 SIGCHLD is blocked when we're inside target_wait, so that should we actually
116 want to wait for some more events, SIGCHLD handler does not steal them from
117 us. Technically, it would be possible to add new events to the local queue but
118 it's about the same amount of work as blocking SIGCHLD.
119
120 This moving of events from pipe into local queue and back into pipe when we
121 enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is
122 home-grown and incapable to wait on any queue.
123
124 Use of signals
125 ==============
126
127 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
128 signal is not entirely significant; we just need for a signal to be delivered,
129 so that we can intercept it. SIGSTOP's advantage is that it can not be
130 blocked. A disadvantage is that it is not a real-time signal, so it can only
131 be queued once; we do not keep track of other sources of SIGSTOP.
132
133 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
134 use them, because they have special behavior when the signal is generated -
135 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
136 kills the entire thread group.
137
138 A delivered SIGSTOP would stop the entire thread group, not just the thread we
139 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
140 cancel it (by PTRACE_CONT without passing SIGSTOP).
141
142 We could use a real-time signal instead. This would solve those problems; we
143 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
144 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
145 generates it, and there are races with trying to find a signal that is not
146 blocked. */
147
148 #ifndef O_LARGEFILE
149 #define O_LARGEFILE 0
150 #endif
151
152 /* If the system headers did not provide the constants, hard-code the normal
153 values. */
154 #ifndef PTRACE_EVENT_FORK
155
156 #define PTRACE_SETOPTIONS 0x4200
157 #define PTRACE_GETEVENTMSG 0x4201
158
159 /* options set using PTRACE_SETOPTIONS */
160 #define PTRACE_O_TRACESYSGOOD 0x00000001
161 #define PTRACE_O_TRACEFORK 0x00000002
162 #define PTRACE_O_TRACEVFORK 0x00000004
163 #define PTRACE_O_TRACECLONE 0x00000008
164 #define PTRACE_O_TRACEEXEC 0x00000010
165 #define PTRACE_O_TRACEVFORKDONE 0x00000020
166 #define PTRACE_O_TRACEEXIT 0x00000040
167
168 /* Wait extended result codes for the above trace options. */
169 #define PTRACE_EVENT_FORK 1
170 #define PTRACE_EVENT_VFORK 2
171 #define PTRACE_EVENT_CLONE 3
172 #define PTRACE_EVENT_EXEC 4
173 #define PTRACE_EVENT_VFORK_DONE 5
174 #define PTRACE_EVENT_EXIT 6
175
176 #endif /* PTRACE_EVENT_FORK */
177
178 /* We can't always assume that this flag is available, but all systems
179 with the ptrace event handlers also have __WALL, so it's safe to use
180 here. */
181 #ifndef __WALL
182 #define __WALL 0x40000000 /* Wait for any child. */
183 #endif
184
185 #ifndef PTRACE_GETSIGINFO
186 #define PTRACE_GETSIGINFO 0x4202
187 #endif
188
189 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
190 the use of the multi-threaded target. */
191 static struct target_ops *linux_ops;
192 static struct target_ops linux_ops_saved;
193
194 /* The method to call, if any, when a new thread is attached. */
195 static void (*linux_nat_new_thread) (ptid_t);
196
197 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
198 Called by our to_xfer_partial. */
199 static LONGEST (*super_xfer_partial) (struct target_ops *,
200 enum target_object,
201 const char *, gdb_byte *,
202 const gdb_byte *,
203 ULONGEST, LONGEST);
204
205 static int debug_linux_nat;
206 static void
207 show_debug_linux_nat (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
211 value);
212 }
213
214 static int debug_linux_nat_async = 0;
215 static void
216 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
217 struct cmd_list_element *c, const char *value)
218 {
219 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
220 value);
221 }
222
223 static int linux_parent_pid;
224
225 struct simple_pid_list
226 {
227 int pid;
228 int status;
229 struct simple_pid_list *next;
230 };
231 struct simple_pid_list *stopped_pids;
232
233 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
234 can not be used, 1 if it can. */
235
236 static int linux_supports_tracefork_flag = -1;
237
238 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
239 PTRACE_O_TRACEVFORKDONE. */
240
241 static int linux_supports_tracevforkdone_flag = -1;
242
243 /* Async mode support */
244
245 /* True if async mode is currently on. */
246 static int linux_nat_async_enabled;
247
248 /* Zero if the async mode, although enabled, is masked, which means
249 linux_nat_wait should behave as if async mode was off. */
250 static int linux_nat_async_mask_value = 1;
251
252 /* The read/write ends of the pipe registered as waitable file in the
253 event loop. */
254 static int linux_nat_event_pipe[2] = { -1, -1 };
255
256 /* Number of queued events in the pipe. */
257 static volatile int linux_nat_num_queued_events;
258
259 /* The possible SIGCHLD handling states. */
260
261 enum sigchld_state
262 {
263 /* SIGCHLD disabled, with action set to sigchld_handler, for the
264 sigsuspend in linux_nat_wait. */
265 sigchld_sync,
266 /* SIGCHLD enabled, with action set to async_sigchld_handler. */
267 sigchld_async,
268 /* Set SIGCHLD to default action. Used while creating an
269 inferior. */
270 sigchld_default
271 };
272
273 /* The current SIGCHLD handling state. */
274 static enum sigchld_state linux_nat_async_events_state;
275
276 static enum sigchld_state linux_nat_async_events (enum sigchld_state enable);
277 static void pipe_to_local_event_queue (void);
278 static void local_event_queue_to_pipe (void);
279 static void linux_nat_event_pipe_push (int pid, int status, int options);
280 static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options);
281 static void linux_nat_set_async_mode (int on);
282 static void linux_nat_async (void (*callback)
283 (enum inferior_event_type event_type, void *context),
284 void *context);
285 static int linux_nat_async_mask (int mask);
286 static int kill_lwp (int lwpid, int signo);
287
288 /* Captures the result of a successful waitpid call, along with the
289 options used in that call. */
290 struct waitpid_result
291 {
292 int pid;
293 int status;
294 int options;
295 struct waitpid_result *next;
296 };
297
298 /* A singly-linked list of the results of the waitpid calls performed
299 in the async SIGCHLD handler. */
300 static struct waitpid_result *waitpid_queue = NULL;
301
302 static int
303 queued_waitpid (int pid, int *status, int flags)
304 {
305 struct waitpid_result *msg = waitpid_queue, *prev = NULL;
306
307 if (debug_linux_nat_async)
308 fprintf_unfiltered (gdb_stdlog,
309 "\
310 QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n",
311 linux_nat_async_events_state,
312 linux_nat_num_queued_events);
313
314 if (flags & __WALL)
315 {
316 for (; msg; prev = msg, msg = msg->next)
317 if (pid == -1 || pid == msg->pid)
318 break;
319 }
320 else if (flags & __WCLONE)
321 {
322 for (; msg; prev = msg, msg = msg->next)
323 if (msg->options & __WCLONE
324 && (pid == -1 || pid == msg->pid))
325 break;
326 }
327 else
328 {
329 for (; msg; prev = msg, msg = msg->next)
330 if ((msg->options & __WCLONE) == 0
331 && (pid == -1 || pid == msg->pid))
332 break;
333 }
334
335 if (msg)
336 {
337 int pid;
338
339 if (prev)
340 prev->next = msg->next;
341 else
342 waitpid_queue = msg->next;
343
344 msg->next = NULL;
345 if (status)
346 *status = msg->status;
347 pid = msg->pid;
348
349 if (debug_linux_nat_async)
350 fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n",
351 pid, msg->status);
352 xfree (msg);
353
354 return pid;
355 }
356
357 if (debug_linux_nat_async)
358 fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n");
359
360 if (status)
361 *status = 0;
362 return -1;
363 }
364
365 static void
366 push_waitpid (int pid, int status, int options)
367 {
368 struct waitpid_result *event, *new_event;
369
370 new_event = xmalloc (sizeof (*new_event));
371 new_event->pid = pid;
372 new_event->status = status;
373 new_event->options = options;
374 new_event->next = NULL;
375
376 if (waitpid_queue)
377 {
378 for (event = waitpid_queue;
379 event && event->next;
380 event = event->next)
381 ;
382
383 event->next = new_event;
384 }
385 else
386 waitpid_queue = new_event;
387 }
388
389 /* Drain all queued events of PID. If PID is -1, the effect is of
390 draining all events. */
391 static void
392 drain_queued_events (int pid)
393 {
394 while (queued_waitpid (pid, NULL, __WALL) != -1)
395 ;
396 }
397
398 \f
399 /* Trivial list manipulation functions to keep track of a list of
400 new stopped processes. */
401 static void
402 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
403 {
404 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
405 new_pid->pid = pid;
406 new_pid->status = status;
407 new_pid->next = *listp;
408 *listp = new_pid;
409 }
410
411 static int
412 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
413 {
414 struct simple_pid_list **p;
415
416 for (p = listp; *p != NULL; p = &(*p)->next)
417 if ((*p)->pid == pid)
418 {
419 struct simple_pid_list *next = (*p)->next;
420 *status = (*p)->status;
421 xfree (*p);
422 *p = next;
423 return 1;
424 }
425 return 0;
426 }
427
428 static void
429 linux_record_stopped_pid (int pid, int status)
430 {
431 add_to_pid_list (&stopped_pids, pid, status);
432 }
433
434 \f
435 /* A helper function for linux_test_for_tracefork, called after fork (). */
436
437 static void
438 linux_tracefork_child (void)
439 {
440 int ret;
441
442 ptrace (PTRACE_TRACEME, 0, 0, 0);
443 kill (getpid (), SIGSTOP);
444 fork ();
445 _exit (0);
446 }
447
448 /* Wrapper function for waitpid which handles EINTR, and checks for
449 locally queued events. */
450
451 static int
452 my_waitpid (int pid, int *status, int flags)
453 {
454 int ret;
455
456 /* There should be no concurrent calls to waitpid. */
457 gdb_assert (linux_nat_async_events_state == sigchld_sync);
458
459 ret = queued_waitpid (pid, status, flags);
460 if (ret != -1)
461 return ret;
462
463 do
464 {
465 ret = waitpid (pid, status, flags);
466 }
467 while (ret == -1 && errno == EINTR);
468
469 return ret;
470 }
471
472 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
473
474 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
475 we know that the feature is not available. This may change the tracing
476 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
477
478 However, if it succeeds, we don't know for sure that the feature is
479 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
480 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
481 fork tracing, and let it fork. If the process exits, we assume that we
482 can't use TRACEFORK; if we get the fork notification, and we can extract
483 the new child's PID, then we assume that we can. */
484
485 static void
486 linux_test_for_tracefork (int original_pid)
487 {
488 int child_pid, ret, status;
489 long second_pid;
490
491 linux_supports_tracefork_flag = 0;
492 linux_supports_tracevforkdone_flag = 0;
493
494 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
495 if (ret != 0)
496 return;
497
498 child_pid = fork ();
499 if (child_pid == -1)
500 perror_with_name (("fork"));
501
502 if (child_pid == 0)
503 linux_tracefork_child ();
504
505 ret = my_waitpid (child_pid, &status, 0);
506 if (ret == -1)
507 perror_with_name (("waitpid"));
508 else if (ret != child_pid)
509 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
510 if (! WIFSTOPPED (status))
511 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
512
513 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
514 if (ret != 0)
515 {
516 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
517 if (ret != 0)
518 {
519 warning (_("linux_test_for_tracefork: failed to kill child"));
520 return;
521 }
522
523 ret = my_waitpid (child_pid, &status, 0);
524 if (ret != child_pid)
525 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
526 else if (!WIFSIGNALED (status))
527 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
528 "killed child"), status);
529
530 return;
531 }
532
533 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
534 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
535 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
536 linux_supports_tracevforkdone_flag = (ret == 0);
537
538 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
539 if (ret != 0)
540 warning (_("linux_test_for_tracefork: failed to resume child"));
541
542 ret = my_waitpid (child_pid, &status, 0);
543
544 if (ret == child_pid && WIFSTOPPED (status)
545 && status >> 16 == PTRACE_EVENT_FORK)
546 {
547 second_pid = 0;
548 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
549 if (ret == 0 && second_pid != 0)
550 {
551 int second_status;
552
553 linux_supports_tracefork_flag = 1;
554 my_waitpid (second_pid, &second_status, 0);
555 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
556 if (ret != 0)
557 warning (_("linux_test_for_tracefork: failed to kill second child"));
558 my_waitpid (second_pid, &status, 0);
559 }
560 }
561 else
562 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
563 "(%d, status 0x%x)"), ret, status);
564
565 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
566 if (ret != 0)
567 warning (_("linux_test_for_tracefork: failed to kill child"));
568 my_waitpid (child_pid, &status, 0);
569 }
570
571 /* Return non-zero iff we have tracefork functionality available.
572 This function also sets linux_supports_tracefork_flag. */
573
574 static int
575 linux_supports_tracefork (int pid)
576 {
577 if (linux_supports_tracefork_flag == -1)
578 linux_test_for_tracefork (pid);
579 return linux_supports_tracefork_flag;
580 }
581
582 static int
583 linux_supports_tracevforkdone (int pid)
584 {
585 if (linux_supports_tracefork_flag == -1)
586 linux_test_for_tracefork (pid);
587 return linux_supports_tracevforkdone_flag;
588 }
589
590 \f
591 void
592 linux_enable_event_reporting (ptid_t ptid)
593 {
594 int pid = ptid_get_lwp (ptid);
595 int options;
596
597 if (pid == 0)
598 pid = ptid_get_pid (ptid);
599
600 if (! linux_supports_tracefork (pid))
601 return;
602
603 options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC
604 | PTRACE_O_TRACECLONE;
605 if (linux_supports_tracevforkdone (pid))
606 options |= PTRACE_O_TRACEVFORKDONE;
607
608 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
609 read-only process state. */
610
611 ptrace (PTRACE_SETOPTIONS, pid, 0, options);
612 }
613
614 static void
615 linux_child_post_attach (int pid)
616 {
617 linux_enable_event_reporting (pid_to_ptid (pid));
618 check_for_thread_db ();
619 }
620
621 static void
622 linux_child_post_startup_inferior (ptid_t ptid)
623 {
624 linux_enable_event_reporting (ptid);
625 check_for_thread_db ();
626 }
627
628 static int
629 linux_child_follow_fork (struct target_ops *ops, int follow_child)
630 {
631 ptid_t last_ptid;
632 struct target_waitstatus last_status;
633 int has_vforked;
634 int parent_pid, child_pid;
635
636 if (target_can_async_p ())
637 target_async (NULL, 0);
638
639 get_last_target_status (&last_ptid, &last_status);
640 has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED);
641 parent_pid = ptid_get_lwp (last_ptid);
642 if (parent_pid == 0)
643 parent_pid = ptid_get_pid (last_ptid);
644 child_pid = last_status.value.related_pid;
645
646 if (! follow_child)
647 {
648 /* We're already attached to the parent, by default. */
649
650 /* Before detaching from the child, remove all breakpoints from
651 it. (This won't actually modify the breakpoint list, but will
652 physically remove the breakpoints from the child.) */
653 /* If we vforked this will remove the breakpoints from the parent
654 also, but they'll be reinserted below. */
655 detach_breakpoints (child_pid);
656
657 /* Detach new forked process? */
658 if (detach_fork)
659 {
660 if (info_verbose || debug_linux_nat)
661 {
662 target_terminal_ours ();
663 fprintf_filtered (gdb_stdlog,
664 "Detaching after fork from child process %d.\n",
665 child_pid);
666 }
667
668 ptrace (PTRACE_DETACH, child_pid, 0, 0);
669 }
670 else
671 {
672 struct fork_info *fp;
673 /* Retain child fork in ptrace (stopped) state. */
674 fp = find_fork_pid (child_pid);
675 if (!fp)
676 fp = add_fork (child_pid);
677 fork_save_infrun_state (fp, 0);
678 }
679
680 if (has_vforked)
681 {
682 gdb_assert (linux_supports_tracefork_flag >= 0);
683 if (linux_supports_tracevforkdone (0))
684 {
685 int status;
686
687 ptrace (PTRACE_CONT, parent_pid, 0, 0);
688 my_waitpid (parent_pid, &status, __WALL);
689 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
690 warning (_("Unexpected waitpid result %06x when waiting for "
691 "vfork-done"), status);
692 }
693 else
694 {
695 /* We can't insert breakpoints until the child has
696 finished with the shared memory region. We need to
697 wait until that happens. Ideal would be to just
698 call:
699 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
700 - waitpid (parent_pid, &status, __WALL);
701 However, most architectures can't handle a syscall
702 being traced on the way out if it wasn't traced on
703 the way in.
704
705 We might also think to loop, continuing the child
706 until it exits or gets a SIGTRAP. One problem is
707 that the child might call ptrace with PTRACE_TRACEME.
708
709 There's no simple and reliable way to figure out when
710 the vforked child will be done with its copy of the
711 shared memory. We could step it out of the syscall,
712 two instructions, let it go, and then single-step the
713 parent once. When we have hardware single-step, this
714 would work; with software single-step it could still
715 be made to work but we'd have to be able to insert
716 single-step breakpoints in the child, and we'd have
717 to insert -just- the single-step breakpoint in the
718 parent. Very awkward.
719
720 In the end, the best we can do is to make sure it
721 runs for a little while. Hopefully it will be out of
722 range of any breakpoints we reinsert. Usually this
723 is only the single-step breakpoint at vfork's return
724 point. */
725
726 usleep (10000);
727 }
728
729 /* Since we vforked, breakpoints were removed in the parent
730 too. Put them back. */
731 reattach_breakpoints (parent_pid);
732 }
733 }
734 else
735 {
736 char child_pid_spelling[40];
737
738 /* Needed to keep the breakpoint lists in sync. */
739 if (! has_vforked)
740 detach_breakpoints (child_pid);
741
742 /* Before detaching from the parent, remove all breakpoints from it. */
743 remove_breakpoints ();
744
745 if (info_verbose || debug_linux_nat)
746 {
747 target_terminal_ours ();
748 fprintf_filtered (gdb_stdlog,
749 "Attaching after fork to child process %d.\n",
750 child_pid);
751 }
752
753 /* If we're vforking, we may want to hold on to the parent until
754 the child exits or execs. At exec time we can remove the old
755 breakpoints from the parent and detach it; at exit time we
756 could do the same (or even, sneakily, resume debugging it - the
757 child's exec has failed, or something similar).
758
759 This doesn't clean up "properly", because we can't call
760 target_detach, but that's OK; if the current target is "child",
761 then it doesn't need any further cleanups, and lin_lwp will
762 generally not encounter vfork (vfork is defined to fork
763 in libpthread.so).
764
765 The holding part is very easy if we have VFORKDONE events;
766 but keeping track of both processes is beyond GDB at the
767 moment. So we don't expose the parent to the rest of GDB.
768 Instead we quietly hold onto it until such time as we can
769 safely resume it. */
770
771 if (has_vforked)
772 linux_parent_pid = parent_pid;
773 else if (!detach_fork)
774 {
775 struct fork_info *fp;
776 /* Retain parent fork in ptrace (stopped) state. */
777 fp = find_fork_pid (parent_pid);
778 if (!fp)
779 fp = add_fork (parent_pid);
780 fork_save_infrun_state (fp, 0);
781 }
782 else
783 target_detach (NULL, 0);
784
785 inferior_ptid = ptid_build (child_pid, child_pid, 0);
786
787 /* Reinstall ourselves, since we might have been removed in
788 target_detach (which does other necessary cleanup). */
789
790 push_target (ops);
791 linux_nat_switch_fork (inferior_ptid);
792 check_for_thread_db ();
793
794 /* Reset breakpoints in the child as appropriate. */
795 follow_inferior_reset_breakpoints ();
796 }
797
798 if (target_can_async_p ())
799 target_async (inferior_event_handler, 0);
800
801 return 0;
802 }
803
804 \f
805 static void
806 linux_child_insert_fork_catchpoint (int pid)
807 {
808 if (! linux_supports_tracefork (pid))
809 error (_("Your system does not support fork catchpoints."));
810 }
811
812 static void
813 linux_child_insert_vfork_catchpoint (int pid)
814 {
815 if (!linux_supports_tracefork (pid))
816 error (_("Your system does not support vfork catchpoints."));
817 }
818
819 static void
820 linux_child_insert_exec_catchpoint (int pid)
821 {
822 if (!linux_supports_tracefork (pid))
823 error (_("Your system does not support exec catchpoints."));
824 }
825
826 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
827 are processes sharing the same VM space. A multi-threaded process
828 is basically a group of such processes. However, such a grouping
829 is almost entirely a user-space issue; the kernel doesn't enforce
830 such a grouping at all (this might change in the future). In
831 general, we'll rely on the threads library (i.e. the GNU/Linux
832 Threads library) to provide such a grouping.
833
834 It is perfectly well possible to write a multi-threaded application
835 without the assistance of a threads library, by using the clone
836 system call directly. This module should be able to give some
837 rudimentary support for debugging such applications if developers
838 specify the CLONE_PTRACE flag in the clone system call, and are
839 using the Linux kernel 2.4 or above.
840
841 Note that there are some peculiarities in GNU/Linux that affect
842 this code:
843
844 - In general one should specify the __WCLONE flag to waitpid in
845 order to make it report events for any of the cloned processes
846 (and leave it out for the initial process). However, if a cloned
847 process has exited the exit status is only reported if the
848 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
849 we cannot use it since GDB must work on older systems too.
850
851 - When a traced, cloned process exits and is waited for by the
852 debugger, the kernel reassigns it to the original parent and
853 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
854 library doesn't notice this, which leads to the "zombie problem":
855 When debugged a multi-threaded process that spawns a lot of
856 threads will run out of processes, even if the threads exit,
857 because the "zombies" stay around. */
858
859 /* List of known LWPs. */
860 struct lwp_info *lwp_list;
861
862 /* Number of LWPs in the list. */
863 static int num_lwps;
864 \f
865
866 /* Original signal mask. */
867 static sigset_t normal_mask;
868
869 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
870 _initialize_linux_nat. */
871 static sigset_t suspend_mask;
872
873 /* SIGCHLD action for synchronous mode. */
874 struct sigaction sync_sigchld_action;
875
876 /* SIGCHLD action for asynchronous mode. */
877 static struct sigaction async_sigchld_action;
878
879 /* SIGCHLD default action, to pass to new inferiors. */
880 static struct sigaction sigchld_default_action;
881 \f
882
883 /* Prototypes for local functions. */
884 static int stop_wait_callback (struct lwp_info *lp, void *data);
885 static int linux_nat_thread_alive (ptid_t ptid);
886 static char *linux_child_pid_to_exec_file (int pid);
887 static int cancel_breakpoint (struct lwp_info *lp);
888
889 \f
890 /* Convert wait status STATUS to a string. Used for printing debug
891 messages only. */
892
893 static char *
894 status_to_str (int status)
895 {
896 static char buf[64];
897
898 if (WIFSTOPPED (status))
899 snprintf (buf, sizeof (buf), "%s (stopped)",
900 strsignal (WSTOPSIG (status)));
901 else if (WIFSIGNALED (status))
902 snprintf (buf, sizeof (buf), "%s (terminated)",
903 strsignal (WSTOPSIG (status)));
904 else
905 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
906
907 return buf;
908 }
909
910 /* Initialize the list of LWPs. Note that this module, contrary to
911 what GDB's generic threads layer does for its thread list,
912 re-initializes the LWP lists whenever we mourn or detach (which
913 doesn't involve mourning) the inferior. */
914
915 static void
916 init_lwp_list (void)
917 {
918 struct lwp_info *lp, *lpnext;
919
920 for (lp = lwp_list; lp; lp = lpnext)
921 {
922 lpnext = lp->next;
923 xfree (lp);
924 }
925
926 lwp_list = NULL;
927 num_lwps = 0;
928 }
929
930 /* Add the LWP specified by PID to the list. Return a pointer to the
931 structure describing the new LWP. The LWP should already be stopped
932 (with an exception for the very first LWP). */
933
934 static struct lwp_info *
935 add_lwp (ptid_t ptid)
936 {
937 struct lwp_info *lp;
938
939 gdb_assert (is_lwp (ptid));
940
941 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
942
943 memset (lp, 0, sizeof (struct lwp_info));
944
945 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
946
947 lp->ptid = ptid;
948
949 lp->next = lwp_list;
950 lwp_list = lp;
951 ++num_lwps;
952
953 if (num_lwps > 1 && linux_nat_new_thread != NULL)
954 linux_nat_new_thread (ptid);
955
956 return lp;
957 }
958
959 /* Remove the LWP specified by PID from the list. */
960
961 static void
962 delete_lwp (ptid_t ptid)
963 {
964 struct lwp_info *lp, *lpprev;
965
966 lpprev = NULL;
967
968 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
969 if (ptid_equal (lp->ptid, ptid))
970 break;
971
972 if (!lp)
973 return;
974
975 num_lwps--;
976
977 if (lpprev)
978 lpprev->next = lp->next;
979 else
980 lwp_list = lp->next;
981
982 xfree (lp);
983 }
984
985 /* Return a pointer to the structure describing the LWP corresponding
986 to PID. If no corresponding LWP could be found, return NULL. */
987
988 static struct lwp_info *
989 find_lwp_pid (ptid_t ptid)
990 {
991 struct lwp_info *lp;
992 int lwp;
993
994 if (is_lwp (ptid))
995 lwp = GET_LWP (ptid);
996 else
997 lwp = GET_PID (ptid);
998
999 for (lp = lwp_list; lp; lp = lp->next)
1000 if (lwp == GET_LWP (lp->ptid))
1001 return lp;
1002
1003 return NULL;
1004 }
1005
1006 /* Call CALLBACK with its second argument set to DATA for every LWP in
1007 the list. If CALLBACK returns 1 for a particular LWP, return a
1008 pointer to the structure describing that LWP immediately.
1009 Otherwise return NULL. */
1010
1011 struct lwp_info *
1012 iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data)
1013 {
1014 struct lwp_info *lp, *lpnext;
1015
1016 for (lp = lwp_list; lp; lp = lpnext)
1017 {
1018 lpnext = lp->next;
1019 if ((*callback) (lp, data))
1020 return lp;
1021 }
1022
1023 return NULL;
1024 }
1025
1026 /* Update our internal state when changing from one fork (checkpoint,
1027 et cetera) to another indicated by NEW_PTID. We can only switch
1028 single-threaded applications, so we only create one new LWP, and
1029 the previous list is discarded. */
1030
1031 void
1032 linux_nat_switch_fork (ptid_t new_ptid)
1033 {
1034 struct lwp_info *lp;
1035
1036 init_thread_list ();
1037 init_lwp_list ();
1038 lp = add_lwp (new_ptid);
1039 add_thread_silent (new_ptid);
1040 lp->stopped = 1;
1041 }
1042
1043 /* Record a PTID for later deletion. */
1044
1045 struct saved_ptids
1046 {
1047 ptid_t ptid;
1048 struct saved_ptids *next;
1049 };
1050 static struct saved_ptids *threads_to_delete;
1051
1052 static void
1053 record_dead_thread (ptid_t ptid)
1054 {
1055 struct saved_ptids *p = xmalloc (sizeof (struct saved_ptids));
1056 p->ptid = ptid;
1057 p->next = threads_to_delete;
1058 threads_to_delete = p;
1059 }
1060
1061 /* Delete any dead threads which are not the current thread. */
1062
1063 static void
1064 prune_lwps (void)
1065 {
1066 struct saved_ptids **p = &threads_to_delete;
1067
1068 while (*p)
1069 if (! ptid_equal ((*p)->ptid, inferior_ptid))
1070 {
1071 struct saved_ptids *tmp = *p;
1072 delete_thread (tmp->ptid);
1073 *p = tmp->next;
1074 xfree (tmp);
1075 }
1076 else
1077 p = &(*p)->next;
1078 }
1079
1080 /* Handle the exit of a single thread LP. */
1081
1082 static void
1083 exit_lwp (struct lwp_info *lp)
1084 {
1085 struct thread_info *th = find_thread_pid (lp->ptid);
1086
1087 if (th)
1088 {
1089 if (print_thread_events)
1090 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1091
1092 /* Core GDB cannot deal with us deleting the current thread. */
1093 if (!ptid_equal (lp->ptid, inferior_ptid))
1094 delete_thread (lp->ptid);
1095 else
1096 record_dead_thread (lp->ptid);
1097 }
1098
1099 delete_lwp (lp->ptid);
1100 }
1101
1102 /* Detect `T (stopped)' in `/proc/PID/status'.
1103 Other states including `T (tracing stop)' are reported as false. */
1104
1105 static int
1106 pid_is_stopped (pid_t pid)
1107 {
1108 FILE *status_file;
1109 char buf[100];
1110 int retval = 0;
1111
1112 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1113 status_file = fopen (buf, "r");
1114 if (status_file != NULL)
1115 {
1116 int have_state = 0;
1117
1118 while (fgets (buf, sizeof (buf), status_file))
1119 {
1120 if (strncmp (buf, "State:", 6) == 0)
1121 {
1122 have_state = 1;
1123 break;
1124 }
1125 }
1126 if (have_state && strstr (buf, "T (stopped)") != NULL)
1127 retval = 1;
1128 fclose (status_file);
1129 }
1130 return retval;
1131 }
1132
1133 /* Wait for the LWP specified by LP, which we have just attached to.
1134 Returns a wait status for that LWP, to cache. */
1135
1136 static int
1137 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1138 int *signalled)
1139 {
1140 pid_t new_pid, pid = GET_LWP (ptid);
1141 int status;
1142
1143 if (pid_is_stopped (pid))
1144 {
1145 if (debug_linux_nat)
1146 fprintf_unfiltered (gdb_stdlog,
1147 "LNPAW: Attaching to a stopped process\n");
1148
1149 /* The process is definitely stopped. It is in a job control
1150 stop, unless the kernel predates the TASK_STOPPED /
1151 TASK_TRACED distinction, in which case it might be in a
1152 ptrace stop. Make sure it is in a ptrace stop; from there we
1153 can kill it, signal it, et cetera.
1154
1155 First make sure there is a pending SIGSTOP. Since we are
1156 already attached, the process can not transition from stopped
1157 to running without a PTRACE_CONT; so we know this signal will
1158 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1159 probably already in the queue (unless this kernel is old
1160 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1161 is not an RT signal, it can only be queued once. */
1162 kill_lwp (pid, SIGSTOP);
1163
1164 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1165 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1166 ptrace (PTRACE_CONT, pid, 0, 0);
1167 }
1168
1169 /* Make sure the initial process is stopped. The user-level threads
1170 layer might want to poke around in the inferior, and that won't
1171 work if things haven't stabilized yet. */
1172 new_pid = my_waitpid (pid, &status, 0);
1173 if (new_pid == -1 && errno == ECHILD)
1174 {
1175 if (first)
1176 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1177
1178 /* Try again with __WCLONE to check cloned processes. */
1179 new_pid = my_waitpid (pid, &status, __WCLONE);
1180 *cloned = 1;
1181 }
1182
1183 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1184
1185 if (WSTOPSIG (status) != SIGSTOP)
1186 {
1187 *signalled = 1;
1188 if (debug_linux_nat)
1189 fprintf_unfiltered (gdb_stdlog,
1190 "LNPAW: Received %s after attaching\n",
1191 status_to_str (status));
1192 }
1193
1194 return status;
1195 }
1196
1197 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1198 if the new LWP could not be attached. */
1199
1200 int
1201 lin_lwp_attach_lwp (ptid_t ptid)
1202 {
1203 struct lwp_info *lp;
1204 enum sigchld_state async_events_original_state;
1205
1206 gdb_assert (is_lwp (ptid));
1207
1208 async_events_original_state = linux_nat_async_events (sigchld_sync);
1209
1210 lp = find_lwp_pid (ptid);
1211
1212 /* We assume that we're already attached to any LWP that has an id
1213 equal to the overall process id, and to any LWP that is already
1214 in our list of LWPs. If we're not seeing exit events from threads
1215 and we've had PID wraparound since we last tried to stop all threads,
1216 this assumption might be wrong; fortunately, this is very unlikely
1217 to happen. */
1218 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1219 {
1220 int status, cloned = 0, signalled = 0;
1221
1222 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1223 {
1224 /* If we fail to attach to the thread, issue a warning,
1225 but continue. One way this can happen is if thread
1226 creation is interrupted; as of Linux kernel 2.6.19, a
1227 bug may place threads in the thread list and then fail
1228 to create them. */
1229 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1230 safe_strerror (errno));
1231 return -1;
1232 }
1233
1234 if (debug_linux_nat)
1235 fprintf_unfiltered (gdb_stdlog,
1236 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1237 target_pid_to_str (ptid));
1238
1239 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1240 lp = add_lwp (ptid);
1241 lp->stopped = 1;
1242 lp->cloned = cloned;
1243 lp->signalled = signalled;
1244 if (WSTOPSIG (status) != SIGSTOP)
1245 {
1246 lp->resumed = 1;
1247 lp->status = status;
1248 }
1249
1250 target_post_attach (GET_LWP (lp->ptid));
1251
1252 if (debug_linux_nat)
1253 {
1254 fprintf_unfiltered (gdb_stdlog,
1255 "LLAL: waitpid %s received %s\n",
1256 target_pid_to_str (ptid),
1257 status_to_str (status));
1258 }
1259 }
1260 else
1261 {
1262 /* We assume that the LWP representing the original process is
1263 already stopped. Mark it as stopped in the data structure
1264 that the GNU/linux ptrace layer uses to keep track of
1265 threads. Note that this won't have already been done since
1266 the main thread will have, we assume, been stopped by an
1267 attach from a different layer. */
1268 if (lp == NULL)
1269 lp = add_lwp (ptid);
1270 lp->stopped = 1;
1271 }
1272
1273 linux_nat_async_events (async_events_original_state);
1274 return 0;
1275 }
1276
1277 static void
1278 linux_nat_create_inferior (char *exec_file, char *allargs, char **env,
1279 int from_tty)
1280 {
1281 int saved_async = 0;
1282
1283 /* The fork_child mechanism is synchronous and calls target_wait, so
1284 we have to mask the async mode. */
1285
1286 if (target_can_async_p ())
1287 /* Mask async mode. Creating a child requires a loop calling
1288 wait_for_inferior currently. */
1289 saved_async = linux_nat_async_mask (0);
1290 else
1291 {
1292 /* Restore the original signal mask. */
1293 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1294 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1295 suspend_mask = normal_mask;
1296 sigdelset (&suspend_mask, SIGCHLD);
1297 }
1298
1299 /* Set SIGCHLD to the default action, until after execing the child,
1300 since the inferior inherits the superior's signal mask. It will
1301 be blocked again in linux_nat_wait, which is only reached after
1302 the inferior execing. */
1303 linux_nat_async_events (sigchld_default);
1304
1305 linux_ops->to_create_inferior (exec_file, allargs, env, from_tty);
1306
1307 if (saved_async)
1308 linux_nat_async_mask (saved_async);
1309 }
1310
1311 static void
1312 linux_nat_attach (char *args, int from_tty)
1313 {
1314 struct lwp_info *lp;
1315 int status;
1316
1317 /* FIXME: We should probably accept a list of process id's, and
1318 attach all of them. */
1319 linux_ops->to_attach (args, from_tty);
1320
1321 if (!target_can_async_p ())
1322 {
1323 /* Restore the original signal mask. */
1324 sigprocmask (SIG_SETMASK, &normal_mask, NULL);
1325 /* Make sure we don't block SIGCHLD during a sigsuspend. */
1326 suspend_mask = normal_mask;
1327 sigdelset (&suspend_mask, SIGCHLD);
1328 }
1329
1330 /* Add the initial process as the first LWP to the list. */
1331 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1332 lp = add_lwp (inferior_ptid);
1333
1334 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1335 &lp->signalled);
1336 lp->stopped = 1;
1337
1338 /* If this process is not using thread_db, then we still don't
1339 detect any other threads, but add at least this one. */
1340 add_thread_silent (lp->ptid);
1341
1342 /* Save the wait status to report later. */
1343 lp->resumed = 1;
1344 if (debug_linux_nat)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "LNA: waitpid %ld, saving status %s\n",
1347 (long) GET_PID (lp->ptid), status_to_str (status));
1348
1349 if (!target_can_async_p ())
1350 lp->status = status;
1351 else
1352 {
1353 /* We already waited for this LWP, so put the wait result on the
1354 pipe. The event loop will wake up and gets us to handling
1355 this event. */
1356 linux_nat_event_pipe_push (GET_PID (lp->ptid), status,
1357 lp->cloned ? __WCLONE : 0);
1358 /* Register in the event loop. */
1359 target_async (inferior_event_handler, 0);
1360 }
1361 }
1362
1363 /* Get pending status of LP. */
1364 static int
1365 get_pending_status (struct lwp_info *lp, int *status)
1366 {
1367 struct target_waitstatus last;
1368 ptid_t last_ptid;
1369
1370 get_last_target_status (&last_ptid, &last);
1371
1372 /* If this lwp is the ptid that GDB is processing an event from, the
1373 signal will be in stop_signal. Otherwise, in all-stop + sync
1374 mode, we may cache pending events in lp->status while trying to
1375 stop all threads (see stop_wait_callback). In async mode, the
1376 events are always cached in waitpid_queue. */
1377
1378 *status = 0;
1379 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1380 {
1381 if (stop_signal != TARGET_SIGNAL_0
1382 && signal_pass_state (stop_signal))
1383 *status = W_STOPCODE (target_signal_to_host (stop_signal));
1384 }
1385 else if (target_can_async_p ())
1386 queued_waitpid (GET_LWP (lp->ptid), status, __WALL);
1387 else
1388 *status = lp->status;
1389
1390 return 0;
1391 }
1392
1393 static int
1394 detach_callback (struct lwp_info *lp, void *data)
1395 {
1396 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1397
1398 if (debug_linux_nat && lp->status)
1399 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1400 strsignal (WSTOPSIG (lp->status)),
1401 target_pid_to_str (lp->ptid));
1402
1403 /* If there is a pending SIGSTOP, get rid of it. */
1404 if (lp->signalled)
1405 {
1406 if (debug_linux_nat)
1407 fprintf_unfiltered (gdb_stdlog,
1408 "DC: Sending SIGCONT to %s\n",
1409 target_pid_to_str (lp->ptid));
1410
1411 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1412 lp->signalled = 0;
1413 }
1414
1415 /* We don't actually detach from the LWP that has an id equal to the
1416 overall process id just yet. */
1417 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1418 {
1419 int status = 0;
1420
1421 /* Pass on any pending signal for this LWP. */
1422 get_pending_status (lp, &status);
1423
1424 errno = 0;
1425 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1426 WSTOPSIG (status)) < 0)
1427 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1428 safe_strerror (errno));
1429
1430 if (debug_linux_nat)
1431 fprintf_unfiltered (gdb_stdlog,
1432 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1433 target_pid_to_str (lp->ptid),
1434 strsignal (WSTOPSIG (lp->status)));
1435
1436 delete_lwp (lp->ptid);
1437 }
1438
1439 return 0;
1440 }
1441
1442 static void
1443 linux_nat_detach (char *args, int from_tty)
1444 {
1445 int pid;
1446 int status;
1447 enum target_signal sig;
1448
1449 if (target_can_async_p ())
1450 linux_nat_async (NULL, 0);
1451
1452 iterate_over_lwps (detach_callback, NULL);
1453
1454 /* Only the initial process should be left right now. */
1455 gdb_assert (num_lwps == 1);
1456
1457 /* Pass on any pending signal for the last LWP. */
1458 if ((args == NULL || *args == '\0')
1459 && get_pending_status (lwp_list, &status) != -1
1460 && WIFSTOPPED (status))
1461 {
1462 /* Put the signal number in ARGS so that inf_ptrace_detach will
1463 pass it along with PTRACE_DETACH. */
1464 args = alloca (8);
1465 sprintf (args, "%d", (int) WSTOPSIG (status));
1466 fprintf_unfiltered (gdb_stdlog,
1467 "LND: Sending signal %s to %s\n",
1468 args,
1469 target_pid_to_str (lwp_list->ptid));
1470 }
1471
1472 /* Destroy LWP info; it's no longer valid. */
1473 init_lwp_list ();
1474
1475 pid = GET_PID (inferior_ptid);
1476 inferior_ptid = pid_to_ptid (pid);
1477 linux_ops->to_detach (args, from_tty);
1478
1479 if (target_can_async_p ())
1480 drain_queued_events (pid);
1481 }
1482
1483 /* Resume LP. */
1484
1485 static int
1486 resume_callback (struct lwp_info *lp, void *data)
1487 {
1488 if (lp->stopped && lp->status == 0)
1489 {
1490 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
1491 0, TARGET_SIGNAL_0);
1492 if (debug_linux_nat)
1493 fprintf_unfiltered (gdb_stdlog,
1494 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1495 target_pid_to_str (lp->ptid));
1496 lp->stopped = 0;
1497 lp->step = 0;
1498 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1499 }
1500
1501 return 0;
1502 }
1503
1504 static int
1505 resume_clear_callback (struct lwp_info *lp, void *data)
1506 {
1507 lp->resumed = 0;
1508 return 0;
1509 }
1510
1511 static int
1512 resume_set_callback (struct lwp_info *lp, void *data)
1513 {
1514 lp->resumed = 1;
1515 return 0;
1516 }
1517
1518 static void
1519 linux_nat_resume (ptid_t ptid, int step, enum target_signal signo)
1520 {
1521 struct lwp_info *lp;
1522 int resume_all;
1523
1524 if (debug_linux_nat)
1525 fprintf_unfiltered (gdb_stdlog,
1526 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1527 step ? "step" : "resume",
1528 target_pid_to_str (ptid),
1529 signo ? strsignal (signo) : "0",
1530 target_pid_to_str (inferior_ptid));
1531
1532 prune_lwps ();
1533
1534 if (target_can_async_p ())
1535 /* Block events while we're here. */
1536 linux_nat_async_events (sigchld_sync);
1537
1538 /* A specific PTID means `step only this process id'. */
1539 resume_all = (PIDGET (ptid) == -1);
1540
1541 if (resume_all)
1542 iterate_over_lwps (resume_set_callback, NULL);
1543 else
1544 iterate_over_lwps (resume_clear_callback, NULL);
1545
1546 /* If PID is -1, it's the current inferior that should be
1547 handled specially. */
1548 if (PIDGET (ptid) == -1)
1549 ptid = inferior_ptid;
1550
1551 lp = find_lwp_pid (ptid);
1552 gdb_assert (lp != NULL);
1553
1554 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1555
1556 /* Remember if we're stepping. */
1557 lp->step = step;
1558
1559 /* Mark this LWP as resumed. */
1560 lp->resumed = 1;
1561
1562 /* If we have a pending wait status for this thread, there is no
1563 point in resuming the process. But first make sure that
1564 linux_nat_wait won't preemptively handle the event - we
1565 should never take this short-circuit if we are going to
1566 leave LP running, since we have skipped resuming all the
1567 other threads. This bit of code needs to be synchronized
1568 with linux_nat_wait. */
1569
1570 /* In async mode, we never have pending wait status. */
1571 if (target_can_async_p () && lp->status)
1572 internal_error (__FILE__, __LINE__, "Pending status in async mode");
1573
1574 if (lp->status && WIFSTOPPED (lp->status))
1575 {
1576 int saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1577
1578 if (signal_stop_state (saved_signo) == 0
1579 && signal_print_state (saved_signo) == 0
1580 && signal_pass_state (saved_signo) == 1)
1581 {
1582 if (debug_linux_nat)
1583 fprintf_unfiltered (gdb_stdlog,
1584 "LLR: Not short circuiting for ignored "
1585 "status 0x%x\n", lp->status);
1586
1587 /* FIXME: What should we do if we are supposed to continue
1588 this thread with a signal? */
1589 gdb_assert (signo == TARGET_SIGNAL_0);
1590 signo = saved_signo;
1591 lp->status = 0;
1592 }
1593 }
1594
1595 if (lp->status)
1596 {
1597 /* FIXME: What should we do if we are supposed to continue
1598 this thread with a signal? */
1599 gdb_assert (signo == TARGET_SIGNAL_0);
1600
1601 if (debug_linux_nat)
1602 fprintf_unfiltered (gdb_stdlog,
1603 "LLR: Short circuiting for status 0x%x\n",
1604 lp->status);
1605
1606 return;
1607 }
1608
1609 /* Mark LWP as not stopped to prevent it from being continued by
1610 resume_callback. */
1611 lp->stopped = 0;
1612
1613 if (resume_all)
1614 iterate_over_lwps (resume_callback, NULL);
1615
1616 linux_ops->to_resume (ptid, step, signo);
1617 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1618
1619 if (debug_linux_nat)
1620 fprintf_unfiltered (gdb_stdlog,
1621 "LLR: %s %s, %s (resume event thread)\n",
1622 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1623 target_pid_to_str (ptid),
1624 signo ? strsignal (signo) : "0");
1625
1626 if (target_can_async_p ())
1627 {
1628 target_executing = 1;
1629 target_async (inferior_event_handler, 0);
1630 }
1631 }
1632
1633 /* Issue kill to specified lwp. */
1634
1635 static int tkill_failed;
1636
1637 static int
1638 kill_lwp (int lwpid, int signo)
1639 {
1640 errno = 0;
1641
1642 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1643 fails, then we are not using nptl threads and we should be using kill. */
1644
1645 #ifdef HAVE_TKILL_SYSCALL
1646 if (!tkill_failed)
1647 {
1648 int ret = syscall (__NR_tkill, lwpid, signo);
1649 if (errno != ENOSYS)
1650 return ret;
1651 errno = 0;
1652 tkill_failed = 1;
1653 }
1654 #endif
1655
1656 return kill (lwpid, signo);
1657 }
1658
1659 /* Handle a GNU/Linux extended wait response. If we see a clone
1660 event, we need to add the new LWP to our list (and not report the
1661 trap to higher layers). This function returns non-zero if the
1662 event should be ignored and we should wait again. If STOPPING is
1663 true, the new LWP remains stopped, otherwise it is continued. */
1664
1665 static int
1666 linux_handle_extended_wait (struct lwp_info *lp, int status,
1667 int stopping)
1668 {
1669 int pid = GET_LWP (lp->ptid);
1670 struct target_waitstatus *ourstatus = &lp->waitstatus;
1671 struct lwp_info *new_lp = NULL;
1672 int event = status >> 16;
1673
1674 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1675 || event == PTRACE_EVENT_CLONE)
1676 {
1677 unsigned long new_pid;
1678 int ret;
1679
1680 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1681
1682 /* If we haven't already seen the new PID stop, wait for it now. */
1683 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1684 {
1685 /* The new child has a pending SIGSTOP. We can't affect it until it
1686 hits the SIGSTOP, but we're already attached. */
1687 ret = my_waitpid (new_pid, &status,
1688 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1689 if (ret == -1)
1690 perror_with_name (_("waiting for new child"));
1691 else if (ret != new_pid)
1692 internal_error (__FILE__, __LINE__,
1693 _("wait returned unexpected PID %d"), ret);
1694 else if (!WIFSTOPPED (status))
1695 internal_error (__FILE__, __LINE__,
1696 _("wait returned unexpected status 0x%x"), status);
1697 }
1698
1699 ourstatus->value.related_pid = new_pid;
1700
1701 if (event == PTRACE_EVENT_FORK)
1702 ourstatus->kind = TARGET_WAITKIND_FORKED;
1703 else if (event == PTRACE_EVENT_VFORK)
1704 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1705 else
1706 {
1707 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1708 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid)));
1709 new_lp->cloned = 1;
1710
1711 if (WSTOPSIG (status) != SIGSTOP)
1712 {
1713 /* This can happen if someone starts sending signals to
1714 the new thread before it gets a chance to run, which
1715 have a lower number than SIGSTOP (e.g. SIGUSR1).
1716 This is an unlikely case, and harder to handle for
1717 fork / vfork than for clone, so we do not try - but
1718 we handle it for clone events here. We'll send
1719 the other signal on to the thread below. */
1720
1721 new_lp->signalled = 1;
1722 }
1723 else
1724 status = 0;
1725
1726 if (stopping)
1727 new_lp->stopped = 1;
1728 else
1729 {
1730 new_lp->resumed = 1;
1731 ptrace (PTRACE_CONT, lp->waitstatus.value.related_pid, 0,
1732 status ? WSTOPSIG (status) : 0);
1733 }
1734
1735 if (debug_linux_nat)
1736 fprintf_unfiltered (gdb_stdlog,
1737 "LHEW: Got clone event from LWP %ld, resuming\n",
1738 GET_LWP (lp->ptid));
1739 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1740
1741 return 1;
1742 }
1743
1744 return 0;
1745 }
1746
1747 if (event == PTRACE_EVENT_EXEC)
1748 {
1749 ourstatus->kind = TARGET_WAITKIND_EXECD;
1750 ourstatus->value.execd_pathname
1751 = xstrdup (linux_child_pid_to_exec_file (pid));
1752
1753 if (linux_parent_pid)
1754 {
1755 detach_breakpoints (linux_parent_pid);
1756 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
1757
1758 linux_parent_pid = 0;
1759 }
1760
1761 return 0;
1762 }
1763
1764 internal_error (__FILE__, __LINE__,
1765 _("unknown ptrace event %d"), event);
1766 }
1767
1768 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
1769 exited. */
1770
1771 static int
1772 wait_lwp (struct lwp_info *lp)
1773 {
1774 pid_t pid;
1775 int status;
1776 int thread_dead = 0;
1777
1778 gdb_assert (!lp->stopped);
1779 gdb_assert (lp->status == 0);
1780
1781 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
1782 if (pid == -1 && errno == ECHILD)
1783 {
1784 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
1785 if (pid == -1 && errno == ECHILD)
1786 {
1787 /* The thread has previously exited. We need to delete it
1788 now because, for some vendor 2.4 kernels with NPTL
1789 support backported, there won't be an exit event unless
1790 it is the main thread. 2.6 kernels will report an exit
1791 event for each thread that exits, as expected. */
1792 thread_dead = 1;
1793 if (debug_linux_nat)
1794 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
1795 target_pid_to_str (lp->ptid));
1796 }
1797 }
1798
1799 if (!thread_dead)
1800 {
1801 gdb_assert (pid == GET_LWP (lp->ptid));
1802
1803 if (debug_linux_nat)
1804 {
1805 fprintf_unfiltered (gdb_stdlog,
1806 "WL: waitpid %s received %s\n",
1807 target_pid_to_str (lp->ptid),
1808 status_to_str (status));
1809 }
1810 }
1811
1812 /* Check if the thread has exited. */
1813 if (WIFEXITED (status) || WIFSIGNALED (status))
1814 {
1815 thread_dead = 1;
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
1818 target_pid_to_str (lp->ptid));
1819 }
1820
1821 if (thread_dead)
1822 {
1823 exit_lwp (lp);
1824 return 0;
1825 }
1826
1827 gdb_assert (WIFSTOPPED (status));
1828
1829 /* Handle GNU/Linux's extended waitstatus for trace events. */
1830 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1831 {
1832 if (debug_linux_nat)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "WL: Handling extended status 0x%06x\n",
1835 status);
1836 if (linux_handle_extended_wait (lp, status, 1))
1837 return wait_lwp (lp);
1838 }
1839
1840 return status;
1841 }
1842
1843 /* Save the most recent siginfo for LP. This is currently only called
1844 for SIGTRAP; some ports use the si_addr field for
1845 target_stopped_data_address. In the future, it may also be used to
1846 restore the siginfo of requeued signals. */
1847
1848 static void
1849 save_siginfo (struct lwp_info *lp)
1850 {
1851 errno = 0;
1852 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
1853 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
1854
1855 if (errno != 0)
1856 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1857 }
1858
1859 /* Send a SIGSTOP to LP. */
1860
1861 static int
1862 stop_callback (struct lwp_info *lp, void *data)
1863 {
1864 if (!lp->stopped && !lp->signalled)
1865 {
1866 int ret;
1867
1868 if (debug_linux_nat)
1869 {
1870 fprintf_unfiltered (gdb_stdlog,
1871 "SC: kill %s **<SIGSTOP>**\n",
1872 target_pid_to_str (lp->ptid));
1873 }
1874 errno = 0;
1875 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
1876 if (debug_linux_nat)
1877 {
1878 fprintf_unfiltered (gdb_stdlog,
1879 "SC: lwp kill %d %s\n",
1880 ret,
1881 errno ? safe_strerror (errno) : "ERRNO-OK");
1882 }
1883
1884 lp->signalled = 1;
1885 gdb_assert (lp->status == 0);
1886 }
1887
1888 return 0;
1889 }
1890
1891 /* Wait until LP is stopped. If DATA is non-null it is interpreted as
1892 a pointer to a set of signals to be flushed immediately. */
1893
1894 static int
1895 stop_wait_callback (struct lwp_info *lp, void *data)
1896 {
1897 sigset_t *flush_mask = data;
1898
1899 if (!lp->stopped)
1900 {
1901 int status;
1902
1903 status = wait_lwp (lp);
1904 if (status == 0)
1905 return 0;
1906
1907 /* Ignore any signals in FLUSH_MASK. */
1908 if (flush_mask && sigismember (flush_mask, WSTOPSIG (status)))
1909 {
1910 if (!lp->signalled)
1911 {
1912 lp->stopped = 1;
1913 return 0;
1914 }
1915
1916 errno = 0;
1917 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1918 if (debug_linux_nat)
1919 fprintf_unfiltered (gdb_stdlog,
1920 "PTRACE_CONT %s, 0, 0 (%s)\n",
1921 target_pid_to_str (lp->ptid),
1922 errno ? safe_strerror (errno) : "OK");
1923
1924 return stop_wait_callback (lp, flush_mask);
1925 }
1926
1927 if (WSTOPSIG (status) != SIGSTOP)
1928 {
1929 if (WSTOPSIG (status) == SIGTRAP)
1930 {
1931 /* If a LWP other than the LWP that we're reporting an
1932 event for has hit a GDB breakpoint (as opposed to
1933 some random trap signal), then just arrange for it to
1934 hit it again later. We don't keep the SIGTRAP status
1935 and don't forward the SIGTRAP signal to the LWP. We
1936 will handle the current event, eventually we will
1937 resume all LWPs, and this one will get its breakpoint
1938 trap again.
1939
1940 If we do not do this, then we run the risk that the
1941 user will delete or disable the breakpoint, but the
1942 thread will have already tripped on it. */
1943
1944 /* Save the trap's siginfo in case we need it later. */
1945 save_siginfo (lp);
1946
1947 /* Now resume this LWP and get the SIGSTOP event. */
1948 errno = 0;
1949 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1950 if (debug_linux_nat)
1951 {
1952 fprintf_unfiltered (gdb_stdlog,
1953 "PTRACE_CONT %s, 0, 0 (%s)\n",
1954 target_pid_to_str (lp->ptid),
1955 errno ? safe_strerror (errno) : "OK");
1956
1957 fprintf_unfiltered (gdb_stdlog,
1958 "SWC: Candidate SIGTRAP event in %s\n",
1959 target_pid_to_str (lp->ptid));
1960 }
1961 /* Hold this event/waitstatus while we check to see if
1962 there are any more (we still want to get that SIGSTOP). */
1963 stop_wait_callback (lp, data);
1964
1965 if (target_can_async_p ())
1966 {
1967 /* Don't leave a pending wait status in async mode.
1968 Retrigger the breakpoint. */
1969 if (!cancel_breakpoint (lp))
1970 {
1971 /* There was no gdb breakpoint set at pc. Put
1972 the event back in the queue. */
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "SWC: kill %s, %s\n",
1976 target_pid_to_str (lp->ptid),
1977 status_to_str ((int) status));
1978 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
1979 }
1980 }
1981 else
1982 {
1983 /* Hold the SIGTRAP for handling by
1984 linux_nat_wait. */
1985 /* If there's another event, throw it back into the
1986 queue. */
1987 if (lp->status)
1988 {
1989 if (debug_linux_nat)
1990 fprintf_unfiltered (gdb_stdlog,
1991 "SWC: kill %s, %s\n",
1992 target_pid_to_str (lp->ptid),
1993 status_to_str ((int) status));
1994 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
1995 }
1996 /* Save the sigtrap event. */
1997 lp->status = status;
1998 }
1999 return 0;
2000 }
2001 else
2002 {
2003 /* The thread was stopped with a signal other than
2004 SIGSTOP, and didn't accidentally trip a breakpoint. */
2005
2006 if (debug_linux_nat)
2007 {
2008 fprintf_unfiltered (gdb_stdlog,
2009 "SWC: Pending event %s in %s\n",
2010 status_to_str ((int) status),
2011 target_pid_to_str (lp->ptid));
2012 }
2013 /* Now resume this LWP and get the SIGSTOP event. */
2014 errno = 0;
2015 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2016 if (debug_linux_nat)
2017 fprintf_unfiltered (gdb_stdlog,
2018 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2019 target_pid_to_str (lp->ptid),
2020 errno ? safe_strerror (errno) : "OK");
2021
2022 /* Hold this event/waitstatus while we check to see if
2023 there are any more (we still want to get that SIGSTOP). */
2024 stop_wait_callback (lp, data);
2025
2026 /* If the lp->status field is still empty, use it to
2027 hold this event. If not, then this event must be
2028 returned to the event queue of the LWP. */
2029 if (lp->status || target_can_async_p ())
2030 {
2031 if (debug_linux_nat)
2032 {
2033 fprintf_unfiltered (gdb_stdlog,
2034 "SWC: kill %s, %s\n",
2035 target_pid_to_str (lp->ptid),
2036 status_to_str ((int) status));
2037 }
2038 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2039 }
2040 else
2041 lp->status = status;
2042 return 0;
2043 }
2044 }
2045 else
2046 {
2047 /* We caught the SIGSTOP that we intended to catch, so
2048 there's no SIGSTOP pending. */
2049 lp->stopped = 1;
2050 lp->signalled = 0;
2051 }
2052 }
2053
2054 return 0;
2055 }
2056
2057 /* Check whether PID has any pending signals in FLUSH_MASK. If so set
2058 the appropriate bits in PENDING, and return 1 - otherwise return 0. */
2059
2060 static int
2061 linux_nat_has_pending (int pid, sigset_t *pending, sigset_t *flush_mask)
2062 {
2063 sigset_t blocked, ignored;
2064 int i;
2065
2066 linux_proc_pending_signals (pid, pending, &blocked, &ignored);
2067
2068 if (!flush_mask)
2069 return 0;
2070
2071 for (i = 1; i < NSIG; i++)
2072 if (sigismember (pending, i))
2073 if (!sigismember (flush_mask, i)
2074 || sigismember (&blocked, i)
2075 || sigismember (&ignored, i))
2076 sigdelset (pending, i);
2077
2078 if (sigisemptyset (pending))
2079 return 0;
2080
2081 return 1;
2082 }
2083
2084 /* DATA is interpreted as a mask of signals to flush. If LP has
2085 signals pending, and they are all in the flush mask, then arrange
2086 to flush them. LP should be stopped, as should all other threads
2087 it might share a signal queue with. */
2088
2089 static int
2090 flush_callback (struct lwp_info *lp, void *data)
2091 {
2092 sigset_t *flush_mask = data;
2093 sigset_t pending, intersection, blocked, ignored;
2094 int pid, status;
2095
2096 /* Normally, when an LWP exits, it is removed from the LWP list. The
2097 last LWP isn't removed till later, however. So if there is only
2098 one LWP on the list, make sure it's alive. */
2099 if (lwp_list == lp && lp->next == NULL)
2100 if (!linux_nat_thread_alive (lp->ptid))
2101 return 0;
2102
2103 /* Just because the LWP is stopped doesn't mean that new signals
2104 can't arrive from outside, so this function must be careful of
2105 race conditions. However, because all threads are stopped, we
2106 can assume that the pending mask will not shrink unless we resume
2107 the LWP, and that it will then get another signal. We can't
2108 control which one, however. */
2109
2110 if (lp->status)
2111 {
2112 if (debug_linux_nat)
2113 printf_unfiltered (_("FC: LP has pending status %06x\n"), lp->status);
2114 if (WIFSTOPPED (lp->status) && sigismember (flush_mask, WSTOPSIG (lp->status)))
2115 lp->status = 0;
2116 }
2117
2118 /* While there is a pending signal we would like to flush, continue
2119 the inferior and collect another signal. But if there's already
2120 a saved status that we don't want to flush, we can't resume the
2121 inferior - if it stopped for some other reason we wouldn't have
2122 anywhere to save the new status. In that case, we must leave the
2123 signal unflushed (and possibly generate an extra SIGINT stop).
2124 That's much less bad than losing a signal. */
2125 while (lp->status == 0
2126 && linux_nat_has_pending (GET_LWP (lp->ptid), &pending, flush_mask))
2127 {
2128 int ret;
2129
2130 errno = 0;
2131 ret = ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2132 if (debug_linux_nat)
2133 fprintf_unfiltered (gdb_stderr,
2134 "FC: Sent PTRACE_CONT, ret %d %d\n", ret, errno);
2135
2136 lp->stopped = 0;
2137 stop_wait_callback (lp, flush_mask);
2138 if (debug_linux_nat)
2139 fprintf_unfiltered (gdb_stderr,
2140 "FC: Wait finished; saved status is %d\n",
2141 lp->status);
2142 }
2143
2144 return 0;
2145 }
2146
2147 /* Return non-zero if LP has a wait status pending. */
2148
2149 static int
2150 status_callback (struct lwp_info *lp, void *data)
2151 {
2152 /* Only report a pending wait status if we pretend that this has
2153 indeed been resumed. */
2154 return (lp->status != 0 && lp->resumed);
2155 }
2156
2157 /* Return non-zero if LP isn't stopped. */
2158
2159 static int
2160 running_callback (struct lwp_info *lp, void *data)
2161 {
2162 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2163 }
2164
2165 /* Count the LWP's that have had events. */
2166
2167 static int
2168 count_events_callback (struct lwp_info *lp, void *data)
2169 {
2170 int *count = data;
2171
2172 gdb_assert (count != NULL);
2173
2174 /* Count only LWPs that have a SIGTRAP event pending. */
2175 if (lp->status != 0
2176 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2177 (*count)++;
2178
2179 return 0;
2180 }
2181
2182 /* Select the LWP (if any) that is currently being single-stepped. */
2183
2184 static int
2185 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2186 {
2187 if (lp->step && lp->status != 0)
2188 return 1;
2189 else
2190 return 0;
2191 }
2192
2193 /* Select the Nth LWP that has had a SIGTRAP event. */
2194
2195 static int
2196 select_event_lwp_callback (struct lwp_info *lp, void *data)
2197 {
2198 int *selector = data;
2199
2200 gdb_assert (selector != NULL);
2201
2202 /* Select only LWPs that have a SIGTRAP event pending. */
2203 if (lp->status != 0
2204 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2205 if ((*selector)-- == 0)
2206 return 1;
2207
2208 return 0;
2209 }
2210
2211 static int
2212 cancel_breakpoint (struct lwp_info *lp)
2213 {
2214 /* Arrange for a breakpoint to be hit again later. We don't keep
2215 the SIGTRAP status and don't forward the SIGTRAP signal to the
2216 LWP. We will handle the current event, eventually we will resume
2217 this LWP, and this breakpoint will trap again.
2218
2219 If we do not do this, then we run the risk that the user will
2220 delete or disable the breakpoint, but the LWP will have already
2221 tripped on it. */
2222
2223 struct regcache *regcache = get_thread_regcache (lp->ptid);
2224 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2225 CORE_ADDR pc;
2226
2227 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2228 if (breakpoint_inserted_here_p (pc))
2229 {
2230 if (debug_linux_nat)
2231 fprintf_unfiltered (gdb_stdlog,
2232 "CB: Push back breakpoint for %s\n",
2233 target_pid_to_str (lp->ptid));
2234
2235 /* Back up the PC if necessary. */
2236 if (gdbarch_decr_pc_after_break (gdbarch))
2237 regcache_write_pc (regcache, pc);
2238
2239 return 1;
2240 }
2241 return 0;
2242 }
2243
2244 static int
2245 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2246 {
2247 struct lwp_info *event_lp = data;
2248
2249 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2250 if (lp == event_lp)
2251 return 0;
2252
2253 /* If a LWP other than the LWP that we're reporting an event for has
2254 hit a GDB breakpoint (as opposed to some random trap signal),
2255 then just arrange for it to hit it again later. We don't keep
2256 the SIGTRAP status and don't forward the SIGTRAP signal to the
2257 LWP. We will handle the current event, eventually we will resume
2258 all LWPs, and this one will get its breakpoint trap again.
2259
2260 If we do not do this, then we run the risk that the user will
2261 delete or disable the breakpoint, but the LWP will have already
2262 tripped on it. */
2263
2264 if (lp->status != 0
2265 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2266 && cancel_breakpoint (lp))
2267 /* Throw away the SIGTRAP. */
2268 lp->status = 0;
2269
2270 return 0;
2271 }
2272
2273 /* Select one LWP out of those that have events pending. */
2274
2275 static void
2276 select_event_lwp (struct lwp_info **orig_lp, int *status)
2277 {
2278 int num_events = 0;
2279 int random_selector;
2280 struct lwp_info *event_lp;
2281
2282 /* Record the wait status for the original LWP. */
2283 (*orig_lp)->status = *status;
2284
2285 /* Give preference to any LWP that is being single-stepped. */
2286 event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL);
2287 if (event_lp != NULL)
2288 {
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "SEL: Select single-step %s\n",
2292 target_pid_to_str (event_lp->ptid));
2293 }
2294 else
2295 {
2296 /* No single-stepping LWP. Select one at random, out of those
2297 which have had SIGTRAP events. */
2298
2299 /* First see how many SIGTRAP events we have. */
2300 iterate_over_lwps (count_events_callback, &num_events);
2301
2302 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2303 random_selector = (int)
2304 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2305
2306 if (debug_linux_nat && num_events > 1)
2307 fprintf_unfiltered (gdb_stdlog,
2308 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2309 num_events, random_selector);
2310
2311 event_lp = iterate_over_lwps (select_event_lwp_callback,
2312 &random_selector);
2313 }
2314
2315 if (event_lp != NULL)
2316 {
2317 /* Switch the event LWP. */
2318 *orig_lp = event_lp;
2319 *status = event_lp->status;
2320 }
2321
2322 /* Flush the wait status for the event LWP. */
2323 (*orig_lp)->status = 0;
2324 }
2325
2326 /* Return non-zero if LP has been resumed. */
2327
2328 static int
2329 resumed_callback (struct lwp_info *lp, void *data)
2330 {
2331 return lp->resumed;
2332 }
2333
2334 /* Stop an active thread, verify it still exists, then resume it. */
2335
2336 static int
2337 stop_and_resume_callback (struct lwp_info *lp, void *data)
2338 {
2339 struct lwp_info *ptr;
2340
2341 if (!lp->stopped && !lp->signalled)
2342 {
2343 stop_callback (lp, NULL);
2344 stop_wait_callback (lp, NULL);
2345 /* Resume if the lwp still exists. */
2346 for (ptr = lwp_list; ptr; ptr = ptr->next)
2347 if (lp == ptr)
2348 {
2349 resume_callback (lp, NULL);
2350 resume_set_callback (lp, NULL);
2351 }
2352 }
2353 return 0;
2354 }
2355
2356 /* Check if we should go on and pass this event to common code.
2357 Return the affected lwp if we are, or NULL otherwise. */
2358 static struct lwp_info *
2359 linux_nat_filter_event (int lwpid, int status, int options)
2360 {
2361 struct lwp_info *lp;
2362
2363 lp = find_lwp_pid (pid_to_ptid (lwpid));
2364
2365 /* Check for stop events reported by a process we didn't already
2366 know about - anything not already in our LWP list.
2367
2368 If we're expecting to receive stopped processes after
2369 fork, vfork, and clone events, then we'll just add the
2370 new one to our list and go back to waiting for the event
2371 to be reported - the stopped process might be returned
2372 from waitpid before or after the event is. */
2373 if (WIFSTOPPED (status) && !lp)
2374 {
2375 linux_record_stopped_pid (lwpid, status);
2376 return NULL;
2377 }
2378
2379 /* Make sure we don't report an event for the exit of an LWP not in
2380 our list, i.e. not part of the current process. This can happen
2381 if we detach from a program we original forked and then it
2382 exits. */
2383 if (!WIFSTOPPED (status) && !lp)
2384 return NULL;
2385
2386 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2387 CLONE_PTRACE processes which do not use the thread library -
2388 otherwise we wouldn't find the new LWP this way. That doesn't
2389 currently work, and the following code is currently unreachable
2390 due to the two blocks above. If it's fixed some day, this code
2391 should be broken out into a function so that we can also pick up
2392 LWPs from the new interface. */
2393 if (!lp)
2394 {
2395 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2396 if (options & __WCLONE)
2397 lp->cloned = 1;
2398
2399 gdb_assert (WIFSTOPPED (status)
2400 && WSTOPSIG (status) == SIGSTOP);
2401 lp->signalled = 1;
2402
2403 if (!in_thread_list (inferior_ptid))
2404 {
2405 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2406 GET_PID (inferior_ptid));
2407 add_thread (inferior_ptid);
2408 }
2409
2410 add_thread (lp->ptid);
2411 }
2412
2413 /* Save the trap's siginfo in case we need it later. */
2414 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2415 save_siginfo (lp);
2416
2417 /* Handle GNU/Linux's extended waitstatus for trace events. */
2418 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2419 {
2420 if (debug_linux_nat)
2421 fprintf_unfiltered (gdb_stdlog,
2422 "LLW: Handling extended status 0x%06x\n",
2423 status);
2424 if (linux_handle_extended_wait (lp, status, 0))
2425 return NULL;
2426 }
2427
2428 /* Check if the thread has exited. */
2429 if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1)
2430 {
2431 /* If this is the main thread, we must stop all threads and
2432 verify if they are still alive. This is because in the nptl
2433 thread model, there is no signal issued for exiting LWPs
2434 other than the main thread. We only get the main thread exit
2435 signal once all child threads have already exited. If we
2436 stop all the threads and use the stop_wait_callback to check
2437 if they have exited we can determine whether this signal
2438 should be ignored or whether it means the end of the debugged
2439 application, regardless of which threading model is being
2440 used. */
2441 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2442 {
2443 lp->stopped = 1;
2444 iterate_over_lwps (stop_and_resume_callback, NULL);
2445 }
2446
2447 if (debug_linux_nat)
2448 fprintf_unfiltered (gdb_stdlog,
2449 "LLW: %s exited.\n",
2450 target_pid_to_str (lp->ptid));
2451
2452 exit_lwp (lp);
2453
2454 /* If there is at least one more LWP, then the exit signal was
2455 not the end of the debugged application and should be
2456 ignored. */
2457 if (num_lwps > 0)
2458 {
2459 /* Make sure there is at least one thread running. */
2460 gdb_assert (iterate_over_lwps (running_callback, NULL));
2461
2462 /* Discard the event. */
2463 return NULL;
2464 }
2465 }
2466
2467 /* Check if the current LWP has previously exited. In the nptl
2468 thread model, LWPs other than the main thread do not issue
2469 signals when they exit so we must check whenever the thread has
2470 stopped. A similar check is made in stop_wait_callback(). */
2471 if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid))
2472 {
2473 if (debug_linux_nat)
2474 fprintf_unfiltered (gdb_stdlog,
2475 "LLW: %s exited.\n",
2476 target_pid_to_str (lp->ptid));
2477
2478 exit_lwp (lp);
2479
2480 /* Make sure there is at least one thread running. */
2481 gdb_assert (iterate_over_lwps (running_callback, NULL));
2482
2483 /* Discard the event. */
2484 return NULL;
2485 }
2486
2487 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2488 an attempt to stop an LWP. */
2489 if (lp->signalled
2490 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2491 {
2492 if (debug_linux_nat)
2493 fprintf_unfiltered (gdb_stdlog,
2494 "LLW: Delayed SIGSTOP caught for %s.\n",
2495 target_pid_to_str (lp->ptid));
2496
2497 /* This is a delayed SIGSTOP. */
2498 lp->signalled = 0;
2499
2500 registers_changed ();
2501
2502 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2503 lp->step, TARGET_SIGNAL_0);
2504 if (debug_linux_nat)
2505 fprintf_unfiltered (gdb_stdlog,
2506 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2507 lp->step ?
2508 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2509 target_pid_to_str (lp->ptid));
2510
2511 lp->stopped = 0;
2512 gdb_assert (lp->resumed);
2513
2514 /* Discard the event. */
2515 return NULL;
2516 }
2517
2518 /* An interesting event. */
2519 gdb_assert (lp);
2520 return lp;
2521 }
2522
2523 /* Get the events stored in the pipe into the local queue, so they are
2524 accessible to queued_waitpid. We need to do this, since it is not
2525 always the case that the event at the head of the pipe is the event
2526 we want. */
2527
2528 static void
2529 pipe_to_local_event_queue (void)
2530 {
2531 if (debug_linux_nat_async)
2532 fprintf_unfiltered (gdb_stdlog,
2533 "PTLEQ: linux_nat_num_queued_events(%d)\n",
2534 linux_nat_num_queued_events);
2535 while (linux_nat_num_queued_events)
2536 {
2537 int lwpid, status, options;
2538 lwpid = linux_nat_event_pipe_pop (&status, &options);
2539 gdb_assert (lwpid > 0);
2540 push_waitpid (lwpid, status, options);
2541 }
2542 }
2543
2544 /* Get the unprocessed events stored in the local queue back into the
2545 pipe, so the event loop realizes there's something else to
2546 process. */
2547
2548 static void
2549 local_event_queue_to_pipe (void)
2550 {
2551 struct waitpid_result *w = waitpid_queue;
2552 while (w)
2553 {
2554 struct waitpid_result *next = w->next;
2555 linux_nat_event_pipe_push (w->pid,
2556 w->status,
2557 w->options);
2558 xfree (w);
2559 w = next;
2560 }
2561 waitpid_queue = NULL;
2562
2563 if (debug_linux_nat_async)
2564 fprintf_unfiltered (gdb_stdlog,
2565 "LEQTP: linux_nat_num_queued_events(%d)\n",
2566 linux_nat_num_queued_events);
2567 }
2568
2569 static ptid_t
2570 linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus)
2571 {
2572 struct lwp_info *lp = NULL;
2573 int options = 0;
2574 int status = 0;
2575 pid_t pid = PIDGET (ptid);
2576 sigset_t flush_mask;
2577
2578 if (debug_linux_nat_async)
2579 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2580
2581 /* The first time we get here after starting a new inferior, we may
2582 not have added it to the LWP list yet - this is the earliest
2583 moment at which we know its PID. */
2584 if (num_lwps == 0)
2585 {
2586 gdb_assert (!is_lwp (inferior_ptid));
2587
2588 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2589 GET_PID (inferior_ptid));
2590 lp = add_lwp (inferior_ptid);
2591 lp->resumed = 1;
2592 /* Add the main thread to GDB's thread list. */
2593 add_thread_silent (lp->ptid);
2594 }
2595
2596 sigemptyset (&flush_mask);
2597
2598 /* Block events while we're here. */
2599 linux_nat_async_events (sigchld_sync);
2600
2601 retry:
2602
2603 /* Make sure there is at least one LWP that has been resumed. */
2604 gdb_assert (iterate_over_lwps (resumed_callback, NULL));
2605
2606 /* First check if there is a LWP with a wait status pending. */
2607 if (pid == -1)
2608 {
2609 /* Any LWP that's been resumed will do. */
2610 lp = iterate_over_lwps (status_callback, NULL);
2611 if (lp)
2612 {
2613 if (target_can_async_p ())
2614 internal_error (__FILE__, __LINE__,
2615 "Found an LWP with a pending status in async mode.");
2616
2617 status = lp->status;
2618 lp->status = 0;
2619
2620 if (debug_linux_nat && status)
2621 fprintf_unfiltered (gdb_stdlog,
2622 "LLW: Using pending wait status %s for %s.\n",
2623 status_to_str (status),
2624 target_pid_to_str (lp->ptid));
2625 }
2626
2627 /* But if we don't find one, we'll have to wait, and check both
2628 cloned and uncloned processes. We start with the cloned
2629 processes. */
2630 options = __WCLONE | WNOHANG;
2631 }
2632 else if (is_lwp (ptid))
2633 {
2634 if (debug_linux_nat)
2635 fprintf_unfiltered (gdb_stdlog,
2636 "LLW: Waiting for specific LWP %s.\n",
2637 target_pid_to_str (ptid));
2638
2639 /* We have a specific LWP to check. */
2640 lp = find_lwp_pid (ptid);
2641 gdb_assert (lp);
2642 status = lp->status;
2643 lp->status = 0;
2644
2645 if (debug_linux_nat && status)
2646 fprintf_unfiltered (gdb_stdlog,
2647 "LLW: Using pending wait status %s for %s.\n",
2648 status_to_str (status),
2649 target_pid_to_str (lp->ptid));
2650
2651 /* If we have to wait, take into account whether PID is a cloned
2652 process or not. And we have to convert it to something that
2653 the layer beneath us can understand. */
2654 options = lp->cloned ? __WCLONE : 0;
2655 pid = GET_LWP (ptid);
2656 }
2657
2658 if (status && lp->signalled)
2659 {
2660 /* A pending SIGSTOP may interfere with the normal stream of
2661 events. In a typical case where interference is a problem,
2662 we have a SIGSTOP signal pending for LWP A while
2663 single-stepping it, encounter an event in LWP B, and take the
2664 pending SIGSTOP while trying to stop LWP A. After processing
2665 the event in LWP B, LWP A is continued, and we'll never see
2666 the SIGTRAP associated with the last time we were
2667 single-stepping LWP A. */
2668
2669 /* Resume the thread. It should halt immediately returning the
2670 pending SIGSTOP. */
2671 registers_changed ();
2672 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2673 lp->step, TARGET_SIGNAL_0);
2674 if (debug_linux_nat)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2677 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2678 target_pid_to_str (lp->ptid));
2679 lp->stopped = 0;
2680 gdb_assert (lp->resumed);
2681
2682 /* This should catch the pending SIGSTOP. */
2683 stop_wait_callback (lp, NULL);
2684 }
2685
2686 if (!target_can_async_p ())
2687 {
2688 /* Causes SIGINT to be passed on to the attached process. */
2689 set_sigint_trap ();
2690 set_sigio_trap ();
2691 }
2692
2693 while (status == 0)
2694 {
2695 pid_t lwpid;
2696
2697 if (target_can_async_p ())
2698 /* In async mode, don't ever block. Only look at the locally
2699 queued events. */
2700 lwpid = queued_waitpid (pid, &status, options);
2701 else
2702 lwpid = my_waitpid (pid, &status, options);
2703
2704 if (lwpid > 0)
2705 {
2706 gdb_assert (pid == -1 || lwpid == pid);
2707
2708 if (debug_linux_nat)
2709 {
2710 fprintf_unfiltered (gdb_stdlog,
2711 "LLW: waitpid %ld received %s\n",
2712 (long) lwpid, status_to_str (status));
2713 }
2714
2715 lp = linux_nat_filter_event (lwpid, status, options);
2716 if (!lp)
2717 {
2718 /* A discarded event. */
2719 status = 0;
2720 continue;
2721 }
2722
2723 break;
2724 }
2725
2726 if (pid == -1)
2727 {
2728 /* Alternate between checking cloned and uncloned processes. */
2729 options ^= __WCLONE;
2730
2731 /* And every time we have checked both:
2732 In async mode, return to event loop;
2733 In sync mode, suspend waiting for a SIGCHLD signal. */
2734 if (options & __WCLONE)
2735 {
2736 if (target_can_async_p ())
2737 {
2738 /* No interesting event. */
2739 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2740
2741 /* Get ready for the next event. */
2742 target_async (inferior_event_handler, 0);
2743
2744 if (debug_linux_nat_async)
2745 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
2746
2747 return minus_one_ptid;
2748 }
2749
2750 sigsuspend (&suspend_mask);
2751 }
2752 }
2753
2754 /* We shouldn't end up here unless we want to try again. */
2755 gdb_assert (status == 0);
2756 }
2757
2758 if (!target_can_async_p ())
2759 {
2760 clear_sigio_trap ();
2761 clear_sigint_trap ();
2762 }
2763
2764 gdb_assert (lp);
2765
2766 /* Don't report signals that GDB isn't interested in, such as
2767 signals that are neither printed nor stopped upon. Stopping all
2768 threads can be a bit time-consuming so if we want decent
2769 performance with heavily multi-threaded programs, especially when
2770 they're using a high frequency timer, we'd better avoid it if we
2771 can. */
2772
2773 if (WIFSTOPPED (status))
2774 {
2775 int signo = target_signal_from_host (WSTOPSIG (status));
2776
2777 /* If we get a signal while single-stepping, we may need special
2778 care, e.g. to skip the signal handler. Defer to common code. */
2779 if (!lp->step
2780 && signal_stop_state (signo) == 0
2781 && signal_print_state (signo) == 0
2782 && signal_pass_state (signo) == 1)
2783 {
2784 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
2785 here? It is not clear we should. GDB may not expect
2786 other threads to run. On the other hand, not resuming
2787 newly attached threads may cause an unwanted delay in
2788 getting them running. */
2789 registers_changed ();
2790 linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)),
2791 lp->step, signo);
2792 if (debug_linux_nat)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "LLW: %s %s, %s (preempt 'handle')\n",
2795 lp->step ?
2796 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2797 target_pid_to_str (lp->ptid),
2798 signo ? strsignal (signo) : "0");
2799 lp->stopped = 0;
2800 status = 0;
2801 goto retry;
2802 }
2803
2804 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
2805 {
2806 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2807 forwarded to the entire process group, that is, all LWP's
2808 will receive it. Since we only want to report it once,
2809 we try to flush it from all LWPs except this one. */
2810 sigaddset (&flush_mask, SIGINT);
2811 }
2812 }
2813
2814 /* This LWP is stopped now. */
2815 lp->stopped = 1;
2816
2817 if (debug_linux_nat)
2818 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
2819 status_to_str (status), target_pid_to_str (lp->ptid));
2820
2821 /* Now stop all other LWP's ... */
2822 iterate_over_lwps (stop_callback, NULL);
2823
2824 /* ... and wait until all of them have reported back that they're no
2825 longer running. */
2826 iterate_over_lwps (stop_wait_callback, &flush_mask);
2827 iterate_over_lwps (flush_callback, &flush_mask);
2828
2829 /* If we're not waiting for a specific LWP, choose an event LWP from
2830 among those that have had events. Giving equal priority to all
2831 LWPs that have had events helps prevent starvation. */
2832 if (pid == -1)
2833 select_event_lwp (&lp, &status);
2834
2835 /* Now that we've selected our final event LWP, cancel any
2836 breakpoints in other LWPs that have hit a GDB breakpoint. See
2837 the comment in cancel_breakpoints_callback to find out why. */
2838 iterate_over_lwps (cancel_breakpoints_callback, lp);
2839
2840 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2841 {
2842 if (debug_linux_nat)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "LLW: trap ptid is %s.\n",
2845 target_pid_to_str (lp->ptid));
2846 }
2847
2848 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2849 {
2850 *ourstatus = lp->waitstatus;
2851 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
2852 }
2853 else
2854 store_waitstatus (ourstatus, status);
2855
2856 /* Get ready for the next event. */
2857 if (target_can_async_p ())
2858 target_async (inferior_event_handler, 0);
2859
2860 if (debug_linux_nat_async)
2861 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
2862
2863 return lp->ptid;
2864 }
2865
2866 static int
2867 kill_callback (struct lwp_info *lp, void *data)
2868 {
2869 errno = 0;
2870 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
2871 if (debug_linux_nat)
2872 fprintf_unfiltered (gdb_stdlog,
2873 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
2874 target_pid_to_str (lp->ptid),
2875 errno ? safe_strerror (errno) : "OK");
2876
2877 return 0;
2878 }
2879
2880 static int
2881 kill_wait_callback (struct lwp_info *lp, void *data)
2882 {
2883 pid_t pid;
2884
2885 /* We must make sure that there are no pending events (delayed
2886 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
2887 program doesn't interfere with any following debugging session. */
2888
2889 /* For cloned processes we must check both with __WCLONE and
2890 without, since the exit status of a cloned process isn't reported
2891 with __WCLONE. */
2892 if (lp->cloned)
2893 {
2894 do
2895 {
2896 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
2897 if (pid != (pid_t) -1)
2898 {
2899 if (debug_linux_nat)
2900 fprintf_unfiltered (gdb_stdlog,
2901 "KWC: wait %s received unknown.\n",
2902 target_pid_to_str (lp->ptid));
2903 /* The Linux kernel sometimes fails to kill a thread
2904 completely after PTRACE_KILL; that goes from the stop
2905 point in do_fork out to the one in
2906 get_signal_to_deliever and waits again. So kill it
2907 again. */
2908 kill_callback (lp, NULL);
2909 }
2910 }
2911 while (pid == GET_LWP (lp->ptid));
2912
2913 gdb_assert (pid == -1 && errno == ECHILD);
2914 }
2915
2916 do
2917 {
2918 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
2919 if (pid != (pid_t) -1)
2920 {
2921 if (debug_linux_nat)
2922 fprintf_unfiltered (gdb_stdlog,
2923 "KWC: wait %s received unk.\n",
2924 target_pid_to_str (lp->ptid));
2925 /* See the call to kill_callback above. */
2926 kill_callback (lp, NULL);
2927 }
2928 }
2929 while (pid == GET_LWP (lp->ptid));
2930
2931 gdb_assert (pid == -1 && errno == ECHILD);
2932 return 0;
2933 }
2934
2935 static void
2936 linux_nat_kill (void)
2937 {
2938 struct target_waitstatus last;
2939 ptid_t last_ptid;
2940 int status;
2941
2942 if (target_can_async_p ())
2943 target_async (NULL, 0);
2944
2945 /* If we're stopped while forking and we haven't followed yet,
2946 kill the other task. We need to do this first because the
2947 parent will be sleeping if this is a vfork. */
2948
2949 get_last_target_status (&last_ptid, &last);
2950
2951 if (last.kind == TARGET_WAITKIND_FORKED
2952 || last.kind == TARGET_WAITKIND_VFORKED)
2953 {
2954 ptrace (PT_KILL, last.value.related_pid, 0, 0);
2955 wait (&status);
2956 }
2957
2958 if (forks_exist_p ())
2959 {
2960 linux_fork_killall ();
2961 drain_queued_events (-1);
2962 }
2963 else
2964 {
2965 /* Kill all LWP's ... */
2966 iterate_over_lwps (kill_callback, NULL);
2967
2968 /* ... and wait until we've flushed all events. */
2969 iterate_over_lwps (kill_wait_callback, NULL);
2970 }
2971
2972 target_mourn_inferior ();
2973 }
2974
2975 static void
2976 linux_nat_mourn_inferior (void)
2977 {
2978 /* Destroy LWP info; it's no longer valid. */
2979 init_lwp_list ();
2980
2981 if (! forks_exist_p ())
2982 {
2983 /* Normal case, no other forks available. */
2984 if (target_can_async_p ())
2985 linux_nat_async (NULL, 0);
2986 linux_ops->to_mourn_inferior ();
2987 }
2988 else
2989 /* Multi-fork case. The current inferior_ptid has exited, but
2990 there are other viable forks to debug. Delete the exiting
2991 one and context-switch to the first available. */
2992 linux_fork_mourn_inferior ();
2993 }
2994
2995 static LONGEST
2996 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
2997 const char *annex, gdb_byte *readbuf,
2998 const gdb_byte *writebuf,
2999 ULONGEST offset, LONGEST len)
3000 {
3001 struct cleanup *old_chain = save_inferior_ptid ();
3002 LONGEST xfer;
3003
3004 if (is_lwp (inferior_ptid))
3005 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3006
3007 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3008 offset, len);
3009
3010 do_cleanups (old_chain);
3011 return xfer;
3012 }
3013
3014 static int
3015 linux_nat_thread_alive (ptid_t ptid)
3016 {
3017 gdb_assert (is_lwp (ptid));
3018
3019 errno = 0;
3020 ptrace (PTRACE_PEEKUSER, GET_LWP (ptid), 0, 0);
3021 if (debug_linux_nat)
3022 fprintf_unfiltered (gdb_stdlog,
3023 "LLTA: PTRACE_PEEKUSER %s, 0, 0 (%s)\n",
3024 target_pid_to_str (ptid),
3025 errno ? safe_strerror (errno) : "OK");
3026
3027 /* Not every Linux kernel implements PTRACE_PEEKUSER. But we can
3028 handle that case gracefully since ptrace will first do a lookup
3029 for the process based upon the passed-in pid. If that fails we
3030 will get either -ESRCH or -EPERM, otherwise the child exists and
3031 is alive. */
3032 if (errno == ESRCH || errno == EPERM)
3033 return 0;
3034
3035 return 1;
3036 }
3037
3038 static char *
3039 linux_nat_pid_to_str (ptid_t ptid)
3040 {
3041 static char buf[64];
3042
3043 if (is_lwp (ptid)
3044 && ((lwp_list && lwp_list->next)
3045 || GET_PID (ptid) != GET_LWP (ptid)))
3046 {
3047 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3048 return buf;
3049 }
3050
3051 return normal_pid_to_str (ptid);
3052 }
3053
3054 static void
3055 sigchld_handler (int signo)
3056 {
3057 if (linux_nat_async_enabled
3058 && linux_nat_async_events_state != sigchld_sync
3059 && signo == SIGCHLD)
3060 /* It is *always* a bug to hit this. */
3061 internal_error (__FILE__, __LINE__,
3062 "sigchld_handler called when async events are enabled");
3063
3064 /* Do nothing. The only reason for this handler is that it allows
3065 us to use sigsuspend in linux_nat_wait above to wait for the
3066 arrival of a SIGCHLD. */
3067 }
3068
3069 /* Accepts an integer PID; Returns a string representing a file that
3070 can be opened to get the symbols for the child process. */
3071
3072 static char *
3073 linux_child_pid_to_exec_file (int pid)
3074 {
3075 char *name1, *name2;
3076
3077 name1 = xmalloc (MAXPATHLEN);
3078 name2 = xmalloc (MAXPATHLEN);
3079 make_cleanup (xfree, name1);
3080 make_cleanup (xfree, name2);
3081 memset (name2, 0, MAXPATHLEN);
3082
3083 sprintf (name1, "/proc/%d/exe", pid);
3084 if (readlink (name1, name2, MAXPATHLEN) > 0)
3085 return name2;
3086 else
3087 return name1;
3088 }
3089
3090 /* Service function for corefiles and info proc. */
3091
3092 static int
3093 read_mapping (FILE *mapfile,
3094 long long *addr,
3095 long long *endaddr,
3096 char *permissions,
3097 long long *offset,
3098 char *device, long long *inode, char *filename)
3099 {
3100 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3101 addr, endaddr, permissions, offset, device, inode);
3102
3103 filename[0] = '\0';
3104 if (ret > 0 && ret != EOF)
3105 {
3106 /* Eat everything up to EOL for the filename. This will prevent
3107 weird filenames (such as one with embedded whitespace) from
3108 confusing this code. It also makes this code more robust in
3109 respect to annotations the kernel may add after the filename.
3110
3111 Note the filename is used for informational purposes
3112 only. */
3113 ret += fscanf (mapfile, "%[^\n]\n", filename);
3114 }
3115
3116 return (ret != 0 && ret != EOF);
3117 }
3118
3119 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3120 regions in the inferior for a corefile. */
3121
3122 static int
3123 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3124 unsigned long,
3125 int, int, int, void *), void *obfd)
3126 {
3127 long long pid = PIDGET (inferior_ptid);
3128 char mapsfilename[MAXPATHLEN];
3129 FILE *mapsfile;
3130 long long addr, endaddr, size, offset, inode;
3131 char permissions[8], device[8], filename[MAXPATHLEN];
3132 int read, write, exec;
3133 int ret;
3134
3135 /* Compose the filename for the /proc memory map, and open it. */
3136 sprintf (mapsfilename, "/proc/%lld/maps", pid);
3137 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3138 error (_("Could not open %s."), mapsfilename);
3139
3140 if (info_verbose)
3141 fprintf_filtered (gdb_stdout,
3142 "Reading memory regions from %s\n", mapsfilename);
3143
3144 /* Now iterate until end-of-file. */
3145 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3146 &offset, &device[0], &inode, &filename[0]))
3147 {
3148 size = endaddr - addr;
3149
3150 /* Get the segment's permissions. */
3151 read = (strchr (permissions, 'r') != 0);
3152 write = (strchr (permissions, 'w') != 0);
3153 exec = (strchr (permissions, 'x') != 0);
3154
3155 if (info_verbose)
3156 {
3157 fprintf_filtered (gdb_stdout,
3158 "Save segment, %lld bytes at 0x%s (%c%c%c)",
3159 size, paddr_nz (addr),
3160 read ? 'r' : ' ',
3161 write ? 'w' : ' ', exec ? 'x' : ' ');
3162 if (filename[0])
3163 fprintf_filtered (gdb_stdout, " for %s", filename);
3164 fprintf_filtered (gdb_stdout, "\n");
3165 }
3166
3167 /* Invoke the callback function to create the corefile
3168 segment. */
3169 func (addr, size, read, write, exec, obfd);
3170 }
3171 fclose (mapsfile);
3172 return 0;
3173 }
3174
3175 /* Records the thread's register state for the corefile note
3176 section. */
3177
3178 static char *
3179 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3180 char *note_data, int *note_size)
3181 {
3182 gdb_gregset_t gregs;
3183 gdb_fpregset_t fpregs;
3184 unsigned long lwp = ptid_get_lwp (ptid);
3185 struct regcache *regcache = get_thread_regcache (ptid);
3186 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3187 const struct regset *regset;
3188 int core_regset_p;
3189 struct cleanup *old_chain;
3190 struct core_regset_section *sect_list;
3191 char *gdb_regset;
3192
3193 old_chain = save_inferior_ptid ();
3194 inferior_ptid = ptid;
3195 target_fetch_registers (regcache, -1);
3196 do_cleanups (old_chain);
3197
3198 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3199 sect_list = gdbarch_core_regset_sections (gdbarch);
3200
3201 if (core_regset_p
3202 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3203 sizeof (gregs))) != NULL
3204 && regset->collect_regset != NULL)
3205 regset->collect_regset (regset, regcache, -1,
3206 &gregs, sizeof (gregs));
3207 else
3208 fill_gregset (regcache, &gregs, -1);
3209
3210 note_data = (char *) elfcore_write_prstatus (obfd,
3211 note_data,
3212 note_size,
3213 lwp,
3214 stop_signal, &gregs);
3215
3216 /* The loop below uses the new struct core_regset_section, which stores
3217 the supported section names and sizes for the core file. Note that
3218 note PRSTATUS needs to be treated specially. But the other notes are
3219 structurally the same, so they can benefit from the new struct. */
3220 if (core_regset_p && sect_list != NULL)
3221 while (sect_list->sect_name != NULL)
3222 {
3223 /* .reg was already handled above. */
3224 if (strcmp (sect_list->sect_name, ".reg") == 0)
3225 {
3226 sect_list++;
3227 continue;
3228 }
3229 regset = gdbarch_regset_from_core_section (gdbarch,
3230 sect_list->sect_name,
3231 sect_list->size);
3232 gdb_assert (regset && regset->collect_regset);
3233 gdb_regset = xmalloc (sect_list->size);
3234 regset->collect_regset (regset, regcache, -1,
3235 gdb_regset, sect_list->size);
3236 note_data = (char *) elfcore_write_register_note (obfd,
3237 note_data,
3238 note_size,
3239 sect_list->sect_name,
3240 gdb_regset,
3241 sect_list->size);
3242 xfree (gdb_regset);
3243 sect_list++;
3244 }
3245
3246 /* For architectures that does not have the struct core_regset_section
3247 implemented, we use the old method. When all the architectures have
3248 the new support, the code below should be deleted. */
3249 else
3250 {
3251 if (core_regset_p
3252 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3253 sizeof (fpregs))) != NULL
3254 && regset->collect_regset != NULL)
3255 regset->collect_regset (regset, regcache, -1,
3256 &fpregs, sizeof (fpregs));
3257 else
3258 fill_fpregset (regcache, &fpregs, -1);
3259
3260 note_data = (char *) elfcore_write_prfpreg (obfd,
3261 note_data,
3262 note_size,
3263 &fpregs, sizeof (fpregs));
3264 }
3265
3266 return note_data;
3267 }
3268
3269 struct linux_nat_corefile_thread_data
3270 {
3271 bfd *obfd;
3272 char *note_data;
3273 int *note_size;
3274 int num_notes;
3275 };
3276
3277 /* Called by gdbthread.c once per thread. Records the thread's
3278 register state for the corefile note section. */
3279
3280 static int
3281 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3282 {
3283 struct linux_nat_corefile_thread_data *args = data;
3284
3285 args->note_data = linux_nat_do_thread_registers (args->obfd,
3286 ti->ptid,
3287 args->note_data,
3288 args->note_size);
3289 args->num_notes++;
3290
3291 return 0;
3292 }
3293
3294 /* Records the register state for the corefile note section. */
3295
3296 static char *
3297 linux_nat_do_registers (bfd *obfd, ptid_t ptid,
3298 char *note_data, int *note_size)
3299 {
3300 return linux_nat_do_thread_registers (obfd,
3301 ptid_build (ptid_get_pid (inferior_ptid),
3302 ptid_get_pid (inferior_ptid),
3303 0),
3304 note_data, note_size);
3305 }
3306
3307 /* Fills the "to_make_corefile_note" target vector. Builds the note
3308 section for a corefile, and returns it in a malloc buffer. */
3309
3310 static char *
3311 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3312 {
3313 struct linux_nat_corefile_thread_data thread_args;
3314 struct cleanup *old_chain;
3315 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3316 char fname[16] = { '\0' };
3317 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3318 char psargs[80] = { '\0' };
3319 char *note_data = NULL;
3320 ptid_t current_ptid = inferior_ptid;
3321 gdb_byte *auxv;
3322 int auxv_len;
3323
3324 if (get_exec_file (0))
3325 {
3326 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3327 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3328 if (get_inferior_args ())
3329 {
3330 char *string_end;
3331 char *psargs_end = psargs + sizeof (psargs);
3332
3333 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3334 strings fine. */
3335 string_end = memchr (psargs, 0, sizeof (psargs));
3336 if (string_end != NULL)
3337 {
3338 *string_end++ = ' ';
3339 strncpy (string_end, get_inferior_args (),
3340 psargs_end - string_end);
3341 }
3342 }
3343 note_data = (char *) elfcore_write_prpsinfo (obfd,
3344 note_data,
3345 note_size, fname, psargs);
3346 }
3347
3348 /* Dump information for threads. */
3349 thread_args.obfd = obfd;
3350 thread_args.note_data = note_data;
3351 thread_args.note_size = note_size;
3352 thread_args.num_notes = 0;
3353 iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args);
3354 if (thread_args.num_notes == 0)
3355 {
3356 /* iterate_over_threads didn't come up with any threads; just
3357 use inferior_ptid. */
3358 note_data = linux_nat_do_registers (obfd, inferior_ptid,
3359 note_data, note_size);
3360 }
3361 else
3362 {
3363 note_data = thread_args.note_data;
3364 }
3365
3366 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3367 NULL, &auxv);
3368 if (auxv_len > 0)
3369 {
3370 note_data = elfcore_write_note (obfd, note_data, note_size,
3371 "CORE", NT_AUXV, auxv, auxv_len);
3372 xfree (auxv);
3373 }
3374
3375 make_cleanup (xfree, note_data);
3376 return note_data;
3377 }
3378
3379 /* Implement the "info proc" command. */
3380
3381 static void
3382 linux_nat_info_proc_cmd (char *args, int from_tty)
3383 {
3384 long long pid = PIDGET (inferior_ptid);
3385 FILE *procfile;
3386 char **argv = NULL;
3387 char buffer[MAXPATHLEN];
3388 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3389 int cmdline_f = 1;
3390 int cwd_f = 1;
3391 int exe_f = 1;
3392 int mappings_f = 0;
3393 int environ_f = 0;
3394 int status_f = 0;
3395 int stat_f = 0;
3396 int all = 0;
3397 struct stat dummy;
3398
3399 if (args)
3400 {
3401 /* Break up 'args' into an argv array. */
3402 if ((argv = buildargv (args)) == NULL)
3403 nomem (0);
3404 else
3405 make_cleanup_freeargv (argv);
3406 }
3407 while (argv != NULL && *argv != NULL)
3408 {
3409 if (isdigit (argv[0][0]))
3410 {
3411 pid = strtoul (argv[0], NULL, 10);
3412 }
3413 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
3414 {
3415 mappings_f = 1;
3416 }
3417 else if (strcmp (argv[0], "status") == 0)
3418 {
3419 status_f = 1;
3420 }
3421 else if (strcmp (argv[0], "stat") == 0)
3422 {
3423 stat_f = 1;
3424 }
3425 else if (strcmp (argv[0], "cmd") == 0)
3426 {
3427 cmdline_f = 1;
3428 }
3429 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
3430 {
3431 exe_f = 1;
3432 }
3433 else if (strcmp (argv[0], "cwd") == 0)
3434 {
3435 cwd_f = 1;
3436 }
3437 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
3438 {
3439 all = 1;
3440 }
3441 else
3442 {
3443 /* [...] (future options here) */
3444 }
3445 argv++;
3446 }
3447 if (pid == 0)
3448 error (_("No current process: you must name one."));
3449
3450 sprintf (fname1, "/proc/%lld", pid);
3451 if (stat (fname1, &dummy) != 0)
3452 error (_("No /proc directory: '%s'"), fname1);
3453
3454 printf_filtered (_("process %lld\n"), pid);
3455 if (cmdline_f || all)
3456 {
3457 sprintf (fname1, "/proc/%lld/cmdline", pid);
3458 if ((procfile = fopen (fname1, "r")) != NULL)
3459 {
3460 fgets (buffer, sizeof (buffer), procfile);
3461 printf_filtered ("cmdline = '%s'\n", buffer);
3462 fclose (procfile);
3463 }
3464 else
3465 warning (_("unable to open /proc file '%s'"), fname1);
3466 }
3467 if (cwd_f || all)
3468 {
3469 sprintf (fname1, "/proc/%lld/cwd", pid);
3470 memset (fname2, 0, sizeof (fname2));
3471 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3472 printf_filtered ("cwd = '%s'\n", fname2);
3473 else
3474 warning (_("unable to read link '%s'"), fname1);
3475 }
3476 if (exe_f || all)
3477 {
3478 sprintf (fname1, "/proc/%lld/exe", pid);
3479 memset (fname2, 0, sizeof (fname2));
3480 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
3481 printf_filtered ("exe = '%s'\n", fname2);
3482 else
3483 warning (_("unable to read link '%s'"), fname1);
3484 }
3485 if (mappings_f || all)
3486 {
3487 sprintf (fname1, "/proc/%lld/maps", pid);
3488 if ((procfile = fopen (fname1, "r")) != NULL)
3489 {
3490 long long addr, endaddr, size, offset, inode;
3491 char permissions[8], device[8], filename[MAXPATHLEN];
3492
3493 printf_filtered (_("Mapped address spaces:\n\n"));
3494 if (gdbarch_addr_bit (current_gdbarch) == 32)
3495 {
3496 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
3497 "Start Addr",
3498 " End Addr",
3499 " Size", " Offset", "objfile");
3500 }
3501 else
3502 {
3503 printf_filtered (" %18s %18s %10s %10s %7s\n",
3504 "Start Addr",
3505 " End Addr",
3506 " Size", " Offset", "objfile");
3507 }
3508
3509 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
3510 &offset, &device[0], &inode, &filename[0]))
3511 {
3512 size = endaddr - addr;
3513
3514 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
3515 calls here (and possibly above) should be abstracted
3516 out into their own functions? Andrew suggests using
3517 a generic local_address_string instead to print out
3518 the addresses; that makes sense to me, too. */
3519
3520 if (gdbarch_addr_bit (current_gdbarch) == 32)
3521 {
3522 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
3523 (unsigned long) addr, /* FIXME: pr_addr */
3524 (unsigned long) endaddr,
3525 (int) size,
3526 (unsigned int) offset,
3527 filename[0] ? filename : "");
3528 }
3529 else
3530 {
3531 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
3532 (unsigned long) addr, /* FIXME: pr_addr */
3533 (unsigned long) endaddr,
3534 (int) size,
3535 (unsigned int) offset,
3536 filename[0] ? filename : "");
3537 }
3538 }
3539
3540 fclose (procfile);
3541 }
3542 else
3543 warning (_("unable to open /proc file '%s'"), fname1);
3544 }
3545 if (status_f || all)
3546 {
3547 sprintf (fname1, "/proc/%lld/status", pid);
3548 if ((procfile = fopen (fname1, "r")) != NULL)
3549 {
3550 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
3551 puts_filtered (buffer);
3552 fclose (procfile);
3553 }
3554 else
3555 warning (_("unable to open /proc file '%s'"), fname1);
3556 }
3557 if (stat_f || all)
3558 {
3559 sprintf (fname1, "/proc/%lld/stat", pid);
3560 if ((procfile = fopen (fname1, "r")) != NULL)
3561 {
3562 int itmp;
3563 char ctmp;
3564 long ltmp;
3565
3566 if (fscanf (procfile, "%d ", &itmp) > 0)
3567 printf_filtered (_("Process: %d\n"), itmp);
3568 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
3569 printf_filtered (_("Exec file: %s\n"), buffer);
3570 if (fscanf (procfile, "%c ", &ctmp) > 0)
3571 printf_filtered (_("State: %c\n"), ctmp);
3572 if (fscanf (procfile, "%d ", &itmp) > 0)
3573 printf_filtered (_("Parent process: %d\n"), itmp);
3574 if (fscanf (procfile, "%d ", &itmp) > 0)
3575 printf_filtered (_("Process group: %d\n"), itmp);
3576 if (fscanf (procfile, "%d ", &itmp) > 0)
3577 printf_filtered (_("Session id: %d\n"), itmp);
3578 if (fscanf (procfile, "%d ", &itmp) > 0)
3579 printf_filtered (_("TTY: %d\n"), itmp);
3580 if (fscanf (procfile, "%d ", &itmp) > 0)
3581 printf_filtered (_("TTY owner process group: %d\n"), itmp);
3582 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3583 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
3584 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3585 printf_filtered (_("Minor faults (no memory page): %lu\n"),
3586 (unsigned long) ltmp);
3587 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3588 printf_filtered (_("Minor faults, children: %lu\n"),
3589 (unsigned long) ltmp);
3590 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3591 printf_filtered (_("Major faults (memory page faults): %lu\n"),
3592 (unsigned long) ltmp);
3593 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3594 printf_filtered (_("Major faults, children: %lu\n"),
3595 (unsigned long) ltmp);
3596 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3597 printf_filtered (_("utime: %ld\n"), ltmp);
3598 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3599 printf_filtered (_("stime: %ld\n"), ltmp);
3600 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3601 printf_filtered (_("utime, children: %ld\n"), ltmp);
3602 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3603 printf_filtered (_("stime, children: %ld\n"), ltmp);
3604 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3605 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
3606 ltmp);
3607 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3608 printf_filtered (_("'nice' value: %ld\n"), ltmp);
3609 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3610 printf_filtered (_("jiffies until next timeout: %lu\n"),
3611 (unsigned long) ltmp);
3612 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3613 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
3614 (unsigned long) ltmp);
3615 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3616 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
3617 ltmp);
3618 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3619 printf_filtered (_("Virtual memory size: %lu\n"),
3620 (unsigned long) ltmp);
3621 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3622 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
3623 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3624 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
3625 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3626 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
3627 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3628 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
3629 if (fscanf (procfile, "%lu ", &ltmp) > 0)
3630 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
3631 #if 0 /* Don't know how architecture-dependent the rest is...
3632 Anyway the signal bitmap info is available from "status". */
3633 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3634 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
3635 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3636 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
3637 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3638 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
3639 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3640 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
3641 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3642 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
3643 if (fscanf (procfile, "%ld ", &ltmp) > 0)
3644 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
3645 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
3646 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
3647 #endif
3648 fclose (procfile);
3649 }
3650 else
3651 warning (_("unable to open /proc file '%s'"), fname1);
3652 }
3653 }
3654
3655 /* Implement the to_xfer_partial interface for memory reads using the /proc
3656 filesystem. Because we can use a single read() call for /proc, this
3657 can be much more efficient than banging away at PTRACE_PEEKTEXT,
3658 but it doesn't support writes. */
3659
3660 static LONGEST
3661 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3662 const char *annex, gdb_byte *readbuf,
3663 const gdb_byte *writebuf,
3664 ULONGEST offset, LONGEST len)
3665 {
3666 LONGEST ret;
3667 int fd;
3668 char filename[64];
3669
3670 if (object != TARGET_OBJECT_MEMORY || !readbuf)
3671 return 0;
3672
3673 /* Don't bother for one word. */
3674 if (len < 3 * sizeof (long))
3675 return 0;
3676
3677 /* We could keep this file open and cache it - possibly one per
3678 thread. That requires some juggling, but is even faster. */
3679 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
3680 fd = open (filename, O_RDONLY | O_LARGEFILE);
3681 if (fd == -1)
3682 return 0;
3683
3684 /* If pread64 is available, use it. It's faster if the kernel
3685 supports it (only one syscall), and it's 64-bit safe even on
3686 32-bit platforms (for instance, SPARC debugging a SPARC64
3687 application). */
3688 #ifdef HAVE_PREAD64
3689 if (pread64 (fd, readbuf, len, offset) != len)
3690 #else
3691 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
3692 #endif
3693 ret = 0;
3694 else
3695 ret = len;
3696
3697 close (fd);
3698 return ret;
3699 }
3700
3701 /* Parse LINE as a signal set and add its set bits to SIGS. */
3702
3703 static void
3704 add_line_to_sigset (const char *line, sigset_t *sigs)
3705 {
3706 int len = strlen (line) - 1;
3707 const char *p;
3708 int signum;
3709
3710 if (line[len] != '\n')
3711 error (_("Could not parse signal set: %s"), line);
3712
3713 p = line;
3714 signum = len * 4;
3715 while (len-- > 0)
3716 {
3717 int digit;
3718
3719 if (*p >= '0' && *p <= '9')
3720 digit = *p - '0';
3721 else if (*p >= 'a' && *p <= 'f')
3722 digit = *p - 'a' + 10;
3723 else
3724 error (_("Could not parse signal set: %s"), line);
3725
3726 signum -= 4;
3727
3728 if (digit & 1)
3729 sigaddset (sigs, signum + 1);
3730 if (digit & 2)
3731 sigaddset (sigs, signum + 2);
3732 if (digit & 4)
3733 sigaddset (sigs, signum + 3);
3734 if (digit & 8)
3735 sigaddset (sigs, signum + 4);
3736
3737 p++;
3738 }
3739 }
3740
3741 /* Find process PID's pending signals from /proc/pid/status and set
3742 SIGS to match. */
3743
3744 void
3745 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
3746 {
3747 FILE *procfile;
3748 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
3749 int signum;
3750
3751 sigemptyset (pending);
3752 sigemptyset (blocked);
3753 sigemptyset (ignored);
3754 sprintf (fname, "/proc/%d/status", pid);
3755 procfile = fopen (fname, "r");
3756 if (procfile == NULL)
3757 error (_("Could not open %s"), fname);
3758
3759 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
3760 {
3761 /* Normal queued signals are on the SigPnd line in the status
3762 file. However, 2.6 kernels also have a "shared" pending
3763 queue for delivering signals to a thread group, so check for
3764 a ShdPnd line also.
3765
3766 Unfortunately some Red Hat kernels include the shared pending
3767 queue but not the ShdPnd status field. */
3768
3769 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
3770 add_line_to_sigset (buffer + 8, pending);
3771 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
3772 add_line_to_sigset (buffer + 8, pending);
3773 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
3774 add_line_to_sigset (buffer + 8, blocked);
3775 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
3776 add_line_to_sigset (buffer + 8, ignored);
3777 }
3778
3779 fclose (procfile);
3780 }
3781
3782 static LONGEST
3783 linux_xfer_partial (struct target_ops *ops, enum target_object object,
3784 const char *annex, gdb_byte *readbuf,
3785 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3786 {
3787 LONGEST xfer;
3788
3789 if (object == TARGET_OBJECT_AUXV)
3790 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
3791 offset, len);
3792
3793 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
3794 offset, len);
3795 if (xfer != 0)
3796 return xfer;
3797
3798 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
3799 offset, len);
3800 }
3801
3802 /* Create a prototype generic GNU/Linux target. The client can override
3803 it with local methods. */
3804
3805 static void
3806 linux_target_install_ops (struct target_ops *t)
3807 {
3808 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
3809 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
3810 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
3811 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
3812 t->to_post_startup_inferior = linux_child_post_startup_inferior;
3813 t->to_post_attach = linux_child_post_attach;
3814 t->to_follow_fork = linux_child_follow_fork;
3815 t->to_find_memory_regions = linux_nat_find_memory_regions;
3816 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
3817
3818 super_xfer_partial = t->to_xfer_partial;
3819 t->to_xfer_partial = linux_xfer_partial;
3820 }
3821
3822 struct target_ops *
3823 linux_target (void)
3824 {
3825 struct target_ops *t;
3826
3827 t = inf_ptrace_target ();
3828 linux_target_install_ops (t);
3829
3830 return t;
3831 }
3832
3833 struct target_ops *
3834 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
3835 {
3836 struct target_ops *t;
3837
3838 t = inf_ptrace_trad_target (register_u_offset);
3839 linux_target_install_ops (t);
3840
3841 return t;
3842 }
3843
3844 /* Controls if async mode is permitted. */
3845 static int linux_async_permitted = 0;
3846
3847 /* The set command writes to this variable. If the inferior is
3848 executing, linux_nat_async_permitted is *not* updated. */
3849 static int linux_async_permitted_1 = 0;
3850
3851 static void
3852 set_maintenance_linux_async_permitted (char *args, int from_tty,
3853 struct cmd_list_element *c)
3854 {
3855 if (target_has_execution)
3856 {
3857 linux_async_permitted_1 = linux_async_permitted;
3858 error (_("Cannot change this setting while the inferior is running."));
3859 }
3860
3861 linux_async_permitted = linux_async_permitted_1;
3862 linux_nat_set_async_mode (linux_async_permitted);
3863 }
3864
3865 static void
3866 show_maintenance_linux_async_permitted (struct ui_file *file, int from_tty,
3867 struct cmd_list_element *c, const char *value)
3868 {
3869 fprintf_filtered (file, _("\
3870 Controlling the GNU/Linux inferior in asynchronous mode is %s.\n"),
3871 value);
3872 }
3873
3874 /* target_is_async_p implementation. */
3875
3876 static int
3877 linux_nat_is_async_p (void)
3878 {
3879 /* NOTE: palves 2008-03-21: We're only async when the user requests
3880 it explicitly with the "maintenance set linux-async" command.
3881 Someday, linux will always be async. */
3882 if (!linux_async_permitted)
3883 return 0;
3884
3885 return 1;
3886 }
3887
3888 /* target_can_async_p implementation. */
3889
3890 static int
3891 linux_nat_can_async_p (void)
3892 {
3893 /* NOTE: palves 2008-03-21: We're only async when the user requests
3894 it explicitly with the "maintenance set linux-async" command.
3895 Someday, linux will always be async. */
3896 if (!linux_async_permitted)
3897 return 0;
3898
3899 /* See target.h/target_async_mask. */
3900 return linux_nat_async_mask_value;
3901 }
3902
3903 /* target_async_mask implementation. */
3904
3905 static int
3906 linux_nat_async_mask (int mask)
3907 {
3908 int current_state;
3909 current_state = linux_nat_async_mask_value;
3910
3911 if (current_state != mask)
3912 {
3913 if (mask == 0)
3914 {
3915 linux_nat_async (NULL, 0);
3916 linux_nat_async_mask_value = mask;
3917 }
3918 else
3919 {
3920 linux_nat_async_mask_value = mask;
3921 linux_nat_async (inferior_event_handler, 0);
3922 }
3923 }
3924
3925 return current_state;
3926 }
3927
3928 /* Pop an event from the event pipe. */
3929
3930 static int
3931 linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options)
3932 {
3933 struct waitpid_result event = {0};
3934 int ret;
3935
3936 do
3937 {
3938 ret = read (linux_nat_event_pipe[0], &event, sizeof (event));
3939 }
3940 while (ret == -1 && errno == EINTR);
3941
3942 gdb_assert (ret == sizeof (event));
3943
3944 *ptr_status = event.status;
3945 *ptr_options = event.options;
3946
3947 linux_nat_num_queued_events--;
3948
3949 return event.pid;
3950 }
3951
3952 /* Push an event into the event pipe. */
3953
3954 static void
3955 linux_nat_event_pipe_push (int pid, int status, int options)
3956 {
3957 int ret;
3958 struct waitpid_result event = {0};
3959 event.pid = pid;
3960 event.status = status;
3961 event.options = options;
3962
3963 do
3964 {
3965 ret = write (linux_nat_event_pipe[1], &event, sizeof (event));
3966 gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event));
3967 } while (ret == -1 && errno == EINTR);
3968
3969 linux_nat_num_queued_events++;
3970 }
3971
3972 static void
3973 get_pending_events (void)
3974 {
3975 int status, options, pid;
3976
3977 if (!linux_nat_async_enabled
3978 || linux_nat_async_events_state != sigchld_async)
3979 internal_error (__FILE__, __LINE__,
3980 "get_pending_events called with async masked");
3981
3982 while (1)
3983 {
3984 status = 0;
3985 options = __WCLONE | WNOHANG;
3986
3987 do
3988 {
3989 pid = waitpid (-1, &status, options);
3990 }
3991 while (pid == -1 && errno == EINTR);
3992
3993 if (pid <= 0)
3994 {
3995 options = WNOHANG;
3996 do
3997 {
3998 pid = waitpid (-1, &status, options);
3999 }
4000 while (pid == -1 && errno == EINTR);
4001 }
4002
4003 if (pid <= 0)
4004 /* No more children reporting events. */
4005 break;
4006
4007 if (debug_linux_nat_async)
4008 fprintf_unfiltered (gdb_stdlog, "\
4009 get_pending_events: pid(%d), status(%x), options (%x)\n",
4010 pid, status, options);
4011
4012 linux_nat_event_pipe_push (pid, status, options);
4013 }
4014
4015 if (debug_linux_nat_async)
4016 fprintf_unfiltered (gdb_stdlog, "\
4017 get_pending_events: linux_nat_num_queued_events(%d)\n",
4018 linux_nat_num_queued_events);
4019 }
4020
4021 /* SIGCHLD handler for async mode. */
4022
4023 static void
4024 async_sigchld_handler (int signo)
4025 {
4026 if (debug_linux_nat_async)
4027 fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n");
4028
4029 get_pending_events ();
4030 }
4031
4032 /* Set SIGCHLD handling state to STATE. Returns previous state. */
4033
4034 static enum sigchld_state
4035 linux_nat_async_events (enum sigchld_state state)
4036 {
4037 enum sigchld_state current_state = linux_nat_async_events_state;
4038
4039 if (debug_linux_nat_async)
4040 fprintf_unfiltered (gdb_stdlog,
4041 "LNAE: state(%d): linux_nat_async_events_state(%d), "
4042 "linux_nat_num_queued_events(%d)\n",
4043 state, linux_nat_async_events_state,
4044 linux_nat_num_queued_events);
4045
4046 if (current_state != state)
4047 {
4048 sigset_t mask;
4049 sigemptyset (&mask);
4050 sigaddset (&mask, SIGCHLD);
4051
4052 /* Always block before changing state. */
4053 sigprocmask (SIG_BLOCK, &mask, NULL);
4054
4055 /* Set new state. */
4056 linux_nat_async_events_state = state;
4057
4058 switch (state)
4059 {
4060 case sigchld_sync:
4061 {
4062 /* Block target events. */
4063 sigprocmask (SIG_BLOCK, &mask, NULL);
4064 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4065 /* Get events out of queue, and make them available to
4066 queued_waitpid / my_waitpid. */
4067 pipe_to_local_event_queue ();
4068 }
4069 break;
4070 case sigchld_async:
4071 {
4072 /* Unblock target events for async mode. */
4073
4074 sigprocmask (SIG_BLOCK, &mask, NULL);
4075
4076 /* Put events we already waited on, in the pipe first, so
4077 events are FIFO. */
4078 local_event_queue_to_pipe ();
4079 /* While in masked async, we may have not collected all
4080 the pending events. Get them out now. */
4081 get_pending_events ();
4082
4083 /* Let'em come. */
4084 sigaction (SIGCHLD, &async_sigchld_action, NULL);
4085 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4086 }
4087 break;
4088 case sigchld_default:
4089 {
4090 /* SIGCHLD default mode. */
4091 sigaction (SIGCHLD, &sigchld_default_action, NULL);
4092
4093 /* Get events out of queue, and make them available to
4094 queued_waitpid / my_waitpid. */
4095 pipe_to_local_event_queue ();
4096
4097 /* Unblock SIGCHLD. */
4098 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4099 }
4100 break;
4101 }
4102 }
4103
4104 return current_state;
4105 }
4106
4107 static int async_terminal_is_ours = 1;
4108
4109 /* target_terminal_inferior implementation. */
4110
4111 static void
4112 linux_nat_terminal_inferior (void)
4113 {
4114 if (!target_is_async_p ())
4115 {
4116 /* Async mode is disabled. */
4117 terminal_inferior ();
4118 return;
4119 }
4120
4121 /* GDB should never give the terminal to the inferior, if the
4122 inferior is running in the background (run&, continue&, etc.).
4123 This check can be removed when the common code is fixed. */
4124 if (!sync_execution)
4125 return;
4126
4127 terminal_inferior ();
4128
4129 if (!async_terminal_is_ours)
4130 return;
4131
4132 delete_file_handler (input_fd);
4133 async_terminal_is_ours = 0;
4134 set_sigint_trap ();
4135 }
4136
4137 /* target_terminal_ours implementation. */
4138
4139 void
4140 linux_nat_terminal_ours (void)
4141 {
4142 if (!target_is_async_p ())
4143 {
4144 /* Async mode is disabled. */
4145 terminal_ours ();
4146 return;
4147 }
4148
4149 /* GDB should never give the terminal to the inferior if the
4150 inferior is running in the background (run&, continue&, etc.),
4151 but claiming it sure should. */
4152 terminal_ours ();
4153
4154 if (!sync_execution)
4155 return;
4156
4157 if (async_terminal_is_ours)
4158 return;
4159
4160 clear_sigint_trap ();
4161 add_file_handler (input_fd, stdin_event_handler, 0);
4162 async_terminal_is_ours = 1;
4163 }
4164
4165 static void (*async_client_callback) (enum inferior_event_type event_type,
4166 void *context);
4167 static void *async_client_context;
4168
4169 static void
4170 linux_nat_async_file_handler (int error, gdb_client_data client_data)
4171 {
4172 async_client_callback (INF_REG_EVENT, async_client_context);
4173 }
4174
4175 /* target_async implementation. */
4176
4177 static void
4178 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4179 void *context), void *context)
4180 {
4181 if (linux_nat_async_mask_value == 0 || !linux_nat_async_enabled)
4182 internal_error (__FILE__, __LINE__,
4183 "Calling target_async when async is masked");
4184
4185 if (callback != NULL)
4186 {
4187 async_client_callback = callback;
4188 async_client_context = context;
4189 add_file_handler (linux_nat_event_pipe[0],
4190 linux_nat_async_file_handler, NULL);
4191
4192 linux_nat_async_events (sigchld_async);
4193 }
4194 else
4195 {
4196 async_client_callback = callback;
4197 async_client_context = context;
4198
4199 linux_nat_async_events (sigchld_sync);
4200 delete_file_handler (linux_nat_event_pipe[0]);
4201 }
4202 return;
4203 }
4204
4205 /* Enable/Disable async mode. */
4206
4207 static void
4208 linux_nat_set_async_mode (int on)
4209 {
4210 if (linux_nat_async_enabled != on)
4211 {
4212 if (on)
4213 {
4214 gdb_assert (waitpid_queue == NULL);
4215 if (pipe (linux_nat_event_pipe) == -1)
4216 internal_error (__FILE__, __LINE__,
4217 "creating event pipe failed.");
4218 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4219 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4220 }
4221 else
4222 {
4223 drain_queued_events (-1);
4224 linux_nat_num_queued_events = 0;
4225 close (linux_nat_event_pipe[0]);
4226 close (linux_nat_event_pipe[1]);
4227 linux_nat_event_pipe[0] = linux_nat_event_pipe[1] = -1;
4228
4229 }
4230 }
4231 linux_nat_async_enabled = on;
4232 }
4233
4234 void
4235 linux_nat_add_target (struct target_ops *t)
4236 {
4237 /* Save the provided single-threaded target. We save this in a separate
4238 variable because another target we've inherited from (e.g. inf-ptrace)
4239 may have saved a pointer to T; we want to use it for the final
4240 process stratum target. */
4241 linux_ops_saved = *t;
4242 linux_ops = &linux_ops_saved;
4243
4244 /* Override some methods for multithreading. */
4245 t->to_create_inferior = linux_nat_create_inferior;
4246 t->to_attach = linux_nat_attach;
4247 t->to_detach = linux_nat_detach;
4248 t->to_resume = linux_nat_resume;
4249 t->to_wait = linux_nat_wait;
4250 t->to_xfer_partial = linux_nat_xfer_partial;
4251 t->to_kill = linux_nat_kill;
4252 t->to_mourn_inferior = linux_nat_mourn_inferior;
4253 t->to_thread_alive = linux_nat_thread_alive;
4254 t->to_pid_to_str = linux_nat_pid_to_str;
4255 t->to_has_thread_control = tc_schedlock;
4256
4257 t->to_can_async_p = linux_nat_can_async_p;
4258 t->to_is_async_p = linux_nat_is_async_p;
4259 t->to_async = linux_nat_async;
4260 t->to_async_mask = linux_nat_async_mask;
4261 t->to_terminal_inferior = linux_nat_terminal_inferior;
4262 t->to_terminal_ours = linux_nat_terminal_ours;
4263
4264 /* We don't change the stratum; this target will sit at
4265 process_stratum and thread_db will set at thread_stratum. This
4266 is a little strange, since this is a multi-threaded-capable
4267 target, but we want to be on the stack below thread_db, and we
4268 also want to be used for single-threaded processes. */
4269
4270 add_target (t);
4271
4272 /* TODO: Eliminate this and have libthread_db use
4273 find_target_beneath. */
4274 thread_db_init (t);
4275 }
4276
4277 /* Register a method to call whenever a new thread is attached. */
4278 void
4279 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
4280 {
4281 /* Save the pointer. We only support a single registered instance
4282 of the GNU/Linux native target, so we do not need to map this to
4283 T. */
4284 linux_nat_new_thread = new_thread;
4285 }
4286
4287 /* Return the saved siginfo associated with PTID. */
4288 struct siginfo *
4289 linux_nat_get_siginfo (ptid_t ptid)
4290 {
4291 struct lwp_info *lp = find_lwp_pid (ptid);
4292
4293 gdb_assert (lp != NULL);
4294
4295 return &lp->siginfo;
4296 }
4297
4298 void
4299 _initialize_linux_nat (void)
4300 {
4301 sigset_t mask;
4302
4303 add_info ("proc", linux_nat_info_proc_cmd, _("\
4304 Show /proc process information about any running process.\n\
4305 Specify any process id, or use the program being debugged by default.\n\
4306 Specify any of the following keywords for detailed info:\n\
4307 mappings -- list of mapped memory regions.\n\
4308 stat -- list a bunch of random process info.\n\
4309 status -- list a different bunch of random process info.\n\
4310 all -- list all available /proc info."));
4311
4312 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
4313 &debug_linux_nat, _("\
4314 Set debugging of GNU/Linux lwp module."), _("\
4315 Show debugging of GNU/Linux lwp module."), _("\
4316 Enables printf debugging output."),
4317 NULL,
4318 show_debug_linux_nat,
4319 &setdebuglist, &showdebuglist);
4320
4321 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
4322 &debug_linux_nat_async, _("\
4323 Set debugging of GNU/Linux async lwp module."), _("\
4324 Show debugging of GNU/Linux async lwp module."), _("\
4325 Enables printf debugging output."),
4326 NULL,
4327 show_debug_linux_nat_async,
4328 &setdebuglist, &showdebuglist);
4329
4330 add_setshow_boolean_cmd ("linux-async", class_maintenance,
4331 &linux_async_permitted_1, _("\
4332 Set whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4333 Show whether gdb controls the GNU/Linux inferior in asynchronous mode."), _("\
4334 Tells gdb whether to control the GNU/Linux inferior in asynchronous mode."),
4335 set_maintenance_linux_async_permitted,
4336 show_maintenance_linux_async_permitted,
4337 &maintenance_set_cmdlist,
4338 &maintenance_show_cmdlist);
4339
4340 /* Get the default SIGCHLD action. Used while forking an inferior
4341 (see linux_nat_create_inferior/linux_nat_async_events). */
4342 sigaction (SIGCHLD, NULL, &sigchld_default_action);
4343
4344 /* Block SIGCHLD by default. Doing this early prevents it getting
4345 unblocked if an exception is thrown due to an error while the
4346 inferior is starting (sigsetjmp/siglongjmp). */
4347 sigemptyset (&mask);
4348 sigaddset (&mask, SIGCHLD);
4349 sigprocmask (SIG_BLOCK, &mask, NULL);
4350
4351 /* Save this mask as the default. */
4352 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4353
4354 /* The synchronous SIGCHLD handler. */
4355 sync_sigchld_action.sa_handler = sigchld_handler;
4356 sigemptyset (&sync_sigchld_action.sa_mask);
4357 sync_sigchld_action.sa_flags = SA_RESTART;
4358
4359 /* Make it the default. */
4360 sigaction (SIGCHLD, &sync_sigchld_action, NULL);
4361
4362 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4363 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4364 sigdelset (&suspend_mask, SIGCHLD);
4365
4366 /* SIGCHLD handler for async mode. */
4367 async_sigchld_action.sa_handler = async_sigchld_handler;
4368 sigemptyset (&async_sigchld_action.sa_mask);
4369 async_sigchld_action.sa_flags = SA_RESTART;
4370
4371 /* Install the default mode. */
4372 linux_nat_set_async_mode (linux_async_permitted);
4373 }
4374 \f
4375
4376 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4377 the GNU/Linux Threads library and therefore doesn't really belong
4378 here. */
4379
4380 /* Read variable NAME in the target and return its value if found.
4381 Otherwise return zero. It is assumed that the type of the variable
4382 is `int'. */
4383
4384 static int
4385 get_signo (const char *name)
4386 {
4387 struct minimal_symbol *ms;
4388 int signo;
4389
4390 ms = lookup_minimal_symbol (name, NULL, NULL);
4391 if (ms == NULL)
4392 return 0;
4393
4394 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
4395 sizeof (signo)) != 0)
4396 return 0;
4397
4398 return signo;
4399 }
4400
4401 /* Return the set of signals used by the threads library in *SET. */
4402
4403 void
4404 lin_thread_get_thread_signals (sigset_t *set)
4405 {
4406 struct sigaction action;
4407 int restart, cancel;
4408 sigset_t blocked_mask;
4409
4410 sigemptyset (&blocked_mask);
4411 sigemptyset (set);
4412
4413 restart = get_signo ("__pthread_sig_restart");
4414 cancel = get_signo ("__pthread_sig_cancel");
4415
4416 /* LinuxThreads normally uses the first two RT signals, but in some legacy
4417 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
4418 not provide any way for the debugger to query the signal numbers -
4419 fortunately they don't change! */
4420
4421 if (restart == 0)
4422 restart = __SIGRTMIN;
4423
4424 if (cancel == 0)
4425 cancel = __SIGRTMIN + 1;
4426
4427 sigaddset (set, restart);
4428 sigaddset (set, cancel);
4429
4430 /* The GNU/Linux Threads library makes terminating threads send a
4431 special "cancel" signal instead of SIGCHLD. Make sure we catch
4432 those (to prevent them from terminating GDB itself, which is
4433 likely to be their default action) and treat them the same way as
4434 SIGCHLD. */
4435
4436 action.sa_handler = sigchld_handler;
4437 sigemptyset (&action.sa_mask);
4438 action.sa_flags = SA_RESTART;
4439 sigaction (cancel, &action, NULL);
4440
4441 /* We block the "cancel" signal throughout this code ... */
4442 sigaddset (&blocked_mask, cancel);
4443 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
4444
4445 /* ... except during a sigsuspend. */
4446 sigdelset (&suspend_mask, cancel);
4447 }
This page took 0.121144 seconds and 4 git commands to generate.