* arm-tdep.c (arm_push_dummy_call): Set the low bit of LR for
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif /* HAVE_PERSONALITY */
69
70 /* This comment documents high-level logic of this file.
71
72 Waiting for events in sync mode
73 ===============================
74
75 When waiting for an event in a specific thread, we just use waitpid, passing
76 the specific pid, and not passing WNOHANG.
77
78 When waiting for an event in all threads, waitpid is not quite good. Prior to
79 version 2.4, Linux can either wait for event in main thread, or in secondary
80 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
81 miss an event. The solution is to use non-blocking waitpid, together with
82 sigsuspend. First, we use non-blocking waitpid to get an event in the main
83 process, if any. Second, we use non-blocking waitpid with the __WCLONED
84 flag to check for events in cloned processes. If nothing is found, we use
85 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
86 happened to a child process -- and SIGCHLD will be delivered both for events
87 in main debugged process and in cloned processes. As soon as we know there's
88 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
89
90 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
91 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
92 blocked, the signal becomes pending and sigsuspend immediately
93 notices it and returns.
94
95 Waiting for events in async mode
96 ================================
97
98 In async mode, GDB should always be ready to handle both user input
99 and target events, so neither blocking waitpid nor sigsuspend are
100 viable options. Instead, we should asynchronously notify the GDB main
101 event loop whenever there's an unprocessed event from the target. We
102 detect asynchronous target events by handling SIGCHLD signals. To
103 notify the event loop about target events, the self-pipe trick is used
104 --- a pipe is registered as waitable event source in the event loop,
105 the event loop select/poll's on the read end of this pipe (as well on
106 other event sources, e.g., stdin), and the SIGCHLD handler writes a
107 byte to this pipe. This is more portable than relying on
108 pselect/ppoll, since on kernels that lack those syscalls, libc
109 emulates them with select/poll+sigprocmask, and that is racy
110 (a.k.a. plain broken).
111
112 Obviously, if we fail to notify the event loop if there's a target
113 event, it's bad. OTOH, if we notify the event loop when there's no
114 event from the target, linux_nat_wait will detect that there's no real
115 event to report, and return event of type TARGET_WAITKIND_IGNORE.
116 This is mostly harmless, but it will waste time and is better avoided.
117
118 The main design point is that every time GDB is outside linux-nat.c,
119 we have a SIGCHLD handler installed that is called when something
120 happens to the target and notifies the GDB event loop. Whenever GDB
121 core decides to handle the event, and calls into linux-nat.c, we
122 process things as in sync mode, except that the we never block in
123 sigsuspend.
124
125 While processing an event, we may end up momentarily blocked in
126 waitpid calls. Those waitpid calls, while blocking, are guarantied to
127 return quickly. E.g., in all-stop mode, before reporting to the core
128 that an LWP hit a breakpoint, all LWPs are stopped by sending them
129 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
130 Note that this is different from blocking indefinitely waiting for the
131 next event --- here, we're already handling an event.
132
133 Use of signals
134 ==============
135
136 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
137 signal is not entirely significant; we just need for a signal to be delivered,
138 so that we can intercept it. SIGSTOP's advantage is that it can not be
139 blocked. A disadvantage is that it is not a real-time signal, so it can only
140 be queued once; we do not keep track of other sources of SIGSTOP.
141
142 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
143 use them, because they have special behavior when the signal is generated -
144 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
145 kills the entire thread group.
146
147 A delivered SIGSTOP would stop the entire thread group, not just the thread we
148 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
149 cancel it (by PTRACE_CONT without passing SIGSTOP).
150
151 We could use a real-time signal instead. This would solve those problems; we
152 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
153 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
154 generates it, and there are races with trying to find a signal that is not
155 blocked. */
156
157 #ifndef O_LARGEFILE
158 #define O_LARGEFILE 0
159 #endif
160
161 /* If the system headers did not provide the constants, hard-code the normal
162 values. */
163 #ifndef PTRACE_EVENT_FORK
164
165 #define PTRACE_SETOPTIONS 0x4200
166 #define PTRACE_GETEVENTMSG 0x4201
167
168 /* options set using PTRACE_SETOPTIONS */
169 #define PTRACE_O_TRACESYSGOOD 0x00000001
170 #define PTRACE_O_TRACEFORK 0x00000002
171 #define PTRACE_O_TRACEVFORK 0x00000004
172 #define PTRACE_O_TRACECLONE 0x00000008
173 #define PTRACE_O_TRACEEXEC 0x00000010
174 #define PTRACE_O_TRACEVFORKDONE 0x00000020
175 #define PTRACE_O_TRACEEXIT 0x00000040
176
177 /* Wait extended result codes for the above trace options. */
178 #define PTRACE_EVENT_FORK 1
179 #define PTRACE_EVENT_VFORK 2
180 #define PTRACE_EVENT_CLONE 3
181 #define PTRACE_EVENT_EXEC 4
182 #define PTRACE_EVENT_VFORK_DONE 5
183 #define PTRACE_EVENT_EXIT 6
184
185 #endif /* PTRACE_EVENT_FORK */
186
187 /* Unlike other extended result codes, WSTOPSIG (status) on
188 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
189 instead SIGTRAP with bit 7 set. */
190 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
191
192 /* We can't always assume that this flag is available, but all systems
193 with the ptrace event handlers also have __WALL, so it's safe to use
194 here. */
195 #ifndef __WALL
196 #define __WALL 0x40000000 /* Wait for any child. */
197 #endif
198
199 #ifndef PTRACE_GETSIGINFO
200 # define PTRACE_GETSIGINFO 0x4202
201 # define PTRACE_SETSIGINFO 0x4203
202 #endif
203
204 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
205 the use of the multi-threaded target. */
206 static struct target_ops *linux_ops;
207 static struct target_ops linux_ops_saved;
208
209 /* The method to call, if any, when a new thread is attached. */
210 static void (*linux_nat_new_thread) (ptid_t);
211
212 /* The method to call, if any, when the siginfo object needs to be
213 converted between the layout returned by ptrace, and the layout in
214 the architecture of the inferior. */
215 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
216 gdb_byte *,
217 int);
218
219 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
220 Called by our to_xfer_partial. */
221 static LONGEST (*super_xfer_partial) (struct target_ops *,
222 enum target_object,
223 const char *, gdb_byte *,
224 const gdb_byte *,
225 ULONGEST, LONGEST);
226
227 static int debug_linux_nat;
228 static void
229 show_debug_linux_nat (struct ui_file *file, int from_tty,
230 struct cmd_list_element *c, const char *value)
231 {
232 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
233 value);
234 }
235
236 static int debug_linux_nat_async = 0;
237 static void
238 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
242 value);
243 }
244
245 static int disable_randomization = 1;
246
247 static void
248 show_disable_randomization (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 #ifdef HAVE_PERSONALITY
252 fprintf_filtered (file, _("\
253 Disabling randomization of debuggee's virtual address space is %s.\n"),
254 value);
255 #else /* !HAVE_PERSONALITY */
256 fputs_filtered (_("\
257 Disabling randomization of debuggee's virtual address space is unsupported on\n\
258 this platform.\n"), file);
259 #endif /* !HAVE_PERSONALITY */
260 }
261
262 static void
263 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
264 {
265 #ifndef HAVE_PERSONALITY
266 error (_("\
267 Disabling randomization of debuggee's virtual address space is unsupported on\n\
268 this platform."));
269 #endif /* !HAVE_PERSONALITY */
270 }
271
272 static int linux_parent_pid;
273
274 struct simple_pid_list
275 {
276 int pid;
277 int status;
278 struct simple_pid_list *next;
279 };
280 struct simple_pid_list *stopped_pids;
281
282 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
283 can not be used, 1 if it can. */
284
285 static int linux_supports_tracefork_flag = -1;
286
287 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
288 can not be used, 1 if it can. */
289
290 static int linux_supports_tracesysgood_flag = -1;
291
292 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
293 PTRACE_O_TRACEVFORKDONE. */
294
295 static int linux_supports_tracevforkdone_flag = -1;
296
297 /* Async mode support */
298
299 /* Zero if the async mode, although enabled, is masked, which means
300 linux_nat_wait should behave as if async mode was off. */
301 static int linux_nat_async_mask_value = 1;
302
303 /* Stores the current used ptrace() options. */
304 static int current_ptrace_options = 0;
305
306 /* The read/write ends of the pipe registered as waitable file in the
307 event loop. */
308 static int linux_nat_event_pipe[2] = { -1, -1 };
309
310 /* Flush the event pipe. */
311
312 static void
313 async_file_flush (void)
314 {
315 int ret;
316 char buf;
317
318 do
319 {
320 ret = read (linux_nat_event_pipe[0], &buf, 1);
321 }
322 while (ret >= 0 || (ret == -1 && errno == EINTR));
323 }
324
325 /* Put something (anything, doesn't matter what, or how much) in event
326 pipe, so that the select/poll in the event-loop realizes we have
327 something to process. */
328
329 static void
330 async_file_mark (void)
331 {
332 int ret;
333
334 /* It doesn't really matter what the pipe contains, as long we end
335 up with something in it. Might as well flush the previous
336 left-overs. */
337 async_file_flush ();
338
339 do
340 {
341 ret = write (linux_nat_event_pipe[1], "+", 1);
342 }
343 while (ret == -1 && errno == EINTR);
344
345 /* Ignore EAGAIN. If the pipe is full, the event loop will already
346 be awakened anyway. */
347 }
348
349 static void linux_nat_async (void (*callback)
350 (enum inferior_event_type event_type, void *context),
351 void *context);
352 static int linux_nat_async_mask (int mask);
353 static int kill_lwp (int lwpid, int signo);
354
355 static int stop_callback (struct lwp_info *lp, void *data);
356
357 static void block_child_signals (sigset_t *prev_mask);
358 static void restore_child_signals_mask (sigset_t *prev_mask);
359
360 struct lwp_info;
361 static struct lwp_info *add_lwp (ptid_t ptid);
362 static void purge_lwp_list (int pid);
363 static struct lwp_info *find_lwp_pid (ptid_t ptid);
364
365 \f
366 /* Trivial list manipulation functions to keep track of a list of
367 new stopped processes. */
368 static void
369 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
370 {
371 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387 *status = (*p)->status;
388 xfree (*p);
389 *p = next;
390 return 1;
391 }
392 return 0;
393 }
394
395 static void
396 linux_record_stopped_pid (int pid, int status)
397 {
398 add_to_pid_list (&stopped_pids, pid, status);
399 }
400
401 \f
402 /* A helper function for linux_test_for_tracefork, called after fork (). */
403
404 static void
405 linux_tracefork_child (void)
406 {
407 int ret;
408
409 ptrace (PTRACE_TRACEME, 0, 0, 0);
410 kill (getpid (), SIGSTOP);
411 fork ();
412 _exit (0);
413 }
414
415 /* Wrapper function for waitpid which handles EINTR. */
416
417 static int
418 my_waitpid (int pid, int *status, int flags)
419 {
420 int ret;
421
422 do
423 {
424 ret = waitpid (pid, status, flags);
425 }
426 while (ret == -1 && errno == EINTR);
427
428 return ret;
429 }
430
431 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
432
433 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
434 we know that the feature is not available. This may change the tracing
435 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
436
437 However, if it succeeds, we don't know for sure that the feature is
438 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
439 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
440 fork tracing, and let it fork. If the process exits, we assume that we
441 can't use TRACEFORK; if we get the fork notification, and we can extract
442 the new child's PID, then we assume that we can. */
443
444 static void
445 linux_test_for_tracefork (int original_pid)
446 {
447 int child_pid, ret, status;
448 long second_pid;
449 sigset_t prev_mask;
450
451 /* We don't want those ptrace calls to be interrupted. */
452 block_child_signals (&prev_mask);
453
454 linux_supports_tracefork_flag = 0;
455 linux_supports_tracevforkdone_flag = 0;
456
457 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
458 if (ret != 0)
459 {
460 restore_child_signals_mask (&prev_mask);
461 return;
462 }
463
464 child_pid = fork ();
465 if (child_pid == -1)
466 perror_with_name (("fork"));
467
468 if (child_pid == 0)
469 linux_tracefork_child ();
470
471 ret = my_waitpid (child_pid, &status, 0);
472 if (ret == -1)
473 perror_with_name (("waitpid"));
474 else if (ret != child_pid)
475 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
476 if (! WIFSTOPPED (status))
477 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
478
479 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
480 if (ret != 0)
481 {
482 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
483 if (ret != 0)
484 {
485 warning (_("linux_test_for_tracefork: failed to kill child"));
486 restore_child_signals_mask (&prev_mask);
487 return;
488 }
489
490 ret = my_waitpid (child_pid, &status, 0);
491 if (ret != child_pid)
492 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
493 else if (!WIFSIGNALED (status))
494 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
495 "killed child"), status);
496
497 restore_child_signals_mask (&prev_mask);
498 return;
499 }
500
501 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
502 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
503 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
504 linux_supports_tracevforkdone_flag = (ret == 0);
505
506 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
507 if (ret != 0)
508 warning (_("linux_test_for_tracefork: failed to resume child"));
509
510 ret = my_waitpid (child_pid, &status, 0);
511
512 if (ret == child_pid && WIFSTOPPED (status)
513 && status >> 16 == PTRACE_EVENT_FORK)
514 {
515 second_pid = 0;
516 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
517 if (ret == 0 && second_pid != 0)
518 {
519 int second_status;
520
521 linux_supports_tracefork_flag = 1;
522 my_waitpid (second_pid, &second_status, 0);
523 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
524 if (ret != 0)
525 warning (_("linux_test_for_tracefork: failed to kill second child"));
526 my_waitpid (second_pid, &status, 0);
527 }
528 }
529 else
530 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
531 "(%d, status 0x%x)"), ret, status);
532
533 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
534 if (ret != 0)
535 warning (_("linux_test_for_tracefork: failed to kill child"));
536 my_waitpid (child_pid, &status, 0);
537
538 restore_child_signals_mask (&prev_mask);
539 }
540
541 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
542
543 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
544 we know that the feature is not available. This may change the tracing
545 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
546
547 static void
548 linux_test_for_tracesysgood (int original_pid)
549 {
550 int ret;
551 sigset_t prev_mask;
552
553 /* We don't want those ptrace calls to be interrupted. */
554 block_child_signals (&prev_mask);
555
556 linux_supports_tracesysgood_flag = 0;
557
558 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
559 if (ret != 0)
560 goto out;
561
562 linux_supports_tracesysgood_flag = 1;
563 out:
564 restore_child_signals_mask (&prev_mask);
565 }
566
567 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
568 This function also sets linux_supports_tracesysgood_flag. */
569
570 static int
571 linux_supports_tracesysgood (int pid)
572 {
573 if (linux_supports_tracesysgood_flag == -1)
574 linux_test_for_tracesysgood (pid);
575 return linux_supports_tracesysgood_flag;
576 }
577
578 /* Return non-zero iff we have tracefork functionality available.
579 This function also sets linux_supports_tracefork_flag. */
580
581 static int
582 linux_supports_tracefork (int pid)
583 {
584 if (linux_supports_tracefork_flag == -1)
585 linux_test_for_tracefork (pid);
586 return linux_supports_tracefork_flag;
587 }
588
589 static int
590 linux_supports_tracevforkdone (int pid)
591 {
592 if (linux_supports_tracefork_flag == -1)
593 linux_test_for_tracefork (pid);
594 return linux_supports_tracevforkdone_flag;
595 }
596
597 static void
598 linux_enable_tracesysgood (ptid_t ptid)
599 {
600 int pid = ptid_get_lwp (ptid);
601
602 if (pid == 0)
603 pid = ptid_get_pid (ptid);
604
605 if (linux_supports_tracesysgood (pid) == 0)
606 return;
607
608 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
609
610 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
611 }
612
613 \f
614 void
615 linux_enable_event_reporting (ptid_t ptid)
616 {
617 int pid = ptid_get_lwp (ptid);
618
619 if (pid == 0)
620 pid = ptid_get_pid (ptid);
621
622 if (! linux_supports_tracefork (pid))
623 return;
624
625 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
626 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
627
628 if (linux_supports_tracevforkdone (pid))
629 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
630
631 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
632 read-only process state. */
633
634 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
635 }
636
637 static void
638 linux_child_post_attach (int pid)
639 {
640 linux_enable_event_reporting (pid_to_ptid (pid));
641 check_for_thread_db ();
642 linux_enable_tracesysgood (pid_to_ptid (pid));
643 }
644
645 static void
646 linux_child_post_startup_inferior (ptid_t ptid)
647 {
648 linux_enable_event_reporting (ptid);
649 check_for_thread_db ();
650 linux_enable_tracesysgood (ptid);
651 }
652
653 static int
654 linux_child_follow_fork (struct target_ops *ops, int follow_child)
655 {
656 sigset_t prev_mask;
657 int has_vforked;
658 int parent_pid, child_pid;
659
660 block_child_signals (&prev_mask);
661
662 has_vforked = (inferior_thread ()->pending_follow.kind
663 == TARGET_WAITKIND_VFORKED);
664 parent_pid = ptid_get_lwp (inferior_ptid);
665 if (parent_pid == 0)
666 parent_pid = ptid_get_pid (inferior_ptid);
667 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
668
669 if (!detach_fork)
670 linux_enable_event_reporting (pid_to_ptid (child_pid));
671
672 if (! follow_child)
673 {
674 /* We're already attached to the parent, by default. */
675
676 /* Before detaching from the child, remove all breakpoints from
677 it. If we forked, then this has already been taken care of
678 by infrun.c. If we vforked however, any breakpoint inserted
679 in the parent is visible in the child, even those added while
680 stopped in a vfork catchpoint. This won't actually modify
681 the breakpoint list, but will physically remove the
682 breakpoints from the child. This will remove the breakpoints
683 from the parent also, but they'll be reinserted below. */
684 if (has_vforked)
685 detach_breakpoints (child_pid);
686
687 /* Detach new forked process? */
688 if (detach_fork)
689 {
690 if (info_verbose || debug_linux_nat)
691 {
692 target_terminal_ours ();
693 fprintf_filtered (gdb_stdlog,
694 "Detaching after fork from child process %d.\n",
695 child_pid);
696 }
697
698 ptrace (PTRACE_DETACH, child_pid, 0, 0);
699 }
700 else
701 {
702 struct inferior *parent_inf, *child_inf;
703 struct lwp_info *lp;
704 struct cleanup *old_chain;
705
706 /* Add process to GDB's tables. */
707 child_inf = add_inferior (child_pid);
708
709 parent_inf = current_inferior ();
710 child_inf->attach_flag = parent_inf->attach_flag;
711 copy_terminal_info (child_inf, parent_inf);
712
713 old_chain = save_inferior_ptid ();
714
715 inferior_ptid = ptid_build (child_pid, child_pid, 0);
716 add_thread (inferior_ptid);
717 lp = add_lwp (inferior_ptid);
718 lp->stopped = 1;
719
720 check_for_thread_db ();
721
722 do_cleanups (old_chain);
723 }
724
725 if (has_vforked)
726 {
727 gdb_assert (linux_supports_tracefork_flag >= 0);
728 if (linux_supports_tracevforkdone (0))
729 {
730 int status;
731
732 ptrace (PTRACE_CONT, parent_pid, 0, 0);
733 my_waitpid (parent_pid, &status, __WALL);
734 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
735 warning (_("Unexpected waitpid result %06x when waiting for "
736 "vfork-done"), status);
737 }
738 else
739 {
740 /* We can't insert breakpoints until the child has
741 finished with the shared memory region. We need to
742 wait until that happens. Ideal would be to just
743 call:
744 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
745 - waitpid (parent_pid, &status, __WALL);
746 However, most architectures can't handle a syscall
747 being traced on the way out if it wasn't traced on
748 the way in.
749
750 We might also think to loop, continuing the child
751 until it exits or gets a SIGTRAP. One problem is
752 that the child might call ptrace with PTRACE_TRACEME.
753
754 There's no simple and reliable way to figure out when
755 the vforked child will be done with its copy of the
756 shared memory. We could step it out of the syscall,
757 two instructions, let it go, and then single-step the
758 parent once. When we have hardware single-step, this
759 would work; with software single-step it could still
760 be made to work but we'd have to be able to insert
761 single-step breakpoints in the child, and we'd have
762 to insert -just- the single-step breakpoint in the
763 parent. Very awkward.
764
765 In the end, the best we can do is to make sure it
766 runs for a little while. Hopefully it will be out of
767 range of any breakpoints we reinsert. Usually this
768 is only the single-step breakpoint at vfork's return
769 point. */
770
771 usleep (10000);
772 }
773
774 /* Since we vforked, breakpoints were removed in the parent
775 too. Put them back. */
776 reattach_breakpoints (parent_pid);
777 }
778 }
779 else
780 {
781 struct thread_info *tp;
782 struct inferior *parent_inf, *child_inf;
783 struct lwp_info *lp;
784
785 /* Before detaching from the parent, remove all breakpoints from it. */
786 remove_breakpoints ();
787
788 if (info_verbose || debug_linux_nat)
789 {
790 target_terminal_ours ();
791 fprintf_filtered (gdb_stdlog,
792 "Attaching after fork to child process %d.\n",
793 child_pid);
794 }
795
796 /* Add the new inferior first, so that the target_detach below
797 doesn't unpush the target. */
798
799 child_inf = add_inferior (child_pid);
800
801 parent_inf = current_inferior ();
802 child_inf->attach_flag = parent_inf->attach_flag;
803 copy_terminal_info (child_inf, parent_inf);
804
805 /* If we're vforking, we may want to hold on to the parent until
806 the child exits or execs. At exec time we can remove the old
807 breakpoints from the parent and detach it; at exit time we
808 could do the same (or even, sneakily, resume debugging it - the
809 child's exec has failed, or something similar).
810
811 This doesn't clean up "properly", because we can't call
812 target_detach, but that's OK; if the current target is "child",
813 then it doesn't need any further cleanups, and lin_lwp will
814 generally not encounter vfork (vfork is defined to fork
815 in libpthread.so).
816
817 The holding part is very easy if we have VFORKDONE events;
818 but keeping track of both processes is beyond GDB at the
819 moment. So we don't expose the parent to the rest of GDB.
820 Instead we quietly hold onto it until such time as we can
821 safely resume it. */
822
823 if (has_vforked)
824 {
825 struct lwp_info *parent_lwp;
826
827 linux_parent_pid = parent_pid;
828
829 /* Get rid of the inferior on the core side as well. */
830 inferior_ptid = null_ptid;
831 detach_inferior (parent_pid);
832
833 /* Also get rid of all its lwps. We will detach from this
834 inferior soon-ish, but, we will still get an exit event
835 reported through waitpid when it exits. If we didn't get
836 rid of the lwps from our list, we would end up reporting
837 the inferior exit to the core, which would then try to
838 mourn a non-existing (from the core's perspective)
839 inferior. */
840 parent_lwp = find_lwp_pid (pid_to_ptid (parent_pid));
841 purge_lwp_list (GET_PID (parent_lwp->ptid));
842 linux_parent_pid = parent_pid;
843 }
844 else if (detach_fork)
845 target_detach (NULL, 0);
846
847 inferior_ptid = ptid_build (child_pid, child_pid, 0);
848 add_thread (inferior_ptid);
849 lp = add_lwp (inferior_ptid);
850 lp->stopped = 1;
851
852 check_for_thread_db ();
853 }
854
855 restore_child_signals_mask (&prev_mask);
856 return 0;
857 }
858
859 \f
860 static void
861 linux_child_insert_fork_catchpoint (int pid)
862 {
863 if (! linux_supports_tracefork (pid))
864 error (_("Your system does not support fork catchpoints."));
865 }
866
867 static void
868 linux_child_insert_vfork_catchpoint (int pid)
869 {
870 if (!linux_supports_tracefork (pid))
871 error (_("Your system does not support vfork catchpoints."));
872 }
873
874 static void
875 linux_child_insert_exec_catchpoint (int pid)
876 {
877 if (!linux_supports_tracefork (pid))
878 error (_("Your system does not support exec catchpoints."));
879 }
880
881 static int
882 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
883 int table_size, int *table)
884 {
885 if (! linux_supports_tracesysgood (pid))
886 error (_("Your system does not support syscall catchpoints."));
887 /* On GNU/Linux, we ignore the arguments. It means that we only
888 enable the syscall catchpoints, but do not disable them.
889
890 Also, we do not use the `table' information because we do not
891 filter system calls here. We let GDB do the logic for us. */
892 return 0;
893 }
894
895 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
896 are processes sharing the same VM space. A multi-threaded process
897 is basically a group of such processes. However, such a grouping
898 is almost entirely a user-space issue; the kernel doesn't enforce
899 such a grouping at all (this might change in the future). In
900 general, we'll rely on the threads library (i.e. the GNU/Linux
901 Threads library) to provide such a grouping.
902
903 It is perfectly well possible to write a multi-threaded application
904 without the assistance of a threads library, by using the clone
905 system call directly. This module should be able to give some
906 rudimentary support for debugging such applications if developers
907 specify the CLONE_PTRACE flag in the clone system call, and are
908 using the Linux kernel 2.4 or above.
909
910 Note that there are some peculiarities in GNU/Linux that affect
911 this code:
912
913 - In general one should specify the __WCLONE flag to waitpid in
914 order to make it report events for any of the cloned processes
915 (and leave it out for the initial process). However, if a cloned
916 process has exited the exit status is only reported if the
917 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
918 we cannot use it since GDB must work on older systems too.
919
920 - When a traced, cloned process exits and is waited for by the
921 debugger, the kernel reassigns it to the original parent and
922 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
923 library doesn't notice this, which leads to the "zombie problem":
924 When debugged a multi-threaded process that spawns a lot of
925 threads will run out of processes, even if the threads exit,
926 because the "zombies" stay around. */
927
928 /* List of known LWPs. */
929 struct lwp_info *lwp_list;
930 \f
931
932 /* Original signal mask. */
933 static sigset_t normal_mask;
934
935 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
936 _initialize_linux_nat. */
937 static sigset_t suspend_mask;
938
939 /* Signals to block to make that sigsuspend work. */
940 static sigset_t blocked_mask;
941
942 /* SIGCHLD action. */
943 struct sigaction sigchld_action;
944
945 /* Block child signals (SIGCHLD and linux threads signals), and store
946 the previous mask in PREV_MASK. */
947
948 static void
949 block_child_signals (sigset_t *prev_mask)
950 {
951 /* Make sure SIGCHLD is blocked. */
952 if (!sigismember (&blocked_mask, SIGCHLD))
953 sigaddset (&blocked_mask, SIGCHLD);
954
955 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
956 }
957
958 /* Restore child signals mask, previously returned by
959 block_child_signals. */
960
961 static void
962 restore_child_signals_mask (sigset_t *prev_mask)
963 {
964 sigprocmask (SIG_SETMASK, prev_mask, NULL);
965 }
966 \f
967
968 /* Prototypes for local functions. */
969 static int stop_wait_callback (struct lwp_info *lp, void *data);
970 static int linux_thread_alive (ptid_t ptid);
971 static char *linux_child_pid_to_exec_file (int pid);
972 static int cancel_breakpoint (struct lwp_info *lp);
973
974 \f
975 /* Convert wait status STATUS to a string. Used for printing debug
976 messages only. */
977
978 static char *
979 status_to_str (int status)
980 {
981 static char buf[64];
982
983 if (WIFSTOPPED (status))
984 {
985 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
986 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
987 strsignal (SIGTRAP));
988 else
989 snprintf (buf, sizeof (buf), "%s (stopped)",
990 strsignal (WSTOPSIG (status)));
991 }
992 else if (WIFSIGNALED (status))
993 snprintf (buf, sizeof (buf), "%s (terminated)",
994 strsignal (WSTOPSIG (status)));
995 else
996 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
997
998 return buf;
999 }
1000
1001 /* Initialize the list of LWPs. Note that this module, contrary to
1002 what GDB's generic threads layer does for its thread list,
1003 re-initializes the LWP lists whenever we mourn or detach (which
1004 doesn't involve mourning) the inferior. */
1005
1006 static void
1007 init_lwp_list (void)
1008 {
1009 struct lwp_info *lp, *lpnext;
1010
1011 for (lp = lwp_list; lp; lp = lpnext)
1012 {
1013 lpnext = lp->next;
1014 xfree (lp);
1015 }
1016
1017 lwp_list = NULL;
1018 }
1019
1020 /* Remove all LWPs belong to PID from the lwp list. */
1021
1022 static void
1023 purge_lwp_list (int pid)
1024 {
1025 struct lwp_info *lp, *lpprev, *lpnext;
1026
1027 lpprev = NULL;
1028
1029 for (lp = lwp_list; lp; lp = lpnext)
1030 {
1031 lpnext = lp->next;
1032
1033 if (ptid_get_pid (lp->ptid) == pid)
1034 {
1035 if (lp == lwp_list)
1036 lwp_list = lp->next;
1037 else
1038 lpprev->next = lp->next;
1039
1040 xfree (lp);
1041 }
1042 else
1043 lpprev = lp;
1044 }
1045 }
1046
1047 /* Return the number of known LWPs in the tgid given by PID. */
1048
1049 static int
1050 num_lwps (int pid)
1051 {
1052 int count = 0;
1053 struct lwp_info *lp;
1054
1055 for (lp = lwp_list; lp; lp = lp->next)
1056 if (ptid_get_pid (lp->ptid) == pid)
1057 count++;
1058
1059 return count;
1060 }
1061
1062 /* Add the LWP specified by PID to the list. Return a pointer to the
1063 structure describing the new LWP. The LWP should already be stopped
1064 (with an exception for the very first LWP). */
1065
1066 static struct lwp_info *
1067 add_lwp (ptid_t ptid)
1068 {
1069 struct lwp_info *lp;
1070
1071 gdb_assert (is_lwp (ptid));
1072
1073 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1074
1075 memset (lp, 0, sizeof (struct lwp_info));
1076
1077 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1078
1079 lp->ptid = ptid;
1080
1081 lp->next = lwp_list;
1082 lwp_list = lp;
1083
1084 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1085 linux_nat_new_thread (ptid);
1086
1087 return lp;
1088 }
1089
1090 /* Remove the LWP specified by PID from the list. */
1091
1092 static void
1093 delete_lwp (ptid_t ptid)
1094 {
1095 struct lwp_info *lp, *lpprev;
1096
1097 lpprev = NULL;
1098
1099 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1100 if (ptid_equal (lp->ptid, ptid))
1101 break;
1102
1103 if (!lp)
1104 return;
1105
1106 if (lpprev)
1107 lpprev->next = lp->next;
1108 else
1109 lwp_list = lp->next;
1110
1111 xfree (lp);
1112 }
1113
1114 /* Return a pointer to the structure describing the LWP corresponding
1115 to PID. If no corresponding LWP could be found, return NULL. */
1116
1117 static struct lwp_info *
1118 find_lwp_pid (ptid_t ptid)
1119 {
1120 struct lwp_info *lp;
1121 int lwp;
1122
1123 if (is_lwp (ptid))
1124 lwp = GET_LWP (ptid);
1125 else
1126 lwp = GET_PID (ptid);
1127
1128 for (lp = lwp_list; lp; lp = lp->next)
1129 if (lwp == GET_LWP (lp->ptid))
1130 return lp;
1131
1132 return NULL;
1133 }
1134
1135 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1136 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1137 a process (ptid_is_pid returns true), in which case, all lwps of
1138 that give process match, lwps of other process do not; or, it can
1139 represent a specific thread, in which case, only that thread will
1140 match true. PTID must represent an LWP, it can never be a wild
1141 card. */
1142
1143 static int
1144 ptid_match (ptid_t ptid, ptid_t filter)
1145 {
1146 /* Since both parameters have the same type, prevent easy mistakes
1147 from happening. */
1148 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1149 && !ptid_equal (ptid, null_ptid));
1150
1151 if (ptid_equal (filter, minus_one_ptid))
1152 return 1;
1153 if (ptid_is_pid (filter)
1154 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1155 return 1;
1156 else if (ptid_equal (ptid, filter))
1157 return 1;
1158
1159 return 0;
1160 }
1161
1162 /* Call CALLBACK with its second argument set to DATA for every LWP in
1163 the list. If CALLBACK returns 1 for a particular LWP, return a
1164 pointer to the structure describing that LWP immediately.
1165 Otherwise return NULL. */
1166
1167 struct lwp_info *
1168 iterate_over_lwps (ptid_t filter,
1169 int (*callback) (struct lwp_info *, void *),
1170 void *data)
1171 {
1172 struct lwp_info *lp, *lpnext;
1173
1174 for (lp = lwp_list; lp; lp = lpnext)
1175 {
1176 lpnext = lp->next;
1177
1178 if (ptid_match (lp->ptid, filter))
1179 {
1180 if ((*callback) (lp, data))
1181 return lp;
1182 }
1183 }
1184
1185 return NULL;
1186 }
1187
1188 /* Update our internal state when changing from one checkpoint to
1189 another indicated by NEW_PTID. We can only switch single-threaded
1190 applications, so we only create one new LWP, and the previous list
1191 is discarded. */
1192
1193 void
1194 linux_nat_switch_fork (ptid_t new_ptid)
1195 {
1196 struct lwp_info *lp;
1197
1198 purge_lwp_list (GET_PID (inferior_ptid));
1199
1200 lp = add_lwp (new_ptid);
1201 lp->stopped = 1;
1202
1203 /* This changes the thread's ptid while preserving the gdb thread
1204 num. Also changes the inferior pid, while preserving the
1205 inferior num. */
1206 thread_change_ptid (inferior_ptid, new_ptid);
1207
1208 /* We've just told GDB core that the thread changed target id, but,
1209 in fact, it really is a different thread, with different register
1210 contents. */
1211 registers_changed ();
1212 }
1213
1214 /* Handle the exit of a single thread LP. */
1215
1216 static void
1217 exit_lwp (struct lwp_info *lp)
1218 {
1219 struct thread_info *th = find_thread_ptid (lp->ptid);
1220
1221 if (th)
1222 {
1223 if (print_thread_events)
1224 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1225
1226 delete_thread (lp->ptid);
1227 }
1228
1229 delete_lwp (lp->ptid);
1230 }
1231
1232 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1233
1234 int
1235 linux_proc_get_tgid (int lwpid)
1236 {
1237 FILE *status_file;
1238 char buf[100];
1239 int tgid = -1;
1240
1241 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1242 status_file = fopen (buf, "r");
1243 if (status_file != NULL)
1244 {
1245 while (fgets (buf, sizeof (buf), status_file))
1246 {
1247 if (strncmp (buf, "Tgid:", 5) == 0)
1248 {
1249 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1250 break;
1251 }
1252 }
1253
1254 fclose (status_file);
1255 }
1256
1257 return tgid;
1258 }
1259
1260 /* Detect `T (stopped)' in `/proc/PID/status'.
1261 Other states including `T (tracing stop)' are reported as false. */
1262
1263 static int
1264 pid_is_stopped (pid_t pid)
1265 {
1266 FILE *status_file;
1267 char buf[100];
1268 int retval = 0;
1269
1270 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1271 status_file = fopen (buf, "r");
1272 if (status_file != NULL)
1273 {
1274 int have_state = 0;
1275
1276 while (fgets (buf, sizeof (buf), status_file))
1277 {
1278 if (strncmp (buf, "State:", 6) == 0)
1279 {
1280 have_state = 1;
1281 break;
1282 }
1283 }
1284 if (have_state && strstr (buf, "T (stopped)") != NULL)
1285 retval = 1;
1286 fclose (status_file);
1287 }
1288 return retval;
1289 }
1290
1291 /* Wait for the LWP specified by LP, which we have just attached to.
1292 Returns a wait status for that LWP, to cache. */
1293
1294 static int
1295 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1296 int *signalled)
1297 {
1298 pid_t new_pid, pid = GET_LWP (ptid);
1299 int status;
1300
1301 if (pid_is_stopped (pid))
1302 {
1303 if (debug_linux_nat)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "LNPAW: Attaching to a stopped process\n");
1306
1307 /* The process is definitely stopped. It is in a job control
1308 stop, unless the kernel predates the TASK_STOPPED /
1309 TASK_TRACED distinction, in which case it might be in a
1310 ptrace stop. Make sure it is in a ptrace stop; from there we
1311 can kill it, signal it, et cetera.
1312
1313 First make sure there is a pending SIGSTOP. Since we are
1314 already attached, the process can not transition from stopped
1315 to running without a PTRACE_CONT; so we know this signal will
1316 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1317 probably already in the queue (unless this kernel is old
1318 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1319 is not an RT signal, it can only be queued once. */
1320 kill_lwp (pid, SIGSTOP);
1321
1322 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1323 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1324 ptrace (PTRACE_CONT, pid, 0, 0);
1325 }
1326
1327 /* Make sure the initial process is stopped. The user-level threads
1328 layer might want to poke around in the inferior, and that won't
1329 work if things haven't stabilized yet. */
1330 new_pid = my_waitpid (pid, &status, 0);
1331 if (new_pid == -1 && errno == ECHILD)
1332 {
1333 if (first)
1334 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1335
1336 /* Try again with __WCLONE to check cloned processes. */
1337 new_pid = my_waitpid (pid, &status, __WCLONE);
1338 *cloned = 1;
1339 }
1340
1341 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1342
1343 if (WSTOPSIG (status) != SIGSTOP)
1344 {
1345 *signalled = 1;
1346 if (debug_linux_nat)
1347 fprintf_unfiltered (gdb_stdlog,
1348 "LNPAW: Received %s after attaching\n",
1349 status_to_str (status));
1350 }
1351
1352 return status;
1353 }
1354
1355 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1356 if the new LWP could not be attached. */
1357
1358 int
1359 lin_lwp_attach_lwp (ptid_t ptid)
1360 {
1361 struct lwp_info *lp;
1362 sigset_t prev_mask;
1363
1364 gdb_assert (is_lwp (ptid));
1365
1366 block_child_signals (&prev_mask);
1367
1368 lp = find_lwp_pid (ptid);
1369
1370 /* We assume that we're already attached to any LWP that has an id
1371 equal to the overall process id, and to any LWP that is already
1372 in our list of LWPs. If we're not seeing exit events from threads
1373 and we've had PID wraparound since we last tried to stop all threads,
1374 this assumption might be wrong; fortunately, this is very unlikely
1375 to happen. */
1376 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1377 {
1378 int status, cloned = 0, signalled = 0;
1379
1380 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1381 {
1382 /* If we fail to attach to the thread, issue a warning,
1383 but continue. One way this can happen is if thread
1384 creation is interrupted; as of Linux kernel 2.6.19, a
1385 bug may place threads in the thread list and then fail
1386 to create them. */
1387 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1388 safe_strerror (errno));
1389 restore_child_signals_mask (&prev_mask);
1390 return -1;
1391 }
1392
1393 if (debug_linux_nat)
1394 fprintf_unfiltered (gdb_stdlog,
1395 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1396 target_pid_to_str (ptid));
1397
1398 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1399 lp = add_lwp (ptid);
1400 lp->stopped = 1;
1401 lp->cloned = cloned;
1402 lp->signalled = signalled;
1403 if (WSTOPSIG (status) != SIGSTOP)
1404 {
1405 lp->resumed = 1;
1406 lp->status = status;
1407 }
1408
1409 target_post_attach (GET_LWP (lp->ptid));
1410
1411 if (debug_linux_nat)
1412 {
1413 fprintf_unfiltered (gdb_stdlog,
1414 "LLAL: waitpid %s received %s\n",
1415 target_pid_to_str (ptid),
1416 status_to_str (status));
1417 }
1418 }
1419 else
1420 {
1421 /* We assume that the LWP representing the original process is
1422 already stopped. Mark it as stopped in the data structure
1423 that the GNU/linux ptrace layer uses to keep track of
1424 threads. Note that this won't have already been done since
1425 the main thread will have, we assume, been stopped by an
1426 attach from a different layer. */
1427 if (lp == NULL)
1428 lp = add_lwp (ptid);
1429 lp->stopped = 1;
1430 }
1431
1432 restore_child_signals_mask (&prev_mask);
1433 return 0;
1434 }
1435
1436 static void
1437 linux_nat_create_inferior (struct target_ops *ops,
1438 char *exec_file, char *allargs, char **env,
1439 int from_tty)
1440 {
1441 #ifdef HAVE_PERSONALITY
1442 int personality_orig = 0, personality_set = 0;
1443 #endif /* HAVE_PERSONALITY */
1444
1445 /* The fork_child mechanism is synchronous and calls target_wait, so
1446 we have to mask the async mode. */
1447
1448 #ifdef HAVE_PERSONALITY
1449 if (disable_randomization)
1450 {
1451 errno = 0;
1452 personality_orig = personality (0xffffffff);
1453 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1454 {
1455 personality_set = 1;
1456 personality (personality_orig | ADDR_NO_RANDOMIZE);
1457 }
1458 if (errno != 0 || (personality_set
1459 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1460 warning (_("Error disabling address space randomization: %s"),
1461 safe_strerror (errno));
1462 }
1463 #endif /* HAVE_PERSONALITY */
1464
1465 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1466
1467 #ifdef HAVE_PERSONALITY
1468 if (personality_set)
1469 {
1470 errno = 0;
1471 personality (personality_orig);
1472 if (errno != 0)
1473 warning (_("Error restoring address space randomization: %s"),
1474 safe_strerror (errno));
1475 }
1476 #endif /* HAVE_PERSONALITY */
1477 }
1478
1479 static void
1480 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1481 {
1482 struct lwp_info *lp;
1483 int status;
1484 ptid_t ptid;
1485
1486 linux_ops->to_attach (ops, args, from_tty);
1487
1488 /* The ptrace base target adds the main thread with (pid,0,0)
1489 format. Decorate it with lwp info. */
1490 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1491 thread_change_ptid (inferior_ptid, ptid);
1492
1493 /* Add the initial process as the first LWP to the list. */
1494 lp = add_lwp (ptid);
1495
1496 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1497 &lp->signalled);
1498 lp->stopped = 1;
1499
1500 /* Save the wait status to report later. */
1501 lp->resumed = 1;
1502 if (debug_linux_nat)
1503 fprintf_unfiltered (gdb_stdlog,
1504 "LNA: waitpid %ld, saving status %s\n",
1505 (long) GET_PID (lp->ptid), status_to_str (status));
1506
1507 lp->status = status;
1508
1509 if (target_can_async_p ())
1510 target_async (inferior_event_handler, 0);
1511 }
1512
1513 /* Get pending status of LP. */
1514 static int
1515 get_pending_status (struct lwp_info *lp, int *status)
1516 {
1517 enum target_signal signo = TARGET_SIGNAL_0;
1518
1519 /* If we paused threads momentarily, we may have stored pending
1520 events in lp->status or lp->waitstatus (see stop_wait_callback),
1521 and GDB core hasn't seen any signal for those threads.
1522 Otherwise, the last signal reported to the core is found in the
1523 thread object's stop_signal.
1524
1525 There's a corner case that isn't handled here at present. Only
1526 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1527 stop_signal make sense as a real signal to pass to the inferior.
1528 Some catchpoint related events, like
1529 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1530 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1531 those traps are debug API (ptrace in our case) related and
1532 induced; the inferior wouldn't see them if it wasn't being
1533 traced. Hence, we should never pass them to the inferior, even
1534 when set to pass state. Since this corner case isn't handled by
1535 infrun.c when proceeding with a signal, for consistency, neither
1536 do we handle it here (or elsewhere in the file we check for
1537 signal pass state). Normally SIGTRAP isn't set to pass state, so
1538 this is really a corner case. */
1539
1540 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1541 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1542 else if (lp->status)
1543 signo = target_signal_from_host (WSTOPSIG (lp->status));
1544 else if (non_stop && !is_executing (lp->ptid))
1545 {
1546 struct thread_info *tp = find_thread_ptid (lp->ptid);
1547 signo = tp->stop_signal;
1548 }
1549 else if (!non_stop)
1550 {
1551 struct target_waitstatus last;
1552 ptid_t last_ptid;
1553
1554 get_last_target_status (&last_ptid, &last);
1555
1556 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1557 {
1558 struct thread_info *tp = find_thread_ptid (lp->ptid);
1559 signo = tp->stop_signal;
1560 }
1561 }
1562
1563 *status = 0;
1564
1565 if (signo == TARGET_SIGNAL_0)
1566 {
1567 if (debug_linux_nat)
1568 fprintf_unfiltered (gdb_stdlog,
1569 "GPT: lwp %s has no pending signal\n",
1570 target_pid_to_str (lp->ptid));
1571 }
1572 else if (!signal_pass_state (signo))
1573 {
1574 if (debug_linux_nat)
1575 fprintf_unfiltered (gdb_stdlog, "\
1576 GPT: lwp %s had signal %s, but it is in no pass state\n",
1577 target_pid_to_str (lp->ptid),
1578 target_signal_to_string (signo));
1579 }
1580 else
1581 {
1582 *status = W_STOPCODE (target_signal_to_host (signo));
1583
1584 if (debug_linux_nat)
1585 fprintf_unfiltered (gdb_stdlog,
1586 "GPT: lwp %s has pending signal %s\n",
1587 target_pid_to_str (lp->ptid),
1588 target_signal_to_string (signo));
1589 }
1590
1591 return 0;
1592 }
1593
1594 static int
1595 detach_callback (struct lwp_info *lp, void *data)
1596 {
1597 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1598
1599 if (debug_linux_nat && lp->status)
1600 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1601 strsignal (WSTOPSIG (lp->status)),
1602 target_pid_to_str (lp->ptid));
1603
1604 /* If there is a pending SIGSTOP, get rid of it. */
1605 if (lp->signalled)
1606 {
1607 if (debug_linux_nat)
1608 fprintf_unfiltered (gdb_stdlog,
1609 "DC: Sending SIGCONT to %s\n",
1610 target_pid_to_str (lp->ptid));
1611
1612 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1613 lp->signalled = 0;
1614 }
1615
1616 /* We don't actually detach from the LWP that has an id equal to the
1617 overall process id just yet. */
1618 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1619 {
1620 int status = 0;
1621
1622 /* Pass on any pending signal for this LWP. */
1623 get_pending_status (lp, &status);
1624
1625 errno = 0;
1626 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1627 WSTOPSIG (status)) < 0)
1628 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1629 safe_strerror (errno));
1630
1631 if (debug_linux_nat)
1632 fprintf_unfiltered (gdb_stdlog,
1633 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1634 target_pid_to_str (lp->ptid),
1635 strsignal (WSTOPSIG (status)));
1636
1637 delete_lwp (lp->ptid);
1638 }
1639
1640 return 0;
1641 }
1642
1643 static void
1644 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1645 {
1646 int pid;
1647 int status;
1648 enum target_signal sig;
1649 struct lwp_info *main_lwp;
1650
1651 pid = GET_PID (inferior_ptid);
1652
1653 if (target_can_async_p ())
1654 linux_nat_async (NULL, 0);
1655
1656 /* Stop all threads before detaching. ptrace requires that the
1657 thread is stopped to sucessfully detach. */
1658 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1659 /* ... and wait until all of them have reported back that
1660 they're no longer running. */
1661 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1662
1663 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1664
1665 /* Only the initial process should be left right now. */
1666 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1667
1668 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1669
1670 /* Pass on any pending signal for the last LWP. */
1671 if ((args == NULL || *args == '\0')
1672 && get_pending_status (main_lwp, &status) != -1
1673 && WIFSTOPPED (status))
1674 {
1675 /* Put the signal number in ARGS so that inf_ptrace_detach will
1676 pass it along with PTRACE_DETACH. */
1677 args = alloca (8);
1678 sprintf (args, "%d", (int) WSTOPSIG (status));
1679 fprintf_unfiltered (gdb_stdlog,
1680 "LND: Sending signal %s to %s\n",
1681 args,
1682 target_pid_to_str (main_lwp->ptid));
1683 }
1684
1685 delete_lwp (main_lwp->ptid);
1686
1687 if (forks_exist_p ())
1688 {
1689 /* Multi-fork case. The current inferior_ptid is being detached
1690 from, but there are other viable forks to debug. Detach from
1691 the current fork, and context-switch to the first
1692 available. */
1693 linux_fork_detach (args, from_tty);
1694
1695 if (non_stop && target_can_async_p ())
1696 target_async (inferior_event_handler, 0);
1697 }
1698 else
1699 linux_ops->to_detach (ops, args, from_tty);
1700 }
1701
1702 /* Resume LP. */
1703
1704 static int
1705 resume_callback (struct lwp_info *lp, void *data)
1706 {
1707 if (lp->stopped && lp->status == 0)
1708 {
1709 if (debug_linux_nat)
1710 fprintf_unfiltered (gdb_stdlog,
1711 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1712 target_pid_to_str (lp->ptid));
1713
1714 linux_ops->to_resume (linux_ops,
1715 pid_to_ptid (GET_LWP (lp->ptid)),
1716 0, TARGET_SIGNAL_0);
1717 if (debug_linux_nat)
1718 fprintf_unfiltered (gdb_stdlog,
1719 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1720 target_pid_to_str (lp->ptid));
1721 lp->stopped = 0;
1722 lp->step = 0;
1723 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1724 }
1725 else if (lp->stopped && debug_linux_nat)
1726 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1727 target_pid_to_str (lp->ptid));
1728 else if (debug_linux_nat)
1729 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1730 target_pid_to_str (lp->ptid));
1731
1732 return 0;
1733 }
1734
1735 static int
1736 resume_clear_callback (struct lwp_info *lp, void *data)
1737 {
1738 lp->resumed = 0;
1739 return 0;
1740 }
1741
1742 static int
1743 resume_set_callback (struct lwp_info *lp, void *data)
1744 {
1745 lp->resumed = 1;
1746 return 0;
1747 }
1748
1749 static void
1750 linux_nat_resume (struct target_ops *ops,
1751 ptid_t ptid, int step, enum target_signal signo)
1752 {
1753 sigset_t prev_mask;
1754 struct lwp_info *lp;
1755 int resume_many;
1756
1757 if (debug_linux_nat)
1758 fprintf_unfiltered (gdb_stdlog,
1759 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1760 step ? "step" : "resume",
1761 target_pid_to_str (ptid),
1762 signo ? strsignal (signo) : "0",
1763 target_pid_to_str (inferior_ptid));
1764
1765 block_child_signals (&prev_mask);
1766
1767 /* A specific PTID means `step only this process id'. */
1768 resume_many = (ptid_equal (minus_one_ptid, ptid)
1769 || ptid_is_pid (ptid));
1770
1771 if (!non_stop)
1772 {
1773 /* Mark the lwps we're resuming as resumed. */
1774 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1775 iterate_over_lwps (ptid, resume_set_callback, NULL);
1776 }
1777 else
1778 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
1779
1780 /* See if it's the current inferior that should be handled
1781 specially. */
1782 if (resume_many)
1783 lp = find_lwp_pid (inferior_ptid);
1784 else
1785 lp = find_lwp_pid (ptid);
1786 gdb_assert (lp != NULL);
1787
1788 /* Remember if we're stepping. */
1789 lp->step = step;
1790
1791 /* If we have a pending wait status for this thread, there is no
1792 point in resuming the process. But first make sure that
1793 linux_nat_wait won't preemptively handle the event - we
1794 should never take this short-circuit if we are going to
1795 leave LP running, since we have skipped resuming all the
1796 other threads. This bit of code needs to be synchronized
1797 with linux_nat_wait. */
1798
1799 if (lp->status && WIFSTOPPED (lp->status))
1800 {
1801 int saved_signo;
1802 struct inferior *inf;
1803
1804 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1805 gdb_assert (inf);
1806 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1807
1808 /* Defer to common code if we're gaining control of the
1809 inferior. */
1810 if (inf->stop_soon == NO_STOP_QUIETLY
1811 && signal_stop_state (saved_signo) == 0
1812 && signal_print_state (saved_signo) == 0
1813 && signal_pass_state (saved_signo) == 1)
1814 {
1815 if (debug_linux_nat)
1816 fprintf_unfiltered (gdb_stdlog,
1817 "LLR: Not short circuiting for ignored "
1818 "status 0x%x\n", lp->status);
1819
1820 /* FIXME: What should we do if we are supposed to continue
1821 this thread with a signal? */
1822 gdb_assert (signo == TARGET_SIGNAL_0);
1823 signo = saved_signo;
1824 lp->status = 0;
1825 }
1826 }
1827
1828 if (lp->status)
1829 {
1830 /* FIXME: What should we do if we are supposed to continue
1831 this thread with a signal? */
1832 gdb_assert (signo == TARGET_SIGNAL_0);
1833
1834 if (debug_linux_nat)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "LLR: Short circuiting for status 0x%x\n",
1837 lp->status);
1838
1839 restore_child_signals_mask (&prev_mask);
1840 if (target_can_async_p ())
1841 {
1842 target_async (inferior_event_handler, 0);
1843 /* Tell the event loop we have something to process. */
1844 async_file_mark ();
1845 }
1846 return;
1847 }
1848
1849 /* Mark LWP as not stopped to prevent it from being continued by
1850 resume_callback. */
1851 lp->stopped = 0;
1852
1853 if (resume_many)
1854 iterate_over_lwps (ptid, resume_callback, NULL);
1855
1856 /* Convert to something the lower layer understands. */
1857 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1858
1859 linux_ops->to_resume (linux_ops, ptid, step, signo);
1860 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1861
1862 if (debug_linux_nat)
1863 fprintf_unfiltered (gdb_stdlog,
1864 "LLR: %s %s, %s (resume event thread)\n",
1865 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1866 target_pid_to_str (ptid),
1867 signo ? strsignal (signo) : "0");
1868
1869 restore_child_signals_mask (&prev_mask);
1870 if (target_can_async_p ())
1871 target_async (inferior_event_handler, 0);
1872 }
1873
1874 /* Issue kill to specified lwp. */
1875
1876 static int tkill_failed;
1877
1878 static int
1879 kill_lwp (int lwpid, int signo)
1880 {
1881 errno = 0;
1882
1883 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1884 fails, then we are not using nptl threads and we should be using kill. */
1885
1886 #ifdef HAVE_TKILL_SYSCALL
1887 if (!tkill_failed)
1888 {
1889 int ret = syscall (__NR_tkill, lwpid, signo);
1890 if (errno != ENOSYS)
1891 return ret;
1892 errno = 0;
1893 tkill_failed = 1;
1894 }
1895 #endif
1896
1897 return kill (lwpid, signo);
1898 }
1899
1900 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1901 event, check if the core is interested in it: if not, ignore the
1902 event, and keep waiting; otherwise, we need to toggle the LWP's
1903 syscall entry/exit status, since the ptrace event itself doesn't
1904 indicate it, and report the trap to higher layers. */
1905
1906 static int
1907 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1908 {
1909 struct target_waitstatus *ourstatus = &lp->waitstatus;
1910 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1911 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1912
1913 if (stopping)
1914 {
1915 /* If we're stopping threads, there's a SIGSTOP pending, which
1916 makes it so that the LWP reports an immediate syscall return,
1917 followed by the SIGSTOP. Skip seeing that "return" using
1918 PTRACE_CONT directly, and let stop_wait_callback collect the
1919 SIGSTOP. Later when the thread is resumed, a new syscall
1920 entry event. If we didn't do this (and returned 0), we'd
1921 leave a syscall entry pending, and our caller, by using
1922 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1923 itself. Later, when the user re-resumes this LWP, we'd see
1924 another syscall entry event and we'd mistake it for a return.
1925
1926 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1927 (leaving immediately with LWP->signalled set, without issuing
1928 a PTRACE_CONT), it would still be problematic to leave this
1929 syscall enter pending, as later when the thread is resumed,
1930 it would then see the same syscall exit mentioned above,
1931 followed by the delayed SIGSTOP, while the syscall didn't
1932 actually get to execute. It seems it would be even more
1933 confusing to the user. */
1934
1935 if (debug_linux_nat)
1936 fprintf_unfiltered (gdb_stdlog,
1937 "LHST: ignoring syscall %d "
1938 "for LWP %ld (stopping threads), "
1939 "resuming with PTRACE_CONT for SIGSTOP\n",
1940 syscall_number,
1941 GET_LWP (lp->ptid));
1942
1943 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1944 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
1945 return 1;
1946 }
1947
1948 if (catch_syscall_enabled ())
1949 {
1950 /* Always update the entry/return state, even if this particular
1951 syscall isn't interesting to the core now. In async mode,
1952 the user could install a new catchpoint for this syscall
1953 between syscall enter/return, and we'll need to know to
1954 report a syscall return if that happens. */
1955 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1956 ? TARGET_WAITKIND_SYSCALL_RETURN
1957 : TARGET_WAITKIND_SYSCALL_ENTRY);
1958
1959 if (catching_syscall_number (syscall_number))
1960 {
1961 /* Alright, an event to report. */
1962 ourstatus->kind = lp->syscall_state;
1963 ourstatus->value.syscall_number = syscall_number;
1964
1965 if (debug_linux_nat)
1966 fprintf_unfiltered (gdb_stdlog,
1967 "LHST: stopping for %s of syscall %d"
1968 " for LWP %ld\n",
1969 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1970 ? "entry" : "return",
1971 syscall_number,
1972 GET_LWP (lp->ptid));
1973 return 0;
1974 }
1975
1976 if (debug_linux_nat)
1977 fprintf_unfiltered (gdb_stdlog,
1978 "LHST: ignoring %s of syscall %d "
1979 "for LWP %ld\n",
1980 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1981 ? "entry" : "return",
1982 syscall_number,
1983 GET_LWP (lp->ptid));
1984 }
1985 else
1986 {
1987 /* If we had been syscall tracing, and hence used PT_SYSCALL
1988 before on this LWP, it could happen that the user removes all
1989 syscall catchpoints before we get to process this event.
1990 There are two noteworthy issues here:
1991
1992 - When stopped at a syscall entry event, resuming with
1993 PT_STEP still resumes executing the syscall and reports a
1994 syscall return.
1995
1996 - Only PT_SYSCALL catches syscall enters. If we last
1997 single-stepped this thread, then this event can't be a
1998 syscall enter. If we last single-stepped this thread, this
1999 has to be a syscall exit.
2000
2001 The points above mean that the next resume, be it PT_STEP or
2002 PT_CONTINUE, can not trigger a syscall trace event. */
2003 if (debug_linux_nat)
2004 fprintf_unfiltered (gdb_stdlog,
2005 "LHST: caught syscall event with no syscall catchpoints."
2006 " %d for LWP %ld, ignoring\n",
2007 syscall_number,
2008 GET_LWP (lp->ptid));
2009 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2010 }
2011
2012 /* The core isn't interested in this event. For efficiency, avoid
2013 stopping all threads only to have the core resume them all again.
2014 Since we're not stopping threads, if we're still syscall tracing
2015 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2016 subsequent syscall. Simply resume using the inf-ptrace layer,
2017 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2018
2019 /* Note that gdbarch_get_syscall_number may access registers, hence
2020 fill a regcache. */
2021 registers_changed ();
2022 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2023 lp->step, TARGET_SIGNAL_0);
2024 return 1;
2025 }
2026
2027 /* Handle a GNU/Linux extended wait response. If we see a clone
2028 event, we need to add the new LWP to our list (and not report the
2029 trap to higher layers). This function returns non-zero if the
2030 event should be ignored and we should wait again. If STOPPING is
2031 true, the new LWP remains stopped, otherwise it is continued. */
2032
2033 static int
2034 linux_handle_extended_wait (struct lwp_info *lp, int status,
2035 int stopping)
2036 {
2037 int pid = GET_LWP (lp->ptid);
2038 struct target_waitstatus *ourstatus = &lp->waitstatus;
2039 struct lwp_info *new_lp = NULL;
2040 int event = status >> 16;
2041
2042 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2043 || event == PTRACE_EVENT_CLONE)
2044 {
2045 unsigned long new_pid;
2046 int ret;
2047
2048 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2049
2050 /* If we haven't already seen the new PID stop, wait for it now. */
2051 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2052 {
2053 /* The new child has a pending SIGSTOP. We can't affect it until it
2054 hits the SIGSTOP, but we're already attached. */
2055 ret = my_waitpid (new_pid, &status,
2056 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2057 if (ret == -1)
2058 perror_with_name (_("waiting for new child"));
2059 else if (ret != new_pid)
2060 internal_error (__FILE__, __LINE__,
2061 _("wait returned unexpected PID %d"), ret);
2062 else if (!WIFSTOPPED (status))
2063 internal_error (__FILE__, __LINE__,
2064 _("wait returned unexpected status 0x%x"), status);
2065 }
2066
2067 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2068
2069 if (event == PTRACE_EVENT_FORK
2070 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2071 {
2072 struct fork_info *fp;
2073
2074 /* Handle checkpointing by linux-fork.c here as a special
2075 case. We don't want the follow-fork-mode or 'catch fork'
2076 to interfere with this. */
2077
2078 /* This won't actually modify the breakpoint list, but will
2079 physically remove the breakpoints from the child. */
2080 detach_breakpoints (new_pid);
2081
2082 /* Retain child fork in ptrace (stopped) state. */
2083 fp = find_fork_pid (new_pid);
2084 if (!fp)
2085 fp = add_fork (new_pid);
2086
2087 /* Report as spurious, so that infrun doesn't want to follow
2088 this fork. We're actually doing an infcall in
2089 linux-fork.c. */
2090 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2091 linux_enable_event_reporting (pid_to_ptid (new_pid));
2092
2093 /* Report the stop to the core. */
2094 return 0;
2095 }
2096
2097 if (event == PTRACE_EVENT_FORK)
2098 ourstatus->kind = TARGET_WAITKIND_FORKED;
2099 else if (event == PTRACE_EVENT_VFORK)
2100 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2101 else
2102 {
2103 struct cleanup *old_chain;
2104
2105 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2106 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2107 new_lp->cloned = 1;
2108 new_lp->stopped = 1;
2109
2110 if (WSTOPSIG (status) != SIGSTOP)
2111 {
2112 /* This can happen if someone starts sending signals to
2113 the new thread before it gets a chance to run, which
2114 have a lower number than SIGSTOP (e.g. SIGUSR1).
2115 This is an unlikely case, and harder to handle for
2116 fork / vfork than for clone, so we do not try - but
2117 we handle it for clone events here. We'll send
2118 the other signal on to the thread below. */
2119
2120 new_lp->signalled = 1;
2121 }
2122 else
2123 status = 0;
2124
2125 if (non_stop)
2126 {
2127 /* Add the new thread to GDB's lists as soon as possible
2128 so that:
2129
2130 1) the frontend doesn't have to wait for a stop to
2131 display them, and,
2132
2133 2) we tag it with the correct running state. */
2134
2135 /* If the thread_db layer is active, let it know about
2136 this new thread, and add it to GDB's list. */
2137 if (!thread_db_attach_lwp (new_lp->ptid))
2138 {
2139 /* We're not using thread_db. Add it to GDB's
2140 list. */
2141 target_post_attach (GET_LWP (new_lp->ptid));
2142 add_thread (new_lp->ptid);
2143 }
2144
2145 if (!stopping)
2146 {
2147 set_running (new_lp->ptid, 1);
2148 set_executing (new_lp->ptid, 1);
2149 }
2150 }
2151
2152 /* Note the need to use the low target ops to resume, to
2153 handle resuming with PT_SYSCALL if we have syscall
2154 catchpoints. */
2155 if (!stopping)
2156 {
2157 int signo;
2158
2159 new_lp->stopped = 0;
2160 new_lp->resumed = 1;
2161
2162 signo = (status
2163 ? target_signal_from_host (WSTOPSIG (status))
2164 : TARGET_SIGNAL_0);
2165
2166 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2167 0, signo);
2168 }
2169
2170 if (debug_linux_nat)
2171 fprintf_unfiltered (gdb_stdlog,
2172 "LHEW: Got clone event from LWP %ld, resuming\n",
2173 GET_LWP (lp->ptid));
2174 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2175 0, TARGET_SIGNAL_0);
2176
2177 return 1;
2178 }
2179
2180 return 0;
2181 }
2182
2183 if (event == PTRACE_EVENT_EXEC)
2184 {
2185 if (debug_linux_nat)
2186 fprintf_unfiltered (gdb_stdlog,
2187 "LHEW: Got exec event from LWP %ld\n",
2188 GET_LWP (lp->ptid));
2189
2190 ourstatus->kind = TARGET_WAITKIND_EXECD;
2191 ourstatus->value.execd_pathname
2192 = xstrdup (linux_child_pid_to_exec_file (pid));
2193
2194 if (linux_parent_pid)
2195 {
2196 detach_breakpoints (linux_parent_pid);
2197 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
2198
2199 linux_parent_pid = 0;
2200 }
2201
2202 /* At this point, all inserted breakpoints are gone. Doing this
2203 as soon as we detect an exec prevents the badness of deleting
2204 a breakpoint writing the current "shadow contents" to lift
2205 the bp. That shadow is NOT valid after an exec.
2206
2207 Note that we have to do this after the detach_breakpoints
2208 call above, otherwise breakpoints wouldn't be lifted from the
2209 parent on a vfork, because detach_breakpoints would think
2210 that breakpoints are not inserted. */
2211 mark_breakpoints_out ();
2212 return 0;
2213 }
2214
2215 internal_error (__FILE__, __LINE__,
2216 _("unknown ptrace event %d"), event);
2217 }
2218
2219 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2220 exited. */
2221
2222 static int
2223 wait_lwp (struct lwp_info *lp)
2224 {
2225 pid_t pid;
2226 int status;
2227 int thread_dead = 0;
2228
2229 gdb_assert (!lp->stopped);
2230 gdb_assert (lp->status == 0);
2231
2232 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2233 if (pid == -1 && errno == ECHILD)
2234 {
2235 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2236 if (pid == -1 && errno == ECHILD)
2237 {
2238 /* The thread has previously exited. We need to delete it
2239 now because, for some vendor 2.4 kernels with NPTL
2240 support backported, there won't be an exit event unless
2241 it is the main thread. 2.6 kernels will report an exit
2242 event for each thread that exits, as expected. */
2243 thread_dead = 1;
2244 if (debug_linux_nat)
2245 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2246 target_pid_to_str (lp->ptid));
2247 }
2248 }
2249
2250 if (!thread_dead)
2251 {
2252 gdb_assert (pid == GET_LWP (lp->ptid));
2253
2254 if (debug_linux_nat)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "WL: waitpid %s received %s\n",
2258 target_pid_to_str (lp->ptid),
2259 status_to_str (status));
2260 }
2261 }
2262
2263 /* Check if the thread has exited. */
2264 if (WIFEXITED (status) || WIFSIGNALED (status))
2265 {
2266 thread_dead = 1;
2267 if (debug_linux_nat)
2268 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2269 target_pid_to_str (lp->ptid));
2270 }
2271
2272 if (thread_dead)
2273 {
2274 exit_lwp (lp);
2275 return 0;
2276 }
2277
2278 gdb_assert (WIFSTOPPED (status));
2279
2280 /* Handle GNU/Linux's syscall SIGTRAPs. */
2281 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2282 {
2283 /* No longer need the sysgood bit. The ptrace event ends up
2284 recorded in lp->waitstatus if we care for it. We can carry
2285 on handling the event like a regular SIGTRAP from here
2286 on. */
2287 status = W_STOPCODE (SIGTRAP);
2288 if (linux_handle_syscall_trap (lp, 1))
2289 return wait_lwp (lp);
2290 }
2291
2292 /* Handle GNU/Linux's extended waitstatus for trace events. */
2293 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2294 {
2295 if (debug_linux_nat)
2296 fprintf_unfiltered (gdb_stdlog,
2297 "WL: Handling extended status 0x%06x\n",
2298 status);
2299 if (linux_handle_extended_wait (lp, status, 1))
2300 return wait_lwp (lp);
2301 }
2302
2303 return status;
2304 }
2305
2306 /* Save the most recent siginfo for LP. This is currently only called
2307 for SIGTRAP; some ports use the si_addr field for
2308 target_stopped_data_address. In the future, it may also be used to
2309 restore the siginfo of requeued signals. */
2310
2311 static void
2312 save_siginfo (struct lwp_info *lp)
2313 {
2314 errno = 0;
2315 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2316 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2317
2318 if (errno != 0)
2319 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2320 }
2321
2322 /* Send a SIGSTOP to LP. */
2323
2324 static int
2325 stop_callback (struct lwp_info *lp, void *data)
2326 {
2327 if (!lp->stopped && !lp->signalled)
2328 {
2329 int ret;
2330
2331 if (debug_linux_nat)
2332 {
2333 fprintf_unfiltered (gdb_stdlog,
2334 "SC: kill %s **<SIGSTOP>**\n",
2335 target_pid_to_str (lp->ptid));
2336 }
2337 errno = 0;
2338 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2339 if (debug_linux_nat)
2340 {
2341 fprintf_unfiltered (gdb_stdlog,
2342 "SC: lwp kill %d %s\n",
2343 ret,
2344 errno ? safe_strerror (errno) : "ERRNO-OK");
2345 }
2346
2347 lp->signalled = 1;
2348 gdb_assert (lp->status == 0);
2349 }
2350
2351 return 0;
2352 }
2353
2354 /* Return non-zero if LWP PID has a pending SIGINT. */
2355
2356 static int
2357 linux_nat_has_pending_sigint (int pid)
2358 {
2359 sigset_t pending, blocked, ignored;
2360 int i;
2361
2362 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2363
2364 if (sigismember (&pending, SIGINT)
2365 && !sigismember (&ignored, SIGINT))
2366 return 1;
2367
2368 return 0;
2369 }
2370
2371 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2372
2373 static int
2374 set_ignore_sigint (struct lwp_info *lp, void *data)
2375 {
2376 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2377 flag to consume the next one. */
2378 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2379 && WSTOPSIG (lp->status) == SIGINT)
2380 lp->status = 0;
2381 else
2382 lp->ignore_sigint = 1;
2383
2384 return 0;
2385 }
2386
2387 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2388 This function is called after we know the LWP has stopped; if the LWP
2389 stopped before the expected SIGINT was delivered, then it will never have
2390 arrived. Also, if the signal was delivered to a shared queue and consumed
2391 by a different thread, it will never be delivered to this LWP. */
2392
2393 static void
2394 maybe_clear_ignore_sigint (struct lwp_info *lp)
2395 {
2396 if (!lp->ignore_sigint)
2397 return;
2398
2399 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2400 {
2401 if (debug_linux_nat)
2402 fprintf_unfiltered (gdb_stdlog,
2403 "MCIS: Clearing bogus flag for %s\n",
2404 target_pid_to_str (lp->ptid));
2405 lp->ignore_sigint = 0;
2406 }
2407 }
2408
2409 /* Wait until LP is stopped. */
2410
2411 static int
2412 stop_wait_callback (struct lwp_info *lp, void *data)
2413 {
2414 if (!lp->stopped)
2415 {
2416 int status;
2417
2418 status = wait_lwp (lp);
2419 if (status == 0)
2420 return 0;
2421
2422 if (lp->ignore_sigint && WIFSTOPPED (status)
2423 && WSTOPSIG (status) == SIGINT)
2424 {
2425 lp->ignore_sigint = 0;
2426
2427 errno = 0;
2428 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2429 if (debug_linux_nat)
2430 fprintf_unfiltered (gdb_stdlog,
2431 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2432 target_pid_to_str (lp->ptid),
2433 errno ? safe_strerror (errno) : "OK");
2434
2435 return stop_wait_callback (lp, NULL);
2436 }
2437
2438 maybe_clear_ignore_sigint (lp);
2439
2440 if (WSTOPSIG (status) != SIGSTOP)
2441 {
2442 if (WSTOPSIG (status) == SIGTRAP)
2443 {
2444 /* If a LWP other than the LWP that we're reporting an
2445 event for has hit a GDB breakpoint (as opposed to
2446 some random trap signal), then just arrange for it to
2447 hit it again later. We don't keep the SIGTRAP status
2448 and don't forward the SIGTRAP signal to the LWP. We
2449 will handle the current event, eventually we will
2450 resume all LWPs, and this one will get its breakpoint
2451 trap again.
2452
2453 If we do not do this, then we run the risk that the
2454 user will delete or disable the breakpoint, but the
2455 thread will have already tripped on it. */
2456
2457 /* Save the trap's siginfo in case we need it later. */
2458 save_siginfo (lp);
2459
2460 /* Now resume this LWP and get the SIGSTOP event. */
2461 errno = 0;
2462 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2463 if (debug_linux_nat)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
2466 "PTRACE_CONT %s, 0, 0 (%s)\n",
2467 target_pid_to_str (lp->ptid),
2468 errno ? safe_strerror (errno) : "OK");
2469
2470 fprintf_unfiltered (gdb_stdlog,
2471 "SWC: Candidate SIGTRAP event in %s\n",
2472 target_pid_to_str (lp->ptid));
2473 }
2474 /* Hold this event/waitstatus while we check to see if
2475 there are any more (we still want to get that SIGSTOP). */
2476 stop_wait_callback (lp, NULL);
2477
2478 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2479 there's another event, throw it back into the
2480 queue. */
2481 if (lp->status)
2482 {
2483 if (debug_linux_nat)
2484 fprintf_unfiltered (gdb_stdlog,
2485 "SWC: kill %s, %s\n",
2486 target_pid_to_str (lp->ptid),
2487 status_to_str ((int) status));
2488 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2489 }
2490
2491 /* Save the sigtrap event. */
2492 lp->status = status;
2493 return 0;
2494 }
2495 else
2496 {
2497 /* The thread was stopped with a signal other than
2498 SIGSTOP, and didn't accidentally trip a breakpoint. */
2499
2500 if (debug_linux_nat)
2501 {
2502 fprintf_unfiltered (gdb_stdlog,
2503 "SWC: Pending event %s in %s\n",
2504 status_to_str ((int) status),
2505 target_pid_to_str (lp->ptid));
2506 }
2507 /* Now resume this LWP and get the SIGSTOP event. */
2508 errno = 0;
2509 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2510 if (debug_linux_nat)
2511 fprintf_unfiltered (gdb_stdlog,
2512 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2513 target_pid_to_str (lp->ptid),
2514 errno ? safe_strerror (errno) : "OK");
2515
2516 /* Hold this event/waitstatus while we check to see if
2517 there are any more (we still want to get that SIGSTOP). */
2518 stop_wait_callback (lp, NULL);
2519
2520 /* If the lp->status field is still empty, use it to
2521 hold this event. If not, then this event must be
2522 returned to the event queue of the LWP. */
2523 if (lp->status)
2524 {
2525 if (debug_linux_nat)
2526 {
2527 fprintf_unfiltered (gdb_stdlog,
2528 "SWC: kill %s, %s\n",
2529 target_pid_to_str (lp->ptid),
2530 status_to_str ((int) status));
2531 }
2532 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2533 }
2534 else
2535 lp->status = status;
2536 return 0;
2537 }
2538 }
2539 else
2540 {
2541 /* We caught the SIGSTOP that we intended to catch, so
2542 there's no SIGSTOP pending. */
2543 lp->stopped = 1;
2544 lp->signalled = 0;
2545 }
2546 }
2547
2548 return 0;
2549 }
2550
2551 /* Return non-zero if LP has a wait status pending. */
2552
2553 static int
2554 status_callback (struct lwp_info *lp, void *data)
2555 {
2556 /* Only report a pending wait status if we pretend that this has
2557 indeed been resumed. */
2558 if (!lp->resumed)
2559 return 0;
2560
2561 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2562 {
2563 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2564 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2565 0', so a clean process exit can not be stored pending in
2566 lp->status, it is indistinguishable from
2567 no-pending-status. */
2568 return 1;
2569 }
2570
2571 if (lp->status != 0)
2572 return 1;
2573
2574 return 0;
2575 }
2576
2577 /* Return non-zero if LP isn't stopped. */
2578
2579 static int
2580 running_callback (struct lwp_info *lp, void *data)
2581 {
2582 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2583 }
2584
2585 /* Count the LWP's that have had events. */
2586
2587 static int
2588 count_events_callback (struct lwp_info *lp, void *data)
2589 {
2590 int *count = data;
2591
2592 gdb_assert (count != NULL);
2593
2594 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2595 if (lp->status != 0 && lp->resumed
2596 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2597 (*count)++;
2598
2599 return 0;
2600 }
2601
2602 /* Select the LWP (if any) that is currently being single-stepped. */
2603
2604 static int
2605 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2606 {
2607 if (lp->step && lp->status != 0)
2608 return 1;
2609 else
2610 return 0;
2611 }
2612
2613 /* Select the Nth LWP that has had a SIGTRAP event. */
2614
2615 static int
2616 select_event_lwp_callback (struct lwp_info *lp, void *data)
2617 {
2618 int *selector = data;
2619
2620 gdb_assert (selector != NULL);
2621
2622 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2623 if (lp->status != 0 && lp->resumed
2624 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2625 if ((*selector)-- == 0)
2626 return 1;
2627
2628 return 0;
2629 }
2630
2631 static int
2632 cancel_breakpoint (struct lwp_info *lp)
2633 {
2634 /* Arrange for a breakpoint to be hit again later. We don't keep
2635 the SIGTRAP status and don't forward the SIGTRAP signal to the
2636 LWP. We will handle the current event, eventually we will resume
2637 this LWP, and this breakpoint will trap again.
2638
2639 If we do not do this, then we run the risk that the user will
2640 delete or disable the breakpoint, but the LWP will have already
2641 tripped on it. */
2642
2643 struct regcache *regcache = get_thread_regcache (lp->ptid);
2644 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2645 CORE_ADDR pc;
2646
2647 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2648 if (breakpoint_inserted_here_p (pc))
2649 {
2650 if (debug_linux_nat)
2651 fprintf_unfiltered (gdb_stdlog,
2652 "CB: Push back breakpoint for %s\n",
2653 target_pid_to_str (lp->ptid));
2654
2655 /* Back up the PC if necessary. */
2656 if (gdbarch_decr_pc_after_break (gdbarch))
2657 regcache_write_pc (regcache, pc);
2658
2659 return 1;
2660 }
2661 return 0;
2662 }
2663
2664 static int
2665 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2666 {
2667 struct lwp_info *event_lp = data;
2668
2669 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2670 if (lp == event_lp)
2671 return 0;
2672
2673 /* If a LWP other than the LWP that we're reporting an event for has
2674 hit a GDB breakpoint (as opposed to some random trap signal),
2675 then just arrange for it to hit it again later. We don't keep
2676 the SIGTRAP status and don't forward the SIGTRAP signal to the
2677 LWP. We will handle the current event, eventually we will resume
2678 all LWPs, and this one will get its breakpoint trap again.
2679
2680 If we do not do this, then we run the risk that the user will
2681 delete or disable the breakpoint, but the LWP will have already
2682 tripped on it. */
2683
2684 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2685 && lp->status != 0
2686 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2687 && cancel_breakpoint (lp))
2688 /* Throw away the SIGTRAP. */
2689 lp->status = 0;
2690
2691 return 0;
2692 }
2693
2694 /* Select one LWP out of those that have events pending. */
2695
2696 static void
2697 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2698 {
2699 int num_events = 0;
2700 int random_selector;
2701 struct lwp_info *event_lp;
2702
2703 /* Record the wait status for the original LWP. */
2704 (*orig_lp)->status = *status;
2705
2706 /* Give preference to any LWP that is being single-stepped. */
2707 event_lp = iterate_over_lwps (filter,
2708 select_singlestep_lwp_callback, NULL);
2709 if (event_lp != NULL)
2710 {
2711 if (debug_linux_nat)
2712 fprintf_unfiltered (gdb_stdlog,
2713 "SEL: Select single-step %s\n",
2714 target_pid_to_str (event_lp->ptid));
2715 }
2716 else
2717 {
2718 /* No single-stepping LWP. Select one at random, out of those
2719 which have had SIGTRAP events. */
2720
2721 /* First see how many SIGTRAP events we have. */
2722 iterate_over_lwps (filter, count_events_callback, &num_events);
2723
2724 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2725 random_selector = (int)
2726 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2727
2728 if (debug_linux_nat && num_events > 1)
2729 fprintf_unfiltered (gdb_stdlog,
2730 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2731 num_events, random_selector);
2732
2733 event_lp = iterate_over_lwps (filter,
2734 select_event_lwp_callback,
2735 &random_selector);
2736 }
2737
2738 if (event_lp != NULL)
2739 {
2740 /* Switch the event LWP. */
2741 *orig_lp = event_lp;
2742 *status = event_lp->status;
2743 }
2744
2745 /* Flush the wait status for the event LWP. */
2746 (*orig_lp)->status = 0;
2747 }
2748
2749 /* Return non-zero if LP has been resumed. */
2750
2751 static int
2752 resumed_callback (struct lwp_info *lp, void *data)
2753 {
2754 return lp->resumed;
2755 }
2756
2757 /* Stop an active thread, verify it still exists, then resume it. */
2758
2759 static int
2760 stop_and_resume_callback (struct lwp_info *lp, void *data)
2761 {
2762 struct lwp_info *ptr;
2763
2764 if (!lp->stopped && !lp->signalled)
2765 {
2766 stop_callback (lp, NULL);
2767 stop_wait_callback (lp, NULL);
2768 /* Resume if the lwp still exists. */
2769 for (ptr = lwp_list; ptr; ptr = ptr->next)
2770 if (lp == ptr)
2771 {
2772 resume_callback (lp, NULL);
2773 resume_set_callback (lp, NULL);
2774 }
2775 }
2776 return 0;
2777 }
2778
2779 /* Check if we should go on and pass this event to common code.
2780 Return the affected lwp if we are, or NULL otherwise. */
2781 static struct lwp_info *
2782 linux_nat_filter_event (int lwpid, int status, int options)
2783 {
2784 struct lwp_info *lp;
2785
2786 lp = find_lwp_pid (pid_to_ptid (lwpid));
2787
2788 /* Check for stop events reported by a process we didn't already
2789 know about - anything not already in our LWP list.
2790
2791 If we're expecting to receive stopped processes after
2792 fork, vfork, and clone events, then we'll just add the
2793 new one to our list and go back to waiting for the event
2794 to be reported - the stopped process might be returned
2795 from waitpid before or after the event is. */
2796 if (WIFSTOPPED (status) && !lp)
2797 {
2798 linux_record_stopped_pid (lwpid, status);
2799 return NULL;
2800 }
2801
2802 /* Make sure we don't report an event for the exit of an LWP not in
2803 our list, i.e. not part of the current process. This can happen
2804 if we detach from a program we original forked and then it
2805 exits. */
2806 if (!WIFSTOPPED (status) && !lp)
2807 return NULL;
2808
2809 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2810 CLONE_PTRACE processes which do not use the thread library -
2811 otherwise we wouldn't find the new LWP this way. That doesn't
2812 currently work, and the following code is currently unreachable
2813 due to the two blocks above. If it's fixed some day, this code
2814 should be broken out into a function so that we can also pick up
2815 LWPs from the new interface. */
2816 if (!lp)
2817 {
2818 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2819 if (options & __WCLONE)
2820 lp->cloned = 1;
2821
2822 gdb_assert (WIFSTOPPED (status)
2823 && WSTOPSIG (status) == SIGSTOP);
2824 lp->signalled = 1;
2825
2826 if (!in_thread_list (inferior_ptid))
2827 {
2828 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2829 GET_PID (inferior_ptid));
2830 add_thread (inferior_ptid);
2831 }
2832
2833 add_thread (lp->ptid);
2834 }
2835
2836 /* Handle GNU/Linux's syscall SIGTRAPs. */
2837 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2838 {
2839 /* No longer need the sysgood bit. The ptrace event ends up
2840 recorded in lp->waitstatus if we care for it. We can carry
2841 on handling the event like a regular SIGTRAP from here
2842 on. */
2843 status = W_STOPCODE (SIGTRAP);
2844 if (linux_handle_syscall_trap (lp, 0))
2845 return NULL;
2846 }
2847
2848 /* Handle GNU/Linux's extended waitstatus for trace events. */
2849 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2850 {
2851 if (debug_linux_nat)
2852 fprintf_unfiltered (gdb_stdlog,
2853 "LLW: Handling extended status 0x%06x\n",
2854 status);
2855 if (linux_handle_extended_wait (lp, status, 0))
2856 return NULL;
2857 }
2858
2859 /* Save the trap's siginfo in case we need it later. */
2860 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
2861 save_siginfo (lp);
2862
2863 /* Check if the thread has exited. */
2864 if ((WIFEXITED (status) || WIFSIGNALED (status))
2865 && num_lwps (GET_PID (lp->ptid)) > 1)
2866 {
2867 /* If this is the main thread, we must stop all threads and verify
2868 if they are still alive. This is because in the nptl thread model
2869 on Linux 2.4, there is no signal issued for exiting LWPs
2870 other than the main thread. We only get the main thread exit
2871 signal once all child threads have already exited. If we
2872 stop all the threads and use the stop_wait_callback to check
2873 if they have exited we can determine whether this signal
2874 should be ignored or whether it means the end of the debugged
2875 application, regardless of which threading model is being
2876 used. */
2877 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2878 {
2879 lp->stopped = 1;
2880 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
2881 stop_and_resume_callback, NULL);
2882 }
2883
2884 if (debug_linux_nat)
2885 fprintf_unfiltered (gdb_stdlog,
2886 "LLW: %s exited.\n",
2887 target_pid_to_str (lp->ptid));
2888
2889 if (num_lwps (GET_PID (lp->ptid)) > 1)
2890 {
2891 /* If there is at least one more LWP, then the exit signal
2892 was not the end of the debugged application and should be
2893 ignored. */
2894 exit_lwp (lp);
2895 return NULL;
2896 }
2897 }
2898
2899 /* Check if the current LWP has previously exited. In the nptl
2900 thread model, LWPs other than the main thread do not issue
2901 signals when they exit so we must check whenever the thread has
2902 stopped. A similar check is made in stop_wait_callback(). */
2903 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
2904 {
2905 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
2906
2907 if (debug_linux_nat)
2908 fprintf_unfiltered (gdb_stdlog,
2909 "LLW: %s exited.\n",
2910 target_pid_to_str (lp->ptid));
2911
2912 exit_lwp (lp);
2913
2914 /* Make sure there is at least one thread running. */
2915 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
2916
2917 /* Discard the event. */
2918 return NULL;
2919 }
2920
2921 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2922 an attempt to stop an LWP. */
2923 if (lp->signalled
2924 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2925 {
2926 if (debug_linux_nat)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "LLW: Delayed SIGSTOP caught for %s.\n",
2929 target_pid_to_str (lp->ptid));
2930
2931 /* This is a delayed SIGSTOP. */
2932 lp->signalled = 0;
2933
2934 registers_changed ();
2935
2936 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2937 lp->step, TARGET_SIGNAL_0);
2938 if (debug_linux_nat)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2941 lp->step ?
2942 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2943 target_pid_to_str (lp->ptid));
2944
2945 lp->stopped = 0;
2946 gdb_assert (lp->resumed);
2947
2948 /* Discard the event. */
2949 return NULL;
2950 }
2951
2952 /* Make sure we don't report a SIGINT that we have already displayed
2953 for another thread. */
2954 if (lp->ignore_sigint
2955 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2956 {
2957 if (debug_linux_nat)
2958 fprintf_unfiltered (gdb_stdlog,
2959 "LLW: Delayed SIGINT caught for %s.\n",
2960 target_pid_to_str (lp->ptid));
2961
2962 /* This is a delayed SIGINT. */
2963 lp->ignore_sigint = 0;
2964
2965 registers_changed ();
2966 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2967 lp->step, TARGET_SIGNAL_0);
2968 if (debug_linux_nat)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2971 lp->step ?
2972 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2973 target_pid_to_str (lp->ptid));
2974
2975 lp->stopped = 0;
2976 gdb_assert (lp->resumed);
2977
2978 /* Discard the event. */
2979 return NULL;
2980 }
2981
2982 /* An interesting event. */
2983 gdb_assert (lp);
2984 lp->status = status;
2985 return lp;
2986 }
2987
2988 static ptid_t
2989 linux_nat_wait_1 (struct target_ops *ops,
2990 ptid_t ptid, struct target_waitstatus *ourstatus,
2991 int target_options)
2992 {
2993 static sigset_t prev_mask;
2994 struct lwp_info *lp = NULL;
2995 int options = 0;
2996 int status = 0;
2997 pid_t pid;
2998
2999 if (debug_linux_nat_async)
3000 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3001
3002 /* The first time we get here after starting a new inferior, we may
3003 not have added it to the LWP list yet - this is the earliest
3004 moment at which we know its PID. */
3005 if (ptid_is_pid (inferior_ptid))
3006 {
3007 /* Upgrade the main thread's ptid. */
3008 thread_change_ptid (inferior_ptid,
3009 BUILD_LWP (GET_PID (inferior_ptid),
3010 GET_PID (inferior_ptid)));
3011
3012 lp = add_lwp (inferior_ptid);
3013 lp->resumed = 1;
3014 }
3015
3016 /* Make sure SIGCHLD is blocked. */
3017 block_child_signals (&prev_mask);
3018
3019 if (ptid_equal (ptid, minus_one_ptid))
3020 pid = -1;
3021 else if (ptid_is_pid (ptid))
3022 /* A request to wait for a specific tgid. This is not possible
3023 with waitpid, so instead, we wait for any child, and leave
3024 children we're not interested in right now with a pending
3025 status to report later. */
3026 pid = -1;
3027 else
3028 pid = GET_LWP (ptid);
3029
3030 retry:
3031 lp = NULL;
3032 status = 0;
3033
3034 /* Make sure there is at least one LWP that has been resumed. */
3035 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
3036
3037 /* First check if there is a LWP with a wait status pending. */
3038 if (pid == -1)
3039 {
3040 /* Any LWP that's been resumed will do. */
3041 lp = iterate_over_lwps (ptid, status_callback, NULL);
3042 if (lp)
3043 {
3044 if (debug_linux_nat && lp->status)
3045 fprintf_unfiltered (gdb_stdlog,
3046 "LLW: Using pending wait status %s for %s.\n",
3047 status_to_str (lp->status),
3048 target_pid_to_str (lp->ptid));
3049 }
3050
3051 /* But if we don't find one, we'll have to wait, and check both
3052 cloned and uncloned processes. We start with the cloned
3053 processes. */
3054 options = __WCLONE | WNOHANG;
3055 }
3056 else if (is_lwp (ptid))
3057 {
3058 if (debug_linux_nat)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "LLW: Waiting for specific LWP %s.\n",
3061 target_pid_to_str (ptid));
3062
3063 /* We have a specific LWP to check. */
3064 lp = find_lwp_pid (ptid);
3065 gdb_assert (lp);
3066
3067 if (debug_linux_nat && lp->status)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "LLW: Using pending wait status %s for %s.\n",
3070 status_to_str (lp->status),
3071 target_pid_to_str (lp->ptid));
3072
3073 /* If we have to wait, take into account whether PID is a cloned
3074 process or not. And we have to convert it to something that
3075 the layer beneath us can understand. */
3076 options = lp->cloned ? __WCLONE : 0;
3077 pid = GET_LWP (ptid);
3078
3079 /* We check for lp->waitstatus in addition to lp->status,
3080 because we can have pending process exits recorded in
3081 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3082 an additional lp->status_p flag. */
3083 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3084 lp = NULL;
3085 }
3086
3087 if (lp && lp->signalled)
3088 {
3089 /* A pending SIGSTOP may interfere with the normal stream of
3090 events. In a typical case where interference is a problem,
3091 we have a SIGSTOP signal pending for LWP A while
3092 single-stepping it, encounter an event in LWP B, and take the
3093 pending SIGSTOP while trying to stop LWP A. After processing
3094 the event in LWP B, LWP A is continued, and we'll never see
3095 the SIGTRAP associated with the last time we were
3096 single-stepping LWP A. */
3097
3098 /* Resume the thread. It should halt immediately returning the
3099 pending SIGSTOP. */
3100 registers_changed ();
3101 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3102 lp->step, TARGET_SIGNAL_0);
3103 if (debug_linux_nat)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3106 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3107 target_pid_to_str (lp->ptid));
3108 lp->stopped = 0;
3109 gdb_assert (lp->resumed);
3110
3111 /* Catch the pending SIGSTOP. */
3112 status = lp->status;
3113 lp->status = 0;
3114
3115 stop_wait_callback (lp, NULL);
3116
3117 /* If the lp->status field isn't empty, we caught another signal
3118 while flushing the SIGSTOP. Return it back to the event
3119 queue of the LWP, as we already have an event to handle. */
3120 if (lp->status)
3121 {
3122 if (debug_linux_nat)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "LLW: kill %s, %s\n",
3125 target_pid_to_str (lp->ptid),
3126 status_to_str (lp->status));
3127 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3128 }
3129
3130 lp->status = status;
3131 }
3132
3133 if (!target_can_async_p ())
3134 {
3135 /* Causes SIGINT to be passed on to the attached process. */
3136 set_sigint_trap ();
3137 }
3138
3139 /* Translate generic target_wait options into waitpid options. */
3140 if (target_options & TARGET_WNOHANG)
3141 options |= WNOHANG;
3142
3143 while (lp == NULL)
3144 {
3145 pid_t lwpid;
3146
3147 lwpid = my_waitpid (pid, &status, options);
3148
3149 if (lwpid > 0)
3150 {
3151 gdb_assert (pid == -1 || lwpid == pid);
3152
3153 if (debug_linux_nat)
3154 {
3155 fprintf_unfiltered (gdb_stdlog,
3156 "LLW: waitpid %ld received %s\n",
3157 (long) lwpid, status_to_str (status));
3158 }
3159
3160 lp = linux_nat_filter_event (lwpid, status, options);
3161
3162 if (lp
3163 && ptid_is_pid (ptid)
3164 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3165 {
3166 if (debug_linux_nat)
3167 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3168 ptid_get_lwp (lp->ptid), status);
3169
3170 if (WIFSTOPPED (lp->status))
3171 {
3172 if (WSTOPSIG (lp->status) != SIGSTOP)
3173 {
3174 stop_callback (lp, NULL);
3175
3176 /* Resume in order to collect the sigstop. */
3177 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
3178
3179 stop_wait_callback (lp, NULL);
3180 }
3181 else
3182 {
3183 lp->stopped = 1;
3184 lp->signalled = 0;
3185 }
3186 }
3187 else if (WIFEXITED (status) || WIFSIGNALED (status))
3188 {
3189 if (debug_linux_nat)
3190 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3191 ptid_get_lwp (lp->ptid));
3192
3193 /* This was the last lwp in the process. Since
3194 events are serialized to GDB core, and we can't
3195 report this one right now, but GDB core and the
3196 other target layers will want to be notified
3197 about the exit code/signal, leave the status
3198 pending for the next time we're able to report
3199 it. */
3200
3201 /* Prevent trying to stop this thread again. We'll
3202 never try to resume it because it has a pending
3203 status. */
3204 lp->stopped = 1;
3205
3206 /* Dead LWP's aren't expected to reported a pending
3207 sigstop. */
3208 lp->signalled = 0;
3209
3210 /* Store the pending event in the waitstatus as
3211 well, because W_EXITCODE(0,0) == 0. */
3212 store_waitstatus (&lp->waitstatus, lp->status);
3213 }
3214
3215 /* Keep looking. */
3216 lp = NULL;
3217 continue;
3218 }
3219
3220 if (lp)
3221 break;
3222 else
3223 {
3224 if (pid == -1)
3225 {
3226 /* waitpid did return something. Restart over. */
3227 options |= __WCLONE;
3228 }
3229 continue;
3230 }
3231 }
3232
3233 if (pid == -1)
3234 {
3235 /* Alternate between checking cloned and uncloned processes. */
3236 options ^= __WCLONE;
3237
3238 /* And every time we have checked both:
3239 In async mode, return to event loop;
3240 In sync mode, suspend waiting for a SIGCHLD signal. */
3241 if (options & __WCLONE)
3242 {
3243 if (target_options & TARGET_WNOHANG)
3244 {
3245 /* No interesting event. */
3246 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3247
3248 if (debug_linux_nat_async)
3249 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3250
3251 restore_child_signals_mask (&prev_mask);
3252 return minus_one_ptid;
3253 }
3254
3255 sigsuspend (&suspend_mask);
3256 }
3257 }
3258 else if (target_options & TARGET_WNOHANG)
3259 {
3260 /* No interesting event for PID yet. */
3261 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3262
3263 if (debug_linux_nat_async)
3264 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3265
3266 restore_child_signals_mask (&prev_mask);
3267 return minus_one_ptid;
3268 }
3269
3270 /* We shouldn't end up here unless we want to try again. */
3271 gdb_assert (lp == NULL);
3272 }
3273
3274 if (!target_can_async_p ())
3275 clear_sigint_trap ();
3276
3277 gdb_assert (lp);
3278
3279 status = lp->status;
3280 lp->status = 0;
3281
3282 /* Don't report signals that GDB isn't interested in, such as
3283 signals that are neither printed nor stopped upon. Stopping all
3284 threads can be a bit time-consuming so if we want decent
3285 performance with heavily multi-threaded programs, especially when
3286 they're using a high frequency timer, we'd better avoid it if we
3287 can. */
3288
3289 if (WIFSTOPPED (status))
3290 {
3291 int signo = target_signal_from_host (WSTOPSIG (status));
3292 struct inferior *inf;
3293
3294 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3295 gdb_assert (inf);
3296
3297 /* Defer to common code if we get a signal while
3298 single-stepping, since that may need special care, e.g. to
3299 skip the signal handler, or, if we're gaining control of the
3300 inferior. */
3301 if (!lp->step
3302 && inf->stop_soon == NO_STOP_QUIETLY
3303 && signal_stop_state (signo) == 0
3304 && signal_print_state (signo) == 0
3305 && signal_pass_state (signo) == 1)
3306 {
3307 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3308 here? It is not clear we should. GDB may not expect
3309 other threads to run. On the other hand, not resuming
3310 newly attached threads may cause an unwanted delay in
3311 getting them running. */
3312 registers_changed ();
3313 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3314 lp->step, signo);
3315 if (debug_linux_nat)
3316 fprintf_unfiltered (gdb_stdlog,
3317 "LLW: %s %s, %s (preempt 'handle')\n",
3318 lp->step ?
3319 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3320 target_pid_to_str (lp->ptid),
3321 signo ? strsignal (signo) : "0");
3322 lp->stopped = 0;
3323 goto retry;
3324 }
3325
3326 if (!non_stop)
3327 {
3328 /* Only do the below in all-stop, as we currently use SIGINT
3329 to implement target_stop (see linux_nat_stop) in
3330 non-stop. */
3331 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3332 {
3333 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3334 forwarded to the entire process group, that is, all LWPs
3335 will receive it - unless they're using CLONE_THREAD to
3336 share signals. Since we only want to report it once, we
3337 mark it as ignored for all LWPs except this one. */
3338 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3339 set_ignore_sigint, NULL);
3340 lp->ignore_sigint = 0;
3341 }
3342 else
3343 maybe_clear_ignore_sigint (lp);
3344 }
3345 }
3346
3347 /* This LWP is stopped now. */
3348 lp->stopped = 1;
3349
3350 if (debug_linux_nat)
3351 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3352 status_to_str (status), target_pid_to_str (lp->ptid));
3353
3354 if (!non_stop)
3355 {
3356 /* Now stop all other LWP's ... */
3357 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3358
3359 /* ... and wait until all of them have reported back that
3360 they're no longer running. */
3361 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3362
3363 /* If we're not waiting for a specific LWP, choose an event LWP
3364 from among those that have had events. Giving equal priority
3365 to all LWPs that have had events helps prevent
3366 starvation. */
3367 if (pid == -1)
3368 select_event_lwp (ptid, &lp, &status);
3369 }
3370
3371 /* Now that we've selected our final event LWP, cancel any
3372 breakpoints in other LWPs that have hit a GDB breakpoint. See
3373 the comment in cancel_breakpoints_callback to find out why. */
3374 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3375
3376 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3377 {
3378 if (debug_linux_nat)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "LLW: trap ptid is %s.\n",
3381 target_pid_to_str (lp->ptid));
3382 }
3383
3384 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3385 {
3386 *ourstatus = lp->waitstatus;
3387 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3388 }
3389 else
3390 store_waitstatus (ourstatus, status);
3391
3392 if (debug_linux_nat_async)
3393 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3394
3395 restore_child_signals_mask (&prev_mask);
3396 return lp->ptid;
3397 }
3398
3399 static ptid_t
3400 linux_nat_wait (struct target_ops *ops,
3401 ptid_t ptid, struct target_waitstatus *ourstatus,
3402 int target_options)
3403 {
3404 ptid_t event_ptid;
3405
3406 if (debug_linux_nat)
3407 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3408
3409 /* Flush the async file first. */
3410 if (target_can_async_p ())
3411 async_file_flush ();
3412
3413 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3414
3415 /* If we requested any event, and something came out, assume there
3416 may be more. If we requested a specific lwp or process, also
3417 assume there may be more. */
3418 if (target_can_async_p ()
3419 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3420 || !ptid_equal (ptid, minus_one_ptid)))
3421 async_file_mark ();
3422
3423 /* Get ready for the next event. */
3424 if (target_can_async_p ())
3425 target_async (inferior_event_handler, 0);
3426
3427 return event_ptid;
3428 }
3429
3430 static int
3431 kill_callback (struct lwp_info *lp, void *data)
3432 {
3433 errno = 0;
3434 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3435 if (debug_linux_nat)
3436 fprintf_unfiltered (gdb_stdlog,
3437 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3438 target_pid_to_str (lp->ptid),
3439 errno ? safe_strerror (errno) : "OK");
3440
3441 return 0;
3442 }
3443
3444 static int
3445 kill_wait_callback (struct lwp_info *lp, void *data)
3446 {
3447 pid_t pid;
3448
3449 /* We must make sure that there are no pending events (delayed
3450 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3451 program doesn't interfere with any following debugging session. */
3452
3453 /* For cloned processes we must check both with __WCLONE and
3454 without, since the exit status of a cloned process isn't reported
3455 with __WCLONE. */
3456 if (lp->cloned)
3457 {
3458 do
3459 {
3460 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3461 if (pid != (pid_t) -1)
3462 {
3463 if (debug_linux_nat)
3464 fprintf_unfiltered (gdb_stdlog,
3465 "KWC: wait %s received unknown.\n",
3466 target_pid_to_str (lp->ptid));
3467 /* The Linux kernel sometimes fails to kill a thread
3468 completely after PTRACE_KILL; that goes from the stop
3469 point in do_fork out to the one in
3470 get_signal_to_deliever and waits again. So kill it
3471 again. */
3472 kill_callback (lp, NULL);
3473 }
3474 }
3475 while (pid == GET_LWP (lp->ptid));
3476
3477 gdb_assert (pid == -1 && errno == ECHILD);
3478 }
3479
3480 do
3481 {
3482 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3483 if (pid != (pid_t) -1)
3484 {
3485 if (debug_linux_nat)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "KWC: wait %s received unk.\n",
3488 target_pid_to_str (lp->ptid));
3489 /* See the call to kill_callback above. */
3490 kill_callback (lp, NULL);
3491 }
3492 }
3493 while (pid == GET_LWP (lp->ptid));
3494
3495 gdb_assert (pid == -1 && errno == ECHILD);
3496 return 0;
3497 }
3498
3499 static void
3500 linux_nat_kill (struct target_ops *ops)
3501 {
3502 struct target_waitstatus last;
3503 ptid_t last_ptid;
3504 int status;
3505
3506 /* If we're stopped while forking and we haven't followed yet,
3507 kill the other task. We need to do this first because the
3508 parent will be sleeping if this is a vfork. */
3509
3510 get_last_target_status (&last_ptid, &last);
3511
3512 if (last.kind == TARGET_WAITKIND_FORKED
3513 || last.kind == TARGET_WAITKIND_VFORKED)
3514 {
3515 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3516 wait (&status);
3517 }
3518
3519 if (forks_exist_p ())
3520 linux_fork_killall ();
3521 else
3522 {
3523 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3524 /* Stop all threads before killing them, since ptrace requires
3525 that the thread is stopped to sucessfully PTRACE_KILL. */
3526 iterate_over_lwps (ptid, stop_callback, NULL);
3527 /* ... and wait until all of them have reported back that
3528 they're no longer running. */
3529 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3530
3531 /* Kill all LWP's ... */
3532 iterate_over_lwps (ptid, kill_callback, NULL);
3533
3534 /* ... and wait until we've flushed all events. */
3535 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3536 }
3537
3538 target_mourn_inferior ();
3539 }
3540
3541 static void
3542 linux_nat_mourn_inferior (struct target_ops *ops)
3543 {
3544 purge_lwp_list (ptid_get_pid (inferior_ptid));
3545
3546 if (! forks_exist_p ())
3547 /* Normal case, no other forks available. */
3548 linux_ops->to_mourn_inferior (ops);
3549 else
3550 /* Multi-fork case. The current inferior_ptid has exited, but
3551 there are other viable forks to debug. Delete the exiting
3552 one and context-switch to the first available. */
3553 linux_fork_mourn_inferior ();
3554 }
3555
3556 /* Convert a native/host siginfo object, into/from the siginfo in the
3557 layout of the inferiors' architecture. */
3558
3559 static void
3560 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3561 {
3562 int done = 0;
3563
3564 if (linux_nat_siginfo_fixup != NULL)
3565 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3566
3567 /* If there was no callback, or the callback didn't do anything,
3568 then just do a straight memcpy. */
3569 if (!done)
3570 {
3571 if (direction == 1)
3572 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3573 else
3574 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3575 }
3576 }
3577
3578 static LONGEST
3579 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3580 const char *annex, gdb_byte *readbuf,
3581 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3582 {
3583 int pid;
3584 struct siginfo siginfo;
3585 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3586
3587 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3588 gdb_assert (readbuf || writebuf);
3589
3590 pid = GET_LWP (inferior_ptid);
3591 if (pid == 0)
3592 pid = GET_PID (inferior_ptid);
3593
3594 if (offset > sizeof (siginfo))
3595 return -1;
3596
3597 errno = 0;
3598 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3599 if (errno != 0)
3600 return -1;
3601
3602 /* When GDB is built as a 64-bit application, ptrace writes into
3603 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3604 inferior with a 64-bit GDB should look the same as debugging it
3605 with a 32-bit GDB, we need to convert it. GDB core always sees
3606 the converted layout, so any read/write will have to be done
3607 post-conversion. */
3608 siginfo_fixup (&siginfo, inf_siginfo, 0);
3609
3610 if (offset + len > sizeof (siginfo))
3611 len = sizeof (siginfo) - offset;
3612
3613 if (readbuf != NULL)
3614 memcpy (readbuf, inf_siginfo + offset, len);
3615 else
3616 {
3617 memcpy (inf_siginfo + offset, writebuf, len);
3618
3619 /* Convert back to ptrace layout before flushing it out. */
3620 siginfo_fixup (&siginfo, inf_siginfo, 1);
3621
3622 errno = 0;
3623 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3624 if (errno != 0)
3625 return -1;
3626 }
3627
3628 return len;
3629 }
3630
3631 static LONGEST
3632 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3633 const char *annex, gdb_byte *readbuf,
3634 const gdb_byte *writebuf,
3635 ULONGEST offset, LONGEST len)
3636 {
3637 struct cleanup *old_chain;
3638 LONGEST xfer;
3639
3640 if (object == TARGET_OBJECT_SIGNAL_INFO)
3641 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3642 offset, len);
3643
3644 /* The target is connected but no live inferior is selected. Pass
3645 this request down to a lower stratum (e.g., the executable
3646 file). */
3647 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3648 return 0;
3649
3650 old_chain = save_inferior_ptid ();
3651
3652 if (is_lwp (inferior_ptid))
3653 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3654
3655 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3656 offset, len);
3657
3658 do_cleanups (old_chain);
3659 return xfer;
3660 }
3661
3662 static int
3663 linux_thread_alive (ptid_t ptid)
3664 {
3665 int err;
3666
3667 gdb_assert (is_lwp (ptid));
3668
3669 /* Send signal 0 instead of anything ptrace, because ptracing a
3670 running thread errors out claiming that the thread doesn't
3671 exist. */
3672 err = kill_lwp (GET_LWP (ptid), 0);
3673
3674 if (debug_linux_nat)
3675 fprintf_unfiltered (gdb_stdlog,
3676 "LLTA: KILL(SIG0) %s (%s)\n",
3677 target_pid_to_str (ptid),
3678 err ? safe_strerror (err) : "OK");
3679
3680 if (err != 0)
3681 return 0;
3682
3683 return 1;
3684 }
3685
3686 static int
3687 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3688 {
3689 return linux_thread_alive (ptid);
3690 }
3691
3692 static char *
3693 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3694 {
3695 static char buf[64];
3696
3697 if (is_lwp (ptid)
3698 && (GET_PID (ptid) != GET_LWP (ptid)
3699 || num_lwps (GET_PID (ptid)) > 1))
3700 {
3701 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3702 return buf;
3703 }
3704
3705 return normal_pid_to_str (ptid);
3706 }
3707
3708 /* Accepts an integer PID; Returns a string representing a file that
3709 can be opened to get the symbols for the child process. */
3710
3711 static char *
3712 linux_child_pid_to_exec_file (int pid)
3713 {
3714 char *name1, *name2;
3715
3716 name1 = xmalloc (MAXPATHLEN);
3717 name2 = xmalloc (MAXPATHLEN);
3718 make_cleanup (xfree, name1);
3719 make_cleanup (xfree, name2);
3720 memset (name2, 0, MAXPATHLEN);
3721
3722 sprintf (name1, "/proc/%d/exe", pid);
3723 if (readlink (name1, name2, MAXPATHLEN) > 0)
3724 return name2;
3725 else
3726 return name1;
3727 }
3728
3729 /* Service function for corefiles and info proc. */
3730
3731 static int
3732 read_mapping (FILE *mapfile,
3733 long long *addr,
3734 long long *endaddr,
3735 char *permissions,
3736 long long *offset,
3737 char *device, long long *inode, char *filename)
3738 {
3739 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3740 addr, endaddr, permissions, offset, device, inode);
3741
3742 filename[0] = '\0';
3743 if (ret > 0 && ret != EOF)
3744 {
3745 /* Eat everything up to EOL for the filename. This will prevent
3746 weird filenames (such as one with embedded whitespace) from
3747 confusing this code. It also makes this code more robust in
3748 respect to annotations the kernel may add after the filename.
3749
3750 Note the filename is used for informational purposes
3751 only. */
3752 ret += fscanf (mapfile, "%[^\n]\n", filename);
3753 }
3754
3755 return (ret != 0 && ret != EOF);
3756 }
3757
3758 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3759 regions in the inferior for a corefile. */
3760
3761 static int
3762 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3763 unsigned long,
3764 int, int, int, void *), void *obfd)
3765 {
3766 int pid = PIDGET (inferior_ptid);
3767 char mapsfilename[MAXPATHLEN];
3768 FILE *mapsfile;
3769 long long addr, endaddr, size, offset, inode;
3770 char permissions[8], device[8], filename[MAXPATHLEN];
3771 int read, write, exec;
3772 int ret;
3773 struct cleanup *cleanup;
3774
3775 /* Compose the filename for the /proc memory map, and open it. */
3776 sprintf (mapsfilename, "/proc/%d/maps", pid);
3777 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3778 error (_("Could not open %s."), mapsfilename);
3779 cleanup = make_cleanup_fclose (mapsfile);
3780
3781 if (info_verbose)
3782 fprintf_filtered (gdb_stdout,
3783 "Reading memory regions from %s\n", mapsfilename);
3784
3785 /* Now iterate until end-of-file. */
3786 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3787 &offset, &device[0], &inode, &filename[0]))
3788 {
3789 size = endaddr - addr;
3790
3791 /* Get the segment's permissions. */
3792 read = (strchr (permissions, 'r') != 0);
3793 write = (strchr (permissions, 'w') != 0);
3794 exec = (strchr (permissions, 'x') != 0);
3795
3796 if (info_verbose)
3797 {
3798 fprintf_filtered (gdb_stdout,
3799 "Save segment, %lld bytes at %s (%c%c%c)",
3800 size, paddress (target_gdbarch, addr),
3801 read ? 'r' : ' ',
3802 write ? 'w' : ' ', exec ? 'x' : ' ');
3803 if (filename[0])
3804 fprintf_filtered (gdb_stdout, " for %s", filename);
3805 fprintf_filtered (gdb_stdout, "\n");
3806 }
3807
3808 /* Invoke the callback function to create the corefile
3809 segment. */
3810 func (addr, size, read, write, exec, obfd);
3811 }
3812 do_cleanups (cleanup);
3813 return 0;
3814 }
3815
3816 static int
3817 find_signalled_thread (struct thread_info *info, void *data)
3818 {
3819 if (info->stop_signal != TARGET_SIGNAL_0
3820 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3821 return 1;
3822
3823 return 0;
3824 }
3825
3826 static enum target_signal
3827 find_stop_signal (void)
3828 {
3829 struct thread_info *info =
3830 iterate_over_threads (find_signalled_thread, NULL);
3831
3832 if (info)
3833 return info->stop_signal;
3834 else
3835 return TARGET_SIGNAL_0;
3836 }
3837
3838 /* Records the thread's register state for the corefile note
3839 section. */
3840
3841 static char *
3842 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3843 char *note_data, int *note_size,
3844 enum target_signal stop_signal)
3845 {
3846 gdb_gregset_t gregs;
3847 gdb_fpregset_t fpregs;
3848 unsigned long lwp = ptid_get_lwp (ptid);
3849 struct gdbarch *gdbarch = target_gdbarch;
3850 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
3851 const struct regset *regset;
3852 int core_regset_p;
3853 struct cleanup *old_chain;
3854 struct core_regset_section *sect_list;
3855 char *gdb_regset;
3856
3857 old_chain = save_inferior_ptid ();
3858 inferior_ptid = ptid;
3859 target_fetch_registers (regcache, -1);
3860 do_cleanups (old_chain);
3861
3862 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3863 sect_list = gdbarch_core_regset_sections (gdbarch);
3864
3865 if (core_regset_p
3866 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3867 sizeof (gregs))) != NULL
3868 && regset->collect_regset != NULL)
3869 regset->collect_regset (regset, regcache, -1,
3870 &gregs, sizeof (gregs));
3871 else
3872 fill_gregset (regcache, &gregs, -1);
3873
3874 note_data = (char *) elfcore_write_prstatus (obfd,
3875 note_data,
3876 note_size,
3877 lwp,
3878 stop_signal, &gregs);
3879
3880 /* The loop below uses the new struct core_regset_section, which stores
3881 the supported section names and sizes for the core file. Note that
3882 note PRSTATUS needs to be treated specially. But the other notes are
3883 structurally the same, so they can benefit from the new struct. */
3884 if (core_regset_p && sect_list != NULL)
3885 while (sect_list->sect_name != NULL)
3886 {
3887 /* .reg was already handled above. */
3888 if (strcmp (sect_list->sect_name, ".reg") == 0)
3889 {
3890 sect_list++;
3891 continue;
3892 }
3893 regset = gdbarch_regset_from_core_section (gdbarch,
3894 sect_list->sect_name,
3895 sect_list->size);
3896 gdb_assert (regset && regset->collect_regset);
3897 gdb_regset = xmalloc (sect_list->size);
3898 regset->collect_regset (regset, regcache, -1,
3899 gdb_regset, sect_list->size);
3900 note_data = (char *) elfcore_write_register_note (obfd,
3901 note_data,
3902 note_size,
3903 sect_list->sect_name,
3904 gdb_regset,
3905 sect_list->size);
3906 xfree (gdb_regset);
3907 sect_list++;
3908 }
3909
3910 /* For architectures that does not have the struct core_regset_section
3911 implemented, we use the old method. When all the architectures have
3912 the new support, the code below should be deleted. */
3913 else
3914 {
3915 if (core_regset_p
3916 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3917 sizeof (fpregs))) != NULL
3918 && regset->collect_regset != NULL)
3919 regset->collect_regset (regset, regcache, -1,
3920 &fpregs, sizeof (fpregs));
3921 else
3922 fill_fpregset (regcache, &fpregs, -1);
3923
3924 note_data = (char *) elfcore_write_prfpreg (obfd,
3925 note_data,
3926 note_size,
3927 &fpregs, sizeof (fpregs));
3928 }
3929
3930 return note_data;
3931 }
3932
3933 struct linux_nat_corefile_thread_data
3934 {
3935 bfd *obfd;
3936 char *note_data;
3937 int *note_size;
3938 int num_notes;
3939 enum target_signal stop_signal;
3940 };
3941
3942 /* Called by gdbthread.c once per thread. Records the thread's
3943 register state for the corefile note section. */
3944
3945 static int
3946 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3947 {
3948 struct linux_nat_corefile_thread_data *args = data;
3949
3950 args->note_data = linux_nat_do_thread_registers (args->obfd,
3951 ti->ptid,
3952 args->note_data,
3953 args->note_size,
3954 args->stop_signal);
3955 args->num_notes++;
3956
3957 return 0;
3958 }
3959
3960 /* Enumerate spufs IDs for process PID. */
3961
3962 static void
3963 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
3964 {
3965 char path[128];
3966 DIR *dir;
3967 struct dirent *entry;
3968
3969 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3970 dir = opendir (path);
3971 if (!dir)
3972 return;
3973
3974 rewinddir (dir);
3975 while ((entry = readdir (dir)) != NULL)
3976 {
3977 struct stat st;
3978 struct statfs stfs;
3979 int fd;
3980
3981 fd = atoi (entry->d_name);
3982 if (!fd)
3983 continue;
3984
3985 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3986 if (stat (path, &st) != 0)
3987 continue;
3988 if (!S_ISDIR (st.st_mode))
3989 continue;
3990
3991 if (statfs (path, &stfs) != 0)
3992 continue;
3993 if (stfs.f_type != SPUFS_MAGIC)
3994 continue;
3995
3996 callback (data, fd);
3997 }
3998
3999 closedir (dir);
4000 }
4001
4002 /* Generate corefile notes for SPU contexts. */
4003
4004 struct linux_spu_corefile_data
4005 {
4006 bfd *obfd;
4007 char *note_data;
4008 int *note_size;
4009 };
4010
4011 static void
4012 linux_spu_corefile_callback (void *data, int fd)
4013 {
4014 struct linux_spu_corefile_data *args = data;
4015 int i;
4016
4017 static const char *spu_files[] =
4018 {
4019 "object-id",
4020 "mem",
4021 "regs",
4022 "fpcr",
4023 "lslr",
4024 "decr",
4025 "decr_status",
4026 "signal1",
4027 "signal1_type",
4028 "signal2",
4029 "signal2_type",
4030 "event_mask",
4031 "event_status",
4032 "mbox_info",
4033 "ibox_info",
4034 "wbox_info",
4035 "dma_info",
4036 "proxydma_info",
4037 };
4038
4039 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4040 {
4041 char annex[32], note_name[32];
4042 gdb_byte *spu_data;
4043 LONGEST spu_len;
4044
4045 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4046 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4047 annex, &spu_data);
4048 if (spu_len > 0)
4049 {
4050 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4051 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4052 args->note_size, note_name,
4053 NT_SPU, spu_data, spu_len);
4054 xfree (spu_data);
4055 }
4056 }
4057 }
4058
4059 static char *
4060 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4061 {
4062 struct linux_spu_corefile_data args;
4063 args.obfd = obfd;
4064 args.note_data = note_data;
4065 args.note_size = note_size;
4066
4067 iterate_over_spus (PIDGET (inferior_ptid),
4068 linux_spu_corefile_callback, &args);
4069
4070 return args.note_data;
4071 }
4072
4073 /* Fills the "to_make_corefile_note" target vector. Builds the note
4074 section for a corefile, and returns it in a malloc buffer. */
4075
4076 static char *
4077 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4078 {
4079 struct linux_nat_corefile_thread_data thread_args;
4080 struct cleanup *old_chain;
4081 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4082 char fname[16] = { '\0' };
4083 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4084 char psargs[80] = { '\0' };
4085 char *note_data = NULL;
4086 ptid_t current_ptid = inferior_ptid;
4087 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4088 gdb_byte *auxv;
4089 int auxv_len;
4090
4091 if (get_exec_file (0))
4092 {
4093 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4094 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4095 if (get_inferior_args ())
4096 {
4097 char *string_end;
4098 char *psargs_end = psargs + sizeof (psargs);
4099
4100 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4101 strings fine. */
4102 string_end = memchr (psargs, 0, sizeof (psargs));
4103 if (string_end != NULL)
4104 {
4105 *string_end++ = ' ';
4106 strncpy (string_end, get_inferior_args (),
4107 psargs_end - string_end);
4108 }
4109 }
4110 note_data = (char *) elfcore_write_prpsinfo (obfd,
4111 note_data,
4112 note_size, fname, psargs);
4113 }
4114
4115 /* Dump information for threads. */
4116 thread_args.obfd = obfd;
4117 thread_args.note_data = note_data;
4118 thread_args.note_size = note_size;
4119 thread_args.num_notes = 0;
4120 thread_args.stop_signal = find_stop_signal ();
4121 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4122 gdb_assert (thread_args.num_notes != 0);
4123 note_data = thread_args.note_data;
4124
4125 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4126 NULL, &auxv);
4127 if (auxv_len > 0)
4128 {
4129 note_data = elfcore_write_note (obfd, note_data, note_size,
4130 "CORE", NT_AUXV, auxv, auxv_len);
4131 xfree (auxv);
4132 }
4133
4134 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4135
4136 make_cleanup (xfree, note_data);
4137 return note_data;
4138 }
4139
4140 /* Implement the "info proc" command. */
4141
4142 static void
4143 linux_nat_info_proc_cmd (char *args, int from_tty)
4144 {
4145 /* A long is used for pid instead of an int to avoid a loss of precision
4146 compiler warning from the output of strtoul. */
4147 long pid = PIDGET (inferior_ptid);
4148 FILE *procfile;
4149 char **argv = NULL;
4150 char buffer[MAXPATHLEN];
4151 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4152 int cmdline_f = 1;
4153 int cwd_f = 1;
4154 int exe_f = 1;
4155 int mappings_f = 0;
4156 int environ_f = 0;
4157 int status_f = 0;
4158 int stat_f = 0;
4159 int all = 0;
4160 struct stat dummy;
4161
4162 if (args)
4163 {
4164 /* Break up 'args' into an argv array. */
4165 argv = gdb_buildargv (args);
4166 make_cleanup_freeargv (argv);
4167 }
4168 while (argv != NULL && *argv != NULL)
4169 {
4170 if (isdigit (argv[0][0]))
4171 {
4172 pid = strtoul (argv[0], NULL, 10);
4173 }
4174 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4175 {
4176 mappings_f = 1;
4177 }
4178 else if (strcmp (argv[0], "status") == 0)
4179 {
4180 status_f = 1;
4181 }
4182 else if (strcmp (argv[0], "stat") == 0)
4183 {
4184 stat_f = 1;
4185 }
4186 else if (strcmp (argv[0], "cmd") == 0)
4187 {
4188 cmdline_f = 1;
4189 }
4190 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4191 {
4192 exe_f = 1;
4193 }
4194 else if (strcmp (argv[0], "cwd") == 0)
4195 {
4196 cwd_f = 1;
4197 }
4198 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4199 {
4200 all = 1;
4201 }
4202 else
4203 {
4204 /* [...] (future options here) */
4205 }
4206 argv++;
4207 }
4208 if (pid == 0)
4209 error (_("No current process: you must name one."));
4210
4211 sprintf (fname1, "/proc/%ld", pid);
4212 if (stat (fname1, &dummy) != 0)
4213 error (_("No /proc directory: '%s'"), fname1);
4214
4215 printf_filtered (_("process %ld\n"), pid);
4216 if (cmdline_f || all)
4217 {
4218 sprintf (fname1, "/proc/%ld/cmdline", pid);
4219 if ((procfile = fopen (fname1, "r")) != NULL)
4220 {
4221 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4222 if (fgets (buffer, sizeof (buffer), procfile))
4223 printf_filtered ("cmdline = '%s'\n", buffer);
4224 else
4225 warning (_("unable to read '%s'"), fname1);
4226 do_cleanups (cleanup);
4227 }
4228 else
4229 warning (_("unable to open /proc file '%s'"), fname1);
4230 }
4231 if (cwd_f || all)
4232 {
4233 sprintf (fname1, "/proc/%ld/cwd", pid);
4234 memset (fname2, 0, sizeof (fname2));
4235 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4236 printf_filtered ("cwd = '%s'\n", fname2);
4237 else
4238 warning (_("unable to read link '%s'"), fname1);
4239 }
4240 if (exe_f || all)
4241 {
4242 sprintf (fname1, "/proc/%ld/exe", pid);
4243 memset (fname2, 0, sizeof (fname2));
4244 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4245 printf_filtered ("exe = '%s'\n", fname2);
4246 else
4247 warning (_("unable to read link '%s'"), fname1);
4248 }
4249 if (mappings_f || all)
4250 {
4251 sprintf (fname1, "/proc/%ld/maps", pid);
4252 if ((procfile = fopen (fname1, "r")) != NULL)
4253 {
4254 long long addr, endaddr, size, offset, inode;
4255 char permissions[8], device[8], filename[MAXPATHLEN];
4256 struct cleanup *cleanup;
4257
4258 cleanup = make_cleanup_fclose (procfile);
4259 printf_filtered (_("Mapped address spaces:\n\n"));
4260 if (gdbarch_addr_bit (target_gdbarch) == 32)
4261 {
4262 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4263 "Start Addr",
4264 " End Addr",
4265 " Size", " Offset", "objfile");
4266 }
4267 else
4268 {
4269 printf_filtered (" %18s %18s %10s %10s %7s\n",
4270 "Start Addr",
4271 " End Addr",
4272 " Size", " Offset", "objfile");
4273 }
4274
4275 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4276 &offset, &device[0], &inode, &filename[0]))
4277 {
4278 size = endaddr - addr;
4279
4280 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4281 calls here (and possibly above) should be abstracted
4282 out into their own functions? Andrew suggests using
4283 a generic local_address_string instead to print out
4284 the addresses; that makes sense to me, too. */
4285
4286 if (gdbarch_addr_bit (target_gdbarch) == 32)
4287 {
4288 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4289 (unsigned long) addr, /* FIXME: pr_addr */
4290 (unsigned long) endaddr,
4291 (int) size,
4292 (unsigned int) offset,
4293 filename[0] ? filename : "");
4294 }
4295 else
4296 {
4297 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4298 (unsigned long) addr, /* FIXME: pr_addr */
4299 (unsigned long) endaddr,
4300 (int) size,
4301 (unsigned int) offset,
4302 filename[0] ? filename : "");
4303 }
4304 }
4305
4306 do_cleanups (cleanup);
4307 }
4308 else
4309 warning (_("unable to open /proc file '%s'"), fname1);
4310 }
4311 if (status_f || all)
4312 {
4313 sprintf (fname1, "/proc/%ld/status", pid);
4314 if ((procfile = fopen (fname1, "r")) != NULL)
4315 {
4316 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4317 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4318 puts_filtered (buffer);
4319 do_cleanups (cleanup);
4320 }
4321 else
4322 warning (_("unable to open /proc file '%s'"), fname1);
4323 }
4324 if (stat_f || all)
4325 {
4326 sprintf (fname1, "/proc/%ld/stat", pid);
4327 if ((procfile = fopen (fname1, "r")) != NULL)
4328 {
4329 int itmp;
4330 char ctmp;
4331 long ltmp;
4332 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4333
4334 if (fscanf (procfile, "%d ", &itmp) > 0)
4335 printf_filtered (_("Process: %d\n"), itmp);
4336 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4337 printf_filtered (_("Exec file: %s\n"), buffer);
4338 if (fscanf (procfile, "%c ", &ctmp) > 0)
4339 printf_filtered (_("State: %c\n"), ctmp);
4340 if (fscanf (procfile, "%d ", &itmp) > 0)
4341 printf_filtered (_("Parent process: %d\n"), itmp);
4342 if (fscanf (procfile, "%d ", &itmp) > 0)
4343 printf_filtered (_("Process group: %d\n"), itmp);
4344 if (fscanf (procfile, "%d ", &itmp) > 0)
4345 printf_filtered (_("Session id: %d\n"), itmp);
4346 if (fscanf (procfile, "%d ", &itmp) > 0)
4347 printf_filtered (_("TTY: %d\n"), itmp);
4348 if (fscanf (procfile, "%d ", &itmp) > 0)
4349 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4350 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4351 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4352 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4353 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4354 (unsigned long) ltmp);
4355 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4356 printf_filtered (_("Minor faults, children: %lu\n"),
4357 (unsigned long) ltmp);
4358 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4359 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4360 (unsigned long) ltmp);
4361 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4362 printf_filtered (_("Major faults, children: %lu\n"),
4363 (unsigned long) ltmp);
4364 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4365 printf_filtered (_("utime: %ld\n"), ltmp);
4366 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4367 printf_filtered (_("stime: %ld\n"), ltmp);
4368 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4369 printf_filtered (_("utime, children: %ld\n"), ltmp);
4370 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4371 printf_filtered (_("stime, children: %ld\n"), ltmp);
4372 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4373 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4374 ltmp);
4375 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4376 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4377 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4378 printf_filtered (_("jiffies until next timeout: %lu\n"),
4379 (unsigned long) ltmp);
4380 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4381 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4382 (unsigned long) ltmp);
4383 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4384 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4385 ltmp);
4386 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4387 printf_filtered (_("Virtual memory size: %lu\n"),
4388 (unsigned long) ltmp);
4389 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4390 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4391 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4392 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4393 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4394 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4395 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4396 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4397 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4398 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4399 #if 0 /* Don't know how architecture-dependent the rest is...
4400 Anyway the signal bitmap info is available from "status". */
4401 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4402 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4403 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4404 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4405 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4406 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4407 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4408 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4409 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4410 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4411 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4412 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4413 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4414 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4415 #endif
4416 do_cleanups (cleanup);
4417 }
4418 else
4419 warning (_("unable to open /proc file '%s'"), fname1);
4420 }
4421 }
4422
4423 /* Implement the to_xfer_partial interface for memory reads using the /proc
4424 filesystem. Because we can use a single read() call for /proc, this
4425 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4426 but it doesn't support writes. */
4427
4428 static LONGEST
4429 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4430 const char *annex, gdb_byte *readbuf,
4431 const gdb_byte *writebuf,
4432 ULONGEST offset, LONGEST len)
4433 {
4434 LONGEST ret;
4435 int fd;
4436 char filename[64];
4437
4438 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4439 return 0;
4440
4441 /* Don't bother for one word. */
4442 if (len < 3 * sizeof (long))
4443 return 0;
4444
4445 /* We could keep this file open and cache it - possibly one per
4446 thread. That requires some juggling, but is even faster. */
4447 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4448 fd = open (filename, O_RDONLY | O_LARGEFILE);
4449 if (fd == -1)
4450 return 0;
4451
4452 /* If pread64 is available, use it. It's faster if the kernel
4453 supports it (only one syscall), and it's 64-bit safe even on
4454 32-bit platforms (for instance, SPARC debugging a SPARC64
4455 application). */
4456 #ifdef HAVE_PREAD64
4457 if (pread64 (fd, readbuf, len, offset) != len)
4458 #else
4459 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4460 #endif
4461 ret = 0;
4462 else
4463 ret = len;
4464
4465 close (fd);
4466 return ret;
4467 }
4468
4469
4470 /* Enumerate spufs IDs for process PID. */
4471 static LONGEST
4472 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4473 {
4474 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4475 LONGEST pos = 0;
4476 LONGEST written = 0;
4477 char path[128];
4478 DIR *dir;
4479 struct dirent *entry;
4480
4481 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4482 dir = opendir (path);
4483 if (!dir)
4484 return -1;
4485
4486 rewinddir (dir);
4487 while ((entry = readdir (dir)) != NULL)
4488 {
4489 struct stat st;
4490 struct statfs stfs;
4491 int fd;
4492
4493 fd = atoi (entry->d_name);
4494 if (!fd)
4495 continue;
4496
4497 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4498 if (stat (path, &st) != 0)
4499 continue;
4500 if (!S_ISDIR (st.st_mode))
4501 continue;
4502
4503 if (statfs (path, &stfs) != 0)
4504 continue;
4505 if (stfs.f_type != SPUFS_MAGIC)
4506 continue;
4507
4508 if (pos >= offset && pos + 4 <= offset + len)
4509 {
4510 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4511 written += 4;
4512 }
4513 pos += 4;
4514 }
4515
4516 closedir (dir);
4517 return written;
4518 }
4519
4520 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4521 object type, using the /proc file system. */
4522 static LONGEST
4523 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4524 const char *annex, gdb_byte *readbuf,
4525 const gdb_byte *writebuf,
4526 ULONGEST offset, LONGEST len)
4527 {
4528 char buf[128];
4529 int fd = 0;
4530 int ret = -1;
4531 int pid = PIDGET (inferior_ptid);
4532
4533 if (!annex)
4534 {
4535 if (!readbuf)
4536 return -1;
4537 else
4538 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4539 }
4540
4541 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4542 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4543 if (fd <= 0)
4544 return -1;
4545
4546 if (offset != 0
4547 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4548 {
4549 close (fd);
4550 return 0;
4551 }
4552
4553 if (writebuf)
4554 ret = write (fd, writebuf, (size_t) len);
4555 else if (readbuf)
4556 ret = read (fd, readbuf, (size_t) len);
4557
4558 close (fd);
4559 return ret;
4560 }
4561
4562
4563 /* Parse LINE as a signal set and add its set bits to SIGS. */
4564
4565 static void
4566 add_line_to_sigset (const char *line, sigset_t *sigs)
4567 {
4568 int len = strlen (line) - 1;
4569 const char *p;
4570 int signum;
4571
4572 if (line[len] != '\n')
4573 error (_("Could not parse signal set: %s"), line);
4574
4575 p = line;
4576 signum = len * 4;
4577 while (len-- > 0)
4578 {
4579 int digit;
4580
4581 if (*p >= '0' && *p <= '9')
4582 digit = *p - '0';
4583 else if (*p >= 'a' && *p <= 'f')
4584 digit = *p - 'a' + 10;
4585 else
4586 error (_("Could not parse signal set: %s"), line);
4587
4588 signum -= 4;
4589
4590 if (digit & 1)
4591 sigaddset (sigs, signum + 1);
4592 if (digit & 2)
4593 sigaddset (sigs, signum + 2);
4594 if (digit & 4)
4595 sigaddset (sigs, signum + 3);
4596 if (digit & 8)
4597 sigaddset (sigs, signum + 4);
4598
4599 p++;
4600 }
4601 }
4602
4603 /* Find process PID's pending signals from /proc/pid/status and set
4604 SIGS to match. */
4605
4606 void
4607 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4608 {
4609 FILE *procfile;
4610 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4611 int signum;
4612 struct cleanup *cleanup;
4613
4614 sigemptyset (pending);
4615 sigemptyset (blocked);
4616 sigemptyset (ignored);
4617 sprintf (fname, "/proc/%d/status", pid);
4618 procfile = fopen (fname, "r");
4619 if (procfile == NULL)
4620 error (_("Could not open %s"), fname);
4621 cleanup = make_cleanup_fclose (procfile);
4622
4623 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4624 {
4625 /* Normal queued signals are on the SigPnd line in the status
4626 file. However, 2.6 kernels also have a "shared" pending
4627 queue for delivering signals to a thread group, so check for
4628 a ShdPnd line also.
4629
4630 Unfortunately some Red Hat kernels include the shared pending
4631 queue but not the ShdPnd status field. */
4632
4633 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4634 add_line_to_sigset (buffer + 8, pending);
4635 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4636 add_line_to_sigset (buffer + 8, pending);
4637 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4638 add_line_to_sigset (buffer + 8, blocked);
4639 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4640 add_line_to_sigset (buffer + 8, ignored);
4641 }
4642
4643 do_cleanups (cleanup);
4644 }
4645
4646 static LONGEST
4647 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4648 const char *annex, gdb_byte *readbuf,
4649 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4650 {
4651 /* We make the process list snapshot when the object starts to be
4652 read. */
4653 static const char *buf;
4654 static LONGEST len_avail = -1;
4655 static struct obstack obstack;
4656
4657 DIR *dirp;
4658
4659 gdb_assert (object == TARGET_OBJECT_OSDATA);
4660
4661 if (strcmp (annex, "processes") != 0)
4662 return 0;
4663
4664 gdb_assert (readbuf && !writebuf);
4665
4666 if (offset == 0)
4667 {
4668 if (len_avail != -1 && len_avail != 0)
4669 obstack_free (&obstack, NULL);
4670 len_avail = 0;
4671 buf = NULL;
4672 obstack_init (&obstack);
4673 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4674
4675 dirp = opendir ("/proc");
4676 if (dirp)
4677 {
4678 struct dirent *dp;
4679 while ((dp = readdir (dirp)) != NULL)
4680 {
4681 struct stat statbuf;
4682 char procentry[sizeof ("/proc/4294967295")];
4683
4684 if (!isdigit (dp->d_name[0])
4685 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4686 continue;
4687
4688 sprintf (procentry, "/proc/%s", dp->d_name);
4689 if (stat (procentry, &statbuf) == 0
4690 && S_ISDIR (statbuf.st_mode))
4691 {
4692 char *pathname;
4693 FILE *f;
4694 char cmd[MAXPATHLEN + 1];
4695 struct passwd *entry;
4696
4697 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4698 entry = getpwuid (statbuf.st_uid);
4699
4700 if ((f = fopen (pathname, "r")) != NULL)
4701 {
4702 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4703 if (len > 0)
4704 {
4705 int i;
4706 for (i = 0; i < len; i++)
4707 if (cmd[i] == '\0')
4708 cmd[i] = ' ';
4709 cmd[len] = '\0';
4710
4711 obstack_xml_printf (
4712 &obstack,
4713 "<item>"
4714 "<column name=\"pid\">%s</column>"
4715 "<column name=\"user\">%s</column>"
4716 "<column name=\"command\">%s</column>"
4717 "</item>",
4718 dp->d_name,
4719 entry ? entry->pw_name : "?",
4720 cmd);
4721 }
4722 fclose (f);
4723 }
4724
4725 xfree (pathname);
4726 }
4727 }
4728
4729 closedir (dirp);
4730 }
4731
4732 obstack_grow_str0 (&obstack, "</osdata>\n");
4733 buf = obstack_finish (&obstack);
4734 len_avail = strlen (buf);
4735 }
4736
4737 if (offset >= len_avail)
4738 {
4739 /* Done. Get rid of the obstack. */
4740 obstack_free (&obstack, NULL);
4741 buf = NULL;
4742 len_avail = 0;
4743 return 0;
4744 }
4745
4746 if (len > len_avail - offset)
4747 len = len_avail - offset;
4748 memcpy (readbuf, buf + offset, len);
4749
4750 return len;
4751 }
4752
4753 static LONGEST
4754 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4755 const char *annex, gdb_byte *readbuf,
4756 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4757 {
4758 LONGEST xfer;
4759
4760 if (object == TARGET_OBJECT_AUXV)
4761 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4762 offset, len);
4763
4764 if (object == TARGET_OBJECT_OSDATA)
4765 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4766 offset, len);
4767
4768 if (object == TARGET_OBJECT_SPU)
4769 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4770 offset, len);
4771
4772 /* GDB calculates all the addresses in possibly larget width of the address.
4773 Address width needs to be masked before its final use - either by
4774 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4775
4776 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4777
4778 if (object == TARGET_OBJECT_MEMORY)
4779 {
4780 int addr_bit = gdbarch_addr_bit (target_gdbarch);
4781
4782 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4783 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4784 }
4785
4786 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4787 offset, len);
4788 if (xfer != 0)
4789 return xfer;
4790
4791 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4792 offset, len);
4793 }
4794
4795 /* Create a prototype generic GNU/Linux target. The client can override
4796 it with local methods. */
4797
4798 static void
4799 linux_target_install_ops (struct target_ops *t)
4800 {
4801 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4802 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4803 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4804 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4805 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4806 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4807 t->to_post_attach = linux_child_post_attach;
4808 t->to_follow_fork = linux_child_follow_fork;
4809 t->to_find_memory_regions = linux_nat_find_memory_regions;
4810 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4811
4812 super_xfer_partial = t->to_xfer_partial;
4813 t->to_xfer_partial = linux_xfer_partial;
4814 }
4815
4816 struct target_ops *
4817 linux_target (void)
4818 {
4819 struct target_ops *t;
4820
4821 t = inf_ptrace_target ();
4822 linux_target_install_ops (t);
4823
4824 return t;
4825 }
4826
4827 struct target_ops *
4828 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4829 {
4830 struct target_ops *t;
4831
4832 t = inf_ptrace_trad_target (register_u_offset);
4833 linux_target_install_ops (t);
4834
4835 return t;
4836 }
4837
4838 /* target_is_async_p implementation. */
4839
4840 static int
4841 linux_nat_is_async_p (void)
4842 {
4843 /* NOTE: palves 2008-03-21: We're only async when the user requests
4844 it explicitly with the "set target-async" command.
4845 Someday, linux will always be async. */
4846 if (!target_async_permitted)
4847 return 0;
4848
4849 /* See target.h/target_async_mask. */
4850 return linux_nat_async_mask_value;
4851 }
4852
4853 /* target_can_async_p implementation. */
4854
4855 static int
4856 linux_nat_can_async_p (void)
4857 {
4858 /* NOTE: palves 2008-03-21: We're only async when the user requests
4859 it explicitly with the "set target-async" command.
4860 Someday, linux will always be async. */
4861 if (!target_async_permitted)
4862 return 0;
4863
4864 /* See target.h/target_async_mask. */
4865 return linux_nat_async_mask_value;
4866 }
4867
4868 static int
4869 linux_nat_supports_non_stop (void)
4870 {
4871 return 1;
4872 }
4873
4874 /* True if we want to support multi-process. To be removed when GDB
4875 supports multi-exec. */
4876
4877 int linux_multi_process = 1;
4878
4879 static int
4880 linux_nat_supports_multi_process (void)
4881 {
4882 return linux_multi_process;
4883 }
4884
4885 /* target_async_mask implementation. */
4886
4887 static int
4888 linux_nat_async_mask (int new_mask)
4889 {
4890 int curr_mask = linux_nat_async_mask_value;
4891
4892 if (curr_mask != new_mask)
4893 {
4894 if (new_mask == 0)
4895 {
4896 linux_nat_async (NULL, 0);
4897 linux_nat_async_mask_value = new_mask;
4898 }
4899 else
4900 {
4901 linux_nat_async_mask_value = new_mask;
4902
4903 /* If we're going out of async-mask in all-stop, then the
4904 inferior is stopped. The next resume will call
4905 target_async. In non-stop, the target event source
4906 should be always registered in the event loop. Do so
4907 now. */
4908 if (non_stop)
4909 linux_nat_async (inferior_event_handler, 0);
4910 }
4911 }
4912
4913 return curr_mask;
4914 }
4915
4916 static int async_terminal_is_ours = 1;
4917
4918 /* target_terminal_inferior implementation. */
4919
4920 static void
4921 linux_nat_terminal_inferior (void)
4922 {
4923 if (!target_is_async_p ())
4924 {
4925 /* Async mode is disabled. */
4926 terminal_inferior ();
4927 return;
4928 }
4929
4930 terminal_inferior ();
4931
4932 /* Calls to target_terminal_*() are meant to be idempotent. */
4933 if (!async_terminal_is_ours)
4934 return;
4935
4936 delete_file_handler (input_fd);
4937 async_terminal_is_ours = 0;
4938 set_sigint_trap ();
4939 }
4940
4941 /* target_terminal_ours implementation. */
4942
4943 static void
4944 linux_nat_terminal_ours (void)
4945 {
4946 if (!target_is_async_p ())
4947 {
4948 /* Async mode is disabled. */
4949 terminal_ours ();
4950 return;
4951 }
4952
4953 /* GDB should never give the terminal to the inferior if the
4954 inferior is running in the background (run&, continue&, etc.),
4955 but claiming it sure should. */
4956 terminal_ours ();
4957
4958 if (async_terminal_is_ours)
4959 return;
4960
4961 clear_sigint_trap ();
4962 add_file_handler (input_fd, stdin_event_handler, 0);
4963 async_terminal_is_ours = 1;
4964 }
4965
4966 static void (*async_client_callback) (enum inferior_event_type event_type,
4967 void *context);
4968 static void *async_client_context;
4969
4970 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4971 so we notice when any child changes state, and notify the
4972 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4973 above to wait for the arrival of a SIGCHLD. */
4974
4975 static void
4976 sigchld_handler (int signo)
4977 {
4978 int old_errno = errno;
4979
4980 if (debug_linux_nat_async)
4981 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
4982
4983 if (signo == SIGCHLD
4984 && linux_nat_event_pipe[0] != -1)
4985 async_file_mark (); /* Let the event loop know that there are
4986 events to handle. */
4987
4988 errno = old_errno;
4989 }
4990
4991 /* Callback registered with the target events file descriptor. */
4992
4993 static void
4994 handle_target_event (int error, gdb_client_data client_data)
4995 {
4996 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4997 }
4998
4999 /* Create/destroy the target events pipe. Returns previous state. */
5000
5001 static int
5002 linux_async_pipe (int enable)
5003 {
5004 int previous = (linux_nat_event_pipe[0] != -1);
5005
5006 if (previous != enable)
5007 {
5008 sigset_t prev_mask;
5009
5010 block_child_signals (&prev_mask);
5011
5012 if (enable)
5013 {
5014 if (pipe (linux_nat_event_pipe) == -1)
5015 internal_error (__FILE__, __LINE__,
5016 "creating event pipe failed.");
5017
5018 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5019 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5020 }
5021 else
5022 {
5023 close (linux_nat_event_pipe[0]);
5024 close (linux_nat_event_pipe[1]);
5025 linux_nat_event_pipe[0] = -1;
5026 linux_nat_event_pipe[1] = -1;
5027 }
5028
5029 restore_child_signals_mask (&prev_mask);
5030 }
5031
5032 return previous;
5033 }
5034
5035 /* target_async implementation. */
5036
5037 static void
5038 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5039 void *context), void *context)
5040 {
5041 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5042 internal_error (__FILE__, __LINE__,
5043 "Calling target_async when async is masked");
5044
5045 if (callback != NULL)
5046 {
5047 async_client_callback = callback;
5048 async_client_context = context;
5049 if (!linux_async_pipe (1))
5050 {
5051 add_file_handler (linux_nat_event_pipe[0],
5052 handle_target_event, NULL);
5053 /* There may be pending events to handle. Tell the event loop
5054 to poll them. */
5055 async_file_mark ();
5056 }
5057 }
5058 else
5059 {
5060 async_client_callback = callback;
5061 async_client_context = context;
5062 delete_file_handler (linux_nat_event_pipe[0]);
5063 linux_async_pipe (0);
5064 }
5065 return;
5066 }
5067
5068 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5069 event came out. */
5070
5071 static int
5072 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5073 {
5074 if (!lwp->stopped)
5075 {
5076 int pid, status;
5077 ptid_t ptid = lwp->ptid;
5078
5079 if (debug_linux_nat)
5080 fprintf_unfiltered (gdb_stdlog,
5081 "LNSL: running -> suspending %s\n",
5082 target_pid_to_str (lwp->ptid));
5083
5084
5085 stop_callback (lwp, NULL);
5086 stop_wait_callback (lwp, NULL);
5087
5088 /* If the lwp exits while we try to stop it, there's nothing
5089 else to do. */
5090 lwp = find_lwp_pid (ptid);
5091 if (lwp == NULL)
5092 return 0;
5093
5094 /* If we didn't collect any signal other than SIGSTOP while
5095 stopping the LWP, push a SIGNAL_0 event. In either case, the
5096 event-loop will end up calling target_wait which will collect
5097 these. */
5098 if (lwp->status == 0)
5099 lwp->status = W_STOPCODE (0);
5100 async_file_mark ();
5101 }
5102 else
5103 {
5104 /* Already known to be stopped; do nothing. */
5105
5106 if (debug_linux_nat)
5107 {
5108 if (find_thread_ptid (lwp->ptid)->stop_requested)
5109 fprintf_unfiltered (gdb_stdlog, "\
5110 LNSL: already stopped/stop_requested %s\n",
5111 target_pid_to_str (lwp->ptid));
5112 else
5113 fprintf_unfiltered (gdb_stdlog, "\
5114 LNSL: already stopped/no stop_requested yet %s\n",
5115 target_pid_to_str (lwp->ptid));
5116 }
5117 }
5118 return 0;
5119 }
5120
5121 static void
5122 linux_nat_stop (ptid_t ptid)
5123 {
5124 if (non_stop)
5125 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5126 else
5127 linux_ops->to_stop (ptid);
5128 }
5129
5130 static void
5131 linux_nat_close (int quitting)
5132 {
5133 /* Unregister from the event loop. */
5134 if (target_is_async_p ())
5135 target_async (NULL, 0);
5136
5137 /* Reset the async_masking. */
5138 linux_nat_async_mask_value = 1;
5139
5140 if (linux_ops->to_close)
5141 linux_ops->to_close (quitting);
5142 }
5143
5144 void
5145 linux_nat_add_target (struct target_ops *t)
5146 {
5147 /* Save the provided single-threaded target. We save this in a separate
5148 variable because another target we've inherited from (e.g. inf-ptrace)
5149 may have saved a pointer to T; we want to use it for the final
5150 process stratum target. */
5151 linux_ops_saved = *t;
5152 linux_ops = &linux_ops_saved;
5153
5154 /* Override some methods for multithreading. */
5155 t->to_create_inferior = linux_nat_create_inferior;
5156 t->to_attach = linux_nat_attach;
5157 t->to_detach = linux_nat_detach;
5158 t->to_resume = linux_nat_resume;
5159 t->to_wait = linux_nat_wait;
5160 t->to_xfer_partial = linux_nat_xfer_partial;
5161 t->to_kill = linux_nat_kill;
5162 t->to_mourn_inferior = linux_nat_mourn_inferior;
5163 t->to_thread_alive = linux_nat_thread_alive;
5164 t->to_pid_to_str = linux_nat_pid_to_str;
5165 t->to_has_thread_control = tc_schedlock;
5166
5167 t->to_can_async_p = linux_nat_can_async_p;
5168 t->to_is_async_p = linux_nat_is_async_p;
5169 t->to_supports_non_stop = linux_nat_supports_non_stop;
5170 t->to_async = linux_nat_async;
5171 t->to_async_mask = linux_nat_async_mask;
5172 t->to_terminal_inferior = linux_nat_terminal_inferior;
5173 t->to_terminal_ours = linux_nat_terminal_ours;
5174 t->to_close = linux_nat_close;
5175
5176 /* Methods for non-stop support. */
5177 t->to_stop = linux_nat_stop;
5178
5179 t->to_supports_multi_process = linux_nat_supports_multi_process;
5180
5181 /* We don't change the stratum; this target will sit at
5182 process_stratum and thread_db will set at thread_stratum. This
5183 is a little strange, since this is a multi-threaded-capable
5184 target, but we want to be on the stack below thread_db, and we
5185 also want to be used for single-threaded processes. */
5186
5187 add_target (t);
5188 }
5189
5190 /* Register a method to call whenever a new thread is attached. */
5191 void
5192 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5193 {
5194 /* Save the pointer. We only support a single registered instance
5195 of the GNU/Linux native target, so we do not need to map this to
5196 T. */
5197 linux_nat_new_thread = new_thread;
5198 }
5199
5200 /* Register a method that converts a siginfo object between the layout
5201 that ptrace returns, and the layout in the architecture of the
5202 inferior. */
5203 void
5204 linux_nat_set_siginfo_fixup (struct target_ops *t,
5205 int (*siginfo_fixup) (struct siginfo *,
5206 gdb_byte *,
5207 int))
5208 {
5209 /* Save the pointer. */
5210 linux_nat_siginfo_fixup = siginfo_fixup;
5211 }
5212
5213 /* Return the saved siginfo associated with PTID. */
5214 struct siginfo *
5215 linux_nat_get_siginfo (ptid_t ptid)
5216 {
5217 struct lwp_info *lp = find_lwp_pid (ptid);
5218
5219 gdb_assert (lp != NULL);
5220
5221 return &lp->siginfo;
5222 }
5223
5224 /* Provide a prototype to silence -Wmissing-prototypes. */
5225 extern initialize_file_ftype _initialize_linux_nat;
5226
5227 void
5228 _initialize_linux_nat (void)
5229 {
5230 sigset_t mask;
5231
5232 add_info ("proc", linux_nat_info_proc_cmd, _("\
5233 Show /proc process information about any running process.\n\
5234 Specify any process id, or use the program being debugged by default.\n\
5235 Specify any of the following keywords for detailed info:\n\
5236 mappings -- list of mapped memory regions.\n\
5237 stat -- list a bunch of random process info.\n\
5238 status -- list a different bunch of random process info.\n\
5239 all -- list all available /proc info."));
5240
5241 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5242 &debug_linux_nat, _("\
5243 Set debugging of GNU/Linux lwp module."), _("\
5244 Show debugging of GNU/Linux lwp module."), _("\
5245 Enables printf debugging output."),
5246 NULL,
5247 show_debug_linux_nat,
5248 &setdebuglist, &showdebuglist);
5249
5250 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5251 &debug_linux_nat_async, _("\
5252 Set debugging of GNU/Linux async lwp module."), _("\
5253 Show debugging of GNU/Linux async lwp module."), _("\
5254 Enables printf debugging output."),
5255 NULL,
5256 show_debug_linux_nat_async,
5257 &setdebuglist, &showdebuglist);
5258
5259 /* Save this mask as the default. */
5260 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5261
5262 /* Install a SIGCHLD handler. */
5263 sigchld_action.sa_handler = sigchld_handler;
5264 sigemptyset (&sigchld_action.sa_mask);
5265 sigchld_action.sa_flags = SA_RESTART;
5266
5267 /* Make it the default. */
5268 sigaction (SIGCHLD, &sigchld_action, NULL);
5269
5270 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5271 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5272 sigdelset (&suspend_mask, SIGCHLD);
5273
5274 sigemptyset (&blocked_mask);
5275
5276 add_setshow_boolean_cmd ("disable-randomization", class_support,
5277 &disable_randomization, _("\
5278 Set disabling of debuggee's virtual address space randomization."), _("\
5279 Show disabling of debuggee's virtual address space randomization."), _("\
5280 When this mode is on (which is the default), randomization of the virtual\n\
5281 address space is disabled. Standalone programs run with the randomization\n\
5282 enabled by default on some platforms."),
5283 &set_disable_randomization,
5284 &show_disable_randomization,
5285 &setlist, &showlist);
5286 }
5287 \f
5288
5289 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5290 the GNU/Linux Threads library and therefore doesn't really belong
5291 here. */
5292
5293 /* Read variable NAME in the target and return its value if found.
5294 Otherwise return zero. It is assumed that the type of the variable
5295 is `int'. */
5296
5297 static int
5298 get_signo (const char *name)
5299 {
5300 struct minimal_symbol *ms;
5301 int signo;
5302
5303 ms = lookup_minimal_symbol (name, NULL, NULL);
5304 if (ms == NULL)
5305 return 0;
5306
5307 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5308 sizeof (signo)) != 0)
5309 return 0;
5310
5311 return signo;
5312 }
5313
5314 /* Return the set of signals used by the threads library in *SET. */
5315
5316 void
5317 lin_thread_get_thread_signals (sigset_t *set)
5318 {
5319 struct sigaction action;
5320 int restart, cancel;
5321
5322 sigemptyset (&blocked_mask);
5323 sigemptyset (set);
5324
5325 restart = get_signo ("__pthread_sig_restart");
5326 cancel = get_signo ("__pthread_sig_cancel");
5327
5328 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5329 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5330 not provide any way for the debugger to query the signal numbers -
5331 fortunately they don't change! */
5332
5333 if (restart == 0)
5334 restart = __SIGRTMIN;
5335
5336 if (cancel == 0)
5337 cancel = __SIGRTMIN + 1;
5338
5339 sigaddset (set, restart);
5340 sigaddset (set, cancel);
5341
5342 /* The GNU/Linux Threads library makes terminating threads send a
5343 special "cancel" signal instead of SIGCHLD. Make sure we catch
5344 those (to prevent them from terminating GDB itself, which is
5345 likely to be their default action) and treat them the same way as
5346 SIGCHLD. */
5347
5348 action.sa_handler = sigchld_handler;
5349 sigemptyset (&action.sa_mask);
5350 action.sa_flags = SA_RESTART;
5351 sigaction (cancel, &action, NULL);
5352
5353 /* We block the "cancel" signal throughout this code ... */
5354 sigaddset (&blocked_mask, cancel);
5355 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5356
5357 /* ... except during a sigsuspend. */
5358 sigdelset (&suspend_mask, cancel);
5359 }
This page took 0.16101 seconds and 4 git commands to generate.