Fix missing-prototypes error for '_initialize_spu_nat'
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include <string.h>
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include "gdbthread.h" /* for struct thread_info etc. */
50 #include <sys/stat.h> /* for struct stat */
51 #include <fcntl.h> /* for O_RDONLY */
52 #include "inf-loop.h"
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include <pwd.h>
56 #include <sys/types.h>
57 #include <dirent.h>
58 #include "xml-support.h"
59 #include "terminal.h"
60 #include <sys/vfs.h>
61 #include "solib.h"
62 #include "linux-osdata.h"
63 #include "linux-tdep.h"
64 #include "symfile.h"
65 #include "agent.h"
66 #include "tracepoint.h"
67 #include "exceptions.h"
68 #include "linux-ptrace.h"
69 #include "buffer.h"
70 #include "target-descriptions.h"
71 #include "filestuff.h"
72
73 #ifndef SPUFS_MAGIC
74 #define SPUFS_MAGIC 0x23c9b64e
75 #endif
76
77 #ifdef HAVE_PERSONALITY
78 # include <sys/personality.h>
79 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
80 # define ADDR_NO_RANDOMIZE 0x0040000
81 # endif
82 #endif /* HAVE_PERSONALITY */
83
84 /* This comment documents high-level logic of this file.
85
86 Waiting for events in sync mode
87 ===============================
88
89 When waiting for an event in a specific thread, we just use waitpid, passing
90 the specific pid, and not passing WNOHANG.
91
92 When waiting for an event in all threads, waitpid is not quite good. Prior to
93 version 2.4, Linux can either wait for event in main thread, or in secondary
94 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
95 miss an event. The solution is to use non-blocking waitpid, together with
96 sigsuspend. First, we use non-blocking waitpid to get an event in the main
97 process, if any. Second, we use non-blocking waitpid with the __WCLONED
98 flag to check for events in cloned processes. If nothing is found, we use
99 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
100 happened to a child process -- and SIGCHLD will be delivered both for events
101 in main debugged process and in cloned processes. As soon as we know there's
102 an event, we get back to calling nonblocking waitpid with and without
103 __WCLONED.
104
105 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
106 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
107 blocked, the signal becomes pending and sigsuspend immediately
108 notices it and returns.
109
110 Waiting for events in async mode
111 ================================
112
113 In async mode, GDB should always be ready to handle both user input
114 and target events, so neither blocking waitpid nor sigsuspend are
115 viable options. Instead, we should asynchronously notify the GDB main
116 event loop whenever there's an unprocessed event from the target. We
117 detect asynchronous target events by handling SIGCHLD signals. To
118 notify the event loop about target events, the self-pipe trick is used
119 --- a pipe is registered as waitable event source in the event loop,
120 the event loop select/poll's on the read end of this pipe (as well on
121 other event sources, e.g., stdin), and the SIGCHLD handler writes a
122 byte to this pipe. This is more portable than relying on
123 pselect/ppoll, since on kernels that lack those syscalls, libc
124 emulates them with select/poll+sigprocmask, and that is racy
125 (a.k.a. plain broken).
126
127 Obviously, if we fail to notify the event loop if there's a target
128 event, it's bad. OTOH, if we notify the event loop when there's no
129 event from the target, linux_nat_wait will detect that there's no real
130 event to report, and return event of type TARGET_WAITKIND_IGNORE.
131 This is mostly harmless, but it will waste time and is better avoided.
132
133 The main design point is that every time GDB is outside linux-nat.c,
134 we have a SIGCHLD handler installed that is called when something
135 happens to the target and notifies the GDB event loop. Whenever GDB
136 core decides to handle the event, and calls into linux-nat.c, we
137 process things as in sync mode, except that the we never block in
138 sigsuspend.
139
140 While processing an event, we may end up momentarily blocked in
141 waitpid calls. Those waitpid calls, while blocking, are guarantied to
142 return quickly. E.g., in all-stop mode, before reporting to the core
143 that an LWP hit a breakpoint, all LWPs are stopped by sending them
144 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
145 Note that this is different from blocking indefinitely waiting for the
146 next event --- here, we're already handling an event.
147
148 Use of signals
149 ==============
150
151 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
152 signal is not entirely significant; we just need for a signal to be delivered,
153 so that we can intercept it. SIGSTOP's advantage is that it can not be
154 blocked. A disadvantage is that it is not a real-time signal, so it can only
155 be queued once; we do not keep track of other sources of SIGSTOP.
156
157 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
158 use them, because they have special behavior when the signal is generated -
159 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
160 kills the entire thread group.
161
162 A delivered SIGSTOP would stop the entire thread group, not just the thread we
163 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
164 cancel it (by PTRACE_CONT without passing SIGSTOP).
165
166 We could use a real-time signal instead. This would solve those problems; we
167 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
168 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
169 generates it, and there are races with trying to find a signal that is not
170 blocked. */
171
172 #ifndef O_LARGEFILE
173 #define O_LARGEFILE 0
174 #endif
175
176 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
177 the use of the multi-threaded target. */
178 static struct target_ops *linux_ops;
179 static struct target_ops linux_ops_saved;
180
181 /* The method to call, if any, when a new thread is attached. */
182 static void (*linux_nat_new_thread) (struct lwp_info *);
183
184 /* The method to call, if any, when a new fork is attached. */
185 static linux_nat_new_fork_ftype *linux_nat_new_fork;
186
187 /* The method to call, if any, when a process is no longer
188 attached. */
189 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
190
191 /* Hook to call prior to resuming a thread. */
192 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
193
194 /* The method to call, if any, when the siginfo object needs to be
195 converted between the layout returned by ptrace, and the layout in
196 the architecture of the inferior. */
197 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
198 gdb_byte *,
199 int);
200
201 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
202 Called by our to_xfer_partial. */
203 static target_xfer_partial_ftype *super_xfer_partial;
204
205 static unsigned int debug_linux_nat;
206 static void
207 show_debug_linux_nat (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
211 value);
212 }
213
214 struct simple_pid_list
215 {
216 int pid;
217 int status;
218 struct simple_pid_list *next;
219 };
220 struct simple_pid_list *stopped_pids;
221
222 /* Async mode support. */
223
224 /* The read/write ends of the pipe registered as waitable file in the
225 event loop. */
226 static int linux_nat_event_pipe[2] = { -1, -1 };
227
228 /* Flush the event pipe. */
229
230 static void
231 async_file_flush (void)
232 {
233 int ret;
234 char buf;
235
236 do
237 {
238 ret = read (linux_nat_event_pipe[0], &buf, 1);
239 }
240 while (ret >= 0 || (ret == -1 && errno == EINTR));
241 }
242
243 /* Put something (anything, doesn't matter what, or how much) in event
244 pipe, so that the select/poll in the event-loop realizes we have
245 something to process. */
246
247 static void
248 async_file_mark (void)
249 {
250 int ret;
251
252 /* It doesn't really matter what the pipe contains, as long we end
253 up with something in it. Might as well flush the previous
254 left-overs. */
255 async_file_flush ();
256
257 do
258 {
259 ret = write (linux_nat_event_pipe[1], "+", 1);
260 }
261 while (ret == -1 && errno == EINTR);
262
263 /* Ignore EAGAIN. If the pipe is full, the event loop will already
264 be awakened anyway. */
265 }
266
267 static void linux_nat_async (void (*callback)
268 (enum inferior_event_type event_type,
269 void *context),
270 void *context);
271 static int kill_lwp (int lwpid, int signo);
272
273 static int stop_callback (struct lwp_info *lp, void *data);
274
275 static void block_child_signals (sigset_t *prev_mask);
276 static void restore_child_signals_mask (sigset_t *prev_mask);
277
278 struct lwp_info;
279 static struct lwp_info *add_lwp (ptid_t ptid);
280 static void purge_lwp_list (int pid);
281 static void delete_lwp (ptid_t ptid);
282 static struct lwp_info *find_lwp_pid (ptid_t ptid);
283
284 \f
285 /* Trivial list manipulation functions to keep track of a list of
286 new stopped processes. */
287 static void
288 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
289 {
290 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
291
292 new_pid->pid = pid;
293 new_pid->status = status;
294 new_pid->next = *listp;
295 *listp = new_pid;
296 }
297
298 static int
299 in_pid_list_p (struct simple_pid_list *list, int pid)
300 {
301 struct simple_pid_list *p;
302
303 for (p = list; p != NULL; p = p->next)
304 if (p->pid == pid)
305 return 1;
306 return 0;
307 }
308
309 static int
310 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
311 {
312 struct simple_pid_list **p;
313
314 for (p = listp; *p != NULL; p = &(*p)->next)
315 if ((*p)->pid == pid)
316 {
317 struct simple_pid_list *next = (*p)->next;
318
319 *statusp = (*p)->status;
320 xfree (*p);
321 *p = next;
322 return 1;
323 }
324 return 0;
325 }
326
327 /* Initialize ptrace warnings and check for supported ptrace
328 features given PID. */
329
330 static void
331 linux_init_ptrace (pid_t pid)
332 {
333 linux_enable_event_reporting (pid);
334 linux_ptrace_init_warnings ();
335 }
336
337 static void
338 linux_child_post_attach (int pid)
339 {
340 linux_init_ptrace (pid);
341 }
342
343 static void
344 linux_child_post_startup_inferior (ptid_t ptid)
345 {
346 linux_init_ptrace (ptid_get_pid (ptid));
347 }
348
349 /* Return the number of known LWPs in the tgid given by PID. */
350
351 static int
352 num_lwps (int pid)
353 {
354 int count = 0;
355 struct lwp_info *lp;
356
357 for (lp = lwp_list; lp; lp = lp->next)
358 if (ptid_get_pid (lp->ptid) == pid)
359 count++;
360
361 return count;
362 }
363
364 /* Call delete_lwp with prototype compatible for make_cleanup. */
365
366 static void
367 delete_lwp_cleanup (void *lp_voidp)
368 {
369 struct lwp_info *lp = lp_voidp;
370
371 delete_lwp (lp->ptid);
372 }
373
374 static int
375 linux_child_follow_fork (struct target_ops *ops, int follow_child,
376 int detach_fork)
377 {
378 int has_vforked;
379 int parent_pid, child_pid;
380
381 has_vforked = (inferior_thread ()->pending_follow.kind
382 == TARGET_WAITKIND_VFORKED);
383 parent_pid = ptid_get_lwp (inferior_ptid);
384 if (parent_pid == 0)
385 parent_pid = ptid_get_pid (inferior_ptid);
386 child_pid
387 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
388
389 if (has_vforked
390 && !non_stop /* Non-stop always resumes both branches. */
391 && (!target_is_async_p () || sync_execution)
392 && !(follow_child || detach_fork || sched_multi))
393 {
394 /* The parent stays blocked inside the vfork syscall until the
395 child execs or exits. If we don't let the child run, then
396 the parent stays blocked. If we're telling the parent to run
397 in the foreground, the user will not be able to ctrl-c to get
398 back the terminal, effectively hanging the debug session. */
399 fprintf_filtered (gdb_stderr, _("\
400 Can not resume the parent process over vfork in the foreground while\n\
401 holding the child stopped. Try \"set detach-on-fork\" or \
402 \"set schedule-multiple\".\n"));
403 /* FIXME output string > 80 columns. */
404 return 1;
405 }
406
407 if (! follow_child)
408 {
409 struct lwp_info *child_lp = NULL;
410
411 /* We're already attached to the parent, by default. */
412
413 /* Detach new forked process? */
414 if (detach_fork)
415 {
416 struct cleanup *old_chain;
417
418 /* Before detaching from the child, remove all breakpoints
419 from it. If we forked, then this has already been taken
420 care of by infrun.c. If we vforked however, any
421 breakpoint inserted in the parent is visible in the
422 child, even those added while stopped in a vfork
423 catchpoint. This will remove the breakpoints from the
424 parent also, but they'll be reinserted below. */
425 if (has_vforked)
426 {
427 /* keep breakpoints list in sync. */
428 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
429 }
430
431 if (info_verbose || debug_linux_nat)
432 {
433 target_terminal_ours ();
434 fprintf_filtered (gdb_stdlog,
435 "Detaching after fork from "
436 "child process %d.\n",
437 child_pid);
438 }
439
440 old_chain = save_inferior_ptid ();
441 inferior_ptid = ptid_build (child_pid, child_pid, 0);
442
443 child_lp = add_lwp (inferior_ptid);
444 child_lp->stopped = 1;
445 child_lp->last_resume_kind = resume_stop;
446 make_cleanup (delete_lwp_cleanup, child_lp);
447
448 if (linux_nat_prepare_to_resume != NULL)
449 linux_nat_prepare_to_resume (child_lp);
450 ptrace (PTRACE_DETACH, child_pid, 0, 0);
451
452 do_cleanups (old_chain);
453 }
454 else
455 {
456 struct inferior *parent_inf, *child_inf;
457 struct cleanup *old_chain;
458
459 /* Add process to GDB's tables. */
460 child_inf = add_inferior (child_pid);
461
462 parent_inf = current_inferior ();
463 child_inf->attach_flag = parent_inf->attach_flag;
464 copy_terminal_info (child_inf, parent_inf);
465 child_inf->gdbarch = parent_inf->gdbarch;
466 copy_inferior_target_desc_info (child_inf, parent_inf);
467
468 old_chain = save_inferior_ptid ();
469 save_current_program_space ();
470
471 inferior_ptid = ptid_build (child_pid, child_pid, 0);
472 add_thread (inferior_ptid);
473 child_lp = add_lwp (inferior_ptid);
474 child_lp->stopped = 1;
475 child_lp->last_resume_kind = resume_stop;
476 child_inf->symfile_flags = SYMFILE_NO_READ;
477
478 /* If this is a vfork child, then the address-space is
479 shared with the parent. */
480 if (has_vforked)
481 {
482 child_inf->pspace = parent_inf->pspace;
483 child_inf->aspace = parent_inf->aspace;
484
485 /* The parent will be frozen until the child is done
486 with the shared region. Keep track of the
487 parent. */
488 child_inf->vfork_parent = parent_inf;
489 child_inf->pending_detach = 0;
490 parent_inf->vfork_child = child_inf;
491 parent_inf->pending_detach = 0;
492 }
493 else
494 {
495 child_inf->aspace = new_address_space ();
496 child_inf->pspace = add_program_space (child_inf->aspace);
497 child_inf->removable = 1;
498 set_current_program_space (child_inf->pspace);
499 clone_program_space (child_inf->pspace, parent_inf->pspace);
500
501 /* Let the shared library layer (solib-svr4) learn about
502 this new process, relocate the cloned exec, pull in
503 shared libraries, and install the solib event
504 breakpoint. If a "cloned-VM" event was propagated
505 better throughout the core, this wouldn't be
506 required. */
507 solib_create_inferior_hook (0);
508 }
509
510 /* Let the thread_db layer learn about this new process. */
511 check_for_thread_db ();
512
513 do_cleanups (old_chain);
514 }
515
516 if (has_vforked)
517 {
518 struct lwp_info *parent_lp;
519 struct inferior *parent_inf;
520
521 parent_inf = current_inferior ();
522
523 /* If we detached from the child, then we have to be careful
524 to not insert breakpoints in the parent until the child
525 is done with the shared memory region. However, if we're
526 staying attached to the child, then we can and should
527 insert breakpoints, so that we can debug it. A
528 subsequent child exec or exit is enough to know when does
529 the child stops using the parent's address space. */
530 parent_inf->waiting_for_vfork_done = detach_fork;
531 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
532
533 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_can_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct inferior *parent_inf, *child_inf;
605 struct lwp_info *child_lp;
606 struct program_space *parent_pspace;
607
608 if (info_verbose || debug_linux_nat)
609 {
610 target_terminal_ours ();
611 if (has_vforked)
612 fprintf_filtered (gdb_stdlog,
613 _("Attaching after process %d "
614 "vfork to child process %d.\n"),
615 parent_pid, child_pid);
616 else
617 fprintf_filtered (gdb_stdlog,
618 _("Attaching after process %d "
619 "fork to child process %d.\n"),
620 parent_pid, child_pid);
621 }
622
623 /* Add the new inferior first, so that the target_detach below
624 doesn't unpush the target. */
625
626 child_inf = add_inferior (child_pid);
627
628 parent_inf = current_inferior ();
629 child_inf->attach_flag = parent_inf->attach_flag;
630 copy_terminal_info (child_inf, parent_inf);
631 child_inf->gdbarch = parent_inf->gdbarch;
632 copy_inferior_target_desc_info (child_inf, parent_inf);
633
634 parent_pspace = parent_inf->pspace;
635
636 /* If we're vforking, we want to hold on to the parent until the
637 child exits or execs. At child exec or exit time we can
638 remove the old breakpoints from the parent and detach or
639 resume debugging it. Otherwise, detach the parent now; we'll
640 want to reuse it's program/address spaces, but we can't set
641 them to the child before removing breakpoints from the
642 parent, otherwise, the breakpoints module could decide to
643 remove breakpoints from the wrong process (since they'd be
644 assigned to the same address space). */
645
646 if (has_vforked)
647 {
648 gdb_assert (child_inf->vfork_parent == NULL);
649 gdb_assert (parent_inf->vfork_child == NULL);
650 child_inf->vfork_parent = parent_inf;
651 child_inf->pending_detach = 0;
652 parent_inf->vfork_child = child_inf;
653 parent_inf->pending_detach = detach_fork;
654 parent_inf->waiting_for_vfork_done = 0;
655 }
656 else if (detach_fork)
657 target_detach (NULL, 0);
658
659 /* Note that the detach above makes PARENT_INF dangling. */
660
661 /* Add the child thread to the appropriate lists, and switch to
662 this new thread, before cloning the program space, and
663 informing the solib layer about this new process. */
664
665 inferior_ptid = ptid_build (child_pid, child_pid, 0);
666 add_thread (inferior_ptid);
667 child_lp = add_lwp (inferior_ptid);
668 child_lp->stopped = 1;
669 child_lp->last_resume_kind = resume_stop;
670
671 /* If this is a vfork child, then the address-space is shared
672 with the parent. If we detached from the parent, then we can
673 reuse the parent's program/address spaces. */
674 if (has_vforked || detach_fork)
675 {
676 child_inf->pspace = parent_pspace;
677 child_inf->aspace = child_inf->pspace->aspace;
678 }
679 else
680 {
681 child_inf->aspace = new_address_space ();
682 child_inf->pspace = add_program_space (child_inf->aspace);
683 child_inf->removable = 1;
684 child_inf->symfile_flags = SYMFILE_NO_READ;
685 set_current_program_space (child_inf->pspace);
686 clone_program_space (child_inf->pspace, parent_pspace);
687
688 /* Let the shared library layer (solib-svr4) learn about
689 this new process, relocate the cloned exec, pull in
690 shared libraries, and install the solib event breakpoint.
691 If a "cloned-VM" event was propagated better throughout
692 the core, this wouldn't be required. */
693 solib_create_inferior_hook (0);
694 }
695
696 /* Let the thread_db layer learn about this new process. */
697 check_for_thread_db ();
698 }
699
700 return 0;
701 }
702
703 \f
704 static int
705 linux_child_insert_fork_catchpoint (int pid)
706 {
707 return !linux_supports_tracefork ();
708 }
709
710 static int
711 linux_child_remove_fork_catchpoint (int pid)
712 {
713 return 0;
714 }
715
716 static int
717 linux_child_insert_vfork_catchpoint (int pid)
718 {
719 return !linux_supports_tracefork ();
720 }
721
722 static int
723 linux_child_remove_vfork_catchpoint (int pid)
724 {
725 return 0;
726 }
727
728 static int
729 linux_child_insert_exec_catchpoint (int pid)
730 {
731 return !linux_supports_tracefork ();
732 }
733
734 static int
735 linux_child_remove_exec_catchpoint (int pid)
736 {
737 return 0;
738 }
739
740 static int
741 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
742 int table_size, int *table)
743 {
744 if (!linux_supports_tracesysgood ())
745 return 1;
746
747 /* On GNU/Linux, we ignore the arguments. It means that we only
748 enable the syscall catchpoints, but do not disable them.
749
750 Also, we do not use the `table' information because we do not
751 filter system calls here. We let GDB do the logic for us. */
752 return 0;
753 }
754
755 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
756 are processes sharing the same VM space. A multi-threaded process
757 is basically a group of such processes. However, such a grouping
758 is almost entirely a user-space issue; the kernel doesn't enforce
759 such a grouping at all (this might change in the future). In
760 general, we'll rely on the threads library (i.e. the GNU/Linux
761 Threads library) to provide such a grouping.
762
763 It is perfectly well possible to write a multi-threaded application
764 without the assistance of a threads library, by using the clone
765 system call directly. This module should be able to give some
766 rudimentary support for debugging such applications if developers
767 specify the CLONE_PTRACE flag in the clone system call, and are
768 using the Linux kernel 2.4 or above.
769
770 Note that there are some peculiarities in GNU/Linux that affect
771 this code:
772
773 - In general one should specify the __WCLONE flag to waitpid in
774 order to make it report events for any of the cloned processes
775 (and leave it out for the initial process). However, if a cloned
776 process has exited the exit status is only reported if the
777 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
778 we cannot use it since GDB must work on older systems too.
779
780 - When a traced, cloned process exits and is waited for by the
781 debugger, the kernel reassigns it to the original parent and
782 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
783 library doesn't notice this, which leads to the "zombie problem":
784 When debugged a multi-threaded process that spawns a lot of
785 threads will run out of processes, even if the threads exit,
786 because the "zombies" stay around. */
787
788 /* List of known LWPs. */
789 struct lwp_info *lwp_list;
790 \f
791
792 /* Original signal mask. */
793 static sigset_t normal_mask;
794
795 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
796 _initialize_linux_nat. */
797 static sigset_t suspend_mask;
798
799 /* Signals to block to make that sigsuspend work. */
800 static sigset_t blocked_mask;
801
802 /* SIGCHLD action. */
803 struct sigaction sigchld_action;
804
805 /* Block child signals (SIGCHLD and linux threads signals), and store
806 the previous mask in PREV_MASK. */
807
808 static void
809 block_child_signals (sigset_t *prev_mask)
810 {
811 /* Make sure SIGCHLD is blocked. */
812 if (!sigismember (&blocked_mask, SIGCHLD))
813 sigaddset (&blocked_mask, SIGCHLD);
814
815 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
816 }
817
818 /* Restore child signals mask, previously returned by
819 block_child_signals. */
820
821 static void
822 restore_child_signals_mask (sigset_t *prev_mask)
823 {
824 sigprocmask (SIG_SETMASK, prev_mask, NULL);
825 }
826
827 /* Mask of signals to pass directly to the inferior. */
828 static sigset_t pass_mask;
829
830 /* Update signals to pass to the inferior. */
831 static void
832 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
833 {
834 int signo;
835
836 sigemptyset (&pass_mask);
837
838 for (signo = 1; signo < NSIG; signo++)
839 {
840 int target_signo = gdb_signal_from_host (signo);
841 if (target_signo < numsigs && pass_signals[target_signo])
842 sigaddset (&pass_mask, signo);
843 }
844 }
845
846 \f
847
848 /* Prototypes for local functions. */
849 static int stop_wait_callback (struct lwp_info *lp, void *data);
850 static int linux_thread_alive (ptid_t ptid);
851 static char *linux_child_pid_to_exec_file (int pid);
852
853 \f
854 /* Convert wait status STATUS to a string. Used for printing debug
855 messages only. */
856
857 static char *
858 status_to_str (int status)
859 {
860 static char buf[64];
861
862 if (WIFSTOPPED (status))
863 {
864 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
865 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
866 strsignal (SIGTRAP));
867 else
868 snprintf (buf, sizeof (buf), "%s (stopped)",
869 strsignal (WSTOPSIG (status)));
870 }
871 else if (WIFSIGNALED (status))
872 snprintf (buf, sizeof (buf), "%s (terminated)",
873 strsignal (WTERMSIG (status)));
874 else
875 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
876
877 return buf;
878 }
879
880 /* Destroy and free LP. */
881
882 static void
883 lwp_free (struct lwp_info *lp)
884 {
885 xfree (lp->arch_private);
886 xfree (lp);
887 }
888
889 /* Remove all LWPs belong to PID from the lwp list. */
890
891 static void
892 purge_lwp_list (int pid)
893 {
894 struct lwp_info *lp, *lpprev, *lpnext;
895
896 lpprev = NULL;
897
898 for (lp = lwp_list; lp; lp = lpnext)
899 {
900 lpnext = lp->next;
901
902 if (ptid_get_pid (lp->ptid) == pid)
903 {
904 if (lp == lwp_list)
905 lwp_list = lp->next;
906 else
907 lpprev->next = lp->next;
908
909 lwp_free (lp);
910 }
911 else
912 lpprev = lp;
913 }
914 }
915
916 /* Add the LWP specified by PTID to the list. PTID is the first LWP
917 in the process. Return a pointer to the structure describing the
918 new LWP.
919
920 This differs from add_lwp in that we don't let the arch specific
921 bits know about this new thread. Current clients of this callback
922 take the opportunity to install watchpoints in the new thread, and
923 we shouldn't do that for the first thread. If we're spawning a
924 child ("run"), the thread executes the shell wrapper first, and we
925 shouldn't touch it until it execs the program we want to debug.
926 For "attach", it'd be okay to call the callback, but it's not
927 necessary, because watchpoints can't yet have been inserted into
928 the inferior. */
929
930 static struct lwp_info *
931 add_initial_lwp (ptid_t ptid)
932 {
933 struct lwp_info *lp;
934
935 gdb_assert (ptid_lwp_p (ptid));
936
937 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
938
939 memset (lp, 0, sizeof (struct lwp_info));
940
941 lp->last_resume_kind = resume_continue;
942 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
943
944 lp->ptid = ptid;
945 lp->core = -1;
946
947 lp->next = lwp_list;
948 lwp_list = lp;
949
950 return lp;
951 }
952
953 /* Add the LWP specified by PID to the list. Return a pointer to the
954 structure describing the new LWP. The LWP should already be
955 stopped. */
956
957 static struct lwp_info *
958 add_lwp (ptid_t ptid)
959 {
960 struct lwp_info *lp;
961
962 lp = add_initial_lwp (ptid);
963
964 /* Let the arch specific bits know about this new thread. Current
965 clients of this callback take the opportunity to install
966 watchpoints in the new thread. We don't do this for the first
967 thread though. See add_initial_lwp. */
968 if (linux_nat_new_thread != NULL)
969 linux_nat_new_thread (lp);
970
971 return lp;
972 }
973
974 /* Remove the LWP specified by PID from the list. */
975
976 static void
977 delete_lwp (ptid_t ptid)
978 {
979 struct lwp_info *lp, *lpprev;
980
981 lpprev = NULL;
982
983 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
984 if (ptid_equal (lp->ptid, ptid))
985 break;
986
987 if (!lp)
988 return;
989
990 if (lpprev)
991 lpprev->next = lp->next;
992 else
993 lwp_list = lp->next;
994
995 lwp_free (lp);
996 }
997
998 /* Return a pointer to the structure describing the LWP corresponding
999 to PID. If no corresponding LWP could be found, return NULL. */
1000
1001 static struct lwp_info *
1002 find_lwp_pid (ptid_t ptid)
1003 {
1004 struct lwp_info *lp;
1005 int lwp;
1006
1007 if (ptid_lwp_p (ptid))
1008 lwp = ptid_get_lwp (ptid);
1009 else
1010 lwp = ptid_get_pid (ptid);
1011
1012 for (lp = lwp_list; lp; lp = lp->next)
1013 if (lwp == ptid_get_lwp (lp->ptid))
1014 return lp;
1015
1016 return NULL;
1017 }
1018
1019 /* Call CALLBACK with its second argument set to DATA for every LWP in
1020 the list. If CALLBACK returns 1 for a particular LWP, return a
1021 pointer to the structure describing that LWP immediately.
1022 Otherwise return NULL. */
1023
1024 struct lwp_info *
1025 iterate_over_lwps (ptid_t filter,
1026 int (*callback) (struct lwp_info *, void *),
1027 void *data)
1028 {
1029 struct lwp_info *lp, *lpnext;
1030
1031 for (lp = lwp_list; lp; lp = lpnext)
1032 {
1033 lpnext = lp->next;
1034
1035 if (ptid_match (lp->ptid, filter))
1036 {
1037 if ((*callback) (lp, data))
1038 return lp;
1039 }
1040 }
1041
1042 return NULL;
1043 }
1044
1045 /* Update our internal state when changing from one checkpoint to
1046 another indicated by NEW_PTID. We can only switch single-threaded
1047 applications, so we only create one new LWP, and the previous list
1048 is discarded. */
1049
1050 void
1051 linux_nat_switch_fork (ptid_t new_ptid)
1052 {
1053 struct lwp_info *lp;
1054
1055 purge_lwp_list (ptid_get_pid (inferior_ptid));
1056
1057 lp = add_lwp (new_ptid);
1058 lp->stopped = 1;
1059
1060 /* This changes the thread's ptid while preserving the gdb thread
1061 num. Also changes the inferior pid, while preserving the
1062 inferior num. */
1063 thread_change_ptid (inferior_ptid, new_ptid);
1064
1065 /* We've just told GDB core that the thread changed target id, but,
1066 in fact, it really is a different thread, with different register
1067 contents. */
1068 registers_changed ();
1069 }
1070
1071 /* Handle the exit of a single thread LP. */
1072
1073 static void
1074 exit_lwp (struct lwp_info *lp)
1075 {
1076 struct thread_info *th = find_thread_ptid (lp->ptid);
1077
1078 if (th)
1079 {
1080 if (print_thread_events)
1081 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1082
1083 delete_thread (lp->ptid);
1084 }
1085
1086 delete_lwp (lp->ptid);
1087 }
1088
1089 /* Wait for the LWP specified by LP, which we have just attached to.
1090 Returns a wait status for that LWP, to cache. */
1091
1092 static int
1093 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1094 int *signalled)
1095 {
1096 pid_t new_pid, pid = ptid_get_lwp (ptid);
1097 int status;
1098
1099 if (linux_proc_pid_is_stopped (pid))
1100 {
1101 if (debug_linux_nat)
1102 fprintf_unfiltered (gdb_stdlog,
1103 "LNPAW: Attaching to a stopped process\n");
1104
1105 /* The process is definitely stopped. It is in a job control
1106 stop, unless the kernel predates the TASK_STOPPED /
1107 TASK_TRACED distinction, in which case it might be in a
1108 ptrace stop. Make sure it is in a ptrace stop; from there we
1109 can kill it, signal it, et cetera.
1110
1111 First make sure there is a pending SIGSTOP. Since we are
1112 already attached, the process can not transition from stopped
1113 to running without a PTRACE_CONT; so we know this signal will
1114 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1115 probably already in the queue (unless this kernel is old
1116 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1117 is not an RT signal, it can only be queued once. */
1118 kill_lwp (pid, SIGSTOP);
1119
1120 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1121 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1122 ptrace (PTRACE_CONT, pid, 0, 0);
1123 }
1124
1125 /* Make sure the initial process is stopped. The user-level threads
1126 layer might want to poke around in the inferior, and that won't
1127 work if things haven't stabilized yet. */
1128 new_pid = my_waitpid (pid, &status, 0);
1129 if (new_pid == -1 && errno == ECHILD)
1130 {
1131 if (first)
1132 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1133
1134 /* Try again with __WCLONE to check cloned processes. */
1135 new_pid = my_waitpid (pid, &status, __WCLONE);
1136 *cloned = 1;
1137 }
1138
1139 gdb_assert (pid == new_pid);
1140
1141 if (!WIFSTOPPED (status))
1142 {
1143 /* The pid we tried to attach has apparently just exited. */
1144 if (debug_linux_nat)
1145 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1146 pid, status_to_str (status));
1147 return status;
1148 }
1149
1150 if (WSTOPSIG (status) != SIGSTOP)
1151 {
1152 *signalled = 1;
1153 if (debug_linux_nat)
1154 fprintf_unfiltered (gdb_stdlog,
1155 "LNPAW: Received %s after attaching\n",
1156 status_to_str (status));
1157 }
1158
1159 return status;
1160 }
1161
1162 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1163 the new LWP could not be attached, or 1 if we're already auto
1164 attached to this thread, but haven't processed the
1165 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1166 its existance, without considering it an error. */
1167
1168 int
1169 lin_lwp_attach_lwp (ptid_t ptid)
1170 {
1171 struct lwp_info *lp;
1172 int lwpid;
1173
1174 gdb_assert (ptid_lwp_p (ptid));
1175
1176 lp = find_lwp_pid (ptid);
1177 lwpid = ptid_get_lwp (ptid);
1178
1179 /* We assume that we're already attached to any LWP that has an id
1180 equal to the overall process id, and to any LWP that is already
1181 in our list of LWPs. If we're not seeing exit events from threads
1182 and we've had PID wraparound since we last tried to stop all threads,
1183 this assumption might be wrong; fortunately, this is very unlikely
1184 to happen. */
1185 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1186 {
1187 int status, cloned = 0, signalled = 0;
1188
1189 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1190 {
1191 if (linux_supports_tracefork ())
1192 {
1193 /* If we haven't stopped all threads when we get here,
1194 we may have seen a thread listed in thread_db's list,
1195 but not processed the PTRACE_EVENT_CLONE yet. If
1196 that's the case, ignore this new thread, and let
1197 normal event handling discover it later. */
1198 if (in_pid_list_p (stopped_pids, lwpid))
1199 {
1200 /* We've already seen this thread stop, but we
1201 haven't seen the PTRACE_EVENT_CLONE extended
1202 event yet. */
1203 return 0;
1204 }
1205 else
1206 {
1207 int new_pid;
1208 int status;
1209
1210 /* See if we've got a stop for this new child
1211 pending. If so, we're already attached. */
1212 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1213 if (new_pid == -1 && errno == ECHILD)
1214 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1215 if (new_pid != -1)
1216 {
1217 if (WIFSTOPPED (status))
1218 add_to_pid_list (&stopped_pids, lwpid, status);
1219 return 1;
1220 }
1221 }
1222 }
1223
1224 /* If we fail to attach to the thread, issue a warning,
1225 but continue. One way this can happen is if thread
1226 creation is interrupted; as of Linux kernel 2.6.19, a
1227 bug may place threads in the thread list and then fail
1228 to create them. */
1229 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1230 safe_strerror (errno));
1231 return -1;
1232 }
1233
1234 if (debug_linux_nat)
1235 fprintf_unfiltered (gdb_stdlog,
1236 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1237 target_pid_to_str (ptid));
1238
1239 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1240 if (!WIFSTOPPED (status))
1241 return 1;
1242
1243 lp = add_lwp (ptid);
1244 lp->stopped = 1;
1245 lp->cloned = cloned;
1246 lp->signalled = signalled;
1247 if (WSTOPSIG (status) != SIGSTOP)
1248 {
1249 lp->resumed = 1;
1250 lp->status = status;
1251 }
1252
1253 target_post_attach (ptid_get_lwp (lp->ptid));
1254
1255 if (debug_linux_nat)
1256 {
1257 fprintf_unfiltered (gdb_stdlog,
1258 "LLAL: waitpid %s received %s\n",
1259 target_pid_to_str (ptid),
1260 status_to_str (status));
1261 }
1262 }
1263 else
1264 {
1265 /* We assume that the LWP representing the original process is
1266 already stopped. Mark it as stopped in the data structure
1267 that the GNU/linux ptrace layer uses to keep track of
1268 threads. Note that this won't have already been done since
1269 the main thread will have, we assume, been stopped by an
1270 attach from a different layer. */
1271 if (lp == NULL)
1272 lp = add_lwp (ptid);
1273 lp->stopped = 1;
1274 }
1275
1276 lp->last_resume_kind = resume_stop;
1277 return 0;
1278 }
1279
1280 static void
1281 linux_nat_create_inferior (struct target_ops *ops,
1282 char *exec_file, char *allargs, char **env,
1283 int from_tty)
1284 {
1285 #ifdef HAVE_PERSONALITY
1286 int personality_orig = 0, personality_set = 0;
1287 #endif /* HAVE_PERSONALITY */
1288
1289 /* The fork_child mechanism is synchronous and calls target_wait, so
1290 we have to mask the async mode. */
1291
1292 #ifdef HAVE_PERSONALITY
1293 if (disable_randomization)
1294 {
1295 errno = 0;
1296 personality_orig = personality (0xffffffff);
1297 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1298 {
1299 personality_set = 1;
1300 personality (personality_orig | ADDR_NO_RANDOMIZE);
1301 }
1302 if (errno != 0 || (personality_set
1303 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1304 warning (_("Error disabling address space randomization: %s"),
1305 safe_strerror (errno));
1306 }
1307 #endif /* HAVE_PERSONALITY */
1308
1309 /* Make sure we report all signals during startup. */
1310 linux_nat_pass_signals (0, NULL);
1311
1312 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1313
1314 #ifdef HAVE_PERSONALITY
1315 if (personality_set)
1316 {
1317 errno = 0;
1318 personality (personality_orig);
1319 if (errno != 0)
1320 warning (_("Error restoring address space randomization: %s"),
1321 safe_strerror (errno));
1322 }
1323 #endif /* HAVE_PERSONALITY */
1324 }
1325
1326 static void
1327 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1328 {
1329 struct lwp_info *lp;
1330 int status;
1331 ptid_t ptid;
1332 volatile struct gdb_exception ex;
1333
1334 /* Make sure we report all signals during attach. */
1335 linux_nat_pass_signals (0, NULL);
1336
1337 TRY_CATCH (ex, RETURN_MASK_ERROR)
1338 {
1339 linux_ops->to_attach (ops, args, from_tty);
1340 }
1341 if (ex.reason < 0)
1342 {
1343 pid_t pid = parse_pid_to_attach (args);
1344 struct buffer buffer;
1345 char *message, *buffer_s;
1346
1347 message = xstrdup (ex.message);
1348 make_cleanup (xfree, message);
1349
1350 buffer_init (&buffer);
1351 linux_ptrace_attach_warnings (pid, &buffer);
1352
1353 buffer_grow_str0 (&buffer, "");
1354 buffer_s = buffer_finish (&buffer);
1355 make_cleanup (xfree, buffer_s);
1356
1357 throw_error (ex.error, "%s%s", buffer_s, message);
1358 }
1359
1360 /* The ptrace base target adds the main thread with (pid,0,0)
1361 format. Decorate it with lwp info. */
1362 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1363 ptid_get_pid (inferior_ptid),
1364 0);
1365 thread_change_ptid (inferior_ptid, ptid);
1366
1367 /* Add the initial process as the first LWP to the list. */
1368 lp = add_initial_lwp (ptid);
1369
1370 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1371 &lp->signalled);
1372 if (!WIFSTOPPED (status))
1373 {
1374 if (WIFEXITED (status))
1375 {
1376 int exit_code = WEXITSTATUS (status);
1377
1378 target_terminal_ours ();
1379 target_mourn_inferior ();
1380 if (exit_code == 0)
1381 error (_("Unable to attach: program exited normally."));
1382 else
1383 error (_("Unable to attach: program exited with code %d."),
1384 exit_code);
1385 }
1386 else if (WIFSIGNALED (status))
1387 {
1388 enum gdb_signal signo;
1389
1390 target_terminal_ours ();
1391 target_mourn_inferior ();
1392
1393 signo = gdb_signal_from_host (WTERMSIG (status));
1394 error (_("Unable to attach: program terminated with signal "
1395 "%s, %s."),
1396 gdb_signal_to_name (signo),
1397 gdb_signal_to_string (signo));
1398 }
1399
1400 internal_error (__FILE__, __LINE__,
1401 _("unexpected status %d for PID %ld"),
1402 status, (long) ptid_get_lwp (ptid));
1403 }
1404
1405 lp->stopped = 1;
1406
1407 /* Save the wait status to report later. */
1408 lp->resumed = 1;
1409 if (debug_linux_nat)
1410 fprintf_unfiltered (gdb_stdlog,
1411 "LNA: waitpid %ld, saving status %s\n",
1412 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1413
1414 lp->status = status;
1415
1416 if (target_can_async_p ())
1417 target_async (inferior_event_handler, 0);
1418 }
1419
1420 /* Get pending status of LP. */
1421 static int
1422 get_pending_status (struct lwp_info *lp, int *status)
1423 {
1424 enum gdb_signal signo = GDB_SIGNAL_0;
1425
1426 /* If we paused threads momentarily, we may have stored pending
1427 events in lp->status or lp->waitstatus (see stop_wait_callback),
1428 and GDB core hasn't seen any signal for those threads.
1429 Otherwise, the last signal reported to the core is found in the
1430 thread object's stop_signal.
1431
1432 There's a corner case that isn't handled here at present. Only
1433 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1434 stop_signal make sense as a real signal to pass to the inferior.
1435 Some catchpoint related events, like
1436 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1437 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1438 those traps are debug API (ptrace in our case) related and
1439 induced; the inferior wouldn't see them if it wasn't being
1440 traced. Hence, we should never pass them to the inferior, even
1441 when set to pass state. Since this corner case isn't handled by
1442 infrun.c when proceeding with a signal, for consistency, neither
1443 do we handle it here (or elsewhere in the file we check for
1444 signal pass state). Normally SIGTRAP isn't set to pass state, so
1445 this is really a corner case. */
1446
1447 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1448 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1449 else if (lp->status)
1450 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1451 else if (non_stop && !is_executing (lp->ptid))
1452 {
1453 struct thread_info *tp = find_thread_ptid (lp->ptid);
1454
1455 signo = tp->suspend.stop_signal;
1456 }
1457 else if (!non_stop)
1458 {
1459 struct target_waitstatus last;
1460 ptid_t last_ptid;
1461
1462 get_last_target_status (&last_ptid, &last);
1463
1464 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1465 {
1466 struct thread_info *tp = find_thread_ptid (lp->ptid);
1467
1468 signo = tp->suspend.stop_signal;
1469 }
1470 }
1471
1472 *status = 0;
1473
1474 if (signo == GDB_SIGNAL_0)
1475 {
1476 if (debug_linux_nat)
1477 fprintf_unfiltered (gdb_stdlog,
1478 "GPT: lwp %s has no pending signal\n",
1479 target_pid_to_str (lp->ptid));
1480 }
1481 else if (!signal_pass_state (signo))
1482 {
1483 if (debug_linux_nat)
1484 fprintf_unfiltered (gdb_stdlog,
1485 "GPT: lwp %s had signal %s, "
1486 "but it is in no pass state\n",
1487 target_pid_to_str (lp->ptid),
1488 gdb_signal_to_string (signo));
1489 }
1490 else
1491 {
1492 *status = W_STOPCODE (gdb_signal_to_host (signo));
1493
1494 if (debug_linux_nat)
1495 fprintf_unfiltered (gdb_stdlog,
1496 "GPT: lwp %s has pending signal %s\n",
1497 target_pid_to_str (lp->ptid),
1498 gdb_signal_to_string (signo));
1499 }
1500
1501 return 0;
1502 }
1503
1504 static int
1505 detach_callback (struct lwp_info *lp, void *data)
1506 {
1507 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1508
1509 if (debug_linux_nat && lp->status)
1510 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1511 strsignal (WSTOPSIG (lp->status)),
1512 target_pid_to_str (lp->ptid));
1513
1514 /* If there is a pending SIGSTOP, get rid of it. */
1515 if (lp->signalled)
1516 {
1517 if (debug_linux_nat)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "DC: Sending SIGCONT to %s\n",
1520 target_pid_to_str (lp->ptid));
1521
1522 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1523 lp->signalled = 0;
1524 }
1525
1526 /* We don't actually detach from the LWP that has an id equal to the
1527 overall process id just yet. */
1528 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1529 {
1530 int status = 0;
1531
1532 /* Pass on any pending signal for this LWP. */
1533 get_pending_status (lp, &status);
1534
1535 if (linux_nat_prepare_to_resume != NULL)
1536 linux_nat_prepare_to_resume (lp);
1537 errno = 0;
1538 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1539 WSTOPSIG (status)) < 0)
1540 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1541 safe_strerror (errno));
1542
1543 if (debug_linux_nat)
1544 fprintf_unfiltered (gdb_stdlog,
1545 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1546 target_pid_to_str (lp->ptid),
1547 strsignal (WSTOPSIG (status)));
1548
1549 delete_lwp (lp->ptid);
1550 }
1551
1552 return 0;
1553 }
1554
1555 static void
1556 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1557 {
1558 int pid;
1559 int status;
1560 struct lwp_info *main_lwp;
1561
1562 pid = ptid_get_pid (inferior_ptid);
1563
1564 /* Don't unregister from the event loop, as there may be other
1565 inferiors running. */
1566
1567 /* Stop all threads before detaching. ptrace requires that the
1568 thread is stopped to sucessfully detach. */
1569 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1570 /* ... and wait until all of them have reported back that
1571 they're no longer running. */
1572 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1573
1574 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1575
1576 /* Only the initial process should be left right now. */
1577 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1578
1579 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1580
1581 /* Pass on any pending signal for the last LWP. */
1582 if ((args == NULL || *args == '\0')
1583 && get_pending_status (main_lwp, &status) != -1
1584 && WIFSTOPPED (status))
1585 {
1586 char *tem;
1587
1588 /* Put the signal number in ARGS so that inf_ptrace_detach will
1589 pass it along with PTRACE_DETACH. */
1590 tem = alloca (8);
1591 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1592 args = tem;
1593 if (debug_linux_nat)
1594 fprintf_unfiltered (gdb_stdlog,
1595 "LND: Sending signal %s to %s\n",
1596 args,
1597 target_pid_to_str (main_lwp->ptid));
1598 }
1599
1600 if (linux_nat_prepare_to_resume != NULL)
1601 linux_nat_prepare_to_resume (main_lwp);
1602 delete_lwp (main_lwp->ptid);
1603
1604 if (forks_exist_p ())
1605 {
1606 /* Multi-fork case. The current inferior_ptid is being detached
1607 from, but there are other viable forks to debug. Detach from
1608 the current fork, and context-switch to the first
1609 available. */
1610 linux_fork_detach (args, from_tty);
1611 }
1612 else
1613 linux_ops->to_detach (ops, args, from_tty);
1614 }
1615
1616 /* Resume LP. */
1617
1618 static void
1619 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1620 {
1621 if (lp->stopped)
1622 {
1623 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1624
1625 if (inf->vfork_child != NULL)
1626 {
1627 if (debug_linux_nat)
1628 fprintf_unfiltered (gdb_stdlog,
1629 "RC: Not resuming %s (vfork parent)\n",
1630 target_pid_to_str (lp->ptid));
1631 }
1632 else if (lp->status == 0
1633 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1634 {
1635 if (debug_linux_nat)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "RC: Resuming sibling %s, %s, %s\n",
1638 target_pid_to_str (lp->ptid),
1639 (signo != GDB_SIGNAL_0
1640 ? strsignal (gdb_signal_to_host (signo))
1641 : "0"),
1642 step ? "step" : "resume");
1643
1644 if (linux_nat_prepare_to_resume != NULL)
1645 linux_nat_prepare_to_resume (lp);
1646 linux_ops->to_resume (linux_ops,
1647 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1648 step, signo);
1649 lp->stopped = 0;
1650 lp->step = step;
1651 lp->stopped_by_watchpoint = 0;
1652 }
1653 else
1654 {
1655 if (debug_linux_nat)
1656 fprintf_unfiltered (gdb_stdlog,
1657 "RC: Not resuming sibling %s (has pending)\n",
1658 target_pid_to_str (lp->ptid));
1659 }
1660 }
1661 else
1662 {
1663 if (debug_linux_nat)
1664 fprintf_unfiltered (gdb_stdlog,
1665 "RC: Not resuming sibling %s (not stopped)\n",
1666 target_pid_to_str (lp->ptid));
1667 }
1668 }
1669
1670 /* Resume LWP, with the last stop signal, if it is in pass state. */
1671
1672 static int
1673 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1674 {
1675 enum gdb_signal signo = GDB_SIGNAL_0;
1676
1677 if (lp->stopped)
1678 {
1679 struct thread_info *thread;
1680
1681 thread = find_thread_ptid (lp->ptid);
1682 if (thread != NULL)
1683 {
1684 if (signal_pass_state (thread->suspend.stop_signal))
1685 signo = thread->suspend.stop_signal;
1686 thread->suspend.stop_signal = GDB_SIGNAL_0;
1687 }
1688 }
1689
1690 resume_lwp (lp, 0, signo);
1691 return 0;
1692 }
1693
1694 static int
1695 resume_clear_callback (struct lwp_info *lp, void *data)
1696 {
1697 lp->resumed = 0;
1698 lp->last_resume_kind = resume_stop;
1699 return 0;
1700 }
1701
1702 static int
1703 resume_set_callback (struct lwp_info *lp, void *data)
1704 {
1705 lp->resumed = 1;
1706 lp->last_resume_kind = resume_continue;
1707 return 0;
1708 }
1709
1710 static void
1711 linux_nat_resume (struct target_ops *ops,
1712 ptid_t ptid, int step, enum gdb_signal signo)
1713 {
1714 struct lwp_info *lp;
1715 int resume_many;
1716
1717 if (debug_linux_nat)
1718 fprintf_unfiltered (gdb_stdlog,
1719 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1720 step ? "step" : "resume",
1721 target_pid_to_str (ptid),
1722 (signo != GDB_SIGNAL_0
1723 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1724 target_pid_to_str (inferior_ptid));
1725
1726 /* A specific PTID means `step only this process id'. */
1727 resume_many = (ptid_equal (minus_one_ptid, ptid)
1728 || ptid_is_pid (ptid));
1729
1730 /* Mark the lwps we're resuming as resumed. */
1731 iterate_over_lwps (ptid, resume_set_callback, NULL);
1732
1733 /* See if it's the current inferior that should be handled
1734 specially. */
1735 if (resume_many)
1736 lp = find_lwp_pid (inferior_ptid);
1737 else
1738 lp = find_lwp_pid (ptid);
1739 gdb_assert (lp != NULL);
1740
1741 /* Remember if we're stepping. */
1742 lp->step = step;
1743 lp->last_resume_kind = step ? resume_step : resume_continue;
1744
1745 /* If we have a pending wait status for this thread, there is no
1746 point in resuming the process. But first make sure that
1747 linux_nat_wait won't preemptively handle the event - we
1748 should never take this short-circuit if we are going to
1749 leave LP running, since we have skipped resuming all the
1750 other threads. This bit of code needs to be synchronized
1751 with linux_nat_wait. */
1752
1753 if (lp->status && WIFSTOPPED (lp->status))
1754 {
1755 if (!lp->step
1756 && WSTOPSIG (lp->status)
1757 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1758 {
1759 if (debug_linux_nat)
1760 fprintf_unfiltered (gdb_stdlog,
1761 "LLR: Not short circuiting for ignored "
1762 "status 0x%x\n", lp->status);
1763
1764 /* FIXME: What should we do if we are supposed to continue
1765 this thread with a signal? */
1766 gdb_assert (signo == GDB_SIGNAL_0);
1767 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1768 lp->status = 0;
1769 }
1770 }
1771
1772 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1773 {
1774 /* FIXME: What should we do if we are supposed to continue
1775 this thread with a signal? */
1776 gdb_assert (signo == GDB_SIGNAL_0);
1777
1778 if (debug_linux_nat)
1779 fprintf_unfiltered (gdb_stdlog,
1780 "LLR: Short circuiting for status 0x%x\n",
1781 lp->status);
1782
1783 if (target_can_async_p ())
1784 {
1785 target_async (inferior_event_handler, 0);
1786 /* Tell the event loop we have something to process. */
1787 async_file_mark ();
1788 }
1789 return;
1790 }
1791
1792 /* Mark LWP as not stopped to prevent it from being continued by
1793 linux_nat_resume_callback. */
1794 lp->stopped = 0;
1795
1796 if (resume_many)
1797 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1798
1799 /* Convert to something the lower layer understands. */
1800 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1801
1802 if (linux_nat_prepare_to_resume != NULL)
1803 linux_nat_prepare_to_resume (lp);
1804 linux_ops->to_resume (linux_ops, ptid, step, signo);
1805 lp->stopped_by_watchpoint = 0;
1806
1807 if (debug_linux_nat)
1808 fprintf_unfiltered (gdb_stdlog,
1809 "LLR: %s %s, %s (resume event thread)\n",
1810 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1811 target_pid_to_str (ptid),
1812 (signo != GDB_SIGNAL_0
1813 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1814
1815 if (target_can_async_p ())
1816 target_async (inferior_event_handler, 0);
1817 }
1818
1819 /* Send a signal to an LWP. */
1820
1821 static int
1822 kill_lwp (int lwpid, int signo)
1823 {
1824 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1825 fails, then we are not using nptl threads and we should be using kill. */
1826
1827 #ifdef HAVE_TKILL_SYSCALL
1828 {
1829 static int tkill_failed;
1830
1831 if (!tkill_failed)
1832 {
1833 int ret;
1834
1835 errno = 0;
1836 ret = syscall (__NR_tkill, lwpid, signo);
1837 if (errno != ENOSYS)
1838 return ret;
1839 tkill_failed = 1;
1840 }
1841 }
1842 #endif
1843
1844 return kill (lwpid, signo);
1845 }
1846
1847 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1848 event, check if the core is interested in it: if not, ignore the
1849 event, and keep waiting; otherwise, we need to toggle the LWP's
1850 syscall entry/exit status, since the ptrace event itself doesn't
1851 indicate it, and report the trap to higher layers. */
1852
1853 static int
1854 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1855 {
1856 struct target_waitstatus *ourstatus = &lp->waitstatus;
1857 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1858 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1859
1860 if (stopping)
1861 {
1862 /* If we're stopping threads, there's a SIGSTOP pending, which
1863 makes it so that the LWP reports an immediate syscall return,
1864 followed by the SIGSTOP. Skip seeing that "return" using
1865 PTRACE_CONT directly, and let stop_wait_callback collect the
1866 SIGSTOP. Later when the thread is resumed, a new syscall
1867 entry event. If we didn't do this (and returned 0), we'd
1868 leave a syscall entry pending, and our caller, by using
1869 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1870 itself. Later, when the user re-resumes this LWP, we'd see
1871 another syscall entry event and we'd mistake it for a return.
1872
1873 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1874 (leaving immediately with LWP->signalled set, without issuing
1875 a PTRACE_CONT), it would still be problematic to leave this
1876 syscall enter pending, as later when the thread is resumed,
1877 it would then see the same syscall exit mentioned above,
1878 followed by the delayed SIGSTOP, while the syscall didn't
1879 actually get to execute. It seems it would be even more
1880 confusing to the user. */
1881
1882 if (debug_linux_nat)
1883 fprintf_unfiltered (gdb_stdlog,
1884 "LHST: ignoring syscall %d "
1885 "for LWP %ld (stopping threads), "
1886 "resuming with PTRACE_CONT for SIGSTOP\n",
1887 syscall_number,
1888 ptid_get_lwp (lp->ptid));
1889
1890 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1891 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1892 return 1;
1893 }
1894
1895 if (catch_syscall_enabled ())
1896 {
1897 /* Always update the entry/return state, even if this particular
1898 syscall isn't interesting to the core now. In async mode,
1899 the user could install a new catchpoint for this syscall
1900 between syscall enter/return, and we'll need to know to
1901 report a syscall return if that happens. */
1902 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1903 ? TARGET_WAITKIND_SYSCALL_RETURN
1904 : TARGET_WAITKIND_SYSCALL_ENTRY);
1905
1906 if (catching_syscall_number (syscall_number))
1907 {
1908 /* Alright, an event to report. */
1909 ourstatus->kind = lp->syscall_state;
1910 ourstatus->value.syscall_number = syscall_number;
1911
1912 if (debug_linux_nat)
1913 fprintf_unfiltered (gdb_stdlog,
1914 "LHST: stopping for %s of syscall %d"
1915 " for LWP %ld\n",
1916 lp->syscall_state
1917 == TARGET_WAITKIND_SYSCALL_ENTRY
1918 ? "entry" : "return",
1919 syscall_number,
1920 ptid_get_lwp (lp->ptid));
1921 return 0;
1922 }
1923
1924 if (debug_linux_nat)
1925 fprintf_unfiltered (gdb_stdlog,
1926 "LHST: ignoring %s of syscall %d "
1927 "for LWP %ld\n",
1928 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1929 ? "entry" : "return",
1930 syscall_number,
1931 ptid_get_lwp (lp->ptid));
1932 }
1933 else
1934 {
1935 /* If we had been syscall tracing, and hence used PT_SYSCALL
1936 before on this LWP, it could happen that the user removes all
1937 syscall catchpoints before we get to process this event.
1938 There are two noteworthy issues here:
1939
1940 - When stopped at a syscall entry event, resuming with
1941 PT_STEP still resumes executing the syscall and reports a
1942 syscall return.
1943
1944 - Only PT_SYSCALL catches syscall enters. If we last
1945 single-stepped this thread, then this event can't be a
1946 syscall enter. If we last single-stepped this thread, this
1947 has to be a syscall exit.
1948
1949 The points above mean that the next resume, be it PT_STEP or
1950 PT_CONTINUE, can not trigger a syscall trace event. */
1951 if (debug_linux_nat)
1952 fprintf_unfiltered (gdb_stdlog,
1953 "LHST: caught syscall event "
1954 "with no syscall catchpoints."
1955 " %d for LWP %ld, ignoring\n",
1956 syscall_number,
1957 ptid_get_lwp (lp->ptid));
1958 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1959 }
1960
1961 /* The core isn't interested in this event. For efficiency, avoid
1962 stopping all threads only to have the core resume them all again.
1963 Since we're not stopping threads, if we're still syscall tracing
1964 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1965 subsequent syscall. Simply resume using the inf-ptrace layer,
1966 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1967
1968 /* Note that gdbarch_get_syscall_number may access registers, hence
1969 fill a regcache. */
1970 registers_changed ();
1971 if (linux_nat_prepare_to_resume != NULL)
1972 linux_nat_prepare_to_resume (lp);
1973 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1974 lp->step, GDB_SIGNAL_0);
1975 return 1;
1976 }
1977
1978 /* Handle a GNU/Linux extended wait response. If we see a clone
1979 event, we need to add the new LWP to our list (and not report the
1980 trap to higher layers). This function returns non-zero if the
1981 event should be ignored and we should wait again. If STOPPING is
1982 true, the new LWP remains stopped, otherwise it is continued. */
1983
1984 static int
1985 linux_handle_extended_wait (struct lwp_info *lp, int status,
1986 int stopping)
1987 {
1988 int pid = ptid_get_lwp (lp->ptid);
1989 struct target_waitstatus *ourstatus = &lp->waitstatus;
1990 int event = status >> 16;
1991
1992 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1993 || event == PTRACE_EVENT_CLONE)
1994 {
1995 unsigned long new_pid;
1996 int ret;
1997
1998 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1999
2000 /* If we haven't already seen the new PID stop, wait for it now. */
2001 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2002 {
2003 /* The new child has a pending SIGSTOP. We can't affect it until it
2004 hits the SIGSTOP, but we're already attached. */
2005 ret = my_waitpid (new_pid, &status,
2006 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2007 if (ret == -1)
2008 perror_with_name (_("waiting for new child"));
2009 else if (ret != new_pid)
2010 internal_error (__FILE__, __LINE__,
2011 _("wait returned unexpected PID %d"), ret);
2012 else if (!WIFSTOPPED (status))
2013 internal_error (__FILE__, __LINE__,
2014 _("wait returned unexpected status 0x%x"), status);
2015 }
2016
2017 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2018
2019 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2020 {
2021 /* The arch-specific native code may need to know about new
2022 forks even if those end up never mapped to an
2023 inferior. */
2024 if (linux_nat_new_fork != NULL)
2025 linux_nat_new_fork (lp, new_pid);
2026 }
2027
2028 if (event == PTRACE_EVENT_FORK
2029 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2030 {
2031 /* Handle checkpointing by linux-fork.c here as a special
2032 case. We don't want the follow-fork-mode or 'catch fork'
2033 to interfere with this. */
2034
2035 /* This won't actually modify the breakpoint list, but will
2036 physically remove the breakpoints from the child. */
2037 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2038
2039 /* Retain child fork in ptrace (stopped) state. */
2040 if (!find_fork_pid (new_pid))
2041 add_fork (new_pid);
2042
2043 /* Report as spurious, so that infrun doesn't want to follow
2044 this fork. We're actually doing an infcall in
2045 linux-fork.c. */
2046 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2047
2048 /* Report the stop to the core. */
2049 return 0;
2050 }
2051
2052 if (event == PTRACE_EVENT_FORK)
2053 ourstatus->kind = TARGET_WAITKIND_FORKED;
2054 else if (event == PTRACE_EVENT_VFORK)
2055 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2056 else
2057 {
2058 struct lwp_info *new_lp;
2059
2060 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2061
2062 if (debug_linux_nat)
2063 fprintf_unfiltered (gdb_stdlog,
2064 "LHEW: Got clone event "
2065 "from LWP %d, new child is LWP %ld\n",
2066 pid, new_pid);
2067
2068 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2069 new_lp->cloned = 1;
2070 new_lp->stopped = 1;
2071
2072 if (WSTOPSIG (status) != SIGSTOP)
2073 {
2074 /* This can happen if someone starts sending signals to
2075 the new thread before it gets a chance to run, which
2076 have a lower number than SIGSTOP (e.g. SIGUSR1).
2077 This is an unlikely case, and harder to handle for
2078 fork / vfork than for clone, so we do not try - but
2079 we handle it for clone events here. We'll send
2080 the other signal on to the thread below. */
2081
2082 new_lp->signalled = 1;
2083 }
2084 else
2085 {
2086 struct thread_info *tp;
2087
2088 /* When we stop for an event in some other thread, and
2089 pull the thread list just as this thread has cloned,
2090 we'll have seen the new thread in the thread_db list
2091 before handling the CLONE event (glibc's
2092 pthread_create adds the new thread to the thread list
2093 before clone'ing, and has the kernel fill in the
2094 thread's tid on the clone call with
2095 CLONE_PARENT_SETTID). If that happened, and the core
2096 had requested the new thread to stop, we'll have
2097 killed it with SIGSTOP. But since SIGSTOP is not an
2098 RT signal, it can only be queued once. We need to be
2099 careful to not resume the LWP if we wanted it to
2100 stop. In that case, we'll leave the SIGSTOP pending.
2101 It will later be reported as GDB_SIGNAL_0. */
2102 tp = find_thread_ptid (new_lp->ptid);
2103 if (tp != NULL && tp->stop_requested)
2104 new_lp->last_resume_kind = resume_stop;
2105 else
2106 status = 0;
2107 }
2108
2109 if (non_stop)
2110 {
2111 /* Add the new thread to GDB's lists as soon as possible
2112 so that:
2113
2114 1) the frontend doesn't have to wait for a stop to
2115 display them, and,
2116
2117 2) we tag it with the correct running state. */
2118
2119 /* If the thread_db layer is active, let it know about
2120 this new thread, and add it to GDB's list. */
2121 if (!thread_db_attach_lwp (new_lp->ptid))
2122 {
2123 /* We're not using thread_db. Add it to GDB's
2124 list. */
2125 target_post_attach (ptid_get_lwp (new_lp->ptid));
2126 add_thread (new_lp->ptid);
2127 }
2128
2129 if (!stopping)
2130 {
2131 set_running (new_lp->ptid, 1);
2132 set_executing (new_lp->ptid, 1);
2133 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2134 resume_stop. */
2135 new_lp->last_resume_kind = resume_continue;
2136 }
2137 }
2138
2139 if (status != 0)
2140 {
2141 /* We created NEW_LP so it cannot yet contain STATUS. */
2142 gdb_assert (new_lp->status == 0);
2143
2144 /* Save the wait status to report later. */
2145 if (debug_linux_nat)
2146 fprintf_unfiltered (gdb_stdlog,
2147 "LHEW: waitpid of new LWP %ld, "
2148 "saving status %s\n",
2149 (long) ptid_get_lwp (new_lp->ptid),
2150 status_to_str (status));
2151 new_lp->status = status;
2152 }
2153
2154 /* Note the need to use the low target ops to resume, to
2155 handle resuming with PT_SYSCALL if we have syscall
2156 catchpoints. */
2157 if (!stopping)
2158 {
2159 new_lp->resumed = 1;
2160
2161 if (status == 0)
2162 {
2163 gdb_assert (new_lp->last_resume_kind == resume_continue);
2164 if (debug_linux_nat)
2165 fprintf_unfiltered (gdb_stdlog,
2166 "LHEW: resuming new LWP %ld\n",
2167 ptid_get_lwp (new_lp->ptid));
2168 if (linux_nat_prepare_to_resume != NULL)
2169 linux_nat_prepare_to_resume (new_lp);
2170 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2171 0, GDB_SIGNAL_0);
2172 new_lp->stopped = 0;
2173 }
2174 }
2175
2176 if (debug_linux_nat)
2177 fprintf_unfiltered (gdb_stdlog,
2178 "LHEW: resuming parent LWP %d\n", pid);
2179 if (linux_nat_prepare_to_resume != NULL)
2180 linux_nat_prepare_to_resume (lp);
2181 linux_ops->to_resume (linux_ops,
2182 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2183 0, GDB_SIGNAL_0);
2184
2185 return 1;
2186 }
2187
2188 return 0;
2189 }
2190
2191 if (event == PTRACE_EVENT_EXEC)
2192 {
2193 if (debug_linux_nat)
2194 fprintf_unfiltered (gdb_stdlog,
2195 "LHEW: Got exec event from LWP %ld\n",
2196 ptid_get_lwp (lp->ptid));
2197
2198 ourstatus->kind = TARGET_WAITKIND_EXECD;
2199 ourstatus->value.execd_pathname
2200 = xstrdup (linux_child_pid_to_exec_file (pid));
2201
2202 return 0;
2203 }
2204
2205 if (event == PTRACE_EVENT_VFORK_DONE)
2206 {
2207 if (current_inferior ()->waiting_for_vfork_done)
2208 {
2209 if (debug_linux_nat)
2210 fprintf_unfiltered (gdb_stdlog,
2211 "LHEW: Got expected PTRACE_EVENT_"
2212 "VFORK_DONE from LWP %ld: stopping\n",
2213 ptid_get_lwp (lp->ptid));
2214
2215 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2216 return 0;
2217 }
2218
2219 if (debug_linux_nat)
2220 fprintf_unfiltered (gdb_stdlog,
2221 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2222 "from LWP %ld: resuming\n",
2223 ptid_get_lwp (lp->ptid));
2224 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2225 return 1;
2226 }
2227
2228 internal_error (__FILE__, __LINE__,
2229 _("unknown ptrace event %d"), event);
2230 }
2231
2232 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2233 exited. */
2234
2235 static int
2236 wait_lwp (struct lwp_info *lp)
2237 {
2238 pid_t pid;
2239 int status = 0;
2240 int thread_dead = 0;
2241 sigset_t prev_mask;
2242
2243 gdb_assert (!lp->stopped);
2244 gdb_assert (lp->status == 0);
2245
2246 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2247 block_child_signals (&prev_mask);
2248
2249 for (;;)
2250 {
2251 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2252 was right and we should just call sigsuspend. */
2253
2254 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2255 if (pid == -1 && errno == ECHILD)
2256 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2257 if (pid == -1 && errno == ECHILD)
2258 {
2259 /* The thread has previously exited. We need to delete it
2260 now because, for some vendor 2.4 kernels with NPTL
2261 support backported, there won't be an exit event unless
2262 it is the main thread. 2.6 kernels will report an exit
2263 event for each thread that exits, as expected. */
2264 thread_dead = 1;
2265 if (debug_linux_nat)
2266 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2267 target_pid_to_str (lp->ptid));
2268 }
2269 if (pid != 0)
2270 break;
2271
2272 /* Bugs 10970, 12702.
2273 Thread group leader may have exited in which case we'll lock up in
2274 waitpid if there are other threads, even if they are all zombies too.
2275 Basically, we're not supposed to use waitpid this way.
2276 __WCLONE is not applicable for the leader so we can't use that.
2277 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2278 process; it gets ESRCH both for the zombie and for running processes.
2279
2280 As a workaround, check if we're waiting for the thread group leader and
2281 if it's a zombie, and avoid calling waitpid if it is.
2282
2283 This is racy, what if the tgl becomes a zombie right after we check?
2284 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2285 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2286
2287 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2288 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2289 {
2290 thread_dead = 1;
2291 if (debug_linux_nat)
2292 fprintf_unfiltered (gdb_stdlog,
2293 "WL: Thread group leader %s vanished.\n",
2294 target_pid_to_str (lp->ptid));
2295 break;
2296 }
2297
2298 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2299 get invoked despite our caller had them intentionally blocked by
2300 block_child_signals. This is sensitive only to the loop of
2301 linux_nat_wait_1 and there if we get called my_waitpid gets called
2302 again before it gets to sigsuspend so we can safely let the handlers
2303 get executed here. */
2304
2305 sigsuspend (&suspend_mask);
2306 }
2307
2308 restore_child_signals_mask (&prev_mask);
2309
2310 if (!thread_dead)
2311 {
2312 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2313
2314 if (debug_linux_nat)
2315 {
2316 fprintf_unfiltered (gdb_stdlog,
2317 "WL: waitpid %s received %s\n",
2318 target_pid_to_str (lp->ptid),
2319 status_to_str (status));
2320 }
2321
2322 /* Check if the thread has exited. */
2323 if (WIFEXITED (status) || WIFSIGNALED (status))
2324 {
2325 thread_dead = 1;
2326 if (debug_linux_nat)
2327 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2328 target_pid_to_str (lp->ptid));
2329 }
2330 }
2331
2332 if (thread_dead)
2333 {
2334 exit_lwp (lp);
2335 return 0;
2336 }
2337
2338 gdb_assert (WIFSTOPPED (status));
2339
2340 /* Handle GNU/Linux's syscall SIGTRAPs. */
2341 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2342 {
2343 /* No longer need the sysgood bit. The ptrace event ends up
2344 recorded in lp->waitstatus if we care for it. We can carry
2345 on handling the event like a regular SIGTRAP from here
2346 on. */
2347 status = W_STOPCODE (SIGTRAP);
2348 if (linux_handle_syscall_trap (lp, 1))
2349 return wait_lwp (lp);
2350 }
2351
2352 /* Handle GNU/Linux's extended waitstatus for trace events. */
2353 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2354 {
2355 if (debug_linux_nat)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "WL: Handling extended status 0x%06x\n",
2358 status);
2359 if (linux_handle_extended_wait (lp, status, 1))
2360 return wait_lwp (lp);
2361 }
2362
2363 return status;
2364 }
2365
2366 /* Send a SIGSTOP to LP. */
2367
2368 static int
2369 stop_callback (struct lwp_info *lp, void *data)
2370 {
2371 if (!lp->stopped && !lp->signalled)
2372 {
2373 int ret;
2374
2375 if (debug_linux_nat)
2376 {
2377 fprintf_unfiltered (gdb_stdlog,
2378 "SC: kill %s **<SIGSTOP>**\n",
2379 target_pid_to_str (lp->ptid));
2380 }
2381 errno = 0;
2382 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2383 if (debug_linux_nat)
2384 {
2385 fprintf_unfiltered (gdb_stdlog,
2386 "SC: lwp kill %d %s\n",
2387 ret,
2388 errno ? safe_strerror (errno) : "ERRNO-OK");
2389 }
2390
2391 lp->signalled = 1;
2392 gdb_assert (lp->status == 0);
2393 }
2394
2395 return 0;
2396 }
2397
2398 /* Request a stop on LWP. */
2399
2400 void
2401 linux_stop_lwp (struct lwp_info *lwp)
2402 {
2403 stop_callback (lwp, NULL);
2404 }
2405
2406 /* Return non-zero if LWP PID has a pending SIGINT. */
2407
2408 static int
2409 linux_nat_has_pending_sigint (int pid)
2410 {
2411 sigset_t pending, blocked, ignored;
2412
2413 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2414
2415 if (sigismember (&pending, SIGINT)
2416 && !sigismember (&ignored, SIGINT))
2417 return 1;
2418
2419 return 0;
2420 }
2421
2422 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2423
2424 static int
2425 set_ignore_sigint (struct lwp_info *lp, void *data)
2426 {
2427 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2428 flag to consume the next one. */
2429 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2430 && WSTOPSIG (lp->status) == SIGINT)
2431 lp->status = 0;
2432 else
2433 lp->ignore_sigint = 1;
2434
2435 return 0;
2436 }
2437
2438 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2439 This function is called after we know the LWP has stopped; if the LWP
2440 stopped before the expected SIGINT was delivered, then it will never have
2441 arrived. Also, if the signal was delivered to a shared queue and consumed
2442 by a different thread, it will never be delivered to this LWP. */
2443
2444 static void
2445 maybe_clear_ignore_sigint (struct lwp_info *lp)
2446 {
2447 if (!lp->ignore_sigint)
2448 return;
2449
2450 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2451 {
2452 if (debug_linux_nat)
2453 fprintf_unfiltered (gdb_stdlog,
2454 "MCIS: Clearing bogus flag for %s\n",
2455 target_pid_to_str (lp->ptid));
2456 lp->ignore_sigint = 0;
2457 }
2458 }
2459
2460 /* Fetch the possible triggered data watchpoint info and store it in
2461 LP.
2462
2463 On some archs, like x86, that use debug registers to set
2464 watchpoints, it's possible that the way to know which watched
2465 address trapped, is to check the register that is used to select
2466 which address to watch. Problem is, between setting the watchpoint
2467 and reading back which data address trapped, the user may change
2468 the set of watchpoints, and, as a consequence, GDB changes the
2469 debug registers in the inferior. To avoid reading back a stale
2470 stopped-data-address when that happens, we cache in LP the fact
2471 that a watchpoint trapped, and the corresponding data address, as
2472 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2473 registers meanwhile, we have the cached data we can rely on. */
2474
2475 static void
2476 save_sigtrap (struct lwp_info *lp)
2477 {
2478 struct cleanup *old_chain;
2479
2480 if (linux_ops->to_stopped_by_watchpoint == NULL)
2481 {
2482 lp->stopped_by_watchpoint = 0;
2483 return;
2484 }
2485
2486 old_chain = save_inferior_ptid ();
2487 inferior_ptid = lp->ptid;
2488
2489 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2490
2491 if (lp->stopped_by_watchpoint)
2492 {
2493 if (linux_ops->to_stopped_data_address != NULL)
2494 lp->stopped_data_address_p =
2495 linux_ops->to_stopped_data_address (&current_target,
2496 &lp->stopped_data_address);
2497 else
2498 lp->stopped_data_address_p = 0;
2499 }
2500
2501 do_cleanups (old_chain);
2502 }
2503
2504 /* See save_sigtrap. */
2505
2506 static int
2507 linux_nat_stopped_by_watchpoint (void)
2508 {
2509 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2510
2511 gdb_assert (lp != NULL);
2512
2513 return lp->stopped_by_watchpoint;
2514 }
2515
2516 static int
2517 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2518 {
2519 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2520
2521 gdb_assert (lp != NULL);
2522
2523 *addr_p = lp->stopped_data_address;
2524
2525 return lp->stopped_data_address_p;
2526 }
2527
2528 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2529
2530 static int
2531 sigtrap_is_event (int status)
2532 {
2533 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2534 }
2535
2536 /* SIGTRAP-like events recognizer. */
2537
2538 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2539
2540 /* Check for SIGTRAP-like events in LP. */
2541
2542 static int
2543 linux_nat_lp_status_is_event (struct lwp_info *lp)
2544 {
2545 /* We check for lp->waitstatus in addition to lp->status, because we can
2546 have pending process exits recorded in lp->status
2547 and W_EXITCODE(0,0) == 0. We should probably have an additional
2548 lp->status_p flag. */
2549
2550 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2551 && linux_nat_status_is_event (lp->status));
2552 }
2553
2554 /* Set alternative SIGTRAP-like events recognizer. If
2555 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2556 applied. */
2557
2558 void
2559 linux_nat_set_status_is_event (struct target_ops *t,
2560 int (*status_is_event) (int status))
2561 {
2562 linux_nat_status_is_event = status_is_event;
2563 }
2564
2565 /* Wait until LP is stopped. */
2566
2567 static int
2568 stop_wait_callback (struct lwp_info *lp, void *data)
2569 {
2570 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2571
2572 /* If this is a vfork parent, bail out, it is not going to report
2573 any SIGSTOP until the vfork is done with. */
2574 if (inf->vfork_child != NULL)
2575 return 0;
2576
2577 if (!lp->stopped)
2578 {
2579 int status;
2580
2581 status = wait_lwp (lp);
2582 if (status == 0)
2583 return 0;
2584
2585 if (lp->ignore_sigint && WIFSTOPPED (status)
2586 && WSTOPSIG (status) == SIGINT)
2587 {
2588 lp->ignore_sigint = 0;
2589
2590 errno = 0;
2591 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2592 if (debug_linux_nat)
2593 fprintf_unfiltered (gdb_stdlog,
2594 "PTRACE_CONT %s, 0, 0 (%s) "
2595 "(discarding SIGINT)\n",
2596 target_pid_to_str (lp->ptid),
2597 errno ? safe_strerror (errno) : "OK");
2598
2599 return stop_wait_callback (lp, NULL);
2600 }
2601
2602 maybe_clear_ignore_sigint (lp);
2603
2604 if (WSTOPSIG (status) != SIGSTOP)
2605 {
2606 /* The thread was stopped with a signal other than SIGSTOP. */
2607
2608 save_sigtrap (lp);
2609
2610 if (debug_linux_nat)
2611 fprintf_unfiltered (gdb_stdlog,
2612 "SWC: Pending event %s in %s\n",
2613 status_to_str ((int) status),
2614 target_pid_to_str (lp->ptid));
2615
2616 /* Save the sigtrap event. */
2617 lp->status = status;
2618 gdb_assert (!lp->stopped);
2619 gdb_assert (lp->signalled);
2620 lp->stopped = 1;
2621 }
2622 else
2623 {
2624 /* We caught the SIGSTOP that we intended to catch, so
2625 there's no SIGSTOP pending. */
2626
2627 if (debug_linux_nat)
2628 fprintf_unfiltered (gdb_stdlog,
2629 "SWC: Delayed SIGSTOP caught for %s.\n",
2630 target_pid_to_str (lp->ptid));
2631
2632 lp->stopped = 1;
2633
2634 /* Reset SIGNALLED only after the stop_wait_callback call
2635 above as it does gdb_assert on SIGNALLED. */
2636 lp->signalled = 0;
2637 }
2638 }
2639
2640 return 0;
2641 }
2642
2643 /* Return non-zero if LP has a wait status pending. */
2644
2645 static int
2646 status_callback (struct lwp_info *lp, void *data)
2647 {
2648 /* Only report a pending wait status if we pretend that this has
2649 indeed been resumed. */
2650 if (!lp->resumed)
2651 return 0;
2652
2653 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2654 {
2655 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2656 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2657 0', so a clean process exit can not be stored pending in
2658 lp->status, it is indistinguishable from
2659 no-pending-status. */
2660 return 1;
2661 }
2662
2663 if (lp->status != 0)
2664 return 1;
2665
2666 return 0;
2667 }
2668
2669 /* Return non-zero if LP isn't stopped. */
2670
2671 static int
2672 running_callback (struct lwp_info *lp, void *data)
2673 {
2674 return (!lp->stopped
2675 || ((lp->status != 0
2676 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2677 && lp->resumed));
2678 }
2679
2680 /* Count the LWP's that have had events. */
2681
2682 static int
2683 count_events_callback (struct lwp_info *lp, void *data)
2684 {
2685 int *count = data;
2686
2687 gdb_assert (count != NULL);
2688
2689 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2690 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2691 (*count)++;
2692
2693 return 0;
2694 }
2695
2696 /* Select the LWP (if any) that is currently being single-stepped. */
2697
2698 static int
2699 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2700 {
2701 if (lp->last_resume_kind == resume_step
2702 && lp->status != 0)
2703 return 1;
2704 else
2705 return 0;
2706 }
2707
2708 /* Select the Nth LWP that has had a SIGTRAP event. */
2709
2710 static int
2711 select_event_lwp_callback (struct lwp_info *lp, void *data)
2712 {
2713 int *selector = data;
2714
2715 gdb_assert (selector != NULL);
2716
2717 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2718 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2719 if ((*selector)-- == 0)
2720 return 1;
2721
2722 return 0;
2723 }
2724
2725 static int
2726 cancel_breakpoint (struct lwp_info *lp)
2727 {
2728 /* Arrange for a breakpoint to be hit again later. We don't keep
2729 the SIGTRAP status and don't forward the SIGTRAP signal to the
2730 LWP. We will handle the current event, eventually we will resume
2731 this LWP, and this breakpoint will trap again.
2732
2733 If we do not do this, then we run the risk that the user will
2734 delete or disable the breakpoint, but the LWP will have already
2735 tripped on it. */
2736
2737 struct regcache *regcache = get_thread_regcache (lp->ptid);
2738 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2739 CORE_ADDR pc;
2740
2741 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2742 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2743 {
2744 if (debug_linux_nat)
2745 fprintf_unfiltered (gdb_stdlog,
2746 "CB: Push back breakpoint for %s\n",
2747 target_pid_to_str (lp->ptid));
2748
2749 /* Back up the PC if necessary. */
2750 if (gdbarch_decr_pc_after_break (gdbarch))
2751 regcache_write_pc (regcache, pc);
2752
2753 return 1;
2754 }
2755 return 0;
2756 }
2757
2758 static int
2759 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2760 {
2761 struct lwp_info *event_lp = data;
2762
2763 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2764 if (lp == event_lp)
2765 return 0;
2766
2767 /* If a LWP other than the LWP that we're reporting an event for has
2768 hit a GDB breakpoint (as opposed to some random trap signal),
2769 then just arrange for it to hit it again later. We don't keep
2770 the SIGTRAP status and don't forward the SIGTRAP signal to the
2771 LWP. We will handle the current event, eventually we will resume
2772 all LWPs, and this one will get its breakpoint trap again.
2773
2774 If we do not do this, then we run the risk that the user will
2775 delete or disable the breakpoint, but the LWP will have already
2776 tripped on it. */
2777
2778 if (linux_nat_lp_status_is_event (lp)
2779 && cancel_breakpoint (lp))
2780 /* Throw away the SIGTRAP. */
2781 lp->status = 0;
2782
2783 return 0;
2784 }
2785
2786 /* Select one LWP out of those that have events pending. */
2787
2788 static void
2789 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2790 {
2791 int num_events = 0;
2792 int random_selector;
2793 struct lwp_info *event_lp;
2794
2795 /* Record the wait status for the original LWP. */
2796 (*orig_lp)->status = *status;
2797
2798 /* Give preference to any LWP that is being single-stepped. */
2799 event_lp = iterate_over_lwps (filter,
2800 select_singlestep_lwp_callback, NULL);
2801 if (event_lp != NULL)
2802 {
2803 if (debug_linux_nat)
2804 fprintf_unfiltered (gdb_stdlog,
2805 "SEL: Select single-step %s\n",
2806 target_pid_to_str (event_lp->ptid));
2807 }
2808 else
2809 {
2810 /* No single-stepping LWP. Select one at random, out of those
2811 which have had SIGTRAP events. */
2812
2813 /* First see how many SIGTRAP events we have. */
2814 iterate_over_lwps (filter, count_events_callback, &num_events);
2815
2816 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2817 random_selector = (int)
2818 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2819
2820 if (debug_linux_nat && num_events > 1)
2821 fprintf_unfiltered (gdb_stdlog,
2822 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2823 num_events, random_selector);
2824
2825 event_lp = iterate_over_lwps (filter,
2826 select_event_lwp_callback,
2827 &random_selector);
2828 }
2829
2830 if (event_lp != NULL)
2831 {
2832 /* Switch the event LWP. */
2833 *orig_lp = event_lp;
2834 *status = event_lp->status;
2835 }
2836
2837 /* Flush the wait status for the event LWP. */
2838 (*orig_lp)->status = 0;
2839 }
2840
2841 /* Return non-zero if LP has been resumed. */
2842
2843 static int
2844 resumed_callback (struct lwp_info *lp, void *data)
2845 {
2846 return lp->resumed;
2847 }
2848
2849 /* Stop an active thread, verify it still exists, then resume it. If
2850 the thread ends up with a pending status, then it is not resumed,
2851 and *DATA (really a pointer to int), is set. */
2852
2853 static int
2854 stop_and_resume_callback (struct lwp_info *lp, void *data)
2855 {
2856 int *new_pending_p = data;
2857
2858 if (!lp->stopped)
2859 {
2860 ptid_t ptid = lp->ptid;
2861
2862 stop_callback (lp, NULL);
2863 stop_wait_callback (lp, NULL);
2864
2865 /* Resume if the lwp still exists, and the core wanted it
2866 running. */
2867 lp = find_lwp_pid (ptid);
2868 if (lp != NULL)
2869 {
2870 if (lp->last_resume_kind == resume_stop
2871 && lp->status == 0)
2872 {
2873 /* The core wanted the LWP to stop. Even if it stopped
2874 cleanly (with SIGSTOP), leave the event pending. */
2875 if (debug_linux_nat)
2876 fprintf_unfiltered (gdb_stdlog,
2877 "SARC: core wanted LWP %ld stopped "
2878 "(leaving SIGSTOP pending)\n",
2879 ptid_get_lwp (lp->ptid));
2880 lp->status = W_STOPCODE (SIGSTOP);
2881 }
2882
2883 if (lp->status == 0)
2884 {
2885 if (debug_linux_nat)
2886 fprintf_unfiltered (gdb_stdlog,
2887 "SARC: re-resuming LWP %ld\n",
2888 ptid_get_lwp (lp->ptid));
2889 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2890 }
2891 else
2892 {
2893 if (debug_linux_nat)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "SARC: not re-resuming LWP %ld "
2896 "(has pending)\n",
2897 ptid_get_lwp (lp->ptid));
2898 if (new_pending_p)
2899 *new_pending_p = 1;
2900 }
2901 }
2902 }
2903 return 0;
2904 }
2905
2906 /* Check if we should go on and pass this event to common code.
2907 Return the affected lwp if we are, or NULL otherwise. If we stop
2908 all lwps temporarily, we may end up with new pending events in some
2909 other lwp. In that case set *NEW_PENDING_P to true. */
2910
2911 static struct lwp_info *
2912 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2913 {
2914 struct lwp_info *lp;
2915
2916 *new_pending_p = 0;
2917
2918 lp = find_lwp_pid (pid_to_ptid (lwpid));
2919
2920 /* Check for stop events reported by a process we didn't already
2921 know about - anything not already in our LWP list.
2922
2923 If we're expecting to receive stopped processes after
2924 fork, vfork, and clone events, then we'll just add the
2925 new one to our list and go back to waiting for the event
2926 to be reported - the stopped process might be returned
2927 from waitpid before or after the event is.
2928
2929 But note the case of a non-leader thread exec'ing after the
2930 leader having exited, and gone from our lists. The non-leader
2931 thread changes its tid to the tgid. */
2932
2933 if (WIFSTOPPED (status) && lp == NULL
2934 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2935 {
2936 /* A multi-thread exec after we had seen the leader exiting. */
2937 if (debug_linux_nat)
2938 fprintf_unfiltered (gdb_stdlog,
2939 "LLW: Re-adding thread group leader LWP %d.\n",
2940 lwpid);
2941
2942 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2943 lp->stopped = 1;
2944 lp->resumed = 1;
2945 add_thread (lp->ptid);
2946 }
2947
2948 if (WIFSTOPPED (status) && !lp)
2949 {
2950 add_to_pid_list (&stopped_pids, lwpid, status);
2951 return NULL;
2952 }
2953
2954 /* Make sure we don't report an event for the exit of an LWP not in
2955 our list, i.e. not part of the current process. This can happen
2956 if we detach from a program we originally forked and then it
2957 exits. */
2958 if (!WIFSTOPPED (status) && !lp)
2959 return NULL;
2960
2961 /* Handle GNU/Linux's syscall SIGTRAPs. */
2962 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2963 {
2964 /* No longer need the sysgood bit. The ptrace event ends up
2965 recorded in lp->waitstatus if we care for it. We can carry
2966 on handling the event like a regular SIGTRAP from here
2967 on. */
2968 status = W_STOPCODE (SIGTRAP);
2969 if (linux_handle_syscall_trap (lp, 0))
2970 return NULL;
2971 }
2972
2973 /* Handle GNU/Linux's extended waitstatus for trace events. */
2974 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2975 {
2976 if (debug_linux_nat)
2977 fprintf_unfiltered (gdb_stdlog,
2978 "LLW: Handling extended status 0x%06x\n",
2979 status);
2980 if (linux_handle_extended_wait (lp, status, 0))
2981 return NULL;
2982 }
2983
2984 if (linux_nat_status_is_event (status))
2985 save_sigtrap (lp);
2986
2987 /* Check if the thread has exited. */
2988 if ((WIFEXITED (status) || WIFSIGNALED (status))
2989 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2990 {
2991 /* If this is the main thread, we must stop all threads and verify
2992 if they are still alive. This is because in the nptl thread model
2993 on Linux 2.4, there is no signal issued for exiting LWPs
2994 other than the main thread. We only get the main thread exit
2995 signal once all child threads have already exited. If we
2996 stop all the threads and use the stop_wait_callback to check
2997 if they have exited we can determine whether this signal
2998 should be ignored or whether it means the end of the debugged
2999 application, regardless of which threading model is being
3000 used. */
3001 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3002 {
3003 lp->stopped = 1;
3004 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3005 stop_and_resume_callback, new_pending_p);
3006 }
3007
3008 if (debug_linux_nat)
3009 fprintf_unfiltered (gdb_stdlog,
3010 "LLW: %s exited.\n",
3011 target_pid_to_str (lp->ptid));
3012
3013 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3014 {
3015 /* If there is at least one more LWP, then the exit signal
3016 was not the end of the debugged application and should be
3017 ignored. */
3018 exit_lwp (lp);
3019 return NULL;
3020 }
3021 }
3022
3023 /* Check if the current LWP has previously exited. In the nptl
3024 thread model, LWPs other than the main thread do not issue
3025 signals when they exit so we must check whenever the thread has
3026 stopped. A similar check is made in stop_wait_callback(). */
3027 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3028 {
3029 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3030
3031 if (debug_linux_nat)
3032 fprintf_unfiltered (gdb_stdlog,
3033 "LLW: %s exited.\n",
3034 target_pid_to_str (lp->ptid));
3035
3036 exit_lwp (lp);
3037
3038 /* Make sure there is at least one thread running. */
3039 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3040
3041 /* Discard the event. */
3042 return NULL;
3043 }
3044
3045 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3046 an attempt to stop an LWP. */
3047 if (lp->signalled
3048 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3049 {
3050 if (debug_linux_nat)
3051 fprintf_unfiltered (gdb_stdlog,
3052 "LLW: Delayed SIGSTOP caught for %s.\n",
3053 target_pid_to_str (lp->ptid));
3054
3055 lp->signalled = 0;
3056
3057 if (lp->last_resume_kind != resume_stop)
3058 {
3059 /* This is a delayed SIGSTOP. */
3060
3061 registers_changed ();
3062
3063 if (linux_nat_prepare_to_resume != NULL)
3064 linux_nat_prepare_to_resume (lp);
3065 linux_ops->to_resume (linux_ops,
3066 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3067 lp->step, GDB_SIGNAL_0);
3068 if (debug_linux_nat)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3071 lp->step ?
3072 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3073 target_pid_to_str (lp->ptid));
3074
3075 lp->stopped = 0;
3076 gdb_assert (lp->resumed);
3077
3078 /* Discard the event. */
3079 return NULL;
3080 }
3081 }
3082
3083 /* Make sure we don't report a SIGINT that we have already displayed
3084 for another thread. */
3085 if (lp->ignore_sigint
3086 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3087 {
3088 if (debug_linux_nat)
3089 fprintf_unfiltered (gdb_stdlog,
3090 "LLW: Delayed SIGINT caught for %s.\n",
3091 target_pid_to_str (lp->ptid));
3092
3093 /* This is a delayed SIGINT. */
3094 lp->ignore_sigint = 0;
3095
3096 registers_changed ();
3097 if (linux_nat_prepare_to_resume != NULL)
3098 linux_nat_prepare_to_resume (lp);
3099 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3100 lp->step, GDB_SIGNAL_0);
3101 if (debug_linux_nat)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3104 lp->step ?
3105 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3106 target_pid_to_str (lp->ptid));
3107
3108 lp->stopped = 0;
3109 gdb_assert (lp->resumed);
3110
3111 /* Discard the event. */
3112 return NULL;
3113 }
3114
3115 /* An interesting event. */
3116 gdb_assert (lp);
3117 lp->status = status;
3118 return lp;
3119 }
3120
3121 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3122 their exits until all other threads in the group have exited. */
3123
3124 static void
3125 check_zombie_leaders (void)
3126 {
3127 struct inferior *inf;
3128
3129 ALL_INFERIORS (inf)
3130 {
3131 struct lwp_info *leader_lp;
3132
3133 if (inf->pid == 0)
3134 continue;
3135
3136 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3137 if (leader_lp != NULL
3138 /* Check if there are other threads in the group, as we may
3139 have raced with the inferior simply exiting. */
3140 && num_lwps (inf->pid) > 1
3141 && linux_proc_pid_is_zombie (inf->pid))
3142 {
3143 if (debug_linux_nat)
3144 fprintf_unfiltered (gdb_stdlog,
3145 "CZL: Thread group leader %d zombie "
3146 "(it exited, or another thread execd).\n",
3147 inf->pid);
3148
3149 /* A leader zombie can mean one of two things:
3150
3151 - It exited, and there's an exit status pending
3152 available, or only the leader exited (not the whole
3153 program). In the latter case, we can't waitpid the
3154 leader's exit status until all other threads are gone.
3155
3156 - There are 3 or more threads in the group, and a thread
3157 other than the leader exec'd. On an exec, the Linux
3158 kernel destroys all other threads (except the execing
3159 one) in the thread group, and resets the execing thread's
3160 tid to the tgid. No exit notification is sent for the
3161 execing thread -- from the ptracer's perspective, it
3162 appears as though the execing thread just vanishes.
3163 Until we reap all other threads except the leader and the
3164 execing thread, the leader will be zombie, and the
3165 execing thread will be in `D (disc sleep)'. As soon as
3166 all other threads are reaped, the execing thread changes
3167 it's tid to the tgid, and the previous (zombie) leader
3168 vanishes, giving place to the "new" leader. We could try
3169 distinguishing the exit and exec cases, by waiting once
3170 more, and seeing if something comes out, but it doesn't
3171 sound useful. The previous leader _does_ go away, and
3172 we'll re-add the new one once we see the exec event
3173 (which is just the same as what would happen if the
3174 previous leader did exit voluntarily before some other
3175 thread execs). */
3176
3177 if (debug_linux_nat)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "CZL: Thread group leader %d vanished.\n",
3180 inf->pid);
3181 exit_lwp (leader_lp);
3182 }
3183 }
3184 }
3185
3186 static ptid_t
3187 linux_nat_wait_1 (struct target_ops *ops,
3188 ptid_t ptid, struct target_waitstatus *ourstatus,
3189 int target_options)
3190 {
3191 static sigset_t prev_mask;
3192 enum resume_kind last_resume_kind;
3193 struct lwp_info *lp;
3194 int status;
3195
3196 if (debug_linux_nat)
3197 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3198
3199 /* The first time we get here after starting a new inferior, we may
3200 not have added it to the LWP list yet - this is the earliest
3201 moment at which we know its PID. */
3202 if (ptid_is_pid (inferior_ptid))
3203 {
3204 /* Upgrade the main thread's ptid. */
3205 thread_change_ptid (inferior_ptid,
3206 ptid_build (ptid_get_pid (inferior_ptid),
3207 ptid_get_pid (inferior_ptid), 0));
3208
3209 lp = add_initial_lwp (inferior_ptid);
3210 lp->resumed = 1;
3211 }
3212
3213 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3214 block_child_signals (&prev_mask);
3215
3216 retry:
3217 lp = NULL;
3218 status = 0;
3219
3220 /* First check if there is a LWP with a wait status pending. */
3221 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3222 {
3223 /* Any LWP in the PTID group that's been resumed will do. */
3224 lp = iterate_over_lwps (ptid, status_callback, NULL);
3225 if (lp)
3226 {
3227 if (debug_linux_nat && lp->status)
3228 fprintf_unfiltered (gdb_stdlog,
3229 "LLW: Using pending wait status %s for %s.\n",
3230 status_to_str (lp->status),
3231 target_pid_to_str (lp->ptid));
3232 }
3233 }
3234 else if (ptid_lwp_p (ptid))
3235 {
3236 if (debug_linux_nat)
3237 fprintf_unfiltered (gdb_stdlog,
3238 "LLW: Waiting for specific LWP %s.\n",
3239 target_pid_to_str (ptid));
3240
3241 /* We have a specific LWP to check. */
3242 lp = find_lwp_pid (ptid);
3243 gdb_assert (lp);
3244
3245 if (debug_linux_nat && lp->status)
3246 fprintf_unfiltered (gdb_stdlog,
3247 "LLW: Using pending wait status %s for %s.\n",
3248 status_to_str (lp->status),
3249 target_pid_to_str (lp->ptid));
3250
3251 /* We check for lp->waitstatus in addition to lp->status,
3252 because we can have pending process exits recorded in
3253 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3254 an additional lp->status_p flag. */
3255 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3256 lp = NULL;
3257 }
3258
3259 if (!target_can_async_p ())
3260 {
3261 /* Causes SIGINT to be passed on to the attached process. */
3262 set_sigint_trap ();
3263 }
3264
3265 /* But if we don't find a pending event, we'll have to wait. */
3266
3267 while (lp == NULL)
3268 {
3269 pid_t lwpid;
3270
3271 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3272 quirks:
3273
3274 - If the thread group leader exits while other threads in the
3275 thread group still exist, waitpid(TGID, ...) hangs. That
3276 waitpid won't return an exit status until the other threads
3277 in the group are reapped.
3278
3279 - When a non-leader thread execs, that thread just vanishes
3280 without reporting an exit (so we'd hang if we waited for it
3281 explicitly in that case). The exec event is reported to
3282 the TGID pid. */
3283
3284 errno = 0;
3285 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3286 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3287 lwpid = my_waitpid (-1, &status, WNOHANG);
3288
3289 if (debug_linux_nat)
3290 fprintf_unfiltered (gdb_stdlog,
3291 "LNW: waitpid(-1, ...) returned %d, %s\n",
3292 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3293
3294 if (lwpid > 0)
3295 {
3296 /* If this is true, then we paused LWPs momentarily, and may
3297 now have pending events to handle. */
3298 int new_pending;
3299
3300 if (debug_linux_nat)
3301 {
3302 fprintf_unfiltered (gdb_stdlog,
3303 "LLW: waitpid %ld received %s\n",
3304 (long) lwpid, status_to_str (status));
3305 }
3306
3307 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3308
3309 /* STATUS is now no longer valid, use LP->STATUS instead. */
3310 status = 0;
3311
3312 if (lp && !ptid_match (lp->ptid, ptid))
3313 {
3314 gdb_assert (lp->resumed);
3315
3316 if (debug_linux_nat)
3317 fprintf (stderr,
3318 "LWP %ld got an event %06x, leaving pending.\n",
3319 ptid_get_lwp (lp->ptid), lp->status);
3320
3321 if (WIFSTOPPED (lp->status))
3322 {
3323 if (WSTOPSIG (lp->status) != SIGSTOP)
3324 {
3325 /* Cancel breakpoint hits. The breakpoint may
3326 be removed before we fetch events from this
3327 process to report to the core. It is best
3328 not to assume the moribund breakpoints
3329 heuristic always handles these cases --- it
3330 could be too many events go through to the
3331 core before this one is handled. All-stop
3332 always cancels breakpoint hits in all
3333 threads. */
3334 if (non_stop
3335 && linux_nat_lp_status_is_event (lp)
3336 && cancel_breakpoint (lp))
3337 {
3338 /* Throw away the SIGTRAP. */
3339 lp->status = 0;
3340
3341 if (debug_linux_nat)
3342 fprintf (stderr,
3343 "LLW: LWP %ld hit a breakpoint while"
3344 " waiting for another process;"
3345 " cancelled it\n",
3346 ptid_get_lwp (lp->ptid));
3347 }
3348 lp->stopped = 1;
3349 }
3350 else
3351 {
3352 lp->stopped = 1;
3353 lp->signalled = 0;
3354 }
3355 }
3356 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3357 {
3358 if (debug_linux_nat)
3359 fprintf (stderr,
3360 "Process %ld exited while stopping LWPs\n",
3361 ptid_get_lwp (lp->ptid));
3362
3363 /* This was the last lwp in the process. Since
3364 events are serialized to GDB core, and we can't
3365 report this one right now, but GDB core and the
3366 other target layers will want to be notified
3367 about the exit code/signal, leave the status
3368 pending for the next time we're able to report
3369 it. */
3370
3371 /* Prevent trying to stop this thread again. We'll
3372 never try to resume it because it has a pending
3373 status. */
3374 lp->stopped = 1;
3375
3376 /* Dead LWP's aren't expected to reported a pending
3377 sigstop. */
3378 lp->signalled = 0;
3379
3380 /* Store the pending event in the waitstatus as
3381 well, because W_EXITCODE(0,0) == 0. */
3382 store_waitstatus (&lp->waitstatus, lp->status);
3383 }
3384
3385 /* Keep looking. */
3386 lp = NULL;
3387 }
3388
3389 if (new_pending)
3390 {
3391 /* Some LWP now has a pending event. Go all the way
3392 back to check it. */
3393 goto retry;
3394 }
3395
3396 if (lp)
3397 {
3398 /* We got an event to report to the core. */
3399 break;
3400 }
3401
3402 /* Retry until nothing comes out of waitpid. A single
3403 SIGCHLD can indicate more than one child stopped. */
3404 continue;
3405 }
3406
3407 /* Check for zombie thread group leaders. Those can't be reaped
3408 until all other threads in the thread group are. */
3409 check_zombie_leaders ();
3410
3411 /* If there are no resumed children left, bail. We'd be stuck
3412 forever in the sigsuspend call below otherwise. */
3413 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3414 {
3415 if (debug_linux_nat)
3416 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3417
3418 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3419
3420 if (!target_can_async_p ())
3421 clear_sigint_trap ();
3422
3423 restore_child_signals_mask (&prev_mask);
3424 return minus_one_ptid;
3425 }
3426
3427 /* No interesting event to report to the core. */
3428
3429 if (target_options & TARGET_WNOHANG)
3430 {
3431 if (debug_linux_nat)
3432 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3433
3434 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3435 restore_child_signals_mask (&prev_mask);
3436 return minus_one_ptid;
3437 }
3438
3439 /* We shouldn't end up here unless we want to try again. */
3440 gdb_assert (lp == NULL);
3441
3442 /* Block until we get an event reported with SIGCHLD. */
3443 sigsuspend (&suspend_mask);
3444 }
3445
3446 if (!target_can_async_p ())
3447 clear_sigint_trap ();
3448
3449 gdb_assert (lp);
3450
3451 status = lp->status;
3452 lp->status = 0;
3453
3454 /* Don't report signals that GDB isn't interested in, such as
3455 signals that are neither printed nor stopped upon. Stopping all
3456 threads can be a bit time-consuming so if we want decent
3457 performance with heavily multi-threaded programs, especially when
3458 they're using a high frequency timer, we'd better avoid it if we
3459 can. */
3460
3461 if (WIFSTOPPED (status))
3462 {
3463 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3464
3465 /* When using hardware single-step, we need to report every signal.
3466 Otherwise, signals in pass_mask may be short-circuited. */
3467 if (!lp->step
3468 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3469 {
3470 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3471 here? It is not clear we should. GDB may not expect
3472 other threads to run. On the other hand, not resuming
3473 newly attached threads may cause an unwanted delay in
3474 getting them running. */
3475 registers_changed ();
3476 if (linux_nat_prepare_to_resume != NULL)
3477 linux_nat_prepare_to_resume (lp);
3478 linux_ops->to_resume (linux_ops,
3479 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3480 lp->step, signo);
3481 if (debug_linux_nat)
3482 fprintf_unfiltered (gdb_stdlog,
3483 "LLW: %s %s, %s (preempt 'handle')\n",
3484 lp->step ?
3485 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3486 target_pid_to_str (lp->ptid),
3487 (signo != GDB_SIGNAL_0
3488 ? strsignal (gdb_signal_to_host (signo))
3489 : "0"));
3490 lp->stopped = 0;
3491 goto retry;
3492 }
3493
3494 if (!non_stop)
3495 {
3496 /* Only do the below in all-stop, as we currently use SIGINT
3497 to implement target_stop (see linux_nat_stop) in
3498 non-stop. */
3499 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3500 {
3501 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3502 forwarded to the entire process group, that is, all LWPs
3503 will receive it - unless they're using CLONE_THREAD to
3504 share signals. Since we only want to report it once, we
3505 mark it as ignored for all LWPs except this one. */
3506 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3507 set_ignore_sigint, NULL);
3508 lp->ignore_sigint = 0;
3509 }
3510 else
3511 maybe_clear_ignore_sigint (lp);
3512 }
3513 }
3514
3515 /* This LWP is stopped now. */
3516 lp->stopped = 1;
3517
3518 if (debug_linux_nat)
3519 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3520 status_to_str (status), target_pid_to_str (lp->ptid));
3521
3522 if (!non_stop)
3523 {
3524 /* Now stop all other LWP's ... */
3525 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3526
3527 /* ... and wait until all of them have reported back that
3528 they're no longer running. */
3529 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3530
3531 /* If we're not waiting for a specific LWP, choose an event LWP
3532 from among those that have had events. Giving equal priority
3533 to all LWPs that have had events helps prevent
3534 starvation. */
3535 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3536 select_event_lwp (ptid, &lp, &status);
3537
3538 /* Now that we've selected our final event LWP, cancel any
3539 breakpoints in other LWPs that have hit a GDB breakpoint.
3540 See the comment in cancel_breakpoints_callback to find out
3541 why. */
3542 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3543
3544 /* We'll need this to determine whether to report a SIGSTOP as
3545 TARGET_WAITKIND_0. Need to take a copy because
3546 resume_clear_callback clears it. */
3547 last_resume_kind = lp->last_resume_kind;
3548
3549 /* In all-stop, from the core's perspective, all LWPs are now
3550 stopped until a new resume action is sent over. */
3551 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3552 }
3553 else
3554 {
3555 /* See above. */
3556 last_resume_kind = lp->last_resume_kind;
3557 resume_clear_callback (lp, NULL);
3558 }
3559
3560 if (linux_nat_status_is_event (status))
3561 {
3562 if (debug_linux_nat)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "LLW: trap ptid is %s.\n",
3565 target_pid_to_str (lp->ptid));
3566 }
3567
3568 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3569 {
3570 *ourstatus = lp->waitstatus;
3571 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3572 }
3573 else
3574 store_waitstatus (ourstatus, status);
3575
3576 if (debug_linux_nat)
3577 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3578
3579 restore_child_signals_mask (&prev_mask);
3580
3581 if (last_resume_kind == resume_stop
3582 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3583 && WSTOPSIG (status) == SIGSTOP)
3584 {
3585 /* A thread that has been requested to stop by GDB with
3586 target_stop, and it stopped cleanly, so report as SIG0. The
3587 use of SIGSTOP is an implementation detail. */
3588 ourstatus->value.sig = GDB_SIGNAL_0;
3589 }
3590
3591 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3592 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3593 lp->core = -1;
3594 else
3595 lp->core = linux_common_core_of_thread (lp->ptid);
3596
3597 return lp->ptid;
3598 }
3599
3600 /* Resume LWPs that are currently stopped without any pending status
3601 to report, but are resumed from the core's perspective. */
3602
3603 static int
3604 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3605 {
3606 ptid_t *wait_ptid_p = data;
3607
3608 if (lp->stopped
3609 && lp->resumed
3610 && lp->status == 0
3611 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3612 {
3613 struct regcache *regcache = get_thread_regcache (lp->ptid);
3614 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3615 CORE_ADDR pc = regcache_read_pc (regcache);
3616
3617 gdb_assert (is_executing (lp->ptid));
3618
3619 /* Don't bother if there's a breakpoint at PC that we'd hit
3620 immediately, and we're not waiting for this LWP. */
3621 if (!ptid_match (lp->ptid, *wait_ptid_p))
3622 {
3623 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3624 return 0;
3625 }
3626
3627 if (debug_linux_nat)
3628 fprintf_unfiltered (gdb_stdlog,
3629 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3630 target_pid_to_str (lp->ptid),
3631 paddress (gdbarch, pc),
3632 lp->step);
3633
3634 registers_changed ();
3635 if (linux_nat_prepare_to_resume != NULL)
3636 linux_nat_prepare_to_resume (lp);
3637 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3638 lp->step, GDB_SIGNAL_0);
3639 lp->stopped = 0;
3640 lp->stopped_by_watchpoint = 0;
3641 }
3642
3643 return 0;
3644 }
3645
3646 static ptid_t
3647 linux_nat_wait (struct target_ops *ops,
3648 ptid_t ptid, struct target_waitstatus *ourstatus,
3649 int target_options)
3650 {
3651 ptid_t event_ptid;
3652
3653 if (debug_linux_nat)
3654 {
3655 char *options_string;
3656
3657 options_string = target_options_to_string (target_options);
3658 fprintf_unfiltered (gdb_stdlog,
3659 "linux_nat_wait: [%s], [%s]\n",
3660 target_pid_to_str (ptid),
3661 options_string);
3662 xfree (options_string);
3663 }
3664
3665 /* Flush the async file first. */
3666 if (target_can_async_p ())
3667 async_file_flush ();
3668
3669 /* Resume LWPs that are currently stopped without any pending status
3670 to report, but are resumed from the core's perspective. LWPs get
3671 in this state if we find them stopping at a time we're not
3672 interested in reporting the event (target_wait on a
3673 specific_process, for example, see linux_nat_wait_1), and
3674 meanwhile the event became uninteresting. Don't bother resuming
3675 LWPs we're not going to wait for if they'd stop immediately. */
3676 if (non_stop)
3677 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3678
3679 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3680
3681 /* If we requested any event, and something came out, assume there
3682 may be more. If we requested a specific lwp or process, also
3683 assume there may be more. */
3684 if (target_can_async_p ()
3685 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3686 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3687 || !ptid_equal (ptid, minus_one_ptid)))
3688 async_file_mark ();
3689
3690 /* Get ready for the next event. */
3691 if (target_can_async_p ())
3692 target_async (inferior_event_handler, 0);
3693
3694 return event_ptid;
3695 }
3696
3697 static int
3698 kill_callback (struct lwp_info *lp, void *data)
3699 {
3700 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3701
3702 errno = 0;
3703 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3704 if (debug_linux_nat)
3705 fprintf_unfiltered (gdb_stdlog,
3706 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3707 target_pid_to_str (lp->ptid),
3708 errno ? safe_strerror (errno) : "OK");
3709
3710 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3711
3712 errno = 0;
3713 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3714 if (debug_linux_nat)
3715 fprintf_unfiltered (gdb_stdlog,
3716 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3717 target_pid_to_str (lp->ptid),
3718 errno ? safe_strerror (errno) : "OK");
3719
3720 return 0;
3721 }
3722
3723 static int
3724 kill_wait_callback (struct lwp_info *lp, void *data)
3725 {
3726 pid_t pid;
3727
3728 /* We must make sure that there are no pending events (delayed
3729 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3730 program doesn't interfere with any following debugging session. */
3731
3732 /* For cloned processes we must check both with __WCLONE and
3733 without, since the exit status of a cloned process isn't reported
3734 with __WCLONE. */
3735 if (lp->cloned)
3736 {
3737 do
3738 {
3739 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3740 if (pid != (pid_t) -1)
3741 {
3742 if (debug_linux_nat)
3743 fprintf_unfiltered (gdb_stdlog,
3744 "KWC: wait %s received unknown.\n",
3745 target_pid_to_str (lp->ptid));
3746 /* The Linux kernel sometimes fails to kill a thread
3747 completely after PTRACE_KILL; that goes from the stop
3748 point in do_fork out to the one in
3749 get_signal_to_deliever and waits again. So kill it
3750 again. */
3751 kill_callback (lp, NULL);
3752 }
3753 }
3754 while (pid == ptid_get_lwp (lp->ptid));
3755
3756 gdb_assert (pid == -1 && errno == ECHILD);
3757 }
3758
3759 do
3760 {
3761 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3762 if (pid != (pid_t) -1)
3763 {
3764 if (debug_linux_nat)
3765 fprintf_unfiltered (gdb_stdlog,
3766 "KWC: wait %s received unk.\n",
3767 target_pid_to_str (lp->ptid));
3768 /* See the call to kill_callback above. */
3769 kill_callback (lp, NULL);
3770 }
3771 }
3772 while (pid == ptid_get_lwp (lp->ptid));
3773
3774 gdb_assert (pid == -1 && errno == ECHILD);
3775 return 0;
3776 }
3777
3778 static void
3779 linux_nat_kill (struct target_ops *ops)
3780 {
3781 struct target_waitstatus last;
3782 ptid_t last_ptid;
3783 int status;
3784
3785 /* If we're stopped while forking and we haven't followed yet,
3786 kill the other task. We need to do this first because the
3787 parent will be sleeping if this is a vfork. */
3788
3789 get_last_target_status (&last_ptid, &last);
3790
3791 if (last.kind == TARGET_WAITKIND_FORKED
3792 || last.kind == TARGET_WAITKIND_VFORKED)
3793 {
3794 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3795 wait (&status);
3796
3797 /* Let the arch-specific native code know this process is
3798 gone. */
3799 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3800 }
3801
3802 if (forks_exist_p ())
3803 linux_fork_killall ();
3804 else
3805 {
3806 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3807
3808 /* Stop all threads before killing them, since ptrace requires
3809 that the thread is stopped to sucessfully PTRACE_KILL. */
3810 iterate_over_lwps (ptid, stop_callback, NULL);
3811 /* ... and wait until all of them have reported back that
3812 they're no longer running. */
3813 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3814
3815 /* Kill all LWP's ... */
3816 iterate_over_lwps (ptid, kill_callback, NULL);
3817
3818 /* ... and wait until we've flushed all events. */
3819 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3820 }
3821
3822 target_mourn_inferior ();
3823 }
3824
3825 static void
3826 linux_nat_mourn_inferior (struct target_ops *ops)
3827 {
3828 int pid = ptid_get_pid (inferior_ptid);
3829
3830 purge_lwp_list (pid);
3831
3832 if (! forks_exist_p ())
3833 /* Normal case, no other forks available. */
3834 linux_ops->to_mourn_inferior (ops);
3835 else
3836 /* Multi-fork case. The current inferior_ptid has exited, but
3837 there are other viable forks to debug. Delete the exiting
3838 one and context-switch to the first available. */
3839 linux_fork_mourn_inferior ();
3840
3841 /* Let the arch-specific native code know this process is gone. */
3842 linux_nat_forget_process (pid);
3843 }
3844
3845 /* Convert a native/host siginfo object, into/from the siginfo in the
3846 layout of the inferiors' architecture. */
3847
3848 static void
3849 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3850 {
3851 int done = 0;
3852
3853 if (linux_nat_siginfo_fixup != NULL)
3854 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3855
3856 /* If there was no callback, or the callback didn't do anything,
3857 then just do a straight memcpy. */
3858 if (!done)
3859 {
3860 if (direction == 1)
3861 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3862 else
3863 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3864 }
3865 }
3866
3867 static LONGEST
3868 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3869 const char *annex, gdb_byte *readbuf,
3870 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3871 {
3872 int pid;
3873 siginfo_t siginfo;
3874 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3875
3876 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3877 gdb_assert (readbuf || writebuf);
3878
3879 pid = ptid_get_lwp (inferior_ptid);
3880 if (pid == 0)
3881 pid = ptid_get_pid (inferior_ptid);
3882
3883 if (offset > sizeof (siginfo))
3884 return -1;
3885
3886 errno = 0;
3887 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3888 if (errno != 0)
3889 return -1;
3890
3891 /* When GDB is built as a 64-bit application, ptrace writes into
3892 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3893 inferior with a 64-bit GDB should look the same as debugging it
3894 with a 32-bit GDB, we need to convert it. GDB core always sees
3895 the converted layout, so any read/write will have to be done
3896 post-conversion. */
3897 siginfo_fixup (&siginfo, inf_siginfo, 0);
3898
3899 if (offset + len > sizeof (siginfo))
3900 len = sizeof (siginfo) - offset;
3901
3902 if (readbuf != NULL)
3903 memcpy (readbuf, inf_siginfo + offset, len);
3904 else
3905 {
3906 memcpy (inf_siginfo + offset, writebuf, len);
3907
3908 /* Convert back to ptrace layout before flushing it out. */
3909 siginfo_fixup (&siginfo, inf_siginfo, 1);
3910
3911 errno = 0;
3912 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3913 if (errno != 0)
3914 return -1;
3915 }
3916
3917 return len;
3918 }
3919
3920 static LONGEST
3921 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3922 const char *annex, gdb_byte *readbuf,
3923 const gdb_byte *writebuf,
3924 ULONGEST offset, LONGEST len)
3925 {
3926 struct cleanup *old_chain;
3927 LONGEST xfer;
3928
3929 if (object == TARGET_OBJECT_SIGNAL_INFO)
3930 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3931 offset, len);
3932
3933 /* The target is connected but no live inferior is selected. Pass
3934 this request down to a lower stratum (e.g., the executable
3935 file). */
3936 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3937 return 0;
3938
3939 old_chain = save_inferior_ptid ();
3940
3941 if (ptid_lwp_p (inferior_ptid))
3942 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3943
3944 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3945 offset, len);
3946
3947 do_cleanups (old_chain);
3948 return xfer;
3949 }
3950
3951 static int
3952 linux_thread_alive (ptid_t ptid)
3953 {
3954 int err, tmp_errno;
3955
3956 gdb_assert (ptid_lwp_p (ptid));
3957
3958 /* Send signal 0 instead of anything ptrace, because ptracing a
3959 running thread errors out claiming that the thread doesn't
3960 exist. */
3961 err = kill_lwp (ptid_get_lwp (ptid), 0);
3962 tmp_errno = errno;
3963 if (debug_linux_nat)
3964 fprintf_unfiltered (gdb_stdlog,
3965 "LLTA: KILL(SIG0) %s (%s)\n",
3966 target_pid_to_str (ptid),
3967 err ? safe_strerror (tmp_errno) : "OK");
3968
3969 if (err != 0)
3970 return 0;
3971
3972 return 1;
3973 }
3974
3975 static int
3976 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3977 {
3978 return linux_thread_alive (ptid);
3979 }
3980
3981 static char *
3982 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3983 {
3984 static char buf[64];
3985
3986 if (ptid_lwp_p (ptid)
3987 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3988 || num_lwps (ptid_get_pid (ptid)) > 1))
3989 {
3990 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3991 return buf;
3992 }
3993
3994 return normal_pid_to_str (ptid);
3995 }
3996
3997 static char *
3998 linux_nat_thread_name (struct thread_info *thr)
3999 {
4000 int pid = ptid_get_pid (thr->ptid);
4001 long lwp = ptid_get_lwp (thr->ptid);
4002 #define FORMAT "/proc/%d/task/%ld/comm"
4003 char buf[sizeof (FORMAT) + 30];
4004 FILE *comm_file;
4005 char *result = NULL;
4006
4007 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4008 comm_file = gdb_fopen_cloexec (buf, "r");
4009 if (comm_file)
4010 {
4011 /* Not exported by the kernel, so we define it here. */
4012 #define COMM_LEN 16
4013 static char line[COMM_LEN + 1];
4014
4015 if (fgets (line, sizeof (line), comm_file))
4016 {
4017 char *nl = strchr (line, '\n');
4018
4019 if (nl)
4020 *nl = '\0';
4021 if (*line != '\0')
4022 result = line;
4023 }
4024
4025 fclose (comm_file);
4026 }
4027
4028 #undef COMM_LEN
4029 #undef FORMAT
4030
4031 return result;
4032 }
4033
4034 /* Accepts an integer PID; Returns a string representing a file that
4035 can be opened to get the symbols for the child process. */
4036
4037 static char *
4038 linux_child_pid_to_exec_file (int pid)
4039 {
4040 char *name1, *name2;
4041
4042 name1 = xmalloc (PATH_MAX);
4043 name2 = xmalloc (PATH_MAX);
4044 make_cleanup (xfree, name1);
4045 make_cleanup (xfree, name2);
4046 memset (name2, 0, PATH_MAX);
4047
4048 xsnprintf (name1, PATH_MAX, "/proc/%d/exe", pid);
4049 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4050 return name2;
4051 else
4052 return name1;
4053 }
4054
4055 /* Records the thread's register state for the corefile note
4056 section. */
4057
4058 static char *
4059 linux_nat_collect_thread_registers (const struct regcache *regcache,
4060 ptid_t ptid, bfd *obfd,
4061 char *note_data, int *note_size,
4062 enum gdb_signal stop_signal)
4063 {
4064 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4065 const struct regset *regset;
4066 int core_regset_p;
4067 gdb_gregset_t gregs;
4068 gdb_fpregset_t fpregs;
4069
4070 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4071
4072 if (core_regset_p
4073 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4074 sizeof (gregs)))
4075 != NULL && regset->collect_regset != NULL)
4076 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4077 else
4078 fill_gregset (regcache, &gregs, -1);
4079
4080 note_data = (char *) elfcore_write_prstatus
4081 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4082 gdb_signal_to_host (stop_signal), &gregs);
4083
4084 if (core_regset_p
4085 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4086 sizeof (fpregs)))
4087 != NULL && regset->collect_regset != NULL)
4088 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4089 else
4090 fill_fpregset (regcache, &fpregs, -1);
4091
4092 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4093 &fpregs, sizeof (fpregs));
4094
4095 return note_data;
4096 }
4097
4098 /* Fills the "to_make_corefile_note" target vector. Builds the note
4099 section for a corefile, and returns it in a malloc buffer. */
4100
4101 static char *
4102 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4103 {
4104 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4105 converted to gdbarch_core_regset_sections, this function can go away. */
4106 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4107 linux_nat_collect_thread_registers);
4108 }
4109
4110 /* Implement the to_xfer_partial interface for memory reads using the /proc
4111 filesystem. Because we can use a single read() call for /proc, this
4112 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4113 but it doesn't support writes. */
4114
4115 static LONGEST
4116 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4117 const char *annex, gdb_byte *readbuf,
4118 const gdb_byte *writebuf,
4119 ULONGEST offset, LONGEST len)
4120 {
4121 LONGEST ret;
4122 int fd;
4123 char filename[64];
4124
4125 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4126 return 0;
4127
4128 /* Don't bother for one word. */
4129 if (len < 3 * sizeof (long))
4130 return 0;
4131
4132 /* We could keep this file open and cache it - possibly one per
4133 thread. That requires some juggling, but is even faster. */
4134 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4135 ptid_get_pid (inferior_ptid));
4136 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4137 if (fd == -1)
4138 return 0;
4139
4140 /* If pread64 is available, use it. It's faster if the kernel
4141 supports it (only one syscall), and it's 64-bit safe even on
4142 32-bit platforms (for instance, SPARC debugging a SPARC64
4143 application). */
4144 #ifdef HAVE_PREAD64
4145 if (pread64 (fd, readbuf, len, offset) != len)
4146 #else
4147 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4148 #endif
4149 ret = 0;
4150 else
4151 ret = len;
4152
4153 close (fd);
4154 return ret;
4155 }
4156
4157
4158 /* Enumerate spufs IDs for process PID. */
4159 static LONGEST
4160 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4161 {
4162 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4163 LONGEST pos = 0;
4164 LONGEST written = 0;
4165 char path[128];
4166 DIR *dir;
4167 struct dirent *entry;
4168
4169 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4170 dir = opendir (path);
4171 if (!dir)
4172 return -1;
4173
4174 rewinddir (dir);
4175 while ((entry = readdir (dir)) != NULL)
4176 {
4177 struct stat st;
4178 struct statfs stfs;
4179 int fd;
4180
4181 fd = atoi (entry->d_name);
4182 if (!fd)
4183 continue;
4184
4185 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4186 if (stat (path, &st) != 0)
4187 continue;
4188 if (!S_ISDIR (st.st_mode))
4189 continue;
4190
4191 if (statfs (path, &stfs) != 0)
4192 continue;
4193 if (stfs.f_type != SPUFS_MAGIC)
4194 continue;
4195
4196 if (pos >= offset && pos + 4 <= offset + len)
4197 {
4198 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4199 written += 4;
4200 }
4201 pos += 4;
4202 }
4203
4204 closedir (dir);
4205 return written;
4206 }
4207
4208 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4209 object type, using the /proc file system. */
4210 static LONGEST
4211 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4212 const char *annex, gdb_byte *readbuf,
4213 const gdb_byte *writebuf,
4214 ULONGEST offset, LONGEST len)
4215 {
4216 char buf[128];
4217 int fd = 0;
4218 int ret = -1;
4219 int pid = ptid_get_pid (inferior_ptid);
4220
4221 if (!annex)
4222 {
4223 if (!readbuf)
4224 return -1;
4225 else
4226 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4227 }
4228
4229 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4230 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4231 if (fd <= 0)
4232 return -1;
4233
4234 if (offset != 0
4235 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4236 {
4237 close (fd);
4238 return 0;
4239 }
4240
4241 if (writebuf)
4242 ret = write (fd, writebuf, (size_t) len);
4243 else if (readbuf)
4244 ret = read (fd, readbuf, (size_t) len);
4245
4246 close (fd);
4247 return ret;
4248 }
4249
4250
4251 /* Parse LINE as a signal set and add its set bits to SIGS. */
4252
4253 static void
4254 add_line_to_sigset (const char *line, sigset_t *sigs)
4255 {
4256 int len = strlen (line) - 1;
4257 const char *p;
4258 int signum;
4259
4260 if (line[len] != '\n')
4261 error (_("Could not parse signal set: %s"), line);
4262
4263 p = line;
4264 signum = len * 4;
4265 while (len-- > 0)
4266 {
4267 int digit;
4268
4269 if (*p >= '0' && *p <= '9')
4270 digit = *p - '0';
4271 else if (*p >= 'a' && *p <= 'f')
4272 digit = *p - 'a' + 10;
4273 else
4274 error (_("Could not parse signal set: %s"), line);
4275
4276 signum -= 4;
4277
4278 if (digit & 1)
4279 sigaddset (sigs, signum + 1);
4280 if (digit & 2)
4281 sigaddset (sigs, signum + 2);
4282 if (digit & 4)
4283 sigaddset (sigs, signum + 3);
4284 if (digit & 8)
4285 sigaddset (sigs, signum + 4);
4286
4287 p++;
4288 }
4289 }
4290
4291 /* Find process PID's pending signals from /proc/pid/status and set
4292 SIGS to match. */
4293
4294 void
4295 linux_proc_pending_signals (int pid, sigset_t *pending,
4296 sigset_t *blocked, sigset_t *ignored)
4297 {
4298 FILE *procfile;
4299 char buffer[PATH_MAX], fname[PATH_MAX];
4300 struct cleanup *cleanup;
4301
4302 sigemptyset (pending);
4303 sigemptyset (blocked);
4304 sigemptyset (ignored);
4305 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4306 procfile = gdb_fopen_cloexec (fname, "r");
4307 if (procfile == NULL)
4308 error (_("Could not open %s"), fname);
4309 cleanup = make_cleanup_fclose (procfile);
4310
4311 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4312 {
4313 /* Normal queued signals are on the SigPnd line in the status
4314 file. However, 2.6 kernels also have a "shared" pending
4315 queue for delivering signals to a thread group, so check for
4316 a ShdPnd line also.
4317
4318 Unfortunately some Red Hat kernels include the shared pending
4319 queue but not the ShdPnd status field. */
4320
4321 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4322 add_line_to_sigset (buffer + 8, pending);
4323 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4324 add_line_to_sigset (buffer + 8, pending);
4325 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4326 add_line_to_sigset (buffer + 8, blocked);
4327 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4328 add_line_to_sigset (buffer + 8, ignored);
4329 }
4330
4331 do_cleanups (cleanup);
4332 }
4333
4334 static LONGEST
4335 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4336 const char *annex, gdb_byte *readbuf,
4337 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4338 {
4339 gdb_assert (object == TARGET_OBJECT_OSDATA);
4340
4341 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4342 }
4343
4344 static LONGEST
4345 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4346 const char *annex, gdb_byte *readbuf,
4347 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4348 {
4349 LONGEST xfer;
4350
4351 if (object == TARGET_OBJECT_AUXV)
4352 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4353 offset, len);
4354
4355 if (object == TARGET_OBJECT_OSDATA)
4356 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4357 offset, len);
4358
4359 if (object == TARGET_OBJECT_SPU)
4360 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4361 offset, len);
4362
4363 /* GDB calculates all the addresses in possibly larget width of the address.
4364 Address width needs to be masked before its final use - either by
4365 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4366
4367 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4368
4369 if (object == TARGET_OBJECT_MEMORY)
4370 {
4371 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4372
4373 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4374 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4375 }
4376
4377 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4378 offset, len);
4379 if (xfer != 0)
4380 return xfer;
4381
4382 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4383 offset, len);
4384 }
4385
4386 static void
4387 cleanup_target_stop (void *arg)
4388 {
4389 ptid_t *ptid = (ptid_t *) arg;
4390
4391 gdb_assert (arg != NULL);
4392
4393 /* Unpause all */
4394 target_resume (*ptid, 0, GDB_SIGNAL_0);
4395 }
4396
4397 static VEC(static_tracepoint_marker_p) *
4398 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4399 {
4400 char s[IPA_CMD_BUF_SIZE];
4401 struct cleanup *old_chain;
4402 int pid = ptid_get_pid (inferior_ptid);
4403 VEC(static_tracepoint_marker_p) *markers = NULL;
4404 struct static_tracepoint_marker *marker = NULL;
4405 char *p = s;
4406 ptid_t ptid = ptid_build (pid, 0, 0);
4407
4408 /* Pause all */
4409 target_stop (ptid);
4410
4411 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4412 s[sizeof ("qTfSTM")] = 0;
4413
4414 agent_run_command (pid, s, strlen (s) + 1);
4415
4416 old_chain = make_cleanup (free_current_marker, &marker);
4417 make_cleanup (cleanup_target_stop, &ptid);
4418
4419 while (*p++ == 'm')
4420 {
4421 if (marker == NULL)
4422 marker = XCNEW (struct static_tracepoint_marker);
4423
4424 do
4425 {
4426 parse_static_tracepoint_marker_definition (p, &p, marker);
4427
4428 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4429 {
4430 VEC_safe_push (static_tracepoint_marker_p,
4431 markers, marker);
4432 marker = NULL;
4433 }
4434 else
4435 {
4436 release_static_tracepoint_marker (marker);
4437 memset (marker, 0, sizeof (*marker));
4438 }
4439 }
4440 while (*p++ == ','); /* comma-separated list */
4441
4442 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4443 s[sizeof ("qTsSTM")] = 0;
4444 agent_run_command (pid, s, strlen (s) + 1);
4445 p = s;
4446 }
4447
4448 do_cleanups (old_chain);
4449
4450 return markers;
4451 }
4452
4453 /* Create a prototype generic GNU/Linux target. The client can override
4454 it with local methods. */
4455
4456 static void
4457 linux_target_install_ops (struct target_ops *t)
4458 {
4459 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4460 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4461 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4462 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4463 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4464 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4465 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4466 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4467 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4468 t->to_post_attach = linux_child_post_attach;
4469 t->to_follow_fork = linux_child_follow_fork;
4470 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4471
4472 super_xfer_partial = t->to_xfer_partial;
4473 t->to_xfer_partial = linux_xfer_partial;
4474
4475 t->to_static_tracepoint_markers_by_strid
4476 = linux_child_static_tracepoint_markers_by_strid;
4477 }
4478
4479 struct target_ops *
4480 linux_target (void)
4481 {
4482 struct target_ops *t;
4483
4484 t = inf_ptrace_target ();
4485 linux_target_install_ops (t);
4486
4487 return t;
4488 }
4489
4490 struct target_ops *
4491 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4492 {
4493 struct target_ops *t;
4494
4495 t = inf_ptrace_trad_target (register_u_offset);
4496 linux_target_install_ops (t);
4497
4498 return t;
4499 }
4500
4501 /* target_is_async_p implementation. */
4502
4503 static int
4504 linux_nat_is_async_p (void)
4505 {
4506 /* NOTE: palves 2008-03-21: We're only async when the user requests
4507 it explicitly with the "set target-async" command.
4508 Someday, linux will always be async. */
4509 return target_async_permitted;
4510 }
4511
4512 /* target_can_async_p implementation. */
4513
4514 static int
4515 linux_nat_can_async_p (void)
4516 {
4517 /* NOTE: palves 2008-03-21: We're only async when the user requests
4518 it explicitly with the "set target-async" command.
4519 Someday, linux will always be async. */
4520 return target_async_permitted;
4521 }
4522
4523 static int
4524 linux_nat_supports_non_stop (void)
4525 {
4526 return 1;
4527 }
4528
4529 /* True if we want to support multi-process. To be removed when GDB
4530 supports multi-exec. */
4531
4532 int linux_multi_process = 1;
4533
4534 static int
4535 linux_nat_supports_multi_process (void)
4536 {
4537 return linux_multi_process;
4538 }
4539
4540 static int
4541 linux_nat_supports_disable_randomization (void)
4542 {
4543 #ifdef HAVE_PERSONALITY
4544 return 1;
4545 #else
4546 return 0;
4547 #endif
4548 }
4549
4550 static int async_terminal_is_ours = 1;
4551
4552 /* target_terminal_inferior implementation. */
4553
4554 static void
4555 linux_nat_terminal_inferior (void)
4556 {
4557 if (!target_is_async_p ())
4558 {
4559 /* Async mode is disabled. */
4560 terminal_inferior ();
4561 return;
4562 }
4563
4564 terminal_inferior ();
4565
4566 /* Calls to target_terminal_*() are meant to be idempotent. */
4567 if (!async_terminal_is_ours)
4568 return;
4569
4570 delete_file_handler (input_fd);
4571 async_terminal_is_ours = 0;
4572 set_sigint_trap ();
4573 }
4574
4575 /* target_terminal_ours implementation. */
4576
4577 static void
4578 linux_nat_terminal_ours (void)
4579 {
4580 if (!target_is_async_p ())
4581 {
4582 /* Async mode is disabled. */
4583 terminal_ours ();
4584 return;
4585 }
4586
4587 /* GDB should never give the terminal to the inferior if the
4588 inferior is running in the background (run&, continue&, etc.),
4589 but claiming it sure should. */
4590 terminal_ours ();
4591
4592 if (async_terminal_is_ours)
4593 return;
4594
4595 clear_sigint_trap ();
4596 add_file_handler (input_fd, stdin_event_handler, 0);
4597 async_terminal_is_ours = 1;
4598 }
4599
4600 static void (*async_client_callback) (enum inferior_event_type event_type,
4601 void *context);
4602 static void *async_client_context;
4603
4604 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4605 so we notice when any child changes state, and notify the
4606 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4607 above to wait for the arrival of a SIGCHLD. */
4608
4609 static void
4610 sigchld_handler (int signo)
4611 {
4612 int old_errno = errno;
4613
4614 if (debug_linux_nat)
4615 ui_file_write_async_safe (gdb_stdlog,
4616 "sigchld\n", sizeof ("sigchld\n") - 1);
4617
4618 if (signo == SIGCHLD
4619 && linux_nat_event_pipe[0] != -1)
4620 async_file_mark (); /* Let the event loop know that there are
4621 events to handle. */
4622
4623 errno = old_errno;
4624 }
4625
4626 /* Callback registered with the target events file descriptor. */
4627
4628 static void
4629 handle_target_event (int error, gdb_client_data client_data)
4630 {
4631 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4632 }
4633
4634 /* Create/destroy the target events pipe. Returns previous state. */
4635
4636 static int
4637 linux_async_pipe (int enable)
4638 {
4639 int previous = (linux_nat_event_pipe[0] != -1);
4640
4641 if (previous != enable)
4642 {
4643 sigset_t prev_mask;
4644
4645 /* Block child signals while we create/destroy the pipe, as
4646 their handler writes to it. */
4647 block_child_signals (&prev_mask);
4648
4649 if (enable)
4650 {
4651 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4652 internal_error (__FILE__, __LINE__,
4653 "creating event pipe failed.");
4654
4655 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4656 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4657 }
4658 else
4659 {
4660 close (linux_nat_event_pipe[0]);
4661 close (linux_nat_event_pipe[1]);
4662 linux_nat_event_pipe[0] = -1;
4663 linux_nat_event_pipe[1] = -1;
4664 }
4665
4666 restore_child_signals_mask (&prev_mask);
4667 }
4668
4669 return previous;
4670 }
4671
4672 /* target_async implementation. */
4673
4674 static void
4675 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4676 void *context), void *context)
4677 {
4678 if (callback != NULL)
4679 {
4680 async_client_callback = callback;
4681 async_client_context = context;
4682 if (!linux_async_pipe (1))
4683 {
4684 add_file_handler (linux_nat_event_pipe[0],
4685 handle_target_event, NULL);
4686 /* There may be pending events to handle. Tell the event loop
4687 to poll them. */
4688 async_file_mark ();
4689 }
4690 }
4691 else
4692 {
4693 async_client_callback = callback;
4694 async_client_context = context;
4695 delete_file_handler (linux_nat_event_pipe[0]);
4696 linux_async_pipe (0);
4697 }
4698 return;
4699 }
4700
4701 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4702 event came out. */
4703
4704 static int
4705 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4706 {
4707 if (!lwp->stopped)
4708 {
4709 if (debug_linux_nat)
4710 fprintf_unfiltered (gdb_stdlog,
4711 "LNSL: running -> suspending %s\n",
4712 target_pid_to_str (lwp->ptid));
4713
4714
4715 if (lwp->last_resume_kind == resume_stop)
4716 {
4717 if (debug_linux_nat)
4718 fprintf_unfiltered (gdb_stdlog,
4719 "linux-nat: already stopping LWP %ld at "
4720 "GDB's request\n",
4721 ptid_get_lwp (lwp->ptid));
4722 return 0;
4723 }
4724
4725 stop_callback (lwp, NULL);
4726 lwp->last_resume_kind = resume_stop;
4727 }
4728 else
4729 {
4730 /* Already known to be stopped; do nothing. */
4731
4732 if (debug_linux_nat)
4733 {
4734 if (find_thread_ptid (lwp->ptid)->stop_requested)
4735 fprintf_unfiltered (gdb_stdlog,
4736 "LNSL: already stopped/stop_requested %s\n",
4737 target_pid_to_str (lwp->ptid));
4738 else
4739 fprintf_unfiltered (gdb_stdlog,
4740 "LNSL: already stopped/no "
4741 "stop_requested yet %s\n",
4742 target_pid_to_str (lwp->ptid));
4743 }
4744 }
4745 return 0;
4746 }
4747
4748 static void
4749 linux_nat_stop (ptid_t ptid)
4750 {
4751 if (non_stop)
4752 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4753 else
4754 linux_ops->to_stop (ptid);
4755 }
4756
4757 static void
4758 linux_nat_close (void)
4759 {
4760 /* Unregister from the event loop. */
4761 if (linux_nat_is_async_p ())
4762 linux_nat_async (NULL, 0);
4763
4764 if (linux_ops->to_close)
4765 linux_ops->to_close ();
4766 }
4767
4768 /* When requests are passed down from the linux-nat layer to the
4769 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4770 used. The address space pointer is stored in the inferior object,
4771 but the common code that is passed such ptid can't tell whether
4772 lwpid is a "main" process id or not (it assumes so). We reverse
4773 look up the "main" process id from the lwp here. */
4774
4775 static struct address_space *
4776 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4777 {
4778 struct lwp_info *lwp;
4779 struct inferior *inf;
4780 int pid;
4781
4782 pid = ptid_get_lwp (ptid);
4783 if (ptid_get_lwp (ptid) == 0)
4784 {
4785 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4786 tgid. */
4787 lwp = find_lwp_pid (ptid);
4788 pid = ptid_get_pid (lwp->ptid);
4789 }
4790 else
4791 {
4792 /* A (pid,lwpid,0) ptid. */
4793 pid = ptid_get_pid (ptid);
4794 }
4795
4796 inf = find_inferior_pid (pid);
4797 gdb_assert (inf != NULL);
4798 return inf->aspace;
4799 }
4800
4801 /* Return the cached value of the processor core for thread PTID. */
4802
4803 static int
4804 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4805 {
4806 struct lwp_info *info = find_lwp_pid (ptid);
4807
4808 if (info)
4809 return info->core;
4810 return -1;
4811 }
4812
4813 void
4814 linux_nat_add_target (struct target_ops *t)
4815 {
4816 /* Save the provided single-threaded target. We save this in a separate
4817 variable because another target we've inherited from (e.g. inf-ptrace)
4818 may have saved a pointer to T; we want to use it for the final
4819 process stratum target. */
4820 linux_ops_saved = *t;
4821 linux_ops = &linux_ops_saved;
4822
4823 /* Override some methods for multithreading. */
4824 t->to_create_inferior = linux_nat_create_inferior;
4825 t->to_attach = linux_nat_attach;
4826 t->to_detach = linux_nat_detach;
4827 t->to_resume = linux_nat_resume;
4828 t->to_wait = linux_nat_wait;
4829 t->to_pass_signals = linux_nat_pass_signals;
4830 t->to_xfer_partial = linux_nat_xfer_partial;
4831 t->to_kill = linux_nat_kill;
4832 t->to_mourn_inferior = linux_nat_mourn_inferior;
4833 t->to_thread_alive = linux_nat_thread_alive;
4834 t->to_pid_to_str = linux_nat_pid_to_str;
4835 t->to_thread_name = linux_nat_thread_name;
4836 t->to_has_thread_control = tc_schedlock;
4837 t->to_thread_address_space = linux_nat_thread_address_space;
4838 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4839 t->to_stopped_data_address = linux_nat_stopped_data_address;
4840
4841 t->to_can_async_p = linux_nat_can_async_p;
4842 t->to_is_async_p = linux_nat_is_async_p;
4843 t->to_supports_non_stop = linux_nat_supports_non_stop;
4844 t->to_async = linux_nat_async;
4845 t->to_terminal_inferior = linux_nat_terminal_inferior;
4846 t->to_terminal_ours = linux_nat_terminal_ours;
4847 t->to_close = linux_nat_close;
4848
4849 /* Methods for non-stop support. */
4850 t->to_stop = linux_nat_stop;
4851
4852 t->to_supports_multi_process = linux_nat_supports_multi_process;
4853
4854 t->to_supports_disable_randomization
4855 = linux_nat_supports_disable_randomization;
4856
4857 t->to_core_of_thread = linux_nat_core_of_thread;
4858
4859 /* We don't change the stratum; this target will sit at
4860 process_stratum and thread_db will set at thread_stratum. This
4861 is a little strange, since this is a multi-threaded-capable
4862 target, but we want to be on the stack below thread_db, and we
4863 also want to be used for single-threaded processes. */
4864
4865 add_target (t);
4866 }
4867
4868 /* Register a method to call whenever a new thread is attached. */
4869 void
4870 linux_nat_set_new_thread (struct target_ops *t,
4871 void (*new_thread) (struct lwp_info *))
4872 {
4873 /* Save the pointer. We only support a single registered instance
4874 of the GNU/Linux native target, so we do not need to map this to
4875 T. */
4876 linux_nat_new_thread = new_thread;
4877 }
4878
4879 /* See declaration in linux-nat.h. */
4880
4881 void
4882 linux_nat_set_new_fork (struct target_ops *t,
4883 linux_nat_new_fork_ftype *new_fork)
4884 {
4885 /* Save the pointer. */
4886 linux_nat_new_fork = new_fork;
4887 }
4888
4889 /* See declaration in linux-nat.h. */
4890
4891 void
4892 linux_nat_set_forget_process (struct target_ops *t,
4893 linux_nat_forget_process_ftype *fn)
4894 {
4895 /* Save the pointer. */
4896 linux_nat_forget_process_hook = fn;
4897 }
4898
4899 /* See declaration in linux-nat.h. */
4900
4901 void
4902 linux_nat_forget_process (pid_t pid)
4903 {
4904 if (linux_nat_forget_process_hook != NULL)
4905 linux_nat_forget_process_hook (pid);
4906 }
4907
4908 /* Register a method that converts a siginfo object between the layout
4909 that ptrace returns, and the layout in the architecture of the
4910 inferior. */
4911 void
4912 linux_nat_set_siginfo_fixup (struct target_ops *t,
4913 int (*siginfo_fixup) (siginfo_t *,
4914 gdb_byte *,
4915 int))
4916 {
4917 /* Save the pointer. */
4918 linux_nat_siginfo_fixup = siginfo_fixup;
4919 }
4920
4921 /* Register a method to call prior to resuming a thread. */
4922
4923 void
4924 linux_nat_set_prepare_to_resume (struct target_ops *t,
4925 void (*prepare_to_resume) (struct lwp_info *))
4926 {
4927 /* Save the pointer. */
4928 linux_nat_prepare_to_resume = prepare_to_resume;
4929 }
4930
4931 /* See linux-nat.h. */
4932
4933 int
4934 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4935 {
4936 int pid;
4937
4938 pid = ptid_get_lwp (ptid);
4939 if (pid == 0)
4940 pid = ptid_get_pid (ptid);
4941
4942 errno = 0;
4943 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4944 if (errno != 0)
4945 {
4946 memset (siginfo, 0, sizeof (*siginfo));
4947 return 0;
4948 }
4949 return 1;
4950 }
4951
4952 /* Provide a prototype to silence -Wmissing-prototypes. */
4953 extern initialize_file_ftype _initialize_linux_nat;
4954
4955 void
4956 _initialize_linux_nat (void)
4957 {
4958 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4959 &debug_linux_nat, _("\
4960 Set debugging of GNU/Linux lwp module."), _("\
4961 Show debugging of GNU/Linux lwp module."), _("\
4962 Enables printf debugging output."),
4963 NULL,
4964 show_debug_linux_nat,
4965 &setdebuglist, &showdebuglist);
4966
4967 /* Save this mask as the default. */
4968 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4969
4970 /* Install a SIGCHLD handler. */
4971 sigchld_action.sa_handler = sigchld_handler;
4972 sigemptyset (&sigchld_action.sa_mask);
4973 sigchld_action.sa_flags = SA_RESTART;
4974
4975 /* Make it the default. */
4976 sigaction (SIGCHLD, &sigchld_action, NULL);
4977
4978 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4979 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4980 sigdelset (&suspend_mask, SIGCHLD);
4981
4982 sigemptyset (&blocked_mask);
4983 }
4984 \f
4985
4986 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4987 the GNU/Linux Threads library and therefore doesn't really belong
4988 here. */
4989
4990 /* Read variable NAME in the target and return its value if found.
4991 Otherwise return zero. It is assumed that the type of the variable
4992 is `int'. */
4993
4994 static int
4995 get_signo (const char *name)
4996 {
4997 struct minimal_symbol *ms;
4998 int signo;
4999
5000 ms = lookup_minimal_symbol (name, NULL, NULL);
5001 if (ms == NULL)
5002 return 0;
5003
5004 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5005 sizeof (signo)) != 0)
5006 return 0;
5007
5008 return signo;
5009 }
5010
5011 /* Return the set of signals used by the threads library in *SET. */
5012
5013 void
5014 lin_thread_get_thread_signals (sigset_t *set)
5015 {
5016 struct sigaction action;
5017 int restart, cancel;
5018
5019 sigemptyset (&blocked_mask);
5020 sigemptyset (set);
5021
5022 restart = get_signo ("__pthread_sig_restart");
5023 cancel = get_signo ("__pthread_sig_cancel");
5024
5025 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5026 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5027 not provide any way for the debugger to query the signal numbers -
5028 fortunately they don't change! */
5029
5030 if (restart == 0)
5031 restart = __SIGRTMIN;
5032
5033 if (cancel == 0)
5034 cancel = __SIGRTMIN + 1;
5035
5036 sigaddset (set, restart);
5037 sigaddset (set, cancel);
5038
5039 /* The GNU/Linux Threads library makes terminating threads send a
5040 special "cancel" signal instead of SIGCHLD. Make sure we catch
5041 those (to prevent them from terminating GDB itself, which is
5042 likely to be their default action) and treat them the same way as
5043 SIGCHLD. */
5044
5045 action.sa_handler = sigchld_handler;
5046 sigemptyset (&action.sa_mask);
5047 action.sa_flags = SA_RESTART;
5048 sigaction (cancel, &action, NULL);
5049
5050 /* We block the "cancel" signal throughout this code ... */
5051 sigaddset (&blocked_mask, cancel);
5052 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5053
5054 /* ... except during a sigsuspend. */
5055 sigdelset (&suspend_mask, cancel);
5056 }
This page took 0.152966 seconds and 4 git commands to generate.