gdb/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *status, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, status, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
685 return 1;
686 }
687
688 if (! follow_child)
689 {
690 struct lwp_info *child_lp = NULL;
691
692 /* We're already attached to the parent, by default. */
693
694 /* Detach new forked process? */
695 if (detach_fork)
696 {
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
710 if (info_verbose || debug_linux_nat)
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
717
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
724
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
727
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
731
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
740
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
770 solib_create_inferior_hook (0);
771 }
772
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
777 }
778
779 if (has_vforked)
780 {
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
807
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
848 usleep (10000);
849
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
864 }
865 }
866 else
867 {
868 struct inferior *parent_inf, *child_inf;
869 struct lwp_info *lp;
870 struct program_space *parent_pspace;
871
872 if (info_verbose || debug_linux_nat)
873 {
874 target_terminal_ours ();
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893
894 parent_pspace = parent_inf->pspace;
895
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
905
906 if (has_vforked)
907 {
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
915 }
916 else if (detach_fork)
917 target_detach (NULL, 0);
918
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
953 }
954
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
957 }
958
959 restore_child_signals_mask (&prev_mask);
960 return 0;
961 }
962
963 \f
964 static void
965 linux_child_insert_fork_catchpoint (int pid)
966 {
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
969 }
970
971 static void
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
976 }
977
978 static void
979 linux_child_insert_exec_catchpoint (int pid)
980 {
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
983 }
984
985 static int
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988 {
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997 }
998
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1034 \f
1035
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1038
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1042
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1045
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1048
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1051
1052 static void
1053 block_child_signals (sigset_t *prev_mask)
1054 {
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060 }
1061
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065 static void
1066 restore_child_signals_mask (sigset_t *prev_mask)
1067 {
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069 }
1070 \f
1071
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076 static int cancel_breakpoint (struct lwp_info *lp);
1077
1078 \f
1079 /* Convert wait status STATUS to a string. Used for printing debug
1080 messages only. */
1081
1082 static char *
1083 status_to_str (int status)
1084 {
1085 static char buf[64];
1086
1087 if (WIFSTOPPED (status))
1088 {
1089 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1090 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1091 strsignal (SIGTRAP));
1092 else
1093 snprintf (buf, sizeof (buf), "%s (stopped)",
1094 strsignal (WSTOPSIG (status)));
1095 }
1096 else if (WIFSIGNALED (status))
1097 snprintf (buf, sizeof (buf), "%s (terminated)",
1098 strsignal (WSTOPSIG (status)));
1099 else
1100 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1101
1102 return buf;
1103 }
1104
1105 /* Remove all LWPs belong to PID from the lwp list. */
1106
1107 static void
1108 purge_lwp_list (int pid)
1109 {
1110 struct lwp_info *lp, *lpprev, *lpnext;
1111
1112 lpprev = NULL;
1113
1114 for (lp = lwp_list; lp; lp = lpnext)
1115 {
1116 lpnext = lp->next;
1117
1118 if (ptid_get_pid (lp->ptid) == pid)
1119 {
1120 if (lp == lwp_list)
1121 lwp_list = lp->next;
1122 else
1123 lpprev->next = lp->next;
1124
1125 xfree (lp);
1126 }
1127 else
1128 lpprev = lp;
1129 }
1130 }
1131
1132 /* Return the number of known LWPs in the tgid given by PID. */
1133
1134 static int
1135 num_lwps (int pid)
1136 {
1137 int count = 0;
1138 struct lwp_info *lp;
1139
1140 for (lp = lwp_list; lp; lp = lp->next)
1141 if (ptid_get_pid (lp->ptid) == pid)
1142 count++;
1143
1144 return count;
1145 }
1146
1147 /* Add the LWP specified by PID to the list. Return a pointer to the
1148 structure describing the new LWP. The LWP should already be stopped
1149 (with an exception for the very first LWP). */
1150
1151 static struct lwp_info *
1152 add_lwp (ptid_t ptid)
1153 {
1154 struct lwp_info *lp;
1155
1156 gdb_assert (is_lwp (ptid));
1157
1158 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1159
1160 memset (lp, 0, sizeof (struct lwp_info));
1161
1162 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1163
1164 lp->ptid = ptid;
1165 lp->core = -1;
1166
1167 lp->next = lwp_list;
1168 lwp_list = lp;
1169
1170 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1171 linux_nat_new_thread (ptid);
1172
1173 return lp;
1174 }
1175
1176 /* Remove the LWP specified by PID from the list. */
1177
1178 static void
1179 delete_lwp (ptid_t ptid)
1180 {
1181 struct lwp_info *lp, *lpprev;
1182
1183 lpprev = NULL;
1184
1185 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1186 if (ptid_equal (lp->ptid, ptid))
1187 break;
1188
1189 if (!lp)
1190 return;
1191
1192 if (lpprev)
1193 lpprev->next = lp->next;
1194 else
1195 lwp_list = lp->next;
1196
1197 xfree (lp);
1198 }
1199
1200 /* Return a pointer to the structure describing the LWP corresponding
1201 to PID. If no corresponding LWP could be found, return NULL. */
1202
1203 static struct lwp_info *
1204 find_lwp_pid (ptid_t ptid)
1205 {
1206 struct lwp_info *lp;
1207 int lwp;
1208
1209 if (is_lwp (ptid))
1210 lwp = GET_LWP (ptid);
1211 else
1212 lwp = GET_PID (ptid);
1213
1214 for (lp = lwp_list; lp; lp = lp->next)
1215 if (lwp == GET_LWP (lp->ptid))
1216 return lp;
1217
1218 return NULL;
1219 }
1220
1221 /* Call CALLBACK with its second argument set to DATA for every LWP in
1222 the list. If CALLBACK returns 1 for a particular LWP, return a
1223 pointer to the structure describing that LWP immediately.
1224 Otherwise return NULL. */
1225
1226 struct lwp_info *
1227 iterate_over_lwps (ptid_t filter,
1228 int (*callback) (struct lwp_info *, void *),
1229 void *data)
1230 {
1231 struct lwp_info *lp, *lpnext;
1232
1233 for (lp = lwp_list; lp; lp = lpnext)
1234 {
1235 lpnext = lp->next;
1236
1237 if (ptid_match (lp->ptid, filter))
1238 {
1239 if ((*callback) (lp, data))
1240 return lp;
1241 }
1242 }
1243
1244 return NULL;
1245 }
1246
1247 /* Update our internal state when changing from one checkpoint to
1248 another indicated by NEW_PTID. We can only switch single-threaded
1249 applications, so we only create one new LWP, and the previous list
1250 is discarded. */
1251
1252 void
1253 linux_nat_switch_fork (ptid_t new_ptid)
1254 {
1255 struct lwp_info *lp;
1256
1257 purge_lwp_list (GET_PID (inferior_ptid));
1258
1259 lp = add_lwp (new_ptid);
1260 lp->stopped = 1;
1261
1262 /* This changes the thread's ptid while preserving the gdb thread
1263 num. Also changes the inferior pid, while preserving the
1264 inferior num. */
1265 thread_change_ptid (inferior_ptid, new_ptid);
1266
1267 /* We've just told GDB core that the thread changed target id, but,
1268 in fact, it really is a different thread, with different register
1269 contents. */
1270 registers_changed ();
1271 }
1272
1273 /* Handle the exit of a single thread LP. */
1274
1275 static void
1276 exit_lwp (struct lwp_info *lp)
1277 {
1278 struct thread_info *th = find_thread_ptid (lp->ptid);
1279
1280 if (th)
1281 {
1282 if (print_thread_events)
1283 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1284
1285 delete_thread (lp->ptid);
1286 }
1287
1288 delete_lwp (lp->ptid);
1289 }
1290
1291 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1292
1293 int
1294 linux_proc_get_tgid (int lwpid)
1295 {
1296 FILE *status_file;
1297 char buf[100];
1298 int tgid = -1;
1299
1300 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1301 status_file = fopen (buf, "r");
1302 if (status_file != NULL)
1303 {
1304 while (fgets (buf, sizeof (buf), status_file))
1305 {
1306 if (strncmp (buf, "Tgid:", 5) == 0)
1307 {
1308 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1309 break;
1310 }
1311 }
1312
1313 fclose (status_file);
1314 }
1315
1316 return tgid;
1317 }
1318
1319 /* Detect `T (stopped)' in `/proc/PID/status'.
1320 Other states including `T (tracing stop)' are reported as false. */
1321
1322 static int
1323 pid_is_stopped (pid_t pid)
1324 {
1325 FILE *status_file;
1326 char buf[100];
1327 int retval = 0;
1328
1329 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1330 status_file = fopen (buf, "r");
1331 if (status_file != NULL)
1332 {
1333 int have_state = 0;
1334
1335 while (fgets (buf, sizeof (buf), status_file))
1336 {
1337 if (strncmp (buf, "State:", 6) == 0)
1338 {
1339 have_state = 1;
1340 break;
1341 }
1342 }
1343 if (have_state && strstr (buf, "T (stopped)") != NULL)
1344 retval = 1;
1345 fclose (status_file);
1346 }
1347 return retval;
1348 }
1349
1350 /* Wait for the LWP specified by LP, which we have just attached to.
1351 Returns a wait status for that LWP, to cache. */
1352
1353 static int
1354 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1355 int *signalled)
1356 {
1357 pid_t new_pid, pid = GET_LWP (ptid);
1358 int status;
1359
1360 if (pid_is_stopped (pid))
1361 {
1362 if (debug_linux_nat)
1363 fprintf_unfiltered (gdb_stdlog,
1364 "LNPAW: Attaching to a stopped process\n");
1365
1366 /* The process is definitely stopped. It is in a job control
1367 stop, unless the kernel predates the TASK_STOPPED /
1368 TASK_TRACED distinction, in which case it might be in a
1369 ptrace stop. Make sure it is in a ptrace stop; from there we
1370 can kill it, signal it, et cetera.
1371
1372 First make sure there is a pending SIGSTOP. Since we are
1373 already attached, the process can not transition from stopped
1374 to running without a PTRACE_CONT; so we know this signal will
1375 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1376 probably already in the queue (unless this kernel is old
1377 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1378 is not an RT signal, it can only be queued once. */
1379 kill_lwp (pid, SIGSTOP);
1380
1381 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1382 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1383 ptrace (PTRACE_CONT, pid, 0, 0);
1384 }
1385
1386 /* Make sure the initial process is stopped. The user-level threads
1387 layer might want to poke around in the inferior, and that won't
1388 work if things haven't stabilized yet. */
1389 new_pid = my_waitpid (pid, &status, 0);
1390 if (new_pid == -1 && errno == ECHILD)
1391 {
1392 if (first)
1393 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1394
1395 /* Try again with __WCLONE to check cloned processes. */
1396 new_pid = my_waitpid (pid, &status, __WCLONE);
1397 *cloned = 1;
1398 }
1399
1400 gdb_assert (pid == new_pid);
1401
1402 if (!WIFSTOPPED (status))
1403 {
1404 /* The pid we tried to attach has apparently just exited. */
1405 if (debug_linux_nat)
1406 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1407 pid, status_to_str (status));
1408 return status;
1409 }
1410
1411 if (WSTOPSIG (status) != SIGSTOP)
1412 {
1413 *signalled = 1;
1414 if (debug_linux_nat)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "LNPAW: Received %s after attaching\n",
1417 status_to_str (status));
1418 }
1419
1420 return status;
1421 }
1422
1423 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1424 if the new LWP could not be attached. */
1425
1426 int
1427 lin_lwp_attach_lwp (ptid_t ptid)
1428 {
1429 struct lwp_info *lp;
1430 sigset_t prev_mask;
1431
1432 gdb_assert (is_lwp (ptid));
1433
1434 block_child_signals (&prev_mask);
1435
1436 lp = find_lwp_pid (ptid);
1437
1438 /* We assume that we're already attached to any LWP that has an id
1439 equal to the overall process id, and to any LWP that is already
1440 in our list of LWPs. If we're not seeing exit events from threads
1441 and we've had PID wraparound since we last tried to stop all threads,
1442 this assumption might be wrong; fortunately, this is very unlikely
1443 to happen. */
1444 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1445 {
1446 int status, cloned = 0, signalled = 0;
1447
1448 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1449 {
1450 /* If we fail to attach to the thread, issue a warning,
1451 but continue. One way this can happen is if thread
1452 creation is interrupted; as of Linux kernel 2.6.19, a
1453 bug may place threads in the thread list and then fail
1454 to create them. */
1455 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1456 safe_strerror (errno));
1457 restore_child_signals_mask (&prev_mask);
1458 return -1;
1459 }
1460
1461 if (debug_linux_nat)
1462 fprintf_unfiltered (gdb_stdlog,
1463 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1464 target_pid_to_str (ptid));
1465
1466 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1467 if (!WIFSTOPPED (status))
1468 return -1;
1469
1470 lp = add_lwp (ptid);
1471 lp->stopped = 1;
1472 lp->cloned = cloned;
1473 lp->signalled = signalled;
1474 if (WSTOPSIG (status) != SIGSTOP)
1475 {
1476 lp->resumed = 1;
1477 lp->status = status;
1478 }
1479
1480 target_post_attach (GET_LWP (lp->ptid));
1481
1482 if (debug_linux_nat)
1483 {
1484 fprintf_unfiltered (gdb_stdlog,
1485 "LLAL: waitpid %s received %s\n",
1486 target_pid_to_str (ptid),
1487 status_to_str (status));
1488 }
1489 }
1490 else
1491 {
1492 /* We assume that the LWP representing the original process is
1493 already stopped. Mark it as stopped in the data structure
1494 that the GNU/linux ptrace layer uses to keep track of
1495 threads. Note that this won't have already been done since
1496 the main thread will have, we assume, been stopped by an
1497 attach from a different layer. */
1498 if (lp == NULL)
1499 lp = add_lwp (ptid);
1500 lp->stopped = 1;
1501 }
1502
1503 restore_child_signals_mask (&prev_mask);
1504 return 0;
1505 }
1506
1507 static void
1508 linux_nat_create_inferior (struct target_ops *ops,
1509 char *exec_file, char *allargs, char **env,
1510 int from_tty)
1511 {
1512 #ifdef HAVE_PERSONALITY
1513 int personality_orig = 0, personality_set = 0;
1514 #endif /* HAVE_PERSONALITY */
1515
1516 /* The fork_child mechanism is synchronous and calls target_wait, so
1517 we have to mask the async mode. */
1518
1519 #ifdef HAVE_PERSONALITY
1520 if (disable_randomization)
1521 {
1522 errno = 0;
1523 personality_orig = personality (0xffffffff);
1524 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1525 {
1526 personality_set = 1;
1527 personality (personality_orig | ADDR_NO_RANDOMIZE);
1528 }
1529 if (errno != 0 || (personality_set
1530 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1531 warning (_("Error disabling address space randomization: %s"),
1532 safe_strerror (errno));
1533 }
1534 #endif /* HAVE_PERSONALITY */
1535
1536 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1537
1538 #ifdef HAVE_PERSONALITY
1539 if (personality_set)
1540 {
1541 errno = 0;
1542 personality (personality_orig);
1543 if (errno != 0)
1544 warning (_("Error restoring address space randomization: %s"),
1545 safe_strerror (errno));
1546 }
1547 #endif /* HAVE_PERSONALITY */
1548 }
1549
1550 static void
1551 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1552 {
1553 struct lwp_info *lp;
1554 int status;
1555 ptid_t ptid;
1556
1557 linux_ops->to_attach (ops, args, from_tty);
1558
1559 /* The ptrace base target adds the main thread with (pid,0,0)
1560 format. Decorate it with lwp info. */
1561 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1562 thread_change_ptid (inferior_ptid, ptid);
1563
1564 /* Add the initial process as the first LWP to the list. */
1565 lp = add_lwp (ptid);
1566
1567 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1568 &lp->signalled);
1569 if (!WIFSTOPPED (status))
1570 {
1571 if (WIFEXITED (status))
1572 {
1573 int exit_code = WEXITSTATUS (status);
1574
1575 target_terminal_ours ();
1576 target_mourn_inferior ();
1577 if (exit_code == 0)
1578 error (_("Unable to attach: program exited normally."));
1579 else
1580 error (_("Unable to attach: program exited with code %d."),
1581 exit_code);
1582 }
1583 else if (WIFSIGNALED (status))
1584 {
1585 enum target_signal signo;
1586
1587 target_terminal_ours ();
1588 target_mourn_inferior ();
1589
1590 signo = target_signal_from_host (WTERMSIG (status));
1591 error (_("Unable to attach: program terminated with signal "
1592 "%s, %s."),
1593 target_signal_to_name (signo),
1594 target_signal_to_string (signo));
1595 }
1596
1597 internal_error (__FILE__, __LINE__,
1598 _("unexpected status %d for PID %ld"),
1599 status, (long) GET_LWP (ptid));
1600 }
1601
1602 lp->stopped = 1;
1603
1604 /* Save the wait status to report later. */
1605 lp->resumed = 1;
1606 if (debug_linux_nat)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "LNA: waitpid %ld, saving status %s\n",
1609 (long) GET_PID (lp->ptid), status_to_str (status));
1610
1611 lp->status = status;
1612
1613 if (target_can_async_p ())
1614 target_async (inferior_event_handler, 0);
1615 }
1616
1617 /* Get pending status of LP. */
1618 static int
1619 get_pending_status (struct lwp_info *lp, int *status)
1620 {
1621 enum target_signal signo = TARGET_SIGNAL_0;
1622
1623 /* If we paused threads momentarily, we may have stored pending
1624 events in lp->status or lp->waitstatus (see stop_wait_callback),
1625 and GDB core hasn't seen any signal for those threads.
1626 Otherwise, the last signal reported to the core is found in the
1627 thread object's stop_signal.
1628
1629 There's a corner case that isn't handled here at present. Only
1630 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1631 stop_signal make sense as a real signal to pass to the inferior.
1632 Some catchpoint related events, like
1633 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1634 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1635 those traps are debug API (ptrace in our case) related and
1636 induced; the inferior wouldn't see them if it wasn't being
1637 traced. Hence, we should never pass them to the inferior, even
1638 when set to pass state. Since this corner case isn't handled by
1639 infrun.c when proceeding with a signal, for consistency, neither
1640 do we handle it here (or elsewhere in the file we check for
1641 signal pass state). Normally SIGTRAP isn't set to pass state, so
1642 this is really a corner case. */
1643
1644 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1645 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1646 else if (lp->status)
1647 signo = target_signal_from_host (WSTOPSIG (lp->status));
1648 else if (non_stop && !is_executing (lp->ptid))
1649 {
1650 struct thread_info *tp = find_thread_ptid (lp->ptid);
1651
1652 signo = tp->stop_signal;
1653 }
1654 else if (!non_stop)
1655 {
1656 struct target_waitstatus last;
1657 ptid_t last_ptid;
1658
1659 get_last_target_status (&last_ptid, &last);
1660
1661 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1662 {
1663 struct thread_info *tp = find_thread_ptid (lp->ptid);
1664
1665 signo = tp->stop_signal;
1666 }
1667 }
1668
1669 *status = 0;
1670
1671 if (signo == TARGET_SIGNAL_0)
1672 {
1673 if (debug_linux_nat)
1674 fprintf_unfiltered (gdb_stdlog,
1675 "GPT: lwp %s has no pending signal\n",
1676 target_pid_to_str (lp->ptid));
1677 }
1678 else if (!signal_pass_state (signo))
1679 {
1680 if (debug_linux_nat)
1681 fprintf_unfiltered (gdb_stdlog, "\
1682 GPT: lwp %s had signal %s, but it is in no pass state\n",
1683 target_pid_to_str (lp->ptid),
1684 target_signal_to_string (signo));
1685 }
1686 else
1687 {
1688 *status = W_STOPCODE (target_signal_to_host (signo));
1689
1690 if (debug_linux_nat)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "GPT: lwp %s has pending signal %s\n",
1693 target_pid_to_str (lp->ptid),
1694 target_signal_to_string (signo));
1695 }
1696
1697 return 0;
1698 }
1699
1700 static int
1701 detach_callback (struct lwp_info *lp, void *data)
1702 {
1703 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1704
1705 if (debug_linux_nat && lp->status)
1706 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1707 strsignal (WSTOPSIG (lp->status)),
1708 target_pid_to_str (lp->ptid));
1709
1710 /* If there is a pending SIGSTOP, get rid of it. */
1711 if (lp->signalled)
1712 {
1713 if (debug_linux_nat)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "DC: Sending SIGCONT to %s\n",
1716 target_pid_to_str (lp->ptid));
1717
1718 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1719 lp->signalled = 0;
1720 }
1721
1722 /* We don't actually detach from the LWP that has an id equal to the
1723 overall process id just yet. */
1724 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1725 {
1726 int status = 0;
1727
1728 /* Pass on any pending signal for this LWP. */
1729 get_pending_status (lp, &status);
1730
1731 errno = 0;
1732 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1733 WSTOPSIG (status)) < 0)
1734 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1735 safe_strerror (errno));
1736
1737 if (debug_linux_nat)
1738 fprintf_unfiltered (gdb_stdlog,
1739 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1740 target_pid_to_str (lp->ptid),
1741 strsignal (WSTOPSIG (status)));
1742
1743 delete_lwp (lp->ptid);
1744 }
1745
1746 return 0;
1747 }
1748
1749 static void
1750 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1751 {
1752 int pid;
1753 int status;
1754 struct lwp_info *main_lwp;
1755
1756 pid = GET_PID (inferior_ptid);
1757
1758 if (target_can_async_p ())
1759 linux_nat_async (NULL, 0);
1760
1761 /* Stop all threads before detaching. ptrace requires that the
1762 thread is stopped to sucessfully detach. */
1763 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1764 /* ... and wait until all of them have reported back that
1765 they're no longer running. */
1766 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1767
1768 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1769
1770 /* Only the initial process should be left right now. */
1771 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1772
1773 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1774
1775 /* Pass on any pending signal for the last LWP. */
1776 if ((args == NULL || *args == '\0')
1777 && get_pending_status (main_lwp, &status) != -1
1778 && WIFSTOPPED (status))
1779 {
1780 /* Put the signal number in ARGS so that inf_ptrace_detach will
1781 pass it along with PTRACE_DETACH. */
1782 args = alloca (8);
1783 sprintf (args, "%d", (int) WSTOPSIG (status));
1784 if (debug_linux_nat)
1785 fprintf_unfiltered (gdb_stdlog,
1786 "LND: Sending signal %s to %s\n",
1787 args,
1788 target_pid_to_str (main_lwp->ptid));
1789 }
1790
1791 delete_lwp (main_lwp->ptid);
1792
1793 if (forks_exist_p ())
1794 {
1795 /* Multi-fork case. The current inferior_ptid is being detached
1796 from, but there are other viable forks to debug. Detach from
1797 the current fork, and context-switch to the first
1798 available. */
1799 linux_fork_detach (args, from_tty);
1800
1801 if (non_stop && target_can_async_p ())
1802 target_async (inferior_event_handler, 0);
1803 }
1804 else
1805 linux_ops->to_detach (ops, args, from_tty);
1806 }
1807
1808 /* Resume LP. */
1809
1810 static int
1811 resume_callback (struct lwp_info *lp, void *data)
1812 {
1813 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1814
1815 if (lp->stopped && inf->vfork_child != NULL)
1816 {
1817 if (debug_linux_nat)
1818 fprintf_unfiltered (gdb_stdlog,
1819 "RC: Not resuming %s (vfork parent)\n",
1820 target_pid_to_str (lp->ptid));
1821 }
1822 else if (lp->stopped && lp->status == 0)
1823 {
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1827 target_pid_to_str (lp->ptid));
1828
1829 linux_ops->to_resume (linux_ops,
1830 pid_to_ptid (GET_LWP (lp->ptid)),
1831 0, TARGET_SIGNAL_0);
1832 if (debug_linux_nat)
1833 fprintf_unfiltered (gdb_stdlog,
1834 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1835 target_pid_to_str (lp->ptid));
1836 lp->stopped = 0;
1837 lp->step = 0;
1838 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1839 lp->stopped_by_watchpoint = 0;
1840 }
1841 else if (lp->stopped && debug_linux_nat)
1842 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1843 target_pid_to_str (lp->ptid));
1844 else if (debug_linux_nat)
1845 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1846 target_pid_to_str (lp->ptid));
1847
1848 return 0;
1849 }
1850
1851 static int
1852 resume_clear_callback (struct lwp_info *lp, void *data)
1853 {
1854 lp->resumed = 0;
1855 return 0;
1856 }
1857
1858 static int
1859 resume_set_callback (struct lwp_info *lp, void *data)
1860 {
1861 lp->resumed = 1;
1862 return 0;
1863 }
1864
1865 static void
1866 linux_nat_resume (struct target_ops *ops,
1867 ptid_t ptid, int step, enum target_signal signo)
1868 {
1869 sigset_t prev_mask;
1870 struct lwp_info *lp;
1871 int resume_many;
1872
1873 if (debug_linux_nat)
1874 fprintf_unfiltered (gdb_stdlog,
1875 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1876 step ? "step" : "resume",
1877 target_pid_to_str (ptid),
1878 signo ? strsignal (signo) : "0",
1879 target_pid_to_str (inferior_ptid));
1880
1881 block_child_signals (&prev_mask);
1882
1883 /* A specific PTID means `step only this process id'. */
1884 resume_many = (ptid_equal (minus_one_ptid, ptid)
1885 || ptid_is_pid (ptid));
1886
1887 /* Mark the lwps we're resuming as resumed. */
1888 iterate_over_lwps (ptid, resume_set_callback, NULL);
1889
1890 /* See if it's the current inferior that should be handled
1891 specially. */
1892 if (resume_many)
1893 lp = find_lwp_pid (inferior_ptid);
1894 else
1895 lp = find_lwp_pid (ptid);
1896 gdb_assert (lp != NULL);
1897
1898 /* Remember if we're stepping. */
1899 lp->step = step;
1900
1901 /* If we have a pending wait status for this thread, there is no
1902 point in resuming the process. But first make sure that
1903 linux_nat_wait won't preemptively handle the event - we
1904 should never take this short-circuit if we are going to
1905 leave LP running, since we have skipped resuming all the
1906 other threads. This bit of code needs to be synchronized
1907 with linux_nat_wait. */
1908
1909 if (lp->status && WIFSTOPPED (lp->status))
1910 {
1911 int saved_signo;
1912 struct inferior *inf;
1913
1914 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1915 gdb_assert (inf);
1916 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1917
1918 /* Defer to common code if we're gaining control of the
1919 inferior. */
1920 if (inf->stop_soon == NO_STOP_QUIETLY
1921 && signal_stop_state (saved_signo) == 0
1922 && signal_print_state (saved_signo) == 0
1923 && signal_pass_state (saved_signo) == 1)
1924 {
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "LLR: Not short circuiting for ignored "
1928 "status 0x%x\n", lp->status);
1929
1930 /* FIXME: What should we do if we are supposed to continue
1931 this thread with a signal? */
1932 gdb_assert (signo == TARGET_SIGNAL_0);
1933 signo = saved_signo;
1934 lp->status = 0;
1935 }
1936 }
1937
1938 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1939 {
1940 /* FIXME: What should we do if we are supposed to continue
1941 this thread with a signal? */
1942 gdb_assert (signo == TARGET_SIGNAL_0);
1943
1944 if (debug_linux_nat)
1945 fprintf_unfiltered (gdb_stdlog,
1946 "LLR: Short circuiting for status 0x%x\n",
1947 lp->status);
1948
1949 restore_child_signals_mask (&prev_mask);
1950 if (target_can_async_p ())
1951 {
1952 target_async (inferior_event_handler, 0);
1953 /* Tell the event loop we have something to process. */
1954 async_file_mark ();
1955 }
1956 return;
1957 }
1958
1959 /* Mark LWP as not stopped to prevent it from being continued by
1960 resume_callback. */
1961 lp->stopped = 0;
1962
1963 if (resume_many)
1964 iterate_over_lwps (ptid, resume_callback, NULL);
1965
1966 /* Convert to something the lower layer understands. */
1967 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1968
1969 linux_ops->to_resume (linux_ops, ptid, step, signo);
1970 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1971 lp->stopped_by_watchpoint = 0;
1972
1973 if (debug_linux_nat)
1974 fprintf_unfiltered (gdb_stdlog,
1975 "LLR: %s %s, %s (resume event thread)\n",
1976 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1977 target_pid_to_str (ptid),
1978 signo ? strsignal (signo) : "0");
1979
1980 restore_child_signals_mask (&prev_mask);
1981 if (target_can_async_p ())
1982 target_async (inferior_event_handler, 0);
1983 }
1984
1985 /* Send a signal to an LWP. */
1986
1987 static int
1988 kill_lwp (int lwpid, int signo)
1989 {
1990 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1991 fails, then we are not using nptl threads and we should be using kill. */
1992
1993 #ifdef HAVE_TKILL_SYSCALL
1994 {
1995 static int tkill_failed;
1996
1997 if (!tkill_failed)
1998 {
1999 int ret;
2000
2001 errno = 0;
2002 ret = syscall (__NR_tkill, lwpid, signo);
2003 if (errno != ENOSYS)
2004 return ret;
2005 tkill_failed = 1;
2006 }
2007 }
2008 #endif
2009
2010 return kill (lwpid, signo);
2011 }
2012
2013 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2014 event, check if the core is interested in it: if not, ignore the
2015 event, and keep waiting; otherwise, we need to toggle the LWP's
2016 syscall entry/exit status, since the ptrace event itself doesn't
2017 indicate it, and report the trap to higher layers. */
2018
2019 static int
2020 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2021 {
2022 struct target_waitstatus *ourstatus = &lp->waitstatus;
2023 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2024 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2025
2026 if (stopping)
2027 {
2028 /* If we're stopping threads, there's a SIGSTOP pending, which
2029 makes it so that the LWP reports an immediate syscall return,
2030 followed by the SIGSTOP. Skip seeing that "return" using
2031 PTRACE_CONT directly, and let stop_wait_callback collect the
2032 SIGSTOP. Later when the thread is resumed, a new syscall
2033 entry event. If we didn't do this (and returned 0), we'd
2034 leave a syscall entry pending, and our caller, by using
2035 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2036 itself. Later, when the user re-resumes this LWP, we'd see
2037 another syscall entry event and we'd mistake it for a return.
2038
2039 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2040 (leaving immediately with LWP->signalled set, without issuing
2041 a PTRACE_CONT), it would still be problematic to leave this
2042 syscall enter pending, as later when the thread is resumed,
2043 it would then see the same syscall exit mentioned above,
2044 followed by the delayed SIGSTOP, while the syscall didn't
2045 actually get to execute. It seems it would be even more
2046 confusing to the user. */
2047
2048 if (debug_linux_nat)
2049 fprintf_unfiltered (gdb_stdlog,
2050 "LHST: ignoring syscall %d "
2051 "for LWP %ld (stopping threads), "
2052 "resuming with PTRACE_CONT for SIGSTOP\n",
2053 syscall_number,
2054 GET_LWP (lp->ptid));
2055
2056 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2057 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2058 return 1;
2059 }
2060
2061 if (catch_syscall_enabled ())
2062 {
2063 /* Always update the entry/return state, even if this particular
2064 syscall isn't interesting to the core now. In async mode,
2065 the user could install a new catchpoint for this syscall
2066 between syscall enter/return, and we'll need to know to
2067 report a syscall return if that happens. */
2068 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2069 ? TARGET_WAITKIND_SYSCALL_RETURN
2070 : TARGET_WAITKIND_SYSCALL_ENTRY);
2071
2072 if (catching_syscall_number (syscall_number))
2073 {
2074 /* Alright, an event to report. */
2075 ourstatus->kind = lp->syscall_state;
2076 ourstatus->value.syscall_number = syscall_number;
2077
2078 if (debug_linux_nat)
2079 fprintf_unfiltered (gdb_stdlog,
2080 "LHST: stopping for %s of syscall %d"
2081 " for LWP %ld\n",
2082 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2083 ? "entry" : "return",
2084 syscall_number,
2085 GET_LWP (lp->ptid));
2086 return 0;
2087 }
2088
2089 if (debug_linux_nat)
2090 fprintf_unfiltered (gdb_stdlog,
2091 "LHST: ignoring %s of syscall %d "
2092 "for LWP %ld\n",
2093 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2094 ? "entry" : "return",
2095 syscall_number,
2096 GET_LWP (lp->ptid));
2097 }
2098 else
2099 {
2100 /* If we had been syscall tracing, and hence used PT_SYSCALL
2101 before on this LWP, it could happen that the user removes all
2102 syscall catchpoints before we get to process this event.
2103 There are two noteworthy issues here:
2104
2105 - When stopped at a syscall entry event, resuming with
2106 PT_STEP still resumes executing the syscall and reports a
2107 syscall return.
2108
2109 - Only PT_SYSCALL catches syscall enters. If we last
2110 single-stepped this thread, then this event can't be a
2111 syscall enter. If we last single-stepped this thread, this
2112 has to be a syscall exit.
2113
2114 The points above mean that the next resume, be it PT_STEP or
2115 PT_CONTINUE, can not trigger a syscall trace event. */
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHST: caught syscall event with no syscall catchpoints."
2119 " %d for LWP %ld, ignoring\n",
2120 syscall_number,
2121 GET_LWP (lp->ptid));
2122 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2123 }
2124
2125 /* The core isn't interested in this event. For efficiency, avoid
2126 stopping all threads only to have the core resume them all again.
2127 Since we're not stopping threads, if we're still syscall tracing
2128 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2129 subsequent syscall. Simply resume using the inf-ptrace layer,
2130 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2131
2132 /* Note that gdbarch_get_syscall_number may access registers, hence
2133 fill a regcache. */
2134 registers_changed ();
2135 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2136 lp->step, TARGET_SIGNAL_0);
2137 return 1;
2138 }
2139
2140 /* Handle a GNU/Linux extended wait response. If we see a clone
2141 event, we need to add the new LWP to our list (and not report the
2142 trap to higher layers). This function returns non-zero if the
2143 event should be ignored and we should wait again. If STOPPING is
2144 true, the new LWP remains stopped, otherwise it is continued. */
2145
2146 static int
2147 linux_handle_extended_wait (struct lwp_info *lp, int status,
2148 int stopping)
2149 {
2150 int pid = GET_LWP (lp->ptid);
2151 struct target_waitstatus *ourstatus = &lp->waitstatus;
2152 int event = status >> 16;
2153
2154 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2155 || event == PTRACE_EVENT_CLONE)
2156 {
2157 unsigned long new_pid;
2158 int ret;
2159
2160 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2161
2162 /* If we haven't already seen the new PID stop, wait for it now. */
2163 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2164 {
2165 /* The new child has a pending SIGSTOP. We can't affect it until it
2166 hits the SIGSTOP, but we're already attached. */
2167 ret = my_waitpid (new_pid, &status,
2168 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2169 if (ret == -1)
2170 perror_with_name (_("waiting for new child"));
2171 else if (ret != new_pid)
2172 internal_error (__FILE__, __LINE__,
2173 _("wait returned unexpected PID %d"), ret);
2174 else if (!WIFSTOPPED (status))
2175 internal_error (__FILE__, __LINE__,
2176 _("wait returned unexpected status 0x%x"), status);
2177 }
2178
2179 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2180
2181 if (event == PTRACE_EVENT_FORK
2182 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2183 {
2184 struct fork_info *fp;
2185
2186 /* Handle checkpointing by linux-fork.c here as a special
2187 case. We don't want the follow-fork-mode or 'catch fork'
2188 to interfere with this. */
2189
2190 /* This won't actually modify the breakpoint list, but will
2191 physically remove the breakpoints from the child. */
2192 detach_breakpoints (new_pid);
2193
2194 /* Retain child fork in ptrace (stopped) state. */
2195 fp = find_fork_pid (new_pid);
2196 if (!fp)
2197 fp = add_fork (new_pid);
2198
2199 /* Report as spurious, so that infrun doesn't want to follow
2200 this fork. We're actually doing an infcall in
2201 linux-fork.c. */
2202 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2203 linux_enable_event_reporting (pid_to_ptid (new_pid));
2204
2205 /* Report the stop to the core. */
2206 return 0;
2207 }
2208
2209 if (event == PTRACE_EVENT_FORK)
2210 ourstatus->kind = TARGET_WAITKIND_FORKED;
2211 else if (event == PTRACE_EVENT_VFORK)
2212 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2213 else
2214 {
2215 struct lwp_info *new_lp;
2216
2217 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2218
2219 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2220 new_lp->cloned = 1;
2221 new_lp->stopped = 1;
2222
2223 if (WSTOPSIG (status) != SIGSTOP)
2224 {
2225 /* This can happen if someone starts sending signals to
2226 the new thread before it gets a chance to run, which
2227 have a lower number than SIGSTOP (e.g. SIGUSR1).
2228 This is an unlikely case, and harder to handle for
2229 fork / vfork than for clone, so we do not try - but
2230 we handle it for clone events here. We'll send
2231 the other signal on to the thread below. */
2232
2233 new_lp->signalled = 1;
2234 }
2235 else
2236 status = 0;
2237
2238 if (non_stop)
2239 {
2240 /* Add the new thread to GDB's lists as soon as possible
2241 so that:
2242
2243 1) the frontend doesn't have to wait for a stop to
2244 display them, and,
2245
2246 2) we tag it with the correct running state. */
2247
2248 /* If the thread_db layer is active, let it know about
2249 this new thread, and add it to GDB's list. */
2250 if (!thread_db_attach_lwp (new_lp->ptid))
2251 {
2252 /* We're not using thread_db. Add it to GDB's
2253 list. */
2254 target_post_attach (GET_LWP (new_lp->ptid));
2255 add_thread (new_lp->ptid);
2256 }
2257
2258 if (!stopping)
2259 {
2260 set_running (new_lp->ptid, 1);
2261 set_executing (new_lp->ptid, 1);
2262 }
2263 }
2264
2265 /* Note the need to use the low target ops to resume, to
2266 handle resuming with PT_SYSCALL if we have syscall
2267 catchpoints. */
2268 if (!stopping)
2269 {
2270 int signo;
2271
2272 new_lp->stopped = 0;
2273 new_lp->resumed = 1;
2274
2275 signo = (status
2276 ? target_signal_from_host (WSTOPSIG (status))
2277 : TARGET_SIGNAL_0);
2278
2279 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2280 0, signo);
2281 }
2282 else
2283 {
2284 if (status != 0)
2285 {
2286 /* We created NEW_LP so it cannot yet contain STATUS. */
2287 gdb_assert (new_lp->status == 0);
2288
2289 /* Save the wait status to report later. */
2290 if (debug_linux_nat)
2291 fprintf_unfiltered (gdb_stdlog,
2292 "LHEW: waitpid of new LWP %ld, "
2293 "saving status %s\n",
2294 (long) GET_LWP (new_lp->ptid),
2295 status_to_str (status));
2296 new_lp->status = status;
2297 }
2298 }
2299
2300 if (debug_linux_nat)
2301 fprintf_unfiltered (gdb_stdlog,
2302 "LHEW: Got clone event from LWP %ld, resuming\n",
2303 GET_LWP (lp->ptid));
2304 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2305 0, TARGET_SIGNAL_0);
2306
2307 return 1;
2308 }
2309
2310 return 0;
2311 }
2312
2313 if (event == PTRACE_EVENT_EXEC)
2314 {
2315 if (debug_linux_nat)
2316 fprintf_unfiltered (gdb_stdlog,
2317 "LHEW: Got exec event from LWP %ld\n",
2318 GET_LWP (lp->ptid));
2319
2320 ourstatus->kind = TARGET_WAITKIND_EXECD;
2321 ourstatus->value.execd_pathname
2322 = xstrdup (linux_child_pid_to_exec_file (pid));
2323
2324 return 0;
2325 }
2326
2327 if (event == PTRACE_EVENT_VFORK_DONE)
2328 {
2329 if (current_inferior ()->waiting_for_vfork_done)
2330 {
2331 if (debug_linux_nat)
2332 fprintf_unfiltered (gdb_stdlog, "\
2333 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2334 GET_LWP (lp->ptid));
2335
2336 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2337 return 0;
2338 }
2339
2340 if (debug_linux_nat)
2341 fprintf_unfiltered (gdb_stdlog, "\
2342 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2343 GET_LWP (lp->ptid));
2344 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2345 return 1;
2346 }
2347
2348 internal_error (__FILE__, __LINE__,
2349 _("unknown ptrace event %d"), event);
2350 }
2351
2352 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2353 exited. */
2354
2355 static int
2356 wait_lwp (struct lwp_info *lp)
2357 {
2358 pid_t pid;
2359 int status;
2360 int thread_dead = 0;
2361
2362 gdb_assert (!lp->stopped);
2363 gdb_assert (lp->status == 0);
2364
2365 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2366 if (pid == -1 && errno == ECHILD)
2367 {
2368 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2369 if (pid == -1 && errno == ECHILD)
2370 {
2371 /* The thread has previously exited. We need to delete it
2372 now because, for some vendor 2.4 kernels with NPTL
2373 support backported, there won't be an exit event unless
2374 it is the main thread. 2.6 kernels will report an exit
2375 event for each thread that exits, as expected. */
2376 thread_dead = 1;
2377 if (debug_linux_nat)
2378 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2379 target_pid_to_str (lp->ptid));
2380 }
2381 }
2382
2383 if (!thread_dead)
2384 {
2385 gdb_assert (pid == GET_LWP (lp->ptid));
2386
2387 if (debug_linux_nat)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "WL: waitpid %s received %s\n",
2391 target_pid_to_str (lp->ptid),
2392 status_to_str (status));
2393 }
2394 }
2395
2396 /* Check if the thread has exited. */
2397 if (WIFEXITED (status) || WIFSIGNALED (status))
2398 {
2399 thread_dead = 1;
2400 if (debug_linux_nat)
2401 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2402 target_pid_to_str (lp->ptid));
2403 }
2404
2405 if (thread_dead)
2406 {
2407 exit_lwp (lp);
2408 return 0;
2409 }
2410
2411 gdb_assert (WIFSTOPPED (status));
2412
2413 /* Handle GNU/Linux's syscall SIGTRAPs. */
2414 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2415 {
2416 /* No longer need the sysgood bit. The ptrace event ends up
2417 recorded in lp->waitstatus if we care for it. We can carry
2418 on handling the event like a regular SIGTRAP from here
2419 on. */
2420 status = W_STOPCODE (SIGTRAP);
2421 if (linux_handle_syscall_trap (lp, 1))
2422 return wait_lwp (lp);
2423 }
2424
2425 /* Handle GNU/Linux's extended waitstatus for trace events. */
2426 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2427 {
2428 if (debug_linux_nat)
2429 fprintf_unfiltered (gdb_stdlog,
2430 "WL: Handling extended status 0x%06x\n",
2431 status);
2432 if (linux_handle_extended_wait (lp, status, 1))
2433 return wait_lwp (lp);
2434 }
2435
2436 return status;
2437 }
2438
2439 /* Save the most recent siginfo for LP. This is currently only called
2440 for SIGTRAP; some ports use the si_addr field for
2441 target_stopped_data_address. In the future, it may also be used to
2442 restore the siginfo of requeued signals. */
2443
2444 static void
2445 save_siginfo (struct lwp_info *lp)
2446 {
2447 errno = 0;
2448 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2449 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2450
2451 if (errno != 0)
2452 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2453 }
2454
2455 /* Send a SIGSTOP to LP. */
2456
2457 static int
2458 stop_callback (struct lwp_info *lp, void *data)
2459 {
2460 if (!lp->stopped && !lp->signalled)
2461 {
2462 int ret;
2463
2464 if (debug_linux_nat)
2465 {
2466 fprintf_unfiltered (gdb_stdlog,
2467 "SC: kill %s **<SIGSTOP>**\n",
2468 target_pid_to_str (lp->ptid));
2469 }
2470 errno = 0;
2471 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2472 if (debug_linux_nat)
2473 {
2474 fprintf_unfiltered (gdb_stdlog,
2475 "SC: lwp kill %d %s\n",
2476 ret,
2477 errno ? safe_strerror (errno) : "ERRNO-OK");
2478 }
2479
2480 lp->signalled = 1;
2481 gdb_assert (lp->status == 0);
2482 }
2483
2484 return 0;
2485 }
2486
2487 /* Return non-zero if LWP PID has a pending SIGINT. */
2488
2489 static int
2490 linux_nat_has_pending_sigint (int pid)
2491 {
2492 sigset_t pending, blocked, ignored;
2493
2494 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2495
2496 if (sigismember (&pending, SIGINT)
2497 && !sigismember (&ignored, SIGINT))
2498 return 1;
2499
2500 return 0;
2501 }
2502
2503 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2504
2505 static int
2506 set_ignore_sigint (struct lwp_info *lp, void *data)
2507 {
2508 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2509 flag to consume the next one. */
2510 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2511 && WSTOPSIG (lp->status) == SIGINT)
2512 lp->status = 0;
2513 else
2514 lp->ignore_sigint = 1;
2515
2516 return 0;
2517 }
2518
2519 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2520 This function is called after we know the LWP has stopped; if the LWP
2521 stopped before the expected SIGINT was delivered, then it will never have
2522 arrived. Also, if the signal was delivered to a shared queue and consumed
2523 by a different thread, it will never be delivered to this LWP. */
2524
2525 static void
2526 maybe_clear_ignore_sigint (struct lwp_info *lp)
2527 {
2528 if (!lp->ignore_sigint)
2529 return;
2530
2531 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2532 {
2533 if (debug_linux_nat)
2534 fprintf_unfiltered (gdb_stdlog,
2535 "MCIS: Clearing bogus flag for %s\n",
2536 target_pid_to_str (lp->ptid));
2537 lp->ignore_sigint = 0;
2538 }
2539 }
2540
2541 /* Fetch the possible triggered data watchpoint info and store it in
2542 LP.
2543
2544 On some archs, like x86, that use debug registers to set
2545 watchpoints, it's possible that the way to know which watched
2546 address trapped, is to check the register that is used to select
2547 which address to watch. Problem is, between setting the watchpoint
2548 and reading back which data address trapped, the user may change
2549 the set of watchpoints, and, as a consequence, GDB changes the
2550 debug registers in the inferior. To avoid reading back a stale
2551 stopped-data-address when that happens, we cache in LP the fact
2552 that a watchpoint trapped, and the corresponding data address, as
2553 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2554 registers meanwhile, we have the cached data we can rely on. */
2555
2556 static void
2557 save_sigtrap (struct lwp_info *lp)
2558 {
2559 struct cleanup *old_chain;
2560
2561 if (linux_ops->to_stopped_by_watchpoint == NULL)
2562 {
2563 lp->stopped_by_watchpoint = 0;
2564 return;
2565 }
2566
2567 old_chain = save_inferior_ptid ();
2568 inferior_ptid = lp->ptid;
2569
2570 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2571
2572 if (lp->stopped_by_watchpoint)
2573 {
2574 if (linux_ops->to_stopped_data_address != NULL)
2575 lp->stopped_data_address_p =
2576 linux_ops->to_stopped_data_address (&current_target,
2577 &lp->stopped_data_address);
2578 else
2579 lp->stopped_data_address_p = 0;
2580 }
2581
2582 do_cleanups (old_chain);
2583 }
2584
2585 /* See save_sigtrap. */
2586
2587 static int
2588 linux_nat_stopped_by_watchpoint (void)
2589 {
2590 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2591
2592 gdb_assert (lp != NULL);
2593
2594 return lp->stopped_by_watchpoint;
2595 }
2596
2597 static int
2598 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2599 {
2600 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2601
2602 gdb_assert (lp != NULL);
2603
2604 *addr_p = lp->stopped_data_address;
2605
2606 return lp->stopped_data_address_p;
2607 }
2608
2609 /* Wait until LP is stopped. */
2610
2611 static int
2612 stop_wait_callback (struct lwp_info *lp, void *data)
2613 {
2614 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2615
2616 /* If this is a vfork parent, bail out, it is not going to report
2617 any SIGSTOP until the vfork is done with. */
2618 if (inf->vfork_child != NULL)
2619 return 0;
2620
2621 if (!lp->stopped)
2622 {
2623 int status;
2624
2625 status = wait_lwp (lp);
2626 if (status == 0)
2627 return 0;
2628
2629 if (lp->ignore_sigint && WIFSTOPPED (status)
2630 && WSTOPSIG (status) == SIGINT)
2631 {
2632 lp->ignore_sigint = 0;
2633
2634 errno = 0;
2635 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2636 if (debug_linux_nat)
2637 fprintf_unfiltered (gdb_stdlog,
2638 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2639 target_pid_to_str (lp->ptid),
2640 errno ? safe_strerror (errno) : "OK");
2641
2642 return stop_wait_callback (lp, NULL);
2643 }
2644
2645 maybe_clear_ignore_sigint (lp);
2646
2647 if (WSTOPSIG (status) != SIGSTOP)
2648 {
2649 if (WSTOPSIG (status) == SIGTRAP)
2650 {
2651 /* If a LWP other than the LWP that we're reporting an
2652 event for has hit a GDB breakpoint (as opposed to
2653 some random trap signal), then just arrange for it to
2654 hit it again later. We don't keep the SIGTRAP status
2655 and don't forward the SIGTRAP signal to the LWP. We
2656 will handle the current event, eventually we will
2657 resume all LWPs, and this one will get its breakpoint
2658 trap again.
2659
2660 If we do not do this, then we run the risk that the
2661 user will delete or disable the breakpoint, but the
2662 thread will have already tripped on it. */
2663
2664 /* Save the trap's siginfo in case we need it later. */
2665 save_siginfo (lp);
2666
2667 save_sigtrap (lp);
2668
2669 /* Now resume this LWP and get the SIGSTOP event. */
2670 errno = 0;
2671 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2672 if (debug_linux_nat)
2673 {
2674 fprintf_unfiltered (gdb_stdlog,
2675 "PTRACE_CONT %s, 0, 0 (%s)\n",
2676 target_pid_to_str (lp->ptid),
2677 errno ? safe_strerror (errno) : "OK");
2678
2679 fprintf_unfiltered (gdb_stdlog,
2680 "SWC: Candidate SIGTRAP event in %s\n",
2681 target_pid_to_str (lp->ptid));
2682 }
2683 /* Hold this event/waitstatus while we check to see if
2684 there are any more (we still want to get that SIGSTOP). */
2685 stop_wait_callback (lp, NULL);
2686
2687 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2688 there's another event, throw it back into the
2689 queue. */
2690 if (lp->status)
2691 {
2692 if (debug_linux_nat)
2693 fprintf_unfiltered (gdb_stdlog,
2694 "SWC: kill %s, %s\n",
2695 target_pid_to_str (lp->ptid),
2696 status_to_str ((int) status));
2697 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2698 }
2699
2700 /* Save the sigtrap event. */
2701 lp->status = status;
2702 return 0;
2703 }
2704 else
2705 {
2706 /* The thread was stopped with a signal other than
2707 SIGSTOP, and didn't accidentally trip a breakpoint. */
2708
2709 if (debug_linux_nat)
2710 {
2711 fprintf_unfiltered (gdb_stdlog,
2712 "SWC: Pending event %s in %s\n",
2713 status_to_str ((int) status),
2714 target_pid_to_str (lp->ptid));
2715 }
2716 /* Now resume this LWP and get the SIGSTOP event. */
2717 errno = 0;
2718 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2719 if (debug_linux_nat)
2720 fprintf_unfiltered (gdb_stdlog,
2721 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2722 target_pid_to_str (lp->ptid),
2723 errno ? safe_strerror (errno) : "OK");
2724
2725 /* Hold this event/waitstatus while we check to see if
2726 there are any more (we still want to get that SIGSTOP). */
2727 stop_wait_callback (lp, NULL);
2728
2729 /* If the lp->status field is still empty, use it to
2730 hold this event. If not, then this event must be
2731 returned to the event queue of the LWP. */
2732 if (lp->status)
2733 {
2734 if (debug_linux_nat)
2735 {
2736 fprintf_unfiltered (gdb_stdlog,
2737 "SWC: kill %s, %s\n",
2738 target_pid_to_str (lp->ptid),
2739 status_to_str ((int) status));
2740 }
2741 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2742 }
2743 else
2744 lp->status = status;
2745 return 0;
2746 }
2747 }
2748 else
2749 {
2750 /* We caught the SIGSTOP that we intended to catch, so
2751 there's no SIGSTOP pending. */
2752 lp->stopped = 1;
2753 lp->signalled = 0;
2754 }
2755 }
2756
2757 return 0;
2758 }
2759
2760 /* Return non-zero if LP has a wait status pending. */
2761
2762 static int
2763 status_callback (struct lwp_info *lp, void *data)
2764 {
2765 /* Only report a pending wait status if we pretend that this has
2766 indeed been resumed. */
2767 if (!lp->resumed)
2768 return 0;
2769
2770 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2771 {
2772 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2773 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2774 0', so a clean process exit can not be stored pending in
2775 lp->status, it is indistinguishable from
2776 no-pending-status. */
2777 return 1;
2778 }
2779
2780 if (lp->status != 0)
2781 return 1;
2782
2783 return 0;
2784 }
2785
2786 /* Return non-zero if LP isn't stopped. */
2787
2788 static int
2789 running_callback (struct lwp_info *lp, void *data)
2790 {
2791 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2792 }
2793
2794 /* Count the LWP's that have had events. */
2795
2796 static int
2797 count_events_callback (struct lwp_info *lp, void *data)
2798 {
2799 int *count = data;
2800
2801 gdb_assert (count != NULL);
2802
2803 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2804 if (lp->status != 0 && lp->resumed
2805 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2806 (*count)++;
2807
2808 return 0;
2809 }
2810
2811 /* Select the LWP (if any) that is currently being single-stepped. */
2812
2813 static int
2814 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2815 {
2816 if (lp->step && lp->status != 0)
2817 return 1;
2818 else
2819 return 0;
2820 }
2821
2822 /* Select the Nth LWP that has had a SIGTRAP event. */
2823
2824 static int
2825 select_event_lwp_callback (struct lwp_info *lp, void *data)
2826 {
2827 int *selector = data;
2828
2829 gdb_assert (selector != NULL);
2830
2831 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2832 if (lp->status != 0 && lp->resumed
2833 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2834 if ((*selector)-- == 0)
2835 return 1;
2836
2837 return 0;
2838 }
2839
2840 static int
2841 cancel_breakpoint (struct lwp_info *lp)
2842 {
2843 /* Arrange for a breakpoint to be hit again later. We don't keep
2844 the SIGTRAP status and don't forward the SIGTRAP signal to the
2845 LWP. We will handle the current event, eventually we will resume
2846 this LWP, and this breakpoint will trap again.
2847
2848 If we do not do this, then we run the risk that the user will
2849 delete or disable the breakpoint, but the LWP will have already
2850 tripped on it. */
2851
2852 struct regcache *regcache = get_thread_regcache (lp->ptid);
2853 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2854 CORE_ADDR pc;
2855
2856 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2857 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2858 {
2859 if (debug_linux_nat)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "CB: Push back breakpoint for %s\n",
2862 target_pid_to_str (lp->ptid));
2863
2864 /* Back up the PC if necessary. */
2865 if (gdbarch_decr_pc_after_break (gdbarch))
2866 regcache_write_pc (regcache, pc);
2867
2868 return 1;
2869 }
2870 return 0;
2871 }
2872
2873 static int
2874 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2875 {
2876 struct lwp_info *event_lp = data;
2877
2878 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2879 if (lp == event_lp)
2880 return 0;
2881
2882 /* If a LWP other than the LWP that we're reporting an event for has
2883 hit a GDB breakpoint (as opposed to some random trap signal),
2884 then just arrange for it to hit it again later. We don't keep
2885 the SIGTRAP status and don't forward the SIGTRAP signal to the
2886 LWP. We will handle the current event, eventually we will resume
2887 all LWPs, and this one will get its breakpoint trap again.
2888
2889 If we do not do this, then we run the risk that the user will
2890 delete or disable the breakpoint, but the LWP will have already
2891 tripped on it. */
2892
2893 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2894 && lp->status != 0
2895 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2896 && cancel_breakpoint (lp))
2897 /* Throw away the SIGTRAP. */
2898 lp->status = 0;
2899
2900 return 0;
2901 }
2902
2903 /* Select one LWP out of those that have events pending. */
2904
2905 static void
2906 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2907 {
2908 int num_events = 0;
2909 int random_selector;
2910 struct lwp_info *event_lp;
2911
2912 /* Record the wait status for the original LWP. */
2913 (*orig_lp)->status = *status;
2914
2915 /* Give preference to any LWP that is being single-stepped. */
2916 event_lp = iterate_over_lwps (filter,
2917 select_singlestep_lwp_callback, NULL);
2918 if (event_lp != NULL)
2919 {
2920 if (debug_linux_nat)
2921 fprintf_unfiltered (gdb_stdlog,
2922 "SEL: Select single-step %s\n",
2923 target_pid_to_str (event_lp->ptid));
2924 }
2925 else
2926 {
2927 /* No single-stepping LWP. Select one at random, out of those
2928 which have had SIGTRAP events. */
2929
2930 /* First see how many SIGTRAP events we have. */
2931 iterate_over_lwps (filter, count_events_callback, &num_events);
2932
2933 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2934 random_selector = (int)
2935 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2936
2937 if (debug_linux_nat && num_events > 1)
2938 fprintf_unfiltered (gdb_stdlog,
2939 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2940 num_events, random_selector);
2941
2942 event_lp = iterate_over_lwps (filter,
2943 select_event_lwp_callback,
2944 &random_selector);
2945 }
2946
2947 if (event_lp != NULL)
2948 {
2949 /* Switch the event LWP. */
2950 *orig_lp = event_lp;
2951 *status = event_lp->status;
2952 }
2953
2954 /* Flush the wait status for the event LWP. */
2955 (*orig_lp)->status = 0;
2956 }
2957
2958 /* Return non-zero if LP has been resumed. */
2959
2960 static int
2961 resumed_callback (struct lwp_info *lp, void *data)
2962 {
2963 return lp->resumed;
2964 }
2965
2966 /* Stop an active thread, verify it still exists, then resume it. */
2967
2968 static int
2969 stop_and_resume_callback (struct lwp_info *lp, void *data)
2970 {
2971 struct lwp_info *ptr;
2972
2973 if (!lp->stopped && !lp->signalled)
2974 {
2975 stop_callback (lp, NULL);
2976 stop_wait_callback (lp, NULL);
2977 /* Resume if the lwp still exists. */
2978 for (ptr = lwp_list; ptr; ptr = ptr->next)
2979 if (lp == ptr)
2980 {
2981 resume_callback (lp, NULL);
2982 resume_set_callback (lp, NULL);
2983 }
2984 }
2985 return 0;
2986 }
2987
2988 /* Check if we should go on and pass this event to common code.
2989 Return the affected lwp if we are, or NULL otherwise. */
2990 static struct lwp_info *
2991 linux_nat_filter_event (int lwpid, int status, int options)
2992 {
2993 struct lwp_info *lp;
2994
2995 lp = find_lwp_pid (pid_to_ptid (lwpid));
2996
2997 /* Check for stop events reported by a process we didn't already
2998 know about - anything not already in our LWP list.
2999
3000 If we're expecting to receive stopped processes after
3001 fork, vfork, and clone events, then we'll just add the
3002 new one to our list and go back to waiting for the event
3003 to be reported - the stopped process might be returned
3004 from waitpid before or after the event is. */
3005 if (WIFSTOPPED (status) && !lp)
3006 {
3007 linux_record_stopped_pid (lwpid, status);
3008 return NULL;
3009 }
3010
3011 /* Make sure we don't report an event for the exit of an LWP not in
3012 our list, i.e. not part of the current process. This can happen
3013 if we detach from a program we original forked and then it
3014 exits. */
3015 if (!WIFSTOPPED (status) && !lp)
3016 return NULL;
3017
3018 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3019 CLONE_PTRACE processes which do not use the thread library -
3020 otherwise we wouldn't find the new LWP this way. That doesn't
3021 currently work, and the following code is currently unreachable
3022 due to the two blocks above. If it's fixed some day, this code
3023 should be broken out into a function so that we can also pick up
3024 LWPs from the new interface. */
3025 if (!lp)
3026 {
3027 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3028 if (options & __WCLONE)
3029 lp->cloned = 1;
3030
3031 gdb_assert (WIFSTOPPED (status)
3032 && WSTOPSIG (status) == SIGSTOP);
3033 lp->signalled = 1;
3034
3035 if (!in_thread_list (inferior_ptid))
3036 {
3037 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3038 GET_PID (inferior_ptid));
3039 add_thread (inferior_ptid);
3040 }
3041
3042 add_thread (lp->ptid);
3043 }
3044
3045 /* Handle GNU/Linux's syscall SIGTRAPs. */
3046 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3047 {
3048 /* No longer need the sysgood bit. The ptrace event ends up
3049 recorded in lp->waitstatus if we care for it. We can carry
3050 on handling the event like a regular SIGTRAP from here
3051 on. */
3052 status = W_STOPCODE (SIGTRAP);
3053 if (linux_handle_syscall_trap (lp, 0))
3054 return NULL;
3055 }
3056
3057 /* Handle GNU/Linux's extended waitstatus for trace events. */
3058 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3059 {
3060 if (debug_linux_nat)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "LLW: Handling extended status 0x%06x\n",
3063 status);
3064 if (linux_handle_extended_wait (lp, status, 0))
3065 return NULL;
3066 }
3067
3068 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3069 {
3070 /* Save the trap's siginfo in case we need it later. */
3071 save_siginfo (lp);
3072
3073 save_sigtrap (lp);
3074 }
3075
3076 /* Check if the thread has exited. */
3077 if ((WIFEXITED (status) || WIFSIGNALED (status))
3078 && num_lwps (GET_PID (lp->ptid)) > 1)
3079 {
3080 /* If this is the main thread, we must stop all threads and verify
3081 if they are still alive. This is because in the nptl thread model
3082 on Linux 2.4, there is no signal issued for exiting LWPs
3083 other than the main thread. We only get the main thread exit
3084 signal once all child threads have already exited. If we
3085 stop all the threads and use the stop_wait_callback to check
3086 if they have exited we can determine whether this signal
3087 should be ignored or whether it means the end of the debugged
3088 application, regardless of which threading model is being
3089 used. */
3090 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3091 {
3092 lp->stopped = 1;
3093 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3094 stop_and_resume_callback, NULL);
3095 }
3096
3097 if (debug_linux_nat)
3098 fprintf_unfiltered (gdb_stdlog,
3099 "LLW: %s exited.\n",
3100 target_pid_to_str (lp->ptid));
3101
3102 if (num_lwps (GET_PID (lp->ptid)) > 1)
3103 {
3104 /* If there is at least one more LWP, then the exit signal
3105 was not the end of the debugged application and should be
3106 ignored. */
3107 exit_lwp (lp);
3108 return NULL;
3109 }
3110 }
3111
3112 /* Check if the current LWP has previously exited. In the nptl
3113 thread model, LWPs other than the main thread do not issue
3114 signals when they exit so we must check whenever the thread has
3115 stopped. A similar check is made in stop_wait_callback(). */
3116 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3117 {
3118 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3119
3120 if (debug_linux_nat)
3121 fprintf_unfiltered (gdb_stdlog,
3122 "LLW: %s exited.\n",
3123 target_pid_to_str (lp->ptid));
3124
3125 exit_lwp (lp);
3126
3127 /* Make sure there is at least one thread running. */
3128 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3129
3130 /* Discard the event. */
3131 return NULL;
3132 }
3133
3134 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3135 an attempt to stop an LWP. */
3136 if (lp->signalled
3137 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3138 {
3139 if (debug_linux_nat)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "LLW: Delayed SIGSTOP caught for %s.\n",
3142 target_pid_to_str (lp->ptid));
3143
3144 /* This is a delayed SIGSTOP. */
3145 lp->signalled = 0;
3146
3147 registers_changed ();
3148
3149 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3150 lp->step, TARGET_SIGNAL_0);
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3154 lp->step ?
3155 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3156 target_pid_to_str (lp->ptid));
3157
3158 lp->stopped = 0;
3159 gdb_assert (lp->resumed);
3160
3161 /* Discard the event. */
3162 return NULL;
3163 }
3164
3165 /* Make sure we don't report a SIGINT that we have already displayed
3166 for another thread. */
3167 if (lp->ignore_sigint
3168 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3169 {
3170 if (debug_linux_nat)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "LLW: Delayed SIGINT caught for %s.\n",
3173 target_pid_to_str (lp->ptid));
3174
3175 /* This is a delayed SIGINT. */
3176 lp->ignore_sigint = 0;
3177
3178 registers_changed ();
3179 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3180 lp->step, TARGET_SIGNAL_0);
3181 if (debug_linux_nat)
3182 fprintf_unfiltered (gdb_stdlog,
3183 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3184 lp->step ?
3185 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3186 target_pid_to_str (lp->ptid));
3187
3188 lp->stopped = 0;
3189 gdb_assert (lp->resumed);
3190
3191 /* Discard the event. */
3192 return NULL;
3193 }
3194
3195 /* An interesting event. */
3196 gdb_assert (lp);
3197 lp->status = status;
3198 return lp;
3199 }
3200
3201 static ptid_t
3202 linux_nat_wait_1 (struct target_ops *ops,
3203 ptid_t ptid, struct target_waitstatus *ourstatus,
3204 int target_options)
3205 {
3206 static sigset_t prev_mask;
3207 struct lwp_info *lp = NULL;
3208 int options = 0;
3209 int status = 0;
3210 pid_t pid;
3211
3212 if (debug_linux_nat_async)
3213 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3214
3215 /* The first time we get here after starting a new inferior, we may
3216 not have added it to the LWP list yet - this is the earliest
3217 moment at which we know its PID. */
3218 if (ptid_is_pid (inferior_ptid))
3219 {
3220 /* Upgrade the main thread's ptid. */
3221 thread_change_ptid (inferior_ptid,
3222 BUILD_LWP (GET_PID (inferior_ptid),
3223 GET_PID (inferior_ptid)));
3224
3225 lp = add_lwp (inferior_ptid);
3226 lp->resumed = 1;
3227 }
3228
3229 /* Make sure SIGCHLD is blocked. */
3230 block_child_signals (&prev_mask);
3231
3232 if (ptid_equal (ptid, minus_one_ptid))
3233 pid = -1;
3234 else if (ptid_is_pid (ptid))
3235 /* A request to wait for a specific tgid. This is not possible
3236 with waitpid, so instead, we wait for any child, and leave
3237 children we're not interested in right now with a pending
3238 status to report later. */
3239 pid = -1;
3240 else
3241 pid = GET_LWP (ptid);
3242
3243 retry:
3244 lp = NULL;
3245 status = 0;
3246
3247 /* Make sure that of those LWPs we want to get an event from, there
3248 is at least one LWP that has been resumed. If there's none, just
3249 bail out. The core may just be flushing asynchronously all
3250 events. */
3251 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3252 {
3253 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3254
3255 if (debug_linux_nat_async)
3256 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3257
3258 restore_child_signals_mask (&prev_mask);
3259 return minus_one_ptid;
3260 }
3261
3262 /* First check if there is a LWP with a wait status pending. */
3263 if (pid == -1)
3264 {
3265 /* Any LWP that's been resumed will do. */
3266 lp = iterate_over_lwps (ptid, status_callback, NULL);
3267 if (lp)
3268 {
3269 if (debug_linux_nat && lp->status)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "LLW: Using pending wait status %s for %s.\n",
3272 status_to_str (lp->status),
3273 target_pid_to_str (lp->ptid));
3274 }
3275
3276 /* But if we don't find one, we'll have to wait, and check both
3277 cloned and uncloned processes. We start with the cloned
3278 processes. */
3279 options = __WCLONE | WNOHANG;
3280 }
3281 else if (is_lwp (ptid))
3282 {
3283 if (debug_linux_nat)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "LLW: Waiting for specific LWP %s.\n",
3286 target_pid_to_str (ptid));
3287
3288 /* We have a specific LWP to check. */
3289 lp = find_lwp_pid (ptid);
3290 gdb_assert (lp);
3291
3292 if (debug_linux_nat && lp->status)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "LLW: Using pending wait status %s for %s.\n",
3295 status_to_str (lp->status),
3296 target_pid_to_str (lp->ptid));
3297
3298 /* If we have to wait, take into account whether PID is a cloned
3299 process or not. And we have to convert it to something that
3300 the layer beneath us can understand. */
3301 options = lp->cloned ? __WCLONE : 0;
3302 pid = GET_LWP (ptid);
3303
3304 /* We check for lp->waitstatus in addition to lp->status,
3305 because we can have pending process exits recorded in
3306 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3307 an additional lp->status_p flag. */
3308 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3309 lp = NULL;
3310 }
3311
3312 if (lp && lp->signalled)
3313 {
3314 /* A pending SIGSTOP may interfere with the normal stream of
3315 events. In a typical case where interference is a problem,
3316 we have a SIGSTOP signal pending for LWP A while
3317 single-stepping it, encounter an event in LWP B, and take the
3318 pending SIGSTOP while trying to stop LWP A. After processing
3319 the event in LWP B, LWP A is continued, and we'll never see
3320 the SIGTRAP associated with the last time we were
3321 single-stepping LWP A. */
3322
3323 /* Resume the thread. It should halt immediately returning the
3324 pending SIGSTOP. */
3325 registers_changed ();
3326 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3327 lp->step, TARGET_SIGNAL_0);
3328 if (debug_linux_nat)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3331 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3332 target_pid_to_str (lp->ptid));
3333 lp->stopped = 0;
3334 gdb_assert (lp->resumed);
3335
3336 /* Catch the pending SIGSTOP. */
3337 status = lp->status;
3338 lp->status = 0;
3339
3340 stop_wait_callback (lp, NULL);
3341
3342 /* If the lp->status field isn't empty, we caught another signal
3343 while flushing the SIGSTOP. Return it back to the event
3344 queue of the LWP, as we already have an event to handle. */
3345 if (lp->status)
3346 {
3347 if (debug_linux_nat)
3348 fprintf_unfiltered (gdb_stdlog,
3349 "LLW: kill %s, %s\n",
3350 target_pid_to_str (lp->ptid),
3351 status_to_str (lp->status));
3352 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3353 }
3354
3355 lp->status = status;
3356 }
3357
3358 if (!target_can_async_p ())
3359 {
3360 /* Causes SIGINT to be passed on to the attached process. */
3361 set_sigint_trap ();
3362 }
3363
3364 /* Translate generic target_wait options into waitpid options. */
3365 if (target_options & TARGET_WNOHANG)
3366 options |= WNOHANG;
3367
3368 while (lp == NULL)
3369 {
3370 pid_t lwpid;
3371
3372 lwpid = my_waitpid (pid, &status, options);
3373
3374 if (lwpid > 0)
3375 {
3376 gdb_assert (pid == -1 || lwpid == pid);
3377
3378 if (debug_linux_nat)
3379 {
3380 fprintf_unfiltered (gdb_stdlog,
3381 "LLW: waitpid %ld received %s\n",
3382 (long) lwpid, status_to_str (status));
3383 }
3384
3385 lp = linux_nat_filter_event (lwpid, status, options);
3386
3387 /* STATUS is now no longer valid, use LP->STATUS instead. */
3388 status = 0;
3389
3390 if (lp
3391 && ptid_is_pid (ptid)
3392 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3393 {
3394 gdb_assert (lp->resumed);
3395
3396 if (debug_linux_nat)
3397 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3398 ptid_get_lwp (lp->ptid), lp->status);
3399
3400 if (WIFSTOPPED (lp->status))
3401 {
3402 if (WSTOPSIG (lp->status) != SIGSTOP)
3403 {
3404 /* Cancel breakpoint hits. The breakpoint may
3405 be removed before we fetch events from this
3406 process to report to the core. It is best
3407 not to assume the moribund breakpoints
3408 heuristic always handles these cases --- it
3409 could be too many events go through to the
3410 core before this one is handled. All-stop
3411 always cancels breakpoint hits in all
3412 threads. */
3413 if (non_stop
3414 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3415 && WSTOPSIG (lp->status) == SIGTRAP
3416 && cancel_breakpoint (lp))
3417 {
3418 /* Throw away the SIGTRAP. */
3419 lp->status = 0;
3420
3421 if (debug_linux_nat)
3422 fprintf (stderr,
3423 "LLW: LWP %ld hit a breakpoint while waiting "
3424 "for another process; cancelled it\n",
3425 ptid_get_lwp (lp->ptid));
3426 }
3427 lp->stopped = 1;
3428 }
3429 else
3430 {
3431 lp->stopped = 1;
3432 lp->signalled = 0;
3433 }
3434 }
3435 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3436 {
3437 if (debug_linux_nat)
3438 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3439 ptid_get_lwp (lp->ptid));
3440
3441 /* This was the last lwp in the process. Since
3442 events are serialized to GDB core, and we can't
3443 report this one right now, but GDB core and the
3444 other target layers will want to be notified
3445 about the exit code/signal, leave the status
3446 pending for the next time we're able to report
3447 it. */
3448
3449 /* Prevent trying to stop this thread again. We'll
3450 never try to resume it because it has a pending
3451 status. */
3452 lp->stopped = 1;
3453
3454 /* Dead LWP's aren't expected to reported a pending
3455 sigstop. */
3456 lp->signalled = 0;
3457
3458 /* Store the pending event in the waitstatus as
3459 well, because W_EXITCODE(0,0) == 0. */
3460 store_waitstatus (&lp->waitstatus, lp->status);
3461 }
3462
3463 /* Keep looking. */
3464 lp = NULL;
3465 continue;
3466 }
3467
3468 if (lp)
3469 break;
3470 else
3471 {
3472 if (pid == -1)
3473 {
3474 /* waitpid did return something. Restart over. */
3475 options |= __WCLONE;
3476 }
3477 continue;
3478 }
3479 }
3480
3481 if (pid == -1)
3482 {
3483 /* Alternate between checking cloned and uncloned processes. */
3484 options ^= __WCLONE;
3485
3486 /* And every time we have checked both:
3487 In async mode, return to event loop;
3488 In sync mode, suspend waiting for a SIGCHLD signal. */
3489 if (options & __WCLONE)
3490 {
3491 if (target_options & TARGET_WNOHANG)
3492 {
3493 /* No interesting event. */
3494 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3495
3496 if (debug_linux_nat_async)
3497 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3498
3499 restore_child_signals_mask (&prev_mask);
3500 return minus_one_ptid;
3501 }
3502
3503 sigsuspend (&suspend_mask);
3504 }
3505 }
3506 else if (target_options & TARGET_WNOHANG)
3507 {
3508 /* No interesting event for PID yet. */
3509 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3510
3511 if (debug_linux_nat_async)
3512 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3513
3514 restore_child_signals_mask (&prev_mask);
3515 return minus_one_ptid;
3516 }
3517
3518 /* We shouldn't end up here unless we want to try again. */
3519 gdb_assert (lp == NULL);
3520 }
3521
3522 if (!target_can_async_p ())
3523 clear_sigint_trap ();
3524
3525 gdb_assert (lp);
3526
3527 status = lp->status;
3528 lp->status = 0;
3529
3530 /* Don't report signals that GDB isn't interested in, such as
3531 signals that are neither printed nor stopped upon. Stopping all
3532 threads can be a bit time-consuming so if we want decent
3533 performance with heavily multi-threaded programs, especially when
3534 they're using a high frequency timer, we'd better avoid it if we
3535 can. */
3536
3537 if (WIFSTOPPED (status))
3538 {
3539 int signo = target_signal_from_host (WSTOPSIG (status));
3540 struct inferior *inf;
3541
3542 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3543 gdb_assert (inf);
3544
3545 /* Defer to common code if we get a signal while
3546 single-stepping, since that may need special care, e.g. to
3547 skip the signal handler, or, if we're gaining control of the
3548 inferior. */
3549 if (!lp->step
3550 && inf->stop_soon == NO_STOP_QUIETLY
3551 && signal_stop_state (signo) == 0
3552 && signal_print_state (signo) == 0
3553 && signal_pass_state (signo) == 1)
3554 {
3555 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3556 here? It is not clear we should. GDB may not expect
3557 other threads to run. On the other hand, not resuming
3558 newly attached threads may cause an unwanted delay in
3559 getting them running. */
3560 registers_changed ();
3561 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3562 lp->step, signo);
3563 if (debug_linux_nat)
3564 fprintf_unfiltered (gdb_stdlog,
3565 "LLW: %s %s, %s (preempt 'handle')\n",
3566 lp->step ?
3567 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3568 target_pid_to_str (lp->ptid),
3569 signo ? strsignal (signo) : "0");
3570 lp->stopped = 0;
3571 goto retry;
3572 }
3573
3574 if (!non_stop)
3575 {
3576 /* Only do the below in all-stop, as we currently use SIGINT
3577 to implement target_stop (see linux_nat_stop) in
3578 non-stop. */
3579 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3580 {
3581 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3582 forwarded to the entire process group, that is, all LWPs
3583 will receive it - unless they're using CLONE_THREAD to
3584 share signals. Since we only want to report it once, we
3585 mark it as ignored for all LWPs except this one. */
3586 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3587 set_ignore_sigint, NULL);
3588 lp->ignore_sigint = 0;
3589 }
3590 else
3591 maybe_clear_ignore_sigint (lp);
3592 }
3593 }
3594
3595 /* This LWP is stopped now. */
3596 lp->stopped = 1;
3597
3598 if (debug_linux_nat)
3599 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3600 status_to_str (status), target_pid_to_str (lp->ptid));
3601
3602 if (!non_stop)
3603 {
3604 /* Now stop all other LWP's ... */
3605 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3606
3607 /* ... and wait until all of them have reported back that
3608 they're no longer running. */
3609 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3610
3611 /* If we're not waiting for a specific LWP, choose an event LWP
3612 from among those that have had events. Giving equal priority
3613 to all LWPs that have had events helps prevent
3614 starvation. */
3615 if (pid == -1)
3616 select_event_lwp (ptid, &lp, &status);
3617
3618 /* Now that we've selected our final event LWP, cancel any
3619 breakpoints in other LWPs that have hit a GDB breakpoint.
3620 See the comment in cancel_breakpoints_callback to find out
3621 why. */
3622 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3623
3624 /* In all-stop, from the core's perspective, all LWPs are now
3625 stopped until a new resume action is sent over. */
3626 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3627 }
3628 else
3629 lp->resumed = 0;
3630
3631 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3632 {
3633 if (debug_linux_nat)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "LLW: trap ptid is %s.\n",
3636 target_pid_to_str (lp->ptid));
3637 }
3638
3639 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3640 {
3641 *ourstatus = lp->waitstatus;
3642 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3643 }
3644 else
3645 store_waitstatus (ourstatus, status);
3646
3647 if (debug_linux_nat_async)
3648 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3649
3650 restore_child_signals_mask (&prev_mask);
3651
3652 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3653 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3654 lp->core = -1;
3655 else
3656 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3657
3658 return lp->ptid;
3659 }
3660
3661 /* Resume LWPs that are currently stopped without any pending status
3662 to report, but are resumed from the core's perspective. */
3663
3664 static int
3665 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3666 {
3667 ptid_t *wait_ptid_p = data;
3668
3669 if (lp->stopped
3670 && lp->resumed
3671 && lp->status == 0
3672 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3673 {
3674 gdb_assert (is_executing (lp->ptid));
3675
3676 /* Don't bother if there's a breakpoint at PC that we'd hit
3677 immediately, and we're not waiting for this LWP. */
3678 if (!ptid_match (lp->ptid, *wait_ptid_p))
3679 {
3680 struct regcache *regcache = get_thread_regcache (lp->ptid);
3681 CORE_ADDR pc = regcache_read_pc (regcache);
3682
3683 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3684 return 0;
3685 }
3686
3687 if (debug_linux_nat)
3688 fprintf_unfiltered (gdb_stdlog,
3689 "RSRL: resuming stopped-resumed LWP %s\n",
3690 target_pid_to_str (lp->ptid));
3691
3692 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3693 lp->step, TARGET_SIGNAL_0);
3694 lp->stopped = 0;
3695 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3696 lp->stopped_by_watchpoint = 0;
3697 }
3698
3699 return 0;
3700 }
3701
3702 static ptid_t
3703 linux_nat_wait (struct target_ops *ops,
3704 ptid_t ptid, struct target_waitstatus *ourstatus,
3705 int target_options)
3706 {
3707 ptid_t event_ptid;
3708
3709 if (debug_linux_nat)
3710 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3711
3712 /* Flush the async file first. */
3713 if (target_can_async_p ())
3714 async_file_flush ();
3715
3716 /* Resume LWPs that are currently stopped without any pending status
3717 to report, but are resumed from the core's perspective. LWPs get
3718 in this state if we find them stopping at a time we're not
3719 interested in reporting the event (target_wait on a
3720 specific_process, for example, see linux_nat_wait_1), and
3721 meanwhile the event became uninteresting. Don't bother resuming
3722 LWPs we're not going to wait for if they'd stop immediately. */
3723 if (non_stop)
3724 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3725
3726 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3727
3728 /* If we requested any event, and something came out, assume there
3729 may be more. If we requested a specific lwp or process, also
3730 assume there may be more. */
3731 if (target_can_async_p ()
3732 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3733 || !ptid_equal (ptid, minus_one_ptid)))
3734 async_file_mark ();
3735
3736 /* Get ready for the next event. */
3737 if (target_can_async_p ())
3738 target_async (inferior_event_handler, 0);
3739
3740 return event_ptid;
3741 }
3742
3743 static int
3744 kill_callback (struct lwp_info *lp, void *data)
3745 {
3746 errno = 0;
3747 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3748 if (debug_linux_nat)
3749 fprintf_unfiltered (gdb_stdlog,
3750 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3751 target_pid_to_str (lp->ptid),
3752 errno ? safe_strerror (errno) : "OK");
3753
3754 return 0;
3755 }
3756
3757 static int
3758 kill_wait_callback (struct lwp_info *lp, void *data)
3759 {
3760 pid_t pid;
3761
3762 /* We must make sure that there are no pending events (delayed
3763 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3764 program doesn't interfere with any following debugging session. */
3765
3766 /* For cloned processes we must check both with __WCLONE and
3767 without, since the exit status of a cloned process isn't reported
3768 with __WCLONE. */
3769 if (lp->cloned)
3770 {
3771 do
3772 {
3773 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3774 if (pid != (pid_t) -1)
3775 {
3776 if (debug_linux_nat)
3777 fprintf_unfiltered (gdb_stdlog,
3778 "KWC: wait %s received unknown.\n",
3779 target_pid_to_str (lp->ptid));
3780 /* The Linux kernel sometimes fails to kill a thread
3781 completely after PTRACE_KILL; that goes from the stop
3782 point in do_fork out to the one in
3783 get_signal_to_deliever and waits again. So kill it
3784 again. */
3785 kill_callback (lp, NULL);
3786 }
3787 }
3788 while (pid == GET_LWP (lp->ptid));
3789
3790 gdb_assert (pid == -1 && errno == ECHILD);
3791 }
3792
3793 do
3794 {
3795 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3796 if (pid != (pid_t) -1)
3797 {
3798 if (debug_linux_nat)
3799 fprintf_unfiltered (gdb_stdlog,
3800 "KWC: wait %s received unk.\n",
3801 target_pid_to_str (lp->ptid));
3802 /* See the call to kill_callback above. */
3803 kill_callback (lp, NULL);
3804 }
3805 }
3806 while (pid == GET_LWP (lp->ptid));
3807
3808 gdb_assert (pid == -1 && errno == ECHILD);
3809 return 0;
3810 }
3811
3812 static void
3813 linux_nat_kill (struct target_ops *ops)
3814 {
3815 struct target_waitstatus last;
3816 ptid_t last_ptid;
3817 int status;
3818
3819 /* If we're stopped while forking and we haven't followed yet,
3820 kill the other task. We need to do this first because the
3821 parent will be sleeping if this is a vfork. */
3822
3823 get_last_target_status (&last_ptid, &last);
3824
3825 if (last.kind == TARGET_WAITKIND_FORKED
3826 || last.kind == TARGET_WAITKIND_VFORKED)
3827 {
3828 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3829 wait (&status);
3830 }
3831
3832 if (forks_exist_p ())
3833 linux_fork_killall ();
3834 else
3835 {
3836 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3837
3838 /* Stop all threads before killing them, since ptrace requires
3839 that the thread is stopped to sucessfully PTRACE_KILL. */
3840 iterate_over_lwps (ptid, stop_callback, NULL);
3841 /* ... and wait until all of them have reported back that
3842 they're no longer running. */
3843 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3844
3845 /* Kill all LWP's ... */
3846 iterate_over_lwps (ptid, kill_callback, NULL);
3847
3848 /* ... and wait until we've flushed all events. */
3849 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3850 }
3851
3852 target_mourn_inferior ();
3853 }
3854
3855 static void
3856 linux_nat_mourn_inferior (struct target_ops *ops)
3857 {
3858 purge_lwp_list (ptid_get_pid (inferior_ptid));
3859
3860 if (! forks_exist_p ())
3861 /* Normal case, no other forks available. */
3862 linux_ops->to_mourn_inferior (ops);
3863 else
3864 /* Multi-fork case. The current inferior_ptid has exited, but
3865 there are other viable forks to debug. Delete the exiting
3866 one and context-switch to the first available. */
3867 linux_fork_mourn_inferior ();
3868 }
3869
3870 /* Convert a native/host siginfo object, into/from the siginfo in the
3871 layout of the inferiors' architecture. */
3872
3873 static void
3874 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3875 {
3876 int done = 0;
3877
3878 if (linux_nat_siginfo_fixup != NULL)
3879 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3880
3881 /* If there was no callback, or the callback didn't do anything,
3882 then just do a straight memcpy. */
3883 if (!done)
3884 {
3885 if (direction == 1)
3886 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3887 else
3888 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3889 }
3890 }
3891
3892 static LONGEST
3893 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3894 const char *annex, gdb_byte *readbuf,
3895 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3896 {
3897 int pid;
3898 struct siginfo siginfo;
3899 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3900
3901 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3902 gdb_assert (readbuf || writebuf);
3903
3904 pid = GET_LWP (inferior_ptid);
3905 if (pid == 0)
3906 pid = GET_PID (inferior_ptid);
3907
3908 if (offset > sizeof (siginfo))
3909 return -1;
3910
3911 errno = 0;
3912 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3913 if (errno != 0)
3914 return -1;
3915
3916 /* When GDB is built as a 64-bit application, ptrace writes into
3917 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3918 inferior with a 64-bit GDB should look the same as debugging it
3919 with a 32-bit GDB, we need to convert it. GDB core always sees
3920 the converted layout, so any read/write will have to be done
3921 post-conversion. */
3922 siginfo_fixup (&siginfo, inf_siginfo, 0);
3923
3924 if (offset + len > sizeof (siginfo))
3925 len = sizeof (siginfo) - offset;
3926
3927 if (readbuf != NULL)
3928 memcpy (readbuf, inf_siginfo + offset, len);
3929 else
3930 {
3931 memcpy (inf_siginfo + offset, writebuf, len);
3932
3933 /* Convert back to ptrace layout before flushing it out. */
3934 siginfo_fixup (&siginfo, inf_siginfo, 1);
3935
3936 errno = 0;
3937 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3938 if (errno != 0)
3939 return -1;
3940 }
3941
3942 return len;
3943 }
3944
3945 static LONGEST
3946 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3947 const char *annex, gdb_byte *readbuf,
3948 const gdb_byte *writebuf,
3949 ULONGEST offset, LONGEST len)
3950 {
3951 struct cleanup *old_chain;
3952 LONGEST xfer;
3953
3954 if (object == TARGET_OBJECT_SIGNAL_INFO)
3955 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3956 offset, len);
3957
3958 /* The target is connected but no live inferior is selected. Pass
3959 this request down to a lower stratum (e.g., the executable
3960 file). */
3961 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3962 return 0;
3963
3964 old_chain = save_inferior_ptid ();
3965
3966 if (is_lwp (inferior_ptid))
3967 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3968
3969 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3970 offset, len);
3971
3972 do_cleanups (old_chain);
3973 return xfer;
3974 }
3975
3976 static int
3977 linux_thread_alive (ptid_t ptid)
3978 {
3979 int err;
3980
3981 gdb_assert (is_lwp (ptid));
3982
3983 /* Send signal 0 instead of anything ptrace, because ptracing a
3984 running thread errors out claiming that the thread doesn't
3985 exist. */
3986 err = kill_lwp (GET_LWP (ptid), 0);
3987
3988 if (debug_linux_nat)
3989 fprintf_unfiltered (gdb_stdlog,
3990 "LLTA: KILL(SIG0) %s (%s)\n",
3991 target_pid_to_str (ptid),
3992 err ? safe_strerror (err) : "OK");
3993
3994 if (err != 0)
3995 return 0;
3996
3997 return 1;
3998 }
3999
4000 static int
4001 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4002 {
4003 return linux_thread_alive (ptid);
4004 }
4005
4006 static char *
4007 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4008 {
4009 static char buf[64];
4010
4011 if (is_lwp (ptid)
4012 && (GET_PID (ptid) != GET_LWP (ptid)
4013 || num_lwps (GET_PID (ptid)) > 1))
4014 {
4015 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4016 return buf;
4017 }
4018
4019 return normal_pid_to_str (ptid);
4020 }
4021
4022 /* Accepts an integer PID; Returns a string representing a file that
4023 can be opened to get the symbols for the child process. */
4024
4025 static char *
4026 linux_child_pid_to_exec_file (int pid)
4027 {
4028 char *name1, *name2;
4029
4030 name1 = xmalloc (MAXPATHLEN);
4031 name2 = xmalloc (MAXPATHLEN);
4032 make_cleanup (xfree, name1);
4033 make_cleanup (xfree, name2);
4034 memset (name2, 0, MAXPATHLEN);
4035
4036 sprintf (name1, "/proc/%d/exe", pid);
4037 if (readlink (name1, name2, MAXPATHLEN) > 0)
4038 return name2;
4039 else
4040 return name1;
4041 }
4042
4043 /* Service function for corefiles and info proc. */
4044
4045 static int
4046 read_mapping (FILE *mapfile,
4047 long long *addr,
4048 long long *endaddr,
4049 char *permissions,
4050 long long *offset,
4051 char *device, long long *inode, char *filename)
4052 {
4053 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4054 addr, endaddr, permissions, offset, device, inode);
4055
4056 filename[0] = '\0';
4057 if (ret > 0 && ret != EOF)
4058 {
4059 /* Eat everything up to EOL for the filename. This will prevent
4060 weird filenames (such as one with embedded whitespace) from
4061 confusing this code. It also makes this code more robust in
4062 respect to annotations the kernel may add after the filename.
4063
4064 Note the filename is used for informational purposes
4065 only. */
4066 ret += fscanf (mapfile, "%[^\n]\n", filename);
4067 }
4068
4069 return (ret != 0 && ret != EOF);
4070 }
4071
4072 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4073 regions in the inferior for a corefile. */
4074
4075 static int
4076 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4077 unsigned long,
4078 int, int, int, void *), void *obfd)
4079 {
4080 int pid = PIDGET (inferior_ptid);
4081 char mapsfilename[MAXPATHLEN];
4082 FILE *mapsfile;
4083 long long addr, endaddr, size, offset, inode;
4084 char permissions[8], device[8], filename[MAXPATHLEN];
4085 int read, write, exec;
4086 struct cleanup *cleanup;
4087
4088 /* Compose the filename for the /proc memory map, and open it. */
4089 sprintf (mapsfilename, "/proc/%d/maps", pid);
4090 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4091 error (_("Could not open %s."), mapsfilename);
4092 cleanup = make_cleanup_fclose (mapsfile);
4093
4094 if (info_verbose)
4095 fprintf_filtered (gdb_stdout,
4096 "Reading memory regions from %s\n", mapsfilename);
4097
4098 /* Now iterate until end-of-file. */
4099 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4100 &offset, &device[0], &inode, &filename[0]))
4101 {
4102 size = endaddr - addr;
4103
4104 /* Get the segment's permissions. */
4105 read = (strchr (permissions, 'r') != 0);
4106 write = (strchr (permissions, 'w') != 0);
4107 exec = (strchr (permissions, 'x') != 0);
4108
4109 if (info_verbose)
4110 {
4111 fprintf_filtered (gdb_stdout,
4112 "Save segment, %s bytes at %s (%c%c%c)",
4113 plongest (size), paddress (target_gdbarch, addr),
4114 read ? 'r' : ' ',
4115 write ? 'w' : ' ', exec ? 'x' : ' ');
4116 if (filename[0])
4117 fprintf_filtered (gdb_stdout, " for %s", filename);
4118 fprintf_filtered (gdb_stdout, "\n");
4119 }
4120
4121 /* Invoke the callback function to create the corefile
4122 segment. */
4123 func (addr, size, read, write, exec, obfd);
4124 }
4125 do_cleanups (cleanup);
4126 return 0;
4127 }
4128
4129 static int
4130 find_signalled_thread (struct thread_info *info, void *data)
4131 {
4132 if (info->stop_signal != TARGET_SIGNAL_0
4133 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4134 return 1;
4135
4136 return 0;
4137 }
4138
4139 static enum target_signal
4140 find_stop_signal (void)
4141 {
4142 struct thread_info *info =
4143 iterate_over_threads (find_signalled_thread, NULL);
4144
4145 if (info)
4146 return info->stop_signal;
4147 else
4148 return TARGET_SIGNAL_0;
4149 }
4150
4151 /* Records the thread's register state for the corefile note
4152 section. */
4153
4154 static char *
4155 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4156 char *note_data, int *note_size,
4157 enum target_signal stop_signal)
4158 {
4159 unsigned long lwp = ptid_get_lwp (ptid);
4160 struct gdbarch *gdbarch = target_gdbarch;
4161 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4162 const struct regset *regset;
4163 int core_regset_p;
4164 struct cleanup *old_chain;
4165 struct core_regset_section *sect_list;
4166 char *gdb_regset;
4167
4168 old_chain = save_inferior_ptid ();
4169 inferior_ptid = ptid;
4170 target_fetch_registers (regcache, -1);
4171 do_cleanups (old_chain);
4172
4173 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4174 sect_list = gdbarch_core_regset_sections (gdbarch);
4175
4176 /* The loop below uses the new struct core_regset_section, which stores
4177 the supported section names and sizes for the core file. Note that
4178 note PRSTATUS needs to be treated specially. But the other notes are
4179 structurally the same, so they can benefit from the new struct. */
4180 if (core_regset_p && sect_list != NULL)
4181 while (sect_list->sect_name != NULL)
4182 {
4183 regset = gdbarch_regset_from_core_section (gdbarch,
4184 sect_list->sect_name,
4185 sect_list->size);
4186 gdb_assert (regset && regset->collect_regset);
4187 gdb_regset = xmalloc (sect_list->size);
4188 regset->collect_regset (regset, regcache, -1,
4189 gdb_regset, sect_list->size);
4190
4191 if (strcmp (sect_list->sect_name, ".reg") == 0)
4192 note_data = (char *) elfcore_write_prstatus
4193 (obfd, note_data, note_size,
4194 lwp, stop_signal, gdb_regset);
4195 else
4196 note_data = (char *) elfcore_write_register_note
4197 (obfd, note_data, note_size,
4198 sect_list->sect_name, gdb_regset,
4199 sect_list->size);
4200 xfree (gdb_regset);
4201 sect_list++;
4202 }
4203
4204 /* For architectures that does not have the struct core_regset_section
4205 implemented, we use the old method. When all the architectures have
4206 the new support, the code below should be deleted. */
4207 else
4208 {
4209 gdb_gregset_t gregs;
4210 gdb_fpregset_t fpregs;
4211
4212 if (core_regset_p
4213 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4214 sizeof (gregs))) != NULL
4215 && regset->collect_regset != NULL)
4216 regset->collect_regset (regset, regcache, -1,
4217 &gregs, sizeof (gregs));
4218 else
4219 fill_gregset (regcache, &gregs, -1);
4220
4221 note_data = (char *) elfcore_write_prstatus (obfd,
4222 note_data,
4223 note_size,
4224 lwp,
4225 stop_signal, &gregs);
4226
4227 if (core_regset_p
4228 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4229 sizeof (fpregs))) != NULL
4230 && regset->collect_regset != NULL)
4231 regset->collect_regset (regset, regcache, -1,
4232 &fpregs, sizeof (fpregs));
4233 else
4234 fill_fpregset (regcache, &fpregs, -1);
4235
4236 note_data = (char *) elfcore_write_prfpreg (obfd,
4237 note_data,
4238 note_size,
4239 &fpregs, sizeof (fpregs));
4240 }
4241
4242 return note_data;
4243 }
4244
4245 struct linux_nat_corefile_thread_data
4246 {
4247 bfd *obfd;
4248 char *note_data;
4249 int *note_size;
4250 int num_notes;
4251 enum target_signal stop_signal;
4252 };
4253
4254 /* Called by gdbthread.c once per thread. Records the thread's
4255 register state for the corefile note section. */
4256
4257 static int
4258 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4259 {
4260 struct linux_nat_corefile_thread_data *args = data;
4261
4262 args->note_data = linux_nat_do_thread_registers (args->obfd,
4263 ti->ptid,
4264 args->note_data,
4265 args->note_size,
4266 args->stop_signal);
4267 args->num_notes++;
4268
4269 return 0;
4270 }
4271
4272 /* Enumerate spufs IDs for process PID. */
4273
4274 static void
4275 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4276 {
4277 char path[128];
4278 DIR *dir;
4279 struct dirent *entry;
4280
4281 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4282 dir = opendir (path);
4283 if (!dir)
4284 return;
4285
4286 rewinddir (dir);
4287 while ((entry = readdir (dir)) != NULL)
4288 {
4289 struct stat st;
4290 struct statfs stfs;
4291 int fd;
4292
4293 fd = atoi (entry->d_name);
4294 if (!fd)
4295 continue;
4296
4297 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4298 if (stat (path, &st) != 0)
4299 continue;
4300 if (!S_ISDIR (st.st_mode))
4301 continue;
4302
4303 if (statfs (path, &stfs) != 0)
4304 continue;
4305 if (stfs.f_type != SPUFS_MAGIC)
4306 continue;
4307
4308 callback (data, fd);
4309 }
4310
4311 closedir (dir);
4312 }
4313
4314 /* Generate corefile notes for SPU contexts. */
4315
4316 struct linux_spu_corefile_data
4317 {
4318 bfd *obfd;
4319 char *note_data;
4320 int *note_size;
4321 };
4322
4323 static void
4324 linux_spu_corefile_callback (void *data, int fd)
4325 {
4326 struct linux_spu_corefile_data *args = data;
4327 int i;
4328
4329 static const char *spu_files[] =
4330 {
4331 "object-id",
4332 "mem",
4333 "regs",
4334 "fpcr",
4335 "lslr",
4336 "decr",
4337 "decr_status",
4338 "signal1",
4339 "signal1_type",
4340 "signal2",
4341 "signal2_type",
4342 "event_mask",
4343 "event_status",
4344 "mbox_info",
4345 "ibox_info",
4346 "wbox_info",
4347 "dma_info",
4348 "proxydma_info",
4349 };
4350
4351 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4352 {
4353 char annex[32], note_name[32];
4354 gdb_byte *spu_data;
4355 LONGEST spu_len;
4356
4357 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4358 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4359 annex, &spu_data);
4360 if (spu_len > 0)
4361 {
4362 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4363 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4364 args->note_size, note_name,
4365 NT_SPU, spu_data, spu_len);
4366 xfree (spu_data);
4367 }
4368 }
4369 }
4370
4371 static char *
4372 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4373 {
4374 struct linux_spu_corefile_data args;
4375
4376 args.obfd = obfd;
4377 args.note_data = note_data;
4378 args.note_size = note_size;
4379
4380 iterate_over_spus (PIDGET (inferior_ptid),
4381 linux_spu_corefile_callback, &args);
4382
4383 return args.note_data;
4384 }
4385
4386 /* Fills the "to_make_corefile_note" target vector. Builds the note
4387 section for a corefile, and returns it in a malloc buffer. */
4388
4389 static char *
4390 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4391 {
4392 struct linux_nat_corefile_thread_data thread_args;
4393 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4394 char fname[16] = { '\0' };
4395 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4396 char psargs[80] = { '\0' };
4397 char *note_data = NULL;
4398 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4399 gdb_byte *auxv;
4400 int auxv_len;
4401
4402 if (get_exec_file (0))
4403 {
4404 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4405 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4406 if (get_inferior_args ())
4407 {
4408 char *string_end;
4409 char *psargs_end = psargs + sizeof (psargs);
4410
4411 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4412 strings fine. */
4413 string_end = memchr (psargs, 0, sizeof (psargs));
4414 if (string_end != NULL)
4415 {
4416 *string_end++ = ' ';
4417 strncpy (string_end, get_inferior_args (),
4418 psargs_end - string_end);
4419 }
4420 }
4421 note_data = (char *) elfcore_write_prpsinfo (obfd,
4422 note_data,
4423 note_size, fname, psargs);
4424 }
4425
4426 /* Dump information for threads. */
4427 thread_args.obfd = obfd;
4428 thread_args.note_data = note_data;
4429 thread_args.note_size = note_size;
4430 thread_args.num_notes = 0;
4431 thread_args.stop_signal = find_stop_signal ();
4432 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4433 gdb_assert (thread_args.num_notes != 0);
4434 note_data = thread_args.note_data;
4435
4436 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4437 NULL, &auxv);
4438 if (auxv_len > 0)
4439 {
4440 note_data = elfcore_write_note (obfd, note_data, note_size,
4441 "CORE", NT_AUXV, auxv, auxv_len);
4442 xfree (auxv);
4443 }
4444
4445 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4446
4447 make_cleanup (xfree, note_data);
4448 return note_data;
4449 }
4450
4451 /* Implement the "info proc" command. */
4452
4453 static void
4454 linux_nat_info_proc_cmd (char *args, int from_tty)
4455 {
4456 /* A long is used for pid instead of an int to avoid a loss of precision
4457 compiler warning from the output of strtoul. */
4458 long pid = PIDGET (inferior_ptid);
4459 FILE *procfile;
4460 char **argv = NULL;
4461 char buffer[MAXPATHLEN];
4462 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4463 int cmdline_f = 1;
4464 int cwd_f = 1;
4465 int exe_f = 1;
4466 int mappings_f = 0;
4467 int status_f = 0;
4468 int stat_f = 0;
4469 int all = 0;
4470 struct stat dummy;
4471
4472 if (args)
4473 {
4474 /* Break up 'args' into an argv array. */
4475 argv = gdb_buildargv (args);
4476 make_cleanup_freeargv (argv);
4477 }
4478 while (argv != NULL && *argv != NULL)
4479 {
4480 if (isdigit (argv[0][0]))
4481 {
4482 pid = strtoul (argv[0], NULL, 10);
4483 }
4484 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4485 {
4486 mappings_f = 1;
4487 }
4488 else if (strcmp (argv[0], "status") == 0)
4489 {
4490 status_f = 1;
4491 }
4492 else if (strcmp (argv[0], "stat") == 0)
4493 {
4494 stat_f = 1;
4495 }
4496 else if (strcmp (argv[0], "cmd") == 0)
4497 {
4498 cmdline_f = 1;
4499 }
4500 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4501 {
4502 exe_f = 1;
4503 }
4504 else if (strcmp (argv[0], "cwd") == 0)
4505 {
4506 cwd_f = 1;
4507 }
4508 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4509 {
4510 all = 1;
4511 }
4512 else
4513 {
4514 /* [...] (future options here) */
4515 }
4516 argv++;
4517 }
4518 if (pid == 0)
4519 error (_("No current process: you must name one."));
4520
4521 sprintf (fname1, "/proc/%ld", pid);
4522 if (stat (fname1, &dummy) != 0)
4523 error (_("No /proc directory: '%s'"), fname1);
4524
4525 printf_filtered (_("process %ld\n"), pid);
4526 if (cmdline_f || all)
4527 {
4528 sprintf (fname1, "/proc/%ld/cmdline", pid);
4529 if ((procfile = fopen (fname1, "r")) != NULL)
4530 {
4531 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4532
4533 if (fgets (buffer, sizeof (buffer), procfile))
4534 printf_filtered ("cmdline = '%s'\n", buffer);
4535 else
4536 warning (_("unable to read '%s'"), fname1);
4537 do_cleanups (cleanup);
4538 }
4539 else
4540 warning (_("unable to open /proc file '%s'"), fname1);
4541 }
4542 if (cwd_f || all)
4543 {
4544 sprintf (fname1, "/proc/%ld/cwd", pid);
4545 memset (fname2, 0, sizeof (fname2));
4546 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4547 printf_filtered ("cwd = '%s'\n", fname2);
4548 else
4549 warning (_("unable to read link '%s'"), fname1);
4550 }
4551 if (exe_f || all)
4552 {
4553 sprintf (fname1, "/proc/%ld/exe", pid);
4554 memset (fname2, 0, sizeof (fname2));
4555 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4556 printf_filtered ("exe = '%s'\n", fname2);
4557 else
4558 warning (_("unable to read link '%s'"), fname1);
4559 }
4560 if (mappings_f || all)
4561 {
4562 sprintf (fname1, "/proc/%ld/maps", pid);
4563 if ((procfile = fopen (fname1, "r")) != NULL)
4564 {
4565 long long addr, endaddr, size, offset, inode;
4566 char permissions[8], device[8], filename[MAXPATHLEN];
4567 struct cleanup *cleanup;
4568
4569 cleanup = make_cleanup_fclose (procfile);
4570 printf_filtered (_("Mapped address spaces:\n\n"));
4571 if (gdbarch_addr_bit (target_gdbarch) == 32)
4572 {
4573 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4574 "Start Addr",
4575 " End Addr",
4576 " Size", " Offset", "objfile");
4577 }
4578 else
4579 {
4580 printf_filtered (" %18s %18s %10s %10s %7s\n",
4581 "Start Addr",
4582 " End Addr",
4583 " Size", " Offset", "objfile");
4584 }
4585
4586 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4587 &offset, &device[0], &inode, &filename[0]))
4588 {
4589 size = endaddr - addr;
4590
4591 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4592 calls here (and possibly above) should be abstracted
4593 out into their own functions? Andrew suggests using
4594 a generic local_address_string instead to print out
4595 the addresses; that makes sense to me, too. */
4596
4597 if (gdbarch_addr_bit (target_gdbarch) == 32)
4598 {
4599 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4600 (unsigned long) addr, /* FIXME: pr_addr */
4601 (unsigned long) endaddr,
4602 (int) size,
4603 (unsigned int) offset,
4604 filename[0] ? filename : "");
4605 }
4606 else
4607 {
4608 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4609 (unsigned long) addr, /* FIXME: pr_addr */
4610 (unsigned long) endaddr,
4611 (int) size,
4612 (unsigned int) offset,
4613 filename[0] ? filename : "");
4614 }
4615 }
4616
4617 do_cleanups (cleanup);
4618 }
4619 else
4620 warning (_("unable to open /proc file '%s'"), fname1);
4621 }
4622 if (status_f || all)
4623 {
4624 sprintf (fname1, "/proc/%ld/status", pid);
4625 if ((procfile = fopen (fname1, "r")) != NULL)
4626 {
4627 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4628
4629 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4630 puts_filtered (buffer);
4631 do_cleanups (cleanup);
4632 }
4633 else
4634 warning (_("unable to open /proc file '%s'"), fname1);
4635 }
4636 if (stat_f || all)
4637 {
4638 sprintf (fname1, "/proc/%ld/stat", pid);
4639 if ((procfile = fopen (fname1, "r")) != NULL)
4640 {
4641 int itmp;
4642 char ctmp;
4643 long ltmp;
4644 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4645
4646 if (fscanf (procfile, "%d ", &itmp) > 0)
4647 printf_filtered (_("Process: %d\n"), itmp);
4648 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4649 printf_filtered (_("Exec file: %s\n"), buffer);
4650 if (fscanf (procfile, "%c ", &ctmp) > 0)
4651 printf_filtered (_("State: %c\n"), ctmp);
4652 if (fscanf (procfile, "%d ", &itmp) > 0)
4653 printf_filtered (_("Parent process: %d\n"), itmp);
4654 if (fscanf (procfile, "%d ", &itmp) > 0)
4655 printf_filtered (_("Process group: %d\n"), itmp);
4656 if (fscanf (procfile, "%d ", &itmp) > 0)
4657 printf_filtered (_("Session id: %d\n"), itmp);
4658 if (fscanf (procfile, "%d ", &itmp) > 0)
4659 printf_filtered (_("TTY: %d\n"), itmp);
4660 if (fscanf (procfile, "%d ", &itmp) > 0)
4661 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4662 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4663 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4664 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4665 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4666 (unsigned long) ltmp);
4667 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4668 printf_filtered (_("Minor faults, children: %lu\n"),
4669 (unsigned long) ltmp);
4670 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4671 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4672 (unsigned long) ltmp);
4673 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4674 printf_filtered (_("Major faults, children: %lu\n"),
4675 (unsigned long) ltmp);
4676 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4677 printf_filtered (_("utime: %ld\n"), ltmp);
4678 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4679 printf_filtered (_("stime: %ld\n"), ltmp);
4680 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4681 printf_filtered (_("utime, children: %ld\n"), ltmp);
4682 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4683 printf_filtered (_("stime, children: %ld\n"), ltmp);
4684 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4685 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4686 ltmp);
4687 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4688 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4689 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4690 printf_filtered (_("jiffies until next timeout: %lu\n"),
4691 (unsigned long) ltmp);
4692 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4693 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4694 (unsigned long) ltmp);
4695 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4696 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4697 ltmp);
4698 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4699 printf_filtered (_("Virtual memory size: %lu\n"),
4700 (unsigned long) ltmp);
4701 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4702 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4703 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4704 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4705 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4706 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4707 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4708 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4709 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4710 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4711 #if 0 /* Don't know how architecture-dependent the rest is...
4712 Anyway the signal bitmap info is available from "status". */
4713 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4714 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4715 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4716 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4717 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4718 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4719 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4720 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4721 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4722 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4723 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4724 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4725 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4726 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4727 #endif
4728 do_cleanups (cleanup);
4729 }
4730 else
4731 warning (_("unable to open /proc file '%s'"), fname1);
4732 }
4733 }
4734
4735 /* Implement the to_xfer_partial interface for memory reads using the /proc
4736 filesystem. Because we can use a single read() call for /proc, this
4737 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4738 but it doesn't support writes. */
4739
4740 static LONGEST
4741 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4742 const char *annex, gdb_byte *readbuf,
4743 const gdb_byte *writebuf,
4744 ULONGEST offset, LONGEST len)
4745 {
4746 LONGEST ret;
4747 int fd;
4748 char filename[64];
4749
4750 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4751 return 0;
4752
4753 /* Don't bother for one word. */
4754 if (len < 3 * sizeof (long))
4755 return 0;
4756
4757 /* We could keep this file open and cache it - possibly one per
4758 thread. That requires some juggling, but is even faster. */
4759 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4760 fd = open (filename, O_RDONLY | O_LARGEFILE);
4761 if (fd == -1)
4762 return 0;
4763
4764 /* If pread64 is available, use it. It's faster if the kernel
4765 supports it (only one syscall), and it's 64-bit safe even on
4766 32-bit platforms (for instance, SPARC debugging a SPARC64
4767 application). */
4768 #ifdef HAVE_PREAD64
4769 if (pread64 (fd, readbuf, len, offset) != len)
4770 #else
4771 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4772 #endif
4773 ret = 0;
4774 else
4775 ret = len;
4776
4777 close (fd);
4778 return ret;
4779 }
4780
4781
4782 /* Enumerate spufs IDs for process PID. */
4783 static LONGEST
4784 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4785 {
4786 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4787 LONGEST pos = 0;
4788 LONGEST written = 0;
4789 char path[128];
4790 DIR *dir;
4791 struct dirent *entry;
4792
4793 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4794 dir = opendir (path);
4795 if (!dir)
4796 return -1;
4797
4798 rewinddir (dir);
4799 while ((entry = readdir (dir)) != NULL)
4800 {
4801 struct stat st;
4802 struct statfs stfs;
4803 int fd;
4804
4805 fd = atoi (entry->d_name);
4806 if (!fd)
4807 continue;
4808
4809 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4810 if (stat (path, &st) != 0)
4811 continue;
4812 if (!S_ISDIR (st.st_mode))
4813 continue;
4814
4815 if (statfs (path, &stfs) != 0)
4816 continue;
4817 if (stfs.f_type != SPUFS_MAGIC)
4818 continue;
4819
4820 if (pos >= offset && pos + 4 <= offset + len)
4821 {
4822 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4823 written += 4;
4824 }
4825 pos += 4;
4826 }
4827
4828 closedir (dir);
4829 return written;
4830 }
4831
4832 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4833 object type, using the /proc file system. */
4834 static LONGEST
4835 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4836 const char *annex, gdb_byte *readbuf,
4837 const gdb_byte *writebuf,
4838 ULONGEST offset, LONGEST len)
4839 {
4840 char buf[128];
4841 int fd = 0;
4842 int ret = -1;
4843 int pid = PIDGET (inferior_ptid);
4844
4845 if (!annex)
4846 {
4847 if (!readbuf)
4848 return -1;
4849 else
4850 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4851 }
4852
4853 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4854 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4855 if (fd <= 0)
4856 return -1;
4857
4858 if (offset != 0
4859 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4860 {
4861 close (fd);
4862 return 0;
4863 }
4864
4865 if (writebuf)
4866 ret = write (fd, writebuf, (size_t) len);
4867 else if (readbuf)
4868 ret = read (fd, readbuf, (size_t) len);
4869
4870 close (fd);
4871 return ret;
4872 }
4873
4874
4875 /* Parse LINE as a signal set and add its set bits to SIGS. */
4876
4877 static void
4878 add_line_to_sigset (const char *line, sigset_t *sigs)
4879 {
4880 int len = strlen (line) - 1;
4881 const char *p;
4882 int signum;
4883
4884 if (line[len] != '\n')
4885 error (_("Could not parse signal set: %s"), line);
4886
4887 p = line;
4888 signum = len * 4;
4889 while (len-- > 0)
4890 {
4891 int digit;
4892
4893 if (*p >= '0' && *p <= '9')
4894 digit = *p - '0';
4895 else if (*p >= 'a' && *p <= 'f')
4896 digit = *p - 'a' + 10;
4897 else
4898 error (_("Could not parse signal set: %s"), line);
4899
4900 signum -= 4;
4901
4902 if (digit & 1)
4903 sigaddset (sigs, signum + 1);
4904 if (digit & 2)
4905 sigaddset (sigs, signum + 2);
4906 if (digit & 4)
4907 sigaddset (sigs, signum + 3);
4908 if (digit & 8)
4909 sigaddset (sigs, signum + 4);
4910
4911 p++;
4912 }
4913 }
4914
4915 /* Find process PID's pending signals from /proc/pid/status and set
4916 SIGS to match. */
4917
4918 void
4919 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4920 {
4921 FILE *procfile;
4922 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4923 struct cleanup *cleanup;
4924
4925 sigemptyset (pending);
4926 sigemptyset (blocked);
4927 sigemptyset (ignored);
4928 sprintf (fname, "/proc/%d/status", pid);
4929 procfile = fopen (fname, "r");
4930 if (procfile == NULL)
4931 error (_("Could not open %s"), fname);
4932 cleanup = make_cleanup_fclose (procfile);
4933
4934 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4935 {
4936 /* Normal queued signals are on the SigPnd line in the status
4937 file. However, 2.6 kernels also have a "shared" pending
4938 queue for delivering signals to a thread group, so check for
4939 a ShdPnd line also.
4940
4941 Unfortunately some Red Hat kernels include the shared pending
4942 queue but not the ShdPnd status field. */
4943
4944 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4945 add_line_to_sigset (buffer + 8, pending);
4946 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4947 add_line_to_sigset (buffer + 8, pending);
4948 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4949 add_line_to_sigset (buffer + 8, blocked);
4950 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4951 add_line_to_sigset (buffer + 8, ignored);
4952 }
4953
4954 do_cleanups (cleanup);
4955 }
4956
4957 static LONGEST
4958 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4959 const char *annex, gdb_byte *readbuf,
4960 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4961 {
4962 /* We make the process list snapshot when the object starts to be
4963 read. */
4964 static const char *buf;
4965 static LONGEST len_avail = -1;
4966 static struct obstack obstack;
4967
4968 DIR *dirp;
4969
4970 gdb_assert (object == TARGET_OBJECT_OSDATA);
4971
4972 if (!annex)
4973 {
4974 if (offset == 0)
4975 {
4976 if (len_avail != -1 && len_avail != 0)
4977 obstack_free (&obstack, NULL);
4978 len_avail = 0;
4979 buf = NULL;
4980 obstack_init (&obstack);
4981 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
4982
4983 obstack_xml_printf (
4984 &obstack,
4985 "<item>"
4986 "<column name=\"Type\">processes</column>"
4987 "<column name=\"Description\">Listing of all processes</column>"
4988 "</item>");
4989
4990 obstack_grow_str0 (&obstack, "</osdata>\n");
4991 buf = obstack_finish (&obstack);
4992 len_avail = strlen (buf);
4993 }
4994
4995 if (offset >= len_avail)
4996 {
4997 /* Done. Get rid of the obstack. */
4998 obstack_free (&obstack, NULL);
4999 buf = NULL;
5000 len_avail = 0;
5001 return 0;
5002 }
5003
5004 if (len > len_avail - offset)
5005 len = len_avail - offset;
5006 memcpy (readbuf, buf + offset, len);
5007
5008 return len;
5009 }
5010
5011 if (strcmp (annex, "processes") != 0)
5012 return 0;
5013
5014 gdb_assert (readbuf && !writebuf);
5015
5016 if (offset == 0)
5017 {
5018 if (len_avail != -1 && len_avail != 0)
5019 obstack_free (&obstack, NULL);
5020 len_avail = 0;
5021 buf = NULL;
5022 obstack_init (&obstack);
5023 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5024
5025 dirp = opendir ("/proc");
5026 if (dirp)
5027 {
5028 struct dirent *dp;
5029
5030 while ((dp = readdir (dirp)) != NULL)
5031 {
5032 struct stat statbuf;
5033 char procentry[sizeof ("/proc/4294967295")];
5034
5035 if (!isdigit (dp->d_name[0])
5036 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5037 continue;
5038
5039 sprintf (procentry, "/proc/%s", dp->d_name);
5040 if (stat (procentry, &statbuf) == 0
5041 && S_ISDIR (statbuf.st_mode))
5042 {
5043 char *pathname;
5044 FILE *f;
5045 char cmd[MAXPATHLEN + 1];
5046 struct passwd *entry;
5047
5048 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5049 entry = getpwuid (statbuf.st_uid);
5050
5051 if ((f = fopen (pathname, "r")) != NULL)
5052 {
5053 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5054
5055 if (len > 0)
5056 {
5057 int i;
5058
5059 for (i = 0; i < len; i++)
5060 if (cmd[i] == '\0')
5061 cmd[i] = ' ';
5062 cmd[len] = '\0';
5063
5064 obstack_xml_printf (
5065 &obstack,
5066 "<item>"
5067 "<column name=\"pid\">%s</column>"
5068 "<column name=\"user\">%s</column>"
5069 "<column name=\"command\">%s</column>"
5070 "</item>",
5071 dp->d_name,
5072 entry ? entry->pw_name : "?",
5073 cmd);
5074 }
5075 fclose (f);
5076 }
5077
5078 xfree (pathname);
5079 }
5080 }
5081
5082 closedir (dirp);
5083 }
5084
5085 obstack_grow_str0 (&obstack, "</osdata>\n");
5086 buf = obstack_finish (&obstack);
5087 len_avail = strlen (buf);
5088 }
5089
5090 if (offset >= len_avail)
5091 {
5092 /* Done. Get rid of the obstack. */
5093 obstack_free (&obstack, NULL);
5094 buf = NULL;
5095 len_avail = 0;
5096 return 0;
5097 }
5098
5099 if (len > len_avail - offset)
5100 len = len_avail - offset;
5101 memcpy (readbuf, buf + offset, len);
5102
5103 return len;
5104 }
5105
5106 static LONGEST
5107 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5108 const char *annex, gdb_byte *readbuf,
5109 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5110 {
5111 LONGEST xfer;
5112
5113 if (object == TARGET_OBJECT_AUXV)
5114 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5115 offset, len);
5116
5117 if (object == TARGET_OBJECT_OSDATA)
5118 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5119 offset, len);
5120
5121 if (object == TARGET_OBJECT_SPU)
5122 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5123 offset, len);
5124
5125 /* GDB calculates all the addresses in possibly larget width of the address.
5126 Address width needs to be masked before its final use - either by
5127 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5128
5129 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5130
5131 if (object == TARGET_OBJECT_MEMORY)
5132 {
5133 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5134
5135 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5136 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5137 }
5138
5139 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5140 offset, len);
5141 if (xfer != 0)
5142 return xfer;
5143
5144 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5145 offset, len);
5146 }
5147
5148 /* Create a prototype generic GNU/Linux target. The client can override
5149 it with local methods. */
5150
5151 static void
5152 linux_target_install_ops (struct target_ops *t)
5153 {
5154 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5155 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5156 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5157 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5158 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5159 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5160 t->to_post_attach = linux_child_post_attach;
5161 t->to_follow_fork = linux_child_follow_fork;
5162 t->to_find_memory_regions = linux_nat_find_memory_regions;
5163 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5164
5165 super_xfer_partial = t->to_xfer_partial;
5166 t->to_xfer_partial = linux_xfer_partial;
5167 }
5168
5169 struct target_ops *
5170 linux_target (void)
5171 {
5172 struct target_ops *t;
5173
5174 t = inf_ptrace_target ();
5175 linux_target_install_ops (t);
5176
5177 return t;
5178 }
5179
5180 struct target_ops *
5181 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5182 {
5183 struct target_ops *t;
5184
5185 t = inf_ptrace_trad_target (register_u_offset);
5186 linux_target_install_ops (t);
5187
5188 return t;
5189 }
5190
5191 /* target_is_async_p implementation. */
5192
5193 static int
5194 linux_nat_is_async_p (void)
5195 {
5196 /* NOTE: palves 2008-03-21: We're only async when the user requests
5197 it explicitly with the "set target-async" command.
5198 Someday, linux will always be async. */
5199 if (!target_async_permitted)
5200 return 0;
5201
5202 /* See target.h/target_async_mask. */
5203 return linux_nat_async_mask_value;
5204 }
5205
5206 /* target_can_async_p implementation. */
5207
5208 static int
5209 linux_nat_can_async_p (void)
5210 {
5211 /* NOTE: palves 2008-03-21: We're only async when the user requests
5212 it explicitly with the "set target-async" command.
5213 Someday, linux will always be async. */
5214 if (!target_async_permitted)
5215 return 0;
5216
5217 /* See target.h/target_async_mask. */
5218 return linux_nat_async_mask_value;
5219 }
5220
5221 static int
5222 linux_nat_supports_non_stop (void)
5223 {
5224 return 1;
5225 }
5226
5227 /* True if we want to support multi-process. To be removed when GDB
5228 supports multi-exec. */
5229
5230 int linux_multi_process = 1;
5231
5232 static int
5233 linux_nat_supports_multi_process (void)
5234 {
5235 return linux_multi_process;
5236 }
5237
5238 /* target_async_mask implementation. */
5239
5240 static int
5241 linux_nat_async_mask (int new_mask)
5242 {
5243 int curr_mask = linux_nat_async_mask_value;
5244
5245 if (curr_mask != new_mask)
5246 {
5247 if (new_mask == 0)
5248 {
5249 linux_nat_async (NULL, 0);
5250 linux_nat_async_mask_value = new_mask;
5251 }
5252 else
5253 {
5254 linux_nat_async_mask_value = new_mask;
5255
5256 /* If we're going out of async-mask in all-stop, then the
5257 inferior is stopped. The next resume will call
5258 target_async. In non-stop, the target event source
5259 should be always registered in the event loop. Do so
5260 now. */
5261 if (non_stop)
5262 linux_nat_async (inferior_event_handler, 0);
5263 }
5264 }
5265
5266 return curr_mask;
5267 }
5268
5269 static int async_terminal_is_ours = 1;
5270
5271 /* target_terminal_inferior implementation. */
5272
5273 static void
5274 linux_nat_terminal_inferior (void)
5275 {
5276 if (!target_is_async_p ())
5277 {
5278 /* Async mode is disabled. */
5279 terminal_inferior ();
5280 return;
5281 }
5282
5283 terminal_inferior ();
5284
5285 /* Calls to target_terminal_*() are meant to be idempotent. */
5286 if (!async_terminal_is_ours)
5287 return;
5288
5289 delete_file_handler (input_fd);
5290 async_terminal_is_ours = 0;
5291 set_sigint_trap ();
5292 }
5293
5294 /* target_terminal_ours implementation. */
5295
5296 static void
5297 linux_nat_terminal_ours (void)
5298 {
5299 if (!target_is_async_p ())
5300 {
5301 /* Async mode is disabled. */
5302 terminal_ours ();
5303 return;
5304 }
5305
5306 /* GDB should never give the terminal to the inferior if the
5307 inferior is running in the background (run&, continue&, etc.),
5308 but claiming it sure should. */
5309 terminal_ours ();
5310
5311 if (async_terminal_is_ours)
5312 return;
5313
5314 clear_sigint_trap ();
5315 add_file_handler (input_fd, stdin_event_handler, 0);
5316 async_terminal_is_ours = 1;
5317 }
5318
5319 static void (*async_client_callback) (enum inferior_event_type event_type,
5320 void *context);
5321 static void *async_client_context;
5322
5323 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5324 so we notice when any child changes state, and notify the
5325 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5326 above to wait for the arrival of a SIGCHLD. */
5327
5328 static void
5329 sigchld_handler (int signo)
5330 {
5331 int old_errno = errno;
5332
5333 if (debug_linux_nat_async)
5334 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5335
5336 if (signo == SIGCHLD
5337 && linux_nat_event_pipe[0] != -1)
5338 async_file_mark (); /* Let the event loop know that there are
5339 events to handle. */
5340
5341 errno = old_errno;
5342 }
5343
5344 /* Callback registered with the target events file descriptor. */
5345
5346 static void
5347 handle_target_event (int error, gdb_client_data client_data)
5348 {
5349 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5350 }
5351
5352 /* Create/destroy the target events pipe. Returns previous state. */
5353
5354 static int
5355 linux_async_pipe (int enable)
5356 {
5357 int previous = (linux_nat_event_pipe[0] != -1);
5358
5359 if (previous != enable)
5360 {
5361 sigset_t prev_mask;
5362
5363 block_child_signals (&prev_mask);
5364
5365 if (enable)
5366 {
5367 if (pipe (linux_nat_event_pipe) == -1)
5368 internal_error (__FILE__, __LINE__,
5369 "creating event pipe failed.");
5370
5371 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5372 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5373 }
5374 else
5375 {
5376 close (linux_nat_event_pipe[0]);
5377 close (linux_nat_event_pipe[1]);
5378 linux_nat_event_pipe[0] = -1;
5379 linux_nat_event_pipe[1] = -1;
5380 }
5381
5382 restore_child_signals_mask (&prev_mask);
5383 }
5384
5385 return previous;
5386 }
5387
5388 /* target_async implementation. */
5389
5390 static void
5391 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5392 void *context), void *context)
5393 {
5394 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5395 internal_error (__FILE__, __LINE__,
5396 "Calling target_async when async is masked");
5397
5398 if (callback != NULL)
5399 {
5400 async_client_callback = callback;
5401 async_client_context = context;
5402 if (!linux_async_pipe (1))
5403 {
5404 add_file_handler (linux_nat_event_pipe[0],
5405 handle_target_event, NULL);
5406 /* There may be pending events to handle. Tell the event loop
5407 to poll them. */
5408 async_file_mark ();
5409 }
5410 }
5411 else
5412 {
5413 async_client_callback = callback;
5414 async_client_context = context;
5415 delete_file_handler (linux_nat_event_pipe[0]);
5416 linux_async_pipe (0);
5417 }
5418 return;
5419 }
5420
5421 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5422 event came out. */
5423
5424 static int
5425 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5426 {
5427 if (!lwp->stopped)
5428 {
5429 ptid_t ptid = lwp->ptid;
5430
5431 if (debug_linux_nat)
5432 fprintf_unfiltered (gdb_stdlog,
5433 "LNSL: running -> suspending %s\n",
5434 target_pid_to_str (lwp->ptid));
5435
5436
5437 stop_callback (lwp, NULL);
5438 stop_wait_callback (lwp, NULL);
5439
5440 /* If the lwp exits while we try to stop it, there's nothing
5441 else to do. */
5442 lwp = find_lwp_pid (ptid);
5443 if (lwp == NULL)
5444 return 0;
5445
5446 /* If we didn't collect any signal other than SIGSTOP while
5447 stopping the LWP, push a SIGNAL_0 event. In either case, the
5448 event-loop will end up calling target_wait which will collect
5449 these. */
5450 if (lwp->status == 0)
5451 lwp->status = W_STOPCODE (0);
5452 async_file_mark ();
5453 }
5454 else
5455 {
5456 /* Already known to be stopped; do nothing. */
5457
5458 if (debug_linux_nat)
5459 {
5460 if (find_thread_ptid (lwp->ptid)->stop_requested)
5461 fprintf_unfiltered (gdb_stdlog, "\
5462 LNSL: already stopped/stop_requested %s\n",
5463 target_pid_to_str (lwp->ptid));
5464 else
5465 fprintf_unfiltered (gdb_stdlog, "\
5466 LNSL: already stopped/no stop_requested yet %s\n",
5467 target_pid_to_str (lwp->ptid));
5468 }
5469 }
5470 return 0;
5471 }
5472
5473 static void
5474 linux_nat_stop (ptid_t ptid)
5475 {
5476 if (non_stop)
5477 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5478 else
5479 linux_ops->to_stop (ptid);
5480 }
5481
5482 static void
5483 linux_nat_close (int quitting)
5484 {
5485 /* Unregister from the event loop. */
5486 if (target_is_async_p ())
5487 target_async (NULL, 0);
5488
5489 /* Reset the async_masking. */
5490 linux_nat_async_mask_value = 1;
5491
5492 if (linux_ops->to_close)
5493 linux_ops->to_close (quitting);
5494 }
5495
5496 /* When requests are passed down from the linux-nat layer to the
5497 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5498 used. The address space pointer is stored in the inferior object,
5499 but the common code that is passed such ptid can't tell whether
5500 lwpid is a "main" process id or not (it assumes so). We reverse
5501 look up the "main" process id from the lwp here. */
5502
5503 struct address_space *
5504 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5505 {
5506 struct lwp_info *lwp;
5507 struct inferior *inf;
5508 int pid;
5509
5510 pid = GET_LWP (ptid);
5511 if (GET_LWP (ptid) == 0)
5512 {
5513 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5514 tgid. */
5515 lwp = find_lwp_pid (ptid);
5516 pid = GET_PID (lwp->ptid);
5517 }
5518 else
5519 {
5520 /* A (pid,lwpid,0) ptid. */
5521 pid = GET_PID (ptid);
5522 }
5523
5524 inf = find_inferior_pid (pid);
5525 gdb_assert (inf != NULL);
5526 return inf->aspace;
5527 }
5528
5529 int
5530 linux_nat_core_of_thread_1 (ptid_t ptid)
5531 {
5532 struct cleanup *back_to;
5533 char *filename;
5534 FILE *f;
5535 char *content = NULL;
5536 char *p;
5537 char *ts = 0;
5538 int content_read = 0;
5539 int i;
5540 int core;
5541
5542 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5543 GET_PID (ptid), GET_LWP (ptid));
5544 back_to = make_cleanup (xfree, filename);
5545
5546 f = fopen (filename, "r");
5547 if (!f)
5548 {
5549 do_cleanups (back_to);
5550 return -1;
5551 }
5552
5553 make_cleanup_fclose (f);
5554
5555 for (;;)
5556 {
5557 int n;
5558
5559 content = xrealloc (content, content_read + 1024);
5560 n = fread (content + content_read, 1, 1024, f);
5561 content_read += n;
5562 if (n < 1024)
5563 {
5564 content[content_read] = '\0';
5565 break;
5566 }
5567 }
5568
5569 make_cleanup (xfree, content);
5570
5571 p = strchr (content, '(');
5572
5573 /* Skip ")". */
5574 if (p != NULL)
5575 p = strchr (p, ')');
5576 if (p != NULL)
5577 p++;
5578
5579 /* If the first field after program name has index 0, then core number is
5580 the field with index 36. There's no constant for that anywhere. */
5581 if (p != NULL)
5582 p = strtok_r (p, " ", &ts);
5583 for (i = 0; p != NULL && i != 36; ++i)
5584 p = strtok_r (NULL, " ", &ts);
5585
5586 if (p == NULL || sscanf (p, "%d", &core) == 0)
5587 core = -1;
5588
5589 do_cleanups (back_to);
5590
5591 return core;
5592 }
5593
5594 /* Return the cached value of the processor core for thread PTID. */
5595
5596 int
5597 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5598 {
5599 struct lwp_info *info = find_lwp_pid (ptid);
5600
5601 if (info)
5602 return info->core;
5603 return -1;
5604 }
5605
5606 void
5607 linux_nat_add_target (struct target_ops *t)
5608 {
5609 /* Save the provided single-threaded target. We save this in a separate
5610 variable because another target we've inherited from (e.g. inf-ptrace)
5611 may have saved a pointer to T; we want to use it for the final
5612 process stratum target. */
5613 linux_ops_saved = *t;
5614 linux_ops = &linux_ops_saved;
5615
5616 /* Override some methods for multithreading. */
5617 t->to_create_inferior = linux_nat_create_inferior;
5618 t->to_attach = linux_nat_attach;
5619 t->to_detach = linux_nat_detach;
5620 t->to_resume = linux_nat_resume;
5621 t->to_wait = linux_nat_wait;
5622 t->to_xfer_partial = linux_nat_xfer_partial;
5623 t->to_kill = linux_nat_kill;
5624 t->to_mourn_inferior = linux_nat_mourn_inferior;
5625 t->to_thread_alive = linux_nat_thread_alive;
5626 t->to_pid_to_str = linux_nat_pid_to_str;
5627 t->to_has_thread_control = tc_schedlock;
5628 t->to_thread_address_space = linux_nat_thread_address_space;
5629 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5630 t->to_stopped_data_address = linux_nat_stopped_data_address;
5631
5632 t->to_can_async_p = linux_nat_can_async_p;
5633 t->to_is_async_p = linux_nat_is_async_p;
5634 t->to_supports_non_stop = linux_nat_supports_non_stop;
5635 t->to_async = linux_nat_async;
5636 t->to_async_mask = linux_nat_async_mask;
5637 t->to_terminal_inferior = linux_nat_terminal_inferior;
5638 t->to_terminal_ours = linux_nat_terminal_ours;
5639 t->to_close = linux_nat_close;
5640
5641 /* Methods for non-stop support. */
5642 t->to_stop = linux_nat_stop;
5643
5644 t->to_supports_multi_process = linux_nat_supports_multi_process;
5645
5646 t->to_core_of_thread = linux_nat_core_of_thread;
5647
5648 /* We don't change the stratum; this target will sit at
5649 process_stratum and thread_db will set at thread_stratum. This
5650 is a little strange, since this is a multi-threaded-capable
5651 target, but we want to be on the stack below thread_db, and we
5652 also want to be used for single-threaded processes. */
5653
5654 add_target (t);
5655 }
5656
5657 /* Register a method to call whenever a new thread is attached. */
5658 void
5659 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5660 {
5661 /* Save the pointer. We only support a single registered instance
5662 of the GNU/Linux native target, so we do not need to map this to
5663 T. */
5664 linux_nat_new_thread = new_thread;
5665 }
5666
5667 /* Register a method that converts a siginfo object between the layout
5668 that ptrace returns, and the layout in the architecture of the
5669 inferior. */
5670 void
5671 linux_nat_set_siginfo_fixup (struct target_ops *t,
5672 int (*siginfo_fixup) (struct siginfo *,
5673 gdb_byte *,
5674 int))
5675 {
5676 /* Save the pointer. */
5677 linux_nat_siginfo_fixup = siginfo_fixup;
5678 }
5679
5680 /* Return the saved siginfo associated with PTID. */
5681 struct siginfo *
5682 linux_nat_get_siginfo (ptid_t ptid)
5683 {
5684 struct lwp_info *lp = find_lwp_pid (ptid);
5685
5686 gdb_assert (lp != NULL);
5687
5688 return &lp->siginfo;
5689 }
5690
5691 /* Provide a prototype to silence -Wmissing-prototypes. */
5692 extern initialize_file_ftype _initialize_linux_nat;
5693
5694 void
5695 _initialize_linux_nat (void)
5696 {
5697 add_info ("proc", linux_nat_info_proc_cmd, _("\
5698 Show /proc process information about any running process.\n\
5699 Specify any process id, or use the program being debugged by default.\n\
5700 Specify any of the following keywords for detailed info:\n\
5701 mappings -- list of mapped memory regions.\n\
5702 stat -- list a bunch of random process info.\n\
5703 status -- list a different bunch of random process info.\n\
5704 all -- list all available /proc info."));
5705
5706 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5707 &debug_linux_nat, _("\
5708 Set debugging of GNU/Linux lwp module."), _("\
5709 Show debugging of GNU/Linux lwp module."), _("\
5710 Enables printf debugging output."),
5711 NULL,
5712 show_debug_linux_nat,
5713 &setdebuglist, &showdebuglist);
5714
5715 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5716 &debug_linux_nat_async, _("\
5717 Set debugging of GNU/Linux async lwp module."), _("\
5718 Show debugging of GNU/Linux async lwp module."), _("\
5719 Enables printf debugging output."),
5720 NULL,
5721 show_debug_linux_nat_async,
5722 &setdebuglist, &showdebuglist);
5723
5724 /* Save this mask as the default. */
5725 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5726
5727 /* Install a SIGCHLD handler. */
5728 sigchld_action.sa_handler = sigchld_handler;
5729 sigemptyset (&sigchld_action.sa_mask);
5730 sigchld_action.sa_flags = SA_RESTART;
5731
5732 /* Make it the default. */
5733 sigaction (SIGCHLD, &sigchld_action, NULL);
5734
5735 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5736 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5737 sigdelset (&suspend_mask, SIGCHLD);
5738
5739 sigemptyset (&blocked_mask);
5740
5741 add_setshow_boolean_cmd ("disable-randomization", class_support,
5742 &disable_randomization, _("\
5743 Set disabling of debuggee's virtual address space randomization."), _("\
5744 Show disabling of debuggee's virtual address space randomization."), _("\
5745 When this mode is on (which is the default), randomization of the virtual\n\
5746 address space is disabled. Standalone programs run with the randomization\n\
5747 enabled by default on some platforms."),
5748 &set_disable_randomization,
5749 &show_disable_randomization,
5750 &setlist, &showlist);
5751 }
5752 \f
5753
5754 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5755 the GNU/Linux Threads library and therefore doesn't really belong
5756 here. */
5757
5758 /* Read variable NAME in the target and return its value if found.
5759 Otherwise return zero. It is assumed that the type of the variable
5760 is `int'. */
5761
5762 static int
5763 get_signo (const char *name)
5764 {
5765 struct minimal_symbol *ms;
5766 int signo;
5767
5768 ms = lookup_minimal_symbol (name, NULL, NULL);
5769 if (ms == NULL)
5770 return 0;
5771
5772 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5773 sizeof (signo)) != 0)
5774 return 0;
5775
5776 return signo;
5777 }
5778
5779 /* Return the set of signals used by the threads library in *SET. */
5780
5781 void
5782 lin_thread_get_thread_signals (sigset_t *set)
5783 {
5784 struct sigaction action;
5785 int restart, cancel;
5786
5787 sigemptyset (&blocked_mask);
5788 sigemptyset (set);
5789
5790 restart = get_signo ("__pthread_sig_restart");
5791 cancel = get_signo ("__pthread_sig_cancel");
5792
5793 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5794 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5795 not provide any way for the debugger to query the signal numbers -
5796 fortunately they don't change! */
5797
5798 if (restart == 0)
5799 restart = __SIGRTMIN;
5800
5801 if (cancel == 0)
5802 cancel = __SIGRTMIN + 1;
5803
5804 sigaddset (set, restart);
5805 sigaddset (set, cancel);
5806
5807 /* The GNU/Linux Threads library makes terminating threads send a
5808 special "cancel" signal instead of SIGCHLD. Make sure we catch
5809 those (to prevent them from terminating GDB itself, which is
5810 likely to be their default action) and treat them the same way as
5811 SIGCHLD. */
5812
5813 action.sa_handler = sigchld_handler;
5814 sigemptyset (&action.sa_mask);
5815 action.sa_flags = SA_RESTART;
5816 sigaction (cancel, &action, NULL);
5817
5818 /* We block the "cancel" signal throughout this code ... */
5819 sigaddset (&blocked_mask, cancel);
5820 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5821
5822 /* ... except during a sigsuspend. */
5823 sigdelset (&suspend_mask, cancel);
5824 }
This page took 0.148006 seconds and 4 git commands to generate.