e50594d125cefa963b77ef885bd2054715305328
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387
388 *statusp = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *statusp, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, statusp, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
685 return 1;
686 }
687
688 if (! follow_child)
689 {
690 struct lwp_info *child_lp = NULL;
691
692 /* We're already attached to the parent, by default. */
693
694 /* Detach new forked process? */
695 if (detach_fork)
696 {
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
710 if (info_verbose || debug_linux_nat)
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
717
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
724
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
727
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
731
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
740
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
770 solib_create_inferior_hook (0);
771 }
772
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
777 }
778
779 if (has_vforked)
780 {
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
807
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
848 usleep (10000);
849
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
864 }
865 }
866 else
867 {
868 struct inferior *parent_inf, *child_inf;
869 struct lwp_info *lp;
870 struct program_space *parent_pspace;
871
872 if (info_verbose || debug_linux_nat)
873 {
874 target_terminal_ours ();
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893
894 parent_pspace = parent_inf->pspace;
895
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
905
906 if (has_vforked)
907 {
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
915 }
916 else if (detach_fork)
917 target_detach (NULL, 0);
918
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
953 }
954
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
957 }
958
959 restore_child_signals_mask (&prev_mask);
960 return 0;
961 }
962
963 \f
964 static void
965 linux_child_insert_fork_catchpoint (int pid)
966 {
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
969 }
970
971 static void
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
976 }
977
978 static void
979 linux_child_insert_exec_catchpoint (int pid)
980 {
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
983 }
984
985 static int
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988 {
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997 }
998
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1034 \f
1035
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1038
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1042
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1045
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1048
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1051
1052 static void
1053 block_child_signals (sigset_t *prev_mask)
1054 {
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060 }
1061
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065 static void
1066 restore_child_signals_mask (sigset_t *prev_mask)
1067 {
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069 }
1070 \f
1071
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076
1077 \f
1078 /* Convert wait status STATUS to a string. Used for printing debug
1079 messages only. */
1080
1081 static char *
1082 status_to_str (int status)
1083 {
1084 static char buf[64];
1085
1086 if (WIFSTOPPED (status))
1087 {
1088 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1089 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1090 strsignal (SIGTRAP));
1091 else
1092 snprintf (buf, sizeof (buf), "%s (stopped)",
1093 strsignal (WSTOPSIG (status)));
1094 }
1095 else if (WIFSIGNALED (status))
1096 snprintf (buf, sizeof (buf), "%s (terminated)",
1097 strsignal (WSTOPSIG (status)));
1098 else
1099 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1100
1101 return buf;
1102 }
1103
1104 /* Remove all LWPs belong to PID from the lwp list. */
1105
1106 static void
1107 purge_lwp_list (int pid)
1108 {
1109 struct lwp_info *lp, *lpprev, *lpnext;
1110
1111 lpprev = NULL;
1112
1113 for (lp = lwp_list; lp; lp = lpnext)
1114 {
1115 lpnext = lp->next;
1116
1117 if (ptid_get_pid (lp->ptid) == pid)
1118 {
1119 if (lp == lwp_list)
1120 lwp_list = lp->next;
1121 else
1122 lpprev->next = lp->next;
1123
1124 xfree (lp);
1125 }
1126 else
1127 lpprev = lp;
1128 }
1129 }
1130
1131 /* Return the number of known LWPs in the tgid given by PID. */
1132
1133 static int
1134 num_lwps (int pid)
1135 {
1136 int count = 0;
1137 struct lwp_info *lp;
1138
1139 for (lp = lwp_list; lp; lp = lp->next)
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 count++;
1142
1143 return count;
1144 }
1145
1146 /* Add the LWP specified by PID to the list. Return a pointer to the
1147 structure describing the new LWP. The LWP should already be stopped
1148 (with an exception for the very first LWP). */
1149
1150 static struct lwp_info *
1151 add_lwp (ptid_t ptid)
1152 {
1153 struct lwp_info *lp;
1154
1155 gdb_assert (is_lwp (ptid));
1156
1157 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1158
1159 memset (lp, 0, sizeof (struct lwp_info));
1160
1161 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1162
1163 lp->ptid = ptid;
1164 lp->core = -1;
1165
1166 lp->next = lwp_list;
1167 lwp_list = lp;
1168
1169 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1170 linux_nat_new_thread (ptid);
1171
1172 return lp;
1173 }
1174
1175 /* Remove the LWP specified by PID from the list. */
1176
1177 static void
1178 delete_lwp (ptid_t ptid)
1179 {
1180 struct lwp_info *lp, *lpprev;
1181
1182 lpprev = NULL;
1183
1184 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1185 if (ptid_equal (lp->ptid, ptid))
1186 break;
1187
1188 if (!lp)
1189 return;
1190
1191 if (lpprev)
1192 lpprev->next = lp->next;
1193 else
1194 lwp_list = lp->next;
1195
1196 xfree (lp);
1197 }
1198
1199 /* Return a pointer to the structure describing the LWP corresponding
1200 to PID. If no corresponding LWP could be found, return NULL. */
1201
1202 static struct lwp_info *
1203 find_lwp_pid (ptid_t ptid)
1204 {
1205 struct lwp_info *lp;
1206 int lwp;
1207
1208 if (is_lwp (ptid))
1209 lwp = GET_LWP (ptid);
1210 else
1211 lwp = GET_PID (ptid);
1212
1213 for (lp = lwp_list; lp; lp = lp->next)
1214 if (lwp == GET_LWP (lp->ptid))
1215 return lp;
1216
1217 return NULL;
1218 }
1219
1220 /* Call CALLBACK with its second argument set to DATA for every LWP in
1221 the list. If CALLBACK returns 1 for a particular LWP, return a
1222 pointer to the structure describing that LWP immediately.
1223 Otherwise return NULL. */
1224
1225 struct lwp_info *
1226 iterate_over_lwps (ptid_t filter,
1227 int (*callback) (struct lwp_info *, void *),
1228 void *data)
1229 {
1230 struct lwp_info *lp, *lpnext;
1231
1232 for (lp = lwp_list; lp; lp = lpnext)
1233 {
1234 lpnext = lp->next;
1235
1236 if (ptid_match (lp->ptid, filter))
1237 {
1238 if ((*callback) (lp, data))
1239 return lp;
1240 }
1241 }
1242
1243 return NULL;
1244 }
1245
1246 /* Update our internal state when changing from one checkpoint to
1247 another indicated by NEW_PTID. We can only switch single-threaded
1248 applications, so we only create one new LWP, and the previous list
1249 is discarded. */
1250
1251 void
1252 linux_nat_switch_fork (ptid_t new_ptid)
1253 {
1254 struct lwp_info *lp;
1255
1256 purge_lwp_list (GET_PID (inferior_ptid));
1257
1258 lp = add_lwp (new_ptid);
1259 lp->stopped = 1;
1260
1261 /* This changes the thread's ptid while preserving the gdb thread
1262 num. Also changes the inferior pid, while preserving the
1263 inferior num. */
1264 thread_change_ptid (inferior_ptid, new_ptid);
1265
1266 /* We've just told GDB core that the thread changed target id, but,
1267 in fact, it really is a different thread, with different register
1268 contents. */
1269 registers_changed ();
1270 }
1271
1272 /* Handle the exit of a single thread LP. */
1273
1274 static void
1275 exit_lwp (struct lwp_info *lp)
1276 {
1277 struct thread_info *th = find_thread_ptid (lp->ptid);
1278
1279 if (th)
1280 {
1281 if (print_thread_events)
1282 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1283
1284 delete_thread (lp->ptid);
1285 }
1286
1287 delete_lwp (lp->ptid);
1288 }
1289
1290 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1291
1292 int
1293 linux_proc_get_tgid (int lwpid)
1294 {
1295 FILE *status_file;
1296 char buf[100];
1297 int tgid = -1;
1298
1299 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1300 status_file = fopen (buf, "r");
1301 if (status_file != NULL)
1302 {
1303 while (fgets (buf, sizeof (buf), status_file))
1304 {
1305 if (strncmp (buf, "Tgid:", 5) == 0)
1306 {
1307 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1308 break;
1309 }
1310 }
1311
1312 fclose (status_file);
1313 }
1314
1315 return tgid;
1316 }
1317
1318 /* Detect `T (stopped)' in `/proc/PID/status'.
1319 Other states including `T (tracing stop)' are reported as false. */
1320
1321 static int
1322 pid_is_stopped (pid_t pid)
1323 {
1324 FILE *status_file;
1325 char buf[100];
1326 int retval = 0;
1327
1328 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1329 status_file = fopen (buf, "r");
1330 if (status_file != NULL)
1331 {
1332 int have_state = 0;
1333
1334 while (fgets (buf, sizeof (buf), status_file))
1335 {
1336 if (strncmp (buf, "State:", 6) == 0)
1337 {
1338 have_state = 1;
1339 break;
1340 }
1341 }
1342 if (have_state && strstr (buf, "T (stopped)") != NULL)
1343 retval = 1;
1344 fclose (status_file);
1345 }
1346 return retval;
1347 }
1348
1349 /* Wait for the LWP specified by LP, which we have just attached to.
1350 Returns a wait status for that LWP, to cache. */
1351
1352 static int
1353 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1354 int *signalled)
1355 {
1356 pid_t new_pid, pid = GET_LWP (ptid);
1357 int status;
1358
1359 if (pid_is_stopped (pid))
1360 {
1361 if (debug_linux_nat)
1362 fprintf_unfiltered (gdb_stdlog,
1363 "LNPAW: Attaching to a stopped process\n");
1364
1365 /* The process is definitely stopped. It is in a job control
1366 stop, unless the kernel predates the TASK_STOPPED /
1367 TASK_TRACED distinction, in which case it might be in a
1368 ptrace stop. Make sure it is in a ptrace stop; from there we
1369 can kill it, signal it, et cetera.
1370
1371 First make sure there is a pending SIGSTOP. Since we are
1372 already attached, the process can not transition from stopped
1373 to running without a PTRACE_CONT; so we know this signal will
1374 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1375 probably already in the queue (unless this kernel is old
1376 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1377 is not an RT signal, it can only be queued once. */
1378 kill_lwp (pid, SIGSTOP);
1379
1380 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1381 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1382 ptrace (PTRACE_CONT, pid, 0, 0);
1383 }
1384
1385 /* Make sure the initial process is stopped. The user-level threads
1386 layer might want to poke around in the inferior, and that won't
1387 work if things haven't stabilized yet. */
1388 new_pid = my_waitpid (pid, &status, 0);
1389 if (new_pid == -1 && errno == ECHILD)
1390 {
1391 if (first)
1392 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1393
1394 /* Try again with __WCLONE to check cloned processes. */
1395 new_pid = my_waitpid (pid, &status, __WCLONE);
1396 *cloned = 1;
1397 }
1398
1399 gdb_assert (pid == new_pid);
1400
1401 if (!WIFSTOPPED (status))
1402 {
1403 /* The pid we tried to attach has apparently just exited. */
1404 if (debug_linux_nat)
1405 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1406 pid, status_to_str (status));
1407 return status;
1408 }
1409
1410 if (WSTOPSIG (status) != SIGSTOP)
1411 {
1412 *signalled = 1;
1413 if (debug_linux_nat)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "LNPAW: Received %s after attaching\n",
1416 status_to_str (status));
1417 }
1418
1419 return status;
1420 }
1421
1422 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1423 if the new LWP could not be attached. */
1424
1425 int
1426 lin_lwp_attach_lwp (ptid_t ptid)
1427 {
1428 struct lwp_info *lp;
1429 sigset_t prev_mask;
1430
1431 gdb_assert (is_lwp (ptid));
1432
1433 block_child_signals (&prev_mask);
1434
1435 lp = find_lwp_pid (ptid);
1436
1437 /* We assume that we're already attached to any LWP that has an id
1438 equal to the overall process id, and to any LWP that is already
1439 in our list of LWPs. If we're not seeing exit events from threads
1440 and we've had PID wraparound since we last tried to stop all threads,
1441 this assumption might be wrong; fortunately, this is very unlikely
1442 to happen. */
1443 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1444 {
1445 int status, cloned = 0, signalled = 0;
1446
1447 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1448 {
1449 /* If we fail to attach to the thread, issue a warning,
1450 but continue. One way this can happen is if thread
1451 creation is interrupted; as of Linux kernel 2.6.19, a
1452 bug may place threads in the thread list and then fail
1453 to create them. */
1454 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1455 safe_strerror (errno));
1456 restore_child_signals_mask (&prev_mask);
1457 return -1;
1458 }
1459
1460 if (debug_linux_nat)
1461 fprintf_unfiltered (gdb_stdlog,
1462 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1463 target_pid_to_str (ptid));
1464
1465 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1466 if (!WIFSTOPPED (status))
1467 return -1;
1468
1469 lp = add_lwp (ptid);
1470 lp->stopped = 1;
1471 lp->cloned = cloned;
1472 lp->signalled = signalled;
1473 if (WSTOPSIG (status) != SIGSTOP)
1474 {
1475 lp->resumed = 1;
1476 lp->status = status;
1477 }
1478
1479 target_post_attach (GET_LWP (lp->ptid));
1480
1481 if (debug_linux_nat)
1482 {
1483 fprintf_unfiltered (gdb_stdlog,
1484 "LLAL: waitpid %s received %s\n",
1485 target_pid_to_str (ptid),
1486 status_to_str (status));
1487 }
1488 }
1489 else
1490 {
1491 /* We assume that the LWP representing the original process is
1492 already stopped. Mark it as stopped in the data structure
1493 that the GNU/linux ptrace layer uses to keep track of
1494 threads. Note that this won't have already been done since
1495 the main thread will have, we assume, been stopped by an
1496 attach from a different layer. */
1497 if (lp == NULL)
1498 lp = add_lwp (ptid);
1499 lp->stopped = 1;
1500 }
1501
1502 restore_child_signals_mask (&prev_mask);
1503 return 0;
1504 }
1505
1506 static void
1507 linux_nat_create_inferior (struct target_ops *ops,
1508 char *exec_file, char *allargs, char **env,
1509 int from_tty)
1510 {
1511 #ifdef HAVE_PERSONALITY
1512 int personality_orig = 0, personality_set = 0;
1513 #endif /* HAVE_PERSONALITY */
1514
1515 /* The fork_child mechanism is synchronous and calls target_wait, so
1516 we have to mask the async mode. */
1517
1518 #ifdef HAVE_PERSONALITY
1519 if (disable_randomization)
1520 {
1521 errno = 0;
1522 personality_orig = personality (0xffffffff);
1523 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1524 {
1525 personality_set = 1;
1526 personality (personality_orig | ADDR_NO_RANDOMIZE);
1527 }
1528 if (errno != 0 || (personality_set
1529 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1530 warning (_("Error disabling address space randomization: %s"),
1531 safe_strerror (errno));
1532 }
1533 #endif /* HAVE_PERSONALITY */
1534
1535 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1536
1537 #ifdef HAVE_PERSONALITY
1538 if (personality_set)
1539 {
1540 errno = 0;
1541 personality (personality_orig);
1542 if (errno != 0)
1543 warning (_("Error restoring address space randomization: %s"),
1544 safe_strerror (errno));
1545 }
1546 #endif /* HAVE_PERSONALITY */
1547 }
1548
1549 static void
1550 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1551 {
1552 struct lwp_info *lp;
1553 int status;
1554 ptid_t ptid;
1555
1556 linux_ops->to_attach (ops, args, from_tty);
1557
1558 /* The ptrace base target adds the main thread with (pid,0,0)
1559 format. Decorate it with lwp info. */
1560 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1561 thread_change_ptid (inferior_ptid, ptid);
1562
1563 /* Add the initial process as the first LWP to the list. */
1564 lp = add_lwp (ptid);
1565
1566 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1567 &lp->signalled);
1568 if (!WIFSTOPPED (status))
1569 {
1570 if (WIFEXITED (status))
1571 {
1572 int exit_code = WEXITSTATUS (status);
1573
1574 target_terminal_ours ();
1575 target_mourn_inferior ();
1576 if (exit_code == 0)
1577 error (_("Unable to attach: program exited normally."));
1578 else
1579 error (_("Unable to attach: program exited with code %d."),
1580 exit_code);
1581 }
1582 else if (WIFSIGNALED (status))
1583 {
1584 enum target_signal signo;
1585
1586 target_terminal_ours ();
1587 target_mourn_inferior ();
1588
1589 signo = target_signal_from_host (WTERMSIG (status));
1590 error (_("Unable to attach: program terminated with signal "
1591 "%s, %s."),
1592 target_signal_to_name (signo),
1593 target_signal_to_string (signo));
1594 }
1595
1596 internal_error (__FILE__, __LINE__,
1597 _("unexpected status %d for PID %ld"),
1598 status, (long) GET_LWP (ptid));
1599 }
1600
1601 lp->stopped = 1;
1602
1603 /* Save the wait status to report later. */
1604 lp->resumed = 1;
1605 if (debug_linux_nat)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "LNA: waitpid %ld, saving status %s\n",
1608 (long) GET_PID (lp->ptid), status_to_str (status));
1609
1610 lp->status = status;
1611
1612 if (target_can_async_p ())
1613 target_async (inferior_event_handler, 0);
1614 }
1615
1616 /* Get pending status of LP. */
1617 static int
1618 get_pending_status (struct lwp_info *lp, int *status)
1619 {
1620 enum target_signal signo = TARGET_SIGNAL_0;
1621
1622 /* If we paused threads momentarily, we may have stored pending
1623 events in lp->status or lp->waitstatus (see stop_wait_callback),
1624 and GDB core hasn't seen any signal for those threads.
1625 Otherwise, the last signal reported to the core is found in the
1626 thread object's stop_signal.
1627
1628 There's a corner case that isn't handled here at present. Only
1629 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1630 stop_signal make sense as a real signal to pass to the inferior.
1631 Some catchpoint related events, like
1632 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1633 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1634 those traps are debug API (ptrace in our case) related and
1635 induced; the inferior wouldn't see them if it wasn't being
1636 traced. Hence, we should never pass them to the inferior, even
1637 when set to pass state. Since this corner case isn't handled by
1638 infrun.c when proceeding with a signal, for consistency, neither
1639 do we handle it here (or elsewhere in the file we check for
1640 signal pass state). Normally SIGTRAP isn't set to pass state, so
1641 this is really a corner case. */
1642
1643 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1644 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1645 else if (lp->status)
1646 signo = target_signal_from_host (WSTOPSIG (lp->status));
1647 else if (non_stop && !is_executing (lp->ptid))
1648 {
1649 struct thread_info *tp = find_thread_ptid (lp->ptid);
1650
1651 signo = tp->stop_signal;
1652 }
1653 else if (!non_stop)
1654 {
1655 struct target_waitstatus last;
1656 ptid_t last_ptid;
1657
1658 get_last_target_status (&last_ptid, &last);
1659
1660 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1661 {
1662 struct thread_info *tp = find_thread_ptid (lp->ptid);
1663
1664 signo = tp->stop_signal;
1665 }
1666 }
1667
1668 *status = 0;
1669
1670 if (signo == TARGET_SIGNAL_0)
1671 {
1672 if (debug_linux_nat)
1673 fprintf_unfiltered (gdb_stdlog,
1674 "GPT: lwp %s has no pending signal\n",
1675 target_pid_to_str (lp->ptid));
1676 }
1677 else if (!signal_pass_state (signo))
1678 {
1679 if (debug_linux_nat)
1680 fprintf_unfiltered (gdb_stdlog, "\
1681 GPT: lwp %s had signal %s, but it is in no pass state\n",
1682 target_pid_to_str (lp->ptid),
1683 target_signal_to_string (signo));
1684 }
1685 else
1686 {
1687 *status = W_STOPCODE (target_signal_to_host (signo));
1688
1689 if (debug_linux_nat)
1690 fprintf_unfiltered (gdb_stdlog,
1691 "GPT: lwp %s has pending signal %s\n",
1692 target_pid_to_str (lp->ptid),
1693 target_signal_to_string (signo));
1694 }
1695
1696 return 0;
1697 }
1698
1699 static int
1700 detach_callback (struct lwp_info *lp, void *data)
1701 {
1702 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1703
1704 if (debug_linux_nat && lp->status)
1705 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1706 strsignal (WSTOPSIG (lp->status)),
1707 target_pid_to_str (lp->ptid));
1708
1709 /* If there is a pending SIGSTOP, get rid of it. */
1710 if (lp->signalled)
1711 {
1712 if (debug_linux_nat)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "DC: Sending SIGCONT to %s\n",
1715 target_pid_to_str (lp->ptid));
1716
1717 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1718 lp->signalled = 0;
1719 }
1720
1721 /* We don't actually detach from the LWP that has an id equal to the
1722 overall process id just yet. */
1723 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1724 {
1725 int status = 0;
1726
1727 /* Pass on any pending signal for this LWP. */
1728 get_pending_status (lp, &status);
1729
1730 errno = 0;
1731 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1732 WSTOPSIG (status)) < 0)
1733 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1734 safe_strerror (errno));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1739 target_pid_to_str (lp->ptid),
1740 strsignal (WSTOPSIG (status)));
1741
1742 delete_lwp (lp->ptid);
1743 }
1744
1745 return 0;
1746 }
1747
1748 static void
1749 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1750 {
1751 int pid;
1752 int status;
1753 struct lwp_info *main_lwp;
1754
1755 pid = GET_PID (inferior_ptid);
1756
1757 if (target_can_async_p ())
1758 linux_nat_async (NULL, 0);
1759
1760 /* Stop all threads before detaching. ptrace requires that the
1761 thread is stopped to sucessfully detach. */
1762 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1763 /* ... and wait until all of them have reported back that
1764 they're no longer running. */
1765 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1766
1767 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1768
1769 /* Only the initial process should be left right now. */
1770 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1771
1772 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1773
1774 /* Pass on any pending signal for the last LWP. */
1775 if ((args == NULL || *args == '\0')
1776 && get_pending_status (main_lwp, &status) != -1
1777 && WIFSTOPPED (status))
1778 {
1779 /* Put the signal number in ARGS so that inf_ptrace_detach will
1780 pass it along with PTRACE_DETACH. */
1781 args = alloca (8);
1782 sprintf (args, "%d", (int) WSTOPSIG (status));
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "LND: Sending signal %s to %s\n",
1786 args,
1787 target_pid_to_str (main_lwp->ptid));
1788 }
1789
1790 delete_lwp (main_lwp->ptid);
1791
1792 if (forks_exist_p ())
1793 {
1794 /* Multi-fork case. The current inferior_ptid is being detached
1795 from, but there are other viable forks to debug. Detach from
1796 the current fork, and context-switch to the first
1797 available. */
1798 linux_fork_detach (args, from_tty);
1799
1800 if (non_stop && target_can_async_p ())
1801 target_async (inferior_event_handler, 0);
1802 }
1803 else
1804 linux_ops->to_detach (ops, args, from_tty);
1805 }
1806
1807 /* Resume LP. */
1808
1809 static int
1810 resume_callback (struct lwp_info *lp, void *data)
1811 {
1812 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1813
1814 if (lp->stopped && inf->vfork_child != NULL)
1815 {
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "RC: Not resuming %s (vfork parent)\n",
1819 target_pid_to_str (lp->ptid));
1820 }
1821 else if (lp->stopped && lp->status == 0)
1822 {
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1826 target_pid_to_str (lp->ptid));
1827
1828 linux_ops->to_resume (linux_ops,
1829 pid_to_ptid (GET_LWP (lp->ptid)),
1830 0, TARGET_SIGNAL_0);
1831 if (debug_linux_nat)
1832 fprintf_unfiltered (gdb_stdlog,
1833 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1834 target_pid_to_str (lp->ptid));
1835 lp->stopped = 0;
1836 lp->step = 0;
1837 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1838 lp->stopped_by_watchpoint = 0;
1839 }
1840 else if (lp->stopped && debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1842 target_pid_to_str (lp->ptid));
1843 else if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1845 target_pid_to_str (lp->ptid));
1846
1847 return 0;
1848 }
1849
1850 static int
1851 resume_clear_callback (struct lwp_info *lp, void *data)
1852 {
1853 lp->resumed = 0;
1854 return 0;
1855 }
1856
1857 static int
1858 resume_set_callback (struct lwp_info *lp, void *data)
1859 {
1860 lp->resumed = 1;
1861 return 0;
1862 }
1863
1864 static void
1865 linux_nat_resume (struct target_ops *ops,
1866 ptid_t ptid, int step, enum target_signal signo)
1867 {
1868 sigset_t prev_mask;
1869 struct lwp_info *lp;
1870 int resume_many;
1871
1872 if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog,
1874 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1875 step ? "step" : "resume",
1876 target_pid_to_str (ptid),
1877 signo ? strsignal (signo) : "0",
1878 target_pid_to_str (inferior_ptid));
1879
1880 block_child_signals (&prev_mask);
1881
1882 /* A specific PTID means `step only this process id'. */
1883 resume_many = (ptid_equal (minus_one_ptid, ptid)
1884 || ptid_is_pid (ptid));
1885
1886 /* Mark the lwps we're resuming as resumed. */
1887 iterate_over_lwps (ptid, resume_set_callback, NULL);
1888
1889 /* See if it's the current inferior that should be handled
1890 specially. */
1891 if (resume_many)
1892 lp = find_lwp_pid (inferior_ptid);
1893 else
1894 lp = find_lwp_pid (ptid);
1895 gdb_assert (lp != NULL);
1896
1897 /* Remember if we're stepping. */
1898 lp->step = step;
1899
1900 /* If we have a pending wait status for this thread, there is no
1901 point in resuming the process. But first make sure that
1902 linux_nat_wait won't preemptively handle the event - we
1903 should never take this short-circuit if we are going to
1904 leave LP running, since we have skipped resuming all the
1905 other threads. This bit of code needs to be synchronized
1906 with linux_nat_wait. */
1907
1908 if (lp->status && WIFSTOPPED (lp->status))
1909 {
1910 int saved_signo;
1911 struct inferior *inf;
1912
1913 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1914 gdb_assert (inf);
1915 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1916
1917 /* Defer to common code if we're gaining control of the
1918 inferior. */
1919 if (inf->stop_soon == NO_STOP_QUIETLY
1920 && signal_stop_state (saved_signo) == 0
1921 && signal_print_state (saved_signo) == 0
1922 && signal_pass_state (saved_signo) == 1)
1923 {
1924 if (debug_linux_nat)
1925 fprintf_unfiltered (gdb_stdlog,
1926 "LLR: Not short circuiting for ignored "
1927 "status 0x%x\n", lp->status);
1928
1929 /* FIXME: What should we do if we are supposed to continue
1930 this thread with a signal? */
1931 gdb_assert (signo == TARGET_SIGNAL_0);
1932 signo = saved_signo;
1933 lp->status = 0;
1934 }
1935 }
1936
1937 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1938 {
1939 /* FIXME: What should we do if we are supposed to continue
1940 this thread with a signal? */
1941 gdb_assert (signo == TARGET_SIGNAL_0);
1942
1943 if (debug_linux_nat)
1944 fprintf_unfiltered (gdb_stdlog,
1945 "LLR: Short circuiting for status 0x%x\n",
1946 lp->status);
1947
1948 restore_child_signals_mask (&prev_mask);
1949 if (target_can_async_p ())
1950 {
1951 target_async (inferior_event_handler, 0);
1952 /* Tell the event loop we have something to process. */
1953 async_file_mark ();
1954 }
1955 return;
1956 }
1957
1958 /* Mark LWP as not stopped to prevent it from being continued by
1959 resume_callback. */
1960 lp->stopped = 0;
1961
1962 if (resume_many)
1963 iterate_over_lwps (ptid, resume_callback, NULL);
1964
1965 /* Convert to something the lower layer understands. */
1966 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1967
1968 linux_ops->to_resume (linux_ops, ptid, step, signo);
1969 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1970 lp->stopped_by_watchpoint = 0;
1971
1972 if (debug_linux_nat)
1973 fprintf_unfiltered (gdb_stdlog,
1974 "LLR: %s %s, %s (resume event thread)\n",
1975 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1976 target_pid_to_str (ptid),
1977 signo ? strsignal (signo) : "0");
1978
1979 restore_child_signals_mask (&prev_mask);
1980 if (target_can_async_p ())
1981 target_async (inferior_event_handler, 0);
1982 }
1983
1984 /* Send a signal to an LWP. */
1985
1986 static int
1987 kill_lwp (int lwpid, int signo)
1988 {
1989 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1990 fails, then we are not using nptl threads and we should be using kill. */
1991
1992 #ifdef HAVE_TKILL_SYSCALL
1993 {
1994 static int tkill_failed;
1995
1996 if (!tkill_failed)
1997 {
1998 int ret;
1999
2000 errno = 0;
2001 ret = syscall (__NR_tkill, lwpid, signo);
2002 if (errno != ENOSYS)
2003 return ret;
2004 tkill_failed = 1;
2005 }
2006 }
2007 #endif
2008
2009 return kill (lwpid, signo);
2010 }
2011
2012 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2013 event, check if the core is interested in it: if not, ignore the
2014 event, and keep waiting; otherwise, we need to toggle the LWP's
2015 syscall entry/exit status, since the ptrace event itself doesn't
2016 indicate it, and report the trap to higher layers. */
2017
2018 static int
2019 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2020 {
2021 struct target_waitstatus *ourstatus = &lp->waitstatus;
2022 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2023 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2024
2025 if (stopping)
2026 {
2027 /* If we're stopping threads, there's a SIGSTOP pending, which
2028 makes it so that the LWP reports an immediate syscall return,
2029 followed by the SIGSTOP. Skip seeing that "return" using
2030 PTRACE_CONT directly, and let stop_wait_callback collect the
2031 SIGSTOP. Later when the thread is resumed, a new syscall
2032 entry event. If we didn't do this (and returned 0), we'd
2033 leave a syscall entry pending, and our caller, by using
2034 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2035 itself. Later, when the user re-resumes this LWP, we'd see
2036 another syscall entry event and we'd mistake it for a return.
2037
2038 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2039 (leaving immediately with LWP->signalled set, without issuing
2040 a PTRACE_CONT), it would still be problematic to leave this
2041 syscall enter pending, as later when the thread is resumed,
2042 it would then see the same syscall exit mentioned above,
2043 followed by the delayed SIGSTOP, while the syscall didn't
2044 actually get to execute. It seems it would be even more
2045 confusing to the user. */
2046
2047 if (debug_linux_nat)
2048 fprintf_unfiltered (gdb_stdlog,
2049 "LHST: ignoring syscall %d "
2050 "for LWP %ld (stopping threads), "
2051 "resuming with PTRACE_CONT for SIGSTOP\n",
2052 syscall_number,
2053 GET_LWP (lp->ptid));
2054
2055 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2056 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2057 return 1;
2058 }
2059
2060 if (catch_syscall_enabled ())
2061 {
2062 /* Always update the entry/return state, even if this particular
2063 syscall isn't interesting to the core now. In async mode,
2064 the user could install a new catchpoint for this syscall
2065 between syscall enter/return, and we'll need to know to
2066 report a syscall return if that happens. */
2067 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2068 ? TARGET_WAITKIND_SYSCALL_RETURN
2069 : TARGET_WAITKIND_SYSCALL_ENTRY);
2070
2071 if (catching_syscall_number (syscall_number))
2072 {
2073 /* Alright, an event to report. */
2074 ourstatus->kind = lp->syscall_state;
2075 ourstatus->value.syscall_number = syscall_number;
2076
2077 if (debug_linux_nat)
2078 fprintf_unfiltered (gdb_stdlog,
2079 "LHST: stopping for %s of syscall %d"
2080 " for LWP %ld\n",
2081 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2082 ? "entry" : "return",
2083 syscall_number,
2084 GET_LWP (lp->ptid));
2085 return 0;
2086 }
2087
2088 if (debug_linux_nat)
2089 fprintf_unfiltered (gdb_stdlog,
2090 "LHST: ignoring %s of syscall %d "
2091 "for LWP %ld\n",
2092 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2093 ? "entry" : "return",
2094 syscall_number,
2095 GET_LWP (lp->ptid));
2096 }
2097 else
2098 {
2099 /* If we had been syscall tracing, and hence used PT_SYSCALL
2100 before on this LWP, it could happen that the user removes all
2101 syscall catchpoints before we get to process this event.
2102 There are two noteworthy issues here:
2103
2104 - When stopped at a syscall entry event, resuming with
2105 PT_STEP still resumes executing the syscall and reports a
2106 syscall return.
2107
2108 - Only PT_SYSCALL catches syscall enters. If we last
2109 single-stepped this thread, then this event can't be a
2110 syscall enter. If we last single-stepped this thread, this
2111 has to be a syscall exit.
2112
2113 The points above mean that the next resume, be it PT_STEP or
2114 PT_CONTINUE, can not trigger a syscall trace event. */
2115 if (debug_linux_nat)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "LHST: caught syscall event with no syscall catchpoints."
2118 " %d for LWP %ld, ignoring\n",
2119 syscall_number,
2120 GET_LWP (lp->ptid));
2121 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2122 }
2123
2124 /* The core isn't interested in this event. For efficiency, avoid
2125 stopping all threads only to have the core resume them all again.
2126 Since we're not stopping threads, if we're still syscall tracing
2127 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2128 subsequent syscall. Simply resume using the inf-ptrace layer,
2129 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2130
2131 /* Note that gdbarch_get_syscall_number may access registers, hence
2132 fill a regcache. */
2133 registers_changed ();
2134 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2135 lp->step, TARGET_SIGNAL_0);
2136 return 1;
2137 }
2138
2139 /* Handle a GNU/Linux extended wait response. If we see a clone
2140 event, we need to add the new LWP to our list (and not report the
2141 trap to higher layers). This function returns non-zero if the
2142 event should be ignored and we should wait again. If STOPPING is
2143 true, the new LWP remains stopped, otherwise it is continued. */
2144
2145 static int
2146 linux_handle_extended_wait (struct lwp_info *lp, int status,
2147 int stopping)
2148 {
2149 int pid = GET_LWP (lp->ptid);
2150 struct target_waitstatus *ourstatus = &lp->waitstatus;
2151 int event = status >> 16;
2152
2153 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2154 || event == PTRACE_EVENT_CLONE)
2155 {
2156 unsigned long new_pid;
2157 int ret;
2158
2159 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2160
2161 /* If we haven't already seen the new PID stop, wait for it now. */
2162 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2163 {
2164 /* The new child has a pending SIGSTOP. We can't affect it until it
2165 hits the SIGSTOP, but we're already attached. */
2166 ret = my_waitpid (new_pid, &status,
2167 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2168 if (ret == -1)
2169 perror_with_name (_("waiting for new child"));
2170 else if (ret != new_pid)
2171 internal_error (__FILE__, __LINE__,
2172 _("wait returned unexpected PID %d"), ret);
2173 else if (!WIFSTOPPED (status))
2174 internal_error (__FILE__, __LINE__,
2175 _("wait returned unexpected status 0x%x"), status);
2176 }
2177
2178 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2179
2180 if (event == PTRACE_EVENT_FORK
2181 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2182 {
2183 struct fork_info *fp;
2184
2185 /* Handle checkpointing by linux-fork.c here as a special
2186 case. We don't want the follow-fork-mode or 'catch fork'
2187 to interfere with this. */
2188
2189 /* This won't actually modify the breakpoint list, but will
2190 physically remove the breakpoints from the child. */
2191 detach_breakpoints (new_pid);
2192
2193 /* Retain child fork in ptrace (stopped) state. */
2194 fp = find_fork_pid (new_pid);
2195 if (!fp)
2196 fp = add_fork (new_pid);
2197
2198 /* Report as spurious, so that infrun doesn't want to follow
2199 this fork. We're actually doing an infcall in
2200 linux-fork.c. */
2201 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2202 linux_enable_event_reporting (pid_to_ptid (new_pid));
2203
2204 /* Report the stop to the core. */
2205 return 0;
2206 }
2207
2208 if (event == PTRACE_EVENT_FORK)
2209 ourstatus->kind = TARGET_WAITKIND_FORKED;
2210 else if (event == PTRACE_EVENT_VFORK)
2211 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2212 else
2213 {
2214 struct lwp_info *new_lp;
2215
2216 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2217
2218 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2219 new_lp->cloned = 1;
2220 new_lp->stopped = 1;
2221
2222 if (WSTOPSIG (status) != SIGSTOP)
2223 {
2224 /* This can happen if someone starts sending signals to
2225 the new thread before it gets a chance to run, which
2226 have a lower number than SIGSTOP (e.g. SIGUSR1).
2227 This is an unlikely case, and harder to handle for
2228 fork / vfork than for clone, so we do not try - but
2229 we handle it for clone events here. We'll send
2230 the other signal on to the thread below. */
2231
2232 new_lp->signalled = 1;
2233 }
2234 else
2235 status = 0;
2236
2237 if (non_stop)
2238 {
2239 /* Add the new thread to GDB's lists as soon as possible
2240 so that:
2241
2242 1) the frontend doesn't have to wait for a stop to
2243 display them, and,
2244
2245 2) we tag it with the correct running state. */
2246
2247 /* If the thread_db layer is active, let it know about
2248 this new thread, and add it to GDB's list. */
2249 if (!thread_db_attach_lwp (new_lp->ptid))
2250 {
2251 /* We're not using thread_db. Add it to GDB's
2252 list. */
2253 target_post_attach (GET_LWP (new_lp->ptid));
2254 add_thread (new_lp->ptid);
2255 }
2256
2257 if (!stopping)
2258 {
2259 set_running (new_lp->ptid, 1);
2260 set_executing (new_lp->ptid, 1);
2261 }
2262 }
2263
2264 /* Note the need to use the low target ops to resume, to
2265 handle resuming with PT_SYSCALL if we have syscall
2266 catchpoints. */
2267 if (!stopping)
2268 {
2269 int signo;
2270
2271 new_lp->stopped = 0;
2272 new_lp->resumed = 1;
2273
2274 signo = (status
2275 ? target_signal_from_host (WSTOPSIG (status))
2276 : TARGET_SIGNAL_0);
2277
2278 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2279 0, signo);
2280 }
2281 else
2282 {
2283 if (status != 0)
2284 {
2285 /* We created NEW_LP so it cannot yet contain STATUS. */
2286 gdb_assert (new_lp->status == 0);
2287
2288 /* Save the wait status to report later. */
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "LHEW: waitpid of new LWP %ld, "
2292 "saving status %s\n",
2293 (long) GET_LWP (new_lp->ptid),
2294 status_to_str (status));
2295 new_lp->status = status;
2296 }
2297 }
2298
2299 if (debug_linux_nat)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "LHEW: Got clone event from LWP %ld, resuming\n",
2302 GET_LWP (lp->ptid));
2303 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2304 0, TARGET_SIGNAL_0);
2305
2306 return 1;
2307 }
2308
2309 return 0;
2310 }
2311
2312 if (event == PTRACE_EVENT_EXEC)
2313 {
2314 if (debug_linux_nat)
2315 fprintf_unfiltered (gdb_stdlog,
2316 "LHEW: Got exec event from LWP %ld\n",
2317 GET_LWP (lp->ptid));
2318
2319 ourstatus->kind = TARGET_WAITKIND_EXECD;
2320 ourstatus->value.execd_pathname
2321 = xstrdup (linux_child_pid_to_exec_file (pid));
2322
2323 return 0;
2324 }
2325
2326 if (event == PTRACE_EVENT_VFORK_DONE)
2327 {
2328 if (current_inferior ()->waiting_for_vfork_done)
2329 {
2330 if (debug_linux_nat)
2331 fprintf_unfiltered (gdb_stdlog, "\
2332 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2333 GET_LWP (lp->ptid));
2334
2335 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2336 return 0;
2337 }
2338
2339 if (debug_linux_nat)
2340 fprintf_unfiltered (gdb_stdlog, "\
2341 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2342 GET_LWP (lp->ptid));
2343 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2344 return 1;
2345 }
2346
2347 internal_error (__FILE__, __LINE__,
2348 _("unknown ptrace event %d"), event);
2349 }
2350
2351 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2352 exited. */
2353
2354 static int
2355 wait_lwp (struct lwp_info *lp)
2356 {
2357 pid_t pid;
2358 int status;
2359 int thread_dead = 0;
2360
2361 gdb_assert (!lp->stopped);
2362 gdb_assert (lp->status == 0);
2363
2364 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2365 if (pid == -1 && errno == ECHILD)
2366 {
2367 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2368 if (pid == -1 && errno == ECHILD)
2369 {
2370 /* The thread has previously exited. We need to delete it
2371 now because, for some vendor 2.4 kernels with NPTL
2372 support backported, there won't be an exit event unless
2373 it is the main thread. 2.6 kernels will report an exit
2374 event for each thread that exits, as expected. */
2375 thread_dead = 1;
2376 if (debug_linux_nat)
2377 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2378 target_pid_to_str (lp->ptid));
2379 }
2380 }
2381
2382 if (!thread_dead)
2383 {
2384 gdb_assert (pid == GET_LWP (lp->ptid));
2385
2386 if (debug_linux_nat)
2387 {
2388 fprintf_unfiltered (gdb_stdlog,
2389 "WL: waitpid %s received %s\n",
2390 target_pid_to_str (lp->ptid),
2391 status_to_str (status));
2392 }
2393 }
2394
2395 /* Check if the thread has exited. */
2396 if (WIFEXITED (status) || WIFSIGNALED (status))
2397 {
2398 thread_dead = 1;
2399 if (debug_linux_nat)
2400 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2401 target_pid_to_str (lp->ptid));
2402 }
2403
2404 if (thread_dead)
2405 {
2406 exit_lwp (lp);
2407 return 0;
2408 }
2409
2410 gdb_assert (WIFSTOPPED (status));
2411
2412 /* Handle GNU/Linux's syscall SIGTRAPs. */
2413 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2414 {
2415 /* No longer need the sysgood bit. The ptrace event ends up
2416 recorded in lp->waitstatus if we care for it. We can carry
2417 on handling the event like a regular SIGTRAP from here
2418 on. */
2419 status = W_STOPCODE (SIGTRAP);
2420 if (linux_handle_syscall_trap (lp, 1))
2421 return wait_lwp (lp);
2422 }
2423
2424 /* Handle GNU/Linux's extended waitstatus for trace events. */
2425 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2426 {
2427 if (debug_linux_nat)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "WL: Handling extended status 0x%06x\n",
2430 status);
2431 if (linux_handle_extended_wait (lp, status, 1))
2432 return wait_lwp (lp);
2433 }
2434
2435 return status;
2436 }
2437
2438 /* Save the most recent siginfo for LP. This is currently only called
2439 for SIGTRAP; some ports use the si_addr field for
2440 target_stopped_data_address. In the future, it may also be used to
2441 restore the siginfo of requeued signals. */
2442
2443 static void
2444 save_siginfo (struct lwp_info *lp)
2445 {
2446 errno = 0;
2447 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2448 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2449
2450 if (errno != 0)
2451 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2452 }
2453
2454 /* Send a SIGSTOP to LP. */
2455
2456 static int
2457 stop_callback (struct lwp_info *lp, void *data)
2458 {
2459 if (!lp->stopped && !lp->signalled)
2460 {
2461 int ret;
2462
2463 if (debug_linux_nat)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
2466 "SC: kill %s **<SIGSTOP>**\n",
2467 target_pid_to_str (lp->ptid));
2468 }
2469 errno = 0;
2470 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2471 if (debug_linux_nat)
2472 {
2473 fprintf_unfiltered (gdb_stdlog,
2474 "SC: lwp kill %d %s\n",
2475 ret,
2476 errno ? safe_strerror (errno) : "ERRNO-OK");
2477 }
2478
2479 lp->signalled = 1;
2480 gdb_assert (lp->status == 0);
2481 }
2482
2483 return 0;
2484 }
2485
2486 /* Return non-zero if LWP PID has a pending SIGINT. */
2487
2488 static int
2489 linux_nat_has_pending_sigint (int pid)
2490 {
2491 sigset_t pending, blocked, ignored;
2492
2493 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2494
2495 if (sigismember (&pending, SIGINT)
2496 && !sigismember (&ignored, SIGINT))
2497 return 1;
2498
2499 return 0;
2500 }
2501
2502 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2503
2504 static int
2505 set_ignore_sigint (struct lwp_info *lp, void *data)
2506 {
2507 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2508 flag to consume the next one. */
2509 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2510 && WSTOPSIG (lp->status) == SIGINT)
2511 lp->status = 0;
2512 else
2513 lp->ignore_sigint = 1;
2514
2515 return 0;
2516 }
2517
2518 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2519 This function is called after we know the LWP has stopped; if the LWP
2520 stopped before the expected SIGINT was delivered, then it will never have
2521 arrived. Also, if the signal was delivered to a shared queue and consumed
2522 by a different thread, it will never be delivered to this LWP. */
2523
2524 static void
2525 maybe_clear_ignore_sigint (struct lwp_info *lp)
2526 {
2527 if (!lp->ignore_sigint)
2528 return;
2529
2530 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2531 {
2532 if (debug_linux_nat)
2533 fprintf_unfiltered (gdb_stdlog,
2534 "MCIS: Clearing bogus flag for %s\n",
2535 target_pid_to_str (lp->ptid));
2536 lp->ignore_sigint = 0;
2537 }
2538 }
2539
2540 /* Fetch the possible triggered data watchpoint info and store it in
2541 LP.
2542
2543 On some archs, like x86, that use debug registers to set
2544 watchpoints, it's possible that the way to know which watched
2545 address trapped, is to check the register that is used to select
2546 which address to watch. Problem is, between setting the watchpoint
2547 and reading back which data address trapped, the user may change
2548 the set of watchpoints, and, as a consequence, GDB changes the
2549 debug registers in the inferior. To avoid reading back a stale
2550 stopped-data-address when that happens, we cache in LP the fact
2551 that a watchpoint trapped, and the corresponding data address, as
2552 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2553 registers meanwhile, we have the cached data we can rely on. */
2554
2555 static void
2556 save_sigtrap (struct lwp_info *lp)
2557 {
2558 struct cleanup *old_chain;
2559
2560 if (linux_ops->to_stopped_by_watchpoint == NULL)
2561 {
2562 lp->stopped_by_watchpoint = 0;
2563 return;
2564 }
2565
2566 old_chain = save_inferior_ptid ();
2567 inferior_ptid = lp->ptid;
2568
2569 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2570
2571 if (lp->stopped_by_watchpoint)
2572 {
2573 if (linux_ops->to_stopped_data_address != NULL)
2574 lp->stopped_data_address_p =
2575 linux_ops->to_stopped_data_address (&current_target,
2576 &lp->stopped_data_address);
2577 else
2578 lp->stopped_data_address_p = 0;
2579 }
2580
2581 do_cleanups (old_chain);
2582 }
2583
2584 /* See save_sigtrap. */
2585
2586 static int
2587 linux_nat_stopped_by_watchpoint (void)
2588 {
2589 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2590
2591 gdb_assert (lp != NULL);
2592
2593 return lp->stopped_by_watchpoint;
2594 }
2595
2596 static int
2597 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2598 {
2599 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2600
2601 gdb_assert (lp != NULL);
2602
2603 *addr_p = lp->stopped_data_address;
2604
2605 return lp->stopped_data_address_p;
2606 }
2607
2608 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2609
2610 static int
2611 sigtrap_is_event (int status)
2612 {
2613 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2614 }
2615
2616 /* SIGTRAP-like events recognizer. */
2617
2618 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2619
2620 /* Check for SIGTRAP-like events in LP. */
2621
2622 static int
2623 linux_nat_lp_status_is_event (struct lwp_info *lp)
2624 {
2625 /* We check for lp->waitstatus in addition to lp->status, because we can
2626 have pending process exits recorded in lp->status
2627 and W_EXITCODE(0,0) == 0. We should probably have an additional
2628 lp->status_p flag. */
2629
2630 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2631 && linux_nat_status_is_event (lp->status));
2632 }
2633
2634 /* Set alternative SIGTRAP-like events recognizer. If
2635 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2636 applied. */
2637
2638 void
2639 linux_nat_set_status_is_event (struct target_ops *t,
2640 int (*status_is_event) (int status))
2641 {
2642 linux_nat_status_is_event = status_is_event;
2643 }
2644
2645 /* Wait until LP is stopped. */
2646
2647 static int
2648 stop_wait_callback (struct lwp_info *lp, void *data)
2649 {
2650 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2651
2652 /* If this is a vfork parent, bail out, it is not going to report
2653 any SIGSTOP until the vfork is done with. */
2654 if (inf->vfork_child != NULL)
2655 return 0;
2656
2657 if (!lp->stopped)
2658 {
2659 int status;
2660
2661 status = wait_lwp (lp);
2662 if (status == 0)
2663 return 0;
2664
2665 if (lp->ignore_sigint && WIFSTOPPED (status)
2666 && WSTOPSIG (status) == SIGINT)
2667 {
2668 lp->ignore_sigint = 0;
2669
2670 errno = 0;
2671 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2672 if (debug_linux_nat)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2675 target_pid_to_str (lp->ptid),
2676 errno ? safe_strerror (errno) : "OK");
2677
2678 return stop_wait_callback (lp, NULL);
2679 }
2680
2681 maybe_clear_ignore_sigint (lp);
2682
2683 if (WSTOPSIG (status) != SIGSTOP)
2684 {
2685 if (linux_nat_status_is_event (status))
2686 {
2687 /* If a LWP other than the LWP that we're reporting an
2688 event for has hit a GDB breakpoint (as opposed to
2689 some random trap signal), then just arrange for it to
2690 hit it again later. We don't keep the SIGTRAP status
2691 and don't forward the SIGTRAP signal to the LWP. We
2692 will handle the current event, eventually we will
2693 resume all LWPs, and this one will get its breakpoint
2694 trap again.
2695
2696 If we do not do this, then we run the risk that the
2697 user will delete or disable the breakpoint, but the
2698 thread will have already tripped on it. */
2699
2700 /* Save the trap's siginfo in case we need it later. */
2701 save_siginfo (lp);
2702
2703 save_sigtrap (lp);
2704
2705 /* Now resume this LWP and get the SIGSTOP event. */
2706 errno = 0;
2707 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2708 if (debug_linux_nat)
2709 {
2710 fprintf_unfiltered (gdb_stdlog,
2711 "PTRACE_CONT %s, 0, 0 (%s)\n",
2712 target_pid_to_str (lp->ptid),
2713 errno ? safe_strerror (errno) : "OK");
2714
2715 fprintf_unfiltered (gdb_stdlog,
2716 "SWC: Candidate SIGTRAP event in %s\n",
2717 target_pid_to_str (lp->ptid));
2718 }
2719 /* Hold this event/waitstatus while we check to see if
2720 there are any more (we still want to get that SIGSTOP). */
2721 stop_wait_callback (lp, NULL);
2722
2723 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2724 there's another event, throw it back into the
2725 queue. */
2726 if (lp->status)
2727 {
2728 if (debug_linux_nat)
2729 fprintf_unfiltered (gdb_stdlog,
2730 "SWC: kill %s, %s\n",
2731 target_pid_to_str (lp->ptid),
2732 status_to_str ((int) status));
2733 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2734 }
2735
2736 /* Save the sigtrap event. */
2737 lp->status = status;
2738 return 0;
2739 }
2740 else
2741 {
2742 /* The thread was stopped with a signal other than
2743 SIGSTOP, and didn't accidentally trip a breakpoint. */
2744
2745 if (debug_linux_nat)
2746 {
2747 fprintf_unfiltered (gdb_stdlog,
2748 "SWC: Pending event %s in %s\n",
2749 status_to_str ((int) status),
2750 target_pid_to_str (lp->ptid));
2751 }
2752 /* Now resume this LWP and get the SIGSTOP event. */
2753 errno = 0;
2754 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2755 if (debug_linux_nat)
2756 fprintf_unfiltered (gdb_stdlog,
2757 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2758 target_pid_to_str (lp->ptid),
2759 errno ? safe_strerror (errno) : "OK");
2760
2761 /* Hold this event/waitstatus while we check to see if
2762 there are any more (we still want to get that SIGSTOP). */
2763 stop_wait_callback (lp, NULL);
2764
2765 /* If the lp->status field is still empty, use it to
2766 hold this event. If not, then this event must be
2767 returned to the event queue of the LWP. */
2768 if (lp->status)
2769 {
2770 if (debug_linux_nat)
2771 {
2772 fprintf_unfiltered (gdb_stdlog,
2773 "SWC: kill %s, %s\n",
2774 target_pid_to_str (lp->ptid),
2775 status_to_str ((int) status));
2776 }
2777 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2778 }
2779 else
2780 lp->status = status;
2781 return 0;
2782 }
2783 }
2784 else
2785 {
2786 /* We caught the SIGSTOP that we intended to catch, so
2787 there's no SIGSTOP pending. */
2788 lp->stopped = 1;
2789 lp->signalled = 0;
2790 }
2791 }
2792
2793 return 0;
2794 }
2795
2796 /* Return non-zero if LP has a wait status pending. */
2797
2798 static int
2799 status_callback (struct lwp_info *lp, void *data)
2800 {
2801 /* Only report a pending wait status if we pretend that this has
2802 indeed been resumed. */
2803 if (!lp->resumed)
2804 return 0;
2805
2806 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2807 {
2808 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2809 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2810 0', so a clean process exit can not be stored pending in
2811 lp->status, it is indistinguishable from
2812 no-pending-status. */
2813 return 1;
2814 }
2815
2816 if (lp->status != 0)
2817 return 1;
2818
2819 return 0;
2820 }
2821
2822 /* Return non-zero if LP isn't stopped. */
2823
2824 static int
2825 running_callback (struct lwp_info *lp, void *data)
2826 {
2827 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2828 }
2829
2830 /* Count the LWP's that have had events. */
2831
2832 static int
2833 count_events_callback (struct lwp_info *lp, void *data)
2834 {
2835 int *count = data;
2836
2837 gdb_assert (count != NULL);
2838
2839 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2840 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2841 (*count)++;
2842
2843 return 0;
2844 }
2845
2846 /* Select the LWP (if any) that is currently being single-stepped. */
2847
2848 static int
2849 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2850 {
2851 if (lp->step && lp->status != 0)
2852 return 1;
2853 else
2854 return 0;
2855 }
2856
2857 /* Select the Nth LWP that has had a SIGTRAP event. */
2858
2859 static int
2860 select_event_lwp_callback (struct lwp_info *lp, void *data)
2861 {
2862 int *selector = data;
2863
2864 gdb_assert (selector != NULL);
2865
2866 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2867 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2868 if ((*selector)-- == 0)
2869 return 1;
2870
2871 return 0;
2872 }
2873
2874 static int
2875 cancel_breakpoint (struct lwp_info *lp)
2876 {
2877 /* Arrange for a breakpoint to be hit again later. We don't keep
2878 the SIGTRAP status and don't forward the SIGTRAP signal to the
2879 LWP. We will handle the current event, eventually we will resume
2880 this LWP, and this breakpoint will trap again.
2881
2882 If we do not do this, then we run the risk that the user will
2883 delete or disable the breakpoint, but the LWP will have already
2884 tripped on it. */
2885
2886 struct regcache *regcache = get_thread_regcache (lp->ptid);
2887 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2888 CORE_ADDR pc;
2889
2890 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2891 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2892 {
2893 if (debug_linux_nat)
2894 fprintf_unfiltered (gdb_stdlog,
2895 "CB: Push back breakpoint for %s\n",
2896 target_pid_to_str (lp->ptid));
2897
2898 /* Back up the PC if necessary. */
2899 if (gdbarch_decr_pc_after_break (gdbarch))
2900 regcache_write_pc (regcache, pc);
2901
2902 return 1;
2903 }
2904 return 0;
2905 }
2906
2907 static int
2908 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2909 {
2910 struct lwp_info *event_lp = data;
2911
2912 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2913 if (lp == event_lp)
2914 return 0;
2915
2916 /* If a LWP other than the LWP that we're reporting an event for has
2917 hit a GDB breakpoint (as opposed to some random trap signal),
2918 then just arrange for it to hit it again later. We don't keep
2919 the SIGTRAP status and don't forward the SIGTRAP signal to the
2920 LWP. We will handle the current event, eventually we will resume
2921 all LWPs, and this one will get its breakpoint trap again.
2922
2923 If we do not do this, then we run the risk that the user will
2924 delete or disable the breakpoint, but the LWP will have already
2925 tripped on it. */
2926
2927 if (linux_nat_lp_status_is_event (lp)
2928 && cancel_breakpoint (lp))
2929 /* Throw away the SIGTRAP. */
2930 lp->status = 0;
2931
2932 return 0;
2933 }
2934
2935 /* Select one LWP out of those that have events pending. */
2936
2937 static void
2938 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2939 {
2940 int num_events = 0;
2941 int random_selector;
2942 struct lwp_info *event_lp;
2943
2944 /* Record the wait status for the original LWP. */
2945 (*orig_lp)->status = *status;
2946
2947 /* Give preference to any LWP that is being single-stepped. */
2948 event_lp = iterate_over_lwps (filter,
2949 select_singlestep_lwp_callback, NULL);
2950 if (event_lp != NULL)
2951 {
2952 if (debug_linux_nat)
2953 fprintf_unfiltered (gdb_stdlog,
2954 "SEL: Select single-step %s\n",
2955 target_pid_to_str (event_lp->ptid));
2956 }
2957 else
2958 {
2959 /* No single-stepping LWP. Select one at random, out of those
2960 which have had SIGTRAP events. */
2961
2962 /* First see how many SIGTRAP events we have. */
2963 iterate_over_lwps (filter, count_events_callback, &num_events);
2964
2965 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2966 random_selector = (int)
2967 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2968
2969 if (debug_linux_nat && num_events > 1)
2970 fprintf_unfiltered (gdb_stdlog,
2971 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2972 num_events, random_selector);
2973
2974 event_lp = iterate_over_lwps (filter,
2975 select_event_lwp_callback,
2976 &random_selector);
2977 }
2978
2979 if (event_lp != NULL)
2980 {
2981 /* Switch the event LWP. */
2982 *orig_lp = event_lp;
2983 *status = event_lp->status;
2984 }
2985
2986 /* Flush the wait status for the event LWP. */
2987 (*orig_lp)->status = 0;
2988 }
2989
2990 /* Return non-zero if LP has been resumed. */
2991
2992 static int
2993 resumed_callback (struct lwp_info *lp, void *data)
2994 {
2995 return lp->resumed;
2996 }
2997
2998 /* Stop an active thread, verify it still exists, then resume it. */
2999
3000 static int
3001 stop_and_resume_callback (struct lwp_info *lp, void *data)
3002 {
3003 struct lwp_info *ptr;
3004
3005 if (!lp->stopped && !lp->signalled)
3006 {
3007 stop_callback (lp, NULL);
3008 stop_wait_callback (lp, NULL);
3009 /* Resume if the lwp still exists. */
3010 for (ptr = lwp_list; ptr; ptr = ptr->next)
3011 if (lp == ptr)
3012 {
3013 resume_callback (lp, NULL);
3014 resume_set_callback (lp, NULL);
3015 }
3016 }
3017 return 0;
3018 }
3019
3020 /* Check if we should go on and pass this event to common code.
3021 Return the affected lwp if we are, or NULL otherwise. */
3022 static struct lwp_info *
3023 linux_nat_filter_event (int lwpid, int status, int options)
3024 {
3025 struct lwp_info *lp;
3026
3027 lp = find_lwp_pid (pid_to_ptid (lwpid));
3028
3029 /* Check for stop events reported by a process we didn't already
3030 know about - anything not already in our LWP list.
3031
3032 If we're expecting to receive stopped processes after
3033 fork, vfork, and clone events, then we'll just add the
3034 new one to our list and go back to waiting for the event
3035 to be reported - the stopped process might be returned
3036 from waitpid before or after the event is. */
3037 if (WIFSTOPPED (status) && !lp)
3038 {
3039 linux_record_stopped_pid (lwpid, status);
3040 return NULL;
3041 }
3042
3043 /* Make sure we don't report an event for the exit of an LWP not in
3044 our list, i.e. not part of the current process. This can happen
3045 if we detach from a program we original forked and then it
3046 exits. */
3047 if (!WIFSTOPPED (status) && !lp)
3048 return NULL;
3049
3050 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3051 CLONE_PTRACE processes which do not use the thread library -
3052 otherwise we wouldn't find the new LWP this way. That doesn't
3053 currently work, and the following code is currently unreachable
3054 due to the two blocks above. If it's fixed some day, this code
3055 should be broken out into a function so that we can also pick up
3056 LWPs from the new interface. */
3057 if (!lp)
3058 {
3059 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3060 if (options & __WCLONE)
3061 lp->cloned = 1;
3062
3063 gdb_assert (WIFSTOPPED (status)
3064 && WSTOPSIG (status) == SIGSTOP);
3065 lp->signalled = 1;
3066
3067 if (!in_thread_list (inferior_ptid))
3068 {
3069 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3070 GET_PID (inferior_ptid));
3071 add_thread (inferior_ptid);
3072 }
3073
3074 add_thread (lp->ptid);
3075 }
3076
3077 /* Handle GNU/Linux's syscall SIGTRAPs. */
3078 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3079 {
3080 /* No longer need the sysgood bit. The ptrace event ends up
3081 recorded in lp->waitstatus if we care for it. We can carry
3082 on handling the event like a regular SIGTRAP from here
3083 on. */
3084 status = W_STOPCODE (SIGTRAP);
3085 if (linux_handle_syscall_trap (lp, 0))
3086 return NULL;
3087 }
3088
3089 /* Handle GNU/Linux's extended waitstatus for trace events. */
3090 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3091 {
3092 if (debug_linux_nat)
3093 fprintf_unfiltered (gdb_stdlog,
3094 "LLW: Handling extended status 0x%06x\n",
3095 status);
3096 if (linux_handle_extended_wait (lp, status, 0))
3097 return NULL;
3098 }
3099
3100 if (linux_nat_status_is_event (status))
3101 {
3102 /* Save the trap's siginfo in case we need it later. */
3103 save_siginfo (lp);
3104
3105 save_sigtrap (lp);
3106 }
3107
3108 /* Check if the thread has exited. */
3109 if ((WIFEXITED (status) || WIFSIGNALED (status))
3110 && num_lwps (GET_PID (lp->ptid)) > 1)
3111 {
3112 /* If this is the main thread, we must stop all threads and verify
3113 if they are still alive. This is because in the nptl thread model
3114 on Linux 2.4, there is no signal issued for exiting LWPs
3115 other than the main thread. We only get the main thread exit
3116 signal once all child threads have already exited. If we
3117 stop all the threads and use the stop_wait_callback to check
3118 if they have exited we can determine whether this signal
3119 should be ignored or whether it means the end of the debugged
3120 application, regardless of which threading model is being
3121 used. */
3122 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3123 {
3124 lp->stopped = 1;
3125 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3126 stop_and_resume_callback, NULL);
3127 }
3128
3129 if (debug_linux_nat)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "LLW: %s exited.\n",
3132 target_pid_to_str (lp->ptid));
3133
3134 if (num_lwps (GET_PID (lp->ptid)) > 1)
3135 {
3136 /* If there is at least one more LWP, then the exit signal
3137 was not the end of the debugged application and should be
3138 ignored. */
3139 exit_lwp (lp);
3140 return NULL;
3141 }
3142 }
3143
3144 /* Check if the current LWP has previously exited. In the nptl
3145 thread model, LWPs other than the main thread do not issue
3146 signals when they exit so we must check whenever the thread has
3147 stopped. A similar check is made in stop_wait_callback(). */
3148 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3149 {
3150 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3151
3152 if (debug_linux_nat)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "LLW: %s exited.\n",
3155 target_pid_to_str (lp->ptid));
3156
3157 exit_lwp (lp);
3158
3159 /* Make sure there is at least one thread running. */
3160 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3161
3162 /* Discard the event. */
3163 return NULL;
3164 }
3165
3166 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3167 an attempt to stop an LWP. */
3168 if (lp->signalled
3169 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3170 {
3171 if (debug_linux_nat)
3172 fprintf_unfiltered (gdb_stdlog,
3173 "LLW: Delayed SIGSTOP caught for %s.\n",
3174 target_pid_to_str (lp->ptid));
3175
3176 /* This is a delayed SIGSTOP. */
3177 lp->signalled = 0;
3178
3179 registers_changed ();
3180
3181 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3182 lp->step, TARGET_SIGNAL_0);
3183 if (debug_linux_nat)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3186 lp->step ?
3187 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3188 target_pid_to_str (lp->ptid));
3189
3190 lp->stopped = 0;
3191 gdb_assert (lp->resumed);
3192
3193 /* Discard the event. */
3194 return NULL;
3195 }
3196
3197 /* Make sure we don't report a SIGINT that we have already displayed
3198 for another thread. */
3199 if (lp->ignore_sigint
3200 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3201 {
3202 if (debug_linux_nat)
3203 fprintf_unfiltered (gdb_stdlog,
3204 "LLW: Delayed SIGINT caught for %s.\n",
3205 target_pid_to_str (lp->ptid));
3206
3207 /* This is a delayed SIGINT. */
3208 lp->ignore_sigint = 0;
3209
3210 registers_changed ();
3211 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3212 lp->step, TARGET_SIGNAL_0);
3213 if (debug_linux_nat)
3214 fprintf_unfiltered (gdb_stdlog,
3215 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3216 lp->step ?
3217 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3218 target_pid_to_str (lp->ptid));
3219
3220 lp->stopped = 0;
3221 gdb_assert (lp->resumed);
3222
3223 /* Discard the event. */
3224 return NULL;
3225 }
3226
3227 /* An interesting event. */
3228 gdb_assert (lp);
3229 lp->status = status;
3230 return lp;
3231 }
3232
3233 static ptid_t
3234 linux_nat_wait_1 (struct target_ops *ops,
3235 ptid_t ptid, struct target_waitstatus *ourstatus,
3236 int target_options)
3237 {
3238 static sigset_t prev_mask;
3239 struct lwp_info *lp = NULL;
3240 int options = 0;
3241 int status = 0;
3242 pid_t pid;
3243
3244 if (debug_linux_nat_async)
3245 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3246
3247 /* The first time we get here after starting a new inferior, we may
3248 not have added it to the LWP list yet - this is the earliest
3249 moment at which we know its PID. */
3250 if (ptid_is_pid (inferior_ptid))
3251 {
3252 /* Upgrade the main thread's ptid. */
3253 thread_change_ptid (inferior_ptid,
3254 BUILD_LWP (GET_PID (inferior_ptid),
3255 GET_PID (inferior_ptid)));
3256
3257 lp = add_lwp (inferior_ptid);
3258 lp->resumed = 1;
3259 }
3260
3261 /* Make sure SIGCHLD is blocked. */
3262 block_child_signals (&prev_mask);
3263
3264 if (ptid_equal (ptid, minus_one_ptid))
3265 pid = -1;
3266 else if (ptid_is_pid (ptid))
3267 /* A request to wait for a specific tgid. This is not possible
3268 with waitpid, so instead, we wait for any child, and leave
3269 children we're not interested in right now with a pending
3270 status to report later. */
3271 pid = -1;
3272 else
3273 pid = GET_LWP (ptid);
3274
3275 retry:
3276 lp = NULL;
3277 status = 0;
3278
3279 /* Make sure that of those LWPs we want to get an event from, there
3280 is at least one LWP that has been resumed. If there's none, just
3281 bail out. The core may just be flushing asynchronously all
3282 events. */
3283 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3284 {
3285 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3286
3287 if (debug_linux_nat_async)
3288 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3289
3290 restore_child_signals_mask (&prev_mask);
3291 return minus_one_ptid;
3292 }
3293
3294 /* First check if there is a LWP with a wait status pending. */
3295 if (pid == -1)
3296 {
3297 /* Any LWP that's been resumed will do. */
3298 lp = iterate_over_lwps (ptid, status_callback, NULL);
3299 if (lp)
3300 {
3301 if (debug_linux_nat && lp->status)
3302 fprintf_unfiltered (gdb_stdlog,
3303 "LLW: Using pending wait status %s for %s.\n",
3304 status_to_str (lp->status),
3305 target_pid_to_str (lp->ptid));
3306 }
3307
3308 /* But if we don't find one, we'll have to wait, and check both
3309 cloned and uncloned processes. We start with the cloned
3310 processes. */
3311 options = __WCLONE | WNOHANG;
3312 }
3313 else if (is_lwp (ptid))
3314 {
3315 if (debug_linux_nat)
3316 fprintf_unfiltered (gdb_stdlog,
3317 "LLW: Waiting for specific LWP %s.\n",
3318 target_pid_to_str (ptid));
3319
3320 /* We have a specific LWP to check. */
3321 lp = find_lwp_pid (ptid);
3322 gdb_assert (lp);
3323
3324 if (debug_linux_nat && lp->status)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "LLW: Using pending wait status %s for %s.\n",
3327 status_to_str (lp->status),
3328 target_pid_to_str (lp->ptid));
3329
3330 /* If we have to wait, take into account whether PID is a cloned
3331 process or not. And we have to convert it to something that
3332 the layer beneath us can understand. */
3333 options = lp->cloned ? __WCLONE : 0;
3334 pid = GET_LWP (ptid);
3335
3336 /* We check for lp->waitstatus in addition to lp->status,
3337 because we can have pending process exits recorded in
3338 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3339 an additional lp->status_p flag. */
3340 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3341 lp = NULL;
3342 }
3343
3344 if (lp && lp->signalled)
3345 {
3346 /* A pending SIGSTOP may interfere with the normal stream of
3347 events. In a typical case where interference is a problem,
3348 we have a SIGSTOP signal pending for LWP A while
3349 single-stepping it, encounter an event in LWP B, and take the
3350 pending SIGSTOP while trying to stop LWP A. After processing
3351 the event in LWP B, LWP A is continued, and we'll never see
3352 the SIGTRAP associated with the last time we were
3353 single-stepping LWP A. */
3354
3355 /* Resume the thread. It should halt immediately returning the
3356 pending SIGSTOP. */
3357 registers_changed ();
3358 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3359 lp->step, TARGET_SIGNAL_0);
3360 if (debug_linux_nat)
3361 fprintf_unfiltered (gdb_stdlog,
3362 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3363 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3364 target_pid_to_str (lp->ptid));
3365 lp->stopped = 0;
3366 gdb_assert (lp->resumed);
3367
3368 /* Catch the pending SIGSTOP. */
3369 status = lp->status;
3370 lp->status = 0;
3371
3372 stop_wait_callback (lp, NULL);
3373
3374 /* If the lp->status field isn't empty, we caught another signal
3375 while flushing the SIGSTOP. Return it back to the event
3376 queue of the LWP, as we already have an event to handle. */
3377 if (lp->status)
3378 {
3379 if (debug_linux_nat)
3380 fprintf_unfiltered (gdb_stdlog,
3381 "LLW: kill %s, %s\n",
3382 target_pid_to_str (lp->ptid),
3383 status_to_str (lp->status));
3384 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3385 }
3386
3387 lp->status = status;
3388 }
3389
3390 if (!target_can_async_p ())
3391 {
3392 /* Causes SIGINT to be passed on to the attached process. */
3393 set_sigint_trap ();
3394 }
3395
3396 /* Translate generic target_wait options into waitpid options. */
3397 if (target_options & TARGET_WNOHANG)
3398 options |= WNOHANG;
3399
3400 while (lp == NULL)
3401 {
3402 pid_t lwpid;
3403
3404 lwpid = my_waitpid (pid, &status, options);
3405
3406 if (lwpid > 0)
3407 {
3408 gdb_assert (pid == -1 || lwpid == pid);
3409
3410 if (debug_linux_nat)
3411 {
3412 fprintf_unfiltered (gdb_stdlog,
3413 "LLW: waitpid %ld received %s\n",
3414 (long) lwpid, status_to_str (status));
3415 }
3416
3417 lp = linux_nat_filter_event (lwpid, status, options);
3418
3419 /* STATUS is now no longer valid, use LP->STATUS instead. */
3420 status = 0;
3421
3422 if (lp
3423 && ptid_is_pid (ptid)
3424 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3425 {
3426 gdb_assert (lp->resumed);
3427
3428 if (debug_linux_nat)
3429 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3430 ptid_get_lwp (lp->ptid), lp->status);
3431
3432 if (WIFSTOPPED (lp->status))
3433 {
3434 if (WSTOPSIG (lp->status) != SIGSTOP)
3435 {
3436 /* Cancel breakpoint hits. The breakpoint may
3437 be removed before we fetch events from this
3438 process to report to the core. It is best
3439 not to assume the moribund breakpoints
3440 heuristic always handles these cases --- it
3441 could be too many events go through to the
3442 core before this one is handled. All-stop
3443 always cancels breakpoint hits in all
3444 threads. */
3445 if (non_stop
3446 && linux_nat_lp_status_is_event (lp)
3447 && cancel_breakpoint (lp))
3448 {
3449 /* Throw away the SIGTRAP. */
3450 lp->status = 0;
3451
3452 if (debug_linux_nat)
3453 fprintf (stderr,
3454 "LLW: LWP %ld hit a breakpoint while waiting "
3455 "for another process; cancelled it\n",
3456 ptid_get_lwp (lp->ptid));
3457 }
3458 lp->stopped = 1;
3459 }
3460 else
3461 {
3462 lp->stopped = 1;
3463 lp->signalled = 0;
3464 }
3465 }
3466 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3467 {
3468 if (debug_linux_nat)
3469 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3470 ptid_get_lwp (lp->ptid));
3471
3472 /* This was the last lwp in the process. Since
3473 events are serialized to GDB core, and we can't
3474 report this one right now, but GDB core and the
3475 other target layers will want to be notified
3476 about the exit code/signal, leave the status
3477 pending for the next time we're able to report
3478 it. */
3479
3480 /* Prevent trying to stop this thread again. We'll
3481 never try to resume it because it has a pending
3482 status. */
3483 lp->stopped = 1;
3484
3485 /* Dead LWP's aren't expected to reported a pending
3486 sigstop. */
3487 lp->signalled = 0;
3488
3489 /* Store the pending event in the waitstatus as
3490 well, because W_EXITCODE(0,0) == 0. */
3491 store_waitstatus (&lp->waitstatus, lp->status);
3492 }
3493
3494 /* Keep looking. */
3495 lp = NULL;
3496 continue;
3497 }
3498
3499 if (lp)
3500 break;
3501 else
3502 {
3503 if (pid == -1)
3504 {
3505 /* waitpid did return something. Restart over. */
3506 options |= __WCLONE;
3507 }
3508 continue;
3509 }
3510 }
3511
3512 if (pid == -1)
3513 {
3514 /* Alternate between checking cloned and uncloned processes. */
3515 options ^= __WCLONE;
3516
3517 /* And every time we have checked both:
3518 In async mode, return to event loop;
3519 In sync mode, suspend waiting for a SIGCHLD signal. */
3520 if (options & __WCLONE)
3521 {
3522 if (target_options & TARGET_WNOHANG)
3523 {
3524 /* No interesting event. */
3525 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3526
3527 if (debug_linux_nat_async)
3528 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3529
3530 restore_child_signals_mask (&prev_mask);
3531 return minus_one_ptid;
3532 }
3533
3534 sigsuspend (&suspend_mask);
3535 }
3536 }
3537 else if (target_options & TARGET_WNOHANG)
3538 {
3539 /* No interesting event for PID yet. */
3540 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3541
3542 if (debug_linux_nat_async)
3543 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3544
3545 restore_child_signals_mask (&prev_mask);
3546 return minus_one_ptid;
3547 }
3548
3549 /* We shouldn't end up here unless we want to try again. */
3550 gdb_assert (lp == NULL);
3551 }
3552
3553 if (!target_can_async_p ())
3554 clear_sigint_trap ();
3555
3556 gdb_assert (lp);
3557
3558 status = lp->status;
3559 lp->status = 0;
3560
3561 /* Don't report signals that GDB isn't interested in, such as
3562 signals that are neither printed nor stopped upon. Stopping all
3563 threads can be a bit time-consuming so if we want decent
3564 performance with heavily multi-threaded programs, especially when
3565 they're using a high frequency timer, we'd better avoid it if we
3566 can. */
3567
3568 if (WIFSTOPPED (status))
3569 {
3570 int signo = target_signal_from_host (WSTOPSIG (status));
3571 struct inferior *inf;
3572
3573 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3574 gdb_assert (inf);
3575
3576 /* Defer to common code if we get a signal while
3577 single-stepping, since that may need special care, e.g. to
3578 skip the signal handler, or, if we're gaining control of the
3579 inferior. */
3580 if (!lp->step
3581 && inf->stop_soon == NO_STOP_QUIETLY
3582 && signal_stop_state (signo) == 0
3583 && signal_print_state (signo) == 0
3584 && signal_pass_state (signo) == 1)
3585 {
3586 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3587 here? It is not clear we should. GDB may not expect
3588 other threads to run. On the other hand, not resuming
3589 newly attached threads may cause an unwanted delay in
3590 getting them running. */
3591 registers_changed ();
3592 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3593 lp->step, signo);
3594 if (debug_linux_nat)
3595 fprintf_unfiltered (gdb_stdlog,
3596 "LLW: %s %s, %s (preempt 'handle')\n",
3597 lp->step ?
3598 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3599 target_pid_to_str (lp->ptid),
3600 signo ? strsignal (signo) : "0");
3601 lp->stopped = 0;
3602 goto retry;
3603 }
3604
3605 if (!non_stop)
3606 {
3607 /* Only do the below in all-stop, as we currently use SIGINT
3608 to implement target_stop (see linux_nat_stop) in
3609 non-stop. */
3610 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3611 {
3612 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3613 forwarded to the entire process group, that is, all LWPs
3614 will receive it - unless they're using CLONE_THREAD to
3615 share signals. Since we only want to report it once, we
3616 mark it as ignored for all LWPs except this one. */
3617 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3618 set_ignore_sigint, NULL);
3619 lp->ignore_sigint = 0;
3620 }
3621 else
3622 maybe_clear_ignore_sigint (lp);
3623 }
3624 }
3625
3626 /* This LWP is stopped now. */
3627 lp->stopped = 1;
3628
3629 if (debug_linux_nat)
3630 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3631 status_to_str (status), target_pid_to_str (lp->ptid));
3632
3633 if (!non_stop)
3634 {
3635 /* Now stop all other LWP's ... */
3636 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3637
3638 /* ... and wait until all of them have reported back that
3639 they're no longer running. */
3640 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3641
3642 /* If we're not waiting for a specific LWP, choose an event LWP
3643 from among those that have had events. Giving equal priority
3644 to all LWPs that have had events helps prevent
3645 starvation. */
3646 if (pid == -1)
3647 select_event_lwp (ptid, &lp, &status);
3648
3649 /* Now that we've selected our final event LWP, cancel any
3650 breakpoints in other LWPs that have hit a GDB breakpoint.
3651 See the comment in cancel_breakpoints_callback to find out
3652 why. */
3653 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3654
3655 /* In all-stop, from the core's perspective, all LWPs are now
3656 stopped until a new resume action is sent over. */
3657 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3658 }
3659 else
3660 lp->resumed = 0;
3661
3662 if (linux_nat_status_is_event (status))
3663 {
3664 if (debug_linux_nat)
3665 fprintf_unfiltered (gdb_stdlog,
3666 "LLW: trap ptid is %s.\n",
3667 target_pid_to_str (lp->ptid));
3668 }
3669
3670 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3671 {
3672 *ourstatus = lp->waitstatus;
3673 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3674 }
3675 else
3676 store_waitstatus (ourstatus, status);
3677
3678 if (debug_linux_nat_async)
3679 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3680
3681 restore_child_signals_mask (&prev_mask);
3682
3683 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3684 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3685 lp->core = -1;
3686 else
3687 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3688
3689 return lp->ptid;
3690 }
3691
3692 /* Resume LWPs that are currently stopped without any pending status
3693 to report, but are resumed from the core's perspective. */
3694
3695 static int
3696 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3697 {
3698 ptid_t *wait_ptid_p = data;
3699
3700 if (lp->stopped
3701 && lp->resumed
3702 && lp->status == 0
3703 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3704 {
3705 gdb_assert (is_executing (lp->ptid));
3706
3707 /* Don't bother if there's a breakpoint at PC that we'd hit
3708 immediately, and we're not waiting for this LWP. */
3709 if (!ptid_match (lp->ptid, *wait_ptid_p))
3710 {
3711 struct regcache *regcache = get_thread_regcache (lp->ptid);
3712 CORE_ADDR pc = regcache_read_pc (regcache);
3713
3714 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3715 return 0;
3716 }
3717
3718 if (debug_linux_nat)
3719 fprintf_unfiltered (gdb_stdlog,
3720 "RSRL: resuming stopped-resumed LWP %s\n",
3721 target_pid_to_str (lp->ptid));
3722
3723 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3724 lp->step, TARGET_SIGNAL_0);
3725 lp->stopped = 0;
3726 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3727 lp->stopped_by_watchpoint = 0;
3728 }
3729
3730 return 0;
3731 }
3732
3733 static ptid_t
3734 linux_nat_wait (struct target_ops *ops,
3735 ptid_t ptid, struct target_waitstatus *ourstatus,
3736 int target_options)
3737 {
3738 ptid_t event_ptid;
3739
3740 if (debug_linux_nat)
3741 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3742
3743 /* Flush the async file first. */
3744 if (target_can_async_p ())
3745 async_file_flush ();
3746
3747 /* Resume LWPs that are currently stopped without any pending status
3748 to report, but are resumed from the core's perspective. LWPs get
3749 in this state if we find them stopping at a time we're not
3750 interested in reporting the event (target_wait on a
3751 specific_process, for example, see linux_nat_wait_1), and
3752 meanwhile the event became uninteresting. Don't bother resuming
3753 LWPs we're not going to wait for if they'd stop immediately. */
3754 if (non_stop)
3755 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3756
3757 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3758
3759 /* If we requested any event, and something came out, assume there
3760 may be more. If we requested a specific lwp or process, also
3761 assume there may be more. */
3762 if (target_can_async_p ()
3763 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3764 || !ptid_equal (ptid, minus_one_ptid)))
3765 async_file_mark ();
3766
3767 /* Get ready for the next event. */
3768 if (target_can_async_p ())
3769 target_async (inferior_event_handler, 0);
3770
3771 return event_ptid;
3772 }
3773
3774 static int
3775 kill_callback (struct lwp_info *lp, void *data)
3776 {
3777 errno = 0;
3778 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3779 if (debug_linux_nat)
3780 fprintf_unfiltered (gdb_stdlog,
3781 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3782 target_pid_to_str (lp->ptid),
3783 errno ? safe_strerror (errno) : "OK");
3784
3785 return 0;
3786 }
3787
3788 static int
3789 kill_wait_callback (struct lwp_info *lp, void *data)
3790 {
3791 pid_t pid;
3792
3793 /* We must make sure that there are no pending events (delayed
3794 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3795 program doesn't interfere with any following debugging session. */
3796
3797 /* For cloned processes we must check both with __WCLONE and
3798 without, since the exit status of a cloned process isn't reported
3799 with __WCLONE. */
3800 if (lp->cloned)
3801 {
3802 do
3803 {
3804 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3805 if (pid != (pid_t) -1)
3806 {
3807 if (debug_linux_nat)
3808 fprintf_unfiltered (gdb_stdlog,
3809 "KWC: wait %s received unknown.\n",
3810 target_pid_to_str (lp->ptid));
3811 /* The Linux kernel sometimes fails to kill a thread
3812 completely after PTRACE_KILL; that goes from the stop
3813 point in do_fork out to the one in
3814 get_signal_to_deliever and waits again. So kill it
3815 again. */
3816 kill_callback (lp, NULL);
3817 }
3818 }
3819 while (pid == GET_LWP (lp->ptid));
3820
3821 gdb_assert (pid == -1 && errno == ECHILD);
3822 }
3823
3824 do
3825 {
3826 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3827 if (pid != (pid_t) -1)
3828 {
3829 if (debug_linux_nat)
3830 fprintf_unfiltered (gdb_stdlog,
3831 "KWC: wait %s received unk.\n",
3832 target_pid_to_str (lp->ptid));
3833 /* See the call to kill_callback above. */
3834 kill_callback (lp, NULL);
3835 }
3836 }
3837 while (pid == GET_LWP (lp->ptid));
3838
3839 gdb_assert (pid == -1 && errno == ECHILD);
3840 return 0;
3841 }
3842
3843 static void
3844 linux_nat_kill (struct target_ops *ops)
3845 {
3846 struct target_waitstatus last;
3847 ptid_t last_ptid;
3848 int status;
3849
3850 /* If we're stopped while forking and we haven't followed yet,
3851 kill the other task. We need to do this first because the
3852 parent will be sleeping if this is a vfork. */
3853
3854 get_last_target_status (&last_ptid, &last);
3855
3856 if (last.kind == TARGET_WAITKIND_FORKED
3857 || last.kind == TARGET_WAITKIND_VFORKED)
3858 {
3859 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3860 wait (&status);
3861 }
3862
3863 if (forks_exist_p ())
3864 linux_fork_killall ();
3865 else
3866 {
3867 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3868
3869 /* Stop all threads before killing them, since ptrace requires
3870 that the thread is stopped to sucessfully PTRACE_KILL. */
3871 iterate_over_lwps (ptid, stop_callback, NULL);
3872 /* ... and wait until all of them have reported back that
3873 they're no longer running. */
3874 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3875
3876 /* Kill all LWP's ... */
3877 iterate_over_lwps (ptid, kill_callback, NULL);
3878
3879 /* ... and wait until we've flushed all events. */
3880 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3881 }
3882
3883 target_mourn_inferior ();
3884 }
3885
3886 static void
3887 linux_nat_mourn_inferior (struct target_ops *ops)
3888 {
3889 purge_lwp_list (ptid_get_pid (inferior_ptid));
3890
3891 if (! forks_exist_p ())
3892 /* Normal case, no other forks available. */
3893 linux_ops->to_mourn_inferior (ops);
3894 else
3895 /* Multi-fork case. The current inferior_ptid has exited, but
3896 there are other viable forks to debug. Delete the exiting
3897 one and context-switch to the first available. */
3898 linux_fork_mourn_inferior ();
3899 }
3900
3901 /* Convert a native/host siginfo object, into/from the siginfo in the
3902 layout of the inferiors' architecture. */
3903
3904 static void
3905 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3906 {
3907 int done = 0;
3908
3909 if (linux_nat_siginfo_fixup != NULL)
3910 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3911
3912 /* If there was no callback, or the callback didn't do anything,
3913 then just do a straight memcpy. */
3914 if (!done)
3915 {
3916 if (direction == 1)
3917 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3918 else
3919 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3920 }
3921 }
3922
3923 static LONGEST
3924 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3925 const char *annex, gdb_byte *readbuf,
3926 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3927 {
3928 int pid;
3929 struct siginfo siginfo;
3930 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3931
3932 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3933 gdb_assert (readbuf || writebuf);
3934
3935 pid = GET_LWP (inferior_ptid);
3936 if (pid == 0)
3937 pid = GET_PID (inferior_ptid);
3938
3939 if (offset > sizeof (siginfo))
3940 return -1;
3941
3942 errno = 0;
3943 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3944 if (errno != 0)
3945 return -1;
3946
3947 /* When GDB is built as a 64-bit application, ptrace writes into
3948 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3949 inferior with a 64-bit GDB should look the same as debugging it
3950 with a 32-bit GDB, we need to convert it. GDB core always sees
3951 the converted layout, so any read/write will have to be done
3952 post-conversion. */
3953 siginfo_fixup (&siginfo, inf_siginfo, 0);
3954
3955 if (offset + len > sizeof (siginfo))
3956 len = sizeof (siginfo) - offset;
3957
3958 if (readbuf != NULL)
3959 memcpy (readbuf, inf_siginfo + offset, len);
3960 else
3961 {
3962 memcpy (inf_siginfo + offset, writebuf, len);
3963
3964 /* Convert back to ptrace layout before flushing it out. */
3965 siginfo_fixup (&siginfo, inf_siginfo, 1);
3966
3967 errno = 0;
3968 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3969 if (errno != 0)
3970 return -1;
3971 }
3972
3973 return len;
3974 }
3975
3976 static LONGEST
3977 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3978 const char *annex, gdb_byte *readbuf,
3979 const gdb_byte *writebuf,
3980 ULONGEST offset, LONGEST len)
3981 {
3982 struct cleanup *old_chain;
3983 LONGEST xfer;
3984
3985 if (object == TARGET_OBJECT_SIGNAL_INFO)
3986 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3987 offset, len);
3988
3989 /* The target is connected but no live inferior is selected. Pass
3990 this request down to a lower stratum (e.g., the executable
3991 file). */
3992 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3993 return 0;
3994
3995 old_chain = save_inferior_ptid ();
3996
3997 if (is_lwp (inferior_ptid))
3998 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3999
4000 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4001 offset, len);
4002
4003 do_cleanups (old_chain);
4004 return xfer;
4005 }
4006
4007 static int
4008 linux_thread_alive (ptid_t ptid)
4009 {
4010 int err;
4011
4012 gdb_assert (is_lwp (ptid));
4013
4014 /* Send signal 0 instead of anything ptrace, because ptracing a
4015 running thread errors out claiming that the thread doesn't
4016 exist. */
4017 err = kill_lwp (GET_LWP (ptid), 0);
4018
4019 if (debug_linux_nat)
4020 fprintf_unfiltered (gdb_stdlog,
4021 "LLTA: KILL(SIG0) %s (%s)\n",
4022 target_pid_to_str (ptid),
4023 err ? safe_strerror (err) : "OK");
4024
4025 if (err != 0)
4026 return 0;
4027
4028 return 1;
4029 }
4030
4031 static int
4032 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4033 {
4034 return linux_thread_alive (ptid);
4035 }
4036
4037 static char *
4038 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4039 {
4040 static char buf[64];
4041
4042 if (is_lwp (ptid)
4043 && (GET_PID (ptid) != GET_LWP (ptid)
4044 || num_lwps (GET_PID (ptid)) > 1))
4045 {
4046 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4047 return buf;
4048 }
4049
4050 return normal_pid_to_str (ptid);
4051 }
4052
4053 /* Accepts an integer PID; Returns a string representing a file that
4054 can be opened to get the symbols for the child process. */
4055
4056 static char *
4057 linux_child_pid_to_exec_file (int pid)
4058 {
4059 char *name1, *name2;
4060
4061 name1 = xmalloc (MAXPATHLEN);
4062 name2 = xmalloc (MAXPATHLEN);
4063 make_cleanup (xfree, name1);
4064 make_cleanup (xfree, name2);
4065 memset (name2, 0, MAXPATHLEN);
4066
4067 sprintf (name1, "/proc/%d/exe", pid);
4068 if (readlink (name1, name2, MAXPATHLEN) > 0)
4069 return name2;
4070 else
4071 return name1;
4072 }
4073
4074 /* Service function for corefiles and info proc. */
4075
4076 static int
4077 read_mapping (FILE *mapfile,
4078 long long *addr,
4079 long long *endaddr,
4080 char *permissions,
4081 long long *offset,
4082 char *device, long long *inode, char *filename)
4083 {
4084 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4085 addr, endaddr, permissions, offset, device, inode);
4086
4087 filename[0] = '\0';
4088 if (ret > 0 && ret != EOF)
4089 {
4090 /* Eat everything up to EOL for the filename. This will prevent
4091 weird filenames (such as one with embedded whitespace) from
4092 confusing this code. It also makes this code more robust in
4093 respect to annotations the kernel may add after the filename.
4094
4095 Note the filename is used for informational purposes
4096 only. */
4097 ret += fscanf (mapfile, "%[^\n]\n", filename);
4098 }
4099
4100 return (ret != 0 && ret != EOF);
4101 }
4102
4103 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4104 regions in the inferior for a corefile. */
4105
4106 static int
4107 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4108 {
4109 int pid = PIDGET (inferior_ptid);
4110 char mapsfilename[MAXPATHLEN];
4111 FILE *mapsfile;
4112 long long addr, endaddr, size, offset, inode;
4113 char permissions[8], device[8], filename[MAXPATHLEN];
4114 int read, write, exec;
4115 struct cleanup *cleanup;
4116
4117 /* Compose the filename for the /proc memory map, and open it. */
4118 sprintf (mapsfilename, "/proc/%d/maps", pid);
4119 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4120 error (_("Could not open %s."), mapsfilename);
4121 cleanup = make_cleanup_fclose (mapsfile);
4122
4123 if (info_verbose)
4124 fprintf_filtered (gdb_stdout,
4125 "Reading memory regions from %s\n", mapsfilename);
4126
4127 /* Now iterate until end-of-file. */
4128 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4129 &offset, &device[0], &inode, &filename[0]))
4130 {
4131 size = endaddr - addr;
4132
4133 /* Get the segment's permissions. */
4134 read = (strchr (permissions, 'r') != 0);
4135 write = (strchr (permissions, 'w') != 0);
4136 exec = (strchr (permissions, 'x') != 0);
4137
4138 if (info_verbose)
4139 {
4140 fprintf_filtered (gdb_stdout,
4141 "Save segment, %s bytes at %s (%c%c%c)",
4142 plongest (size), paddress (target_gdbarch, addr),
4143 read ? 'r' : ' ',
4144 write ? 'w' : ' ', exec ? 'x' : ' ');
4145 if (filename[0])
4146 fprintf_filtered (gdb_stdout, " for %s", filename);
4147 fprintf_filtered (gdb_stdout, "\n");
4148 }
4149
4150 /* Invoke the callback function to create the corefile
4151 segment. */
4152 func (addr, size, read, write, exec, obfd);
4153 }
4154 do_cleanups (cleanup);
4155 return 0;
4156 }
4157
4158 static int
4159 find_signalled_thread (struct thread_info *info, void *data)
4160 {
4161 if (info->stop_signal != TARGET_SIGNAL_0
4162 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4163 return 1;
4164
4165 return 0;
4166 }
4167
4168 static enum target_signal
4169 find_stop_signal (void)
4170 {
4171 struct thread_info *info =
4172 iterate_over_threads (find_signalled_thread, NULL);
4173
4174 if (info)
4175 return info->stop_signal;
4176 else
4177 return TARGET_SIGNAL_0;
4178 }
4179
4180 /* Records the thread's register state for the corefile note
4181 section. */
4182
4183 static char *
4184 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4185 char *note_data, int *note_size,
4186 enum target_signal stop_signal)
4187 {
4188 unsigned long lwp = ptid_get_lwp (ptid);
4189 struct gdbarch *gdbarch = target_gdbarch;
4190 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4191 const struct regset *regset;
4192 int core_regset_p;
4193 struct cleanup *old_chain;
4194 struct core_regset_section *sect_list;
4195 char *gdb_regset;
4196
4197 old_chain = save_inferior_ptid ();
4198 inferior_ptid = ptid;
4199 target_fetch_registers (regcache, -1);
4200 do_cleanups (old_chain);
4201
4202 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4203 sect_list = gdbarch_core_regset_sections (gdbarch);
4204
4205 /* The loop below uses the new struct core_regset_section, which stores
4206 the supported section names and sizes for the core file. Note that
4207 note PRSTATUS needs to be treated specially. But the other notes are
4208 structurally the same, so they can benefit from the new struct. */
4209 if (core_regset_p && sect_list != NULL)
4210 while (sect_list->sect_name != NULL)
4211 {
4212 regset = gdbarch_regset_from_core_section (gdbarch,
4213 sect_list->sect_name,
4214 sect_list->size);
4215 gdb_assert (regset && regset->collect_regset);
4216 gdb_regset = xmalloc (sect_list->size);
4217 regset->collect_regset (regset, regcache, -1,
4218 gdb_regset, sect_list->size);
4219
4220 if (strcmp (sect_list->sect_name, ".reg") == 0)
4221 note_data = (char *) elfcore_write_prstatus
4222 (obfd, note_data, note_size,
4223 lwp, target_signal_to_host (stop_signal),
4224 gdb_regset);
4225 else
4226 note_data = (char *) elfcore_write_register_note
4227 (obfd, note_data, note_size,
4228 sect_list->sect_name, gdb_regset,
4229 sect_list->size);
4230 xfree (gdb_regset);
4231 sect_list++;
4232 }
4233
4234 /* For architectures that does not have the struct core_regset_section
4235 implemented, we use the old method. When all the architectures have
4236 the new support, the code below should be deleted. */
4237 else
4238 {
4239 gdb_gregset_t gregs;
4240 gdb_fpregset_t fpregs;
4241
4242 if (core_regset_p
4243 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4244 sizeof (gregs))) != NULL
4245 && regset->collect_regset != NULL)
4246 regset->collect_regset (regset, regcache, -1,
4247 &gregs, sizeof (gregs));
4248 else
4249 fill_gregset (regcache, &gregs, -1);
4250
4251 note_data = (char *) elfcore_write_prstatus
4252 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4253 &gregs);
4254
4255 if (core_regset_p
4256 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4257 sizeof (fpregs))) != NULL
4258 && regset->collect_regset != NULL)
4259 regset->collect_regset (regset, regcache, -1,
4260 &fpregs, sizeof (fpregs));
4261 else
4262 fill_fpregset (regcache, &fpregs, -1);
4263
4264 note_data = (char *) elfcore_write_prfpreg (obfd,
4265 note_data,
4266 note_size,
4267 &fpregs, sizeof (fpregs));
4268 }
4269
4270 return note_data;
4271 }
4272
4273 struct linux_nat_corefile_thread_data
4274 {
4275 bfd *obfd;
4276 char *note_data;
4277 int *note_size;
4278 int num_notes;
4279 enum target_signal stop_signal;
4280 };
4281
4282 /* Called by gdbthread.c once per thread. Records the thread's
4283 register state for the corefile note section. */
4284
4285 static int
4286 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4287 {
4288 struct linux_nat_corefile_thread_data *args = data;
4289
4290 args->note_data = linux_nat_do_thread_registers (args->obfd,
4291 ti->ptid,
4292 args->note_data,
4293 args->note_size,
4294 args->stop_signal);
4295 args->num_notes++;
4296
4297 return 0;
4298 }
4299
4300 /* Enumerate spufs IDs for process PID. */
4301
4302 static void
4303 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4304 {
4305 char path[128];
4306 DIR *dir;
4307 struct dirent *entry;
4308
4309 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4310 dir = opendir (path);
4311 if (!dir)
4312 return;
4313
4314 rewinddir (dir);
4315 while ((entry = readdir (dir)) != NULL)
4316 {
4317 struct stat st;
4318 struct statfs stfs;
4319 int fd;
4320
4321 fd = atoi (entry->d_name);
4322 if (!fd)
4323 continue;
4324
4325 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4326 if (stat (path, &st) != 0)
4327 continue;
4328 if (!S_ISDIR (st.st_mode))
4329 continue;
4330
4331 if (statfs (path, &stfs) != 0)
4332 continue;
4333 if (stfs.f_type != SPUFS_MAGIC)
4334 continue;
4335
4336 callback (data, fd);
4337 }
4338
4339 closedir (dir);
4340 }
4341
4342 /* Generate corefile notes for SPU contexts. */
4343
4344 struct linux_spu_corefile_data
4345 {
4346 bfd *obfd;
4347 char *note_data;
4348 int *note_size;
4349 };
4350
4351 static void
4352 linux_spu_corefile_callback (void *data, int fd)
4353 {
4354 struct linux_spu_corefile_data *args = data;
4355 int i;
4356
4357 static const char *spu_files[] =
4358 {
4359 "object-id",
4360 "mem",
4361 "regs",
4362 "fpcr",
4363 "lslr",
4364 "decr",
4365 "decr_status",
4366 "signal1",
4367 "signal1_type",
4368 "signal2",
4369 "signal2_type",
4370 "event_mask",
4371 "event_status",
4372 "mbox_info",
4373 "ibox_info",
4374 "wbox_info",
4375 "dma_info",
4376 "proxydma_info",
4377 };
4378
4379 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4380 {
4381 char annex[32], note_name[32];
4382 gdb_byte *spu_data;
4383 LONGEST spu_len;
4384
4385 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4386 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4387 annex, &spu_data);
4388 if (spu_len > 0)
4389 {
4390 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4391 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4392 args->note_size, note_name,
4393 NT_SPU, spu_data, spu_len);
4394 xfree (spu_data);
4395 }
4396 }
4397 }
4398
4399 static char *
4400 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4401 {
4402 struct linux_spu_corefile_data args;
4403
4404 args.obfd = obfd;
4405 args.note_data = note_data;
4406 args.note_size = note_size;
4407
4408 iterate_over_spus (PIDGET (inferior_ptid),
4409 linux_spu_corefile_callback, &args);
4410
4411 return args.note_data;
4412 }
4413
4414 /* Fills the "to_make_corefile_note" target vector. Builds the note
4415 section for a corefile, and returns it in a malloc buffer. */
4416
4417 static char *
4418 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4419 {
4420 struct linux_nat_corefile_thread_data thread_args;
4421 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4422 char fname[16] = { '\0' };
4423 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4424 char psargs[80] = { '\0' };
4425 char *note_data = NULL;
4426 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4427 gdb_byte *auxv;
4428 int auxv_len;
4429
4430 if (get_exec_file (0))
4431 {
4432 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4433 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4434 if (get_inferior_args ())
4435 {
4436 char *string_end;
4437 char *psargs_end = psargs + sizeof (psargs);
4438
4439 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4440 strings fine. */
4441 string_end = memchr (psargs, 0, sizeof (psargs));
4442 if (string_end != NULL)
4443 {
4444 *string_end++ = ' ';
4445 strncpy (string_end, get_inferior_args (),
4446 psargs_end - string_end);
4447 }
4448 }
4449 note_data = (char *) elfcore_write_prpsinfo (obfd,
4450 note_data,
4451 note_size, fname, psargs);
4452 }
4453
4454 /* Dump information for threads. */
4455 thread_args.obfd = obfd;
4456 thread_args.note_data = note_data;
4457 thread_args.note_size = note_size;
4458 thread_args.num_notes = 0;
4459 thread_args.stop_signal = find_stop_signal ();
4460 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4461 gdb_assert (thread_args.num_notes != 0);
4462 note_data = thread_args.note_data;
4463
4464 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4465 NULL, &auxv);
4466 if (auxv_len > 0)
4467 {
4468 note_data = elfcore_write_note (obfd, note_data, note_size,
4469 "CORE", NT_AUXV, auxv, auxv_len);
4470 xfree (auxv);
4471 }
4472
4473 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4474
4475 make_cleanup (xfree, note_data);
4476 return note_data;
4477 }
4478
4479 /* Implement the "info proc" command. */
4480
4481 static void
4482 linux_nat_info_proc_cmd (char *args, int from_tty)
4483 {
4484 /* A long is used for pid instead of an int to avoid a loss of precision
4485 compiler warning from the output of strtoul. */
4486 long pid = PIDGET (inferior_ptid);
4487 FILE *procfile;
4488 char **argv = NULL;
4489 char buffer[MAXPATHLEN];
4490 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4491 int cmdline_f = 1;
4492 int cwd_f = 1;
4493 int exe_f = 1;
4494 int mappings_f = 0;
4495 int status_f = 0;
4496 int stat_f = 0;
4497 int all = 0;
4498 struct stat dummy;
4499
4500 if (args)
4501 {
4502 /* Break up 'args' into an argv array. */
4503 argv = gdb_buildargv (args);
4504 make_cleanup_freeargv (argv);
4505 }
4506 while (argv != NULL && *argv != NULL)
4507 {
4508 if (isdigit (argv[0][0]))
4509 {
4510 pid = strtoul (argv[0], NULL, 10);
4511 }
4512 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4513 {
4514 mappings_f = 1;
4515 }
4516 else if (strcmp (argv[0], "status") == 0)
4517 {
4518 status_f = 1;
4519 }
4520 else if (strcmp (argv[0], "stat") == 0)
4521 {
4522 stat_f = 1;
4523 }
4524 else if (strcmp (argv[0], "cmd") == 0)
4525 {
4526 cmdline_f = 1;
4527 }
4528 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4529 {
4530 exe_f = 1;
4531 }
4532 else if (strcmp (argv[0], "cwd") == 0)
4533 {
4534 cwd_f = 1;
4535 }
4536 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4537 {
4538 all = 1;
4539 }
4540 else
4541 {
4542 /* [...] (future options here) */
4543 }
4544 argv++;
4545 }
4546 if (pid == 0)
4547 error (_("No current process: you must name one."));
4548
4549 sprintf (fname1, "/proc/%ld", pid);
4550 if (stat (fname1, &dummy) != 0)
4551 error (_("No /proc directory: '%s'"), fname1);
4552
4553 printf_filtered (_("process %ld\n"), pid);
4554 if (cmdline_f || all)
4555 {
4556 sprintf (fname1, "/proc/%ld/cmdline", pid);
4557 if ((procfile = fopen (fname1, "r")) != NULL)
4558 {
4559 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4560
4561 if (fgets (buffer, sizeof (buffer), procfile))
4562 printf_filtered ("cmdline = '%s'\n", buffer);
4563 else
4564 warning (_("unable to read '%s'"), fname1);
4565 do_cleanups (cleanup);
4566 }
4567 else
4568 warning (_("unable to open /proc file '%s'"), fname1);
4569 }
4570 if (cwd_f || all)
4571 {
4572 sprintf (fname1, "/proc/%ld/cwd", pid);
4573 memset (fname2, 0, sizeof (fname2));
4574 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4575 printf_filtered ("cwd = '%s'\n", fname2);
4576 else
4577 warning (_("unable to read link '%s'"), fname1);
4578 }
4579 if (exe_f || all)
4580 {
4581 sprintf (fname1, "/proc/%ld/exe", pid);
4582 memset (fname2, 0, sizeof (fname2));
4583 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4584 printf_filtered ("exe = '%s'\n", fname2);
4585 else
4586 warning (_("unable to read link '%s'"), fname1);
4587 }
4588 if (mappings_f || all)
4589 {
4590 sprintf (fname1, "/proc/%ld/maps", pid);
4591 if ((procfile = fopen (fname1, "r")) != NULL)
4592 {
4593 long long addr, endaddr, size, offset, inode;
4594 char permissions[8], device[8], filename[MAXPATHLEN];
4595 struct cleanup *cleanup;
4596
4597 cleanup = make_cleanup_fclose (procfile);
4598 printf_filtered (_("Mapped address spaces:\n\n"));
4599 if (gdbarch_addr_bit (target_gdbarch) == 32)
4600 {
4601 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4602 "Start Addr",
4603 " End Addr",
4604 " Size", " Offset", "objfile");
4605 }
4606 else
4607 {
4608 printf_filtered (" %18s %18s %10s %10s %7s\n",
4609 "Start Addr",
4610 " End Addr",
4611 " Size", " Offset", "objfile");
4612 }
4613
4614 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4615 &offset, &device[0], &inode, &filename[0]))
4616 {
4617 size = endaddr - addr;
4618
4619 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4620 calls here (and possibly above) should be abstracted
4621 out into their own functions? Andrew suggests using
4622 a generic local_address_string instead to print out
4623 the addresses; that makes sense to me, too. */
4624
4625 if (gdbarch_addr_bit (target_gdbarch) == 32)
4626 {
4627 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4628 (unsigned long) addr, /* FIXME: pr_addr */
4629 (unsigned long) endaddr,
4630 (int) size,
4631 (unsigned int) offset,
4632 filename[0] ? filename : "");
4633 }
4634 else
4635 {
4636 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4637 (unsigned long) addr, /* FIXME: pr_addr */
4638 (unsigned long) endaddr,
4639 (int) size,
4640 (unsigned int) offset,
4641 filename[0] ? filename : "");
4642 }
4643 }
4644
4645 do_cleanups (cleanup);
4646 }
4647 else
4648 warning (_("unable to open /proc file '%s'"), fname1);
4649 }
4650 if (status_f || all)
4651 {
4652 sprintf (fname1, "/proc/%ld/status", pid);
4653 if ((procfile = fopen (fname1, "r")) != NULL)
4654 {
4655 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4656
4657 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4658 puts_filtered (buffer);
4659 do_cleanups (cleanup);
4660 }
4661 else
4662 warning (_("unable to open /proc file '%s'"), fname1);
4663 }
4664 if (stat_f || all)
4665 {
4666 sprintf (fname1, "/proc/%ld/stat", pid);
4667 if ((procfile = fopen (fname1, "r")) != NULL)
4668 {
4669 int itmp;
4670 char ctmp;
4671 long ltmp;
4672 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4673
4674 if (fscanf (procfile, "%d ", &itmp) > 0)
4675 printf_filtered (_("Process: %d\n"), itmp);
4676 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4677 printf_filtered (_("Exec file: %s\n"), buffer);
4678 if (fscanf (procfile, "%c ", &ctmp) > 0)
4679 printf_filtered (_("State: %c\n"), ctmp);
4680 if (fscanf (procfile, "%d ", &itmp) > 0)
4681 printf_filtered (_("Parent process: %d\n"), itmp);
4682 if (fscanf (procfile, "%d ", &itmp) > 0)
4683 printf_filtered (_("Process group: %d\n"), itmp);
4684 if (fscanf (procfile, "%d ", &itmp) > 0)
4685 printf_filtered (_("Session id: %d\n"), itmp);
4686 if (fscanf (procfile, "%d ", &itmp) > 0)
4687 printf_filtered (_("TTY: %d\n"), itmp);
4688 if (fscanf (procfile, "%d ", &itmp) > 0)
4689 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4690 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4691 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4692 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4693 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4694 (unsigned long) ltmp);
4695 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4696 printf_filtered (_("Minor faults, children: %lu\n"),
4697 (unsigned long) ltmp);
4698 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4699 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4700 (unsigned long) ltmp);
4701 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4702 printf_filtered (_("Major faults, children: %lu\n"),
4703 (unsigned long) ltmp);
4704 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4705 printf_filtered (_("utime: %ld\n"), ltmp);
4706 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4707 printf_filtered (_("stime: %ld\n"), ltmp);
4708 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4709 printf_filtered (_("utime, children: %ld\n"), ltmp);
4710 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4711 printf_filtered (_("stime, children: %ld\n"), ltmp);
4712 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4713 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4714 ltmp);
4715 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4716 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4717 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4718 printf_filtered (_("jiffies until next timeout: %lu\n"),
4719 (unsigned long) ltmp);
4720 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4721 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4722 (unsigned long) ltmp);
4723 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4724 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4725 ltmp);
4726 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4727 printf_filtered (_("Virtual memory size: %lu\n"),
4728 (unsigned long) ltmp);
4729 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4730 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4731 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4732 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4733 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4734 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4735 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4736 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4737 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4738 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4739 #if 0 /* Don't know how architecture-dependent the rest is...
4740 Anyway the signal bitmap info is available from "status". */
4741 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4742 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4743 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4744 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4745 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4746 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4747 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4748 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4749 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4750 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4751 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4752 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4753 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4754 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4755 #endif
4756 do_cleanups (cleanup);
4757 }
4758 else
4759 warning (_("unable to open /proc file '%s'"), fname1);
4760 }
4761 }
4762
4763 /* Implement the to_xfer_partial interface for memory reads using the /proc
4764 filesystem. Because we can use a single read() call for /proc, this
4765 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4766 but it doesn't support writes. */
4767
4768 static LONGEST
4769 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4770 const char *annex, gdb_byte *readbuf,
4771 const gdb_byte *writebuf,
4772 ULONGEST offset, LONGEST len)
4773 {
4774 LONGEST ret;
4775 int fd;
4776 char filename[64];
4777
4778 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4779 return 0;
4780
4781 /* Don't bother for one word. */
4782 if (len < 3 * sizeof (long))
4783 return 0;
4784
4785 /* We could keep this file open and cache it - possibly one per
4786 thread. That requires some juggling, but is even faster. */
4787 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4788 fd = open (filename, O_RDONLY | O_LARGEFILE);
4789 if (fd == -1)
4790 return 0;
4791
4792 /* If pread64 is available, use it. It's faster if the kernel
4793 supports it (only one syscall), and it's 64-bit safe even on
4794 32-bit platforms (for instance, SPARC debugging a SPARC64
4795 application). */
4796 #ifdef HAVE_PREAD64
4797 if (pread64 (fd, readbuf, len, offset) != len)
4798 #else
4799 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4800 #endif
4801 ret = 0;
4802 else
4803 ret = len;
4804
4805 close (fd);
4806 return ret;
4807 }
4808
4809
4810 /* Enumerate spufs IDs for process PID. */
4811 static LONGEST
4812 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4813 {
4814 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4815 LONGEST pos = 0;
4816 LONGEST written = 0;
4817 char path[128];
4818 DIR *dir;
4819 struct dirent *entry;
4820
4821 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4822 dir = opendir (path);
4823 if (!dir)
4824 return -1;
4825
4826 rewinddir (dir);
4827 while ((entry = readdir (dir)) != NULL)
4828 {
4829 struct stat st;
4830 struct statfs stfs;
4831 int fd;
4832
4833 fd = atoi (entry->d_name);
4834 if (!fd)
4835 continue;
4836
4837 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4838 if (stat (path, &st) != 0)
4839 continue;
4840 if (!S_ISDIR (st.st_mode))
4841 continue;
4842
4843 if (statfs (path, &stfs) != 0)
4844 continue;
4845 if (stfs.f_type != SPUFS_MAGIC)
4846 continue;
4847
4848 if (pos >= offset && pos + 4 <= offset + len)
4849 {
4850 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4851 written += 4;
4852 }
4853 pos += 4;
4854 }
4855
4856 closedir (dir);
4857 return written;
4858 }
4859
4860 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4861 object type, using the /proc file system. */
4862 static LONGEST
4863 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4864 const char *annex, gdb_byte *readbuf,
4865 const gdb_byte *writebuf,
4866 ULONGEST offset, LONGEST len)
4867 {
4868 char buf[128];
4869 int fd = 0;
4870 int ret = -1;
4871 int pid = PIDGET (inferior_ptid);
4872
4873 if (!annex)
4874 {
4875 if (!readbuf)
4876 return -1;
4877 else
4878 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4879 }
4880
4881 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4882 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4883 if (fd <= 0)
4884 return -1;
4885
4886 if (offset != 0
4887 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4888 {
4889 close (fd);
4890 return 0;
4891 }
4892
4893 if (writebuf)
4894 ret = write (fd, writebuf, (size_t) len);
4895 else if (readbuf)
4896 ret = read (fd, readbuf, (size_t) len);
4897
4898 close (fd);
4899 return ret;
4900 }
4901
4902
4903 /* Parse LINE as a signal set and add its set bits to SIGS. */
4904
4905 static void
4906 add_line_to_sigset (const char *line, sigset_t *sigs)
4907 {
4908 int len = strlen (line) - 1;
4909 const char *p;
4910 int signum;
4911
4912 if (line[len] != '\n')
4913 error (_("Could not parse signal set: %s"), line);
4914
4915 p = line;
4916 signum = len * 4;
4917 while (len-- > 0)
4918 {
4919 int digit;
4920
4921 if (*p >= '0' && *p <= '9')
4922 digit = *p - '0';
4923 else if (*p >= 'a' && *p <= 'f')
4924 digit = *p - 'a' + 10;
4925 else
4926 error (_("Could not parse signal set: %s"), line);
4927
4928 signum -= 4;
4929
4930 if (digit & 1)
4931 sigaddset (sigs, signum + 1);
4932 if (digit & 2)
4933 sigaddset (sigs, signum + 2);
4934 if (digit & 4)
4935 sigaddset (sigs, signum + 3);
4936 if (digit & 8)
4937 sigaddset (sigs, signum + 4);
4938
4939 p++;
4940 }
4941 }
4942
4943 /* Find process PID's pending signals from /proc/pid/status and set
4944 SIGS to match. */
4945
4946 void
4947 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4948 {
4949 FILE *procfile;
4950 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4951 struct cleanup *cleanup;
4952
4953 sigemptyset (pending);
4954 sigemptyset (blocked);
4955 sigemptyset (ignored);
4956 sprintf (fname, "/proc/%d/status", pid);
4957 procfile = fopen (fname, "r");
4958 if (procfile == NULL)
4959 error (_("Could not open %s"), fname);
4960 cleanup = make_cleanup_fclose (procfile);
4961
4962 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4963 {
4964 /* Normal queued signals are on the SigPnd line in the status
4965 file. However, 2.6 kernels also have a "shared" pending
4966 queue for delivering signals to a thread group, so check for
4967 a ShdPnd line also.
4968
4969 Unfortunately some Red Hat kernels include the shared pending
4970 queue but not the ShdPnd status field. */
4971
4972 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4973 add_line_to_sigset (buffer + 8, pending);
4974 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4975 add_line_to_sigset (buffer + 8, pending);
4976 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4977 add_line_to_sigset (buffer + 8, blocked);
4978 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4979 add_line_to_sigset (buffer + 8, ignored);
4980 }
4981
4982 do_cleanups (cleanup);
4983 }
4984
4985 static LONGEST
4986 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4987 const char *annex, gdb_byte *readbuf,
4988 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4989 {
4990 /* We make the process list snapshot when the object starts to be
4991 read. */
4992 static const char *buf;
4993 static LONGEST len_avail = -1;
4994 static struct obstack obstack;
4995
4996 DIR *dirp;
4997
4998 gdb_assert (object == TARGET_OBJECT_OSDATA);
4999
5000 if (!annex)
5001 {
5002 if (offset == 0)
5003 {
5004 if (len_avail != -1 && len_avail != 0)
5005 obstack_free (&obstack, NULL);
5006 len_avail = 0;
5007 buf = NULL;
5008 obstack_init (&obstack);
5009 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
5010
5011 obstack_xml_printf (
5012 &obstack,
5013 "<item>"
5014 "<column name=\"Type\">processes</column>"
5015 "<column name=\"Description\">Listing of all processes</column>"
5016 "</item>");
5017
5018 obstack_grow_str0 (&obstack, "</osdata>\n");
5019 buf = obstack_finish (&obstack);
5020 len_avail = strlen (buf);
5021 }
5022
5023 if (offset >= len_avail)
5024 {
5025 /* Done. Get rid of the obstack. */
5026 obstack_free (&obstack, NULL);
5027 buf = NULL;
5028 len_avail = 0;
5029 return 0;
5030 }
5031
5032 if (len > len_avail - offset)
5033 len = len_avail - offset;
5034 memcpy (readbuf, buf + offset, len);
5035
5036 return len;
5037 }
5038
5039 if (strcmp (annex, "processes") != 0)
5040 return 0;
5041
5042 gdb_assert (readbuf && !writebuf);
5043
5044 if (offset == 0)
5045 {
5046 if (len_avail != -1 && len_avail != 0)
5047 obstack_free (&obstack, NULL);
5048 len_avail = 0;
5049 buf = NULL;
5050 obstack_init (&obstack);
5051 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5052
5053 dirp = opendir ("/proc");
5054 if (dirp)
5055 {
5056 struct dirent *dp;
5057
5058 while ((dp = readdir (dirp)) != NULL)
5059 {
5060 struct stat statbuf;
5061 char procentry[sizeof ("/proc/4294967295")];
5062
5063 if (!isdigit (dp->d_name[0])
5064 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5065 continue;
5066
5067 sprintf (procentry, "/proc/%s", dp->d_name);
5068 if (stat (procentry, &statbuf) == 0
5069 && S_ISDIR (statbuf.st_mode))
5070 {
5071 char *pathname;
5072 FILE *f;
5073 char cmd[MAXPATHLEN + 1];
5074 struct passwd *entry;
5075
5076 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5077 entry = getpwuid (statbuf.st_uid);
5078
5079 if ((f = fopen (pathname, "r")) != NULL)
5080 {
5081 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5082
5083 if (len > 0)
5084 {
5085 int i;
5086
5087 for (i = 0; i < len; i++)
5088 if (cmd[i] == '\0')
5089 cmd[i] = ' ';
5090 cmd[len] = '\0';
5091
5092 obstack_xml_printf (
5093 &obstack,
5094 "<item>"
5095 "<column name=\"pid\">%s</column>"
5096 "<column name=\"user\">%s</column>"
5097 "<column name=\"command\">%s</column>"
5098 "</item>",
5099 dp->d_name,
5100 entry ? entry->pw_name : "?",
5101 cmd);
5102 }
5103 fclose (f);
5104 }
5105
5106 xfree (pathname);
5107 }
5108 }
5109
5110 closedir (dirp);
5111 }
5112
5113 obstack_grow_str0 (&obstack, "</osdata>\n");
5114 buf = obstack_finish (&obstack);
5115 len_avail = strlen (buf);
5116 }
5117
5118 if (offset >= len_avail)
5119 {
5120 /* Done. Get rid of the obstack. */
5121 obstack_free (&obstack, NULL);
5122 buf = NULL;
5123 len_avail = 0;
5124 return 0;
5125 }
5126
5127 if (len > len_avail - offset)
5128 len = len_avail - offset;
5129 memcpy (readbuf, buf + offset, len);
5130
5131 return len;
5132 }
5133
5134 static LONGEST
5135 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5136 const char *annex, gdb_byte *readbuf,
5137 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5138 {
5139 LONGEST xfer;
5140
5141 if (object == TARGET_OBJECT_AUXV)
5142 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5143 offset, len);
5144
5145 if (object == TARGET_OBJECT_OSDATA)
5146 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5147 offset, len);
5148
5149 if (object == TARGET_OBJECT_SPU)
5150 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5151 offset, len);
5152
5153 /* GDB calculates all the addresses in possibly larget width of the address.
5154 Address width needs to be masked before its final use - either by
5155 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5156
5157 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5158
5159 if (object == TARGET_OBJECT_MEMORY)
5160 {
5161 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5162
5163 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5164 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5165 }
5166
5167 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5168 offset, len);
5169 if (xfer != 0)
5170 return xfer;
5171
5172 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5173 offset, len);
5174 }
5175
5176 /* Create a prototype generic GNU/Linux target. The client can override
5177 it with local methods. */
5178
5179 static void
5180 linux_target_install_ops (struct target_ops *t)
5181 {
5182 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5183 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5184 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5185 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5186 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5187 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5188 t->to_post_attach = linux_child_post_attach;
5189 t->to_follow_fork = linux_child_follow_fork;
5190 t->to_find_memory_regions = linux_nat_find_memory_regions;
5191 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5192
5193 super_xfer_partial = t->to_xfer_partial;
5194 t->to_xfer_partial = linux_xfer_partial;
5195 }
5196
5197 struct target_ops *
5198 linux_target (void)
5199 {
5200 struct target_ops *t;
5201
5202 t = inf_ptrace_target ();
5203 linux_target_install_ops (t);
5204
5205 return t;
5206 }
5207
5208 struct target_ops *
5209 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5210 {
5211 struct target_ops *t;
5212
5213 t = inf_ptrace_trad_target (register_u_offset);
5214 linux_target_install_ops (t);
5215
5216 return t;
5217 }
5218
5219 /* target_is_async_p implementation. */
5220
5221 static int
5222 linux_nat_is_async_p (void)
5223 {
5224 /* NOTE: palves 2008-03-21: We're only async when the user requests
5225 it explicitly with the "set target-async" command.
5226 Someday, linux will always be async. */
5227 if (!target_async_permitted)
5228 return 0;
5229
5230 /* See target.h/target_async_mask. */
5231 return linux_nat_async_mask_value;
5232 }
5233
5234 /* target_can_async_p implementation. */
5235
5236 static int
5237 linux_nat_can_async_p (void)
5238 {
5239 /* NOTE: palves 2008-03-21: We're only async when the user requests
5240 it explicitly with the "set target-async" command.
5241 Someday, linux will always be async. */
5242 if (!target_async_permitted)
5243 return 0;
5244
5245 /* See target.h/target_async_mask. */
5246 return linux_nat_async_mask_value;
5247 }
5248
5249 static int
5250 linux_nat_supports_non_stop (void)
5251 {
5252 return 1;
5253 }
5254
5255 /* True if we want to support multi-process. To be removed when GDB
5256 supports multi-exec. */
5257
5258 int linux_multi_process = 1;
5259
5260 static int
5261 linux_nat_supports_multi_process (void)
5262 {
5263 return linux_multi_process;
5264 }
5265
5266 /* target_async_mask implementation. */
5267
5268 static int
5269 linux_nat_async_mask (int new_mask)
5270 {
5271 int curr_mask = linux_nat_async_mask_value;
5272
5273 if (curr_mask != new_mask)
5274 {
5275 if (new_mask == 0)
5276 {
5277 linux_nat_async (NULL, 0);
5278 linux_nat_async_mask_value = new_mask;
5279 }
5280 else
5281 {
5282 linux_nat_async_mask_value = new_mask;
5283
5284 /* If we're going out of async-mask in all-stop, then the
5285 inferior is stopped. The next resume will call
5286 target_async. In non-stop, the target event source
5287 should be always registered in the event loop. Do so
5288 now. */
5289 if (non_stop)
5290 linux_nat_async (inferior_event_handler, 0);
5291 }
5292 }
5293
5294 return curr_mask;
5295 }
5296
5297 static int async_terminal_is_ours = 1;
5298
5299 /* target_terminal_inferior implementation. */
5300
5301 static void
5302 linux_nat_terminal_inferior (void)
5303 {
5304 if (!target_is_async_p ())
5305 {
5306 /* Async mode is disabled. */
5307 terminal_inferior ();
5308 return;
5309 }
5310
5311 terminal_inferior ();
5312
5313 /* Calls to target_terminal_*() are meant to be idempotent. */
5314 if (!async_terminal_is_ours)
5315 return;
5316
5317 delete_file_handler (input_fd);
5318 async_terminal_is_ours = 0;
5319 set_sigint_trap ();
5320 }
5321
5322 /* target_terminal_ours implementation. */
5323
5324 static void
5325 linux_nat_terminal_ours (void)
5326 {
5327 if (!target_is_async_p ())
5328 {
5329 /* Async mode is disabled. */
5330 terminal_ours ();
5331 return;
5332 }
5333
5334 /* GDB should never give the terminal to the inferior if the
5335 inferior is running in the background (run&, continue&, etc.),
5336 but claiming it sure should. */
5337 terminal_ours ();
5338
5339 if (async_terminal_is_ours)
5340 return;
5341
5342 clear_sigint_trap ();
5343 add_file_handler (input_fd, stdin_event_handler, 0);
5344 async_terminal_is_ours = 1;
5345 }
5346
5347 static void (*async_client_callback) (enum inferior_event_type event_type,
5348 void *context);
5349 static void *async_client_context;
5350
5351 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5352 so we notice when any child changes state, and notify the
5353 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5354 above to wait for the arrival of a SIGCHLD. */
5355
5356 static void
5357 sigchld_handler (int signo)
5358 {
5359 int old_errno = errno;
5360
5361 if (debug_linux_nat_async)
5362 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5363
5364 if (signo == SIGCHLD
5365 && linux_nat_event_pipe[0] != -1)
5366 async_file_mark (); /* Let the event loop know that there are
5367 events to handle. */
5368
5369 errno = old_errno;
5370 }
5371
5372 /* Callback registered with the target events file descriptor. */
5373
5374 static void
5375 handle_target_event (int error, gdb_client_data client_data)
5376 {
5377 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5378 }
5379
5380 /* Create/destroy the target events pipe. Returns previous state. */
5381
5382 static int
5383 linux_async_pipe (int enable)
5384 {
5385 int previous = (linux_nat_event_pipe[0] != -1);
5386
5387 if (previous != enable)
5388 {
5389 sigset_t prev_mask;
5390
5391 block_child_signals (&prev_mask);
5392
5393 if (enable)
5394 {
5395 if (pipe (linux_nat_event_pipe) == -1)
5396 internal_error (__FILE__, __LINE__,
5397 "creating event pipe failed.");
5398
5399 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5400 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5401 }
5402 else
5403 {
5404 close (linux_nat_event_pipe[0]);
5405 close (linux_nat_event_pipe[1]);
5406 linux_nat_event_pipe[0] = -1;
5407 linux_nat_event_pipe[1] = -1;
5408 }
5409
5410 restore_child_signals_mask (&prev_mask);
5411 }
5412
5413 return previous;
5414 }
5415
5416 /* target_async implementation. */
5417
5418 static void
5419 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5420 void *context), void *context)
5421 {
5422 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5423 internal_error (__FILE__, __LINE__,
5424 "Calling target_async when async is masked");
5425
5426 if (callback != NULL)
5427 {
5428 async_client_callback = callback;
5429 async_client_context = context;
5430 if (!linux_async_pipe (1))
5431 {
5432 add_file_handler (linux_nat_event_pipe[0],
5433 handle_target_event, NULL);
5434 /* There may be pending events to handle. Tell the event loop
5435 to poll them. */
5436 async_file_mark ();
5437 }
5438 }
5439 else
5440 {
5441 async_client_callback = callback;
5442 async_client_context = context;
5443 delete_file_handler (linux_nat_event_pipe[0]);
5444 linux_async_pipe (0);
5445 }
5446 return;
5447 }
5448
5449 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5450 event came out. */
5451
5452 static int
5453 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5454 {
5455 if (!lwp->stopped)
5456 {
5457 ptid_t ptid = lwp->ptid;
5458
5459 if (debug_linux_nat)
5460 fprintf_unfiltered (gdb_stdlog,
5461 "LNSL: running -> suspending %s\n",
5462 target_pid_to_str (lwp->ptid));
5463
5464
5465 stop_callback (lwp, NULL);
5466 stop_wait_callback (lwp, NULL);
5467
5468 /* If the lwp exits while we try to stop it, there's nothing
5469 else to do. */
5470 lwp = find_lwp_pid (ptid);
5471 if (lwp == NULL)
5472 return 0;
5473
5474 /* If we didn't collect any signal other than SIGSTOP while
5475 stopping the LWP, push a SIGNAL_0 event. In either case, the
5476 event-loop will end up calling target_wait which will collect
5477 these. */
5478 if (lwp->status == 0)
5479 lwp->status = W_STOPCODE (0);
5480 async_file_mark ();
5481 }
5482 else
5483 {
5484 /* Already known to be stopped; do nothing. */
5485
5486 if (debug_linux_nat)
5487 {
5488 if (find_thread_ptid (lwp->ptid)->stop_requested)
5489 fprintf_unfiltered (gdb_stdlog, "\
5490 LNSL: already stopped/stop_requested %s\n",
5491 target_pid_to_str (lwp->ptid));
5492 else
5493 fprintf_unfiltered (gdb_stdlog, "\
5494 LNSL: already stopped/no stop_requested yet %s\n",
5495 target_pid_to_str (lwp->ptid));
5496 }
5497 }
5498 return 0;
5499 }
5500
5501 static void
5502 linux_nat_stop (ptid_t ptid)
5503 {
5504 if (non_stop)
5505 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5506 else
5507 linux_ops->to_stop (ptid);
5508 }
5509
5510 static void
5511 linux_nat_close (int quitting)
5512 {
5513 /* Unregister from the event loop. */
5514 if (target_is_async_p ())
5515 target_async (NULL, 0);
5516
5517 /* Reset the async_masking. */
5518 linux_nat_async_mask_value = 1;
5519
5520 if (linux_ops->to_close)
5521 linux_ops->to_close (quitting);
5522 }
5523
5524 /* When requests are passed down from the linux-nat layer to the
5525 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5526 used. The address space pointer is stored in the inferior object,
5527 but the common code that is passed such ptid can't tell whether
5528 lwpid is a "main" process id or not (it assumes so). We reverse
5529 look up the "main" process id from the lwp here. */
5530
5531 struct address_space *
5532 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5533 {
5534 struct lwp_info *lwp;
5535 struct inferior *inf;
5536 int pid;
5537
5538 pid = GET_LWP (ptid);
5539 if (GET_LWP (ptid) == 0)
5540 {
5541 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5542 tgid. */
5543 lwp = find_lwp_pid (ptid);
5544 pid = GET_PID (lwp->ptid);
5545 }
5546 else
5547 {
5548 /* A (pid,lwpid,0) ptid. */
5549 pid = GET_PID (ptid);
5550 }
5551
5552 inf = find_inferior_pid (pid);
5553 gdb_assert (inf != NULL);
5554 return inf->aspace;
5555 }
5556
5557 int
5558 linux_nat_core_of_thread_1 (ptid_t ptid)
5559 {
5560 struct cleanup *back_to;
5561 char *filename;
5562 FILE *f;
5563 char *content = NULL;
5564 char *p;
5565 char *ts = 0;
5566 int content_read = 0;
5567 int i;
5568 int core;
5569
5570 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5571 GET_PID (ptid), GET_LWP (ptid));
5572 back_to = make_cleanup (xfree, filename);
5573
5574 f = fopen (filename, "r");
5575 if (!f)
5576 {
5577 do_cleanups (back_to);
5578 return -1;
5579 }
5580
5581 make_cleanup_fclose (f);
5582
5583 for (;;)
5584 {
5585 int n;
5586
5587 content = xrealloc (content, content_read + 1024);
5588 n = fread (content + content_read, 1, 1024, f);
5589 content_read += n;
5590 if (n < 1024)
5591 {
5592 content[content_read] = '\0';
5593 break;
5594 }
5595 }
5596
5597 make_cleanup (xfree, content);
5598
5599 p = strchr (content, '(');
5600
5601 /* Skip ")". */
5602 if (p != NULL)
5603 p = strchr (p, ')');
5604 if (p != NULL)
5605 p++;
5606
5607 /* If the first field after program name has index 0, then core number is
5608 the field with index 36. There's no constant for that anywhere. */
5609 if (p != NULL)
5610 p = strtok_r (p, " ", &ts);
5611 for (i = 0; p != NULL && i != 36; ++i)
5612 p = strtok_r (NULL, " ", &ts);
5613
5614 if (p == NULL || sscanf (p, "%d", &core) == 0)
5615 core = -1;
5616
5617 do_cleanups (back_to);
5618
5619 return core;
5620 }
5621
5622 /* Return the cached value of the processor core for thread PTID. */
5623
5624 int
5625 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5626 {
5627 struct lwp_info *info = find_lwp_pid (ptid);
5628
5629 if (info)
5630 return info->core;
5631 return -1;
5632 }
5633
5634 void
5635 linux_nat_add_target (struct target_ops *t)
5636 {
5637 /* Save the provided single-threaded target. We save this in a separate
5638 variable because another target we've inherited from (e.g. inf-ptrace)
5639 may have saved a pointer to T; we want to use it for the final
5640 process stratum target. */
5641 linux_ops_saved = *t;
5642 linux_ops = &linux_ops_saved;
5643
5644 /* Override some methods for multithreading. */
5645 t->to_create_inferior = linux_nat_create_inferior;
5646 t->to_attach = linux_nat_attach;
5647 t->to_detach = linux_nat_detach;
5648 t->to_resume = linux_nat_resume;
5649 t->to_wait = linux_nat_wait;
5650 t->to_xfer_partial = linux_nat_xfer_partial;
5651 t->to_kill = linux_nat_kill;
5652 t->to_mourn_inferior = linux_nat_mourn_inferior;
5653 t->to_thread_alive = linux_nat_thread_alive;
5654 t->to_pid_to_str = linux_nat_pid_to_str;
5655 t->to_has_thread_control = tc_schedlock;
5656 t->to_thread_address_space = linux_nat_thread_address_space;
5657 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5658 t->to_stopped_data_address = linux_nat_stopped_data_address;
5659
5660 t->to_can_async_p = linux_nat_can_async_p;
5661 t->to_is_async_p = linux_nat_is_async_p;
5662 t->to_supports_non_stop = linux_nat_supports_non_stop;
5663 t->to_async = linux_nat_async;
5664 t->to_async_mask = linux_nat_async_mask;
5665 t->to_terminal_inferior = linux_nat_terminal_inferior;
5666 t->to_terminal_ours = linux_nat_terminal_ours;
5667 t->to_close = linux_nat_close;
5668
5669 /* Methods for non-stop support. */
5670 t->to_stop = linux_nat_stop;
5671
5672 t->to_supports_multi_process = linux_nat_supports_multi_process;
5673
5674 t->to_core_of_thread = linux_nat_core_of_thread;
5675
5676 /* We don't change the stratum; this target will sit at
5677 process_stratum and thread_db will set at thread_stratum. This
5678 is a little strange, since this is a multi-threaded-capable
5679 target, but we want to be on the stack below thread_db, and we
5680 also want to be used for single-threaded processes. */
5681
5682 add_target (t);
5683 }
5684
5685 /* Register a method to call whenever a new thread is attached. */
5686 void
5687 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5688 {
5689 /* Save the pointer. We only support a single registered instance
5690 of the GNU/Linux native target, so we do not need to map this to
5691 T. */
5692 linux_nat_new_thread = new_thread;
5693 }
5694
5695 /* Register a method that converts a siginfo object between the layout
5696 that ptrace returns, and the layout in the architecture of the
5697 inferior. */
5698 void
5699 linux_nat_set_siginfo_fixup (struct target_ops *t,
5700 int (*siginfo_fixup) (struct siginfo *,
5701 gdb_byte *,
5702 int))
5703 {
5704 /* Save the pointer. */
5705 linux_nat_siginfo_fixup = siginfo_fixup;
5706 }
5707
5708 /* Return the saved siginfo associated with PTID. */
5709 struct siginfo *
5710 linux_nat_get_siginfo (ptid_t ptid)
5711 {
5712 struct lwp_info *lp = find_lwp_pid (ptid);
5713
5714 gdb_assert (lp != NULL);
5715
5716 return &lp->siginfo;
5717 }
5718
5719 /* Provide a prototype to silence -Wmissing-prototypes. */
5720 extern initialize_file_ftype _initialize_linux_nat;
5721
5722 void
5723 _initialize_linux_nat (void)
5724 {
5725 add_info ("proc", linux_nat_info_proc_cmd, _("\
5726 Show /proc process information about any running process.\n\
5727 Specify any process id, or use the program being debugged by default.\n\
5728 Specify any of the following keywords for detailed info:\n\
5729 mappings -- list of mapped memory regions.\n\
5730 stat -- list a bunch of random process info.\n\
5731 status -- list a different bunch of random process info.\n\
5732 all -- list all available /proc info."));
5733
5734 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5735 &debug_linux_nat, _("\
5736 Set debugging of GNU/Linux lwp module."), _("\
5737 Show debugging of GNU/Linux lwp module."), _("\
5738 Enables printf debugging output."),
5739 NULL,
5740 show_debug_linux_nat,
5741 &setdebuglist, &showdebuglist);
5742
5743 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5744 &debug_linux_nat_async, _("\
5745 Set debugging of GNU/Linux async lwp module."), _("\
5746 Show debugging of GNU/Linux async lwp module."), _("\
5747 Enables printf debugging output."),
5748 NULL,
5749 show_debug_linux_nat_async,
5750 &setdebuglist, &showdebuglist);
5751
5752 /* Save this mask as the default. */
5753 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5754
5755 /* Install a SIGCHLD handler. */
5756 sigchld_action.sa_handler = sigchld_handler;
5757 sigemptyset (&sigchld_action.sa_mask);
5758 sigchld_action.sa_flags = SA_RESTART;
5759
5760 /* Make it the default. */
5761 sigaction (SIGCHLD, &sigchld_action, NULL);
5762
5763 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5764 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5765 sigdelset (&suspend_mask, SIGCHLD);
5766
5767 sigemptyset (&blocked_mask);
5768
5769 add_setshow_boolean_cmd ("disable-randomization", class_support,
5770 &disable_randomization, _("\
5771 Set disabling of debuggee's virtual address space randomization."), _("\
5772 Show disabling of debuggee's virtual address space randomization."), _("\
5773 When this mode is on (which is the default), randomization of the virtual\n\
5774 address space is disabled. Standalone programs run with the randomization\n\
5775 enabled by default on some platforms."),
5776 &set_disable_randomization,
5777 &show_disable_randomization,
5778 &setlist, &showlist);
5779 }
5780 \f
5781
5782 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5783 the GNU/Linux Threads library and therefore doesn't really belong
5784 here. */
5785
5786 /* Read variable NAME in the target and return its value if found.
5787 Otherwise return zero. It is assumed that the type of the variable
5788 is `int'. */
5789
5790 static int
5791 get_signo (const char *name)
5792 {
5793 struct minimal_symbol *ms;
5794 int signo;
5795
5796 ms = lookup_minimal_symbol (name, NULL, NULL);
5797 if (ms == NULL)
5798 return 0;
5799
5800 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5801 sizeof (signo)) != 0)
5802 return 0;
5803
5804 return signo;
5805 }
5806
5807 /* Return the set of signals used by the threads library in *SET. */
5808
5809 void
5810 lin_thread_get_thread_signals (sigset_t *set)
5811 {
5812 struct sigaction action;
5813 int restart, cancel;
5814
5815 sigemptyset (&blocked_mask);
5816 sigemptyset (set);
5817
5818 restart = get_signo ("__pthread_sig_restart");
5819 cancel = get_signo ("__pthread_sig_cancel");
5820
5821 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5822 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5823 not provide any way for the debugger to query the signal numbers -
5824 fortunately they don't change! */
5825
5826 if (restart == 0)
5827 restart = __SIGRTMIN;
5828
5829 if (cancel == 0)
5830 cancel = __SIGRTMIN + 1;
5831
5832 sigaddset (set, restart);
5833 sigaddset (set, cancel);
5834
5835 /* The GNU/Linux Threads library makes terminating threads send a
5836 special "cancel" signal instead of SIGCHLD. Make sure we catch
5837 those (to prevent them from terminating GDB itself, which is
5838 likely to be their default action) and treat them the same way as
5839 SIGCHLD. */
5840
5841 action.sa_handler = sigchld_handler;
5842 sigemptyset (&action.sa_mask);
5843 action.sa_flags = SA_RESTART;
5844 sigaction (cancel, &action, NULL);
5845
5846 /* We block the "cancel" signal throughout this code ... */
5847 sigaddset (&blocked_mask, cancel);
5848 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5849
5850 /* ... except during a sigsuspend. */
5851 sigdelset (&suspend_mask, cancel);
5852 }
This page took 0.152143 seconds and 4 git commands to generate.