Don't run personality syscall at configure time; don't check it at all
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71 #include "gdbsupport/common-debug.h"
72
73 /* This comment documents high-level logic of this file.
74
75 Waiting for events in sync mode
76 ===============================
77
78 When waiting for an event in a specific thread, we just use waitpid,
79 passing the specific pid, and not passing WNOHANG.
80
81 When waiting for an event in all threads, waitpid is not quite good:
82
83 - If the thread group leader exits while other threads in the thread
84 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
85 return an exit status until the other threads in the group are
86 reaped.
87
88 - When a non-leader thread execs, that thread just vanishes without
89 reporting an exit (so we'd hang if we waited for it explicitly in
90 that case). The exec event is instead reported to the TGID pid.
91
92 The solution is to always use -1 and WNOHANG, together with
93 sigsuspend.
94
95 First, we use non-blocking waitpid to check for events. If nothing is
96 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
97 it means something happened to a child process. As soon as we know
98 there's an event, we get back to calling nonblocking waitpid.
99
100 Note that SIGCHLD should be blocked between waitpid and sigsuspend
101 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
102 when it's blocked, the signal becomes pending and sigsuspend
103 immediately notices it and returns.
104
105 Waiting for events in async mode (TARGET_WNOHANG)
106 =================================================
107
108 In async mode, GDB should always be ready to handle both user input
109 and target events, so neither blocking waitpid nor sigsuspend are
110 viable options. Instead, we should asynchronously notify the GDB main
111 event loop whenever there's an unprocessed event from the target. We
112 detect asynchronous target events by handling SIGCHLD signals. To
113 notify the event loop about target events, the self-pipe trick is used
114 --- a pipe is registered as waitable event source in the event loop,
115 the event loop select/poll's on the read end of this pipe (as well on
116 other event sources, e.g., stdin), and the SIGCHLD handler writes a
117 byte to this pipe. This is more portable than relying on
118 pselect/ppoll, since on kernels that lack those syscalls, libc
119 emulates them with select/poll+sigprocmask, and that is racy
120 (a.k.a. plain broken).
121
122 Obviously, if we fail to notify the event loop if there's a target
123 event, it's bad. OTOH, if we notify the event loop when there's no
124 event from the target, linux_nat_wait will detect that there's no real
125 event to report, and return event of type TARGET_WAITKIND_IGNORE.
126 This is mostly harmless, but it will waste time and is better avoided.
127
128 The main design point is that every time GDB is outside linux-nat.c,
129 we have a SIGCHLD handler installed that is called when something
130 happens to the target and notifies the GDB event loop. Whenever GDB
131 core decides to handle the event, and calls into linux-nat.c, we
132 process things as in sync mode, except that the we never block in
133 sigsuspend.
134
135 While processing an event, we may end up momentarily blocked in
136 waitpid calls. Those waitpid calls, while blocking, are guarantied to
137 return quickly. E.g., in all-stop mode, before reporting to the core
138 that an LWP hit a breakpoint, all LWPs are stopped by sending them
139 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
140 Note that this is different from blocking indefinitely waiting for the
141 next event --- here, we're already handling an event.
142
143 Use of signals
144 ==============
145
146 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
147 signal is not entirely significant; we just need for a signal to be delivered,
148 so that we can intercept it. SIGSTOP's advantage is that it can not be
149 blocked. A disadvantage is that it is not a real-time signal, so it can only
150 be queued once; we do not keep track of other sources of SIGSTOP.
151
152 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
153 use them, because they have special behavior when the signal is generated -
154 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
155 kills the entire thread group.
156
157 A delivered SIGSTOP would stop the entire thread group, not just the thread we
158 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
159 cancel it (by PTRACE_CONT without passing SIGSTOP).
160
161 We could use a real-time signal instead. This would solve those problems; we
162 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
163 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
164 generates it, and there are races with trying to find a signal that is not
165 blocked.
166
167 Exec events
168 ===========
169
170 The case of a thread group (process) with 3 or more threads, and a
171 thread other than the leader execs is worth detailing:
172
173 On an exec, the Linux kernel destroys all threads except the execing
174 one in the thread group, and resets the execing thread's tid to the
175 tgid. No exit notification is sent for the execing thread -- from the
176 ptracer's perspective, it appears as though the execing thread just
177 vanishes. Until we reap all other threads except the leader and the
178 execing thread, the leader will be zombie, and the execing thread will
179 be in `D (disc sleep)' state. As soon as all other threads are
180 reaped, the execing thread changes its tid to the tgid, and the
181 previous (zombie) leader vanishes, giving place to the "new"
182 leader. */
183
184 #ifndef O_LARGEFILE
185 #define O_LARGEFILE 0
186 #endif
187
188 struct linux_nat_target *linux_target;
189
190 /* Does the current host support PTRACE_GETREGSET? */
191 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
192
193 static unsigned int debug_linux_nat;
194 static void
195 show_debug_linux_nat (struct ui_file *file, int from_tty,
196 struct cmd_list_element *c, const char *value)
197 {
198 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
199 value);
200 }
201
202 /* Print a linux-nat debug statement. */
203
204 #define linux_nat_debug_printf(fmt, ...) \
205 debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__)
206
207 struct simple_pid_list
208 {
209 int pid;
210 int status;
211 struct simple_pid_list *next;
212 };
213 static struct simple_pid_list *stopped_pids;
214
215 /* Whether target_thread_events is in effect. */
216 static int report_thread_events;
217
218 /* Async mode support. */
219
220 /* The read/write ends of the pipe registered as waitable file in the
221 event loop. */
222 static int linux_nat_event_pipe[2] = { -1, -1 };
223
224 /* True if we're currently in async mode. */
225 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
226
227 /* Flush the event pipe. */
228
229 static void
230 async_file_flush (void)
231 {
232 int ret;
233 char buf;
234
235 do
236 {
237 ret = read (linux_nat_event_pipe[0], &buf, 1);
238 }
239 while (ret >= 0 || (ret == -1 && errno == EINTR));
240 }
241
242 /* Put something (anything, doesn't matter what, or how much) in event
243 pipe, so that the select/poll in the event-loop realizes we have
244 something to process. */
245
246 static void
247 async_file_mark (void)
248 {
249 int ret;
250
251 /* It doesn't really matter what the pipe contains, as long we end
252 up with something in it. Might as well flush the previous
253 left-overs. */
254 async_file_flush ();
255
256 do
257 {
258 ret = write (linux_nat_event_pipe[1], "+", 1);
259 }
260 while (ret == -1 && errno == EINTR);
261
262 /* Ignore EAGAIN. If the pipe is full, the event loop will already
263 be awakened anyway. */
264 }
265
266 static int kill_lwp (int lwpid, int signo);
267
268 static int stop_callback (struct lwp_info *lp);
269
270 static void block_child_signals (sigset_t *prev_mask);
271 static void restore_child_signals_mask (sigset_t *prev_mask);
272
273 struct lwp_info;
274 static struct lwp_info *add_lwp (ptid_t ptid);
275 static void purge_lwp_list (int pid);
276 static void delete_lwp (ptid_t ptid);
277 static struct lwp_info *find_lwp_pid (ptid_t ptid);
278
279 static int lwp_status_pending_p (struct lwp_info *lp);
280
281 static void save_stop_reason (struct lwp_info *lp);
282
283 \f
284 /* LWP accessors. */
285
286 /* See nat/linux-nat.h. */
287
288 ptid_t
289 ptid_of_lwp (struct lwp_info *lwp)
290 {
291 return lwp->ptid;
292 }
293
294 /* See nat/linux-nat.h. */
295
296 void
297 lwp_set_arch_private_info (struct lwp_info *lwp,
298 struct arch_lwp_info *info)
299 {
300 lwp->arch_private = info;
301 }
302
303 /* See nat/linux-nat.h. */
304
305 struct arch_lwp_info *
306 lwp_arch_private_info (struct lwp_info *lwp)
307 {
308 return lwp->arch_private;
309 }
310
311 /* See nat/linux-nat.h. */
312
313 int
314 lwp_is_stopped (struct lwp_info *lwp)
315 {
316 return lwp->stopped;
317 }
318
319 /* See nat/linux-nat.h. */
320
321 enum target_stop_reason
322 lwp_stop_reason (struct lwp_info *lwp)
323 {
324 return lwp->stop_reason;
325 }
326
327 /* See nat/linux-nat.h. */
328
329 int
330 lwp_is_stepping (struct lwp_info *lwp)
331 {
332 return lwp->step;
333 }
334
335 \f
336 /* Trivial list manipulation functions to keep track of a list of
337 new stopped processes. */
338 static void
339 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
340 {
341 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
342
343 new_pid->pid = pid;
344 new_pid->status = status;
345 new_pid->next = *listp;
346 *listp = new_pid;
347 }
348
349 static int
350 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
351 {
352 struct simple_pid_list **p;
353
354 for (p = listp; *p != NULL; p = &(*p)->next)
355 if ((*p)->pid == pid)
356 {
357 struct simple_pid_list *next = (*p)->next;
358
359 *statusp = (*p)->status;
360 xfree (*p);
361 *p = next;
362 return 1;
363 }
364 return 0;
365 }
366
367 /* Return the ptrace options that we want to try to enable. */
368
369 static int
370 linux_nat_ptrace_options (int attached)
371 {
372 int options = 0;
373
374 if (!attached)
375 options |= PTRACE_O_EXITKILL;
376
377 options |= (PTRACE_O_TRACESYSGOOD
378 | PTRACE_O_TRACEVFORKDONE
379 | PTRACE_O_TRACEVFORK
380 | PTRACE_O_TRACEFORK
381 | PTRACE_O_TRACEEXEC);
382
383 return options;
384 }
385
386 /* Initialize ptrace and procfs warnings and check for supported
387 ptrace features given PID.
388
389 ATTACHED should be nonzero iff we attached to the inferior. */
390
391 static void
392 linux_init_ptrace_procfs (pid_t pid, int attached)
393 {
394 int options = linux_nat_ptrace_options (attached);
395
396 linux_enable_event_reporting (pid, options);
397 linux_ptrace_init_warnings ();
398 linux_proc_init_warnings ();
399 }
400
401 linux_nat_target::~linux_nat_target ()
402 {}
403
404 void
405 linux_nat_target::post_attach (int pid)
406 {
407 linux_init_ptrace_procfs (pid, 1);
408 }
409
410 void
411 linux_nat_target::post_startup_inferior (ptid_t ptid)
412 {
413 linux_init_ptrace_procfs (ptid.pid (), 0);
414 }
415
416 /* Return the number of known LWPs in the tgid given by PID. */
417
418 static int
419 num_lwps (int pid)
420 {
421 int count = 0;
422 struct lwp_info *lp;
423
424 for (lp = lwp_list; lp; lp = lp->next)
425 if (lp->ptid.pid () == pid)
426 count++;
427
428 return count;
429 }
430
431 /* Deleter for lwp_info unique_ptr specialisation. */
432
433 struct lwp_deleter
434 {
435 void operator() (struct lwp_info *lwp) const
436 {
437 delete_lwp (lwp->ptid);
438 }
439 };
440
441 /* A unique_ptr specialisation for lwp_info. */
442
443 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
444
445 /* Target hook for follow_fork. On entry inferior_ptid must be the
446 ptid of the followed inferior. At return, inferior_ptid will be
447 unchanged. */
448
449 void
450 linux_nat_target::follow_fork (bool follow_child, bool detach_fork)
451 {
452 if (!follow_child)
453 {
454 struct lwp_info *child_lp = NULL;
455 int has_vforked;
456 ptid_t parent_ptid, child_ptid;
457 int parent_pid, child_pid;
458
459 has_vforked = (inferior_thread ()->pending_follow.kind
460 == TARGET_WAITKIND_VFORKED);
461 parent_ptid = inferior_ptid;
462 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
463 parent_pid = parent_ptid.lwp ();
464 child_pid = child_ptid.lwp ();
465
466 /* We're already attached to the parent, by default. */
467 child_lp = add_lwp (child_ptid);
468 child_lp->stopped = 1;
469 child_lp->last_resume_kind = resume_stop;
470
471 /* Detach new forked process? */
472 if (detach_fork)
473 {
474 int child_stop_signal = 0;
475 bool detach_child = true;
476
477 /* Move CHILD_LP into a unique_ptr and clear the source pointer
478 to prevent us doing anything stupid with it. */
479 lwp_info_up child_lp_ptr (child_lp);
480 child_lp = nullptr;
481
482 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
483
484 /* When debugging an inferior in an architecture that supports
485 hardware single stepping on a kernel without commit
486 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
487 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
488 set if the parent process had them set.
489 To work around this, single step the child process
490 once before detaching to clear the flags. */
491
492 /* Note that we consult the parent's architecture instead of
493 the child's because there's no inferior for the child at
494 this point. */
495 if (!gdbarch_software_single_step_p (target_thread_architecture
496 (parent_ptid)))
497 {
498 int status;
499
500 linux_disable_event_reporting (child_pid);
501 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
502 perror_with_name (_("Couldn't do single step"));
503 if (my_waitpid (child_pid, &status, 0) < 0)
504 perror_with_name (_("Couldn't wait vfork process"));
505 else
506 {
507 detach_child = WIFSTOPPED (status);
508 child_stop_signal = WSTOPSIG (status);
509 }
510 }
511
512 if (detach_child)
513 {
514 int signo = child_stop_signal;
515
516 if (signo != 0
517 && !signal_pass_state (gdb_signal_from_host (signo)))
518 signo = 0;
519 ptrace (PTRACE_DETACH, child_pid, 0, signo);
520 }
521 }
522 else
523 {
524 /* Switching inferior_ptid is not enough, because then
525 inferior_thread () would crash by not finding the thread
526 in the current inferior. */
527 scoped_restore_current_thread restore_current_thread;
528 thread_info *child = find_thread_ptid (this, child_ptid);
529 switch_to_thread (child);
530
531 /* Let the thread_db layer learn about this new process. */
532 check_for_thread_db ();
533 }
534
535 if (has_vforked)
536 {
537 struct lwp_info *parent_lp;
538
539 parent_lp = find_lwp_pid (parent_ptid);
540 gdb_assert (linux_supports_tracefork () >= 0);
541
542 if (linux_supports_tracevforkdone ())
543 {
544 linux_nat_debug_printf ("waiting for VFORK_DONE on %d",
545 parent_pid);
546 parent_lp->stopped = 1;
547
548 /* We'll handle the VFORK_DONE event like any other
549 event, in target_wait. */
550 }
551 else
552 {
553 /* We can't insert breakpoints until the child has
554 finished with the shared memory region. We need to
555 wait until that happens. Ideal would be to just
556 call:
557 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
558 - waitpid (parent_pid, &status, __WALL);
559 However, most architectures can't handle a syscall
560 being traced on the way out if it wasn't traced on
561 the way in.
562
563 We might also think to loop, continuing the child
564 until it exits or gets a SIGTRAP. One problem is
565 that the child might call ptrace with PTRACE_TRACEME.
566
567 There's no simple and reliable way to figure out when
568 the vforked child will be done with its copy of the
569 shared memory. We could step it out of the syscall,
570 two instructions, let it go, and then single-step the
571 parent once. When we have hardware single-step, this
572 would work; with software single-step it could still
573 be made to work but we'd have to be able to insert
574 single-step breakpoints in the child, and we'd have
575 to insert -just- the single-step breakpoint in the
576 parent. Very awkward.
577
578 In the end, the best we can do is to make sure it
579 runs for a little while. Hopefully it will be out of
580 range of any breakpoints we reinsert. Usually this
581 is only the single-step breakpoint at vfork's return
582 point. */
583
584 linux_nat_debug_printf ("no VFORK_DONE support, sleeping a bit");
585
586 usleep (10000);
587
588 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
589 and leave it pending. The next linux_nat_resume call
590 will notice a pending event, and bypasses actually
591 resuming the inferior. */
592 parent_lp->status = 0;
593 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
594 parent_lp->stopped = 1;
595
596 /* If we're in async mode, need to tell the event loop
597 there's something here to process. */
598 if (target_is_async_p ())
599 async_file_mark ();
600 }
601 }
602 }
603 else
604 {
605 struct lwp_info *child_lp;
606
607 child_lp = add_lwp (inferior_ptid);
608 child_lp->stopped = 1;
609 child_lp->last_resume_kind = resume_stop;
610
611 /* Let the thread_db layer learn about this new process. */
612 check_for_thread_db ();
613 }
614 }
615
616 \f
617 int
618 linux_nat_target::insert_fork_catchpoint (int pid)
619 {
620 return !linux_supports_tracefork ();
621 }
622
623 int
624 linux_nat_target::remove_fork_catchpoint (int pid)
625 {
626 return 0;
627 }
628
629 int
630 linux_nat_target::insert_vfork_catchpoint (int pid)
631 {
632 return !linux_supports_tracefork ();
633 }
634
635 int
636 linux_nat_target::remove_vfork_catchpoint (int pid)
637 {
638 return 0;
639 }
640
641 int
642 linux_nat_target::insert_exec_catchpoint (int pid)
643 {
644 return !linux_supports_tracefork ();
645 }
646
647 int
648 linux_nat_target::remove_exec_catchpoint (int pid)
649 {
650 return 0;
651 }
652
653 int
654 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
655 gdb::array_view<const int> syscall_counts)
656 {
657 if (!linux_supports_tracesysgood ())
658 return 1;
659
660 /* On GNU/Linux, we ignore the arguments. It means that we only
661 enable the syscall catchpoints, but do not disable them.
662
663 Also, we do not use the `syscall_counts' information because we do not
664 filter system calls here. We let GDB do the logic for us. */
665 return 0;
666 }
667
668 /* List of known LWPs, keyed by LWP PID. This speeds up the common
669 case of mapping a PID returned from the kernel to our corresponding
670 lwp_info data structure. */
671 static htab_t lwp_lwpid_htab;
672
673 /* Calculate a hash from a lwp_info's LWP PID. */
674
675 static hashval_t
676 lwp_info_hash (const void *ap)
677 {
678 const struct lwp_info *lp = (struct lwp_info *) ap;
679 pid_t pid = lp->ptid.lwp ();
680
681 return iterative_hash_object (pid, 0);
682 }
683
684 /* Equality function for the lwp_info hash table. Compares the LWP's
685 PID. */
686
687 static int
688 lwp_lwpid_htab_eq (const void *a, const void *b)
689 {
690 const struct lwp_info *entry = (const struct lwp_info *) a;
691 const struct lwp_info *element = (const struct lwp_info *) b;
692
693 return entry->ptid.lwp () == element->ptid.lwp ();
694 }
695
696 /* Create the lwp_lwpid_htab hash table. */
697
698 static void
699 lwp_lwpid_htab_create (void)
700 {
701 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
702 }
703
704 /* Add LP to the hash table. */
705
706 static void
707 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
708 {
709 void **slot;
710
711 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
712 gdb_assert (slot != NULL && *slot == NULL);
713 *slot = lp;
714 }
715
716 /* Head of doubly-linked list of known LWPs. Sorted by reverse
717 creation order. This order is assumed in some cases. E.g.,
718 reaping status after killing alls lwps of a process: the leader LWP
719 must be reaped last. */
720 struct lwp_info *lwp_list;
721
722 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
723
724 static void
725 lwp_list_add (struct lwp_info *lp)
726 {
727 lp->next = lwp_list;
728 if (lwp_list != NULL)
729 lwp_list->prev = lp;
730 lwp_list = lp;
731 }
732
733 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
734 list. */
735
736 static void
737 lwp_list_remove (struct lwp_info *lp)
738 {
739 /* Remove from sorted-by-creation-order list. */
740 if (lp->next != NULL)
741 lp->next->prev = lp->prev;
742 if (lp->prev != NULL)
743 lp->prev->next = lp->next;
744 if (lp == lwp_list)
745 lwp_list = lp->next;
746 }
747
748 \f
749
750 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
751 _initialize_linux_nat. */
752 static sigset_t suspend_mask;
753
754 /* Signals to block to make that sigsuspend work. */
755 static sigset_t blocked_mask;
756
757 /* SIGCHLD action. */
758 static struct sigaction sigchld_action;
759
760 /* Block child signals (SIGCHLD and linux threads signals), and store
761 the previous mask in PREV_MASK. */
762
763 static void
764 block_child_signals (sigset_t *prev_mask)
765 {
766 /* Make sure SIGCHLD is blocked. */
767 if (!sigismember (&blocked_mask, SIGCHLD))
768 sigaddset (&blocked_mask, SIGCHLD);
769
770 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
771 }
772
773 /* Restore child signals mask, previously returned by
774 block_child_signals. */
775
776 static void
777 restore_child_signals_mask (sigset_t *prev_mask)
778 {
779 gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
780 }
781
782 /* Mask of signals to pass directly to the inferior. */
783 static sigset_t pass_mask;
784
785 /* Update signals to pass to the inferior. */
786 void
787 linux_nat_target::pass_signals
788 (gdb::array_view<const unsigned char> pass_signals)
789 {
790 int signo;
791
792 sigemptyset (&pass_mask);
793
794 for (signo = 1; signo < NSIG; signo++)
795 {
796 int target_signo = gdb_signal_from_host (signo);
797 if (target_signo < pass_signals.size () && pass_signals[target_signo])
798 sigaddset (&pass_mask, signo);
799 }
800 }
801
802 \f
803
804 /* Prototypes for local functions. */
805 static int stop_wait_callback (struct lwp_info *lp);
806 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
807 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
808
809 \f
810
811 /* Destroy and free LP. */
812
813 static void
814 lwp_free (struct lwp_info *lp)
815 {
816 /* Let the arch specific bits release arch_lwp_info. */
817 linux_target->low_delete_thread (lp->arch_private);
818
819 xfree (lp);
820 }
821
822 /* Traversal function for purge_lwp_list. */
823
824 static int
825 lwp_lwpid_htab_remove_pid (void **slot, void *info)
826 {
827 struct lwp_info *lp = (struct lwp_info *) *slot;
828 int pid = *(int *) info;
829
830 if (lp->ptid.pid () == pid)
831 {
832 htab_clear_slot (lwp_lwpid_htab, slot);
833 lwp_list_remove (lp);
834 lwp_free (lp);
835 }
836
837 return 1;
838 }
839
840 /* Remove all LWPs belong to PID from the lwp list. */
841
842 static void
843 purge_lwp_list (int pid)
844 {
845 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
846 }
847
848 /* Add the LWP specified by PTID to the list. PTID is the first LWP
849 in the process. Return a pointer to the structure describing the
850 new LWP.
851
852 This differs from add_lwp in that we don't let the arch specific
853 bits know about this new thread. Current clients of this callback
854 take the opportunity to install watchpoints in the new thread, and
855 we shouldn't do that for the first thread. If we're spawning a
856 child ("run"), the thread executes the shell wrapper first, and we
857 shouldn't touch it until it execs the program we want to debug.
858 For "attach", it'd be okay to call the callback, but it's not
859 necessary, because watchpoints can't yet have been inserted into
860 the inferior. */
861
862 static struct lwp_info *
863 add_initial_lwp (ptid_t ptid)
864 {
865 struct lwp_info *lp;
866
867 gdb_assert (ptid.lwp_p ());
868
869 lp = XNEW (struct lwp_info);
870
871 memset (lp, 0, sizeof (struct lwp_info));
872
873 lp->last_resume_kind = resume_continue;
874 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
875
876 lp->ptid = ptid;
877 lp->core = -1;
878
879 /* Add to sorted-by-reverse-creation-order list. */
880 lwp_list_add (lp);
881
882 /* Add to keyed-by-pid htab. */
883 lwp_lwpid_htab_add_lwp (lp);
884
885 return lp;
886 }
887
888 /* Add the LWP specified by PID to the list. Return a pointer to the
889 structure describing the new LWP. The LWP should already be
890 stopped. */
891
892 static struct lwp_info *
893 add_lwp (ptid_t ptid)
894 {
895 struct lwp_info *lp;
896
897 lp = add_initial_lwp (ptid);
898
899 /* Let the arch specific bits know about this new thread. Current
900 clients of this callback take the opportunity to install
901 watchpoints in the new thread. We don't do this for the first
902 thread though. See add_initial_lwp. */
903 linux_target->low_new_thread (lp);
904
905 return lp;
906 }
907
908 /* Remove the LWP specified by PID from the list. */
909
910 static void
911 delete_lwp (ptid_t ptid)
912 {
913 struct lwp_info *lp;
914 void **slot;
915 struct lwp_info dummy;
916
917 dummy.ptid = ptid;
918 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
919 if (slot == NULL)
920 return;
921
922 lp = *(struct lwp_info **) slot;
923 gdb_assert (lp != NULL);
924
925 htab_clear_slot (lwp_lwpid_htab, slot);
926
927 /* Remove from sorted-by-creation-order list. */
928 lwp_list_remove (lp);
929
930 /* Release. */
931 lwp_free (lp);
932 }
933
934 /* Return a pointer to the structure describing the LWP corresponding
935 to PID. If no corresponding LWP could be found, return NULL. */
936
937 static struct lwp_info *
938 find_lwp_pid (ptid_t ptid)
939 {
940 struct lwp_info *lp;
941 int lwp;
942 struct lwp_info dummy;
943
944 if (ptid.lwp_p ())
945 lwp = ptid.lwp ();
946 else
947 lwp = ptid.pid ();
948
949 dummy.ptid = ptid_t (0, lwp, 0);
950 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
951 return lp;
952 }
953
954 /* See nat/linux-nat.h. */
955
956 struct lwp_info *
957 iterate_over_lwps (ptid_t filter,
958 gdb::function_view<iterate_over_lwps_ftype> callback)
959 {
960 struct lwp_info *lp, *lpnext;
961
962 for (lp = lwp_list; lp; lp = lpnext)
963 {
964 lpnext = lp->next;
965
966 if (lp->ptid.matches (filter))
967 {
968 if (callback (lp) != 0)
969 return lp;
970 }
971 }
972
973 return NULL;
974 }
975
976 /* Update our internal state when changing from one checkpoint to
977 another indicated by NEW_PTID. We can only switch single-threaded
978 applications, so we only create one new LWP, and the previous list
979 is discarded. */
980
981 void
982 linux_nat_switch_fork (ptid_t new_ptid)
983 {
984 struct lwp_info *lp;
985
986 purge_lwp_list (inferior_ptid.pid ());
987
988 lp = add_lwp (new_ptid);
989 lp->stopped = 1;
990
991 /* This changes the thread's ptid while preserving the gdb thread
992 num. Also changes the inferior pid, while preserving the
993 inferior num. */
994 thread_change_ptid (linux_target, inferior_ptid, new_ptid);
995
996 /* We've just told GDB core that the thread changed target id, but,
997 in fact, it really is a different thread, with different register
998 contents. */
999 registers_changed ();
1000 }
1001
1002 /* Handle the exit of a single thread LP. */
1003
1004 static void
1005 exit_lwp (struct lwp_info *lp)
1006 {
1007 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
1008
1009 if (th)
1010 {
1011 if (print_thread_events)
1012 printf_unfiltered (_("[%s exited]\n"),
1013 target_pid_to_str (lp->ptid).c_str ());
1014
1015 delete_thread (th);
1016 }
1017
1018 delete_lwp (lp->ptid);
1019 }
1020
1021 /* Wait for the LWP specified by LP, which we have just attached to.
1022 Returns a wait status for that LWP, to cache. */
1023
1024 static int
1025 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1026 {
1027 pid_t new_pid, pid = ptid.lwp ();
1028 int status;
1029
1030 if (linux_proc_pid_is_stopped (pid))
1031 {
1032 linux_nat_debug_printf ("Attaching to a stopped process");
1033
1034 /* The process is definitely stopped. It is in a job control
1035 stop, unless the kernel predates the TASK_STOPPED /
1036 TASK_TRACED distinction, in which case it might be in a
1037 ptrace stop. Make sure it is in a ptrace stop; from there we
1038 can kill it, signal it, et cetera.
1039
1040 First make sure there is a pending SIGSTOP. Since we are
1041 already attached, the process can not transition from stopped
1042 to running without a PTRACE_CONT; so we know this signal will
1043 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1044 probably already in the queue (unless this kernel is old
1045 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1046 is not an RT signal, it can only be queued once. */
1047 kill_lwp (pid, SIGSTOP);
1048
1049 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1050 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1051 ptrace (PTRACE_CONT, pid, 0, 0);
1052 }
1053
1054 /* Make sure the initial process is stopped. The user-level threads
1055 layer might want to poke around in the inferior, and that won't
1056 work if things haven't stabilized yet. */
1057 new_pid = my_waitpid (pid, &status, __WALL);
1058 gdb_assert (pid == new_pid);
1059
1060 if (!WIFSTOPPED (status))
1061 {
1062 /* The pid we tried to attach has apparently just exited. */
1063 linux_nat_debug_printf ("Failed to stop %d: %s", pid,
1064 status_to_str (status));
1065 return status;
1066 }
1067
1068 if (WSTOPSIG (status) != SIGSTOP)
1069 {
1070 *signalled = 1;
1071 linux_nat_debug_printf ("Received %s after attaching",
1072 status_to_str (status));
1073 }
1074
1075 return status;
1076 }
1077
1078 void
1079 linux_nat_target::create_inferior (const char *exec_file,
1080 const std::string &allargs,
1081 char **env, int from_tty)
1082 {
1083 maybe_disable_address_space_randomization restore_personality
1084 (disable_randomization);
1085
1086 /* The fork_child mechanism is synchronous and calls target_wait, so
1087 we have to mask the async mode. */
1088
1089 /* Make sure we report all signals during startup. */
1090 pass_signals ({});
1091
1092 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1093 }
1094
1095 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1096 already attached. Returns true if a new LWP is found, false
1097 otherwise. */
1098
1099 static int
1100 attach_proc_task_lwp_callback (ptid_t ptid)
1101 {
1102 struct lwp_info *lp;
1103
1104 /* Ignore LWPs we're already attached to. */
1105 lp = find_lwp_pid (ptid);
1106 if (lp == NULL)
1107 {
1108 int lwpid = ptid.lwp ();
1109
1110 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1111 {
1112 int err = errno;
1113
1114 /* Be quiet if we simply raced with the thread exiting.
1115 EPERM is returned if the thread's task still exists, and
1116 is marked as exited or zombie, as well as other
1117 conditions, so in that case, confirm the status in
1118 /proc/PID/status. */
1119 if (err == ESRCH
1120 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1121 {
1122 linux_nat_debug_printf
1123 ("Cannot attach to lwp %d: thread is gone (%d: %s)",
1124 lwpid, err, safe_strerror (err));
1125
1126 }
1127 else
1128 {
1129 std::string reason
1130 = linux_ptrace_attach_fail_reason_string (ptid, err);
1131
1132 warning (_("Cannot attach to lwp %d: %s"),
1133 lwpid, reason.c_str ());
1134 }
1135 }
1136 else
1137 {
1138 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1139 target_pid_to_str (ptid).c_str ());
1140
1141 lp = add_lwp (ptid);
1142
1143 /* The next time we wait for this LWP we'll see a SIGSTOP as
1144 PTRACE_ATTACH brings it to a halt. */
1145 lp->signalled = 1;
1146
1147 /* We need to wait for a stop before being able to make the
1148 next ptrace call on this LWP. */
1149 lp->must_set_ptrace_flags = 1;
1150
1151 /* So that wait collects the SIGSTOP. */
1152 lp->resumed = 1;
1153
1154 /* Also add the LWP to gdb's thread list, in case a
1155 matching libthread_db is not found (or the process uses
1156 raw clone). */
1157 add_thread (linux_target, lp->ptid);
1158 set_running (linux_target, lp->ptid, true);
1159 set_executing (linux_target, lp->ptid, true);
1160 }
1161
1162 return 1;
1163 }
1164 return 0;
1165 }
1166
1167 void
1168 linux_nat_target::attach (const char *args, int from_tty)
1169 {
1170 struct lwp_info *lp;
1171 int status;
1172 ptid_t ptid;
1173
1174 /* Make sure we report all signals during attach. */
1175 pass_signals ({});
1176
1177 try
1178 {
1179 inf_ptrace_target::attach (args, from_tty);
1180 }
1181 catch (const gdb_exception_error &ex)
1182 {
1183 pid_t pid = parse_pid_to_attach (args);
1184 std::string reason = linux_ptrace_attach_fail_reason (pid);
1185
1186 if (!reason.empty ())
1187 throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1188 ex.what ());
1189 else
1190 throw_error (ex.error, "%s", ex.what ());
1191 }
1192
1193 /* The ptrace base target adds the main thread with (pid,0,0)
1194 format. Decorate it with lwp info. */
1195 ptid = ptid_t (inferior_ptid.pid (),
1196 inferior_ptid.pid (),
1197 0);
1198 thread_change_ptid (linux_target, inferior_ptid, ptid);
1199
1200 /* Add the initial process as the first LWP to the list. */
1201 lp = add_initial_lwp (ptid);
1202
1203 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1204 if (!WIFSTOPPED (status))
1205 {
1206 if (WIFEXITED (status))
1207 {
1208 int exit_code = WEXITSTATUS (status);
1209
1210 target_terminal::ours ();
1211 target_mourn_inferior (inferior_ptid);
1212 if (exit_code == 0)
1213 error (_("Unable to attach: program exited normally."));
1214 else
1215 error (_("Unable to attach: program exited with code %d."),
1216 exit_code);
1217 }
1218 else if (WIFSIGNALED (status))
1219 {
1220 enum gdb_signal signo;
1221
1222 target_terminal::ours ();
1223 target_mourn_inferior (inferior_ptid);
1224
1225 signo = gdb_signal_from_host (WTERMSIG (status));
1226 error (_("Unable to attach: program terminated with signal "
1227 "%s, %s."),
1228 gdb_signal_to_name (signo),
1229 gdb_signal_to_string (signo));
1230 }
1231
1232 internal_error (__FILE__, __LINE__,
1233 _("unexpected status %d for PID %ld"),
1234 status, (long) ptid.lwp ());
1235 }
1236
1237 lp->stopped = 1;
1238
1239 /* Save the wait status to report later. */
1240 lp->resumed = 1;
1241 linux_nat_debug_printf ("waitpid %ld, saving status %s",
1242 (long) lp->ptid.pid (), status_to_str (status));
1243
1244 lp->status = status;
1245
1246 /* We must attach to every LWP. If /proc is mounted, use that to
1247 find them now. The inferior may be using raw clone instead of
1248 using pthreads. But even if it is using pthreads, thread_db
1249 walks structures in the inferior's address space to find the list
1250 of threads/LWPs, and those structures may well be corrupted.
1251 Note that once thread_db is loaded, we'll still use it to list
1252 threads and associate pthread info with each LWP. */
1253 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1254 attach_proc_task_lwp_callback);
1255
1256 if (target_can_async_p ())
1257 target_async (1);
1258 }
1259
1260 /* Get pending signal of THREAD as a host signal number, for detaching
1261 purposes. This is the signal the thread last stopped for, which we
1262 need to deliver to the thread when detaching, otherwise, it'd be
1263 suppressed/lost. */
1264
1265 static int
1266 get_detach_signal (struct lwp_info *lp)
1267 {
1268 enum gdb_signal signo = GDB_SIGNAL_0;
1269
1270 /* If we paused threads momentarily, we may have stored pending
1271 events in lp->status or lp->waitstatus (see stop_wait_callback),
1272 and GDB core hasn't seen any signal for those threads.
1273 Otherwise, the last signal reported to the core is found in the
1274 thread object's stop_signal.
1275
1276 There's a corner case that isn't handled here at present. Only
1277 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1278 stop_signal make sense as a real signal to pass to the inferior.
1279 Some catchpoint related events, like
1280 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1281 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1282 those traps are debug API (ptrace in our case) related and
1283 induced; the inferior wouldn't see them if it wasn't being
1284 traced. Hence, we should never pass them to the inferior, even
1285 when set to pass state. Since this corner case isn't handled by
1286 infrun.c when proceeding with a signal, for consistency, neither
1287 do we handle it here (or elsewhere in the file we check for
1288 signal pass state). Normally SIGTRAP isn't set to pass state, so
1289 this is really a corner case. */
1290
1291 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1292 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1293 else if (lp->status)
1294 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1295 else
1296 {
1297 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1298
1299 if (target_is_non_stop_p () && !tp->executing)
1300 {
1301 if (tp->suspend.waitstatus_pending_p)
1302 signo = tp->suspend.waitstatus.value.sig;
1303 else
1304 signo = tp->suspend.stop_signal;
1305 }
1306 else if (!target_is_non_stop_p ())
1307 {
1308 ptid_t last_ptid;
1309 process_stratum_target *last_target;
1310
1311 get_last_target_status (&last_target, &last_ptid, nullptr);
1312
1313 if (last_target == linux_target
1314 && lp->ptid.lwp () == last_ptid.lwp ())
1315 signo = tp->suspend.stop_signal;
1316 }
1317 }
1318
1319 if (signo == GDB_SIGNAL_0)
1320 {
1321 linux_nat_debug_printf ("lwp %s has no pending signal",
1322 target_pid_to_str (lp->ptid).c_str ());
1323 }
1324 else if (!signal_pass_state (signo))
1325 {
1326 linux_nat_debug_printf
1327 ("lwp %s had signal %s but it is in no pass state",
1328 target_pid_to_str (lp->ptid).c_str (), gdb_signal_to_string (signo));
1329 }
1330 else
1331 {
1332 linux_nat_debug_printf ("lwp %s has pending signal %s",
1333 target_pid_to_str (lp->ptid).c_str (),
1334 gdb_signal_to_string (signo));
1335
1336 return gdb_signal_to_host (signo);
1337 }
1338
1339 return 0;
1340 }
1341
1342 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1343 signal number that should be passed to the LWP when detaching.
1344 Otherwise pass any pending signal the LWP may have, if any. */
1345
1346 static void
1347 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1348 {
1349 int lwpid = lp->ptid.lwp ();
1350 int signo;
1351
1352 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1353
1354 if (lp->status != 0)
1355 linux_nat_debug_printf ("Pending %s for %s on detach.",
1356 strsignal (WSTOPSIG (lp->status)),
1357 target_pid_to_str (lp->ptid).c_str ());
1358
1359 /* If there is a pending SIGSTOP, get rid of it. */
1360 if (lp->signalled)
1361 {
1362 linux_nat_debug_printf ("Sending SIGCONT to %s",
1363 target_pid_to_str (lp->ptid).c_str ());
1364
1365 kill_lwp (lwpid, SIGCONT);
1366 lp->signalled = 0;
1367 }
1368
1369 if (signo_p == NULL)
1370 {
1371 /* Pass on any pending signal for this LWP. */
1372 signo = get_detach_signal (lp);
1373 }
1374 else
1375 signo = *signo_p;
1376
1377 /* Preparing to resume may try to write registers, and fail if the
1378 lwp is zombie. If that happens, ignore the error. We'll handle
1379 it below, when detach fails with ESRCH. */
1380 try
1381 {
1382 linux_target->low_prepare_to_resume (lp);
1383 }
1384 catch (const gdb_exception_error &ex)
1385 {
1386 if (!check_ptrace_stopped_lwp_gone (lp))
1387 throw;
1388 }
1389
1390 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1391 {
1392 int save_errno = errno;
1393
1394 /* We know the thread exists, so ESRCH must mean the lwp is
1395 zombie. This can happen if one of the already-detached
1396 threads exits the whole thread group. In that case we're
1397 still attached, and must reap the lwp. */
1398 if (save_errno == ESRCH)
1399 {
1400 int ret, status;
1401
1402 ret = my_waitpid (lwpid, &status, __WALL);
1403 if (ret == -1)
1404 {
1405 warning (_("Couldn't reap LWP %d while detaching: %s"),
1406 lwpid, safe_strerror (errno));
1407 }
1408 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1409 {
1410 warning (_("Reaping LWP %d while detaching "
1411 "returned unexpected status 0x%x"),
1412 lwpid, status);
1413 }
1414 }
1415 else
1416 {
1417 error (_("Can't detach %s: %s"),
1418 target_pid_to_str (lp->ptid).c_str (),
1419 safe_strerror (save_errno));
1420 }
1421 }
1422 else
1423 linux_nat_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)",
1424 target_pid_to_str (lp->ptid).c_str (),
1425 strsignal (signo));
1426
1427 delete_lwp (lp->ptid);
1428 }
1429
1430 static int
1431 detach_callback (struct lwp_info *lp)
1432 {
1433 /* We don't actually detach from the thread group leader just yet.
1434 If the thread group exits, we must reap the zombie clone lwps
1435 before we're able to reap the leader. */
1436 if (lp->ptid.lwp () != lp->ptid.pid ())
1437 detach_one_lwp (lp, NULL);
1438 return 0;
1439 }
1440
1441 void
1442 linux_nat_target::detach (inferior *inf, int from_tty)
1443 {
1444 struct lwp_info *main_lwp;
1445 int pid = inf->pid;
1446
1447 /* Don't unregister from the event loop, as there may be other
1448 inferiors running. */
1449
1450 /* Stop all threads before detaching. ptrace requires that the
1451 thread is stopped to successfully detach. */
1452 iterate_over_lwps (ptid_t (pid), stop_callback);
1453 /* ... and wait until all of them have reported back that
1454 they're no longer running. */
1455 iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1456
1457 /* We can now safely remove breakpoints. We don't this in earlier
1458 in common code because this target doesn't currently support
1459 writing memory while the inferior is running. */
1460 remove_breakpoints_inf (current_inferior ());
1461
1462 iterate_over_lwps (ptid_t (pid), detach_callback);
1463
1464 /* Only the initial process should be left right now. */
1465 gdb_assert (num_lwps (pid) == 1);
1466
1467 main_lwp = find_lwp_pid (ptid_t (pid));
1468
1469 if (forks_exist_p ())
1470 {
1471 /* Multi-fork case. The current inferior_ptid is being detached
1472 from, but there are other viable forks to debug. Detach from
1473 the current fork, and context-switch to the first
1474 available. */
1475 linux_fork_detach (from_tty);
1476 }
1477 else
1478 {
1479 target_announce_detach (from_tty);
1480
1481 /* Pass on any pending signal for the last LWP. */
1482 int signo = get_detach_signal (main_lwp);
1483
1484 detach_one_lwp (main_lwp, &signo);
1485
1486 detach_success (inf);
1487 }
1488 }
1489
1490 /* Resume execution of the inferior process. If STEP is nonzero,
1491 single-step it. If SIGNAL is nonzero, give it that signal. */
1492
1493 static void
1494 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1495 enum gdb_signal signo)
1496 {
1497 lp->step = step;
1498
1499 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1500 We only presently need that if the LWP is stepped though (to
1501 handle the case of stepping a breakpoint instruction). */
1502 if (step)
1503 {
1504 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1505
1506 lp->stop_pc = regcache_read_pc (regcache);
1507 }
1508 else
1509 lp->stop_pc = 0;
1510
1511 linux_target->low_prepare_to_resume (lp);
1512 linux_target->low_resume (lp->ptid, step, signo);
1513
1514 /* Successfully resumed. Clear state that no longer makes sense,
1515 and mark the LWP as running. Must not do this before resuming
1516 otherwise if that fails other code will be confused. E.g., we'd
1517 later try to stop the LWP and hang forever waiting for a stop
1518 status. Note that we must not throw after this is cleared,
1519 otherwise handle_zombie_lwp_error would get confused. */
1520 lp->stopped = 0;
1521 lp->core = -1;
1522 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1523 registers_changed_ptid (linux_target, lp->ptid);
1524 }
1525
1526 /* Called when we try to resume a stopped LWP and that errors out. If
1527 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1528 or about to become), discard the error, clear any pending status
1529 the LWP may have, and return true (we'll collect the exit status
1530 soon enough). Otherwise, return false. */
1531
1532 static int
1533 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1534 {
1535 /* If we get an error after resuming the LWP successfully, we'd
1536 confuse !T state for the LWP being gone. */
1537 gdb_assert (lp->stopped);
1538
1539 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1540 because even if ptrace failed with ESRCH, the tracee may be "not
1541 yet fully dead", but already refusing ptrace requests. In that
1542 case the tracee has 'R (Running)' state for a little bit
1543 (observed in Linux 3.18). See also the note on ESRCH in the
1544 ptrace(2) man page. Instead, check whether the LWP has any state
1545 other than ptrace-stopped. */
1546
1547 /* Don't assume anything if /proc/PID/status can't be read. */
1548 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1549 {
1550 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1551 lp->status = 0;
1552 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1553 return 1;
1554 }
1555 return 0;
1556 }
1557
1558 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1559 disappears while we try to resume it. */
1560
1561 static void
1562 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1563 {
1564 try
1565 {
1566 linux_resume_one_lwp_throw (lp, step, signo);
1567 }
1568 catch (const gdb_exception_error &ex)
1569 {
1570 if (!check_ptrace_stopped_lwp_gone (lp))
1571 throw;
1572 }
1573 }
1574
1575 /* Resume LP. */
1576
1577 static void
1578 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1579 {
1580 if (lp->stopped)
1581 {
1582 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1583
1584 if (inf->vfork_child != NULL)
1585 {
1586 linux_nat_debug_printf ("Not resuming %s (vfork parent)",
1587 target_pid_to_str (lp->ptid).c_str ());
1588 }
1589 else if (!lwp_status_pending_p (lp))
1590 {
1591 linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1592 target_pid_to_str (lp->ptid).c_str (),
1593 (signo != GDB_SIGNAL_0
1594 ? strsignal (gdb_signal_to_host (signo))
1595 : "0"),
1596 step ? "step" : "resume");
1597
1598 linux_resume_one_lwp (lp, step, signo);
1599 }
1600 else
1601 {
1602 linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1603 target_pid_to_str (lp->ptid).c_str ());
1604 }
1605 }
1606 else
1607 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1608 target_pid_to_str (lp->ptid).c_str ());
1609 }
1610
1611 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1612 Resume LWP with the last stop signal, if it is in pass state. */
1613
1614 static int
1615 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1616 {
1617 enum gdb_signal signo = GDB_SIGNAL_0;
1618
1619 if (lp == except)
1620 return 0;
1621
1622 if (lp->stopped)
1623 {
1624 struct thread_info *thread;
1625
1626 thread = find_thread_ptid (linux_target, lp->ptid);
1627 if (thread != NULL)
1628 {
1629 signo = thread->suspend.stop_signal;
1630 thread->suspend.stop_signal = GDB_SIGNAL_0;
1631 }
1632 }
1633
1634 resume_lwp (lp, 0, signo);
1635 return 0;
1636 }
1637
1638 static int
1639 resume_clear_callback (struct lwp_info *lp)
1640 {
1641 lp->resumed = 0;
1642 lp->last_resume_kind = resume_stop;
1643 return 0;
1644 }
1645
1646 static int
1647 resume_set_callback (struct lwp_info *lp)
1648 {
1649 lp->resumed = 1;
1650 lp->last_resume_kind = resume_continue;
1651 return 0;
1652 }
1653
1654 void
1655 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1656 {
1657 struct lwp_info *lp;
1658 int resume_many;
1659
1660 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1661 step ? "step" : "resume",
1662 target_pid_to_str (ptid).c_str (),
1663 (signo != GDB_SIGNAL_0
1664 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1665 target_pid_to_str (inferior_ptid).c_str ());
1666
1667 /* A specific PTID means `step only this process id'. */
1668 resume_many = (minus_one_ptid == ptid
1669 || ptid.is_pid ());
1670
1671 /* Mark the lwps we're resuming as resumed and update their
1672 last_resume_kind to resume_continue. */
1673 iterate_over_lwps (ptid, resume_set_callback);
1674
1675 /* See if it's the current inferior that should be handled
1676 specially. */
1677 if (resume_many)
1678 lp = find_lwp_pid (inferior_ptid);
1679 else
1680 lp = find_lwp_pid (ptid);
1681 gdb_assert (lp != NULL);
1682
1683 /* Remember if we're stepping. */
1684 lp->last_resume_kind = step ? resume_step : resume_continue;
1685
1686 /* If we have a pending wait status for this thread, there is no
1687 point in resuming the process. But first make sure that
1688 linux_nat_wait won't preemptively handle the event - we
1689 should never take this short-circuit if we are going to
1690 leave LP running, since we have skipped resuming all the
1691 other threads. This bit of code needs to be synchronized
1692 with linux_nat_wait. */
1693
1694 if (lp->status && WIFSTOPPED (lp->status))
1695 {
1696 if (!lp->step
1697 && WSTOPSIG (lp->status)
1698 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1699 {
1700 linux_nat_debug_printf
1701 ("Not short circuiting for ignored status 0x%x", lp->status);
1702
1703 /* FIXME: What should we do if we are supposed to continue
1704 this thread with a signal? */
1705 gdb_assert (signo == GDB_SIGNAL_0);
1706 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1707 lp->status = 0;
1708 }
1709 }
1710
1711 if (lwp_status_pending_p (lp))
1712 {
1713 /* FIXME: What should we do if we are supposed to continue
1714 this thread with a signal? */
1715 gdb_assert (signo == GDB_SIGNAL_0);
1716
1717 linux_nat_debug_printf ("Short circuiting for status 0x%x",
1718 lp->status);
1719
1720 if (target_can_async_p ())
1721 {
1722 target_async (1);
1723 /* Tell the event loop we have something to process. */
1724 async_file_mark ();
1725 }
1726 return;
1727 }
1728
1729 if (resume_many)
1730 iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1731 {
1732 return linux_nat_resume_callback (info, lp);
1733 });
1734
1735 linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1736 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1737 target_pid_to_str (lp->ptid).c_str (),
1738 (signo != GDB_SIGNAL_0
1739 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1740
1741 linux_resume_one_lwp (lp, step, signo);
1742
1743 if (target_can_async_p ())
1744 target_async (1);
1745 }
1746
1747 /* Send a signal to an LWP. */
1748
1749 static int
1750 kill_lwp (int lwpid, int signo)
1751 {
1752 int ret;
1753
1754 errno = 0;
1755 ret = syscall (__NR_tkill, lwpid, signo);
1756 if (errno == ENOSYS)
1757 {
1758 /* If tkill fails, then we are not using nptl threads, a
1759 configuration we no longer support. */
1760 perror_with_name (("tkill"));
1761 }
1762 return ret;
1763 }
1764
1765 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1766 event, check if the core is interested in it: if not, ignore the
1767 event, and keep waiting; otherwise, we need to toggle the LWP's
1768 syscall entry/exit status, since the ptrace event itself doesn't
1769 indicate it, and report the trap to higher layers. */
1770
1771 static int
1772 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1773 {
1774 struct target_waitstatus *ourstatus = &lp->waitstatus;
1775 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1776 thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1777 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1778
1779 if (stopping)
1780 {
1781 /* If we're stopping threads, there's a SIGSTOP pending, which
1782 makes it so that the LWP reports an immediate syscall return,
1783 followed by the SIGSTOP. Skip seeing that "return" using
1784 PTRACE_CONT directly, and let stop_wait_callback collect the
1785 SIGSTOP. Later when the thread is resumed, a new syscall
1786 entry event. If we didn't do this (and returned 0), we'd
1787 leave a syscall entry pending, and our caller, by using
1788 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1789 itself. Later, when the user re-resumes this LWP, we'd see
1790 another syscall entry event and we'd mistake it for a return.
1791
1792 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1793 (leaving immediately with LWP->signalled set, without issuing
1794 a PTRACE_CONT), it would still be problematic to leave this
1795 syscall enter pending, as later when the thread is resumed,
1796 it would then see the same syscall exit mentioned above,
1797 followed by the delayed SIGSTOP, while the syscall didn't
1798 actually get to execute. It seems it would be even more
1799 confusing to the user. */
1800
1801 linux_nat_debug_printf
1802 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1803 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1804
1805 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1806 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1807 lp->stopped = 0;
1808 return 1;
1809 }
1810
1811 /* Always update the entry/return state, even if this particular
1812 syscall isn't interesting to the core now. In async mode,
1813 the user could install a new catchpoint for this syscall
1814 between syscall enter/return, and we'll need to know to
1815 report a syscall return if that happens. */
1816 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1817 ? TARGET_WAITKIND_SYSCALL_RETURN
1818 : TARGET_WAITKIND_SYSCALL_ENTRY);
1819
1820 if (catch_syscall_enabled ())
1821 {
1822 if (catching_syscall_number (syscall_number))
1823 {
1824 /* Alright, an event to report. */
1825 ourstatus->kind = lp->syscall_state;
1826 ourstatus->value.syscall_number = syscall_number;
1827
1828 linux_nat_debug_printf
1829 ("stopping for %s of syscall %d for LWP %ld",
1830 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1831 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1832
1833 return 0;
1834 }
1835
1836 linux_nat_debug_printf
1837 ("ignoring %s of syscall %d for LWP %ld",
1838 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1839 ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1840 }
1841 else
1842 {
1843 /* If we had been syscall tracing, and hence used PT_SYSCALL
1844 before on this LWP, it could happen that the user removes all
1845 syscall catchpoints before we get to process this event.
1846 There are two noteworthy issues here:
1847
1848 - When stopped at a syscall entry event, resuming with
1849 PT_STEP still resumes executing the syscall and reports a
1850 syscall return.
1851
1852 - Only PT_SYSCALL catches syscall enters. If we last
1853 single-stepped this thread, then this event can't be a
1854 syscall enter. If we last single-stepped this thread, this
1855 has to be a syscall exit.
1856
1857 The points above mean that the next resume, be it PT_STEP or
1858 PT_CONTINUE, can not trigger a syscall trace event. */
1859 linux_nat_debug_printf
1860 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1861 "ignoring", syscall_number, lp->ptid.lwp ());
1862 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1863 }
1864
1865 /* The core isn't interested in this event. For efficiency, avoid
1866 stopping all threads only to have the core resume them all again.
1867 Since we're not stopping threads, if we're still syscall tracing
1868 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1869 subsequent syscall. Simply resume using the inf-ptrace layer,
1870 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1871
1872 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1873 return 1;
1874 }
1875
1876 /* Handle a GNU/Linux extended wait response. If we see a clone
1877 event, we need to add the new LWP to our list (and not report the
1878 trap to higher layers). This function returns non-zero if the
1879 event should be ignored and we should wait again. If STOPPING is
1880 true, the new LWP remains stopped, otherwise it is continued. */
1881
1882 static int
1883 linux_handle_extended_wait (struct lwp_info *lp, int status)
1884 {
1885 int pid = lp->ptid.lwp ();
1886 struct target_waitstatus *ourstatus = &lp->waitstatus;
1887 int event = linux_ptrace_get_extended_event (status);
1888
1889 /* All extended events we currently use are mid-syscall. Only
1890 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1891 you have to be using PTRACE_SEIZE to get that. */
1892 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1893
1894 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1895 || event == PTRACE_EVENT_CLONE)
1896 {
1897 unsigned long new_pid;
1898 int ret;
1899
1900 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1901
1902 /* If we haven't already seen the new PID stop, wait for it now. */
1903 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1904 {
1905 /* The new child has a pending SIGSTOP. We can't affect it until it
1906 hits the SIGSTOP, but we're already attached. */
1907 ret = my_waitpid (new_pid, &status, __WALL);
1908 if (ret == -1)
1909 perror_with_name (_("waiting for new child"));
1910 else if (ret != new_pid)
1911 internal_error (__FILE__, __LINE__,
1912 _("wait returned unexpected PID %d"), ret);
1913 else if (!WIFSTOPPED (status))
1914 internal_error (__FILE__, __LINE__,
1915 _("wait returned unexpected status 0x%x"), status);
1916 }
1917
1918 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1919
1920 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1921 {
1922 /* The arch-specific native code may need to know about new
1923 forks even if those end up never mapped to an
1924 inferior. */
1925 linux_target->low_new_fork (lp, new_pid);
1926 }
1927 else if (event == PTRACE_EVENT_CLONE)
1928 {
1929 linux_target->low_new_clone (lp, new_pid);
1930 }
1931
1932 if (event == PTRACE_EVENT_FORK
1933 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1934 {
1935 /* Handle checkpointing by linux-fork.c here as a special
1936 case. We don't want the follow-fork-mode or 'catch fork'
1937 to interfere with this. */
1938
1939 /* This won't actually modify the breakpoint list, but will
1940 physically remove the breakpoints from the child. */
1941 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1942
1943 /* Retain child fork in ptrace (stopped) state. */
1944 if (!find_fork_pid (new_pid))
1945 add_fork (new_pid);
1946
1947 /* Report as spurious, so that infrun doesn't want to follow
1948 this fork. We're actually doing an infcall in
1949 linux-fork.c. */
1950 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1951
1952 /* Report the stop to the core. */
1953 return 0;
1954 }
1955
1956 if (event == PTRACE_EVENT_FORK)
1957 ourstatus->kind = TARGET_WAITKIND_FORKED;
1958 else if (event == PTRACE_EVENT_VFORK)
1959 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1960 else if (event == PTRACE_EVENT_CLONE)
1961 {
1962 struct lwp_info *new_lp;
1963
1964 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1965
1966 linux_nat_debug_printf
1967 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1968
1969 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
1970 new_lp->stopped = 1;
1971 new_lp->resumed = 1;
1972
1973 /* If the thread_db layer is active, let it record the user
1974 level thread id and status, and add the thread to GDB's
1975 list. */
1976 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1977 {
1978 /* The process is not using thread_db. Add the LWP to
1979 GDB's list. */
1980 target_post_attach (new_lp->ptid.lwp ());
1981 add_thread (linux_target, new_lp->ptid);
1982 }
1983
1984 /* Even if we're stopping the thread for some reason
1985 internal to this module, from the perspective of infrun
1986 and the user/frontend, this new thread is running until
1987 it next reports a stop. */
1988 set_running (linux_target, new_lp->ptid, true);
1989 set_executing (linux_target, new_lp->ptid, true);
1990
1991 if (WSTOPSIG (status) != SIGSTOP)
1992 {
1993 /* This can happen if someone starts sending signals to
1994 the new thread before it gets a chance to run, which
1995 have a lower number than SIGSTOP (e.g. SIGUSR1).
1996 This is an unlikely case, and harder to handle for
1997 fork / vfork than for clone, so we do not try - but
1998 we handle it for clone events here. */
1999
2000 new_lp->signalled = 1;
2001
2002 /* We created NEW_LP so it cannot yet contain STATUS. */
2003 gdb_assert (new_lp->status == 0);
2004
2005 /* Save the wait status to report later. */
2006 linux_nat_debug_printf
2007 ("waitpid of new LWP %ld, saving status %s",
2008 (long) new_lp->ptid.lwp (), status_to_str (status));
2009 new_lp->status = status;
2010 }
2011 else if (report_thread_events)
2012 {
2013 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2014 new_lp->status = status;
2015 }
2016
2017 return 1;
2018 }
2019
2020 return 0;
2021 }
2022
2023 if (event == PTRACE_EVENT_EXEC)
2024 {
2025 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
2026
2027 ourstatus->kind = TARGET_WAITKIND_EXECD;
2028 ourstatus->value.execd_pathname
2029 = xstrdup (linux_proc_pid_to_exec_file (pid));
2030
2031 /* The thread that execed must have been resumed, but, when a
2032 thread execs, it changes its tid to the tgid, and the old
2033 tgid thread might have not been resumed. */
2034 lp->resumed = 1;
2035 return 0;
2036 }
2037
2038 if (event == PTRACE_EVENT_VFORK_DONE)
2039 {
2040 if (current_inferior ()->waiting_for_vfork_done)
2041 {
2042 linux_nat_debug_printf
2043 ("Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping",
2044 lp->ptid.lwp ());
2045
2046 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2047 return 0;
2048 }
2049
2050 linux_nat_debug_printf
2051 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld: ignoring", lp->ptid.lwp ());
2052
2053 return 1;
2054 }
2055
2056 internal_error (__FILE__, __LINE__,
2057 _("unknown ptrace event %d"), event);
2058 }
2059
2060 /* Suspend waiting for a signal. We're mostly interested in
2061 SIGCHLD/SIGINT. */
2062
2063 static void
2064 wait_for_signal ()
2065 {
2066 linux_nat_debug_printf ("about to sigsuspend");
2067 sigsuspend (&suspend_mask);
2068
2069 /* If the quit flag is set, it means that the user pressed Ctrl-C
2070 and we're debugging a process that is running on a separate
2071 terminal, so we must forward the Ctrl-C to the inferior. (If the
2072 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2073 inferior directly.) We must do this here because functions that
2074 need to block waiting for a signal loop forever until there's an
2075 event to report before returning back to the event loop. */
2076 if (!target_terminal::is_ours ())
2077 {
2078 if (check_quit_flag ())
2079 target_pass_ctrlc ();
2080 }
2081 }
2082
2083 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2084 exited. */
2085
2086 static int
2087 wait_lwp (struct lwp_info *lp)
2088 {
2089 pid_t pid;
2090 int status = 0;
2091 int thread_dead = 0;
2092 sigset_t prev_mask;
2093
2094 gdb_assert (!lp->stopped);
2095 gdb_assert (lp->status == 0);
2096
2097 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2098 block_child_signals (&prev_mask);
2099
2100 for (;;)
2101 {
2102 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2103 if (pid == -1 && errno == ECHILD)
2104 {
2105 /* The thread has previously exited. We need to delete it
2106 now because if this was a non-leader thread execing, we
2107 won't get an exit event. See comments on exec events at
2108 the top of the file. */
2109 thread_dead = 1;
2110 linux_nat_debug_printf ("%s vanished.",
2111 target_pid_to_str (lp->ptid).c_str ());
2112 }
2113 if (pid != 0)
2114 break;
2115
2116 /* Bugs 10970, 12702.
2117 Thread group leader may have exited in which case we'll lock up in
2118 waitpid if there are other threads, even if they are all zombies too.
2119 Basically, we're not supposed to use waitpid this way.
2120 tkill(pid,0) cannot be used here as it gets ESRCH for both
2121 for zombie and running processes.
2122
2123 As a workaround, check if we're waiting for the thread group leader and
2124 if it's a zombie, and avoid calling waitpid if it is.
2125
2126 This is racy, what if the tgl becomes a zombie right after we check?
2127 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2128 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2129
2130 if (lp->ptid.pid () == lp->ptid.lwp ()
2131 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2132 {
2133 thread_dead = 1;
2134 linux_nat_debug_printf ("Thread group leader %s vanished.",
2135 target_pid_to_str (lp->ptid).c_str ());
2136 break;
2137 }
2138
2139 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2140 get invoked despite our caller had them intentionally blocked by
2141 block_child_signals. This is sensitive only to the loop of
2142 linux_nat_wait_1 and there if we get called my_waitpid gets called
2143 again before it gets to sigsuspend so we can safely let the handlers
2144 get executed here. */
2145 wait_for_signal ();
2146 }
2147
2148 restore_child_signals_mask (&prev_mask);
2149
2150 if (!thread_dead)
2151 {
2152 gdb_assert (pid == lp->ptid.lwp ());
2153
2154 linux_nat_debug_printf ("waitpid %s received %s",
2155 target_pid_to_str (lp->ptid).c_str (),
2156 status_to_str (status));
2157
2158 /* Check if the thread has exited. */
2159 if (WIFEXITED (status) || WIFSIGNALED (status))
2160 {
2161 if (report_thread_events
2162 || lp->ptid.pid () == lp->ptid.lwp ())
2163 {
2164 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2165
2166 /* If this is the leader exiting, it means the whole
2167 process is gone. Store the status to report to the
2168 core. Store it in lp->waitstatus, because lp->status
2169 would be ambiguous (W_EXITCODE(0,0) == 0). */
2170 store_waitstatus (&lp->waitstatus, status);
2171 return 0;
2172 }
2173
2174 thread_dead = 1;
2175 linux_nat_debug_printf ("%s exited.",
2176 target_pid_to_str (lp->ptid).c_str ());
2177 }
2178 }
2179
2180 if (thread_dead)
2181 {
2182 exit_lwp (lp);
2183 return 0;
2184 }
2185
2186 gdb_assert (WIFSTOPPED (status));
2187 lp->stopped = 1;
2188
2189 if (lp->must_set_ptrace_flags)
2190 {
2191 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2192 int options = linux_nat_ptrace_options (inf->attach_flag);
2193
2194 linux_enable_event_reporting (lp->ptid.lwp (), options);
2195 lp->must_set_ptrace_flags = 0;
2196 }
2197
2198 /* Handle GNU/Linux's syscall SIGTRAPs. */
2199 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2200 {
2201 /* No longer need the sysgood bit. The ptrace event ends up
2202 recorded in lp->waitstatus if we care for it. We can carry
2203 on handling the event like a regular SIGTRAP from here
2204 on. */
2205 status = W_STOPCODE (SIGTRAP);
2206 if (linux_handle_syscall_trap (lp, 1))
2207 return wait_lwp (lp);
2208 }
2209 else
2210 {
2211 /* Almost all other ptrace-stops are known to be outside of system
2212 calls, with further exceptions in linux_handle_extended_wait. */
2213 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2214 }
2215
2216 /* Handle GNU/Linux's extended waitstatus for trace events. */
2217 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2218 && linux_is_extended_waitstatus (status))
2219 {
2220 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2221 linux_handle_extended_wait (lp, status);
2222 return 0;
2223 }
2224
2225 return status;
2226 }
2227
2228 /* Send a SIGSTOP to LP. */
2229
2230 static int
2231 stop_callback (struct lwp_info *lp)
2232 {
2233 if (!lp->stopped && !lp->signalled)
2234 {
2235 int ret;
2236
2237 linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2238 target_pid_to_str (lp->ptid).c_str ());
2239
2240 errno = 0;
2241 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2242 linux_nat_debug_printf ("lwp kill %d %s", ret,
2243 errno ? safe_strerror (errno) : "ERRNO-OK");
2244
2245 lp->signalled = 1;
2246 gdb_assert (lp->status == 0);
2247 }
2248
2249 return 0;
2250 }
2251
2252 /* Request a stop on LWP. */
2253
2254 void
2255 linux_stop_lwp (struct lwp_info *lwp)
2256 {
2257 stop_callback (lwp);
2258 }
2259
2260 /* See linux-nat.h */
2261
2262 void
2263 linux_stop_and_wait_all_lwps (void)
2264 {
2265 /* Stop all LWP's ... */
2266 iterate_over_lwps (minus_one_ptid, stop_callback);
2267
2268 /* ... and wait until all of them have reported back that
2269 they're no longer running. */
2270 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2271 }
2272
2273 /* See linux-nat.h */
2274
2275 void
2276 linux_unstop_all_lwps (void)
2277 {
2278 iterate_over_lwps (minus_one_ptid,
2279 [] (struct lwp_info *info)
2280 {
2281 return resume_stopped_resumed_lwps (info, minus_one_ptid);
2282 });
2283 }
2284
2285 /* Return non-zero if LWP PID has a pending SIGINT. */
2286
2287 static int
2288 linux_nat_has_pending_sigint (int pid)
2289 {
2290 sigset_t pending, blocked, ignored;
2291
2292 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2293
2294 if (sigismember (&pending, SIGINT)
2295 && !sigismember (&ignored, SIGINT))
2296 return 1;
2297
2298 return 0;
2299 }
2300
2301 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2302
2303 static int
2304 set_ignore_sigint (struct lwp_info *lp)
2305 {
2306 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2307 flag to consume the next one. */
2308 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2309 && WSTOPSIG (lp->status) == SIGINT)
2310 lp->status = 0;
2311 else
2312 lp->ignore_sigint = 1;
2313
2314 return 0;
2315 }
2316
2317 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2318 This function is called after we know the LWP has stopped; if the LWP
2319 stopped before the expected SIGINT was delivered, then it will never have
2320 arrived. Also, if the signal was delivered to a shared queue and consumed
2321 by a different thread, it will never be delivered to this LWP. */
2322
2323 static void
2324 maybe_clear_ignore_sigint (struct lwp_info *lp)
2325 {
2326 if (!lp->ignore_sigint)
2327 return;
2328
2329 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2330 {
2331 linux_nat_debug_printf ("Clearing bogus flag for %s",
2332 target_pid_to_str (lp->ptid).c_str ());
2333 lp->ignore_sigint = 0;
2334 }
2335 }
2336
2337 /* Fetch the possible triggered data watchpoint info and store it in
2338 LP.
2339
2340 On some archs, like x86, that use debug registers to set
2341 watchpoints, it's possible that the way to know which watched
2342 address trapped, is to check the register that is used to select
2343 which address to watch. Problem is, between setting the watchpoint
2344 and reading back which data address trapped, the user may change
2345 the set of watchpoints, and, as a consequence, GDB changes the
2346 debug registers in the inferior. To avoid reading back a stale
2347 stopped-data-address when that happens, we cache in LP the fact
2348 that a watchpoint trapped, and the corresponding data address, as
2349 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2350 registers meanwhile, we have the cached data we can rely on. */
2351
2352 static int
2353 check_stopped_by_watchpoint (struct lwp_info *lp)
2354 {
2355 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2356 inferior_ptid = lp->ptid;
2357
2358 if (linux_target->low_stopped_by_watchpoint ())
2359 {
2360 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2361 lp->stopped_data_address_p
2362 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2363 }
2364
2365 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2366 }
2367
2368 /* Returns true if the LWP had stopped for a watchpoint. */
2369
2370 bool
2371 linux_nat_target::stopped_by_watchpoint ()
2372 {
2373 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2374
2375 gdb_assert (lp != NULL);
2376
2377 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2378 }
2379
2380 bool
2381 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2382 {
2383 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2384
2385 gdb_assert (lp != NULL);
2386
2387 *addr_p = lp->stopped_data_address;
2388
2389 return lp->stopped_data_address_p;
2390 }
2391
2392 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2393
2394 bool
2395 linux_nat_target::low_status_is_event (int status)
2396 {
2397 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2398 }
2399
2400 /* Wait until LP is stopped. */
2401
2402 static int
2403 stop_wait_callback (struct lwp_info *lp)
2404 {
2405 inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2406
2407 /* If this is a vfork parent, bail out, it is not going to report
2408 any SIGSTOP until the vfork is done with. */
2409 if (inf->vfork_child != NULL)
2410 return 0;
2411
2412 if (!lp->stopped)
2413 {
2414 int status;
2415
2416 status = wait_lwp (lp);
2417 if (status == 0)
2418 return 0;
2419
2420 if (lp->ignore_sigint && WIFSTOPPED (status)
2421 && WSTOPSIG (status) == SIGINT)
2422 {
2423 lp->ignore_sigint = 0;
2424
2425 errno = 0;
2426 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2427 lp->stopped = 0;
2428 linux_nat_debug_printf
2429 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2430 target_pid_to_str (lp->ptid).c_str (),
2431 errno ? safe_strerror (errno) : "OK");
2432
2433 return stop_wait_callback (lp);
2434 }
2435
2436 maybe_clear_ignore_sigint (lp);
2437
2438 if (WSTOPSIG (status) != SIGSTOP)
2439 {
2440 /* The thread was stopped with a signal other than SIGSTOP. */
2441
2442 linux_nat_debug_printf ("Pending event %s in %s",
2443 status_to_str ((int) status),
2444 target_pid_to_str (lp->ptid).c_str ());
2445
2446 /* Save the sigtrap event. */
2447 lp->status = status;
2448 gdb_assert (lp->signalled);
2449 save_stop_reason (lp);
2450 }
2451 else
2452 {
2453 /* We caught the SIGSTOP that we intended to catch. */
2454
2455 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2456 target_pid_to_str (lp->ptid).c_str ());
2457
2458 lp->signalled = 0;
2459
2460 /* If we are waiting for this stop so we can report the thread
2461 stopped then we need to record this status. Otherwise, we can
2462 now discard this stop event. */
2463 if (lp->last_resume_kind == resume_stop)
2464 {
2465 lp->status = status;
2466 save_stop_reason (lp);
2467 }
2468 }
2469 }
2470
2471 return 0;
2472 }
2473
2474 /* Return non-zero if LP has a wait status pending. Discard the
2475 pending event and resume the LWP if the event that originally
2476 caused the stop became uninteresting. */
2477
2478 static int
2479 status_callback (struct lwp_info *lp)
2480 {
2481 /* Only report a pending wait status if we pretend that this has
2482 indeed been resumed. */
2483 if (!lp->resumed)
2484 return 0;
2485
2486 if (!lwp_status_pending_p (lp))
2487 return 0;
2488
2489 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2490 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2491 {
2492 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2493 CORE_ADDR pc;
2494 int discard = 0;
2495
2496 pc = regcache_read_pc (regcache);
2497
2498 if (pc != lp->stop_pc)
2499 {
2500 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s",
2501 target_pid_to_str (lp->ptid).c_str (),
2502 paddress (target_gdbarch (), lp->stop_pc),
2503 paddress (target_gdbarch (), pc));
2504 discard = 1;
2505 }
2506
2507 #if !USE_SIGTRAP_SIGINFO
2508 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2509 {
2510 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2511 target_pid_to_str (lp->ptid).c_str (),
2512 paddress (target_gdbarch (), lp->stop_pc));
2513
2514 discard = 1;
2515 }
2516 #endif
2517
2518 if (discard)
2519 {
2520 linux_nat_debug_printf ("pending event of %s cancelled.",
2521 target_pid_to_str (lp->ptid).c_str ());
2522
2523 lp->status = 0;
2524 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2525 return 0;
2526 }
2527 }
2528
2529 return 1;
2530 }
2531
2532 /* Count the LWP's that have had events. */
2533
2534 static int
2535 count_events_callback (struct lwp_info *lp, int *count)
2536 {
2537 gdb_assert (count != NULL);
2538
2539 /* Select only resumed LWPs that have an event pending. */
2540 if (lp->resumed && lwp_status_pending_p (lp))
2541 (*count)++;
2542
2543 return 0;
2544 }
2545
2546 /* Select the LWP (if any) that is currently being single-stepped. */
2547
2548 static int
2549 select_singlestep_lwp_callback (struct lwp_info *lp)
2550 {
2551 if (lp->last_resume_kind == resume_step
2552 && lp->status != 0)
2553 return 1;
2554 else
2555 return 0;
2556 }
2557
2558 /* Returns true if LP has a status pending. */
2559
2560 static int
2561 lwp_status_pending_p (struct lwp_info *lp)
2562 {
2563 /* We check for lp->waitstatus in addition to lp->status, because we
2564 can have pending process exits recorded in lp->status and
2565 W_EXITCODE(0,0) happens to be 0. */
2566 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2567 }
2568
2569 /* Select the Nth LWP that has had an event. */
2570
2571 static int
2572 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2573 {
2574 gdb_assert (selector != NULL);
2575
2576 /* Select only resumed LWPs that have an event pending. */
2577 if (lp->resumed && lwp_status_pending_p (lp))
2578 if ((*selector)-- == 0)
2579 return 1;
2580
2581 return 0;
2582 }
2583
2584 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2585 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2586 and save the result in the LWP's stop_reason field. If it stopped
2587 for a breakpoint, decrement the PC if necessary on the lwp's
2588 architecture. */
2589
2590 static void
2591 save_stop_reason (struct lwp_info *lp)
2592 {
2593 struct regcache *regcache;
2594 struct gdbarch *gdbarch;
2595 CORE_ADDR pc;
2596 CORE_ADDR sw_bp_pc;
2597 #if USE_SIGTRAP_SIGINFO
2598 siginfo_t siginfo;
2599 #endif
2600
2601 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2602 gdb_assert (lp->status != 0);
2603
2604 if (!linux_target->low_status_is_event (lp->status))
2605 return;
2606
2607 regcache = get_thread_regcache (linux_target, lp->ptid);
2608 gdbarch = regcache->arch ();
2609
2610 pc = regcache_read_pc (regcache);
2611 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2612
2613 #if USE_SIGTRAP_SIGINFO
2614 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2615 {
2616 if (siginfo.si_signo == SIGTRAP)
2617 {
2618 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2619 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2620 {
2621 /* The si_code is ambiguous on this arch -- check debug
2622 registers. */
2623 if (!check_stopped_by_watchpoint (lp))
2624 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2625 }
2626 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2627 {
2628 /* If we determine the LWP stopped for a SW breakpoint,
2629 trust it. Particularly don't check watchpoint
2630 registers, because, at least on s390, we'd find
2631 stopped-by-watchpoint as long as there's a watchpoint
2632 set. */
2633 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2634 }
2635 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2636 {
2637 /* This can indicate either a hardware breakpoint or
2638 hardware watchpoint. Check debug registers. */
2639 if (!check_stopped_by_watchpoint (lp))
2640 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2641 }
2642 else if (siginfo.si_code == TRAP_TRACE)
2643 {
2644 linux_nat_debug_printf ("%s stopped by trace",
2645 target_pid_to_str (lp->ptid).c_str ());
2646
2647 /* We may have single stepped an instruction that
2648 triggered a watchpoint. In that case, on some
2649 architectures (such as x86), instead of TRAP_HWBKPT,
2650 si_code indicates TRAP_TRACE, and we need to check
2651 the debug registers separately. */
2652 check_stopped_by_watchpoint (lp);
2653 }
2654 }
2655 }
2656 #else
2657 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2658 && software_breakpoint_inserted_here_p (regcache->aspace (),
2659 sw_bp_pc))
2660 {
2661 /* The LWP was either continued, or stepped a software
2662 breakpoint instruction. */
2663 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2664 }
2665
2666 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2667 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2668
2669 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2670 check_stopped_by_watchpoint (lp);
2671 #endif
2672
2673 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2674 {
2675 linux_nat_debug_printf ("%s stopped by software breakpoint",
2676 target_pid_to_str (lp->ptid).c_str ());
2677
2678 /* Back up the PC if necessary. */
2679 if (pc != sw_bp_pc)
2680 regcache_write_pc (regcache, sw_bp_pc);
2681
2682 /* Update this so we record the correct stop PC below. */
2683 pc = sw_bp_pc;
2684 }
2685 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2686 {
2687 linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2688 target_pid_to_str (lp->ptid).c_str ());
2689 }
2690 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2691 {
2692 linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2693 target_pid_to_str (lp->ptid).c_str ());
2694 }
2695
2696 lp->stop_pc = pc;
2697 }
2698
2699
2700 /* Returns true if the LWP had stopped for a software breakpoint. */
2701
2702 bool
2703 linux_nat_target::stopped_by_sw_breakpoint ()
2704 {
2705 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2706
2707 gdb_assert (lp != NULL);
2708
2709 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2710 }
2711
2712 /* Implement the supports_stopped_by_sw_breakpoint method. */
2713
2714 bool
2715 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2716 {
2717 return USE_SIGTRAP_SIGINFO;
2718 }
2719
2720 /* Returns true if the LWP had stopped for a hardware
2721 breakpoint/watchpoint. */
2722
2723 bool
2724 linux_nat_target::stopped_by_hw_breakpoint ()
2725 {
2726 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2727
2728 gdb_assert (lp != NULL);
2729
2730 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2731 }
2732
2733 /* Implement the supports_stopped_by_hw_breakpoint method. */
2734
2735 bool
2736 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2737 {
2738 return USE_SIGTRAP_SIGINFO;
2739 }
2740
2741 /* Select one LWP out of those that have events pending. */
2742
2743 static void
2744 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2745 {
2746 int num_events = 0;
2747 int random_selector;
2748 struct lwp_info *event_lp = NULL;
2749
2750 /* Record the wait status for the original LWP. */
2751 (*orig_lp)->status = *status;
2752
2753 /* In all-stop, give preference to the LWP that is being
2754 single-stepped. There will be at most one, and it will be the
2755 LWP that the core is most interested in. If we didn't do this,
2756 then we'd have to handle pending step SIGTRAPs somehow in case
2757 the core later continues the previously-stepped thread, as
2758 otherwise we'd report the pending SIGTRAP then, and the core, not
2759 having stepped the thread, wouldn't understand what the trap was
2760 for, and therefore would report it to the user as a random
2761 signal. */
2762 if (!target_is_non_stop_p ())
2763 {
2764 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2765 if (event_lp != NULL)
2766 {
2767 linux_nat_debug_printf ("Select single-step %s",
2768 target_pid_to_str (event_lp->ptid).c_str ());
2769 }
2770 }
2771
2772 if (event_lp == NULL)
2773 {
2774 /* Pick one at random, out of those which have had events. */
2775
2776 /* First see how many events we have. */
2777 iterate_over_lwps (filter,
2778 [&] (struct lwp_info *info)
2779 {
2780 return count_events_callback (info, &num_events);
2781 });
2782 gdb_assert (num_events > 0);
2783
2784 /* Now randomly pick a LWP out of those that have had
2785 events. */
2786 random_selector = (int)
2787 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2788
2789 if (num_events > 1)
2790 linux_nat_debug_printf ("Found %d events, selecting #%d",
2791 num_events, random_selector);
2792
2793 event_lp
2794 = (iterate_over_lwps
2795 (filter,
2796 [&] (struct lwp_info *info)
2797 {
2798 return select_event_lwp_callback (info,
2799 &random_selector);
2800 }));
2801 }
2802
2803 if (event_lp != NULL)
2804 {
2805 /* Switch the event LWP. */
2806 *orig_lp = event_lp;
2807 *status = event_lp->status;
2808 }
2809
2810 /* Flush the wait status for the event LWP. */
2811 (*orig_lp)->status = 0;
2812 }
2813
2814 /* Return non-zero if LP has been resumed. */
2815
2816 static int
2817 resumed_callback (struct lwp_info *lp)
2818 {
2819 return lp->resumed;
2820 }
2821
2822 /* Check if we should go on and pass this event to common code.
2823
2824 If so, save the status to the lwp_info structure associated to LWPID. */
2825
2826 static void
2827 linux_nat_filter_event (int lwpid, int status)
2828 {
2829 struct lwp_info *lp;
2830 int event = linux_ptrace_get_extended_event (status);
2831
2832 lp = find_lwp_pid (ptid_t (lwpid));
2833
2834 /* Check for stop events reported by a process we didn't already
2835 know about - anything not already in our LWP list.
2836
2837 If we're expecting to receive stopped processes after
2838 fork, vfork, and clone events, then we'll just add the
2839 new one to our list and go back to waiting for the event
2840 to be reported - the stopped process might be returned
2841 from waitpid before or after the event is.
2842
2843 But note the case of a non-leader thread exec'ing after the
2844 leader having exited, and gone from our lists. The non-leader
2845 thread changes its tid to the tgid. */
2846
2847 if (WIFSTOPPED (status) && lp == NULL
2848 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2849 {
2850 /* A multi-thread exec after we had seen the leader exiting. */
2851 linux_nat_debug_printf ("Re-adding thread group leader LWP %d.", lwpid);
2852
2853 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2854 lp->stopped = 1;
2855 lp->resumed = 1;
2856 add_thread (linux_target, lp->ptid);
2857 }
2858
2859 if (WIFSTOPPED (status) && !lp)
2860 {
2861 linux_nat_debug_printf ("saving LWP %ld status %s in stopped_pids list",
2862 (long) lwpid, status_to_str (status));
2863 add_to_pid_list (&stopped_pids, lwpid, status);
2864 return;
2865 }
2866
2867 /* Make sure we don't report an event for the exit of an LWP not in
2868 our list, i.e. not part of the current process. This can happen
2869 if we detach from a program we originally forked and then it
2870 exits. */
2871 if (!WIFSTOPPED (status) && !lp)
2872 return;
2873
2874 /* This LWP is stopped now. (And if dead, this prevents it from
2875 ever being continued.) */
2876 lp->stopped = 1;
2877
2878 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2879 {
2880 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2881 int options = linux_nat_ptrace_options (inf->attach_flag);
2882
2883 linux_enable_event_reporting (lp->ptid.lwp (), options);
2884 lp->must_set_ptrace_flags = 0;
2885 }
2886
2887 /* Handle GNU/Linux's syscall SIGTRAPs. */
2888 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2889 {
2890 /* No longer need the sysgood bit. The ptrace event ends up
2891 recorded in lp->waitstatus if we care for it. We can carry
2892 on handling the event like a regular SIGTRAP from here
2893 on. */
2894 status = W_STOPCODE (SIGTRAP);
2895 if (linux_handle_syscall_trap (lp, 0))
2896 return;
2897 }
2898 else
2899 {
2900 /* Almost all other ptrace-stops are known to be outside of system
2901 calls, with further exceptions in linux_handle_extended_wait. */
2902 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2903 }
2904
2905 /* Handle GNU/Linux's extended waitstatus for trace events. */
2906 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2907 && linux_is_extended_waitstatus (status))
2908 {
2909 linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2910
2911 if (linux_handle_extended_wait (lp, status))
2912 return;
2913 }
2914
2915 /* Check if the thread has exited. */
2916 if (WIFEXITED (status) || WIFSIGNALED (status))
2917 {
2918 if (!report_thread_events
2919 && num_lwps (lp->ptid.pid ()) > 1)
2920 {
2921 linux_nat_debug_printf ("%s exited.",
2922 target_pid_to_str (lp->ptid).c_str ());
2923
2924 /* If there is at least one more LWP, then the exit signal
2925 was not the end of the debugged application and should be
2926 ignored. */
2927 exit_lwp (lp);
2928 return;
2929 }
2930
2931 /* Note that even if the leader was ptrace-stopped, it can still
2932 exit, if e.g., some other thread brings down the whole
2933 process (calls `exit'). So don't assert that the lwp is
2934 resumed. */
2935 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2936 lp->ptid.lwp (), lp->resumed);
2937
2938 /* Dead LWP's aren't expected to reported a pending sigstop. */
2939 lp->signalled = 0;
2940
2941 /* Store the pending event in the waitstatus, because
2942 W_EXITCODE(0,0) == 0. */
2943 store_waitstatus (&lp->waitstatus, status);
2944 return;
2945 }
2946
2947 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2948 an attempt to stop an LWP. */
2949 if (lp->signalled
2950 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2951 {
2952 lp->signalled = 0;
2953
2954 if (lp->last_resume_kind == resume_stop)
2955 {
2956 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2957 target_pid_to_str (lp->ptid).c_str ());
2958 }
2959 else
2960 {
2961 /* This is a delayed SIGSTOP. Filter out the event. */
2962
2963 linux_nat_debug_printf
2964 ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2965 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2966 target_pid_to_str (lp->ptid).c_str ());
2967
2968 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2969 gdb_assert (lp->resumed);
2970 return;
2971 }
2972 }
2973
2974 /* Make sure we don't report a SIGINT that we have already displayed
2975 for another thread. */
2976 if (lp->ignore_sigint
2977 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2978 {
2979 linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2980 target_pid_to_str (lp->ptid).c_str ());
2981
2982 /* This is a delayed SIGINT. */
2983 lp->ignore_sigint = 0;
2984
2985 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2986 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2987 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2988 target_pid_to_str (lp->ptid).c_str ());
2989 gdb_assert (lp->resumed);
2990
2991 /* Discard the event. */
2992 return;
2993 }
2994
2995 /* Don't report signals that GDB isn't interested in, such as
2996 signals that are neither printed nor stopped upon. Stopping all
2997 threads can be a bit time-consuming, so if we want decent
2998 performance with heavily multi-threaded programs, especially when
2999 they're using a high frequency timer, we'd better avoid it if we
3000 can. */
3001 if (WIFSTOPPED (status))
3002 {
3003 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3004
3005 if (!target_is_non_stop_p ())
3006 {
3007 /* Only do the below in all-stop, as we currently use SIGSTOP
3008 to implement target_stop (see linux_nat_stop) in
3009 non-stop. */
3010 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3011 {
3012 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3013 forwarded to the entire process group, that is, all LWPs
3014 will receive it - unless they're using CLONE_THREAD to
3015 share signals. Since we only want to report it once, we
3016 mark it as ignored for all LWPs except this one. */
3017 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3018 lp->ignore_sigint = 0;
3019 }
3020 else
3021 maybe_clear_ignore_sigint (lp);
3022 }
3023
3024 /* When using hardware single-step, we need to report every signal.
3025 Otherwise, signals in pass_mask may be short-circuited
3026 except signals that might be caused by a breakpoint, or SIGSTOP
3027 if we sent the SIGSTOP and are waiting for it to arrive. */
3028 if (!lp->step
3029 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3030 && (WSTOPSIG (status) != SIGSTOP
3031 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
3032 && !linux_wstatus_maybe_breakpoint (status))
3033 {
3034 linux_resume_one_lwp (lp, lp->step, signo);
3035 linux_nat_debug_printf
3036 ("%s %s, %s (preempt 'handle')",
3037 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3038 target_pid_to_str (lp->ptid).c_str (),
3039 (signo != GDB_SIGNAL_0
3040 ? strsignal (gdb_signal_to_host (signo)) : "0"));
3041 return;
3042 }
3043 }
3044
3045 /* An interesting event. */
3046 gdb_assert (lp);
3047 lp->status = status;
3048 save_stop_reason (lp);
3049 }
3050
3051 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3052 their exits until all other threads in the group have exited. */
3053
3054 static void
3055 check_zombie_leaders (void)
3056 {
3057 for (inferior *inf : all_inferiors ())
3058 {
3059 struct lwp_info *leader_lp;
3060
3061 if (inf->pid == 0)
3062 continue;
3063
3064 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3065 if (leader_lp != NULL
3066 /* Check if there are other threads in the group, as we may
3067 have raced with the inferior simply exiting. */
3068 && num_lwps (inf->pid) > 1
3069 && linux_proc_pid_is_zombie (inf->pid))
3070 {
3071 linux_nat_debug_printf ("Thread group leader %d zombie "
3072 "(it exited, or another thread execd).",
3073 inf->pid);
3074
3075 /* A leader zombie can mean one of two things:
3076
3077 - It exited, and there's an exit status pending
3078 available, or only the leader exited (not the whole
3079 program). In the latter case, we can't waitpid the
3080 leader's exit status until all other threads are gone.
3081
3082 - There are 3 or more threads in the group, and a thread
3083 other than the leader exec'd. See comments on exec
3084 events at the top of the file. We could try
3085 distinguishing the exit and exec cases, by waiting once
3086 more, and seeing if something comes out, but it doesn't
3087 sound useful. The previous leader _does_ go away, and
3088 we'll re-add the new one once we see the exec event
3089 (which is just the same as what would happen if the
3090 previous leader did exit voluntarily before some other
3091 thread execs). */
3092
3093 linux_nat_debug_printf ("Thread group leader %d vanished.", inf->pid);
3094 exit_lwp (leader_lp);
3095 }
3096 }
3097 }
3098
3099 /* Convenience function that is called when the kernel reports an exit
3100 event. This decides whether to report the event to GDB as a
3101 process exit event, a thread exit event, or to suppress the
3102 event. */
3103
3104 static ptid_t
3105 filter_exit_event (struct lwp_info *event_child,
3106 struct target_waitstatus *ourstatus)
3107 {
3108 ptid_t ptid = event_child->ptid;
3109
3110 if (num_lwps (ptid.pid ()) > 1)
3111 {
3112 if (report_thread_events)
3113 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3114 else
3115 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3116
3117 exit_lwp (event_child);
3118 }
3119
3120 return ptid;
3121 }
3122
3123 static ptid_t
3124 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3125 target_wait_flags target_options)
3126 {
3127 sigset_t prev_mask;
3128 enum resume_kind last_resume_kind;
3129 struct lwp_info *lp;
3130 int status;
3131
3132 linux_nat_debug_printf ("enter");
3133
3134 /* The first time we get here after starting a new inferior, we may
3135 not have added it to the LWP list yet - this is the earliest
3136 moment at which we know its PID. */
3137 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3138 {
3139 ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3140
3141 /* Upgrade the main thread's ptid. */
3142 thread_change_ptid (linux_target, ptid, lwp_ptid);
3143 lp = add_initial_lwp (lwp_ptid);
3144 lp->resumed = 1;
3145 }
3146
3147 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3148 block_child_signals (&prev_mask);
3149
3150 /* First check if there is a LWP with a wait status pending. */
3151 lp = iterate_over_lwps (ptid, status_callback);
3152 if (lp != NULL)
3153 {
3154 linux_nat_debug_printf ("Using pending wait status %s for %s.",
3155 status_to_str (lp->status),
3156 target_pid_to_str (lp->ptid).c_str ());
3157 }
3158
3159 /* But if we don't find a pending event, we'll have to wait. Always
3160 pull all events out of the kernel. We'll randomly select an
3161 event LWP out of all that have events, to prevent starvation. */
3162
3163 while (lp == NULL)
3164 {
3165 pid_t lwpid;
3166
3167 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3168 quirks:
3169
3170 - If the thread group leader exits while other threads in the
3171 thread group still exist, waitpid(TGID, ...) hangs. That
3172 waitpid won't return an exit status until the other threads
3173 in the group are reaped.
3174
3175 - When a non-leader thread execs, that thread just vanishes
3176 without reporting an exit (so we'd hang if we waited for it
3177 explicitly in that case). The exec event is reported to
3178 the TGID pid. */
3179
3180 errno = 0;
3181 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3182
3183 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3184 lwpid,
3185 errno ? safe_strerror (errno) : "ERRNO-OK");
3186
3187 if (lwpid > 0)
3188 {
3189 linux_nat_debug_printf ("waitpid %ld received %s",
3190 (long) lwpid, status_to_str (status));
3191
3192 linux_nat_filter_event (lwpid, status);
3193 /* Retry until nothing comes out of waitpid. A single
3194 SIGCHLD can indicate more than one child stopped. */
3195 continue;
3196 }
3197
3198 /* Now that we've pulled all events out of the kernel, resume
3199 LWPs that don't have an interesting event to report. */
3200 iterate_over_lwps (minus_one_ptid,
3201 [] (struct lwp_info *info)
3202 {
3203 return resume_stopped_resumed_lwps (info, minus_one_ptid);
3204 });
3205
3206 /* ... and find an LWP with a status to report to the core, if
3207 any. */
3208 lp = iterate_over_lwps (ptid, status_callback);
3209 if (lp != NULL)
3210 break;
3211
3212 /* Check for zombie thread group leaders. Those can't be reaped
3213 until all other threads in the thread group are. */
3214 check_zombie_leaders ();
3215
3216 /* If there are no resumed children left, bail. We'd be stuck
3217 forever in the sigsuspend call below otherwise. */
3218 if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3219 {
3220 linux_nat_debug_printf ("exit (no resumed LWP)");
3221
3222 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3223
3224 restore_child_signals_mask (&prev_mask);
3225 return minus_one_ptid;
3226 }
3227
3228 /* No interesting event to report to the core. */
3229
3230 if (target_options & TARGET_WNOHANG)
3231 {
3232 linux_nat_debug_printf ("exit (ignore)");
3233
3234 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3235 restore_child_signals_mask (&prev_mask);
3236 return minus_one_ptid;
3237 }
3238
3239 /* We shouldn't end up here unless we want to try again. */
3240 gdb_assert (lp == NULL);
3241
3242 /* Block until we get an event reported with SIGCHLD. */
3243 wait_for_signal ();
3244 }
3245
3246 gdb_assert (lp);
3247
3248 status = lp->status;
3249 lp->status = 0;
3250
3251 if (!target_is_non_stop_p ())
3252 {
3253 /* Now stop all other LWP's ... */
3254 iterate_over_lwps (minus_one_ptid, stop_callback);
3255
3256 /* ... and wait until all of them have reported back that
3257 they're no longer running. */
3258 iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3259 }
3260
3261 /* If we're not waiting for a specific LWP, choose an event LWP from
3262 among those that have had events. Giving equal priority to all
3263 LWPs that have had events helps prevent starvation. */
3264 if (ptid == minus_one_ptid || ptid.is_pid ())
3265 select_event_lwp (ptid, &lp, &status);
3266
3267 gdb_assert (lp != NULL);
3268
3269 /* Now that we've selected our final event LWP, un-adjust its PC if
3270 it was a software breakpoint, and we can't reliably support the
3271 "stopped by software breakpoint" stop reason. */
3272 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3273 && !USE_SIGTRAP_SIGINFO)
3274 {
3275 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3276 struct gdbarch *gdbarch = regcache->arch ();
3277 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3278
3279 if (decr_pc != 0)
3280 {
3281 CORE_ADDR pc;
3282
3283 pc = regcache_read_pc (regcache);
3284 regcache_write_pc (regcache, pc + decr_pc);
3285 }
3286 }
3287
3288 /* We'll need this to determine whether to report a SIGSTOP as
3289 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3290 clears it. */
3291 last_resume_kind = lp->last_resume_kind;
3292
3293 if (!target_is_non_stop_p ())
3294 {
3295 /* In all-stop, from the core's perspective, all LWPs are now
3296 stopped until a new resume action is sent over. */
3297 iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3298 }
3299 else
3300 {
3301 resume_clear_callback (lp);
3302 }
3303
3304 if (linux_target->low_status_is_event (status))
3305 {
3306 linux_nat_debug_printf ("trap ptid is %s.",
3307 target_pid_to_str (lp->ptid).c_str ());
3308 }
3309
3310 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3311 {
3312 *ourstatus = lp->waitstatus;
3313 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3314 }
3315 else
3316 store_waitstatus (ourstatus, status);
3317
3318 linux_nat_debug_printf ("exit");
3319
3320 restore_child_signals_mask (&prev_mask);
3321
3322 if (last_resume_kind == resume_stop
3323 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3324 && WSTOPSIG (status) == SIGSTOP)
3325 {
3326 /* A thread that has been requested to stop by GDB with
3327 target_stop, and it stopped cleanly, so report as SIG0. The
3328 use of SIGSTOP is an implementation detail. */
3329 ourstatus->value.sig = GDB_SIGNAL_0;
3330 }
3331
3332 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3333 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3334 lp->core = -1;
3335 else
3336 lp->core = linux_common_core_of_thread (lp->ptid);
3337
3338 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3339 return filter_exit_event (lp, ourstatus);
3340
3341 return lp->ptid;
3342 }
3343
3344 /* Resume LWPs that are currently stopped without any pending status
3345 to report, but are resumed from the core's perspective. */
3346
3347 static int
3348 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3349 {
3350 if (!lp->stopped)
3351 {
3352 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3353 target_pid_to_str (lp->ptid).c_str ());
3354 }
3355 else if (!lp->resumed)
3356 {
3357 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3358 target_pid_to_str (lp->ptid).c_str ());
3359 }
3360 else if (lwp_status_pending_p (lp))
3361 {
3362 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3363 target_pid_to_str (lp->ptid).c_str ());
3364 }
3365 else
3366 {
3367 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3368 struct gdbarch *gdbarch = regcache->arch ();
3369
3370 try
3371 {
3372 CORE_ADDR pc = regcache_read_pc (regcache);
3373 int leave_stopped = 0;
3374
3375 /* Don't bother if there's a breakpoint at PC that we'd hit
3376 immediately, and we're not waiting for this LWP. */
3377 if (!lp->ptid.matches (wait_ptid))
3378 {
3379 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3380 leave_stopped = 1;
3381 }
3382
3383 if (!leave_stopped)
3384 {
3385 linux_nat_debug_printf
3386 ("resuming stopped-resumed LWP %s at %s: step=%d",
3387 target_pid_to_str (lp->ptid).c_str (), paddress (gdbarch, pc),
3388 lp->step);
3389
3390 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3391 }
3392 }
3393 catch (const gdb_exception_error &ex)
3394 {
3395 if (!check_ptrace_stopped_lwp_gone (lp))
3396 throw;
3397 }
3398 }
3399
3400 return 0;
3401 }
3402
3403 ptid_t
3404 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3405 target_wait_flags target_options)
3406 {
3407 ptid_t event_ptid;
3408
3409 linux_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (),
3410 target_options_to_string (target_options).c_str ());
3411
3412 /* Flush the async file first. */
3413 if (target_is_async_p ())
3414 async_file_flush ();
3415
3416 /* Resume LWPs that are currently stopped without any pending status
3417 to report, but are resumed from the core's perspective. LWPs get
3418 in this state if we find them stopping at a time we're not
3419 interested in reporting the event (target_wait on a
3420 specific_process, for example, see linux_nat_wait_1), and
3421 meanwhile the event became uninteresting. Don't bother resuming
3422 LWPs we're not going to wait for if they'd stop immediately. */
3423 if (target_is_non_stop_p ())
3424 iterate_over_lwps (minus_one_ptid,
3425 [=] (struct lwp_info *info)
3426 {
3427 return resume_stopped_resumed_lwps (info, ptid);
3428 });
3429
3430 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3431
3432 /* If we requested any event, and something came out, assume there
3433 may be more. If we requested a specific lwp or process, also
3434 assume there may be more. */
3435 if (target_is_async_p ()
3436 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3437 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3438 || ptid != minus_one_ptid))
3439 async_file_mark ();
3440
3441 return event_ptid;
3442 }
3443
3444 /* Kill one LWP. */
3445
3446 static void
3447 kill_one_lwp (pid_t pid)
3448 {
3449 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3450
3451 errno = 0;
3452 kill_lwp (pid, SIGKILL);
3453
3454 if (debug_linux_nat)
3455 {
3456 int save_errno = errno;
3457
3458 linux_nat_debug_printf
3459 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3460 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3461 }
3462
3463 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3464
3465 errno = 0;
3466 ptrace (PTRACE_KILL, pid, 0, 0);
3467 if (debug_linux_nat)
3468 {
3469 int save_errno = errno;
3470
3471 linux_nat_debug_printf
3472 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3473 save_errno ? safe_strerror (save_errno) : "OK");
3474 }
3475 }
3476
3477 /* Wait for an LWP to die. */
3478
3479 static void
3480 kill_wait_one_lwp (pid_t pid)
3481 {
3482 pid_t res;
3483
3484 /* We must make sure that there are no pending events (delayed
3485 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3486 program doesn't interfere with any following debugging session. */
3487
3488 do
3489 {
3490 res = my_waitpid (pid, NULL, __WALL);
3491 if (res != (pid_t) -1)
3492 {
3493 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3494
3495 /* The Linux kernel sometimes fails to kill a thread
3496 completely after PTRACE_KILL; that goes from the stop
3497 point in do_fork out to the one in get_signal_to_deliver
3498 and waits again. So kill it again. */
3499 kill_one_lwp (pid);
3500 }
3501 }
3502 while (res == pid);
3503
3504 gdb_assert (res == -1 && errno == ECHILD);
3505 }
3506
3507 /* Callback for iterate_over_lwps. */
3508
3509 static int
3510 kill_callback (struct lwp_info *lp)
3511 {
3512 kill_one_lwp (lp->ptid.lwp ());
3513 return 0;
3514 }
3515
3516 /* Callback for iterate_over_lwps. */
3517
3518 static int
3519 kill_wait_callback (struct lwp_info *lp)
3520 {
3521 kill_wait_one_lwp (lp->ptid.lwp ());
3522 return 0;
3523 }
3524
3525 /* Kill the fork children of any threads of inferior INF that are
3526 stopped at a fork event. */
3527
3528 static void
3529 kill_unfollowed_fork_children (struct inferior *inf)
3530 {
3531 for (thread_info *thread : inf->non_exited_threads ())
3532 {
3533 struct target_waitstatus *ws = &thread->pending_follow;
3534
3535 if (ws->kind == TARGET_WAITKIND_FORKED
3536 || ws->kind == TARGET_WAITKIND_VFORKED)
3537 {
3538 ptid_t child_ptid = ws->value.related_pid;
3539 int child_pid = child_ptid.pid ();
3540 int child_lwp = child_ptid.lwp ();
3541
3542 kill_one_lwp (child_lwp);
3543 kill_wait_one_lwp (child_lwp);
3544
3545 /* Let the arch-specific native code know this process is
3546 gone. */
3547 linux_target->low_forget_process (child_pid);
3548 }
3549 }
3550 }
3551
3552 void
3553 linux_nat_target::kill ()
3554 {
3555 /* If we're stopped while forking and we haven't followed yet,
3556 kill the other task. We need to do this first because the
3557 parent will be sleeping if this is a vfork. */
3558 kill_unfollowed_fork_children (current_inferior ());
3559
3560 if (forks_exist_p ())
3561 linux_fork_killall ();
3562 else
3563 {
3564 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3565
3566 /* Stop all threads before killing them, since ptrace requires
3567 that the thread is stopped to successfully PTRACE_KILL. */
3568 iterate_over_lwps (ptid, stop_callback);
3569 /* ... and wait until all of them have reported back that
3570 they're no longer running. */
3571 iterate_over_lwps (ptid, stop_wait_callback);
3572
3573 /* Kill all LWP's ... */
3574 iterate_over_lwps (ptid, kill_callback);
3575
3576 /* ... and wait until we've flushed all events. */
3577 iterate_over_lwps (ptid, kill_wait_callback);
3578 }
3579
3580 target_mourn_inferior (inferior_ptid);
3581 }
3582
3583 void
3584 linux_nat_target::mourn_inferior ()
3585 {
3586 int pid = inferior_ptid.pid ();
3587
3588 purge_lwp_list (pid);
3589
3590 if (! forks_exist_p ())
3591 /* Normal case, no other forks available. */
3592 inf_ptrace_target::mourn_inferior ();
3593 else
3594 /* Multi-fork case. The current inferior_ptid has exited, but
3595 there are other viable forks to debug. Delete the exiting
3596 one and context-switch to the first available. */
3597 linux_fork_mourn_inferior ();
3598
3599 /* Let the arch-specific native code know this process is gone. */
3600 linux_target->low_forget_process (pid);
3601 }
3602
3603 /* Convert a native/host siginfo object, into/from the siginfo in the
3604 layout of the inferiors' architecture. */
3605
3606 static void
3607 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3608 {
3609 /* If the low target didn't do anything, then just do a straight
3610 memcpy. */
3611 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3612 {
3613 if (direction == 1)
3614 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3615 else
3616 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3617 }
3618 }
3619
3620 static enum target_xfer_status
3621 linux_xfer_siginfo (enum target_object object,
3622 const char *annex, gdb_byte *readbuf,
3623 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3624 ULONGEST *xfered_len)
3625 {
3626 int pid;
3627 siginfo_t siginfo;
3628 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3629
3630 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3631 gdb_assert (readbuf || writebuf);
3632
3633 pid = inferior_ptid.lwp ();
3634 if (pid == 0)
3635 pid = inferior_ptid.pid ();
3636
3637 if (offset > sizeof (siginfo))
3638 return TARGET_XFER_E_IO;
3639
3640 errno = 0;
3641 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3642 if (errno != 0)
3643 return TARGET_XFER_E_IO;
3644
3645 /* When GDB is built as a 64-bit application, ptrace writes into
3646 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3647 inferior with a 64-bit GDB should look the same as debugging it
3648 with a 32-bit GDB, we need to convert it. GDB core always sees
3649 the converted layout, so any read/write will have to be done
3650 post-conversion. */
3651 siginfo_fixup (&siginfo, inf_siginfo, 0);
3652
3653 if (offset + len > sizeof (siginfo))
3654 len = sizeof (siginfo) - offset;
3655
3656 if (readbuf != NULL)
3657 memcpy (readbuf, inf_siginfo + offset, len);
3658 else
3659 {
3660 memcpy (inf_siginfo + offset, writebuf, len);
3661
3662 /* Convert back to ptrace layout before flushing it out. */
3663 siginfo_fixup (&siginfo, inf_siginfo, 1);
3664
3665 errno = 0;
3666 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3667 if (errno != 0)
3668 return TARGET_XFER_E_IO;
3669 }
3670
3671 *xfered_len = len;
3672 return TARGET_XFER_OK;
3673 }
3674
3675 static enum target_xfer_status
3676 linux_nat_xfer_osdata (enum target_object object,
3677 const char *annex, gdb_byte *readbuf,
3678 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3679 ULONGEST *xfered_len);
3680
3681 static enum target_xfer_status
3682 linux_proc_xfer_partial (enum target_object object,
3683 const char *annex, gdb_byte *readbuf,
3684 const gdb_byte *writebuf,
3685 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3686
3687 enum target_xfer_status
3688 linux_nat_target::xfer_partial (enum target_object object,
3689 const char *annex, gdb_byte *readbuf,
3690 const gdb_byte *writebuf,
3691 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3692 {
3693 enum target_xfer_status xfer;
3694
3695 if (object == TARGET_OBJECT_SIGNAL_INFO)
3696 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3697 offset, len, xfered_len);
3698
3699 /* The target is connected but no live inferior is selected. Pass
3700 this request down to a lower stratum (e.g., the executable
3701 file). */
3702 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3703 return TARGET_XFER_EOF;
3704
3705 if (object == TARGET_OBJECT_AUXV)
3706 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3707 offset, len, xfered_len);
3708
3709 if (object == TARGET_OBJECT_OSDATA)
3710 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3711 offset, len, xfered_len);
3712
3713 /* GDB calculates all addresses in the largest possible address
3714 width.
3715 The address width must be masked before its final use - either by
3716 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3717
3718 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3719
3720 if (object == TARGET_OBJECT_MEMORY)
3721 {
3722 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3723
3724 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3725 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3726 }
3727
3728 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3729 offset, len, xfered_len);
3730 if (xfer != TARGET_XFER_EOF)
3731 return xfer;
3732
3733 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3734 offset, len, xfered_len);
3735 }
3736
3737 bool
3738 linux_nat_target::thread_alive (ptid_t ptid)
3739 {
3740 /* As long as a PTID is in lwp list, consider it alive. */
3741 return find_lwp_pid (ptid) != NULL;
3742 }
3743
3744 /* Implement the to_update_thread_list target method for this
3745 target. */
3746
3747 void
3748 linux_nat_target::update_thread_list ()
3749 {
3750 struct lwp_info *lwp;
3751
3752 /* We add/delete threads from the list as clone/exit events are
3753 processed, so just try deleting exited threads still in the
3754 thread list. */
3755 delete_exited_threads ();
3756
3757 /* Update the processor core that each lwp/thread was last seen
3758 running on. */
3759 ALL_LWPS (lwp)
3760 {
3761 /* Avoid accessing /proc if the thread hasn't run since we last
3762 time we fetched the thread's core. Accessing /proc becomes
3763 noticeably expensive when we have thousands of LWPs. */
3764 if (lwp->core == -1)
3765 lwp->core = linux_common_core_of_thread (lwp->ptid);
3766 }
3767 }
3768
3769 std::string
3770 linux_nat_target::pid_to_str (ptid_t ptid)
3771 {
3772 if (ptid.lwp_p ()
3773 && (ptid.pid () != ptid.lwp ()
3774 || num_lwps (ptid.pid ()) > 1))
3775 return string_printf ("LWP %ld", ptid.lwp ());
3776
3777 return normal_pid_to_str (ptid);
3778 }
3779
3780 const char *
3781 linux_nat_target::thread_name (struct thread_info *thr)
3782 {
3783 return linux_proc_tid_get_name (thr->ptid);
3784 }
3785
3786 /* Accepts an integer PID; Returns a string representing a file that
3787 can be opened to get the symbols for the child process. */
3788
3789 char *
3790 linux_nat_target::pid_to_exec_file (int pid)
3791 {
3792 return linux_proc_pid_to_exec_file (pid);
3793 }
3794
3795 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3796 Because we can use a single read/write call, this can be much more
3797 efficient than banging away at PTRACE_PEEKTEXT. */
3798
3799 static enum target_xfer_status
3800 linux_proc_xfer_partial (enum target_object object,
3801 const char *annex, gdb_byte *readbuf,
3802 const gdb_byte *writebuf,
3803 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3804 {
3805 LONGEST ret;
3806 int fd;
3807 char filename[64];
3808
3809 if (object != TARGET_OBJECT_MEMORY)
3810 return TARGET_XFER_EOF;
3811
3812 /* Don't bother for one word. */
3813 if (len < 3 * sizeof (long))
3814 return TARGET_XFER_EOF;
3815
3816 /* We could keep this file open and cache it - possibly one per
3817 thread. That requires some juggling, but is even faster. */
3818 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3819 inferior_ptid.lwp ());
3820 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3821 | O_LARGEFILE), 0);
3822 if (fd == -1)
3823 return TARGET_XFER_EOF;
3824
3825 /* Use pread64/pwrite64 if available, since they save a syscall and can
3826 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3827 debugging a SPARC64 application). */
3828 #ifdef HAVE_PREAD64
3829 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3830 : pwrite64 (fd, writebuf, len, offset));
3831 #else
3832 ret = lseek (fd, offset, SEEK_SET);
3833 if (ret != -1)
3834 ret = (readbuf ? read (fd, readbuf, len)
3835 : write (fd, writebuf, len));
3836 #endif
3837
3838 close (fd);
3839
3840 if (ret == -1 || ret == 0)
3841 return TARGET_XFER_EOF;
3842 else
3843 {
3844 *xfered_len = ret;
3845 return TARGET_XFER_OK;
3846 }
3847 }
3848
3849
3850 /* Parse LINE as a signal set and add its set bits to SIGS. */
3851
3852 static void
3853 add_line_to_sigset (const char *line, sigset_t *sigs)
3854 {
3855 int len = strlen (line) - 1;
3856 const char *p;
3857 int signum;
3858
3859 if (line[len] != '\n')
3860 error (_("Could not parse signal set: %s"), line);
3861
3862 p = line;
3863 signum = len * 4;
3864 while (len-- > 0)
3865 {
3866 int digit;
3867
3868 if (*p >= '0' && *p <= '9')
3869 digit = *p - '0';
3870 else if (*p >= 'a' && *p <= 'f')
3871 digit = *p - 'a' + 10;
3872 else
3873 error (_("Could not parse signal set: %s"), line);
3874
3875 signum -= 4;
3876
3877 if (digit & 1)
3878 sigaddset (sigs, signum + 1);
3879 if (digit & 2)
3880 sigaddset (sigs, signum + 2);
3881 if (digit & 4)
3882 sigaddset (sigs, signum + 3);
3883 if (digit & 8)
3884 sigaddset (sigs, signum + 4);
3885
3886 p++;
3887 }
3888 }
3889
3890 /* Find process PID's pending signals from /proc/pid/status and set
3891 SIGS to match. */
3892
3893 void
3894 linux_proc_pending_signals (int pid, sigset_t *pending,
3895 sigset_t *blocked, sigset_t *ignored)
3896 {
3897 char buffer[PATH_MAX], fname[PATH_MAX];
3898
3899 sigemptyset (pending);
3900 sigemptyset (blocked);
3901 sigemptyset (ignored);
3902 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
3903 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
3904 if (procfile == NULL)
3905 error (_("Could not open %s"), fname);
3906
3907 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
3908 {
3909 /* Normal queued signals are on the SigPnd line in the status
3910 file. However, 2.6 kernels also have a "shared" pending
3911 queue for delivering signals to a thread group, so check for
3912 a ShdPnd line also.
3913
3914 Unfortunately some Red Hat kernels include the shared pending
3915 queue but not the ShdPnd status field. */
3916
3917 if (startswith (buffer, "SigPnd:\t"))
3918 add_line_to_sigset (buffer + 8, pending);
3919 else if (startswith (buffer, "ShdPnd:\t"))
3920 add_line_to_sigset (buffer + 8, pending);
3921 else if (startswith (buffer, "SigBlk:\t"))
3922 add_line_to_sigset (buffer + 8, blocked);
3923 else if (startswith (buffer, "SigIgn:\t"))
3924 add_line_to_sigset (buffer + 8, ignored);
3925 }
3926 }
3927
3928 static enum target_xfer_status
3929 linux_nat_xfer_osdata (enum target_object object,
3930 const char *annex, gdb_byte *readbuf,
3931 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3932 ULONGEST *xfered_len)
3933 {
3934 gdb_assert (object == TARGET_OBJECT_OSDATA);
3935
3936 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
3937 if (*xfered_len == 0)
3938 return TARGET_XFER_EOF;
3939 else
3940 return TARGET_XFER_OK;
3941 }
3942
3943 std::vector<static_tracepoint_marker>
3944 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
3945 {
3946 char s[IPA_CMD_BUF_SIZE];
3947 int pid = inferior_ptid.pid ();
3948 std::vector<static_tracepoint_marker> markers;
3949 const char *p = s;
3950 ptid_t ptid = ptid_t (pid, 0, 0);
3951 static_tracepoint_marker marker;
3952
3953 /* Pause all */
3954 target_stop (ptid);
3955
3956 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
3957 s[sizeof ("qTfSTM")] = 0;
3958
3959 agent_run_command (pid, s, strlen (s) + 1);
3960
3961 /* Unpause all. */
3962 SCOPE_EXIT { target_continue_no_signal (ptid); };
3963
3964 while (*p++ == 'm')
3965 {
3966 do
3967 {
3968 parse_static_tracepoint_marker_definition (p, &p, &marker);
3969
3970 if (strid == NULL || marker.str_id == strid)
3971 markers.push_back (std::move (marker));
3972 }
3973 while (*p++ == ','); /* comma-separated list */
3974
3975 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
3976 s[sizeof ("qTsSTM")] = 0;
3977 agent_run_command (pid, s, strlen (s) + 1);
3978 p = s;
3979 }
3980
3981 return markers;
3982 }
3983
3984 /* target_is_async_p implementation. */
3985
3986 bool
3987 linux_nat_target::is_async_p ()
3988 {
3989 return linux_is_async_p ();
3990 }
3991
3992 /* target_can_async_p implementation. */
3993
3994 bool
3995 linux_nat_target::can_async_p ()
3996 {
3997 /* We're always async, unless the user explicitly prevented it with the
3998 "maint set target-async" command. */
3999 return target_async_permitted;
4000 }
4001
4002 bool
4003 linux_nat_target::supports_non_stop ()
4004 {
4005 return true;
4006 }
4007
4008 /* to_always_non_stop_p implementation. */
4009
4010 bool
4011 linux_nat_target::always_non_stop_p ()
4012 {
4013 return true;
4014 }
4015
4016 bool
4017 linux_nat_target::supports_multi_process ()
4018 {
4019 return true;
4020 }
4021
4022 bool
4023 linux_nat_target::supports_disable_randomization ()
4024 {
4025 return true;
4026 }
4027
4028 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4029 so we notice when any child changes state, and notify the
4030 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4031 above to wait for the arrival of a SIGCHLD. */
4032
4033 static void
4034 sigchld_handler (int signo)
4035 {
4036 int old_errno = errno;
4037
4038 if (debug_linux_nat)
4039 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4040
4041 if (signo == SIGCHLD
4042 && linux_nat_event_pipe[0] != -1)
4043 async_file_mark (); /* Let the event loop know that there are
4044 events to handle. */
4045
4046 errno = old_errno;
4047 }
4048
4049 /* Callback registered with the target events file descriptor. */
4050
4051 static void
4052 handle_target_event (int error, gdb_client_data client_data)
4053 {
4054 inferior_event_handler (INF_REG_EVENT);
4055 }
4056
4057 /* Create/destroy the target events pipe. Returns previous state. */
4058
4059 static int
4060 linux_async_pipe (int enable)
4061 {
4062 int previous = linux_is_async_p ();
4063
4064 if (previous != enable)
4065 {
4066 sigset_t prev_mask;
4067
4068 /* Block child signals while we create/destroy the pipe, as
4069 their handler writes to it. */
4070 block_child_signals (&prev_mask);
4071
4072 if (enable)
4073 {
4074 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4075 internal_error (__FILE__, __LINE__,
4076 "creating event pipe failed.");
4077
4078 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4079 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4080 }
4081 else
4082 {
4083 close (linux_nat_event_pipe[0]);
4084 close (linux_nat_event_pipe[1]);
4085 linux_nat_event_pipe[0] = -1;
4086 linux_nat_event_pipe[1] = -1;
4087 }
4088
4089 restore_child_signals_mask (&prev_mask);
4090 }
4091
4092 return previous;
4093 }
4094
4095 int
4096 linux_nat_target::async_wait_fd ()
4097 {
4098 return linux_nat_event_pipe[0];
4099 }
4100
4101 /* target_async implementation. */
4102
4103 void
4104 linux_nat_target::async (int enable)
4105 {
4106 if (enable)
4107 {
4108 if (!linux_async_pipe (1))
4109 {
4110 add_file_handler (linux_nat_event_pipe[0],
4111 handle_target_event, NULL,
4112 "linux-nat");
4113 /* There may be pending events to handle. Tell the event loop
4114 to poll them. */
4115 async_file_mark ();
4116 }
4117 }
4118 else
4119 {
4120 delete_file_handler (linux_nat_event_pipe[0]);
4121 linux_async_pipe (0);
4122 }
4123 return;
4124 }
4125
4126 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4127 event came out. */
4128
4129 static int
4130 linux_nat_stop_lwp (struct lwp_info *lwp)
4131 {
4132 if (!lwp->stopped)
4133 {
4134 linux_nat_debug_printf ("running -> suspending %s",
4135 target_pid_to_str (lwp->ptid).c_str ());
4136
4137
4138 if (lwp->last_resume_kind == resume_stop)
4139 {
4140 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4141 lwp->ptid.lwp ());
4142 return 0;
4143 }
4144
4145 stop_callback (lwp);
4146 lwp->last_resume_kind = resume_stop;
4147 }
4148 else
4149 {
4150 /* Already known to be stopped; do nothing. */
4151
4152 if (debug_linux_nat)
4153 {
4154 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4155 linux_nat_debug_printf ("already stopped/stop_requested %s",
4156 target_pid_to_str (lwp->ptid).c_str ());
4157 else
4158 linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4159 target_pid_to_str (lwp->ptid).c_str ());
4160 }
4161 }
4162 return 0;
4163 }
4164
4165 void
4166 linux_nat_target::stop (ptid_t ptid)
4167 {
4168 iterate_over_lwps (ptid, linux_nat_stop_lwp);
4169 }
4170
4171 void
4172 linux_nat_target::close ()
4173 {
4174 /* Unregister from the event loop. */
4175 if (is_async_p ())
4176 async (0);
4177
4178 inf_ptrace_target::close ();
4179 }
4180
4181 /* When requests are passed down from the linux-nat layer to the
4182 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4183 used. The address space pointer is stored in the inferior object,
4184 but the common code that is passed such ptid can't tell whether
4185 lwpid is a "main" process id or not (it assumes so). We reverse
4186 look up the "main" process id from the lwp here. */
4187
4188 struct address_space *
4189 linux_nat_target::thread_address_space (ptid_t ptid)
4190 {
4191 struct lwp_info *lwp;
4192 struct inferior *inf;
4193 int pid;
4194
4195 if (ptid.lwp () == 0)
4196 {
4197 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4198 tgid. */
4199 lwp = find_lwp_pid (ptid);
4200 pid = lwp->ptid.pid ();
4201 }
4202 else
4203 {
4204 /* A (pid,lwpid,0) ptid. */
4205 pid = ptid.pid ();
4206 }
4207
4208 inf = find_inferior_pid (this, pid);
4209 gdb_assert (inf != NULL);
4210 return inf->aspace;
4211 }
4212
4213 /* Return the cached value of the processor core for thread PTID. */
4214
4215 int
4216 linux_nat_target::core_of_thread (ptid_t ptid)
4217 {
4218 struct lwp_info *info = find_lwp_pid (ptid);
4219
4220 if (info)
4221 return info->core;
4222 return -1;
4223 }
4224
4225 /* Implementation of to_filesystem_is_local. */
4226
4227 bool
4228 linux_nat_target::filesystem_is_local ()
4229 {
4230 struct inferior *inf = current_inferior ();
4231
4232 if (inf->fake_pid_p || inf->pid == 0)
4233 return true;
4234
4235 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4236 }
4237
4238 /* Convert the INF argument passed to a to_fileio_* method
4239 to a process ID suitable for passing to its corresponding
4240 linux_mntns_* function. If INF is non-NULL then the
4241 caller is requesting the filesystem seen by INF. If INF
4242 is NULL then the caller is requesting the filesystem seen
4243 by the GDB. We fall back to GDB's filesystem in the case
4244 that INF is non-NULL but its PID is unknown. */
4245
4246 static pid_t
4247 linux_nat_fileio_pid_of (struct inferior *inf)
4248 {
4249 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4250 return getpid ();
4251 else
4252 return inf->pid;
4253 }
4254
4255 /* Implementation of to_fileio_open. */
4256
4257 int
4258 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4259 int flags, int mode, int warn_if_slow,
4260 int *target_errno)
4261 {
4262 int nat_flags;
4263 mode_t nat_mode;
4264 int fd;
4265
4266 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4267 || fileio_to_host_mode (mode, &nat_mode) == -1)
4268 {
4269 *target_errno = FILEIO_EINVAL;
4270 return -1;
4271 }
4272
4273 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4274 filename, nat_flags, nat_mode);
4275 if (fd == -1)
4276 *target_errno = host_to_fileio_error (errno);
4277
4278 return fd;
4279 }
4280
4281 /* Implementation of to_fileio_readlink. */
4282
4283 gdb::optional<std::string>
4284 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4285 int *target_errno)
4286 {
4287 char buf[PATH_MAX];
4288 int len;
4289
4290 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4291 filename, buf, sizeof (buf));
4292 if (len < 0)
4293 {
4294 *target_errno = host_to_fileio_error (errno);
4295 return {};
4296 }
4297
4298 return std::string (buf, len);
4299 }
4300
4301 /* Implementation of to_fileio_unlink. */
4302
4303 int
4304 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4305 int *target_errno)
4306 {
4307 int ret;
4308
4309 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4310 filename);
4311 if (ret == -1)
4312 *target_errno = host_to_fileio_error (errno);
4313
4314 return ret;
4315 }
4316
4317 /* Implementation of the to_thread_events method. */
4318
4319 void
4320 linux_nat_target::thread_events (int enable)
4321 {
4322 report_thread_events = enable;
4323 }
4324
4325 linux_nat_target::linux_nat_target ()
4326 {
4327 /* We don't change the stratum; this target will sit at
4328 process_stratum and thread_db will set at thread_stratum. This
4329 is a little strange, since this is a multi-threaded-capable
4330 target, but we want to be on the stack below thread_db, and we
4331 also want to be used for single-threaded processes. */
4332 }
4333
4334 /* See linux-nat.h. */
4335
4336 int
4337 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4338 {
4339 int pid;
4340
4341 pid = ptid.lwp ();
4342 if (pid == 0)
4343 pid = ptid.pid ();
4344
4345 errno = 0;
4346 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4347 if (errno != 0)
4348 {
4349 memset (siginfo, 0, sizeof (*siginfo));
4350 return 0;
4351 }
4352 return 1;
4353 }
4354
4355 /* See nat/linux-nat.h. */
4356
4357 ptid_t
4358 current_lwp_ptid (void)
4359 {
4360 gdb_assert (inferior_ptid.lwp_p ());
4361 return inferior_ptid;
4362 }
4363
4364 void _initialize_linux_nat ();
4365 void
4366 _initialize_linux_nat ()
4367 {
4368 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4369 &debug_linux_nat, _("\
4370 Set debugging of GNU/Linux lwp module."), _("\
4371 Show debugging of GNU/Linux lwp module."), _("\
4372 Enables printf debugging output."),
4373 NULL,
4374 show_debug_linux_nat,
4375 &setdebuglist, &showdebuglist);
4376
4377 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4378 &debug_linux_namespaces, _("\
4379 Set debugging of GNU/Linux namespaces module."), _("\
4380 Show debugging of GNU/Linux namespaces module."), _("\
4381 Enables printf debugging output."),
4382 NULL,
4383 NULL,
4384 &setdebuglist, &showdebuglist);
4385
4386 /* Install a SIGCHLD handler. */
4387 sigchld_action.sa_handler = sigchld_handler;
4388 sigemptyset (&sigchld_action.sa_mask);
4389 sigchld_action.sa_flags = SA_RESTART;
4390
4391 /* Make it the default. */
4392 sigaction (SIGCHLD, &sigchld_action, NULL);
4393
4394 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4395 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4396 sigdelset (&suspend_mask, SIGCHLD);
4397
4398 sigemptyset (&blocked_mask);
4399
4400 lwp_lwpid_htab_create ();
4401 }
4402 \f
4403
4404 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4405 the GNU/Linux Threads library and therefore doesn't really belong
4406 here. */
4407
4408 /* NPTL reserves the first two RT signals, but does not provide any
4409 way for the debugger to query the signal numbers - fortunately
4410 they don't change. */
4411 static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 };
4412
4413 /* See linux-nat.h. */
4414
4415 unsigned int
4416 lin_thread_get_thread_signal_num (void)
4417 {
4418 return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]);
4419 }
4420
4421 /* See linux-nat.h. */
4422
4423 int
4424 lin_thread_get_thread_signal (unsigned int i)
4425 {
4426 gdb_assert (i < lin_thread_get_thread_signal_num ());
4427 return lin_thread_signals[i];
4428 }
This page took 0.319053 seconds and 4 git commands to generate.