* linux-thread-db.c (thread_db_new_objfile): Only try to load
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif /* HAVE_PERSONALITY */
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
178
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
183 gdb_byte *,
184 int);
185
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
189 enum target_object,
190 const char *, gdb_byte *,
191 const gdb_byte *,
192 ULONGEST, LONGEST);
193
194 static int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 struct simple_pid_list
204 {
205 int pid;
206 int status;
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
212 can not be used, 1 if it can. */
213
214 static int linux_supports_tracefork_flag = -1;
215
216 /* This variable is a tri-state flag: -1 for unknown, 0 if
217 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
218
219 static int linux_supports_tracesysgood_flag = -1;
220
221 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
222 PTRACE_O_TRACEVFORKDONE. */
223
224 static int linux_supports_tracevforkdone_flag = -1;
225
226 /* Stores the current used ptrace() options. */
227 static int current_ptrace_options = 0;
228
229 /* Async mode support. */
230
231 /* The read/write ends of the pipe registered as waitable file in the
232 event loop. */
233 static int linux_nat_event_pipe[2] = { -1, -1 };
234
235 /* Flush the event pipe. */
236
237 static void
238 async_file_flush (void)
239 {
240 int ret;
241 char buf;
242
243 do
244 {
245 ret = read (linux_nat_event_pipe[0], &buf, 1);
246 }
247 while (ret >= 0 || (ret == -1 && errno == EINTR));
248 }
249
250 /* Put something (anything, doesn't matter what, or how much) in event
251 pipe, so that the select/poll in the event-loop realizes we have
252 something to process. */
253
254 static void
255 async_file_mark (void)
256 {
257 int ret;
258
259 /* It doesn't really matter what the pipe contains, as long we end
260 up with something in it. Might as well flush the previous
261 left-overs. */
262 async_file_flush ();
263
264 do
265 {
266 ret = write (linux_nat_event_pipe[1], "+", 1);
267 }
268 while (ret == -1 && errno == EINTR);
269
270 /* Ignore EAGAIN. If the pipe is full, the event loop will already
271 be awakened anyway. */
272 }
273
274 static void linux_nat_async (void (*callback)
275 (enum inferior_event_type event_type,
276 void *context),
277 void *context);
278 static int kill_lwp (int lwpid, int signo);
279
280 static int stop_callback (struct lwp_info *lp, void *data);
281
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static struct lwp_info *find_lwp_pid (ptid_t ptid);
289
290 \f
291 /* Trivial list manipulation functions to keep track of a list of
292 new stopped processes. */
293 static void
294 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
295 {
296 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
297
298 new_pid->pid = pid;
299 new_pid->status = status;
300 new_pid->next = *listp;
301 *listp = new_pid;
302 }
303
304 static int
305 in_pid_list_p (struct simple_pid_list *list, int pid)
306 {
307 struct simple_pid_list *p;
308
309 for (p = list; p != NULL; p = p->next)
310 if (p->pid == pid)
311 return 1;
312 return 0;
313 }
314
315 static int
316 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
317 {
318 struct simple_pid_list **p;
319
320 for (p = listp; *p != NULL; p = &(*p)->next)
321 if ((*p)->pid == pid)
322 {
323 struct simple_pid_list *next = (*p)->next;
324
325 *statusp = (*p)->status;
326 xfree (*p);
327 *p = next;
328 return 1;
329 }
330 return 0;
331 }
332
333 \f
334 /* A helper function for linux_test_for_tracefork, called after fork (). */
335
336 static void
337 linux_tracefork_child (void)
338 {
339 ptrace (PTRACE_TRACEME, 0, 0, 0);
340 kill (getpid (), SIGSTOP);
341 fork ();
342 _exit (0);
343 }
344
345 /* Wrapper function for waitpid which handles EINTR. */
346
347 static int
348 my_waitpid (int pid, int *statusp, int flags)
349 {
350 int ret;
351
352 do
353 {
354 ret = waitpid (pid, statusp, flags);
355 }
356 while (ret == -1 && errno == EINTR);
357
358 return ret;
359 }
360
361 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
362
363 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
364 we know that the feature is not available. This may change the tracing
365 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
366
367 However, if it succeeds, we don't know for sure that the feature is
368 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
369 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
370 fork tracing, and let it fork. If the process exits, we assume that we
371 can't use TRACEFORK; if we get the fork notification, and we can extract
372 the new child's PID, then we assume that we can. */
373
374 static void
375 linux_test_for_tracefork (int original_pid)
376 {
377 int child_pid, ret, status;
378 long second_pid;
379 sigset_t prev_mask;
380
381 /* We don't want those ptrace calls to be interrupted. */
382 block_child_signals (&prev_mask);
383
384 linux_supports_tracefork_flag = 0;
385 linux_supports_tracevforkdone_flag = 0;
386
387 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
388 if (ret != 0)
389 {
390 restore_child_signals_mask (&prev_mask);
391 return;
392 }
393
394 child_pid = fork ();
395 if (child_pid == -1)
396 perror_with_name (("fork"));
397
398 if (child_pid == 0)
399 linux_tracefork_child ();
400
401 ret = my_waitpid (child_pid, &status, 0);
402 if (ret == -1)
403 perror_with_name (("waitpid"));
404 else if (ret != child_pid)
405 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
406 if (! WIFSTOPPED (status))
407 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
408 status);
409
410 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
411 if (ret != 0)
412 {
413 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
414 if (ret != 0)
415 {
416 warning (_("linux_test_for_tracefork: failed to kill child"));
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 ret = my_waitpid (child_pid, &status, 0);
422 if (ret != child_pid)
423 warning (_("linux_test_for_tracefork: failed "
424 "to wait for killed child"));
425 else if (!WIFSIGNALED (status))
426 warning (_("linux_test_for_tracefork: unexpected "
427 "wait status 0x%x from killed child"), status);
428
429 restore_child_signals_mask (&prev_mask);
430 return;
431 }
432
433 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
434 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
435 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
436 linux_supports_tracevforkdone_flag = (ret == 0);
437
438 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
439 if (ret != 0)
440 warning (_("linux_test_for_tracefork: failed to resume child"));
441
442 ret = my_waitpid (child_pid, &status, 0);
443
444 if (ret == child_pid && WIFSTOPPED (status)
445 && status >> 16 == PTRACE_EVENT_FORK)
446 {
447 second_pid = 0;
448 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
449 if (ret == 0 && second_pid != 0)
450 {
451 int second_status;
452
453 linux_supports_tracefork_flag = 1;
454 my_waitpid (second_pid, &second_status, 0);
455 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
456 if (ret != 0)
457 warning (_("linux_test_for_tracefork: "
458 "failed to kill second child"));
459 my_waitpid (second_pid, &status, 0);
460 }
461 }
462 else
463 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
464 "(%d, status 0x%x)"), ret, status);
465
466 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: failed to kill child"));
469 my_waitpid (child_pid, &status, 0);
470
471 restore_child_signals_mask (&prev_mask);
472 }
473
474 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
475
476 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
477 we know that the feature is not available. This may change the tracing
478 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
479
480 static void
481 linux_test_for_tracesysgood (int original_pid)
482 {
483 int ret;
484 sigset_t prev_mask;
485
486 /* We don't want those ptrace calls to be interrupted. */
487 block_child_signals (&prev_mask);
488
489 linux_supports_tracesysgood_flag = 0;
490
491 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
492 if (ret != 0)
493 goto out;
494
495 linux_supports_tracesysgood_flag = 1;
496 out:
497 restore_child_signals_mask (&prev_mask);
498 }
499
500 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
501 This function also sets linux_supports_tracesysgood_flag. */
502
503 static int
504 linux_supports_tracesysgood (int pid)
505 {
506 if (linux_supports_tracesysgood_flag == -1)
507 linux_test_for_tracesysgood (pid);
508 return linux_supports_tracesysgood_flag;
509 }
510
511 /* Return non-zero iff we have tracefork functionality available.
512 This function also sets linux_supports_tracefork_flag. */
513
514 static int
515 linux_supports_tracefork (int pid)
516 {
517 if (linux_supports_tracefork_flag == -1)
518 linux_test_for_tracefork (pid);
519 return linux_supports_tracefork_flag;
520 }
521
522 static int
523 linux_supports_tracevforkdone (int pid)
524 {
525 if (linux_supports_tracefork_flag == -1)
526 linux_test_for_tracefork (pid);
527 return linux_supports_tracevforkdone_flag;
528 }
529
530 static void
531 linux_enable_tracesysgood (ptid_t ptid)
532 {
533 int pid = ptid_get_lwp (ptid);
534
535 if (pid == 0)
536 pid = ptid_get_pid (ptid);
537
538 if (linux_supports_tracesysgood (pid) == 0)
539 return;
540
541 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
542
543 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
544 }
545
546 \f
547 void
548 linux_enable_event_reporting (ptid_t ptid)
549 {
550 int pid = ptid_get_lwp (ptid);
551
552 if (pid == 0)
553 pid = ptid_get_pid (ptid);
554
555 if (! linux_supports_tracefork (pid))
556 return;
557
558 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
559 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
560
561 if (linux_supports_tracevforkdone (pid))
562 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
563
564 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
565 read-only process state. */
566
567 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
568 }
569
570 static void
571 linux_child_post_attach (int pid)
572 {
573 linux_enable_event_reporting (pid_to_ptid (pid));
574 linux_enable_tracesysgood (pid_to_ptid (pid));
575 }
576
577 static void
578 linux_child_post_startup_inferior (ptid_t ptid)
579 {
580 linux_enable_event_reporting (ptid);
581 linux_enable_tracesysgood (ptid);
582 }
583
584 static int
585 linux_child_follow_fork (struct target_ops *ops, int follow_child)
586 {
587 sigset_t prev_mask;
588 int has_vforked;
589 int parent_pid, child_pid;
590
591 block_child_signals (&prev_mask);
592
593 has_vforked = (inferior_thread ()->pending_follow.kind
594 == TARGET_WAITKIND_VFORKED);
595 parent_pid = ptid_get_lwp (inferior_ptid);
596 if (parent_pid == 0)
597 parent_pid = ptid_get_pid (inferior_ptid);
598 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
599
600 if (!detach_fork)
601 linux_enable_event_reporting (pid_to_ptid (child_pid));
602
603 if (has_vforked
604 && !non_stop /* Non-stop always resumes both branches. */
605 && (!target_is_async_p () || sync_execution)
606 && !(follow_child || detach_fork || sched_multi))
607 {
608 /* The parent stays blocked inside the vfork syscall until the
609 child execs or exits. If we don't let the child run, then
610 the parent stays blocked. If we're telling the parent to run
611 in the foreground, the user will not be able to ctrl-c to get
612 back the terminal, effectively hanging the debug session. */
613 fprintf_filtered (gdb_stderr, _("\
614 Can not resume the parent process over vfork in the foreground while\n\
615 holding the child stopped. Try \"set detach-on-fork\" or \
616 \"set schedule-multiple\".\n"));
617 /* FIXME output string > 80 columns. */
618 return 1;
619 }
620
621 if (! follow_child)
622 {
623 struct lwp_info *child_lp = NULL;
624
625 /* We're already attached to the parent, by default. */
626
627 /* Detach new forked process? */
628 if (detach_fork)
629 {
630 /* Before detaching from the child, remove all breakpoints
631 from it. If we forked, then this has already been taken
632 care of by infrun.c. If we vforked however, any
633 breakpoint inserted in the parent is visible in the
634 child, even those added while stopped in a vfork
635 catchpoint. This will remove the breakpoints from the
636 parent also, but they'll be reinserted below. */
637 if (has_vforked)
638 {
639 /* keep breakpoints list in sync. */
640 remove_breakpoints_pid (GET_PID (inferior_ptid));
641 }
642
643 if (info_verbose || debug_linux_nat)
644 {
645 target_terminal_ours ();
646 fprintf_filtered (gdb_stdlog,
647 "Detaching after fork from "
648 "child process %d.\n",
649 child_pid);
650 }
651
652 ptrace (PTRACE_DETACH, child_pid, 0, 0);
653 }
654 else
655 {
656 struct inferior *parent_inf, *child_inf;
657 struct cleanup *old_chain;
658
659 /* Add process to GDB's tables. */
660 child_inf = add_inferior (child_pid);
661
662 parent_inf = current_inferior ();
663 child_inf->attach_flag = parent_inf->attach_flag;
664 copy_terminal_info (child_inf, parent_inf);
665
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668
669 inferior_ptid = ptid_build (child_pid, child_pid, 0);
670 add_thread (inferior_ptid);
671 child_lp = add_lwp (inferior_ptid);
672 child_lp->stopped = 1;
673 child_lp->last_resume_kind = resume_stop;
674
675 /* If this is a vfork child, then the address-space is
676 shared with the parent. */
677 if (has_vforked)
678 {
679 child_inf->pspace = parent_inf->pspace;
680 child_inf->aspace = parent_inf->aspace;
681
682 /* The parent will be frozen until the child is done
683 with the shared region. Keep track of the
684 parent. */
685 child_inf->vfork_parent = parent_inf;
686 child_inf->pending_detach = 0;
687 parent_inf->vfork_child = child_inf;
688 parent_inf->pending_detach = 0;
689 }
690 else
691 {
692 child_inf->aspace = new_address_space ();
693 child_inf->pspace = add_program_space (child_inf->aspace);
694 child_inf->removable = 1;
695 set_current_program_space (child_inf->pspace);
696 clone_program_space (child_inf->pspace, parent_inf->pspace);
697
698 /* Let the shared library layer (solib-svr4) learn about
699 this new process, relocate the cloned exec, pull in
700 shared libraries, and install the solib event
701 breakpoint. If a "cloned-VM" event was propagated
702 better throughout the core, this wouldn't be
703 required. */
704 solib_create_inferior_hook (0);
705 }
706
707 /* Let the thread_db layer learn about this new process. */
708 check_for_thread_db ();
709
710 do_cleanups (old_chain);
711 }
712
713 if (has_vforked)
714 {
715 struct lwp_info *parent_lp;
716 struct inferior *parent_inf;
717
718 parent_inf = current_inferior ();
719
720 /* If we detached from the child, then we have to be careful
721 to not insert breakpoints in the parent until the child
722 is done with the shared memory region. However, if we're
723 staying attached to the child, then we can and should
724 insert breakpoints, so that we can debug it. A
725 subsequent child exec or exit is enough to know when does
726 the child stops using the parent's address space. */
727 parent_inf->waiting_for_vfork_done = detach_fork;
728 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
729
730 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
731 gdb_assert (linux_supports_tracefork_flag >= 0);
732
733 if (linux_supports_tracevforkdone (0))
734 {
735 if (debug_linux_nat)
736 fprintf_unfiltered (gdb_stdlog,
737 "LCFF: waiting for VFORK_DONE on %d\n",
738 parent_pid);
739 parent_lp->stopped = 1;
740
741 /* We'll handle the VFORK_DONE event like any other
742 event, in target_wait. */
743 }
744 else
745 {
746 /* We can't insert breakpoints until the child has
747 finished with the shared memory region. We need to
748 wait until that happens. Ideal would be to just
749 call:
750 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
751 - waitpid (parent_pid, &status, __WALL);
752 However, most architectures can't handle a syscall
753 being traced on the way out if it wasn't traced on
754 the way in.
755
756 We might also think to loop, continuing the child
757 until it exits or gets a SIGTRAP. One problem is
758 that the child might call ptrace with PTRACE_TRACEME.
759
760 There's no simple and reliable way to figure out when
761 the vforked child will be done with its copy of the
762 shared memory. We could step it out of the syscall,
763 two instructions, let it go, and then single-step the
764 parent once. When we have hardware single-step, this
765 would work; with software single-step it could still
766 be made to work but we'd have to be able to insert
767 single-step breakpoints in the child, and we'd have
768 to insert -just- the single-step breakpoint in the
769 parent. Very awkward.
770
771 In the end, the best we can do is to make sure it
772 runs for a little while. Hopefully it will be out of
773 range of any breakpoints we reinsert. Usually this
774 is only the single-step breakpoint at vfork's return
775 point. */
776
777 if (debug_linux_nat)
778 fprintf_unfiltered (gdb_stdlog,
779 "LCFF: no VFORK_DONE "
780 "support, sleeping a bit\n");
781
782 usleep (10000);
783
784 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
785 and leave it pending. The next linux_nat_resume call
786 will notice a pending event, and bypasses actually
787 resuming the inferior. */
788 parent_lp->status = 0;
789 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
790 parent_lp->stopped = 1;
791
792 /* If we're in async mode, need to tell the event loop
793 there's something here to process. */
794 if (target_can_async_p ())
795 async_file_mark ();
796 }
797 }
798 }
799 else
800 {
801 struct inferior *parent_inf, *child_inf;
802 struct lwp_info *child_lp;
803 struct program_space *parent_pspace;
804
805 if (info_verbose || debug_linux_nat)
806 {
807 target_terminal_ours ();
808 if (has_vforked)
809 fprintf_filtered (gdb_stdlog,
810 _("Attaching after process %d "
811 "vfork to child process %d.\n"),
812 parent_pid, child_pid);
813 else
814 fprintf_filtered (gdb_stdlog,
815 _("Attaching after process %d "
816 "fork to child process %d.\n"),
817 parent_pid, child_pid);
818 }
819
820 /* Add the new inferior first, so that the target_detach below
821 doesn't unpush the target. */
822
823 child_inf = add_inferior (child_pid);
824
825 parent_inf = current_inferior ();
826 child_inf->attach_flag = parent_inf->attach_flag;
827 copy_terminal_info (child_inf, parent_inf);
828
829 parent_pspace = parent_inf->pspace;
830
831 /* If we're vforking, we want to hold on to the parent until the
832 child exits or execs. At child exec or exit time we can
833 remove the old breakpoints from the parent and detach or
834 resume debugging it. Otherwise, detach the parent now; we'll
835 want to reuse it's program/address spaces, but we can't set
836 them to the child before removing breakpoints from the
837 parent, otherwise, the breakpoints module could decide to
838 remove breakpoints from the wrong process (since they'd be
839 assigned to the same address space). */
840
841 if (has_vforked)
842 {
843 gdb_assert (child_inf->vfork_parent == NULL);
844 gdb_assert (parent_inf->vfork_child == NULL);
845 child_inf->vfork_parent = parent_inf;
846 child_inf->pending_detach = 0;
847 parent_inf->vfork_child = child_inf;
848 parent_inf->pending_detach = detach_fork;
849 parent_inf->waiting_for_vfork_done = 0;
850 }
851 else if (detach_fork)
852 target_detach (NULL, 0);
853
854 /* Note that the detach above makes PARENT_INF dangling. */
855
856 /* Add the child thread to the appropriate lists, and switch to
857 this new thread, before cloning the program space, and
858 informing the solib layer about this new process. */
859
860 inferior_ptid = ptid_build (child_pid, child_pid, 0);
861 add_thread (inferior_ptid);
862 child_lp = add_lwp (inferior_ptid);
863 child_lp->stopped = 1;
864 child_lp->last_resume_kind = resume_stop;
865
866 /* If this is a vfork child, then the address-space is shared
867 with the parent. If we detached from the parent, then we can
868 reuse the parent's program/address spaces. */
869 if (has_vforked || detach_fork)
870 {
871 child_inf->pspace = parent_pspace;
872 child_inf->aspace = child_inf->pspace->aspace;
873 }
874 else
875 {
876 child_inf->aspace = new_address_space ();
877 child_inf->pspace = add_program_space (child_inf->aspace);
878 child_inf->removable = 1;
879 set_current_program_space (child_inf->pspace);
880 clone_program_space (child_inf->pspace, parent_pspace);
881
882 /* Let the shared library layer (solib-svr4) learn about
883 this new process, relocate the cloned exec, pull in
884 shared libraries, and install the solib event breakpoint.
885 If a "cloned-VM" event was propagated better throughout
886 the core, this wouldn't be required. */
887 solib_create_inferior_hook (0);
888 }
889
890 /* Let the thread_db layer learn about this new process. */
891 check_for_thread_db ();
892 }
893
894 restore_child_signals_mask (&prev_mask);
895 return 0;
896 }
897
898 \f
899 static int
900 linux_child_insert_fork_catchpoint (int pid)
901 {
902 return !linux_supports_tracefork (pid);
903 }
904
905 static int
906 linux_child_remove_fork_catchpoint (int pid)
907 {
908 return 0;
909 }
910
911 static int
912 linux_child_insert_vfork_catchpoint (int pid)
913 {
914 return !linux_supports_tracefork (pid);
915 }
916
917 static int
918 linux_child_remove_vfork_catchpoint (int pid)
919 {
920 return 0;
921 }
922
923 static int
924 linux_child_insert_exec_catchpoint (int pid)
925 {
926 return !linux_supports_tracefork (pid);
927 }
928
929 static int
930 linux_child_remove_exec_catchpoint (int pid)
931 {
932 return 0;
933 }
934
935 static int
936 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
937 int table_size, int *table)
938 {
939 if (!linux_supports_tracesysgood (pid))
940 return 1;
941
942 /* On GNU/Linux, we ignore the arguments. It means that we only
943 enable the syscall catchpoints, but do not disable them.
944
945 Also, we do not use the `table' information because we do not
946 filter system calls here. We let GDB do the logic for us. */
947 return 0;
948 }
949
950 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
951 are processes sharing the same VM space. A multi-threaded process
952 is basically a group of such processes. However, such a grouping
953 is almost entirely a user-space issue; the kernel doesn't enforce
954 such a grouping at all (this might change in the future). In
955 general, we'll rely on the threads library (i.e. the GNU/Linux
956 Threads library) to provide such a grouping.
957
958 It is perfectly well possible to write a multi-threaded application
959 without the assistance of a threads library, by using the clone
960 system call directly. This module should be able to give some
961 rudimentary support for debugging such applications if developers
962 specify the CLONE_PTRACE flag in the clone system call, and are
963 using the Linux kernel 2.4 or above.
964
965 Note that there are some peculiarities in GNU/Linux that affect
966 this code:
967
968 - In general one should specify the __WCLONE flag to waitpid in
969 order to make it report events for any of the cloned processes
970 (and leave it out for the initial process). However, if a cloned
971 process has exited the exit status is only reported if the
972 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
973 we cannot use it since GDB must work on older systems too.
974
975 - When a traced, cloned process exits and is waited for by the
976 debugger, the kernel reassigns it to the original parent and
977 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
978 library doesn't notice this, which leads to the "zombie problem":
979 When debugged a multi-threaded process that spawns a lot of
980 threads will run out of processes, even if the threads exit,
981 because the "zombies" stay around. */
982
983 /* List of known LWPs. */
984 struct lwp_info *lwp_list;
985 \f
986
987 /* Original signal mask. */
988 static sigset_t normal_mask;
989
990 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
991 _initialize_linux_nat. */
992 static sigset_t suspend_mask;
993
994 /* Signals to block to make that sigsuspend work. */
995 static sigset_t blocked_mask;
996
997 /* SIGCHLD action. */
998 struct sigaction sigchld_action;
999
1000 /* Block child signals (SIGCHLD and linux threads signals), and store
1001 the previous mask in PREV_MASK. */
1002
1003 static void
1004 block_child_signals (sigset_t *prev_mask)
1005 {
1006 /* Make sure SIGCHLD is blocked. */
1007 if (!sigismember (&blocked_mask, SIGCHLD))
1008 sigaddset (&blocked_mask, SIGCHLD);
1009
1010 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1011 }
1012
1013 /* Restore child signals mask, previously returned by
1014 block_child_signals. */
1015
1016 static void
1017 restore_child_signals_mask (sigset_t *prev_mask)
1018 {
1019 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1020 }
1021
1022 /* Mask of signals to pass directly to the inferior. */
1023 static sigset_t pass_mask;
1024
1025 /* Update signals to pass to the inferior. */
1026 static void
1027 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1028 {
1029 int signo;
1030
1031 sigemptyset (&pass_mask);
1032
1033 for (signo = 1; signo < NSIG; signo++)
1034 {
1035 int target_signo = target_signal_from_host (signo);
1036 if (target_signo < numsigs && pass_signals[target_signo])
1037 sigaddset (&pass_mask, signo);
1038 }
1039 }
1040
1041 \f
1042
1043 /* Prototypes for local functions. */
1044 static int stop_wait_callback (struct lwp_info *lp, void *data);
1045 static int linux_thread_alive (ptid_t ptid);
1046 static char *linux_child_pid_to_exec_file (int pid);
1047
1048 \f
1049 /* Convert wait status STATUS to a string. Used for printing debug
1050 messages only. */
1051
1052 static char *
1053 status_to_str (int status)
1054 {
1055 static char buf[64];
1056
1057 if (WIFSTOPPED (status))
1058 {
1059 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1060 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1061 strsignal (SIGTRAP));
1062 else
1063 snprintf (buf, sizeof (buf), "%s (stopped)",
1064 strsignal (WSTOPSIG (status)));
1065 }
1066 else if (WIFSIGNALED (status))
1067 snprintf (buf, sizeof (buf), "%s (terminated)",
1068 strsignal (WTERMSIG (status)));
1069 else
1070 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1071
1072 return buf;
1073 }
1074
1075 /* Remove all LWPs belong to PID from the lwp list. */
1076
1077 static void
1078 purge_lwp_list (int pid)
1079 {
1080 struct lwp_info *lp, *lpprev, *lpnext;
1081
1082 lpprev = NULL;
1083
1084 for (lp = lwp_list; lp; lp = lpnext)
1085 {
1086 lpnext = lp->next;
1087
1088 if (ptid_get_pid (lp->ptid) == pid)
1089 {
1090 if (lp == lwp_list)
1091 lwp_list = lp->next;
1092 else
1093 lpprev->next = lp->next;
1094
1095 xfree (lp);
1096 }
1097 else
1098 lpprev = lp;
1099 }
1100 }
1101
1102 /* Return the number of known LWPs in the tgid given by PID. */
1103
1104 static int
1105 num_lwps (int pid)
1106 {
1107 int count = 0;
1108 struct lwp_info *lp;
1109
1110 for (lp = lwp_list; lp; lp = lp->next)
1111 if (ptid_get_pid (lp->ptid) == pid)
1112 count++;
1113
1114 return count;
1115 }
1116
1117 /* Add the LWP specified by PID to the list. Return a pointer to the
1118 structure describing the new LWP. The LWP should already be stopped
1119 (with an exception for the very first LWP). */
1120
1121 static struct lwp_info *
1122 add_lwp (ptid_t ptid)
1123 {
1124 struct lwp_info *lp;
1125
1126 gdb_assert (is_lwp (ptid));
1127
1128 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1129
1130 memset (lp, 0, sizeof (struct lwp_info));
1131
1132 lp->last_resume_kind = resume_continue;
1133 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1134
1135 lp->ptid = ptid;
1136 lp->core = -1;
1137
1138 lp->next = lwp_list;
1139 lwp_list = lp;
1140
1141 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1142 linux_nat_new_thread (ptid);
1143
1144 return lp;
1145 }
1146
1147 /* Remove the LWP specified by PID from the list. */
1148
1149 static void
1150 delete_lwp (ptid_t ptid)
1151 {
1152 struct lwp_info *lp, *lpprev;
1153
1154 lpprev = NULL;
1155
1156 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1157 if (ptid_equal (lp->ptid, ptid))
1158 break;
1159
1160 if (!lp)
1161 return;
1162
1163 if (lpprev)
1164 lpprev->next = lp->next;
1165 else
1166 lwp_list = lp->next;
1167
1168 xfree (lp);
1169 }
1170
1171 /* Return a pointer to the structure describing the LWP corresponding
1172 to PID. If no corresponding LWP could be found, return NULL. */
1173
1174 static struct lwp_info *
1175 find_lwp_pid (ptid_t ptid)
1176 {
1177 struct lwp_info *lp;
1178 int lwp;
1179
1180 if (is_lwp (ptid))
1181 lwp = GET_LWP (ptid);
1182 else
1183 lwp = GET_PID (ptid);
1184
1185 for (lp = lwp_list; lp; lp = lp->next)
1186 if (lwp == GET_LWP (lp->ptid))
1187 return lp;
1188
1189 return NULL;
1190 }
1191
1192 /* Call CALLBACK with its second argument set to DATA for every LWP in
1193 the list. If CALLBACK returns 1 for a particular LWP, return a
1194 pointer to the structure describing that LWP immediately.
1195 Otherwise return NULL. */
1196
1197 struct lwp_info *
1198 iterate_over_lwps (ptid_t filter,
1199 int (*callback) (struct lwp_info *, void *),
1200 void *data)
1201 {
1202 struct lwp_info *lp, *lpnext;
1203
1204 for (lp = lwp_list; lp; lp = lpnext)
1205 {
1206 lpnext = lp->next;
1207
1208 if (ptid_match (lp->ptid, filter))
1209 {
1210 if ((*callback) (lp, data))
1211 return lp;
1212 }
1213 }
1214
1215 return NULL;
1216 }
1217
1218 /* Update our internal state when changing from one checkpoint to
1219 another indicated by NEW_PTID. We can only switch single-threaded
1220 applications, so we only create one new LWP, and the previous list
1221 is discarded. */
1222
1223 void
1224 linux_nat_switch_fork (ptid_t new_ptid)
1225 {
1226 struct lwp_info *lp;
1227
1228 purge_lwp_list (GET_PID (inferior_ptid));
1229
1230 lp = add_lwp (new_ptid);
1231 lp->stopped = 1;
1232
1233 /* This changes the thread's ptid while preserving the gdb thread
1234 num. Also changes the inferior pid, while preserving the
1235 inferior num. */
1236 thread_change_ptid (inferior_ptid, new_ptid);
1237
1238 /* We've just told GDB core that the thread changed target id, but,
1239 in fact, it really is a different thread, with different register
1240 contents. */
1241 registers_changed ();
1242 }
1243
1244 /* Handle the exit of a single thread LP. */
1245
1246 static void
1247 exit_lwp (struct lwp_info *lp)
1248 {
1249 struct thread_info *th = find_thread_ptid (lp->ptid);
1250
1251 if (th)
1252 {
1253 if (print_thread_events)
1254 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1255
1256 delete_thread (lp->ptid);
1257 }
1258
1259 delete_lwp (lp->ptid);
1260 }
1261
1262 /* Detect `T (stopped)' in `/proc/PID/status'.
1263 Other states including `T (tracing stop)' are reported as false. */
1264
1265 static int
1266 pid_is_stopped (pid_t pid)
1267 {
1268 FILE *status_file;
1269 char buf[100];
1270 int retval = 0;
1271
1272 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1273 status_file = fopen (buf, "r");
1274 if (status_file != NULL)
1275 {
1276 int have_state = 0;
1277
1278 while (fgets (buf, sizeof (buf), status_file))
1279 {
1280 if (strncmp (buf, "State:", 6) == 0)
1281 {
1282 have_state = 1;
1283 break;
1284 }
1285 }
1286 if (have_state && strstr (buf, "T (stopped)") != NULL)
1287 retval = 1;
1288 fclose (status_file);
1289 }
1290 return retval;
1291 }
1292
1293 /* Wait for the LWP specified by LP, which we have just attached to.
1294 Returns a wait status for that LWP, to cache. */
1295
1296 static int
1297 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1298 int *signalled)
1299 {
1300 pid_t new_pid, pid = GET_LWP (ptid);
1301 int status;
1302
1303 if (pid_is_stopped (pid))
1304 {
1305 if (debug_linux_nat)
1306 fprintf_unfiltered (gdb_stdlog,
1307 "LNPAW: Attaching to a stopped process\n");
1308
1309 /* The process is definitely stopped. It is in a job control
1310 stop, unless the kernel predates the TASK_STOPPED /
1311 TASK_TRACED distinction, in which case it might be in a
1312 ptrace stop. Make sure it is in a ptrace stop; from there we
1313 can kill it, signal it, et cetera.
1314
1315 First make sure there is a pending SIGSTOP. Since we are
1316 already attached, the process can not transition from stopped
1317 to running without a PTRACE_CONT; so we know this signal will
1318 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1319 probably already in the queue (unless this kernel is old
1320 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1321 is not an RT signal, it can only be queued once. */
1322 kill_lwp (pid, SIGSTOP);
1323
1324 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1325 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1326 ptrace (PTRACE_CONT, pid, 0, 0);
1327 }
1328
1329 /* Make sure the initial process is stopped. The user-level threads
1330 layer might want to poke around in the inferior, and that won't
1331 work if things haven't stabilized yet. */
1332 new_pid = my_waitpid (pid, &status, 0);
1333 if (new_pid == -1 && errno == ECHILD)
1334 {
1335 if (first)
1336 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1337
1338 /* Try again with __WCLONE to check cloned processes. */
1339 new_pid = my_waitpid (pid, &status, __WCLONE);
1340 *cloned = 1;
1341 }
1342
1343 gdb_assert (pid == new_pid);
1344
1345 if (!WIFSTOPPED (status))
1346 {
1347 /* The pid we tried to attach has apparently just exited. */
1348 if (debug_linux_nat)
1349 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1350 pid, status_to_str (status));
1351 return status;
1352 }
1353
1354 if (WSTOPSIG (status) != SIGSTOP)
1355 {
1356 *signalled = 1;
1357 if (debug_linux_nat)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "LNPAW: Received %s after attaching\n",
1360 status_to_str (status));
1361 }
1362
1363 return status;
1364 }
1365
1366 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1367 the new LWP could not be attached, or 1 if we're already auto
1368 attached to this thread, but haven't processed the
1369 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1370 its existance, without considering it an error. */
1371
1372 int
1373 lin_lwp_attach_lwp (ptid_t ptid)
1374 {
1375 struct lwp_info *lp;
1376 sigset_t prev_mask;
1377 int lwpid;
1378
1379 gdb_assert (is_lwp (ptid));
1380
1381 block_child_signals (&prev_mask);
1382
1383 lp = find_lwp_pid (ptid);
1384 lwpid = GET_LWP (ptid);
1385
1386 /* We assume that we're already attached to any LWP that has an id
1387 equal to the overall process id, and to any LWP that is already
1388 in our list of LWPs. If we're not seeing exit events from threads
1389 and we've had PID wraparound since we last tried to stop all threads,
1390 this assumption might be wrong; fortunately, this is very unlikely
1391 to happen. */
1392 if (lwpid != GET_PID (ptid) && lp == NULL)
1393 {
1394 int status, cloned = 0, signalled = 0;
1395
1396 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1397 {
1398 if (linux_supports_tracefork_flag)
1399 {
1400 /* If we haven't stopped all threads when we get here,
1401 we may have seen a thread listed in thread_db's list,
1402 but not processed the PTRACE_EVENT_CLONE yet. If
1403 that's the case, ignore this new thread, and let
1404 normal event handling discover it later. */
1405 if (in_pid_list_p (stopped_pids, lwpid))
1406 {
1407 /* We've already seen this thread stop, but we
1408 haven't seen the PTRACE_EVENT_CLONE extended
1409 event yet. */
1410 restore_child_signals_mask (&prev_mask);
1411 return 0;
1412 }
1413 else
1414 {
1415 int new_pid;
1416 int status;
1417
1418 /* See if we've got a stop for this new child
1419 pending. If so, we're already attached. */
1420 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1421 if (new_pid == -1 && errno == ECHILD)
1422 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1423 if (new_pid != -1)
1424 {
1425 if (WIFSTOPPED (status))
1426 add_to_pid_list (&stopped_pids, lwpid, status);
1427
1428 restore_child_signals_mask (&prev_mask);
1429 return 1;
1430 }
1431 }
1432 }
1433
1434 /* If we fail to attach to the thread, issue a warning,
1435 but continue. One way this can happen is if thread
1436 creation is interrupted; as of Linux kernel 2.6.19, a
1437 bug may place threads in the thread list and then fail
1438 to create them. */
1439 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1440 safe_strerror (errno));
1441 restore_child_signals_mask (&prev_mask);
1442 return -1;
1443 }
1444
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1448 target_pid_to_str (ptid));
1449
1450 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1451 if (!WIFSTOPPED (status))
1452 {
1453 restore_child_signals_mask (&prev_mask);
1454 return 1;
1455 }
1456
1457 lp = add_lwp (ptid);
1458 lp->stopped = 1;
1459 lp->cloned = cloned;
1460 lp->signalled = signalled;
1461 if (WSTOPSIG (status) != SIGSTOP)
1462 {
1463 lp->resumed = 1;
1464 lp->status = status;
1465 }
1466
1467 target_post_attach (GET_LWP (lp->ptid));
1468
1469 if (debug_linux_nat)
1470 {
1471 fprintf_unfiltered (gdb_stdlog,
1472 "LLAL: waitpid %s received %s\n",
1473 target_pid_to_str (ptid),
1474 status_to_str (status));
1475 }
1476 }
1477 else
1478 {
1479 /* We assume that the LWP representing the original process is
1480 already stopped. Mark it as stopped in the data structure
1481 that the GNU/linux ptrace layer uses to keep track of
1482 threads. Note that this won't have already been done since
1483 the main thread will have, we assume, been stopped by an
1484 attach from a different layer. */
1485 if (lp == NULL)
1486 lp = add_lwp (ptid);
1487 lp->stopped = 1;
1488 }
1489
1490 lp->last_resume_kind = resume_stop;
1491 restore_child_signals_mask (&prev_mask);
1492 return 0;
1493 }
1494
1495 static void
1496 linux_nat_create_inferior (struct target_ops *ops,
1497 char *exec_file, char *allargs, char **env,
1498 int from_tty)
1499 {
1500 #ifdef HAVE_PERSONALITY
1501 int personality_orig = 0, personality_set = 0;
1502 #endif /* HAVE_PERSONALITY */
1503
1504 /* The fork_child mechanism is synchronous and calls target_wait, so
1505 we have to mask the async mode. */
1506
1507 #ifdef HAVE_PERSONALITY
1508 if (disable_randomization)
1509 {
1510 errno = 0;
1511 personality_orig = personality (0xffffffff);
1512 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1513 {
1514 personality_set = 1;
1515 personality (personality_orig | ADDR_NO_RANDOMIZE);
1516 }
1517 if (errno != 0 || (personality_set
1518 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1519 warning (_("Error disabling address space randomization: %s"),
1520 safe_strerror (errno));
1521 }
1522 #endif /* HAVE_PERSONALITY */
1523
1524 /* Make sure we report all signals during startup. */
1525 linux_nat_pass_signals (0, NULL);
1526
1527 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1528
1529 #ifdef HAVE_PERSONALITY
1530 if (personality_set)
1531 {
1532 errno = 0;
1533 personality (personality_orig);
1534 if (errno != 0)
1535 warning (_("Error restoring address space randomization: %s"),
1536 safe_strerror (errno));
1537 }
1538 #endif /* HAVE_PERSONALITY */
1539 }
1540
1541 static void
1542 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1543 {
1544 struct lwp_info *lp;
1545 int status;
1546 ptid_t ptid;
1547
1548 /* Make sure we report all signals during attach. */
1549 linux_nat_pass_signals (0, NULL);
1550
1551 linux_ops->to_attach (ops, args, from_tty);
1552
1553 /* The ptrace base target adds the main thread with (pid,0,0)
1554 format. Decorate it with lwp info. */
1555 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1556 thread_change_ptid (inferior_ptid, ptid);
1557
1558 /* Add the initial process as the first LWP to the list. */
1559 lp = add_lwp (ptid);
1560
1561 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1562 &lp->signalled);
1563 if (!WIFSTOPPED (status))
1564 {
1565 if (WIFEXITED (status))
1566 {
1567 int exit_code = WEXITSTATUS (status);
1568
1569 target_terminal_ours ();
1570 target_mourn_inferior ();
1571 if (exit_code == 0)
1572 error (_("Unable to attach: program exited normally."));
1573 else
1574 error (_("Unable to attach: program exited with code %d."),
1575 exit_code);
1576 }
1577 else if (WIFSIGNALED (status))
1578 {
1579 enum target_signal signo;
1580
1581 target_terminal_ours ();
1582 target_mourn_inferior ();
1583
1584 signo = target_signal_from_host (WTERMSIG (status));
1585 error (_("Unable to attach: program terminated with signal "
1586 "%s, %s."),
1587 target_signal_to_name (signo),
1588 target_signal_to_string (signo));
1589 }
1590
1591 internal_error (__FILE__, __LINE__,
1592 _("unexpected status %d for PID %ld"),
1593 status, (long) GET_LWP (ptid));
1594 }
1595
1596 lp->stopped = 1;
1597
1598 /* Save the wait status to report later. */
1599 lp->resumed = 1;
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "LNA: waitpid %ld, saving status %s\n",
1603 (long) GET_PID (lp->ptid), status_to_str (status));
1604
1605 lp->status = status;
1606
1607 if (target_can_async_p ())
1608 target_async (inferior_event_handler, 0);
1609 }
1610
1611 /* Get pending status of LP. */
1612 static int
1613 get_pending_status (struct lwp_info *lp, int *status)
1614 {
1615 enum target_signal signo = TARGET_SIGNAL_0;
1616
1617 /* If we paused threads momentarily, we may have stored pending
1618 events in lp->status or lp->waitstatus (see stop_wait_callback),
1619 and GDB core hasn't seen any signal for those threads.
1620 Otherwise, the last signal reported to the core is found in the
1621 thread object's stop_signal.
1622
1623 There's a corner case that isn't handled here at present. Only
1624 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1625 stop_signal make sense as a real signal to pass to the inferior.
1626 Some catchpoint related events, like
1627 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1628 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1629 those traps are debug API (ptrace in our case) related and
1630 induced; the inferior wouldn't see them if it wasn't being
1631 traced. Hence, we should never pass them to the inferior, even
1632 when set to pass state. Since this corner case isn't handled by
1633 infrun.c when proceeding with a signal, for consistency, neither
1634 do we handle it here (or elsewhere in the file we check for
1635 signal pass state). Normally SIGTRAP isn't set to pass state, so
1636 this is really a corner case. */
1637
1638 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1639 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1640 else if (lp->status)
1641 signo = target_signal_from_host (WSTOPSIG (lp->status));
1642 else if (non_stop && !is_executing (lp->ptid))
1643 {
1644 struct thread_info *tp = find_thread_ptid (lp->ptid);
1645
1646 signo = tp->suspend.stop_signal;
1647 }
1648 else if (!non_stop)
1649 {
1650 struct target_waitstatus last;
1651 ptid_t last_ptid;
1652
1653 get_last_target_status (&last_ptid, &last);
1654
1655 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1656 {
1657 struct thread_info *tp = find_thread_ptid (lp->ptid);
1658
1659 signo = tp->suspend.stop_signal;
1660 }
1661 }
1662
1663 *status = 0;
1664
1665 if (signo == TARGET_SIGNAL_0)
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "GPT: lwp %s has no pending signal\n",
1670 target_pid_to_str (lp->ptid));
1671 }
1672 else if (!signal_pass_state (signo))
1673 {
1674 if (debug_linux_nat)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "GPT: lwp %s had signal %s, "
1677 "but it is in no pass state\n",
1678 target_pid_to_str (lp->ptid),
1679 target_signal_to_string (signo));
1680 }
1681 else
1682 {
1683 *status = W_STOPCODE (target_signal_to_host (signo));
1684
1685 if (debug_linux_nat)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "GPT: lwp %s has pending signal %s\n",
1688 target_pid_to_str (lp->ptid),
1689 target_signal_to_string (signo));
1690 }
1691
1692 return 0;
1693 }
1694
1695 static int
1696 detach_callback (struct lwp_info *lp, void *data)
1697 {
1698 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1699
1700 if (debug_linux_nat && lp->status)
1701 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1702 strsignal (WSTOPSIG (lp->status)),
1703 target_pid_to_str (lp->ptid));
1704
1705 /* If there is a pending SIGSTOP, get rid of it. */
1706 if (lp->signalled)
1707 {
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog,
1710 "DC: Sending SIGCONT to %s\n",
1711 target_pid_to_str (lp->ptid));
1712
1713 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1714 lp->signalled = 0;
1715 }
1716
1717 /* We don't actually detach from the LWP that has an id equal to the
1718 overall process id just yet. */
1719 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1720 {
1721 int status = 0;
1722
1723 /* Pass on any pending signal for this LWP. */
1724 get_pending_status (lp, &status);
1725
1726 errno = 0;
1727 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1728 WSTOPSIG (status)) < 0)
1729 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1730 safe_strerror (errno));
1731
1732 if (debug_linux_nat)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1735 target_pid_to_str (lp->ptid),
1736 strsignal (WSTOPSIG (status)));
1737
1738 delete_lwp (lp->ptid);
1739 }
1740
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1746 {
1747 int pid;
1748 int status;
1749 struct lwp_info *main_lwp;
1750
1751 pid = GET_PID (inferior_ptid);
1752
1753 if (target_can_async_p ())
1754 linux_nat_async (NULL, 0);
1755
1756 /* Stop all threads before detaching. ptrace requires that the
1757 thread is stopped to sucessfully detach. */
1758 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1759 /* ... and wait until all of them have reported back that
1760 they're no longer running. */
1761 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1762
1763 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1764
1765 /* Only the initial process should be left right now. */
1766 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1767
1768 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1769
1770 /* Pass on any pending signal for the last LWP. */
1771 if ((args == NULL || *args == '\0')
1772 && get_pending_status (main_lwp, &status) != -1
1773 && WIFSTOPPED (status))
1774 {
1775 /* Put the signal number in ARGS so that inf_ptrace_detach will
1776 pass it along with PTRACE_DETACH. */
1777 args = alloca (8);
1778 sprintf (args, "%d", (int) WSTOPSIG (status));
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "LND: Sending signal %s to %s\n",
1782 args,
1783 target_pid_to_str (main_lwp->ptid));
1784 }
1785
1786 delete_lwp (main_lwp->ptid);
1787
1788 if (forks_exist_p ())
1789 {
1790 /* Multi-fork case. The current inferior_ptid is being detached
1791 from, but there are other viable forks to debug. Detach from
1792 the current fork, and context-switch to the first
1793 available. */
1794 linux_fork_detach (args, from_tty);
1795
1796 if (non_stop && target_can_async_p ())
1797 target_async (inferior_event_handler, 0);
1798 }
1799 else
1800 linux_ops->to_detach (ops, args, from_tty);
1801 }
1802
1803 /* Resume LP. */
1804
1805 static void
1806 resume_lwp (struct lwp_info *lp, int step)
1807 {
1808 if (lp->stopped)
1809 {
1810 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1811
1812 if (inf->vfork_child != NULL)
1813 {
1814 if (debug_linux_nat)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "RC: Not resuming %s (vfork parent)\n",
1817 target_pid_to_str (lp->ptid));
1818 }
1819 else if (lp->status == 0
1820 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1821 {
1822 if (debug_linux_nat)
1823 fprintf_unfiltered (gdb_stdlog,
1824 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1825 target_pid_to_str (lp->ptid));
1826
1827 linux_ops->to_resume (linux_ops,
1828 pid_to_ptid (GET_LWP (lp->ptid)),
1829 step, TARGET_SIGNAL_0);
1830 lp->stopped = 0;
1831 lp->step = step;
1832 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1833 lp->stopped_by_watchpoint = 0;
1834 }
1835 else
1836 {
1837 if (debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog,
1839 "RC: Not resuming sibling %s (has pending)\n",
1840 target_pid_to_str (lp->ptid));
1841 }
1842 }
1843 else
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming sibling %s (not stopped)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 }
1851
1852 static int
1853 resume_callback (struct lwp_info *lp, void *data)
1854 {
1855 resume_lwp (lp, 0);
1856 return 0;
1857 }
1858
1859 static int
1860 resume_clear_callback (struct lwp_info *lp, void *data)
1861 {
1862 lp->resumed = 0;
1863 lp->last_resume_kind = resume_stop;
1864 return 0;
1865 }
1866
1867 static int
1868 resume_set_callback (struct lwp_info *lp, void *data)
1869 {
1870 lp->resumed = 1;
1871 lp->last_resume_kind = resume_continue;
1872 return 0;
1873 }
1874
1875 static void
1876 linux_nat_resume (struct target_ops *ops,
1877 ptid_t ptid, int step, enum target_signal signo)
1878 {
1879 sigset_t prev_mask;
1880 struct lwp_info *lp;
1881 int resume_many;
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1886 step ? "step" : "resume",
1887 target_pid_to_str (ptid),
1888 (signo != TARGET_SIGNAL_0
1889 ? strsignal (target_signal_to_host (signo)) : "0"),
1890 target_pid_to_str (inferior_ptid));
1891
1892 block_child_signals (&prev_mask);
1893
1894 /* A specific PTID means `step only this process id'. */
1895 resume_many = (ptid_equal (minus_one_ptid, ptid)
1896 || ptid_is_pid (ptid));
1897
1898 /* Mark the lwps we're resuming as resumed. */
1899 iterate_over_lwps (ptid, resume_set_callback, NULL);
1900
1901 /* See if it's the current inferior that should be handled
1902 specially. */
1903 if (resume_many)
1904 lp = find_lwp_pid (inferior_ptid);
1905 else
1906 lp = find_lwp_pid (ptid);
1907 gdb_assert (lp != NULL);
1908
1909 /* Remember if we're stepping. */
1910 lp->step = step;
1911 lp->last_resume_kind = step ? resume_step : resume_continue;
1912
1913 /* If we have a pending wait status for this thread, there is no
1914 point in resuming the process. But first make sure that
1915 linux_nat_wait won't preemptively handle the event - we
1916 should never take this short-circuit if we are going to
1917 leave LP running, since we have skipped resuming all the
1918 other threads. This bit of code needs to be synchronized
1919 with linux_nat_wait. */
1920
1921 if (lp->status && WIFSTOPPED (lp->status))
1922 {
1923 if (!lp->step
1924 && WSTOPSIG (lp->status)
1925 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1926 {
1927 if (debug_linux_nat)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "LLR: Not short circuiting for ignored "
1930 "status 0x%x\n", lp->status);
1931
1932 /* FIXME: What should we do if we are supposed to continue
1933 this thread with a signal? */
1934 gdb_assert (signo == TARGET_SIGNAL_0);
1935 signo = target_signal_from_host (WSTOPSIG (lp->status));
1936 lp->status = 0;
1937 }
1938 }
1939
1940 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1941 {
1942 /* FIXME: What should we do if we are supposed to continue
1943 this thread with a signal? */
1944 gdb_assert (signo == TARGET_SIGNAL_0);
1945
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "LLR: Short circuiting for status 0x%x\n",
1949 lp->status);
1950
1951 restore_child_signals_mask (&prev_mask);
1952 if (target_can_async_p ())
1953 {
1954 target_async (inferior_event_handler, 0);
1955 /* Tell the event loop we have something to process. */
1956 async_file_mark ();
1957 }
1958 return;
1959 }
1960
1961 /* Mark LWP as not stopped to prevent it from being continued by
1962 resume_callback. */
1963 lp->stopped = 0;
1964
1965 if (resume_many)
1966 iterate_over_lwps (ptid, resume_callback, NULL);
1967
1968 /* Convert to something the lower layer understands. */
1969 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1970
1971 linux_ops->to_resume (linux_ops, ptid, step, signo);
1972 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1973 lp->stopped_by_watchpoint = 0;
1974
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LLR: %s %s, %s (resume event thread)\n",
1978 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1979 target_pid_to_str (ptid),
1980 (signo != TARGET_SIGNAL_0
1981 ? strsignal (target_signal_to_host (signo)) : "0"));
1982
1983 restore_child_signals_mask (&prev_mask);
1984 if (target_can_async_p ())
1985 target_async (inferior_event_handler, 0);
1986 }
1987
1988 /* Send a signal to an LWP. */
1989
1990 static int
1991 kill_lwp (int lwpid, int signo)
1992 {
1993 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1994 fails, then we are not using nptl threads and we should be using kill. */
1995
1996 #ifdef HAVE_TKILL_SYSCALL
1997 {
1998 static int tkill_failed;
1999
2000 if (!tkill_failed)
2001 {
2002 int ret;
2003
2004 errno = 0;
2005 ret = syscall (__NR_tkill, lwpid, signo);
2006 if (errno != ENOSYS)
2007 return ret;
2008 tkill_failed = 1;
2009 }
2010 }
2011 #endif
2012
2013 return kill (lwpid, signo);
2014 }
2015
2016 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2017 event, check if the core is interested in it: if not, ignore the
2018 event, and keep waiting; otherwise, we need to toggle the LWP's
2019 syscall entry/exit status, since the ptrace event itself doesn't
2020 indicate it, and report the trap to higher layers. */
2021
2022 static int
2023 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2024 {
2025 struct target_waitstatus *ourstatus = &lp->waitstatus;
2026 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2027 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2028
2029 if (stopping)
2030 {
2031 /* If we're stopping threads, there's a SIGSTOP pending, which
2032 makes it so that the LWP reports an immediate syscall return,
2033 followed by the SIGSTOP. Skip seeing that "return" using
2034 PTRACE_CONT directly, and let stop_wait_callback collect the
2035 SIGSTOP. Later when the thread is resumed, a new syscall
2036 entry event. If we didn't do this (and returned 0), we'd
2037 leave a syscall entry pending, and our caller, by using
2038 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2039 itself. Later, when the user re-resumes this LWP, we'd see
2040 another syscall entry event and we'd mistake it for a return.
2041
2042 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2043 (leaving immediately with LWP->signalled set, without issuing
2044 a PTRACE_CONT), it would still be problematic to leave this
2045 syscall enter pending, as later when the thread is resumed,
2046 it would then see the same syscall exit mentioned above,
2047 followed by the delayed SIGSTOP, while the syscall didn't
2048 actually get to execute. It seems it would be even more
2049 confusing to the user. */
2050
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog,
2053 "LHST: ignoring syscall %d "
2054 "for LWP %ld (stopping threads), "
2055 "resuming with PTRACE_CONT for SIGSTOP\n",
2056 syscall_number,
2057 GET_LWP (lp->ptid));
2058
2059 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2060 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2061 return 1;
2062 }
2063
2064 if (catch_syscall_enabled ())
2065 {
2066 /* Always update the entry/return state, even if this particular
2067 syscall isn't interesting to the core now. In async mode,
2068 the user could install a new catchpoint for this syscall
2069 between syscall enter/return, and we'll need to know to
2070 report a syscall return if that happens. */
2071 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2072 ? TARGET_WAITKIND_SYSCALL_RETURN
2073 : TARGET_WAITKIND_SYSCALL_ENTRY);
2074
2075 if (catching_syscall_number (syscall_number))
2076 {
2077 /* Alright, an event to report. */
2078 ourstatus->kind = lp->syscall_state;
2079 ourstatus->value.syscall_number = syscall_number;
2080
2081 if (debug_linux_nat)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "LHST: stopping for %s of syscall %d"
2084 " for LWP %ld\n",
2085 lp->syscall_state
2086 == TARGET_WAITKIND_SYSCALL_ENTRY
2087 ? "entry" : "return",
2088 syscall_number,
2089 GET_LWP (lp->ptid));
2090 return 0;
2091 }
2092
2093 if (debug_linux_nat)
2094 fprintf_unfiltered (gdb_stdlog,
2095 "LHST: ignoring %s of syscall %d "
2096 "for LWP %ld\n",
2097 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2098 ? "entry" : "return",
2099 syscall_number,
2100 GET_LWP (lp->ptid));
2101 }
2102 else
2103 {
2104 /* If we had been syscall tracing, and hence used PT_SYSCALL
2105 before on this LWP, it could happen that the user removes all
2106 syscall catchpoints before we get to process this event.
2107 There are two noteworthy issues here:
2108
2109 - When stopped at a syscall entry event, resuming with
2110 PT_STEP still resumes executing the syscall and reports a
2111 syscall return.
2112
2113 - Only PT_SYSCALL catches syscall enters. If we last
2114 single-stepped this thread, then this event can't be a
2115 syscall enter. If we last single-stepped this thread, this
2116 has to be a syscall exit.
2117
2118 The points above mean that the next resume, be it PT_STEP or
2119 PT_CONTINUE, can not trigger a syscall trace event. */
2120 if (debug_linux_nat)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "LHST: caught syscall event "
2123 "with no syscall catchpoints."
2124 " %d for LWP %ld, ignoring\n",
2125 syscall_number,
2126 GET_LWP (lp->ptid));
2127 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2128 }
2129
2130 /* The core isn't interested in this event. For efficiency, avoid
2131 stopping all threads only to have the core resume them all again.
2132 Since we're not stopping threads, if we're still syscall tracing
2133 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2134 subsequent syscall. Simply resume using the inf-ptrace layer,
2135 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2136
2137 /* Note that gdbarch_get_syscall_number may access registers, hence
2138 fill a regcache. */
2139 registers_changed ();
2140 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2141 lp->step, TARGET_SIGNAL_0);
2142 return 1;
2143 }
2144
2145 /* Handle a GNU/Linux extended wait response. If we see a clone
2146 event, we need to add the new LWP to our list (and not report the
2147 trap to higher layers). This function returns non-zero if the
2148 event should be ignored and we should wait again. If STOPPING is
2149 true, the new LWP remains stopped, otherwise it is continued. */
2150
2151 static int
2152 linux_handle_extended_wait (struct lwp_info *lp, int status,
2153 int stopping)
2154 {
2155 int pid = GET_LWP (lp->ptid);
2156 struct target_waitstatus *ourstatus = &lp->waitstatus;
2157 int event = status >> 16;
2158
2159 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2160 || event == PTRACE_EVENT_CLONE)
2161 {
2162 unsigned long new_pid;
2163 int ret;
2164
2165 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2166
2167 /* If we haven't already seen the new PID stop, wait for it now. */
2168 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2169 {
2170 /* The new child has a pending SIGSTOP. We can't affect it until it
2171 hits the SIGSTOP, but we're already attached. */
2172 ret = my_waitpid (new_pid, &status,
2173 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2174 if (ret == -1)
2175 perror_with_name (_("waiting for new child"));
2176 else if (ret != new_pid)
2177 internal_error (__FILE__, __LINE__,
2178 _("wait returned unexpected PID %d"), ret);
2179 else if (!WIFSTOPPED (status))
2180 internal_error (__FILE__, __LINE__,
2181 _("wait returned unexpected status 0x%x"), status);
2182 }
2183
2184 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2185
2186 if (event == PTRACE_EVENT_FORK
2187 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2188 {
2189 /* Handle checkpointing by linux-fork.c here as a special
2190 case. We don't want the follow-fork-mode or 'catch fork'
2191 to interfere with this. */
2192
2193 /* This won't actually modify the breakpoint list, but will
2194 physically remove the breakpoints from the child. */
2195 detach_breakpoints (new_pid);
2196
2197 /* Retain child fork in ptrace (stopped) state. */
2198 if (!find_fork_pid (new_pid))
2199 add_fork (new_pid);
2200
2201 /* Report as spurious, so that infrun doesn't want to follow
2202 this fork. We're actually doing an infcall in
2203 linux-fork.c. */
2204 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2205 linux_enable_event_reporting (pid_to_ptid (new_pid));
2206
2207 /* Report the stop to the core. */
2208 return 0;
2209 }
2210
2211 if (event == PTRACE_EVENT_FORK)
2212 ourstatus->kind = TARGET_WAITKIND_FORKED;
2213 else if (event == PTRACE_EVENT_VFORK)
2214 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2215 else
2216 {
2217 struct lwp_info *new_lp;
2218
2219 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2220
2221 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2222 new_lp->cloned = 1;
2223 new_lp->stopped = 1;
2224
2225 if (WSTOPSIG (status) != SIGSTOP)
2226 {
2227 /* This can happen if someone starts sending signals to
2228 the new thread before it gets a chance to run, which
2229 have a lower number than SIGSTOP (e.g. SIGUSR1).
2230 This is an unlikely case, and harder to handle for
2231 fork / vfork than for clone, so we do not try - but
2232 we handle it for clone events here. We'll send
2233 the other signal on to the thread below. */
2234
2235 new_lp->signalled = 1;
2236 }
2237 else
2238 {
2239 struct thread_info *tp;
2240
2241 /* When we stop for an event in some other thread, and
2242 pull the thread list just as this thread has cloned,
2243 we'll have seen the new thread in the thread_db list
2244 before handling the CLONE event (glibc's
2245 pthread_create adds the new thread to the thread list
2246 before clone'ing, and has the kernel fill in the
2247 thread's tid on the clone call with
2248 CLONE_PARENT_SETTID). If that happened, and the core
2249 had requested the new thread to stop, we'll have
2250 killed it with SIGSTOP. But since SIGSTOP is not an
2251 RT signal, it can only be queued once. We need to be
2252 careful to not resume the LWP if we wanted it to
2253 stop. In that case, we'll leave the SIGSTOP pending.
2254 It will later be reported as TARGET_SIGNAL_0. */
2255 tp = find_thread_ptid (new_lp->ptid);
2256 if (tp != NULL && tp->stop_requested)
2257 new_lp->last_resume_kind = resume_stop;
2258 else
2259 status = 0;
2260 }
2261
2262 if (non_stop)
2263 {
2264 /* Add the new thread to GDB's lists as soon as possible
2265 so that:
2266
2267 1) the frontend doesn't have to wait for a stop to
2268 display them, and,
2269
2270 2) we tag it with the correct running state. */
2271
2272 /* If the thread_db layer is active, let it know about
2273 this new thread, and add it to GDB's list. */
2274 if (!thread_db_attach_lwp (new_lp->ptid))
2275 {
2276 /* We're not using thread_db. Add it to GDB's
2277 list. */
2278 target_post_attach (GET_LWP (new_lp->ptid));
2279 add_thread (new_lp->ptid);
2280 }
2281
2282 if (!stopping)
2283 {
2284 set_running (new_lp->ptid, 1);
2285 set_executing (new_lp->ptid, 1);
2286 }
2287 }
2288
2289 if (status != 0)
2290 {
2291 /* We created NEW_LP so it cannot yet contain STATUS. */
2292 gdb_assert (new_lp->status == 0);
2293
2294 /* Save the wait status to report later. */
2295 if (debug_linux_nat)
2296 fprintf_unfiltered (gdb_stdlog,
2297 "LHEW: waitpid of new LWP %ld, "
2298 "saving status %s\n",
2299 (long) GET_LWP (new_lp->ptid),
2300 status_to_str (status));
2301 new_lp->status = status;
2302 }
2303
2304 /* Note the need to use the low target ops to resume, to
2305 handle resuming with PT_SYSCALL if we have syscall
2306 catchpoints. */
2307 if (!stopping)
2308 {
2309 new_lp->resumed = 1;
2310
2311 if (status == 0)
2312 {
2313 if (debug_linux_nat)
2314 fprintf_unfiltered (gdb_stdlog,
2315 "LHEW: resuming new LWP %ld\n",
2316 GET_LWP (new_lp->ptid));
2317 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2318 0, TARGET_SIGNAL_0);
2319 new_lp->stopped = 0;
2320 }
2321 }
2322
2323 if (debug_linux_nat)
2324 fprintf_unfiltered (gdb_stdlog,
2325 "LHEW: Got clone event "
2326 "from LWP %ld, resuming\n",
2327 GET_LWP (lp->ptid));
2328 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2329 0, TARGET_SIGNAL_0);
2330
2331 return 1;
2332 }
2333
2334 return 0;
2335 }
2336
2337 if (event == PTRACE_EVENT_EXEC)
2338 {
2339 if (debug_linux_nat)
2340 fprintf_unfiltered (gdb_stdlog,
2341 "LHEW: Got exec event from LWP %ld\n",
2342 GET_LWP (lp->ptid));
2343
2344 ourstatus->kind = TARGET_WAITKIND_EXECD;
2345 ourstatus->value.execd_pathname
2346 = xstrdup (linux_child_pid_to_exec_file (pid));
2347
2348 return 0;
2349 }
2350
2351 if (event == PTRACE_EVENT_VFORK_DONE)
2352 {
2353 if (current_inferior ()->waiting_for_vfork_done)
2354 {
2355 if (debug_linux_nat)
2356 fprintf_unfiltered (gdb_stdlog,
2357 "LHEW: Got expected PTRACE_EVENT_"
2358 "VFORK_DONE from LWP %ld: stopping\n",
2359 GET_LWP (lp->ptid));
2360
2361 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2362 return 0;
2363 }
2364
2365 if (debug_linux_nat)
2366 fprintf_unfiltered (gdb_stdlog,
2367 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2368 "from LWP %ld: resuming\n",
2369 GET_LWP (lp->ptid));
2370 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2371 return 1;
2372 }
2373
2374 internal_error (__FILE__, __LINE__,
2375 _("unknown ptrace event %d"), event);
2376 }
2377
2378 /* Return non-zero if LWP is a zombie. */
2379
2380 static int
2381 linux_lwp_is_zombie (long lwp)
2382 {
2383 char buffer[MAXPATHLEN];
2384 FILE *procfile;
2385 int retval = 0;
2386
2387 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2388 procfile = fopen (buffer, "r");
2389 if (procfile == NULL)
2390 {
2391 warning (_("unable to open /proc file '%s'"), buffer);
2392 return 0;
2393 }
2394 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2395 if (strcmp (buffer, "State:\tZ (zombie)\n") == 0)
2396 {
2397 retval = 1;
2398 break;
2399 }
2400 fclose (procfile);
2401
2402 return retval;
2403 }
2404
2405 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2406 exited. */
2407
2408 static int
2409 wait_lwp (struct lwp_info *lp)
2410 {
2411 pid_t pid;
2412 int status = 0;
2413 int thread_dead = 0;
2414 sigset_t prev_mask;
2415
2416 gdb_assert (!lp->stopped);
2417 gdb_assert (lp->status == 0);
2418
2419 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2420 block_child_signals (&prev_mask);
2421
2422 for (;;)
2423 {
2424 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2425 was right and we should just call sigsuspend. */
2426
2427 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2428 if (pid == -1 && errno == ECHILD)
2429 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2430 if (pid == -1 && errno == ECHILD)
2431 {
2432 /* The thread has previously exited. We need to delete it
2433 now because, for some vendor 2.4 kernels with NPTL
2434 support backported, there won't be an exit event unless
2435 it is the main thread. 2.6 kernels will report an exit
2436 event for each thread that exits, as expected. */
2437 thread_dead = 1;
2438 if (debug_linux_nat)
2439 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2440 target_pid_to_str (lp->ptid));
2441 }
2442 if (pid != 0)
2443 break;
2444
2445 /* Bugs 10970, 12702.
2446 Thread group leader may have exited in which case we'll lock up in
2447 waitpid if there are other threads, even if they are all zombies too.
2448 Basically, we're not supposed to use waitpid this way.
2449 __WCLONE is not applicable for the leader so we can't use that.
2450 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2451 process; it gets ESRCH both for the zombie and for running processes.
2452
2453 As a workaround, check if we're waiting for the thread group leader and
2454 if it's a zombie, and avoid calling waitpid if it is.
2455
2456 This is racy, what if the tgl becomes a zombie right after we check?
2457 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2458 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2459
2460 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2461 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2462 {
2463 thread_dead = 1;
2464 if (debug_linux_nat)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "WL: Thread group leader %s vanished.\n",
2467 target_pid_to_str (lp->ptid));
2468 break;
2469 }
2470
2471 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2472 get invoked despite our caller had them intentionally blocked by
2473 block_child_signals. This is sensitive only to the loop of
2474 linux_nat_wait_1 and there if we get called my_waitpid gets called
2475 again before it gets to sigsuspend so we can safely let the handlers
2476 get executed here. */
2477
2478 sigsuspend (&suspend_mask);
2479 }
2480
2481 restore_child_signals_mask (&prev_mask);
2482
2483 if (!thread_dead)
2484 {
2485 gdb_assert (pid == GET_LWP (lp->ptid));
2486
2487 if (debug_linux_nat)
2488 {
2489 fprintf_unfiltered (gdb_stdlog,
2490 "WL: waitpid %s received %s\n",
2491 target_pid_to_str (lp->ptid),
2492 status_to_str (status));
2493 }
2494
2495 /* Check if the thread has exited. */
2496 if (WIFEXITED (status) || WIFSIGNALED (status))
2497 {
2498 thread_dead = 1;
2499 if (debug_linux_nat)
2500 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2501 target_pid_to_str (lp->ptid));
2502 }
2503 }
2504
2505 if (thread_dead)
2506 {
2507 exit_lwp (lp);
2508 return 0;
2509 }
2510
2511 gdb_assert (WIFSTOPPED (status));
2512
2513 /* Handle GNU/Linux's syscall SIGTRAPs. */
2514 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2515 {
2516 /* No longer need the sysgood bit. The ptrace event ends up
2517 recorded in lp->waitstatus if we care for it. We can carry
2518 on handling the event like a regular SIGTRAP from here
2519 on. */
2520 status = W_STOPCODE (SIGTRAP);
2521 if (linux_handle_syscall_trap (lp, 1))
2522 return wait_lwp (lp);
2523 }
2524
2525 /* Handle GNU/Linux's extended waitstatus for trace events. */
2526 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2527 {
2528 if (debug_linux_nat)
2529 fprintf_unfiltered (gdb_stdlog,
2530 "WL: Handling extended status 0x%06x\n",
2531 status);
2532 if (linux_handle_extended_wait (lp, status, 1))
2533 return wait_lwp (lp);
2534 }
2535
2536 return status;
2537 }
2538
2539 /* Save the most recent siginfo for LP. This is currently only called
2540 for SIGTRAP; some ports use the si_addr field for
2541 target_stopped_data_address. In the future, it may also be used to
2542 restore the siginfo of requeued signals. */
2543
2544 static void
2545 save_siginfo (struct lwp_info *lp)
2546 {
2547 errno = 0;
2548 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2549 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2550
2551 if (errno != 0)
2552 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2553 }
2554
2555 /* Send a SIGSTOP to LP. */
2556
2557 static int
2558 stop_callback (struct lwp_info *lp, void *data)
2559 {
2560 if (!lp->stopped && !lp->signalled)
2561 {
2562 int ret;
2563
2564 if (debug_linux_nat)
2565 {
2566 fprintf_unfiltered (gdb_stdlog,
2567 "SC: kill %s **<SIGSTOP>**\n",
2568 target_pid_to_str (lp->ptid));
2569 }
2570 errno = 0;
2571 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2572 if (debug_linux_nat)
2573 {
2574 fprintf_unfiltered (gdb_stdlog,
2575 "SC: lwp kill %d %s\n",
2576 ret,
2577 errno ? safe_strerror (errno) : "ERRNO-OK");
2578 }
2579
2580 lp->signalled = 1;
2581 gdb_assert (lp->status == 0);
2582 }
2583
2584 return 0;
2585 }
2586
2587 /* Return non-zero if LWP PID has a pending SIGINT. */
2588
2589 static int
2590 linux_nat_has_pending_sigint (int pid)
2591 {
2592 sigset_t pending, blocked, ignored;
2593
2594 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2595
2596 if (sigismember (&pending, SIGINT)
2597 && !sigismember (&ignored, SIGINT))
2598 return 1;
2599
2600 return 0;
2601 }
2602
2603 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2604
2605 static int
2606 set_ignore_sigint (struct lwp_info *lp, void *data)
2607 {
2608 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2609 flag to consume the next one. */
2610 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2611 && WSTOPSIG (lp->status) == SIGINT)
2612 lp->status = 0;
2613 else
2614 lp->ignore_sigint = 1;
2615
2616 return 0;
2617 }
2618
2619 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2620 This function is called after we know the LWP has stopped; if the LWP
2621 stopped before the expected SIGINT was delivered, then it will never have
2622 arrived. Also, if the signal was delivered to a shared queue and consumed
2623 by a different thread, it will never be delivered to this LWP. */
2624
2625 static void
2626 maybe_clear_ignore_sigint (struct lwp_info *lp)
2627 {
2628 if (!lp->ignore_sigint)
2629 return;
2630
2631 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2632 {
2633 if (debug_linux_nat)
2634 fprintf_unfiltered (gdb_stdlog,
2635 "MCIS: Clearing bogus flag for %s\n",
2636 target_pid_to_str (lp->ptid));
2637 lp->ignore_sigint = 0;
2638 }
2639 }
2640
2641 /* Fetch the possible triggered data watchpoint info and store it in
2642 LP.
2643
2644 On some archs, like x86, that use debug registers to set
2645 watchpoints, it's possible that the way to know which watched
2646 address trapped, is to check the register that is used to select
2647 which address to watch. Problem is, between setting the watchpoint
2648 and reading back which data address trapped, the user may change
2649 the set of watchpoints, and, as a consequence, GDB changes the
2650 debug registers in the inferior. To avoid reading back a stale
2651 stopped-data-address when that happens, we cache in LP the fact
2652 that a watchpoint trapped, and the corresponding data address, as
2653 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2654 registers meanwhile, we have the cached data we can rely on. */
2655
2656 static void
2657 save_sigtrap (struct lwp_info *lp)
2658 {
2659 struct cleanup *old_chain;
2660
2661 if (linux_ops->to_stopped_by_watchpoint == NULL)
2662 {
2663 lp->stopped_by_watchpoint = 0;
2664 return;
2665 }
2666
2667 old_chain = save_inferior_ptid ();
2668 inferior_ptid = lp->ptid;
2669
2670 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2671
2672 if (lp->stopped_by_watchpoint)
2673 {
2674 if (linux_ops->to_stopped_data_address != NULL)
2675 lp->stopped_data_address_p =
2676 linux_ops->to_stopped_data_address (&current_target,
2677 &lp->stopped_data_address);
2678 else
2679 lp->stopped_data_address_p = 0;
2680 }
2681
2682 do_cleanups (old_chain);
2683 }
2684
2685 /* See save_sigtrap. */
2686
2687 static int
2688 linux_nat_stopped_by_watchpoint (void)
2689 {
2690 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2691
2692 gdb_assert (lp != NULL);
2693
2694 return lp->stopped_by_watchpoint;
2695 }
2696
2697 static int
2698 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2699 {
2700 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2701
2702 gdb_assert (lp != NULL);
2703
2704 *addr_p = lp->stopped_data_address;
2705
2706 return lp->stopped_data_address_p;
2707 }
2708
2709 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2710
2711 static int
2712 sigtrap_is_event (int status)
2713 {
2714 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2715 }
2716
2717 /* SIGTRAP-like events recognizer. */
2718
2719 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2720
2721 /* Check for SIGTRAP-like events in LP. */
2722
2723 static int
2724 linux_nat_lp_status_is_event (struct lwp_info *lp)
2725 {
2726 /* We check for lp->waitstatus in addition to lp->status, because we can
2727 have pending process exits recorded in lp->status
2728 and W_EXITCODE(0,0) == 0. We should probably have an additional
2729 lp->status_p flag. */
2730
2731 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2732 && linux_nat_status_is_event (lp->status));
2733 }
2734
2735 /* Set alternative SIGTRAP-like events recognizer. If
2736 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2737 applied. */
2738
2739 void
2740 linux_nat_set_status_is_event (struct target_ops *t,
2741 int (*status_is_event) (int status))
2742 {
2743 linux_nat_status_is_event = status_is_event;
2744 }
2745
2746 /* Wait until LP is stopped. */
2747
2748 static int
2749 stop_wait_callback (struct lwp_info *lp, void *data)
2750 {
2751 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2752
2753 /* If this is a vfork parent, bail out, it is not going to report
2754 any SIGSTOP until the vfork is done with. */
2755 if (inf->vfork_child != NULL)
2756 return 0;
2757
2758 if (!lp->stopped)
2759 {
2760 int status;
2761
2762 status = wait_lwp (lp);
2763 if (status == 0)
2764 return 0;
2765
2766 if (lp->ignore_sigint && WIFSTOPPED (status)
2767 && WSTOPSIG (status) == SIGINT)
2768 {
2769 lp->ignore_sigint = 0;
2770
2771 errno = 0;
2772 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2773 if (debug_linux_nat)
2774 fprintf_unfiltered (gdb_stdlog,
2775 "PTRACE_CONT %s, 0, 0 (%s) "
2776 "(discarding SIGINT)\n",
2777 target_pid_to_str (lp->ptid),
2778 errno ? safe_strerror (errno) : "OK");
2779
2780 return stop_wait_callback (lp, NULL);
2781 }
2782
2783 maybe_clear_ignore_sigint (lp);
2784
2785 if (WSTOPSIG (status) != SIGSTOP)
2786 {
2787 if (linux_nat_status_is_event (status))
2788 {
2789 /* If a LWP other than the LWP that we're reporting an
2790 event for has hit a GDB breakpoint (as opposed to
2791 some random trap signal), then just arrange for it to
2792 hit it again later. We don't keep the SIGTRAP status
2793 and don't forward the SIGTRAP signal to the LWP. We
2794 will handle the current event, eventually we will
2795 resume all LWPs, and this one will get its breakpoint
2796 trap again.
2797
2798 If we do not do this, then we run the risk that the
2799 user will delete or disable the breakpoint, but the
2800 thread will have already tripped on it. */
2801
2802 /* Save the trap's siginfo in case we need it later. */
2803 save_siginfo (lp);
2804
2805 save_sigtrap (lp);
2806
2807 /* Now resume this LWP and get the SIGSTOP event. */
2808 errno = 0;
2809 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2810 if (debug_linux_nat)
2811 {
2812 fprintf_unfiltered (gdb_stdlog,
2813 "PTRACE_CONT %s, 0, 0 (%s)\n",
2814 target_pid_to_str (lp->ptid),
2815 errno ? safe_strerror (errno) : "OK");
2816
2817 fprintf_unfiltered (gdb_stdlog,
2818 "SWC: Candidate SIGTRAP event in %s\n",
2819 target_pid_to_str (lp->ptid));
2820 }
2821 /* Hold this event/waitstatus while we check to see if
2822 there are any more (we still want to get that SIGSTOP). */
2823 stop_wait_callback (lp, NULL);
2824
2825 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2826 there's another event, throw it back into the
2827 queue. */
2828 if (lp->status)
2829 {
2830 if (debug_linux_nat)
2831 fprintf_unfiltered (gdb_stdlog,
2832 "SWC: kill %s, %s\n",
2833 target_pid_to_str (lp->ptid),
2834 status_to_str ((int) status));
2835 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2836 }
2837
2838 /* Save the sigtrap event. */
2839 lp->status = status;
2840 return 0;
2841 }
2842 else
2843 {
2844 /* The thread was stopped with a signal other than
2845 SIGSTOP, and didn't accidentally trip a breakpoint. */
2846
2847 if (debug_linux_nat)
2848 {
2849 fprintf_unfiltered (gdb_stdlog,
2850 "SWC: Pending event %s in %s\n",
2851 status_to_str ((int) status),
2852 target_pid_to_str (lp->ptid));
2853 }
2854 /* Now resume this LWP and get the SIGSTOP event. */
2855 errno = 0;
2856 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2857 if (debug_linux_nat)
2858 fprintf_unfiltered (gdb_stdlog,
2859 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2860 target_pid_to_str (lp->ptid),
2861 errno ? safe_strerror (errno) : "OK");
2862
2863 /* Hold this event/waitstatus while we check to see if
2864 there are any more (we still want to get that SIGSTOP). */
2865 stop_wait_callback (lp, NULL);
2866
2867 /* If the lp->status field is still empty, use it to
2868 hold this event. If not, then this event must be
2869 returned to the event queue of the LWP. */
2870 if (lp->status)
2871 {
2872 if (debug_linux_nat)
2873 {
2874 fprintf_unfiltered (gdb_stdlog,
2875 "SWC: kill %s, %s\n",
2876 target_pid_to_str (lp->ptid),
2877 status_to_str ((int) status));
2878 }
2879 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2880 }
2881 else
2882 lp->status = status;
2883 return 0;
2884 }
2885 }
2886 else
2887 {
2888 /* We caught the SIGSTOP that we intended to catch, so
2889 there's no SIGSTOP pending. */
2890 lp->stopped = 1;
2891 lp->signalled = 0;
2892 }
2893 }
2894
2895 return 0;
2896 }
2897
2898 /* Return non-zero if LP has a wait status pending. */
2899
2900 static int
2901 status_callback (struct lwp_info *lp, void *data)
2902 {
2903 /* Only report a pending wait status if we pretend that this has
2904 indeed been resumed. */
2905 if (!lp->resumed)
2906 return 0;
2907
2908 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2909 {
2910 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2911 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2912 0', so a clean process exit can not be stored pending in
2913 lp->status, it is indistinguishable from
2914 no-pending-status. */
2915 return 1;
2916 }
2917
2918 if (lp->status != 0)
2919 return 1;
2920
2921 return 0;
2922 }
2923
2924 /* Return non-zero if LP isn't stopped. */
2925
2926 static int
2927 running_callback (struct lwp_info *lp, void *data)
2928 {
2929 return (!lp->stopped
2930 || ((lp->status != 0
2931 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2932 && lp->resumed));
2933 }
2934
2935 /* Count the LWP's that have had events. */
2936
2937 static int
2938 count_events_callback (struct lwp_info *lp, void *data)
2939 {
2940 int *count = data;
2941
2942 gdb_assert (count != NULL);
2943
2944 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2945 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2946 (*count)++;
2947
2948 return 0;
2949 }
2950
2951 /* Select the LWP (if any) that is currently being single-stepped. */
2952
2953 static int
2954 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2955 {
2956 if (lp->last_resume_kind == resume_step
2957 && lp->status != 0)
2958 return 1;
2959 else
2960 return 0;
2961 }
2962
2963 /* Select the Nth LWP that has had a SIGTRAP event. */
2964
2965 static int
2966 select_event_lwp_callback (struct lwp_info *lp, void *data)
2967 {
2968 int *selector = data;
2969
2970 gdb_assert (selector != NULL);
2971
2972 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2973 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2974 if ((*selector)-- == 0)
2975 return 1;
2976
2977 return 0;
2978 }
2979
2980 static int
2981 cancel_breakpoint (struct lwp_info *lp)
2982 {
2983 /* Arrange for a breakpoint to be hit again later. We don't keep
2984 the SIGTRAP status and don't forward the SIGTRAP signal to the
2985 LWP. We will handle the current event, eventually we will resume
2986 this LWP, and this breakpoint will trap again.
2987
2988 If we do not do this, then we run the risk that the user will
2989 delete or disable the breakpoint, but the LWP will have already
2990 tripped on it. */
2991
2992 struct regcache *regcache = get_thread_regcache (lp->ptid);
2993 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2994 CORE_ADDR pc;
2995
2996 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2997 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2998 {
2999 if (debug_linux_nat)
3000 fprintf_unfiltered (gdb_stdlog,
3001 "CB: Push back breakpoint for %s\n",
3002 target_pid_to_str (lp->ptid));
3003
3004 /* Back up the PC if necessary. */
3005 if (gdbarch_decr_pc_after_break (gdbarch))
3006 regcache_write_pc (regcache, pc);
3007
3008 return 1;
3009 }
3010 return 0;
3011 }
3012
3013 static int
3014 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3015 {
3016 struct lwp_info *event_lp = data;
3017
3018 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3019 if (lp == event_lp)
3020 return 0;
3021
3022 /* If a LWP other than the LWP that we're reporting an event for has
3023 hit a GDB breakpoint (as opposed to some random trap signal),
3024 then just arrange for it to hit it again later. We don't keep
3025 the SIGTRAP status and don't forward the SIGTRAP signal to the
3026 LWP. We will handle the current event, eventually we will resume
3027 all LWPs, and this one will get its breakpoint trap again.
3028
3029 If we do not do this, then we run the risk that the user will
3030 delete or disable the breakpoint, but the LWP will have already
3031 tripped on it. */
3032
3033 if (linux_nat_lp_status_is_event (lp)
3034 && cancel_breakpoint (lp))
3035 /* Throw away the SIGTRAP. */
3036 lp->status = 0;
3037
3038 return 0;
3039 }
3040
3041 /* Select one LWP out of those that have events pending. */
3042
3043 static void
3044 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3045 {
3046 int num_events = 0;
3047 int random_selector;
3048 struct lwp_info *event_lp;
3049
3050 /* Record the wait status for the original LWP. */
3051 (*orig_lp)->status = *status;
3052
3053 /* Give preference to any LWP that is being single-stepped. */
3054 event_lp = iterate_over_lwps (filter,
3055 select_singlestep_lwp_callback, NULL);
3056 if (event_lp != NULL)
3057 {
3058 if (debug_linux_nat)
3059 fprintf_unfiltered (gdb_stdlog,
3060 "SEL: Select single-step %s\n",
3061 target_pid_to_str (event_lp->ptid));
3062 }
3063 else
3064 {
3065 /* No single-stepping LWP. Select one at random, out of those
3066 which have had SIGTRAP events. */
3067
3068 /* First see how many SIGTRAP events we have. */
3069 iterate_over_lwps (filter, count_events_callback, &num_events);
3070
3071 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3072 random_selector = (int)
3073 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3074
3075 if (debug_linux_nat && num_events > 1)
3076 fprintf_unfiltered (gdb_stdlog,
3077 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3078 num_events, random_selector);
3079
3080 event_lp = iterate_over_lwps (filter,
3081 select_event_lwp_callback,
3082 &random_selector);
3083 }
3084
3085 if (event_lp != NULL)
3086 {
3087 /* Switch the event LWP. */
3088 *orig_lp = event_lp;
3089 *status = event_lp->status;
3090 }
3091
3092 /* Flush the wait status for the event LWP. */
3093 (*orig_lp)->status = 0;
3094 }
3095
3096 /* Return non-zero if LP has been resumed. */
3097
3098 static int
3099 resumed_callback (struct lwp_info *lp, void *data)
3100 {
3101 return lp->resumed;
3102 }
3103
3104 /* Stop an active thread, verify it still exists, then resume it. */
3105
3106 static int
3107 stop_and_resume_callback (struct lwp_info *lp, void *data)
3108 {
3109 if (!lp->stopped)
3110 {
3111 enum resume_kind last_resume_kind = lp->last_resume_kind;
3112 ptid_t ptid = lp->ptid;
3113
3114 stop_callback (lp, NULL);
3115 stop_wait_callback (lp, NULL);
3116
3117 /* Resume if the lwp still exists, and the core wanted it
3118 running. */
3119 if (last_resume_kind != resume_stop)
3120 {
3121 lp = find_lwp_pid (ptid);
3122 if (lp)
3123 resume_lwp (lp, lp->step);
3124 }
3125 }
3126 return 0;
3127 }
3128
3129 /* Check if we should go on and pass this event to common code.
3130 Return the affected lwp if we are, or NULL otherwise. */
3131 static struct lwp_info *
3132 linux_nat_filter_event (int lwpid, int status, int options)
3133 {
3134 struct lwp_info *lp;
3135
3136 lp = find_lwp_pid (pid_to_ptid (lwpid));
3137
3138 /* Check for stop events reported by a process we didn't already
3139 know about - anything not already in our LWP list.
3140
3141 If we're expecting to receive stopped processes after
3142 fork, vfork, and clone events, then we'll just add the
3143 new one to our list and go back to waiting for the event
3144 to be reported - the stopped process might be returned
3145 from waitpid before or after the event is. */
3146 if (WIFSTOPPED (status) && !lp)
3147 {
3148 add_to_pid_list (&stopped_pids, lwpid, status);
3149 return NULL;
3150 }
3151
3152 /* Make sure we don't report an event for the exit of an LWP not in
3153 our list, i.e. not part of the current process. This can happen
3154 if we detach from a program we originally forked and then it
3155 exits. */
3156 if (!WIFSTOPPED (status) && !lp)
3157 return NULL;
3158
3159 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3160 CLONE_PTRACE processes which do not use the thread library -
3161 otherwise we wouldn't find the new LWP this way. That doesn't
3162 currently work, and the following code is currently unreachable
3163 due to the two blocks above. If it's fixed some day, this code
3164 should be broken out into a function so that we can also pick up
3165 LWPs from the new interface. */
3166 if (!lp)
3167 {
3168 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3169 if (options & __WCLONE)
3170 lp->cloned = 1;
3171
3172 gdb_assert (WIFSTOPPED (status)
3173 && WSTOPSIG (status) == SIGSTOP);
3174 lp->signalled = 1;
3175
3176 if (!in_thread_list (inferior_ptid))
3177 {
3178 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3179 GET_PID (inferior_ptid));
3180 add_thread (inferior_ptid);
3181 }
3182
3183 add_thread (lp->ptid);
3184 }
3185
3186 /* Handle GNU/Linux's syscall SIGTRAPs. */
3187 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3188 {
3189 /* No longer need the sysgood bit. The ptrace event ends up
3190 recorded in lp->waitstatus if we care for it. We can carry
3191 on handling the event like a regular SIGTRAP from here
3192 on. */
3193 status = W_STOPCODE (SIGTRAP);
3194 if (linux_handle_syscall_trap (lp, 0))
3195 return NULL;
3196 }
3197
3198 /* Handle GNU/Linux's extended waitstatus for trace events. */
3199 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3200 {
3201 if (debug_linux_nat)
3202 fprintf_unfiltered (gdb_stdlog,
3203 "LLW: Handling extended status 0x%06x\n",
3204 status);
3205 if (linux_handle_extended_wait (lp, status, 0))
3206 return NULL;
3207 }
3208
3209 if (linux_nat_status_is_event (status))
3210 {
3211 /* Save the trap's siginfo in case we need it later. */
3212 save_siginfo (lp);
3213
3214 save_sigtrap (lp);
3215 }
3216
3217 /* Check if the thread has exited. */
3218 if ((WIFEXITED (status) || WIFSIGNALED (status))
3219 && num_lwps (GET_PID (lp->ptid)) > 1)
3220 {
3221 /* If this is the main thread, we must stop all threads and verify
3222 if they are still alive. This is because in the nptl thread model
3223 on Linux 2.4, there is no signal issued for exiting LWPs
3224 other than the main thread. We only get the main thread exit
3225 signal once all child threads have already exited. If we
3226 stop all the threads and use the stop_wait_callback to check
3227 if they have exited we can determine whether this signal
3228 should be ignored or whether it means the end of the debugged
3229 application, regardless of which threading model is being
3230 used. */
3231 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3232 {
3233 lp->stopped = 1;
3234 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3235 stop_and_resume_callback, NULL);
3236 }
3237
3238 if (debug_linux_nat)
3239 fprintf_unfiltered (gdb_stdlog,
3240 "LLW: %s exited.\n",
3241 target_pid_to_str (lp->ptid));
3242
3243 if (num_lwps (GET_PID (lp->ptid)) > 1)
3244 {
3245 /* If there is at least one more LWP, then the exit signal
3246 was not the end of the debugged application and should be
3247 ignored. */
3248 exit_lwp (lp);
3249 return NULL;
3250 }
3251 }
3252
3253 /* Check if the current LWP has previously exited. In the nptl
3254 thread model, LWPs other than the main thread do not issue
3255 signals when they exit so we must check whenever the thread has
3256 stopped. A similar check is made in stop_wait_callback(). */
3257 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3258 {
3259 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3260
3261 if (debug_linux_nat)
3262 fprintf_unfiltered (gdb_stdlog,
3263 "LLW: %s exited.\n",
3264 target_pid_to_str (lp->ptid));
3265
3266 exit_lwp (lp);
3267
3268 /* Make sure there is at least one thread running. */
3269 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3270
3271 /* Discard the event. */
3272 return NULL;
3273 }
3274
3275 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3276 an attempt to stop an LWP. */
3277 if (lp->signalled
3278 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3279 {
3280 if (debug_linux_nat)
3281 fprintf_unfiltered (gdb_stdlog,
3282 "LLW: Delayed SIGSTOP caught for %s.\n",
3283 target_pid_to_str (lp->ptid));
3284
3285 lp->signalled = 0;
3286
3287 if (lp->last_resume_kind != resume_stop)
3288 {
3289 /* This is a delayed SIGSTOP. */
3290
3291 registers_changed ();
3292
3293 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3294 lp->step, TARGET_SIGNAL_0);
3295 if (debug_linux_nat)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3298 lp->step ?
3299 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3300 target_pid_to_str (lp->ptid));
3301
3302 lp->stopped = 0;
3303 gdb_assert (lp->resumed);
3304
3305 /* Discard the event. */
3306 return NULL;
3307 }
3308 }
3309
3310 /* Make sure we don't report a SIGINT that we have already displayed
3311 for another thread. */
3312 if (lp->ignore_sigint
3313 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3314 {
3315 if (debug_linux_nat)
3316 fprintf_unfiltered (gdb_stdlog,
3317 "LLW: Delayed SIGINT caught for %s.\n",
3318 target_pid_to_str (lp->ptid));
3319
3320 /* This is a delayed SIGINT. */
3321 lp->ignore_sigint = 0;
3322
3323 registers_changed ();
3324 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3325 lp->step, TARGET_SIGNAL_0);
3326 if (debug_linux_nat)
3327 fprintf_unfiltered (gdb_stdlog,
3328 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3329 lp->step ?
3330 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3331 target_pid_to_str (lp->ptid));
3332
3333 lp->stopped = 0;
3334 gdb_assert (lp->resumed);
3335
3336 /* Discard the event. */
3337 return NULL;
3338 }
3339
3340 /* An interesting event. */
3341 gdb_assert (lp);
3342 lp->status = status;
3343 return lp;
3344 }
3345
3346 static ptid_t
3347 linux_nat_wait_1 (struct target_ops *ops,
3348 ptid_t ptid, struct target_waitstatus *ourstatus,
3349 int target_options)
3350 {
3351 static sigset_t prev_mask;
3352 enum resume_kind last_resume_kind;
3353 struct lwp_info *lp = NULL;
3354 int options = 0;
3355 int status = 0;
3356 pid_t pid;
3357
3358 if (debug_linux_nat)
3359 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3360
3361 /* The first time we get here after starting a new inferior, we may
3362 not have added it to the LWP list yet - this is the earliest
3363 moment at which we know its PID. */
3364 if (ptid_is_pid (inferior_ptid))
3365 {
3366 /* Upgrade the main thread's ptid. */
3367 thread_change_ptid (inferior_ptid,
3368 BUILD_LWP (GET_PID (inferior_ptid),
3369 GET_PID (inferior_ptid)));
3370
3371 lp = add_lwp (inferior_ptid);
3372 lp->resumed = 1;
3373 }
3374
3375 /* Make sure SIGCHLD is blocked. */
3376 block_child_signals (&prev_mask);
3377
3378 if (ptid_equal (ptid, minus_one_ptid))
3379 pid = -1;
3380 else if (ptid_is_pid (ptid))
3381 /* A request to wait for a specific tgid. This is not possible
3382 with waitpid, so instead, we wait for any child, and leave
3383 children we're not interested in right now with a pending
3384 status to report later. */
3385 pid = -1;
3386 else
3387 pid = GET_LWP (ptid);
3388
3389 retry:
3390 lp = NULL;
3391 status = 0;
3392
3393 /* Make sure that of those LWPs we want to get an event from, there
3394 is at least one LWP that has been resumed. If there's none, just
3395 bail out. The core may just be flushing asynchronously all
3396 events. */
3397 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3398 {
3399 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3400
3401 if (debug_linux_nat)
3402 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3403
3404 restore_child_signals_mask (&prev_mask);
3405 return minus_one_ptid;
3406 }
3407
3408 /* First check if there is a LWP with a wait status pending. */
3409 if (pid == -1)
3410 {
3411 /* Any LWP that's been resumed will do. */
3412 lp = iterate_over_lwps (ptid, status_callback, NULL);
3413 if (lp)
3414 {
3415 if (debug_linux_nat && lp->status)
3416 fprintf_unfiltered (gdb_stdlog,
3417 "LLW: Using pending wait status %s for %s.\n",
3418 status_to_str (lp->status),
3419 target_pid_to_str (lp->ptid));
3420 }
3421
3422 /* But if we don't find one, we'll have to wait, and check both
3423 cloned and uncloned processes. We start with the cloned
3424 processes. */
3425 options = __WCLONE | WNOHANG;
3426 }
3427 else if (is_lwp (ptid))
3428 {
3429 if (debug_linux_nat)
3430 fprintf_unfiltered (gdb_stdlog,
3431 "LLW: Waiting for specific LWP %s.\n",
3432 target_pid_to_str (ptid));
3433
3434 /* We have a specific LWP to check. */
3435 lp = find_lwp_pid (ptid);
3436 gdb_assert (lp);
3437
3438 if (debug_linux_nat && lp->status)
3439 fprintf_unfiltered (gdb_stdlog,
3440 "LLW: Using pending wait status %s for %s.\n",
3441 status_to_str (lp->status),
3442 target_pid_to_str (lp->ptid));
3443
3444 /* If we have to wait, take into account whether PID is a cloned
3445 process or not. And we have to convert it to something that
3446 the layer beneath us can understand. */
3447 options = lp->cloned ? __WCLONE : 0;
3448 pid = GET_LWP (ptid);
3449
3450 /* We check for lp->waitstatus in addition to lp->status,
3451 because we can have pending process exits recorded in
3452 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3453 an additional lp->status_p flag. */
3454 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3455 lp = NULL;
3456 }
3457
3458 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3459 {
3460 /* A pending SIGSTOP may interfere with the normal stream of
3461 events. In a typical case where interference is a problem,
3462 we have a SIGSTOP signal pending for LWP A while
3463 single-stepping it, encounter an event in LWP B, and take the
3464 pending SIGSTOP while trying to stop LWP A. After processing
3465 the event in LWP B, LWP A is continued, and we'll never see
3466 the SIGTRAP associated with the last time we were
3467 single-stepping LWP A. */
3468
3469 /* Resume the thread. It should halt immediately returning the
3470 pending SIGSTOP. */
3471 registers_changed ();
3472 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3473 lp->step, TARGET_SIGNAL_0);
3474 if (debug_linux_nat)
3475 fprintf_unfiltered (gdb_stdlog,
3476 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3477 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3478 target_pid_to_str (lp->ptid));
3479 lp->stopped = 0;
3480 gdb_assert (lp->resumed);
3481
3482 /* Catch the pending SIGSTOP. */
3483 status = lp->status;
3484 lp->status = 0;
3485
3486 stop_wait_callback (lp, NULL);
3487
3488 /* If the lp->status field isn't empty, we caught another signal
3489 while flushing the SIGSTOP. Return it back to the event
3490 queue of the LWP, as we already have an event to handle. */
3491 if (lp->status)
3492 {
3493 if (debug_linux_nat)
3494 fprintf_unfiltered (gdb_stdlog,
3495 "LLW: kill %s, %s\n",
3496 target_pid_to_str (lp->ptid),
3497 status_to_str (lp->status));
3498 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3499 }
3500
3501 lp->status = status;
3502 }
3503
3504 if (!target_can_async_p ())
3505 {
3506 /* Causes SIGINT to be passed on to the attached process. */
3507 set_sigint_trap ();
3508 }
3509
3510 /* Translate generic target_wait options into waitpid options. */
3511 if (target_options & TARGET_WNOHANG)
3512 options |= WNOHANG;
3513
3514 while (lp == NULL)
3515 {
3516 pid_t lwpid;
3517
3518 lwpid = my_waitpid (pid, &status, options);
3519
3520 if (lwpid > 0)
3521 {
3522 gdb_assert (pid == -1 || lwpid == pid);
3523
3524 if (debug_linux_nat)
3525 {
3526 fprintf_unfiltered (gdb_stdlog,
3527 "LLW: waitpid %ld received %s\n",
3528 (long) lwpid, status_to_str (status));
3529 }
3530
3531 lp = linux_nat_filter_event (lwpid, status, options);
3532
3533 /* STATUS is now no longer valid, use LP->STATUS instead. */
3534 status = 0;
3535
3536 if (lp
3537 && ptid_is_pid (ptid)
3538 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3539 {
3540 gdb_assert (lp->resumed);
3541
3542 if (debug_linux_nat)
3543 fprintf (stderr,
3544 "LWP %ld got an event %06x, leaving pending.\n",
3545 ptid_get_lwp (lp->ptid), lp->status);
3546
3547 if (WIFSTOPPED (lp->status))
3548 {
3549 if (WSTOPSIG (lp->status) != SIGSTOP)
3550 {
3551 /* Cancel breakpoint hits. The breakpoint may
3552 be removed before we fetch events from this
3553 process to report to the core. It is best
3554 not to assume the moribund breakpoints
3555 heuristic always handles these cases --- it
3556 could be too many events go through to the
3557 core before this one is handled. All-stop
3558 always cancels breakpoint hits in all
3559 threads. */
3560 if (non_stop
3561 && linux_nat_lp_status_is_event (lp)
3562 && cancel_breakpoint (lp))
3563 {
3564 /* Throw away the SIGTRAP. */
3565 lp->status = 0;
3566
3567 if (debug_linux_nat)
3568 fprintf (stderr,
3569 "LLW: LWP %ld hit a breakpoint while"
3570 " waiting for another process;"
3571 " cancelled it\n",
3572 ptid_get_lwp (lp->ptid));
3573 }
3574 lp->stopped = 1;
3575 }
3576 else
3577 {
3578 lp->stopped = 1;
3579 lp->signalled = 0;
3580 }
3581 }
3582 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3583 {
3584 if (debug_linux_nat)
3585 fprintf (stderr,
3586 "Process %ld exited while stopping LWPs\n",
3587 ptid_get_lwp (lp->ptid));
3588
3589 /* This was the last lwp in the process. Since
3590 events are serialized to GDB core, and we can't
3591 report this one right now, but GDB core and the
3592 other target layers will want to be notified
3593 about the exit code/signal, leave the status
3594 pending for the next time we're able to report
3595 it. */
3596
3597 /* Prevent trying to stop this thread again. We'll
3598 never try to resume it because it has a pending
3599 status. */
3600 lp->stopped = 1;
3601
3602 /* Dead LWP's aren't expected to reported a pending
3603 sigstop. */
3604 lp->signalled = 0;
3605
3606 /* Store the pending event in the waitstatus as
3607 well, because W_EXITCODE(0,0) == 0. */
3608 store_waitstatus (&lp->waitstatus, lp->status);
3609 }
3610
3611 /* Keep looking. */
3612 lp = NULL;
3613 continue;
3614 }
3615
3616 if (lp)
3617 break;
3618 else
3619 {
3620 if (pid == -1)
3621 {
3622 /* waitpid did return something. Restart over. */
3623 options |= __WCLONE;
3624 }
3625 continue;
3626 }
3627 }
3628
3629 if (pid == -1)
3630 {
3631 /* Alternate between checking cloned and uncloned processes. */
3632 options ^= __WCLONE;
3633
3634 /* And every time we have checked both:
3635 In async mode, return to event loop;
3636 In sync mode, suspend waiting for a SIGCHLD signal. */
3637 if (options & __WCLONE)
3638 {
3639 if (target_options & TARGET_WNOHANG)
3640 {
3641 /* No interesting event. */
3642 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3643
3644 if (debug_linux_nat)
3645 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3646
3647 restore_child_signals_mask (&prev_mask);
3648 return minus_one_ptid;
3649 }
3650
3651 sigsuspend (&suspend_mask);
3652 }
3653 }
3654 else if (target_options & TARGET_WNOHANG)
3655 {
3656 /* No interesting event for PID yet. */
3657 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3658
3659 if (debug_linux_nat)
3660 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3661
3662 restore_child_signals_mask (&prev_mask);
3663 return minus_one_ptid;
3664 }
3665
3666 /* We shouldn't end up here unless we want to try again. */
3667 gdb_assert (lp == NULL);
3668 }
3669
3670 if (!target_can_async_p ())
3671 clear_sigint_trap ();
3672
3673 gdb_assert (lp);
3674
3675 status = lp->status;
3676 lp->status = 0;
3677
3678 /* Don't report signals that GDB isn't interested in, such as
3679 signals that are neither printed nor stopped upon. Stopping all
3680 threads can be a bit time-consuming so if we want decent
3681 performance with heavily multi-threaded programs, especially when
3682 they're using a high frequency timer, we'd better avoid it if we
3683 can. */
3684
3685 if (WIFSTOPPED (status))
3686 {
3687 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3688
3689 /* When using hardware single-step, we need to report every signal.
3690 Otherwise, signals in pass_mask may be short-circuited. */
3691 if (!lp->step
3692 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3693 {
3694 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3695 here? It is not clear we should. GDB may not expect
3696 other threads to run. On the other hand, not resuming
3697 newly attached threads may cause an unwanted delay in
3698 getting them running. */
3699 registers_changed ();
3700 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3701 lp->step, signo);
3702 if (debug_linux_nat)
3703 fprintf_unfiltered (gdb_stdlog,
3704 "LLW: %s %s, %s (preempt 'handle')\n",
3705 lp->step ?
3706 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3707 target_pid_to_str (lp->ptid),
3708 (signo != TARGET_SIGNAL_0
3709 ? strsignal (target_signal_to_host (signo))
3710 : "0"));
3711 lp->stopped = 0;
3712 goto retry;
3713 }
3714
3715 if (!non_stop)
3716 {
3717 /* Only do the below in all-stop, as we currently use SIGINT
3718 to implement target_stop (see linux_nat_stop) in
3719 non-stop. */
3720 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3721 {
3722 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3723 forwarded to the entire process group, that is, all LWPs
3724 will receive it - unless they're using CLONE_THREAD to
3725 share signals. Since we only want to report it once, we
3726 mark it as ignored for all LWPs except this one. */
3727 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3728 set_ignore_sigint, NULL);
3729 lp->ignore_sigint = 0;
3730 }
3731 else
3732 maybe_clear_ignore_sigint (lp);
3733 }
3734 }
3735
3736 /* This LWP is stopped now. */
3737 lp->stopped = 1;
3738
3739 if (debug_linux_nat)
3740 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3741 status_to_str (status), target_pid_to_str (lp->ptid));
3742
3743 if (!non_stop)
3744 {
3745 /* Now stop all other LWP's ... */
3746 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3747
3748 /* ... and wait until all of them have reported back that
3749 they're no longer running. */
3750 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3751
3752 /* If we're not waiting for a specific LWP, choose an event LWP
3753 from among those that have had events. Giving equal priority
3754 to all LWPs that have had events helps prevent
3755 starvation. */
3756 if (pid == -1)
3757 select_event_lwp (ptid, &lp, &status);
3758
3759 /* Now that we've selected our final event LWP, cancel any
3760 breakpoints in other LWPs that have hit a GDB breakpoint.
3761 See the comment in cancel_breakpoints_callback to find out
3762 why. */
3763 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3764
3765 /* We'll need this to determine whether to report a SIGSTOP as
3766 TARGET_WAITKIND_0. Need to take a copy because
3767 resume_clear_callback clears it. */
3768 last_resume_kind = lp->last_resume_kind;
3769
3770 /* In all-stop, from the core's perspective, all LWPs are now
3771 stopped until a new resume action is sent over. */
3772 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3773 }
3774 else
3775 {
3776 /* See above. */
3777 last_resume_kind = lp->last_resume_kind;
3778 resume_clear_callback (lp, NULL);
3779 }
3780
3781 if (linux_nat_status_is_event (status))
3782 {
3783 if (debug_linux_nat)
3784 fprintf_unfiltered (gdb_stdlog,
3785 "LLW: trap ptid is %s.\n",
3786 target_pid_to_str (lp->ptid));
3787 }
3788
3789 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3790 {
3791 *ourstatus = lp->waitstatus;
3792 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3793 }
3794 else
3795 store_waitstatus (ourstatus, status);
3796
3797 if (debug_linux_nat)
3798 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3799
3800 restore_child_signals_mask (&prev_mask);
3801
3802 if (last_resume_kind == resume_stop
3803 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3804 && WSTOPSIG (status) == SIGSTOP)
3805 {
3806 /* A thread that has been requested to stop by GDB with
3807 target_stop, and it stopped cleanly, so report as SIG0. The
3808 use of SIGSTOP is an implementation detail. */
3809 ourstatus->value.sig = TARGET_SIGNAL_0;
3810 }
3811
3812 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3813 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3814 lp->core = -1;
3815 else
3816 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3817
3818 return lp->ptid;
3819 }
3820
3821 /* Resume LWPs that are currently stopped without any pending status
3822 to report, but are resumed from the core's perspective. */
3823
3824 static int
3825 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3826 {
3827 ptid_t *wait_ptid_p = data;
3828
3829 if (lp->stopped
3830 && lp->resumed
3831 && lp->status == 0
3832 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3833 {
3834 gdb_assert (is_executing (lp->ptid));
3835
3836 /* Don't bother if there's a breakpoint at PC that we'd hit
3837 immediately, and we're not waiting for this LWP. */
3838 if (!ptid_match (lp->ptid, *wait_ptid_p))
3839 {
3840 struct regcache *regcache = get_thread_regcache (lp->ptid);
3841 CORE_ADDR pc = regcache_read_pc (regcache);
3842
3843 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3844 return 0;
3845 }
3846
3847 if (debug_linux_nat)
3848 fprintf_unfiltered (gdb_stdlog,
3849 "RSRL: resuming stopped-resumed LWP %s\n",
3850 target_pid_to_str (lp->ptid));
3851
3852 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3853 lp->step, TARGET_SIGNAL_0);
3854 lp->stopped = 0;
3855 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3856 lp->stopped_by_watchpoint = 0;
3857 }
3858
3859 return 0;
3860 }
3861
3862 static ptid_t
3863 linux_nat_wait (struct target_ops *ops,
3864 ptid_t ptid, struct target_waitstatus *ourstatus,
3865 int target_options)
3866 {
3867 ptid_t event_ptid;
3868
3869 if (debug_linux_nat)
3870 fprintf_unfiltered (gdb_stdlog,
3871 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3872
3873 /* Flush the async file first. */
3874 if (target_can_async_p ())
3875 async_file_flush ();
3876
3877 /* Resume LWPs that are currently stopped without any pending status
3878 to report, but are resumed from the core's perspective. LWPs get
3879 in this state if we find them stopping at a time we're not
3880 interested in reporting the event (target_wait on a
3881 specific_process, for example, see linux_nat_wait_1), and
3882 meanwhile the event became uninteresting. Don't bother resuming
3883 LWPs we're not going to wait for if they'd stop immediately. */
3884 if (non_stop)
3885 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3886
3887 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3888
3889 /* If we requested any event, and something came out, assume there
3890 may be more. If we requested a specific lwp or process, also
3891 assume there may be more. */
3892 if (target_can_async_p ()
3893 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3894 || !ptid_equal (ptid, minus_one_ptid)))
3895 async_file_mark ();
3896
3897 /* Get ready for the next event. */
3898 if (target_can_async_p ())
3899 target_async (inferior_event_handler, 0);
3900
3901 return event_ptid;
3902 }
3903
3904 static int
3905 kill_callback (struct lwp_info *lp, void *data)
3906 {
3907 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3908
3909 errno = 0;
3910 kill (GET_LWP (lp->ptid), SIGKILL);
3911 if (debug_linux_nat)
3912 fprintf_unfiltered (gdb_stdlog,
3913 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3914 target_pid_to_str (lp->ptid),
3915 errno ? safe_strerror (errno) : "OK");
3916
3917 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3918
3919 errno = 0;
3920 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3921 if (debug_linux_nat)
3922 fprintf_unfiltered (gdb_stdlog,
3923 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3924 target_pid_to_str (lp->ptid),
3925 errno ? safe_strerror (errno) : "OK");
3926
3927 return 0;
3928 }
3929
3930 static int
3931 kill_wait_callback (struct lwp_info *lp, void *data)
3932 {
3933 pid_t pid;
3934
3935 /* We must make sure that there are no pending events (delayed
3936 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3937 program doesn't interfere with any following debugging session. */
3938
3939 /* For cloned processes we must check both with __WCLONE and
3940 without, since the exit status of a cloned process isn't reported
3941 with __WCLONE. */
3942 if (lp->cloned)
3943 {
3944 do
3945 {
3946 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3947 if (pid != (pid_t) -1)
3948 {
3949 if (debug_linux_nat)
3950 fprintf_unfiltered (gdb_stdlog,
3951 "KWC: wait %s received unknown.\n",
3952 target_pid_to_str (lp->ptid));
3953 /* The Linux kernel sometimes fails to kill a thread
3954 completely after PTRACE_KILL; that goes from the stop
3955 point in do_fork out to the one in
3956 get_signal_to_deliever and waits again. So kill it
3957 again. */
3958 kill_callback (lp, NULL);
3959 }
3960 }
3961 while (pid == GET_LWP (lp->ptid));
3962
3963 gdb_assert (pid == -1 && errno == ECHILD);
3964 }
3965
3966 do
3967 {
3968 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3969 if (pid != (pid_t) -1)
3970 {
3971 if (debug_linux_nat)
3972 fprintf_unfiltered (gdb_stdlog,
3973 "KWC: wait %s received unk.\n",
3974 target_pid_to_str (lp->ptid));
3975 /* See the call to kill_callback above. */
3976 kill_callback (lp, NULL);
3977 }
3978 }
3979 while (pid == GET_LWP (lp->ptid));
3980
3981 gdb_assert (pid == -1 && errno == ECHILD);
3982 return 0;
3983 }
3984
3985 static void
3986 linux_nat_kill (struct target_ops *ops)
3987 {
3988 struct target_waitstatus last;
3989 ptid_t last_ptid;
3990 int status;
3991
3992 /* If we're stopped while forking and we haven't followed yet,
3993 kill the other task. We need to do this first because the
3994 parent will be sleeping if this is a vfork. */
3995
3996 get_last_target_status (&last_ptid, &last);
3997
3998 if (last.kind == TARGET_WAITKIND_FORKED
3999 || last.kind == TARGET_WAITKIND_VFORKED)
4000 {
4001 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4002 wait (&status);
4003 }
4004
4005 if (forks_exist_p ())
4006 linux_fork_killall ();
4007 else
4008 {
4009 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4010
4011 /* Stop all threads before killing them, since ptrace requires
4012 that the thread is stopped to sucessfully PTRACE_KILL. */
4013 iterate_over_lwps (ptid, stop_callback, NULL);
4014 /* ... and wait until all of them have reported back that
4015 they're no longer running. */
4016 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4017
4018 /* Kill all LWP's ... */
4019 iterate_over_lwps (ptid, kill_callback, NULL);
4020
4021 /* ... and wait until we've flushed all events. */
4022 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4023 }
4024
4025 target_mourn_inferior ();
4026 }
4027
4028 static void
4029 linux_nat_mourn_inferior (struct target_ops *ops)
4030 {
4031 purge_lwp_list (ptid_get_pid (inferior_ptid));
4032
4033 if (! forks_exist_p ())
4034 /* Normal case, no other forks available. */
4035 linux_ops->to_mourn_inferior (ops);
4036 else
4037 /* Multi-fork case. The current inferior_ptid has exited, but
4038 there are other viable forks to debug. Delete the exiting
4039 one and context-switch to the first available. */
4040 linux_fork_mourn_inferior ();
4041 }
4042
4043 /* Convert a native/host siginfo object, into/from the siginfo in the
4044 layout of the inferiors' architecture. */
4045
4046 static void
4047 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4048 {
4049 int done = 0;
4050
4051 if (linux_nat_siginfo_fixup != NULL)
4052 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4053
4054 /* If there was no callback, or the callback didn't do anything,
4055 then just do a straight memcpy. */
4056 if (!done)
4057 {
4058 if (direction == 1)
4059 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4060 else
4061 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4062 }
4063 }
4064
4065 static LONGEST
4066 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4067 const char *annex, gdb_byte *readbuf,
4068 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4069 {
4070 int pid;
4071 struct siginfo siginfo;
4072 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4073
4074 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4075 gdb_assert (readbuf || writebuf);
4076
4077 pid = GET_LWP (inferior_ptid);
4078 if (pid == 0)
4079 pid = GET_PID (inferior_ptid);
4080
4081 if (offset > sizeof (siginfo))
4082 return -1;
4083
4084 errno = 0;
4085 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4086 if (errno != 0)
4087 return -1;
4088
4089 /* When GDB is built as a 64-bit application, ptrace writes into
4090 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4091 inferior with a 64-bit GDB should look the same as debugging it
4092 with a 32-bit GDB, we need to convert it. GDB core always sees
4093 the converted layout, so any read/write will have to be done
4094 post-conversion. */
4095 siginfo_fixup (&siginfo, inf_siginfo, 0);
4096
4097 if (offset + len > sizeof (siginfo))
4098 len = sizeof (siginfo) - offset;
4099
4100 if (readbuf != NULL)
4101 memcpy (readbuf, inf_siginfo + offset, len);
4102 else
4103 {
4104 memcpy (inf_siginfo + offset, writebuf, len);
4105
4106 /* Convert back to ptrace layout before flushing it out. */
4107 siginfo_fixup (&siginfo, inf_siginfo, 1);
4108
4109 errno = 0;
4110 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4111 if (errno != 0)
4112 return -1;
4113 }
4114
4115 return len;
4116 }
4117
4118 static LONGEST
4119 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4120 const char *annex, gdb_byte *readbuf,
4121 const gdb_byte *writebuf,
4122 ULONGEST offset, LONGEST len)
4123 {
4124 struct cleanup *old_chain;
4125 LONGEST xfer;
4126
4127 if (object == TARGET_OBJECT_SIGNAL_INFO)
4128 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4129 offset, len);
4130
4131 /* The target is connected but no live inferior is selected. Pass
4132 this request down to a lower stratum (e.g., the executable
4133 file). */
4134 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4135 return 0;
4136
4137 old_chain = save_inferior_ptid ();
4138
4139 if (is_lwp (inferior_ptid))
4140 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4141
4142 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4143 offset, len);
4144
4145 do_cleanups (old_chain);
4146 return xfer;
4147 }
4148
4149 static int
4150 linux_thread_alive (ptid_t ptid)
4151 {
4152 int err, tmp_errno;
4153
4154 gdb_assert (is_lwp (ptid));
4155
4156 /* Send signal 0 instead of anything ptrace, because ptracing a
4157 running thread errors out claiming that the thread doesn't
4158 exist. */
4159 err = kill_lwp (GET_LWP (ptid), 0);
4160 tmp_errno = errno;
4161 if (debug_linux_nat)
4162 fprintf_unfiltered (gdb_stdlog,
4163 "LLTA: KILL(SIG0) %s (%s)\n",
4164 target_pid_to_str (ptid),
4165 err ? safe_strerror (tmp_errno) : "OK");
4166
4167 if (err != 0)
4168 return 0;
4169
4170 return 1;
4171 }
4172
4173 static int
4174 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4175 {
4176 return linux_thread_alive (ptid);
4177 }
4178
4179 static char *
4180 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4181 {
4182 static char buf[64];
4183
4184 if (is_lwp (ptid)
4185 && (GET_PID (ptid) != GET_LWP (ptid)
4186 || num_lwps (GET_PID (ptid)) > 1))
4187 {
4188 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4189 return buf;
4190 }
4191
4192 return normal_pid_to_str (ptid);
4193 }
4194
4195 static char *
4196 linux_nat_thread_name (struct thread_info *thr)
4197 {
4198 int pid = ptid_get_pid (thr->ptid);
4199 long lwp = ptid_get_lwp (thr->ptid);
4200 #define FORMAT "/proc/%d/task/%ld/comm"
4201 char buf[sizeof (FORMAT) + 30];
4202 FILE *comm_file;
4203 char *result = NULL;
4204
4205 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4206 comm_file = fopen (buf, "r");
4207 if (comm_file)
4208 {
4209 /* Not exported by the kernel, so we define it here. */
4210 #define COMM_LEN 16
4211 static char line[COMM_LEN + 1];
4212
4213 if (fgets (line, sizeof (line), comm_file))
4214 {
4215 char *nl = strchr (line, '\n');
4216
4217 if (nl)
4218 *nl = '\0';
4219 if (*line != '\0')
4220 result = line;
4221 }
4222
4223 fclose (comm_file);
4224 }
4225
4226 #undef COMM_LEN
4227 #undef FORMAT
4228
4229 return result;
4230 }
4231
4232 /* Accepts an integer PID; Returns a string representing a file that
4233 can be opened to get the symbols for the child process. */
4234
4235 static char *
4236 linux_child_pid_to_exec_file (int pid)
4237 {
4238 char *name1, *name2;
4239
4240 name1 = xmalloc (MAXPATHLEN);
4241 name2 = xmalloc (MAXPATHLEN);
4242 make_cleanup (xfree, name1);
4243 make_cleanup (xfree, name2);
4244 memset (name2, 0, MAXPATHLEN);
4245
4246 sprintf (name1, "/proc/%d/exe", pid);
4247 if (readlink (name1, name2, MAXPATHLEN) > 0)
4248 return name2;
4249 else
4250 return name1;
4251 }
4252
4253 /* Service function for corefiles and info proc. */
4254
4255 static int
4256 read_mapping (FILE *mapfile,
4257 long long *addr,
4258 long long *endaddr,
4259 char *permissions,
4260 long long *offset,
4261 char *device, long long *inode, char *filename)
4262 {
4263 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4264 addr, endaddr, permissions, offset, device, inode);
4265
4266 filename[0] = '\0';
4267 if (ret > 0 && ret != EOF)
4268 {
4269 /* Eat everything up to EOL for the filename. This will prevent
4270 weird filenames (such as one with embedded whitespace) from
4271 confusing this code. It also makes this code more robust in
4272 respect to annotations the kernel may add after the filename.
4273
4274 Note the filename is used for informational purposes
4275 only. */
4276 ret += fscanf (mapfile, "%[^\n]\n", filename);
4277 }
4278
4279 return (ret != 0 && ret != EOF);
4280 }
4281
4282 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4283 regions in the inferior for a corefile. */
4284
4285 static int
4286 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4287 {
4288 int pid = PIDGET (inferior_ptid);
4289 char mapsfilename[MAXPATHLEN];
4290 FILE *mapsfile;
4291 long long addr, endaddr, size, offset, inode;
4292 char permissions[8], device[8], filename[MAXPATHLEN];
4293 int read, write, exec;
4294 struct cleanup *cleanup;
4295
4296 /* Compose the filename for the /proc memory map, and open it. */
4297 sprintf (mapsfilename, "/proc/%d/maps", pid);
4298 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4299 error (_("Could not open %s."), mapsfilename);
4300 cleanup = make_cleanup_fclose (mapsfile);
4301
4302 if (info_verbose)
4303 fprintf_filtered (gdb_stdout,
4304 "Reading memory regions from %s\n", mapsfilename);
4305
4306 /* Now iterate until end-of-file. */
4307 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4308 &offset, &device[0], &inode, &filename[0]))
4309 {
4310 size = endaddr - addr;
4311
4312 /* Get the segment's permissions. */
4313 read = (strchr (permissions, 'r') != 0);
4314 write = (strchr (permissions, 'w') != 0);
4315 exec = (strchr (permissions, 'x') != 0);
4316
4317 if (info_verbose)
4318 {
4319 fprintf_filtered (gdb_stdout,
4320 "Save segment, %s bytes at %s (%c%c%c)",
4321 plongest (size), paddress (target_gdbarch, addr),
4322 read ? 'r' : ' ',
4323 write ? 'w' : ' ', exec ? 'x' : ' ');
4324 if (filename[0])
4325 fprintf_filtered (gdb_stdout, " for %s", filename);
4326 fprintf_filtered (gdb_stdout, "\n");
4327 }
4328
4329 /* Invoke the callback function to create the corefile
4330 segment. */
4331 func (addr, size, read, write, exec, obfd);
4332 }
4333 do_cleanups (cleanup);
4334 return 0;
4335 }
4336
4337 static int
4338 find_signalled_thread (struct thread_info *info, void *data)
4339 {
4340 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4341 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4342 return 1;
4343
4344 return 0;
4345 }
4346
4347 static enum target_signal
4348 find_stop_signal (void)
4349 {
4350 struct thread_info *info =
4351 iterate_over_threads (find_signalled_thread, NULL);
4352
4353 if (info)
4354 return info->suspend.stop_signal;
4355 else
4356 return TARGET_SIGNAL_0;
4357 }
4358
4359 /* Records the thread's register state for the corefile note
4360 section. */
4361
4362 static char *
4363 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4364 char *note_data, int *note_size,
4365 enum target_signal stop_signal)
4366 {
4367 unsigned long lwp = ptid_get_lwp (ptid);
4368 struct gdbarch *gdbarch = target_gdbarch;
4369 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4370 const struct regset *regset;
4371 int core_regset_p;
4372 struct cleanup *old_chain;
4373 struct core_regset_section *sect_list;
4374 char *gdb_regset;
4375
4376 old_chain = save_inferior_ptid ();
4377 inferior_ptid = ptid;
4378 target_fetch_registers (regcache, -1);
4379 do_cleanups (old_chain);
4380
4381 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4382 sect_list = gdbarch_core_regset_sections (gdbarch);
4383
4384 /* The loop below uses the new struct core_regset_section, which stores
4385 the supported section names and sizes for the core file. Note that
4386 note PRSTATUS needs to be treated specially. But the other notes are
4387 structurally the same, so they can benefit from the new struct. */
4388 if (core_regset_p && sect_list != NULL)
4389 while (sect_list->sect_name != NULL)
4390 {
4391 regset = gdbarch_regset_from_core_section (gdbarch,
4392 sect_list->sect_name,
4393 sect_list->size);
4394 gdb_assert (regset && regset->collect_regset);
4395 gdb_regset = xmalloc (sect_list->size);
4396 regset->collect_regset (regset, regcache, -1,
4397 gdb_regset, sect_list->size);
4398
4399 if (strcmp (sect_list->sect_name, ".reg") == 0)
4400 note_data = (char *) elfcore_write_prstatus
4401 (obfd, note_data, note_size,
4402 lwp, target_signal_to_host (stop_signal),
4403 gdb_regset);
4404 else
4405 note_data = (char *) elfcore_write_register_note
4406 (obfd, note_data, note_size,
4407 sect_list->sect_name, gdb_regset,
4408 sect_list->size);
4409 xfree (gdb_regset);
4410 sect_list++;
4411 }
4412
4413 /* For architectures that does not have the struct core_regset_section
4414 implemented, we use the old method. When all the architectures have
4415 the new support, the code below should be deleted. */
4416 else
4417 {
4418 gdb_gregset_t gregs;
4419 gdb_fpregset_t fpregs;
4420
4421 if (core_regset_p
4422 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4423 sizeof (gregs)))
4424 != NULL && regset->collect_regset != NULL)
4425 regset->collect_regset (regset, regcache, -1,
4426 &gregs, sizeof (gregs));
4427 else
4428 fill_gregset (regcache, &gregs, -1);
4429
4430 note_data = (char *) elfcore_write_prstatus
4431 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4432 &gregs);
4433
4434 if (core_regset_p
4435 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4436 sizeof (fpregs)))
4437 != NULL && regset->collect_regset != NULL)
4438 regset->collect_regset (regset, regcache, -1,
4439 &fpregs, sizeof (fpregs));
4440 else
4441 fill_fpregset (regcache, &fpregs, -1);
4442
4443 note_data = (char *) elfcore_write_prfpreg (obfd,
4444 note_data,
4445 note_size,
4446 &fpregs, sizeof (fpregs));
4447 }
4448
4449 return note_data;
4450 }
4451
4452 struct linux_nat_corefile_thread_data
4453 {
4454 bfd *obfd;
4455 char *note_data;
4456 int *note_size;
4457 int num_notes;
4458 enum target_signal stop_signal;
4459 };
4460
4461 /* Called by gdbthread.c once per thread. Records the thread's
4462 register state for the corefile note section. */
4463
4464 static int
4465 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4466 {
4467 struct linux_nat_corefile_thread_data *args = data;
4468
4469 args->note_data = linux_nat_do_thread_registers (args->obfd,
4470 ti->ptid,
4471 args->note_data,
4472 args->note_size,
4473 args->stop_signal);
4474 args->num_notes++;
4475
4476 return 0;
4477 }
4478
4479 /* Enumerate spufs IDs for process PID. */
4480
4481 static void
4482 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4483 {
4484 char path[128];
4485 DIR *dir;
4486 struct dirent *entry;
4487
4488 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4489 dir = opendir (path);
4490 if (!dir)
4491 return;
4492
4493 rewinddir (dir);
4494 while ((entry = readdir (dir)) != NULL)
4495 {
4496 struct stat st;
4497 struct statfs stfs;
4498 int fd;
4499
4500 fd = atoi (entry->d_name);
4501 if (!fd)
4502 continue;
4503
4504 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4505 if (stat (path, &st) != 0)
4506 continue;
4507 if (!S_ISDIR (st.st_mode))
4508 continue;
4509
4510 if (statfs (path, &stfs) != 0)
4511 continue;
4512 if (stfs.f_type != SPUFS_MAGIC)
4513 continue;
4514
4515 callback (data, fd);
4516 }
4517
4518 closedir (dir);
4519 }
4520
4521 /* Generate corefile notes for SPU contexts. */
4522
4523 struct linux_spu_corefile_data
4524 {
4525 bfd *obfd;
4526 char *note_data;
4527 int *note_size;
4528 };
4529
4530 static void
4531 linux_spu_corefile_callback (void *data, int fd)
4532 {
4533 struct linux_spu_corefile_data *args = data;
4534 int i;
4535
4536 static const char *spu_files[] =
4537 {
4538 "object-id",
4539 "mem",
4540 "regs",
4541 "fpcr",
4542 "lslr",
4543 "decr",
4544 "decr_status",
4545 "signal1",
4546 "signal1_type",
4547 "signal2",
4548 "signal2_type",
4549 "event_mask",
4550 "event_status",
4551 "mbox_info",
4552 "ibox_info",
4553 "wbox_info",
4554 "dma_info",
4555 "proxydma_info",
4556 };
4557
4558 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4559 {
4560 char annex[32], note_name[32];
4561 gdb_byte *spu_data;
4562 LONGEST spu_len;
4563
4564 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4565 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4566 annex, &spu_data);
4567 if (spu_len > 0)
4568 {
4569 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4570 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4571 args->note_size, note_name,
4572 NT_SPU, spu_data, spu_len);
4573 xfree (spu_data);
4574 }
4575 }
4576 }
4577
4578 static char *
4579 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4580 {
4581 struct linux_spu_corefile_data args;
4582
4583 args.obfd = obfd;
4584 args.note_data = note_data;
4585 args.note_size = note_size;
4586
4587 iterate_over_spus (PIDGET (inferior_ptid),
4588 linux_spu_corefile_callback, &args);
4589
4590 return args.note_data;
4591 }
4592
4593 /* Fills the "to_make_corefile_note" target vector. Builds the note
4594 section for a corefile, and returns it in a malloc buffer. */
4595
4596 static char *
4597 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4598 {
4599 struct linux_nat_corefile_thread_data thread_args;
4600 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4601 char fname[16] = { '\0' };
4602 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4603 char psargs[80] = { '\0' };
4604 char *note_data = NULL;
4605 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4606 gdb_byte *auxv;
4607 int auxv_len;
4608
4609 if (get_exec_file (0))
4610 {
4611 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4612 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4613 if (get_inferior_args ())
4614 {
4615 char *string_end;
4616 char *psargs_end = psargs + sizeof (psargs);
4617
4618 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4619 strings fine. */
4620 string_end = memchr (psargs, 0, sizeof (psargs));
4621 if (string_end != NULL)
4622 {
4623 *string_end++ = ' ';
4624 strncpy (string_end, get_inferior_args (),
4625 psargs_end - string_end);
4626 }
4627 }
4628 note_data = (char *) elfcore_write_prpsinfo (obfd,
4629 note_data,
4630 note_size, fname, psargs);
4631 }
4632
4633 /* Dump information for threads. */
4634 thread_args.obfd = obfd;
4635 thread_args.note_data = note_data;
4636 thread_args.note_size = note_size;
4637 thread_args.num_notes = 0;
4638 thread_args.stop_signal = find_stop_signal ();
4639 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4640 gdb_assert (thread_args.num_notes != 0);
4641 note_data = thread_args.note_data;
4642
4643 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4644 NULL, &auxv);
4645 if (auxv_len > 0)
4646 {
4647 note_data = elfcore_write_note (obfd, note_data, note_size,
4648 "CORE", NT_AUXV, auxv, auxv_len);
4649 xfree (auxv);
4650 }
4651
4652 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4653
4654 make_cleanup (xfree, note_data);
4655 return note_data;
4656 }
4657
4658 /* Implement the "info proc" command. */
4659
4660 static void
4661 linux_nat_info_proc_cmd (char *args, int from_tty)
4662 {
4663 /* A long is used for pid instead of an int to avoid a loss of precision
4664 compiler warning from the output of strtoul. */
4665 long pid = PIDGET (inferior_ptid);
4666 FILE *procfile;
4667 char **argv = NULL;
4668 char buffer[MAXPATHLEN];
4669 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4670 int cmdline_f = 1;
4671 int cwd_f = 1;
4672 int exe_f = 1;
4673 int mappings_f = 0;
4674 int status_f = 0;
4675 int stat_f = 0;
4676 int all = 0;
4677 struct stat dummy;
4678
4679 if (args)
4680 {
4681 /* Break up 'args' into an argv array. */
4682 argv = gdb_buildargv (args);
4683 make_cleanup_freeargv (argv);
4684 }
4685 while (argv != NULL && *argv != NULL)
4686 {
4687 if (isdigit (argv[0][0]))
4688 {
4689 pid = strtoul (argv[0], NULL, 10);
4690 }
4691 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4692 {
4693 mappings_f = 1;
4694 }
4695 else if (strcmp (argv[0], "status") == 0)
4696 {
4697 status_f = 1;
4698 }
4699 else if (strcmp (argv[0], "stat") == 0)
4700 {
4701 stat_f = 1;
4702 }
4703 else if (strcmp (argv[0], "cmd") == 0)
4704 {
4705 cmdline_f = 1;
4706 }
4707 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4708 {
4709 exe_f = 1;
4710 }
4711 else if (strcmp (argv[0], "cwd") == 0)
4712 {
4713 cwd_f = 1;
4714 }
4715 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4716 {
4717 all = 1;
4718 }
4719 else
4720 {
4721 /* [...] (future options here). */
4722 }
4723 argv++;
4724 }
4725 if (pid == 0)
4726 error (_("No current process: you must name one."));
4727
4728 sprintf (fname1, "/proc/%ld", pid);
4729 if (stat (fname1, &dummy) != 0)
4730 error (_("No /proc directory: '%s'"), fname1);
4731
4732 printf_filtered (_("process %ld\n"), pid);
4733 if (cmdline_f || all)
4734 {
4735 sprintf (fname1, "/proc/%ld/cmdline", pid);
4736 if ((procfile = fopen (fname1, "r")) != NULL)
4737 {
4738 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4739
4740 if (fgets (buffer, sizeof (buffer), procfile))
4741 printf_filtered ("cmdline = '%s'\n", buffer);
4742 else
4743 warning (_("unable to read '%s'"), fname1);
4744 do_cleanups (cleanup);
4745 }
4746 else
4747 warning (_("unable to open /proc file '%s'"), fname1);
4748 }
4749 if (cwd_f || all)
4750 {
4751 sprintf (fname1, "/proc/%ld/cwd", pid);
4752 memset (fname2, 0, sizeof (fname2));
4753 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4754 printf_filtered ("cwd = '%s'\n", fname2);
4755 else
4756 warning (_("unable to read link '%s'"), fname1);
4757 }
4758 if (exe_f || all)
4759 {
4760 sprintf (fname1, "/proc/%ld/exe", pid);
4761 memset (fname2, 0, sizeof (fname2));
4762 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4763 printf_filtered ("exe = '%s'\n", fname2);
4764 else
4765 warning (_("unable to read link '%s'"), fname1);
4766 }
4767 if (mappings_f || all)
4768 {
4769 sprintf (fname1, "/proc/%ld/maps", pid);
4770 if ((procfile = fopen (fname1, "r")) != NULL)
4771 {
4772 long long addr, endaddr, size, offset, inode;
4773 char permissions[8], device[8], filename[MAXPATHLEN];
4774 struct cleanup *cleanup;
4775
4776 cleanup = make_cleanup_fclose (procfile);
4777 printf_filtered (_("Mapped address spaces:\n\n"));
4778 if (gdbarch_addr_bit (target_gdbarch) == 32)
4779 {
4780 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4781 "Start Addr",
4782 " End Addr",
4783 " Size", " Offset", "objfile");
4784 }
4785 else
4786 {
4787 printf_filtered (" %18s %18s %10s %10s %7s\n",
4788 "Start Addr",
4789 " End Addr",
4790 " Size", " Offset", "objfile");
4791 }
4792
4793 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4794 &offset, &device[0], &inode, &filename[0]))
4795 {
4796 size = endaddr - addr;
4797
4798 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4799 calls here (and possibly above) should be abstracted
4800 out into their own functions? Andrew suggests using
4801 a generic local_address_string instead to print out
4802 the addresses; that makes sense to me, too. */
4803
4804 if (gdbarch_addr_bit (target_gdbarch) == 32)
4805 {
4806 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4807 (unsigned long) addr, /* FIXME: pr_addr */
4808 (unsigned long) endaddr,
4809 (int) size,
4810 (unsigned int) offset,
4811 filename[0] ? filename : "");
4812 }
4813 else
4814 {
4815 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4816 (unsigned long) addr, /* FIXME: pr_addr */
4817 (unsigned long) endaddr,
4818 (int) size,
4819 (unsigned int) offset,
4820 filename[0] ? filename : "");
4821 }
4822 }
4823
4824 do_cleanups (cleanup);
4825 }
4826 else
4827 warning (_("unable to open /proc file '%s'"), fname1);
4828 }
4829 if (status_f || all)
4830 {
4831 sprintf (fname1, "/proc/%ld/status", pid);
4832 if ((procfile = fopen (fname1, "r")) != NULL)
4833 {
4834 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4835
4836 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4837 puts_filtered (buffer);
4838 do_cleanups (cleanup);
4839 }
4840 else
4841 warning (_("unable to open /proc file '%s'"), fname1);
4842 }
4843 if (stat_f || all)
4844 {
4845 sprintf (fname1, "/proc/%ld/stat", pid);
4846 if ((procfile = fopen (fname1, "r")) != NULL)
4847 {
4848 int itmp;
4849 char ctmp;
4850 long ltmp;
4851 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4852
4853 if (fscanf (procfile, "%d ", &itmp) > 0)
4854 printf_filtered (_("Process: %d\n"), itmp);
4855 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4856 printf_filtered (_("Exec file: %s\n"), buffer);
4857 if (fscanf (procfile, "%c ", &ctmp) > 0)
4858 printf_filtered (_("State: %c\n"), ctmp);
4859 if (fscanf (procfile, "%d ", &itmp) > 0)
4860 printf_filtered (_("Parent process: %d\n"), itmp);
4861 if (fscanf (procfile, "%d ", &itmp) > 0)
4862 printf_filtered (_("Process group: %d\n"), itmp);
4863 if (fscanf (procfile, "%d ", &itmp) > 0)
4864 printf_filtered (_("Session id: %d\n"), itmp);
4865 if (fscanf (procfile, "%d ", &itmp) > 0)
4866 printf_filtered (_("TTY: %d\n"), itmp);
4867 if (fscanf (procfile, "%d ", &itmp) > 0)
4868 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4869 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4870 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4871 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4872 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4873 (unsigned long) ltmp);
4874 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4875 printf_filtered (_("Minor faults, children: %lu\n"),
4876 (unsigned long) ltmp);
4877 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4878 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4879 (unsigned long) ltmp);
4880 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4881 printf_filtered (_("Major faults, children: %lu\n"),
4882 (unsigned long) ltmp);
4883 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4884 printf_filtered (_("utime: %ld\n"), ltmp);
4885 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4886 printf_filtered (_("stime: %ld\n"), ltmp);
4887 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4888 printf_filtered (_("utime, children: %ld\n"), ltmp);
4889 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4890 printf_filtered (_("stime, children: %ld\n"), ltmp);
4891 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4892 printf_filtered (_("jiffies remaining in current "
4893 "time slice: %ld\n"), ltmp);
4894 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4895 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4896 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4897 printf_filtered (_("jiffies until next timeout: %lu\n"),
4898 (unsigned long) ltmp);
4899 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4900 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4901 (unsigned long) ltmp);
4902 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4903 printf_filtered (_("start time (jiffies since "
4904 "system boot): %ld\n"), ltmp);
4905 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4906 printf_filtered (_("Virtual memory size: %lu\n"),
4907 (unsigned long) ltmp);
4908 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4909 printf_filtered (_("Resident set size: %lu\n"),
4910 (unsigned long) ltmp);
4911 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4912 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4913 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4914 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4915 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4916 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4917 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4918 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4919 #if 0 /* Don't know how architecture-dependent the rest is...
4920 Anyway the signal bitmap info is available from "status". */
4921 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4922 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4923 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4924 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4925 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4926 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4927 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4928 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4929 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4930 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4931 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4932 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4933 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4934 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4935 #endif
4936 do_cleanups (cleanup);
4937 }
4938 else
4939 warning (_("unable to open /proc file '%s'"), fname1);
4940 }
4941 }
4942
4943 /* Implement the to_xfer_partial interface for memory reads using the /proc
4944 filesystem. Because we can use a single read() call for /proc, this
4945 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4946 but it doesn't support writes. */
4947
4948 static LONGEST
4949 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4950 const char *annex, gdb_byte *readbuf,
4951 const gdb_byte *writebuf,
4952 ULONGEST offset, LONGEST len)
4953 {
4954 LONGEST ret;
4955 int fd;
4956 char filename[64];
4957
4958 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4959 return 0;
4960
4961 /* Don't bother for one word. */
4962 if (len < 3 * sizeof (long))
4963 return 0;
4964
4965 /* We could keep this file open and cache it - possibly one per
4966 thread. That requires some juggling, but is even faster. */
4967 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4968 fd = open (filename, O_RDONLY | O_LARGEFILE);
4969 if (fd == -1)
4970 return 0;
4971
4972 /* If pread64 is available, use it. It's faster if the kernel
4973 supports it (only one syscall), and it's 64-bit safe even on
4974 32-bit platforms (for instance, SPARC debugging a SPARC64
4975 application). */
4976 #ifdef HAVE_PREAD64
4977 if (pread64 (fd, readbuf, len, offset) != len)
4978 #else
4979 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4980 #endif
4981 ret = 0;
4982 else
4983 ret = len;
4984
4985 close (fd);
4986 return ret;
4987 }
4988
4989
4990 /* Enumerate spufs IDs for process PID. */
4991 static LONGEST
4992 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4993 {
4994 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4995 LONGEST pos = 0;
4996 LONGEST written = 0;
4997 char path[128];
4998 DIR *dir;
4999 struct dirent *entry;
5000
5001 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5002 dir = opendir (path);
5003 if (!dir)
5004 return -1;
5005
5006 rewinddir (dir);
5007 while ((entry = readdir (dir)) != NULL)
5008 {
5009 struct stat st;
5010 struct statfs stfs;
5011 int fd;
5012
5013 fd = atoi (entry->d_name);
5014 if (!fd)
5015 continue;
5016
5017 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5018 if (stat (path, &st) != 0)
5019 continue;
5020 if (!S_ISDIR (st.st_mode))
5021 continue;
5022
5023 if (statfs (path, &stfs) != 0)
5024 continue;
5025 if (stfs.f_type != SPUFS_MAGIC)
5026 continue;
5027
5028 if (pos >= offset && pos + 4 <= offset + len)
5029 {
5030 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5031 written += 4;
5032 }
5033 pos += 4;
5034 }
5035
5036 closedir (dir);
5037 return written;
5038 }
5039
5040 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5041 object type, using the /proc file system. */
5042 static LONGEST
5043 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5044 const char *annex, gdb_byte *readbuf,
5045 const gdb_byte *writebuf,
5046 ULONGEST offset, LONGEST len)
5047 {
5048 char buf[128];
5049 int fd = 0;
5050 int ret = -1;
5051 int pid = PIDGET (inferior_ptid);
5052
5053 if (!annex)
5054 {
5055 if (!readbuf)
5056 return -1;
5057 else
5058 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5059 }
5060
5061 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5062 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5063 if (fd <= 0)
5064 return -1;
5065
5066 if (offset != 0
5067 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5068 {
5069 close (fd);
5070 return 0;
5071 }
5072
5073 if (writebuf)
5074 ret = write (fd, writebuf, (size_t) len);
5075 else if (readbuf)
5076 ret = read (fd, readbuf, (size_t) len);
5077
5078 close (fd);
5079 return ret;
5080 }
5081
5082
5083 /* Parse LINE as a signal set and add its set bits to SIGS. */
5084
5085 static void
5086 add_line_to_sigset (const char *line, sigset_t *sigs)
5087 {
5088 int len = strlen (line) - 1;
5089 const char *p;
5090 int signum;
5091
5092 if (line[len] != '\n')
5093 error (_("Could not parse signal set: %s"), line);
5094
5095 p = line;
5096 signum = len * 4;
5097 while (len-- > 0)
5098 {
5099 int digit;
5100
5101 if (*p >= '0' && *p <= '9')
5102 digit = *p - '0';
5103 else if (*p >= 'a' && *p <= 'f')
5104 digit = *p - 'a' + 10;
5105 else
5106 error (_("Could not parse signal set: %s"), line);
5107
5108 signum -= 4;
5109
5110 if (digit & 1)
5111 sigaddset (sigs, signum + 1);
5112 if (digit & 2)
5113 sigaddset (sigs, signum + 2);
5114 if (digit & 4)
5115 sigaddset (sigs, signum + 3);
5116 if (digit & 8)
5117 sigaddset (sigs, signum + 4);
5118
5119 p++;
5120 }
5121 }
5122
5123 /* Find process PID's pending signals from /proc/pid/status and set
5124 SIGS to match. */
5125
5126 void
5127 linux_proc_pending_signals (int pid, sigset_t *pending,
5128 sigset_t *blocked, sigset_t *ignored)
5129 {
5130 FILE *procfile;
5131 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5132 struct cleanup *cleanup;
5133
5134 sigemptyset (pending);
5135 sigemptyset (blocked);
5136 sigemptyset (ignored);
5137 sprintf (fname, "/proc/%d/status", pid);
5138 procfile = fopen (fname, "r");
5139 if (procfile == NULL)
5140 error (_("Could not open %s"), fname);
5141 cleanup = make_cleanup_fclose (procfile);
5142
5143 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5144 {
5145 /* Normal queued signals are on the SigPnd line in the status
5146 file. However, 2.6 kernels also have a "shared" pending
5147 queue for delivering signals to a thread group, so check for
5148 a ShdPnd line also.
5149
5150 Unfortunately some Red Hat kernels include the shared pending
5151 queue but not the ShdPnd status field. */
5152
5153 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5154 add_line_to_sigset (buffer + 8, pending);
5155 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5156 add_line_to_sigset (buffer + 8, pending);
5157 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5158 add_line_to_sigset (buffer + 8, blocked);
5159 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5160 add_line_to_sigset (buffer + 8, ignored);
5161 }
5162
5163 do_cleanups (cleanup);
5164 }
5165
5166 static LONGEST
5167 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5168 const char *annex, gdb_byte *readbuf,
5169 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5170 {
5171 gdb_assert (object == TARGET_OBJECT_OSDATA);
5172
5173 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5174 }
5175
5176 static LONGEST
5177 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5178 const char *annex, gdb_byte *readbuf,
5179 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5180 {
5181 LONGEST xfer;
5182
5183 if (object == TARGET_OBJECT_AUXV)
5184 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5185 offset, len);
5186
5187 if (object == TARGET_OBJECT_OSDATA)
5188 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5189 offset, len);
5190
5191 if (object == TARGET_OBJECT_SPU)
5192 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5193 offset, len);
5194
5195 /* GDB calculates all the addresses in possibly larget width of the address.
5196 Address width needs to be masked before its final use - either by
5197 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5198
5199 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5200
5201 if (object == TARGET_OBJECT_MEMORY)
5202 {
5203 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5204
5205 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5206 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5207 }
5208
5209 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5210 offset, len);
5211 if (xfer != 0)
5212 return xfer;
5213
5214 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5215 offset, len);
5216 }
5217
5218 /* Create a prototype generic GNU/Linux target. The client can override
5219 it with local methods. */
5220
5221 static void
5222 linux_target_install_ops (struct target_ops *t)
5223 {
5224 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5225 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5226 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5227 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5228 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5229 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5230 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5231 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5232 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5233 t->to_post_attach = linux_child_post_attach;
5234 t->to_follow_fork = linux_child_follow_fork;
5235 t->to_find_memory_regions = linux_nat_find_memory_regions;
5236 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5237
5238 super_xfer_partial = t->to_xfer_partial;
5239 t->to_xfer_partial = linux_xfer_partial;
5240 }
5241
5242 struct target_ops *
5243 linux_target (void)
5244 {
5245 struct target_ops *t;
5246
5247 t = inf_ptrace_target ();
5248 linux_target_install_ops (t);
5249
5250 return t;
5251 }
5252
5253 struct target_ops *
5254 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5255 {
5256 struct target_ops *t;
5257
5258 t = inf_ptrace_trad_target (register_u_offset);
5259 linux_target_install_ops (t);
5260
5261 return t;
5262 }
5263
5264 /* target_is_async_p implementation. */
5265
5266 static int
5267 linux_nat_is_async_p (void)
5268 {
5269 /* NOTE: palves 2008-03-21: We're only async when the user requests
5270 it explicitly with the "set target-async" command.
5271 Someday, linux will always be async. */
5272 return target_async_permitted;
5273 }
5274
5275 /* target_can_async_p implementation. */
5276
5277 static int
5278 linux_nat_can_async_p (void)
5279 {
5280 /* NOTE: palves 2008-03-21: We're only async when the user requests
5281 it explicitly with the "set target-async" command.
5282 Someday, linux will always be async. */
5283 return target_async_permitted;
5284 }
5285
5286 static int
5287 linux_nat_supports_non_stop (void)
5288 {
5289 return 1;
5290 }
5291
5292 /* True if we want to support multi-process. To be removed when GDB
5293 supports multi-exec. */
5294
5295 int linux_multi_process = 1;
5296
5297 static int
5298 linux_nat_supports_multi_process (void)
5299 {
5300 return linux_multi_process;
5301 }
5302
5303 static int
5304 linux_nat_supports_disable_randomization (void)
5305 {
5306 #ifdef HAVE_PERSONALITY
5307 return 1;
5308 #else
5309 return 0;
5310 #endif
5311 }
5312
5313 static int async_terminal_is_ours = 1;
5314
5315 /* target_terminal_inferior implementation. */
5316
5317 static void
5318 linux_nat_terminal_inferior (void)
5319 {
5320 if (!target_is_async_p ())
5321 {
5322 /* Async mode is disabled. */
5323 terminal_inferior ();
5324 return;
5325 }
5326
5327 terminal_inferior ();
5328
5329 /* Calls to target_terminal_*() are meant to be idempotent. */
5330 if (!async_terminal_is_ours)
5331 return;
5332
5333 delete_file_handler (input_fd);
5334 async_terminal_is_ours = 0;
5335 set_sigint_trap ();
5336 }
5337
5338 /* target_terminal_ours implementation. */
5339
5340 static void
5341 linux_nat_terminal_ours (void)
5342 {
5343 if (!target_is_async_p ())
5344 {
5345 /* Async mode is disabled. */
5346 terminal_ours ();
5347 return;
5348 }
5349
5350 /* GDB should never give the terminal to the inferior if the
5351 inferior is running in the background (run&, continue&, etc.),
5352 but claiming it sure should. */
5353 terminal_ours ();
5354
5355 if (async_terminal_is_ours)
5356 return;
5357
5358 clear_sigint_trap ();
5359 add_file_handler (input_fd, stdin_event_handler, 0);
5360 async_terminal_is_ours = 1;
5361 }
5362
5363 static void (*async_client_callback) (enum inferior_event_type event_type,
5364 void *context);
5365 static void *async_client_context;
5366
5367 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5368 so we notice when any child changes state, and notify the
5369 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5370 above to wait for the arrival of a SIGCHLD. */
5371
5372 static void
5373 sigchld_handler (int signo)
5374 {
5375 int old_errno = errno;
5376
5377 if (debug_linux_nat)
5378 ui_file_write_async_safe (gdb_stdlog,
5379 "sigchld\n", sizeof ("sigchld\n") - 1);
5380
5381 if (signo == SIGCHLD
5382 && linux_nat_event_pipe[0] != -1)
5383 async_file_mark (); /* Let the event loop know that there are
5384 events to handle. */
5385
5386 errno = old_errno;
5387 }
5388
5389 /* Callback registered with the target events file descriptor. */
5390
5391 static void
5392 handle_target_event (int error, gdb_client_data client_data)
5393 {
5394 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5395 }
5396
5397 /* Create/destroy the target events pipe. Returns previous state. */
5398
5399 static int
5400 linux_async_pipe (int enable)
5401 {
5402 int previous = (linux_nat_event_pipe[0] != -1);
5403
5404 if (previous != enable)
5405 {
5406 sigset_t prev_mask;
5407
5408 block_child_signals (&prev_mask);
5409
5410 if (enable)
5411 {
5412 if (pipe (linux_nat_event_pipe) == -1)
5413 internal_error (__FILE__, __LINE__,
5414 "creating event pipe failed.");
5415
5416 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5417 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5418 }
5419 else
5420 {
5421 close (linux_nat_event_pipe[0]);
5422 close (linux_nat_event_pipe[1]);
5423 linux_nat_event_pipe[0] = -1;
5424 linux_nat_event_pipe[1] = -1;
5425 }
5426
5427 restore_child_signals_mask (&prev_mask);
5428 }
5429
5430 return previous;
5431 }
5432
5433 /* target_async implementation. */
5434
5435 static void
5436 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5437 void *context), void *context)
5438 {
5439 if (callback != NULL)
5440 {
5441 async_client_callback = callback;
5442 async_client_context = context;
5443 if (!linux_async_pipe (1))
5444 {
5445 add_file_handler (linux_nat_event_pipe[0],
5446 handle_target_event, NULL);
5447 /* There may be pending events to handle. Tell the event loop
5448 to poll them. */
5449 async_file_mark ();
5450 }
5451 }
5452 else
5453 {
5454 async_client_callback = callback;
5455 async_client_context = context;
5456 delete_file_handler (linux_nat_event_pipe[0]);
5457 linux_async_pipe (0);
5458 }
5459 return;
5460 }
5461
5462 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5463 event came out. */
5464
5465 static int
5466 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5467 {
5468 if (!lwp->stopped)
5469 {
5470 ptid_t ptid = lwp->ptid;
5471
5472 if (debug_linux_nat)
5473 fprintf_unfiltered (gdb_stdlog,
5474 "LNSL: running -> suspending %s\n",
5475 target_pid_to_str (lwp->ptid));
5476
5477
5478 if (lwp->last_resume_kind == resume_stop)
5479 {
5480 if (debug_linux_nat)
5481 fprintf_unfiltered (gdb_stdlog,
5482 "linux-nat: already stopping LWP %ld at "
5483 "GDB's request\n",
5484 ptid_get_lwp (lwp->ptid));
5485 return 0;
5486 }
5487
5488 stop_callback (lwp, NULL);
5489 lwp->last_resume_kind = resume_stop;
5490 }
5491 else
5492 {
5493 /* Already known to be stopped; do nothing. */
5494
5495 if (debug_linux_nat)
5496 {
5497 if (find_thread_ptid (lwp->ptid)->stop_requested)
5498 fprintf_unfiltered (gdb_stdlog,
5499 "LNSL: already stopped/stop_requested %s\n",
5500 target_pid_to_str (lwp->ptid));
5501 else
5502 fprintf_unfiltered (gdb_stdlog,
5503 "LNSL: already stopped/no "
5504 "stop_requested yet %s\n",
5505 target_pid_to_str (lwp->ptid));
5506 }
5507 }
5508 return 0;
5509 }
5510
5511 static void
5512 linux_nat_stop (ptid_t ptid)
5513 {
5514 if (non_stop)
5515 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5516 else
5517 linux_ops->to_stop (ptid);
5518 }
5519
5520 static void
5521 linux_nat_close (int quitting)
5522 {
5523 /* Unregister from the event loop. */
5524 if (target_is_async_p ())
5525 target_async (NULL, 0);
5526
5527 if (linux_ops->to_close)
5528 linux_ops->to_close (quitting);
5529 }
5530
5531 /* When requests are passed down from the linux-nat layer to the
5532 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5533 used. The address space pointer is stored in the inferior object,
5534 but the common code that is passed such ptid can't tell whether
5535 lwpid is a "main" process id or not (it assumes so). We reverse
5536 look up the "main" process id from the lwp here. */
5537
5538 struct address_space *
5539 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5540 {
5541 struct lwp_info *lwp;
5542 struct inferior *inf;
5543 int pid;
5544
5545 pid = GET_LWP (ptid);
5546 if (GET_LWP (ptid) == 0)
5547 {
5548 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5549 tgid. */
5550 lwp = find_lwp_pid (ptid);
5551 pid = GET_PID (lwp->ptid);
5552 }
5553 else
5554 {
5555 /* A (pid,lwpid,0) ptid. */
5556 pid = GET_PID (ptid);
5557 }
5558
5559 inf = find_inferior_pid (pid);
5560 gdb_assert (inf != NULL);
5561 return inf->aspace;
5562 }
5563
5564 int
5565 linux_nat_core_of_thread_1 (ptid_t ptid)
5566 {
5567 struct cleanup *back_to;
5568 char *filename;
5569 FILE *f;
5570 char *content = NULL;
5571 char *p;
5572 char *ts = 0;
5573 int content_read = 0;
5574 int i;
5575 int core;
5576
5577 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5578 GET_PID (ptid), GET_LWP (ptid));
5579 back_to = make_cleanup (xfree, filename);
5580
5581 f = fopen (filename, "r");
5582 if (!f)
5583 {
5584 do_cleanups (back_to);
5585 return -1;
5586 }
5587
5588 make_cleanup_fclose (f);
5589
5590 for (;;)
5591 {
5592 int n;
5593
5594 content = xrealloc (content, content_read + 1024);
5595 n = fread (content + content_read, 1, 1024, f);
5596 content_read += n;
5597 if (n < 1024)
5598 {
5599 content[content_read] = '\0';
5600 break;
5601 }
5602 }
5603
5604 make_cleanup (xfree, content);
5605
5606 p = strchr (content, '(');
5607
5608 /* Skip ")". */
5609 if (p != NULL)
5610 p = strchr (p, ')');
5611 if (p != NULL)
5612 p++;
5613
5614 /* If the first field after program name has index 0, then core number is
5615 the field with index 36. There's no constant for that anywhere. */
5616 if (p != NULL)
5617 p = strtok_r (p, " ", &ts);
5618 for (i = 0; p != NULL && i != 36; ++i)
5619 p = strtok_r (NULL, " ", &ts);
5620
5621 if (p == NULL || sscanf (p, "%d", &core) == 0)
5622 core = -1;
5623
5624 do_cleanups (back_to);
5625
5626 return core;
5627 }
5628
5629 /* Return the cached value of the processor core for thread PTID. */
5630
5631 int
5632 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5633 {
5634 struct lwp_info *info = find_lwp_pid (ptid);
5635
5636 if (info)
5637 return info->core;
5638 return -1;
5639 }
5640
5641 void
5642 linux_nat_add_target (struct target_ops *t)
5643 {
5644 /* Save the provided single-threaded target. We save this in a separate
5645 variable because another target we've inherited from (e.g. inf-ptrace)
5646 may have saved a pointer to T; we want to use it for the final
5647 process stratum target. */
5648 linux_ops_saved = *t;
5649 linux_ops = &linux_ops_saved;
5650
5651 /* Override some methods for multithreading. */
5652 t->to_create_inferior = linux_nat_create_inferior;
5653 t->to_attach = linux_nat_attach;
5654 t->to_detach = linux_nat_detach;
5655 t->to_resume = linux_nat_resume;
5656 t->to_wait = linux_nat_wait;
5657 t->to_pass_signals = linux_nat_pass_signals;
5658 t->to_xfer_partial = linux_nat_xfer_partial;
5659 t->to_kill = linux_nat_kill;
5660 t->to_mourn_inferior = linux_nat_mourn_inferior;
5661 t->to_thread_alive = linux_nat_thread_alive;
5662 t->to_pid_to_str = linux_nat_pid_to_str;
5663 t->to_thread_name = linux_nat_thread_name;
5664 t->to_has_thread_control = tc_schedlock;
5665 t->to_thread_address_space = linux_nat_thread_address_space;
5666 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5667 t->to_stopped_data_address = linux_nat_stopped_data_address;
5668
5669 t->to_can_async_p = linux_nat_can_async_p;
5670 t->to_is_async_p = linux_nat_is_async_p;
5671 t->to_supports_non_stop = linux_nat_supports_non_stop;
5672 t->to_async = linux_nat_async;
5673 t->to_terminal_inferior = linux_nat_terminal_inferior;
5674 t->to_terminal_ours = linux_nat_terminal_ours;
5675 t->to_close = linux_nat_close;
5676
5677 /* Methods for non-stop support. */
5678 t->to_stop = linux_nat_stop;
5679
5680 t->to_supports_multi_process = linux_nat_supports_multi_process;
5681
5682 t->to_supports_disable_randomization
5683 = linux_nat_supports_disable_randomization;
5684
5685 t->to_core_of_thread = linux_nat_core_of_thread;
5686
5687 /* We don't change the stratum; this target will sit at
5688 process_stratum and thread_db will set at thread_stratum. This
5689 is a little strange, since this is a multi-threaded-capable
5690 target, but we want to be on the stack below thread_db, and we
5691 also want to be used for single-threaded processes. */
5692
5693 add_target (t);
5694 }
5695
5696 /* Register a method to call whenever a new thread is attached. */
5697 void
5698 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5699 {
5700 /* Save the pointer. We only support a single registered instance
5701 of the GNU/Linux native target, so we do not need to map this to
5702 T. */
5703 linux_nat_new_thread = new_thread;
5704 }
5705
5706 /* Register a method that converts a siginfo object between the layout
5707 that ptrace returns, and the layout in the architecture of the
5708 inferior. */
5709 void
5710 linux_nat_set_siginfo_fixup (struct target_ops *t,
5711 int (*siginfo_fixup) (struct siginfo *,
5712 gdb_byte *,
5713 int))
5714 {
5715 /* Save the pointer. */
5716 linux_nat_siginfo_fixup = siginfo_fixup;
5717 }
5718
5719 /* Return the saved siginfo associated with PTID. */
5720 struct siginfo *
5721 linux_nat_get_siginfo (ptid_t ptid)
5722 {
5723 struct lwp_info *lp = find_lwp_pid (ptid);
5724
5725 gdb_assert (lp != NULL);
5726
5727 return &lp->siginfo;
5728 }
5729
5730 /* Provide a prototype to silence -Wmissing-prototypes. */
5731 extern initialize_file_ftype _initialize_linux_nat;
5732
5733 void
5734 _initialize_linux_nat (void)
5735 {
5736 add_info ("proc", linux_nat_info_proc_cmd, _("\
5737 Show /proc process information about any running process.\n\
5738 Specify any process id, or use the program being debugged by default.\n\
5739 Specify any of the following keywords for detailed info:\n\
5740 mappings -- list of mapped memory regions.\n\
5741 stat -- list a bunch of random process info.\n\
5742 status -- list a different bunch of random process info.\n\
5743 all -- list all available /proc info."));
5744
5745 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5746 &debug_linux_nat, _("\
5747 Set debugging of GNU/Linux lwp module."), _("\
5748 Show debugging of GNU/Linux lwp module."), _("\
5749 Enables printf debugging output."),
5750 NULL,
5751 show_debug_linux_nat,
5752 &setdebuglist, &showdebuglist);
5753
5754 /* Save this mask as the default. */
5755 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5756
5757 /* Install a SIGCHLD handler. */
5758 sigchld_action.sa_handler = sigchld_handler;
5759 sigemptyset (&sigchld_action.sa_mask);
5760 sigchld_action.sa_flags = SA_RESTART;
5761
5762 /* Make it the default. */
5763 sigaction (SIGCHLD, &sigchld_action, NULL);
5764
5765 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5766 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5767 sigdelset (&suspend_mask, SIGCHLD);
5768
5769 sigemptyset (&blocked_mask);
5770 }
5771 \f
5772
5773 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5774 the GNU/Linux Threads library and therefore doesn't really belong
5775 here. */
5776
5777 /* Read variable NAME in the target and return its value if found.
5778 Otherwise return zero. It is assumed that the type of the variable
5779 is `int'. */
5780
5781 static int
5782 get_signo (const char *name)
5783 {
5784 struct minimal_symbol *ms;
5785 int signo;
5786
5787 ms = lookup_minimal_symbol (name, NULL, NULL);
5788 if (ms == NULL)
5789 return 0;
5790
5791 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5792 sizeof (signo)) != 0)
5793 return 0;
5794
5795 return signo;
5796 }
5797
5798 /* Return the set of signals used by the threads library in *SET. */
5799
5800 void
5801 lin_thread_get_thread_signals (sigset_t *set)
5802 {
5803 struct sigaction action;
5804 int restart, cancel;
5805
5806 sigemptyset (&blocked_mask);
5807 sigemptyset (set);
5808
5809 restart = get_signo ("__pthread_sig_restart");
5810 cancel = get_signo ("__pthread_sig_cancel");
5811
5812 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5813 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5814 not provide any way for the debugger to query the signal numbers -
5815 fortunately they don't change! */
5816
5817 if (restart == 0)
5818 restart = __SIGRTMIN;
5819
5820 if (cancel == 0)
5821 cancel = __SIGRTMIN + 1;
5822
5823 sigaddset (set, restart);
5824 sigaddset (set, cancel);
5825
5826 /* The GNU/Linux Threads library makes terminating threads send a
5827 special "cancel" signal instead of SIGCHLD. Make sure we catch
5828 those (to prevent them from terminating GDB itself, which is
5829 likely to be their default action) and treat them the same way as
5830 SIGCHLD. */
5831
5832 action.sa_handler = sigchld_handler;
5833 sigemptyset (&action.sa_mask);
5834 action.sa_flags = SA_RESTART;
5835 sigaction (cancel, &action, NULL);
5836
5837 /* We block the "cancel" signal throughout this code ... */
5838 sigaddset (&blocked_mask, cancel);
5839 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5840
5841 /* ... except during a sigsuspend. */
5842 sigdelset (&suspend_mask, cancel);
5843 }
This page took 0.269402 seconds and 5 git commands to generate.