2011-09-09 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif /* HAVE_PERSONALITY */
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
178
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
183 gdb_byte *,
184 int);
185
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
189 enum target_object,
190 const char *, gdb_byte *,
191 const gdb_byte *,
192 ULONGEST, LONGEST);
193
194 static int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 static int disable_randomization = 1;
204
205 static void
206 show_disable_randomization (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 #ifdef HAVE_PERSONALITY
210 fprintf_filtered (file,
211 _("Disabling randomization of debuggee's "
212 "virtual address space is %s.\n"),
213 value);
214 #else /* !HAVE_PERSONALITY */
215 fputs_filtered (_("Disabling randomization of debuggee's "
216 "virtual address space is unsupported on\n"
217 "this platform.\n"), file);
218 #endif /* !HAVE_PERSONALITY */
219 }
220
221 static void
222 set_disable_randomization (char *args, int from_tty,
223 struct cmd_list_element *c)
224 {
225 #ifndef HAVE_PERSONALITY
226 error (_("Disabling randomization of debuggee's "
227 "virtual address space is unsupported on\n"
228 "this platform."));
229 #endif /* !HAVE_PERSONALITY */
230 }
231
232 struct simple_pid_list
233 {
234 int pid;
235 int status;
236 struct simple_pid_list *next;
237 };
238 struct simple_pid_list *stopped_pids;
239
240 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
241 can not be used, 1 if it can. */
242
243 static int linux_supports_tracefork_flag = -1;
244
245 /* This variable is a tri-state flag: -1 for unknown, 0 if
246 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
247
248 static int linux_supports_tracesysgood_flag = -1;
249
250 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
251 PTRACE_O_TRACEVFORKDONE. */
252
253 static int linux_supports_tracevforkdone_flag = -1;
254
255 /* Stores the current used ptrace() options. */
256 static int current_ptrace_options = 0;
257
258 /* Async mode support. */
259
260 /* The read/write ends of the pipe registered as waitable file in the
261 event loop. */
262 static int linux_nat_event_pipe[2] = { -1, -1 };
263
264 /* Flush the event pipe. */
265
266 static void
267 async_file_flush (void)
268 {
269 int ret;
270 char buf;
271
272 do
273 {
274 ret = read (linux_nat_event_pipe[0], &buf, 1);
275 }
276 while (ret >= 0 || (ret == -1 && errno == EINTR));
277 }
278
279 /* Put something (anything, doesn't matter what, or how much) in event
280 pipe, so that the select/poll in the event-loop realizes we have
281 something to process. */
282
283 static void
284 async_file_mark (void)
285 {
286 int ret;
287
288 /* It doesn't really matter what the pipe contains, as long we end
289 up with something in it. Might as well flush the previous
290 left-overs. */
291 async_file_flush ();
292
293 do
294 {
295 ret = write (linux_nat_event_pipe[1], "+", 1);
296 }
297 while (ret == -1 && errno == EINTR);
298
299 /* Ignore EAGAIN. If the pipe is full, the event loop will already
300 be awakened anyway. */
301 }
302
303 static void linux_nat_async (void (*callback)
304 (enum inferior_event_type event_type,
305 void *context),
306 void *context);
307 static int kill_lwp (int lwpid, int signo);
308
309 static int stop_callback (struct lwp_info *lp, void *data);
310
311 static void block_child_signals (sigset_t *prev_mask);
312 static void restore_child_signals_mask (sigset_t *prev_mask);
313
314 struct lwp_info;
315 static struct lwp_info *add_lwp (ptid_t ptid);
316 static void purge_lwp_list (int pid);
317 static struct lwp_info *find_lwp_pid (ptid_t ptid);
318
319 \f
320 /* Trivial list manipulation functions to keep track of a list of
321 new stopped processes. */
322 static void
323 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
324 {
325 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
326
327 new_pid->pid = pid;
328 new_pid->status = status;
329 new_pid->next = *listp;
330 *listp = new_pid;
331 }
332
333 static int
334 in_pid_list_p (struct simple_pid_list *list, int pid)
335 {
336 struct simple_pid_list *p;
337
338 for (p = list; p != NULL; p = p->next)
339 if (p->pid == pid)
340 return 1;
341 return 0;
342 }
343
344 static int
345 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
346 {
347 struct simple_pid_list **p;
348
349 for (p = listp; *p != NULL; p = &(*p)->next)
350 if ((*p)->pid == pid)
351 {
352 struct simple_pid_list *next = (*p)->next;
353
354 *statusp = (*p)->status;
355 xfree (*p);
356 *p = next;
357 return 1;
358 }
359 return 0;
360 }
361
362 \f
363 /* A helper function for linux_test_for_tracefork, called after fork (). */
364
365 static void
366 linux_tracefork_child (void)
367 {
368 ptrace (PTRACE_TRACEME, 0, 0, 0);
369 kill (getpid (), SIGSTOP);
370 fork ();
371 _exit (0);
372 }
373
374 /* Wrapper function for waitpid which handles EINTR. */
375
376 static int
377 my_waitpid (int pid, int *statusp, int flags)
378 {
379 int ret;
380
381 do
382 {
383 ret = waitpid (pid, statusp, flags);
384 }
385 while (ret == -1 && errno == EINTR);
386
387 return ret;
388 }
389
390 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
391
392 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
393 we know that the feature is not available. This may change the tracing
394 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
395
396 However, if it succeeds, we don't know for sure that the feature is
397 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
398 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
399 fork tracing, and let it fork. If the process exits, we assume that we
400 can't use TRACEFORK; if we get the fork notification, and we can extract
401 the new child's PID, then we assume that we can. */
402
403 static void
404 linux_test_for_tracefork (int original_pid)
405 {
406 int child_pid, ret, status;
407 long second_pid;
408 sigset_t prev_mask;
409
410 /* We don't want those ptrace calls to be interrupted. */
411 block_child_signals (&prev_mask);
412
413 linux_supports_tracefork_flag = 0;
414 linux_supports_tracevforkdone_flag = 0;
415
416 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
417 if (ret != 0)
418 {
419 restore_child_signals_mask (&prev_mask);
420 return;
421 }
422
423 child_pid = fork ();
424 if (child_pid == -1)
425 perror_with_name (("fork"));
426
427 if (child_pid == 0)
428 linux_tracefork_child ();
429
430 ret = my_waitpid (child_pid, &status, 0);
431 if (ret == -1)
432 perror_with_name (("waitpid"));
433 else if (ret != child_pid)
434 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
435 if (! WIFSTOPPED (status))
436 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
437 status);
438
439 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
440 if (ret != 0)
441 {
442 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
443 if (ret != 0)
444 {
445 warning (_("linux_test_for_tracefork: failed to kill child"));
446 restore_child_signals_mask (&prev_mask);
447 return;
448 }
449
450 ret = my_waitpid (child_pid, &status, 0);
451 if (ret != child_pid)
452 warning (_("linux_test_for_tracefork: failed "
453 "to wait for killed child"));
454 else if (!WIFSIGNALED (status))
455 warning (_("linux_test_for_tracefork: unexpected "
456 "wait status 0x%x from killed child"), status);
457
458 restore_child_signals_mask (&prev_mask);
459 return;
460 }
461
462 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
463 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
464 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
465 linux_supports_tracevforkdone_flag = (ret == 0);
466
467 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
468 if (ret != 0)
469 warning (_("linux_test_for_tracefork: failed to resume child"));
470
471 ret = my_waitpid (child_pid, &status, 0);
472
473 if (ret == child_pid && WIFSTOPPED (status)
474 && status >> 16 == PTRACE_EVENT_FORK)
475 {
476 second_pid = 0;
477 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
478 if (ret == 0 && second_pid != 0)
479 {
480 int second_status;
481
482 linux_supports_tracefork_flag = 1;
483 my_waitpid (second_pid, &second_status, 0);
484 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
485 if (ret != 0)
486 warning (_("linux_test_for_tracefork: "
487 "failed to kill second child"));
488 my_waitpid (second_pid, &status, 0);
489 }
490 }
491 else
492 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
493 "(%d, status 0x%x)"), ret, status);
494
495 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
496 if (ret != 0)
497 warning (_("linux_test_for_tracefork: failed to kill child"));
498 my_waitpid (child_pid, &status, 0);
499
500 restore_child_signals_mask (&prev_mask);
501 }
502
503 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
504
505 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
506 we know that the feature is not available. This may change the tracing
507 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
508
509 static void
510 linux_test_for_tracesysgood (int original_pid)
511 {
512 int ret;
513 sigset_t prev_mask;
514
515 /* We don't want those ptrace calls to be interrupted. */
516 block_child_signals (&prev_mask);
517
518 linux_supports_tracesysgood_flag = 0;
519
520 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
521 if (ret != 0)
522 goto out;
523
524 linux_supports_tracesysgood_flag = 1;
525 out:
526 restore_child_signals_mask (&prev_mask);
527 }
528
529 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
530 This function also sets linux_supports_tracesysgood_flag. */
531
532 static int
533 linux_supports_tracesysgood (int pid)
534 {
535 if (linux_supports_tracesysgood_flag == -1)
536 linux_test_for_tracesysgood (pid);
537 return linux_supports_tracesysgood_flag;
538 }
539
540 /* Return non-zero iff we have tracefork functionality available.
541 This function also sets linux_supports_tracefork_flag. */
542
543 static int
544 linux_supports_tracefork (int pid)
545 {
546 if (linux_supports_tracefork_flag == -1)
547 linux_test_for_tracefork (pid);
548 return linux_supports_tracefork_flag;
549 }
550
551 static int
552 linux_supports_tracevforkdone (int pid)
553 {
554 if (linux_supports_tracefork_flag == -1)
555 linux_test_for_tracefork (pid);
556 return linux_supports_tracevforkdone_flag;
557 }
558
559 static void
560 linux_enable_tracesysgood (ptid_t ptid)
561 {
562 int pid = ptid_get_lwp (ptid);
563
564 if (pid == 0)
565 pid = ptid_get_pid (ptid);
566
567 if (linux_supports_tracesysgood (pid) == 0)
568 return;
569
570 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
571
572 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
573 }
574
575 \f
576 void
577 linux_enable_event_reporting (ptid_t ptid)
578 {
579 int pid = ptid_get_lwp (ptid);
580
581 if (pid == 0)
582 pid = ptid_get_pid (ptid);
583
584 if (! linux_supports_tracefork (pid))
585 return;
586
587 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
588 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
589
590 if (linux_supports_tracevforkdone (pid))
591 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
592
593 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
594 read-only process state. */
595
596 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
597 }
598
599 static void
600 linux_child_post_attach (int pid)
601 {
602 linux_enable_event_reporting (pid_to_ptid (pid));
603 check_for_thread_db ();
604 linux_enable_tracesysgood (pid_to_ptid (pid));
605 }
606
607 static void
608 linux_child_post_startup_inferior (ptid_t ptid)
609 {
610 linux_enable_event_reporting (ptid);
611 check_for_thread_db ();
612 linux_enable_tracesysgood (ptid);
613 }
614
615 static int
616 linux_child_follow_fork (struct target_ops *ops, int follow_child)
617 {
618 sigset_t prev_mask;
619 int has_vforked;
620 int parent_pid, child_pid;
621
622 block_child_signals (&prev_mask);
623
624 has_vforked = (inferior_thread ()->pending_follow.kind
625 == TARGET_WAITKIND_VFORKED);
626 parent_pid = ptid_get_lwp (inferior_ptid);
627 if (parent_pid == 0)
628 parent_pid = ptid_get_pid (inferior_ptid);
629 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
630
631 if (!detach_fork)
632 linux_enable_event_reporting (pid_to_ptid (child_pid));
633
634 if (has_vforked
635 && !non_stop /* Non-stop always resumes both branches. */
636 && (!target_is_async_p () || sync_execution)
637 && !(follow_child || detach_fork || sched_multi))
638 {
639 /* The parent stays blocked inside the vfork syscall until the
640 child execs or exits. If we don't let the child run, then
641 the parent stays blocked. If we're telling the parent to run
642 in the foreground, the user will not be able to ctrl-c to get
643 back the terminal, effectively hanging the debug session. */
644 fprintf_filtered (gdb_stderr, _("\
645 Can not resume the parent process over vfork in the foreground while\n\
646 holding the child stopped. Try \"set detach-on-fork\" or \
647 \"set schedule-multiple\".\n"));
648 /* FIXME output string > 80 columns. */
649 return 1;
650 }
651
652 if (! follow_child)
653 {
654 struct lwp_info *child_lp = NULL;
655
656 /* We're already attached to the parent, by default. */
657
658 /* Detach new forked process? */
659 if (detach_fork)
660 {
661 /* Before detaching from the child, remove all breakpoints
662 from it. If we forked, then this has already been taken
663 care of by infrun.c. If we vforked however, any
664 breakpoint inserted in the parent is visible in the
665 child, even those added while stopped in a vfork
666 catchpoint. This will remove the breakpoints from the
667 parent also, but they'll be reinserted below. */
668 if (has_vforked)
669 {
670 /* keep breakpoints list in sync. */
671 remove_breakpoints_pid (GET_PID (inferior_ptid));
672 }
673
674 if (info_verbose || debug_linux_nat)
675 {
676 target_terminal_ours ();
677 fprintf_filtered (gdb_stdlog,
678 "Detaching after fork from "
679 "child process %d.\n",
680 child_pid);
681 }
682
683 ptrace (PTRACE_DETACH, child_pid, 0, 0);
684 }
685 else
686 {
687 struct inferior *parent_inf, *child_inf;
688 struct cleanup *old_chain;
689
690 /* Add process to GDB's tables. */
691 child_inf = add_inferior (child_pid);
692
693 parent_inf = current_inferior ();
694 child_inf->attach_flag = parent_inf->attach_flag;
695 copy_terminal_info (child_inf, parent_inf);
696
697 old_chain = save_inferior_ptid ();
698 save_current_program_space ();
699
700 inferior_ptid = ptid_build (child_pid, child_pid, 0);
701 add_thread (inferior_ptid);
702 child_lp = add_lwp (inferior_ptid);
703 child_lp->stopped = 1;
704 child_lp->last_resume_kind = resume_stop;
705
706 /* If this is a vfork child, then the address-space is
707 shared with the parent. */
708 if (has_vforked)
709 {
710 child_inf->pspace = parent_inf->pspace;
711 child_inf->aspace = parent_inf->aspace;
712
713 /* The parent will be frozen until the child is done
714 with the shared region. Keep track of the
715 parent. */
716 child_inf->vfork_parent = parent_inf;
717 child_inf->pending_detach = 0;
718 parent_inf->vfork_child = child_inf;
719 parent_inf->pending_detach = 0;
720 }
721 else
722 {
723 child_inf->aspace = new_address_space ();
724 child_inf->pspace = add_program_space (child_inf->aspace);
725 child_inf->removable = 1;
726 set_current_program_space (child_inf->pspace);
727 clone_program_space (child_inf->pspace, parent_inf->pspace);
728
729 /* Let the shared library layer (solib-svr4) learn about
730 this new process, relocate the cloned exec, pull in
731 shared libraries, and install the solib event
732 breakpoint. If a "cloned-VM" event was propagated
733 better throughout the core, this wouldn't be
734 required. */
735 solib_create_inferior_hook (0);
736 }
737
738 /* Let the thread_db layer learn about this new process. */
739 check_for_thread_db ();
740
741 do_cleanups (old_chain);
742 }
743
744 if (has_vforked)
745 {
746 struct lwp_info *parent_lp;
747 struct inferior *parent_inf;
748
749 parent_inf = current_inferior ();
750
751 /* If we detached from the child, then we have to be careful
752 to not insert breakpoints in the parent until the child
753 is done with the shared memory region. However, if we're
754 staying attached to the child, then we can and should
755 insert breakpoints, so that we can debug it. A
756 subsequent child exec or exit is enough to know when does
757 the child stops using the parent's address space. */
758 parent_inf->waiting_for_vfork_done = detach_fork;
759 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
760
761 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
762 gdb_assert (linux_supports_tracefork_flag >= 0);
763
764 if (linux_supports_tracevforkdone (0))
765 {
766 if (debug_linux_nat)
767 fprintf_unfiltered (gdb_stdlog,
768 "LCFF: waiting for VFORK_DONE on %d\n",
769 parent_pid);
770 parent_lp->stopped = 1;
771
772 /* We'll handle the VFORK_DONE event like any other
773 event, in target_wait. */
774 }
775 else
776 {
777 /* We can't insert breakpoints until the child has
778 finished with the shared memory region. We need to
779 wait until that happens. Ideal would be to just
780 call:
781 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
782 - waitpid (parent_pid, &status, __WALL);
783 However, most architectures can't handle a syscall
784 being traced on the way out if it wasn't traced on
785 the way in.
786
787 We might also think to loop, continuing the child
788 until it exits or gets a SIGTRAP. One problem is
789 that the child might call ptrace with PTRACE_TRACEME.
790
791 There's no simple and reliable way to figure out when
792 the vforked child will be done with its copy of the
793 shared memory. We could step it out of the syscall,
794 two instructions, let it go, and then single-step the
795 parent once. When we have hardware single-step, this
796 would work; with software single-step it could still
797 be made to work but we'd have to be able to insert
798 single-step breakpoints in the child, and we'd have
799 to insert -just- the single-step breakpoint in the
800 parent. Very awkward.
801
802 In the end, the best we can do is to make sure it
803 runs for a little while. Hopefully it will be out of
804 range of any breakpoints we reinsert. Usually this
805 is only the single-step breakpoint at vfork's return
806 point. */
807
808 if (debug_linux_nat)
809 fprintf_unfiltered (gdb_stdlog,
810 "LCFF: no VFORK_DONE "
811 "support, sleeping a bit\n");
812
813 usleep (10000);
814
815 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
816 and leave it pending. The next linux_nat_resume call
817 will notice a pending event, and bypasses actually
818 resuming the inferior. */
819 parent_lp->status = 0;
820 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
821 parent_lp->stopped = 1;
822
823 /* If we're in async mode, need to tell the event loop
824 there's something here to process. */
825 if (target_can_async_p ())
826 async_file_mark ();
827 }
828 }
829 }
830 else
831 {
832 struct inferior *parent_inf, *child_inf;
833 struct lwp_info *child_lp;
834 struct program_space *parent_pspace;
835
836 if (info_verbose || debug_linux_nat)
837 {
838 target_terminal_ours ();
839 if (has_vforked)
840 fprintf_filtered (gdb_stdlog,
841 _("Attaching after process %d "
842 "vfork to child process %d.\n"),
843 parent_pid, child_pid);
844 else
845 fprintf_filtered (gdb_stdlog,
846 _("Attaching after process %d "
847 "fork to child process %d.\n"),
848 parent_pid, child_pid);
849 }
850
851 /* Add the new inferior first, so that the target_detach below
852 doesn't unpush the target. */
853
854 child_inf = add_inferior (child_pid);
855
856 parent_inf = current_inferior ();
857 child_inf->attach_flag = parent_inf->attach_flag;
858 copy_terminal_info (child_inf, parent_inf);
859
860 parent_pspace = parent_inf->pspace;
861
862 /* If we're vforking, we want to hold on to the parent until the
863 child exits or execs. At child exec or exit time we can
864 remove the old breakpoints from the parent and detach or
865 resume debugging it. Otherwise, detach the parent now; we'll
866 want to reuse it's program/address spaces, but we can't set
867 them to the child before removing breakpoints from the
868 parent, otherwise, the breakpoints module could decide to
869 remove breakpoints from the wrong process (since they'd be
870 assigned to the same address space). */
871
872 if (has_vforked)
873 {
874 gdb_assert (child_inf->vfork_parent == NULL);
875 gdb_assert (parent_inf->vfork_child == NULL);
876 child_inf->vfork_parent = parent_inf;
877 child_inf->pending_detach = 0;
878 parent_inf->vfork_child = child_inf;
879 parent_inf->pending_detach = detach_fork;
880 parent_inf->waiting_for_vfork_done = 0;
881 }
882 else if (detach_fork)
883 target_detach (NULL, 0);
884
885 /* Note that the detach above makes PARENT_INF dangling. */
886
887 /* Add the child thread to the appropriate lists, and switch to
888 this new thread, before cloning the program space, and
889 informing the solib layer about this new process. */
890
891 inferior_ptid = ptid_build (child_pid, child_pid, 0);
892 add_thread (inferior_ptid);
893 child_lp = add_lwp (inferior_ptid);
894 child_lp->stopped = 1;
895 child_lp->last_resume_kind = resume_stop;
896
897 /* If this is a vfork child, then the address-space is shared
898 with the parent. If we detached from the parent, then we can
899 reuse the parent's program/address spaces. */
900 if (has_vforked || detach_fork)
901 {
902 child_inf->pspace = parent_pspace;
903 child_inf->aspace = child_inf->pspace->aspace;
904 }
905 else
906 {
907 child_inf->aspace = new_address_space ();
908 child_inf->pspace = add_program_space (child_inf->aspace);
909 child_inf->removable = 1;
910 set_current_program_space (child_inf->pspace);
911 clone_program_space (child_inf->pspace, parent_pspace);
912
913 /* Let the shared library layer (solib-svr4) learn about
914 this new process, relocate the cloned exec, pull in
915 shared libraries, and install the solib event breakpoint.
916 If a "cloned-VM" event was propagated better throughout
917 the core, this wouldn't be required. */
918 solib_create_inferior_hook (0);
919 }
920
921 /* Let the thread_db layer learn about this new process. */
922 check_for_thread_db ();
923 }
924
925 restore_child_signals_mask (&prev_mask);
926 return 0;
927 }
928
929 \f
930 static int
931 linux_child_insert_fork_catchpoint (int pid)
932 {
933 return !linux_supports_tracefork (pid);
934 }
935
936 static int
937 linux_child_remove_fork_catchpoint (int pid)
938 {
939 return 0;
940 }
941
942 static int
943 linux_child_insert_vfork_catchpoint (int pid)
944 {
945 return !linux_supports_tracefork (pid);
946 }
947
948 static int
949 linux_child_remove_vfork_catchpoint (int pid)
950 {
951 return 0;
952 }
953
954 static int
955 linux_child_insert_exec_catchpoint (int pid)
956 {
957 return !linux_supports_tracefork (pid);
958 }
959
960 static int
961 linux_child_remove_exec_catchpoint (int pid)
962 {
963 return 0;
964 }
965
966 static int
967 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
968 int table_size, int *table)
969 {
970 if (!linux_supports_tracesysgood (pid))
971 return 1;
972
973 /* On GNU/Linux, we ignore the arguments. It means that we only
974 enable the syscall catchpoints, but do not disable them.
975
976 Also, we do not use the `table' information because we do not
977 filter system calls here. We let GDB do the logic for us. */
978 return 0;
979 }
980
981 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
982 are processes sharing the same VM space. A multi-threaded process
983 is basically a group of such processes. However, such a grouping
984 is almost entirely a user-space issue; the kernel doesn't enforce
985 such a grouping at all (this might change in the future). In
986 general, we'll rely on the threads library (i.e. the GNU/Linux
987 Threads library) to provide such a grouping.
988
989 It is perfectly well possible to write a multi-threaded application
990 without the assistance of a threads library, by using the clone
991 system call directly. This module should be able to give some
992 rudimentary support for debugging such applications if developers
993 specify the CLONE_PTRACE flag in the clone system call, and are
994 using the Linux kernel 2.4 or above.
995
996 Note that there are some peculiarities in GNU/Linux that affect
997 this code:
998
999 - In general one should specify the __WCLONE flag to waitpid in
1000 order to make it report events for any of the cloned processes
1001 (and leave it out for the initial process). However, if a cloned
1002 process has exited the exit status is only reported if the
1003 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1004 we cannot use it since GDB must work on older systems too.
1005
1006 - When a traced, cloned process exits and is waited for by the
1007 debugger, the kernel reassigns it to the original parent and
1008 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1009 library doesn't notice this, which leads to the "zombie problem":
1010 When debugged a multi-threaded process that spawns a lot of
1011 threads will run out of processes, even if the threads exit,
1012 because the "zombies" stay around. */
1013
1014 /* List of known LWPs. */
1015 struct lwp_info *lwp_list;
1016 \f
1017
1018 /* Original signal mask. */
1019 static sigset_t normal_mask;
1020
1021 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1022 _initialize_linux_nat. */
1023 static sigset_t suspend_mask;
1024
1025 /* Signals to block to make that sigsuspend work. */
1026 static sigset_t blocked_mask;
1027
1028 /* SIGCHLD action. */
1029 struct sigaction sigchld_action;
1030
1031 /* Block child signals (SIGCHLD and linux threads signals), and store
1032 the previous mask in PREV_MASK. */
1033
1034 static void
1035 block_child_signals (sigset_t *prev_mask)
1036 {
1037 /* Make sure SIGCHLD is blocked. */
1038 if (!sigismember (&blocked_mask, SIGCHLD))
1039 sigaddset (&blocked_mask, SIGCHLD);
1040
1041 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1042 }
1043
1044 /* Restore child signals mask, previously returned by
1045 block_child_signals. */
1046
1047 static void
1048 restore_child_signals_mask (sigset_t *prev_mask)
1049 {
1050 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1051 }
1052
1053 /* Mask of signals to pass directly to the inferior. */
1054 static sigset_t pass_mask;
1055
1056 /* Update signals to pass to the inferior. */
1057 static void
1058 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1059 {
1060 int signo;
1061
1062 sigemptyset (&pass_mask);
1063
1064 for (signo = 1; signo < NSIG; signo++)
1065 {
1066 int target_signo = target_signal_from_host (signo);
1067 if (target_signo < numsigs && pass_signals[target_signo])
1068 sigaddset (&pass_mask, signo);
1069 }
1070 }
1071
1072 \f
1073
1074 /* Prototypes for local functions. */
1075 static int stop_wait_callback (struct lwp_info *lp, void *data);
1076 static int linux_thread_alive (ptid_t ptid);
1077 static char *linux_child_pid_to_exec_file (int pid);
1078
1079 \f
1080 /* Convert wait status STATUS to a string. Used for printing debug
1081 messages only. */
1082
1083 static char *
1084 status_to_str (int status)
1085 {
1086 static char buf[64];
1087
1088 if (WIFSTOPPED (status))
1089 {
1090 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1091 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1092 strsignal (SIGTRAP));
1093 else
1094 snprintf (buf, sizeof (buf), "%s (stopped)",
1095 strsignal (WSTOPSIG (status)));
1096 }
1097 else if (WIFSIGNALED (status))
1098 snprintf (buf, sizeof (buf), "%s (terminated)",
1099 strsignal (WTERMSIG (status)));
1100 else
1101 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1102
1103 return buf;
1104 }
1105
1106 /* Remove all LWPs belong to PID from the lwp list. */
1107
1108 static void
1109 purge_lwp_list (int pid)
1110 {
1111 struct lwp_info *lp, *lpprev, *lpnext;
1112
1113 lpprev = NULL;
1114
1115 for (lp = lwp_list; lp; lp = lpnext)
1116 {
1117 lpnext = lp->next;
1118
1119 if (ptid_get_pid (lp->ptid) == pid)
1120 {
1121 if (lp == lwp_list)
1122 lwp_list = lp->next;
1123 else
1124 lpprev->next = lp->next;
1125
1126 xfree (lp);
1127 }
1128 else
1129 lpprev = lp;
1130 }
1131 }
1132
1133 /* Return the number of known LWPs in the tgid given by PID. */
1134
1135 static int
1136 num_lwps (int pid)
1137 {
1138 int count = 0;
1139 struct lwp_info *lp;
1140
1141 for (lp = lwp_list; lp; lp = lp->next)
1142 if (ptid_get_pid (lp->ptid) == pid)
1143 count++;
1144
1145 return count;
1146 }
1147
1148 /* Add the LWP specified by PID to the list. Return a pointer to the
1149 structure describing the new LWP. The LWP should already be stopped
1150 (with an exception for the very first LWP). */
1151
1152 static struct lwp_info *
1153 add_lwp (ptid_t ptid)
1154 {
1155 struct lwp_info *lp;
1156
1157 gdb_assert (is_lwp (ptid));
1158
1159 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1160
1161 memset (lp, 0, sizeof (struct lwp_info));
1162
1163 lp->last_resume_kind = resume_continue;
1164 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1165
1166 lp->ptid = ptid;
1167 lp->core = -1;
1168
1169 lp->next = lwp_list;
1170 lwp_list = lp;
1171
1172 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1173 linux_nat_new_thread (ptid);
1174
1175 return lp;
1176 }
1177
1178 /* Remove the LWP specified by PID from the list. */
1179
1180 static void
1181 delete_lwp (ptid_t ptid)
1182 {
1183 struct lwp_info *lp, *lpprev;
1184
1185 lpprev = NULL;
1186
1187 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1188 if (ptid_equal (lp->ptid, ptid))
1189 break;
1190
1191 if (!lp)
1192 return;
1193
1194 if (lpprev)
1195 lpprev->next = lp->next;
1196 else
1197 lwp_list = lp->next;
1198
1199 xfree (lp);
1200 }
1201
1202 /* Return a pointer to the structure describing the LWP corresponding
1203 to PID. If no corresponding LWP could be found, return NULL. */
1204
1205 static struct lwp_info *
1206 find_lwp_pid (ptid_t ptid)
1207 {
1208 struct lwp_info *lp;
1209 int lwp;
1210
1211 if (is_lwp (ptid))
1212 lwp = GET_LWP (ptid);
1213 else
1214 lwp = GET_PID (ptid);
1215
1216 for (lp = lwp_list; lp; lp = lp->next)
1217 if (lwp == GET_LWP (lp->ptid))
1218 return lp;
1219
1220 return NULL;
1221 }
1222
1223 /* Call CALLBACK with its second argument set to DATA for every LWP in
1224 the list. If CALLBACK returns 1 for a particular LWP, return a
1225 pointer to the structure describing that LWP immediately.
1226 Otherwise return NULL. */
1227
1228 struct lwp_info *
1229 iterate_over_lwps (ptid_t filter,
1230 int (*callback) (struct lwp_info *, void *),
1231 void *data)
1232 {
1233 struct lwp_info *lp, *lpnext;
1234
1235 for (lp = lwp_list; lp; lp = lpnext)
1236 {
1237 lpnext = lp->next;
1238
1239 if (ptid_match (lp->ptid, filter))
1240 {
1241 if ((*callback) (lp, data))
1242 return lp;
1243 }
1244 }
1245
1246 return NULL;
1247 }
1248
1249 /* Update our internal state when changing from one checkpoint to
1250 another indicated by NEW_PTID. We can only switch single-threaded
1251 applications, so we only create one new LWP, and the previous list
1252 is discarded. */
1253
1254 void
1255 linux_nat_switch_fork (ptid_t new_ptid)
1256 {
1257 struct lwp_info *lp;
1258
1259 purge_lwp_list (GET_PID (inferior_ptid));
1260
1261 lp = add_lwp (new_ptid);
1262 lp->stopped = 1;
1263
1264 /* This changes the thread's ptid while preserving the gdb thread
1265 num. Also changes the inferior pid, while preserving the
1266 inferior num. */
1267 thread_change_ptid (inferior_ptid, new_ptid);
1268
1269 /* We've just told GDB core that the thread changed target id, but,
1270 in fact, it really is a different thread, with different register
1271 contents. */
1272 registers_changed ();
1273 }
1274
1275 /* Handle the exit of a single thread LP. */
1276
1277 static void
1278 exit_lwp (struct lwp_info *lp)
1279 {
1280 struct thread_info *th = find_thread_ptid (lp->ptid);
1281
1282 if (th)
1283 {
1284 if (print_thread_events)
1285 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1286
1287 delete_thread (lp->ptid);
1288 }
1289
1290 delete_lwp (lp->ptid);
1291 }
1292
1293 /* Detect `T (stopped)' in `/proc/PID/status'.
1294 Other states including `T (tracing stop)' are reported as false. */
1295
1296 static int
1297 pid_is_stopped (pid_t pid)
1298 {
1299 FILE *status_file;
1300 char buf[100];
1301 int retval = 0;
1302
1303 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1304 status_file = fopen (buf, "r");
1305 if (status_file != NULL)
1306 {
1307 int have_state = 0;
1308
1309 while (fgets (buf, sizeof (buf), status_file))
1310 {
1311 if (strncmp (buf, "State:", 6) == 0)
1312 {
1313 have_state = 1;
1314 break;
1315 }
1316 }
1317 if (have_state && strstr (buf, "T (stopped)") != NULL)
1318 retval = 1;
1319 fclose (status_file);
1320 }
1321 return retval;
1322 }
1323
1324 /* Wait for the LWP specified by LP, which we have just attached to.
1325 Returns a wait status for that LWP, to cache. */
1326
1327 static int
1328 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1329 int *signalled)
1330 {
1331 pid_t new_pid, pid = GET_LWP (ptid);
1332 int status;
1333
1334 if (pid_is_stopped (pid))
1335 {
1336 if (debug_linux_nat)
1337 fprintf_unfiltered (gdb_stdlog,
1338 "LNPAW: Attaching to a stopped process\n");
1339
1340 /* The process is definitely stopped. It is in a job control
1341 stop, unless the kernel predates the TASK_STOPPED /
1342 TASK_TRACED distinction, in which case it might be in a
1343 ptrace stop. Make sure it is in a ptrace stop; from there we
1344 can kill it, signal it, et cetera.
1345
1346 First make sure there is a pending SIGSTOP. Since we are
1347 already attached, the process can not transition from stopped
1348 to running without a PTRACE_CONT; so we know this signal will
1349 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1350 probably already in the queue (unless this kernel is old
1351 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1352 is not an RT signal, it can only be queued once. */
1353 kill_lwp (pid, SIGSTOP);
1354
1355 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1356 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1357 ptrace (PTRACE_CONT, pid, 0, 0);
1358 }
1359
1360 /* Make sure the initial process is stopped. The user-level threads
1361 layer might want to poke around in the inferior, and that won't
1362 work if things haven't stabilized yet. */
1363 new_pid = my_waitpid (pid, &status, 0);
1364 if (new_pid == -1 && errno == ECHILD)
1365 {
1366 if (first)
1367 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1368
1369 /* Try again with __WCLONE to check cloned processes. */
1370 new_pid = my_waitpid (pid, &status, __WCLONE);
1371 *cloned = 1;
1372 }
1373
1374 gdb_assert (pid == new_pid);
1375
1376 if (!WIFSTOPPED (status))
1377 {
1378 /* The pid we tried to attach has apparently just exited. */
1379 if (debug_linux_nat)
1380 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1381 pid, status_to_str (status));
1382 return status;
1383 }
1384
1385 if (WSTOPSIG (status) != SIGSTOP)
1386 {
1387 *signalled = 1;
1388 if (debug_linux_nat)
1389 fprintf_unfiltered (gdb_stdlog,
1390 "LNPAW: Received %s after attaching\n",
1391 status_to_str (status));
1392 }
1393
1394 return status;
1395 }
1396
1397 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1398 the new LWP could not be attached, or 1 if we're already auto
1399 attached to this thread, but haven't processed the
1400 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1401 its existance, without considering it an error. */
1402
1403 int
1404 lin_lwp_attach_lwp (ptid_t ptid)
1405 {
1406 struct lwp_info *lp;
1407 sigset_t prev_mask;
1408 int lwpid;
1409
1410 gdb_assert (is_lwp (ptid));
1411
1412 block_child_signals (&prev_mask);
1413
1414 lp = find_lwp_pid (ptid);
1415 lwpid = GET_LWP (ptid);
1416
1417 /* We assume that we're already attached to any LWP that has an id
1418 equal to the overall process id, and to any LWP that is already
1419 in our list of LWPs. If we're not seeing exit events from threads
1420 and we've had PID wraparound since we last tried to stop all threads,
1421 this assumption might be wrong; fortunately, this is very unlikely
1422 to happen. */
1423 if (lwpid != GET_PID (ptid) && lp == NULL)
1424 {
1425 int status, cloned = 0, signalled = 0;
1426
1427 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1428 {
1429 if (linux_supports_tracefork_flag)
1430 {
1431 /* If we haven't stopped all threads when we get here,
1432 we may have seen a thread listed in thread_db's list,
1433 but not processed the PTRACE_EVENT_CLONE yet. If
1434 that's the case, ignore this new thread, and let
1435 normal event handling discover it later. */
1436 if (in_pid_list_p (stopped_pids, lwpid))
1437 {
1438 /* We've already seen this thread stop, but we
1439 haven't seen the PTRACE_EVENT_CLONE extended
1440 event yet. */
1441 restore_child_signals_mask (&prev_mask);
1442 return 0;
1443 }
1444 else
1445 {
1446 int new_pid;
1447 int status;
1448
1449 /* See if we've got a stop for this new child
1450 pending. If so, we're already attached. */
1451 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1452 if (new_pid == -1 && errno == ECHILD)
1453 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1454 if (new_pid != -1)
1455 {
1456 if (WIFSTOPPED (status))
1457 add_to_pid_list (&stopped_pids, lwpid, status);
1458
1459 restore_child_signals_mask (&prev_mask);
1460 return 1;
1461 }
1462 }
1463 }
1464
1465 /* If we fail to attach to the thread, issue a warning,
1466 but continue. One way this can happen is if thread
1467 creation is interrupted; as of Linux kernel 2.6.19, a
1468 bug may place threads in the thread list and then fail
1469 to create them. */
1470 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1471 safe_strerror (errno));
1472 restore_child_signals_mask (&prev_mask);
1473 return -1;
1474 }
1475
1476 if (debug_linux_nat)
1477 fprintf_unfiltered (gdb_stdlog,
1478 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1479 target_pid_to_str (ptid));
1480
1481 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1482 if (!WIFSTOPPED (status))
1483 {
1484 restore_child_signals_mask (&prev_mask);
1485 return 1;
1486 }
1487
1488 lp = add_lwp (ptid);
1489 lp->stopped = 1;
1490 lp->cloned = cloned;
1491 lp->signalled = signalled;
1492 if (WSTOPSIG (status) != SIGSTOP)
1493 {
1494 lp->resumed = 1;
1495 lp->status = status;
1496 }
1497
1498 target_post_attach (GET_LWP (lp->ptid));
1499
1500 if (debug_linux_nat)
1501 {
1502 fprintf_unfiltered (gdb_stdlog,
1503 "LLAL: waitpid %s received %s\n",
1504 target_pid_to_str (ptid),
1505 status_to_str (status));
1506 }
1507 }
1508 else
1509 {
1510 /* We assume that the LWP representing the original process is
1511 already stopped. Mark it as stopped in the data structure
1512 that the GNU/linux ptrace layer uses to keep track of
1513 threads. Note that this won't have already been done since
1514 the main thread will have, we assume, been stopped by an
1515 attach from a different layer. */
1516 if (lp == NULL)
1517 lp = add_lwp (ptid);
1518 lp->stopped = 1;
1519 }
1520
1521 lp->last_resume_kind = resume_stop;
1522 restore_child_signals_mask (&prev_mask);
1523 return 0;
1524 }
1525
1526 static void
1527 linux_nat_create_inferior (struct target_ops *ops,
1528 char *exec_file, char *allargs, char **env,
1529 int from_tty)
1530 {
1531 #ifdef HAVE_PERSONALITY
1532 int personality_orig = 0, personality_set = 0;
1533 #endif /* HAVE_PERSONALITY */
1534
1535 /* The fork_child mechanism is synchronous and calls target_wait, so
1536 we have to mask the async mode. */
1537
1538 #ifdef HAVE_PERSONALITY
1539 if (disable_randomization)
1540 {
1541 errno = 0;
1542 personality_orig = personality (0xffffffff);
1543 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1544 {
1545 personality_set = 1;
1546 personality (personality_orig | ADDR_NO_RANDOMIZE);
1547 }
1548 if (errno != 0 || (personality_set
1549 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1550 warning (_("Error disabling address space randomization: %s"),
1551 safe_strerror (errno));
1552 }
1553 #endif /* HAVE_PERSONALITY */
1554
1555 /* Make sure we report all signals during startup. */
1556 linux_nat_pass_signals (0, NULL);
1557
1558 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1559
1560 #ifdef HAVE_PERSONALITY
1561 if (personality_set)
1562 {
1563 errno = 0;
1564 personality (personality_orig);
1565 if (errno != 0)
1566 warning (_("Error restoring address space randomization: %s"),
1567 safe_strerror (errno));
1568 }
1569 #endif /* HAVE_PERSONALITY */
1570 }
1571
1572 static void
1573 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1574 {
1575 struct lwp_info *lp;
1576 int status;
1577 ptid_t ptid;
1578
1579 /* Make sure we report all signals during attach. */
1580 linux_nat_pass_signals (0, NULL);
1581
1582 linux_ops->to_attach (ops, args, from_tty);
1583
1584 /* The ptrace base target adds the main thread with (pid,0,0)
1585 format. Decorate it with lwp info. */
1586 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1587 thread_change_ptid (inferior_ptid, ptid);
1588
1589 /* Add the initial process as the first LWP to the list. */
1590 lp = add_lwp (ptid);
1591
1592 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1593 &lp->signalled);
1594 if (!WIFSTOPPED (status))
1595 {
1596 if (WIFEXITED (status))
1597 {
1598 int exit_code = WEXITSTATUS (status);
1599
1600 target_terminal_ours ();
1601 target_mourn_inferior ();
1602 if (exit_code == 0)
1603 error (_("Unable to attach: program exited normally."));
1604 else
1605 error (_("Unable to attach: program exited with code %d."),
1606 exit_code);
1607 }
1608 else if (WIFSIGNALED (status))
1609 {
1610 enum target_signal signo;
1611
1612 target_terminal_ours ();
1613 target_mourn_inferior ();
1614
1615 signo = target_signal_from_host (WTERMSIG (status));
1616 error (_("Unable to attach: program terminated with signal "
1617 "%s, %s."),
1618 target_signal_to_name (signo),
1619 target_signal_to_string (signo));
1620 }
1621
1622 internal_error (__FILE__, __LINE__,
1623 _("unexpected status %d for PID %ld"),
1624 status, (long) GET_LWP (ptid));
1625 }
1626
1627 lp->stopped = 1;
1628
1629 /* Save the wait status to report later. */
1630 lp->resumed = 1;
1631 if (debug_linux_nat)
1632 fprintf_unfiltered (gdb_stdlog,
1633 "LNA: waitpid %ld, saving status %s\n",
1634 (long) GET_PID (lp->ptid), status_to_str (status));
1635
1636 lp->status = status;
1637
1638 if (target_can_async_p ())
1639 target_async (inferior_event_handler, 0);
1640 }
1641
1642 /* Get pending status of LP. */
1643 static int
1644 get_pending_status (struct lwp_info *lp, int *status)
1645 {
1646 enum target_signal signo = TARGET_SIGNAL_0;
1647
1648 /* If we paused threads momentarily, we may have stored pending
1649 events in lp->status or lp->waitstatus (see stop_wait_callback),
1650 and GDB core hasn't seen any signal for those threads.
1651 Otherwise, the last signal reported to the core is found in the
1652 thread object's stop_signal.
1653
1654 There's a corner case that isn't handled here at present. Only
1655 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1656 stop_signal make sense as a real signal to pass to the inferior.
1657 Some catchpoint related events, like
1658 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1659 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1660 those traps are debug API (ptrace in our case) related and
1661 induced; the inferior wouldn't see them if it wasn't being
1662 traced. Hence, we should never pass them to the inferior, even
1663 when set to pass state. Since this corner case isn't handled by
1664 infrun.c when proceeding with a signal, for consistency, neither
1665 do we handle it here (or elsewhere in the file we check for
1666 signal pass state). Normally SIGTRAP isn't set to pass state, so
1667 this is really a corner case. */
1668
1669 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1670 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1671 else if (lp->status)
1672 signo = target_signal_from_host (WSTOPSIG (lp->status));
1673 else if (non_stop && !is_executing (lp->ptid))
1674 {
1675 struct thread_info *tp = find_thread_ptid (lp->ptid);
1676
1677 signo = tp->suspend.stop_signal;
1678 }
1679 else if (!non_stop)
1680 {
1681 struct target_waitstatus last;
1682 ptid_t last_ptid;
1683
1684 get_last_target_status (&last_ptid, &last);
1685
1686 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1687 {
1688 struct thread_info *tp = find_thread_ptid (lp->ptid);
1689
1690 signo = tp->suspend.stop_signal;
1691 }
1692 }
1693
1694 *status = 0;
1695
1696 if (signo == TARGET_SIGNAL_0)
1697 {
1698 if (debug_linux_nat)
1699 fprintf_unfiltered (gdb_stdlog,
1700 "GPT: lwp %s has no pending signal\n",
1701 target_pid_to_str (lp->ptid));
1702 }
1703 else if (!signal_pass_state (signo))
1704 {
1705 if (debug_linux_nat)
1706 fprintf_unfiltered (gdb_stdlog,
1707 "GPT: lwp %s had signal %s, "
1708 "but it is in no pass state\n",
1709 target_pid_to_str (lp->ptid),
1710 target_signal_to_string (signo));
1711 }
1712 else
1713 {
1714 *status = W_STOPCODE (target_signal_to_host (signo));
1715
1716 if (debug_linux_nat)
1717 fprintf_unfiltered (gdb_stdlog,
1718 "GPT: lwp %s has pending signal %s\n",
1719 target_pid_to_str (lp->ptid),
1720 target_signal_to_string (signo));
1721 }
1722
1723 return 0;
1724 }
1725
1726 static int
1727 detach_callback (struct lwp_info *lp, void *data)
1728 {
1729 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1730
1731 if (debug_linux_nat && lp->status)
1732 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1733 strsignal (WSTOPSIG (lp->status)),
1734 target_pid_to_str (lp->ptid));
1735
1736 /* If there is a pending SIGSTOP, get rid of it. */
1737 if (lp->signalled)
1738 {
1739 if (debug_linux_nat)
1740 fprintf_unfiltered (gdb_stdlog,
1741 "DC: Sending SIGCONT to %s\n",
1742 target_pid_to_str (lp->ptid));
1743
1744 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1745 lp->signalled = 0;
1746 }
1747
1748 /* We don't actually detach from the LWP that has an id equal to the
1749 overall process id just yet. */
1750 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1751 {
1752 int status = 0;
1753
1754 /* Pass on any pending signal for this LWP. */
1755 get_pending_status (lp, &status);
1756
1757 errno = 0;
1758 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1759 WSTOPSIG (status)) < 0)
1760 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1761 safe_strerror (errno));
1762
1763 if (debug_linux_nat)
1764 fprintf_unfiltered (gdb_stdlog,
1765 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1766 target_pid_to_str (lp->ptid),
1767 strsignal (WSTOPSIG (status)));
1768
1769 delete_lwp (lp->ptid);
1770 }
1771
1772 return 0;
1773 }
1774
1775 static void
1776 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1777 {
1778 int pid;
1779 int status;
1780 struct lwp_info *main_lwp;
1781
1782 pid = GET_PID (inferior_ptid);
1783
1784 if (target_can_async_p ())
1785 linux_nat_async (NULL, 0);
1786
1787 /* Stop all threads before detaching. ptrace requires that the
1788 thread is stopped to sucessfully detach. */
1789 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1790 /* ... and wait until all of them have reported back that
1791 they're no longer running. */
1792 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1793
1794 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1795
1796 /* Only the initial process should be left right now. */
1797 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1798
1799 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1800
1801 /* Pass on any pending signal for the last LWP. */
1802 if ((args == NULL || *args == '\0')
1803 && get_pending_status (main_lwp, &status) != -1
1804 && WIFSTOPPED (status))
1805 {
1806 /* Put the signal number in ARGS so that inf_ptrace_detach will
1807 pass it along with PTRACE_DETACH. */
1808 args = alloca (8);
1809 sprintf (args, "%d", (int) WSTOPSIG (status));
1810 if (debug_linux_nat)
1811 fprintf_unfiltered (gdb_stdlog,
1812 "LND: Sending signal %s to %s\n",
1813 args,
1814 target_pid_to_str (main_lwp->ptid));
1815 }
1816
1817 delete_lwp (main_lwp->ptid);
1818
1819 if (forks_exist_p ())
1820 {
1821 /* Multi-fork case. The current inferior_ptid is being detached
1822 from, but there are other viable forks to debug. Detach from
1823 the current fork, and context-switch to the first
1824 available. */
1825 linux_fork_detach (args, from_tty);
1826
1827 if (non_stop && target_can_async_p ())
1828 target_async (inferior_event_handler, 0);
1829 }
1830 else
1831 linux_ops->to_detach (ops, args, from_tty);
1832 }
1833
1834 /* Resume LP. */
1835
1836 static void
1837 resume_lwp (struct lwp_info *lp, int step)
1838 {
1839 if (lp->stopped)
1840 {
1841 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1842
1843 if (inf->vfork_child != NULL)
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming %s (vfork parent)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 else if (lp->status == 0
1851 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1852 {
1853 if (debug_linux_nat)
1854 fprintf_unfiltered (gdb_stdlog,
1855 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1856 target_pid_to_str (lp->ptid));
1857
1858 linux_ops->to_resume (linux_ops,
1859 pid_to_ptid (GET_LWP (lp->ptid)),
1860 step, TARGET_SIGNAL_0);
1861 if (debug_linux_nat)
1862 fprintf_unfiltered (gdb_stdlog,
1863 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1864 target_pid_to_str (lp->ptid));
1865 lp->stopped = 0;
1866 lp->step = step;
1867 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1868 lp->stopped_by_watchpoint = 0;
1869 }
1870 else
1871 {
1872 if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog,
1874 "RC: Not resuming sibling %s (has pending)\n",
1875 target_pid_to_str (lp->ptid));
1876 }
1877 }
1878 else
1879 {
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "RC: Not resuming sibling %s (not stopped)\n",
1883 target_pid_to_str (lp->ptid));
1884 }
1885 }
1886
1887 static int
1888 resume_callback (struct lwp_info *lp, void *data)
1889 {
1890 resume_lwp (lp, 0);
1891 return 0;
1892 }
1893
1894 static int
1895 resume_clear_callback (struct lwp_info *lp, void *data)
1896 {
1897 lp->resumed = 0;
1898 lp->last_resume_kind = resume_stop;
1899 return 0;
1900 }
1901
1902 static int
1903 resume_set_callback (struct lwp_info *lp, void *data)
1904 {
1905 lp->resumed = 1;
1906 lp->last_resume_kind = resume_continue;
1907 return 0;
1908 }
1909
1910 static void
1911 linux_nat_resume (struct target_ops *ops,
1912 ptid_t ptid, int step, enum target_signal signo)
1913 {
1914 sigset_t prev_mask;
1915 struct lwp_info *lp;
1916 int resume_many;
1917
1918 if (debug_linux_nat)
1919 fprintf_unfiltered (gdb_stdlog,
1920 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1921 step ? "step" : "resume",
1922 target_pid_to_str (ptid),
1923 (signo != TARGET_SIGNAL_0
1924 ? strsignal (target_signal_to_host (signo)) : "0"),
1925 target_pid_to_str (inferior_ptid));
1926
1927 block_child_signals (&prev_mask);
1928
1929 /* A specific PTID means `step only this process id'. */
1930 resume_many = (ptid_equal (minus_one_ptid, ptid)
1931 || ptid_is_pid (ptid));
1932
1933 /* Mark the lwps we're resuming as resumed. */
1934 iterate_over_lwps (ptid, resume_set_callback, NULL);
1935
1936 /* See if it's the current inferior that should be handled
1937 specially. */
1938 if (resume_many)
1939 lp = find_lwp_pid (inferior_ptid);
1940 else
1941 lp = find_lwp_pid (ptid);
1942 gdb_assert (lp != NULL);
1943
1944 /* Remember if we're stepping. */
1945 lp->step = step;
1946 lp->last_resume_kind = step ? resume_step : resume_continue;
1947
1948 /* If we have a pending wait status for this thread, there is no
1949 point in resuming the process. But first make sure that
1950 linux_nat_wait won't preemptively handle the event - we
1951 should never take this short-circuit if we are going to
1952 leave LP running, since we have skipped resuming all the
1953 other threads. This bit of code needs to be synchronized
1954 with linux_nat_wait. */
1955
1956 if (lp->status && WIFSTOPPED (lp->status))
1957 {
1958 if (!lp->step
1959 && WSTOPSIG (lp->status)
1960 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1961 {
1962 if (debug_linux_nat)
1963 fprintf_unfiltered (gdb_stdlog,
1964 "LLR: Not short circuiting for ignored "
1965 "status 0x%x\n", lp->status);
1966
1967 /* FIXME: What should we do if we are supposed to continue
1968 this thread with a signal? */
1969 gdb_assert (signo == TARGET_SIGNAL_0);
1970 signo = target_signal_from_host (WSTOPSIG (lp->status));
1971 lp->status = 0;
1972 }
1973 }
1974
1975 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1976 {
1977 /* FIXME: What should we do if we are supposed to continue
1978 this thread with a signal? */
1979 gdb_assert (signo == TARGET_SIGNAL_0);
1980
1981 if (debug_linux_nat)
1982 fprintf_unfiltered (gdb_stdlog,
1983 "LLR: Short circuiting for status 0x%x\n",
1984 lp->status);
1985
1986 restore_child_signals_mask (&prev_mask);
1987 if (target_can_async_p ())
1988 {
1989 target_async (inferior_event_handler, 0);
1990 /* Tell the event loop we have something to process. */
1991 async_file_mark ();
1992 }
1993 return;
1994 }
1995
1996 /* Mark LWP as not stopped to prevent it from being continued by
1997 resume_callback. */
1998 lp->stopped = 0;
1999
2000 if (resume_many)
2001 iterate_over_lwps (ptid, resume_callback, NULL);
2002
2003 /* Convert to something the lower layer understands. */
2004 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2005
2006 linux_ops->to_resume (linux_ops, ptid, step, signo);
2007 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2008 lp->stopped_by_watchpoint = 0;
2009
2010 if (debug_linux_nat)
2011 fprintf_unfiltered (gdb_stdlog,
2012 "LLR: %s %s, %s (resume event thread)\n",
2013 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2014 target_pid_to_str (ptid),
2015 (signo != TARGET_SIGNAL_0
2016 ? strsignal (target_signal_to_host (signo)) : "0"));
2017
2018 restore_child_signals_mask (&prev_mask);
2019 if (target_can_async_p ())
2020 target_async (inferior_event_handler, 0);
2021 }
2022
2023 /* Send a signal to an LWP. */
2024
2025 static int
2026 kill_lwp (int lwpid, int signo)
2027 {
2028 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2029 fails, then we are not using nptl threads and we should be using kill. */
2030
2031 #ifdef HAVE_TKILL_SYSCALL
2032 {
2033 static int tkill_failed;
2034
2035 if (!tkill_failed)
2036 {
2037 int ret;
2038
2039 errno = 0;
2040 ret = syscall (__NR_tkill, lwpid, signo);
2041 if (errno != ENOSYS)
2042 return ret;
2043 tkill_failed = 1;
2044 }
2045 }
2046 #endif
2047
2048 return kill (lwpid, signo);
2049 }
2050
2051 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2052 event, check if the core is interested in it: if not, ignore the
2053 event, and keep waiting; otherwise, we need to toggle the LWP's
2054 syscall entry/exit status, since the ptrace event itself doesn't
2055 indicate it, and report the trap to higher layers. */
2056
2057 static int
2058 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2059 {
2060 struct target_waitstatus *ourstatus = &lp->waitstatus;
2061 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2062 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2063
2064 if (stopping)
2065 {
2066 /* If we're stopping threads, there's a SIGSTOP pending, which
2067 makes it so that the LWP reports an immediate syscall return,
2068 followed by the SIGSTOP. Skip seeing that "return" using
2069 PTRACE_CONT directly, and let stop_wait_callback collect the
2070 SIGSTOP. Later when the thread is resumed, a new syscall
2071 entry event. If we didn't do this (and returned 0), we'd
2072 leave a syscall entry pending, and our caller, by using
2073 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2074 itself. Later, when the user re-resumes this LWP, we'd see
2075 another syscall entry event and we'd mistake it for a return.
2076
2077 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2078 (leaving immediately with LWP->signalled set, without issuing
2079 a PTRACE_CONT), it would still be problematic to leave this
2080 syscall enter pending, as later when the thread is resumed,
2081 it would then see the same syscall exit mentioned above,
2082 followed by the delayed SIGSTOP, while the syscall didn't
2083 actually get to execute. It seems it would be even more
2084 confusing to the user. */
2085
2086 if (debug_linux_nat)
2087 fprintf_unfiltered (gdb_stdlog,
2088 "LHST: ignoring syscall %d "
2089 "for LWP %ld (stopping threads), "
2090 "resuming with PTRACE_CONT for SIGSTOP\n",
2091 syscall_number,
2092 GET_LWP (lp->ptid));
2093
2094 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2095 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2096 return 1;
2097 }
2098
2099 if (catch_syscall_enabled ())
2100 {
2101 /* Always update the entry/return state, even if this particular
2102 syscall isn't interesting to the core now. In async mode,
2103 the user could install a new catchpoint for this syscall
2104 between syscall enter/return, and we'll need to know to
2105 report a syscall return if that happens. */
2106 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2107 ? TARGET_WAITKIND_SYSCALL_RETURN
2108 : TARGET_WAITKIND_SYSCALL_ENTRY);
2109
2110 if (catching_syscall_number (syscall_number))
2111 {
2112 /* Alright, an event to report. */
2113 ourstatus->kind = lp->syscall_state;
2114 ourstatus->value.syscall_number = syscall_number;
2115
2116 if (debug_linux_nat)
2117 fprintf_unfiltered (gdb_stdlog,
2118 "LHST: stopping for %s of syscall %d"
2119 " for LWP %ld\n",
2120 lp->syscall_state
2121 == TARGET_WAITKIND_SYSCALL_ENTRY
2122 ? "entry" : "return",
2123 syscall_number,
2124 GET_LWP (lp->ptid));
2125 return 0;
2126 }
2127
2128 if (debug_linux_nat)
2129 fprintf_unfiltered (gdb_stdlog,
2130 "LHST: ignoring %s of syscall %d "
2131 "for LWP %ld\n",
2132 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2133 ? "entry" : "return",
2134 syscall_number,
2135 GET_LWP (lp->ptid));
2136 }
2137 else
2138 {
2139 /* If we had been syscall tracing, and hence used PT_SYSCALL
2140 before on this LWP, it could happen that the user removes all
2141 syscall catchpoints before we get to process this event.
2142 There are two noteworthy issues here:
2143
2144 - When stopped at a syscall entry event, resuming with
2145 PT_STEP still resumes executing the syscall and reports a
2146 syscall return.
2147
2148 - Only PT_SYSCALL catches syscall enters. If we last
2149 single-stepped this thread, then this event can't be a
2150 syscall enter. If we last single-stepped this thread, this
2151 has to be a syscall exit.
2152
2153 The points above mean that the next resume, be it PT_STEP or
2154 PT_CONTINUE, can not trigger a syscall trace event. */
2155 if (debug_linux_nat)
2156 fprintf_unfiltered (gdb_stdlog,
2157 "LHST: caught syscall event "
2158 "with no syscall catchpoints."
2159 " %d for LWP %ld, ignoring\n",
2160 syscall_number,
2161 GET_LWP (lp->ptid));
2162 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2163 }
2164
2165 /* The core isn't interested in this event. For efficiency, avoid
2166 stopping all threads only to have the core resume them all again.
2167 Since we're not stopping threads, if we're still syscall tracing
2168 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2169 subsequent syscall. Simply resume using the inf-ptrace layer,
2170 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2171
2172 /* Note that gdbarch_get_syscall_number may access registers, hence
2173 fill a regcache. */
2174 registers_changed ();
2175 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2176 lp->step, TARGET_SIGNAL_0);
2177 return 1;
2178 }
2179
2180 /* Handle a GNU/Linux extended wait response. If we see a clone
2181 event, we need to add the new LWP to our list (and not report the
2182 trap to higher layers). This function returns non-zero if the
2183 event should be ignored and we should wait again. If STOPPING is
2184 true, the new LWP remains stopped, otherwise it is continued. */
2185
2186 static int
2187 linux_handle_extended_wait (struct lwp_info *lp, int status,
2188 int stopping)
2189 {
2190 int pid = GET_LWP (lp->ptid);
2191 struct target_waitstatus *ourstatus = &lp->waitstatus;
2192 int event = status >> 16;
2193
2194 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2195 || event == PTRACE_EVENT_CLONE)
2196 {
2197 unsigned long new_pid;
2198 int ret;
2199
2200 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2201
2202 /* If we haven't already seen the new PID stop, wait for it now. */
2203 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2204 {
2205 /* The new child has a pending SIGSTOP. We can't affect it until it
2206 hits the SIGSTOP, but we're already attached. */
2207 ret = my_waitpid (new_pid, &status,
2208 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2209 if (ret == -1)
2210 perror_with_name (_("waiting for new child"));
2211 else if (ret != new_pid)
2212 internal_error (__FILE__, __LINE__,
2213 _("wait returned unexpected PID %d"), ret);
2214 else if (!WIFSTOPPED (status))
2215 internal_error (__FILE__, __LINE__,
2216 _("wait returned unexpected status 0x%x"), status);
2217 }
2218
2219 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2220
2221 if (event == PTRACE_EVENT_FORK
2222 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2223 {
2224 /* Handle checkpointing by linux-fork.c here as a special
2225 case. We don't want the follow-fork-mode or 'catch fork'
2226 to interfere with this. */
2227
2228 /* This won't actually modify the breakpoint list, but will
2229 physically remove the breakpoints from the child. */
2230 detach_breakpoints (new_pid);
2231
2232 /* Retain child fork in ptrace (stopped) state. */
2233 if (!find_fork_pid (new_pid))
2234 add_fork (new_pid);
2235
2236 /* Report as spurious, so that infrun doesn't want to follow
2237 this fork. We're actually doing an infcall in
2238 linux-fork.c. */
2239 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2240 linux_enable_event_reporting (pid_to_ptid (new_pid));
2241
2242 /* Report the stop to the core. */
2243 return 0;
2244 }
2245
2246 if (event == PTRACE_EVENT_FORK)
2247 ourstatus->kind = TARGET_WAITKIND_FORKED;
2248 else if (event == PTRACE_EVENT_VFORK)
2249 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2250 else
2251 {
2252 struct lwp_info *new_lp;
2253
2254 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2255
2256 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2257 new_lp->cloned = 1;
2258 new_lp->stopped = 1;
2259
2260 if (WSTOPSIG (status) != SIGSTOP)
2261 {
2262 /* This can happen if someone starts sending signals to
2263 the new thread before it gets a chance to run, which
2264 have a lower number than SIGSTOP (e.g. SIGUSR1).
2265 This is an unlikely case, and harder to handle for
2266 fork / vfork than for clone, so we do not try - but
2267 we handle it for clone events here. We'll send
2268 the other signal on to the thread below. */
2269
2270 new_lp->signalled = 1;
2271 }
2272 else
2273 status = 0;
2274
2275 if (non_stop)
2276 {
2277 /* Add the new thread to GDB's lists as soon as possible
2278 so that:
2279
2280 1) the frontend doesn't have to wait for a stop to
2281 display them, and,
2282
2283 2) we tag it with the correct running state. */
2284
2285 /* If the thread_db layer is active, let it know about
2286 this new thread, and add it to GDB's list. */
2287 if (!thread_db_attach_lwp (new_lp->ptid))
2288 {
2289 /* We're not using thread_db. Add it to GDB's
2290 list. */
2291 target_post_attach (GET_LWP (new_lp->ptid));
2292 add_thread (new_lp->ptid);
2293 }
2294
2295 if (!stopping)
2296 {
2297 set_running (new_lp->ptid, 1);
2298 set_executing (new_lp->ptid, 1);
2299 }
2300 }
2301
2302 /* Note the need to use the low target ops to resume, to
2303 handle resuming with PT_SYSCALL if we have syscall
2304 catchpoints. */
2305 if (!stopping)
2306 {
2307 enum target_signal signo;
2308
2309 new_lp->stopped = 0;
2310 new_lp->resumed = 1;
2311 new_lp->last_resume_kind = resume_continue;
2312
2313 signo = (status
2314 ? target_signal_from_host (WSTOPSIG (status))
2315 : TARGET_SIGNAL_0);
2316
2317 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2318 0, signo);
2319 }
2320 else
2321 {
2322 if (status != 0)
2323 {
2324 /* We created NEW_LP so it cannot yet contain STATUS. */
2325 gdb_assert (new_lp->status == 0);
2326
2327 /* Save the wait status to report later. */
2328 if (debug_linux_nat)
2329 fprintf_unfiltered (gdb_stdlog,
2330 "LHEW: waitpid of new LWP %ld, "
2331 "saving status %s\n",
2332 (long) GET_LWP (new_lp->ptid),
2333 status_to_str (status));
2334 new_lp->status = status;
2335 }
2336 }
2337
2338 if (debug_linux_nat)
2339 fprintf_unfiltered (gdb_stdlog,
2340 "LHEW: Got clone event "
2341 "from LWP %ld, resuming\n",
2342 GET_LWP (lp->ptid));
2343 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2344 0, TARGET_SIGNAL_0);
2345
2346 return 1;
2347 }
2348
2349 return 0;
2350 }
2351
2352 if (event == PTRACE_EVENT_EXEC)
2353 {
2354 if (debug_linux_nat)
2355 fprintf_unfiltered (gdb_stdlog,
2356 "LHEW: Got exec event from LWP %ld\n",
2357 GET_LWP (lp->ptid));
2358
2359 ourstatus->kind = TARGET_WAITKIND_EXECD;
2360 ourstatus->value.execd_pathname
2361 = xstrdup (linux_child_pid_to_exec_file (pid));
2362
2363 return 0;
2364 }
2365
2366 if (event == PTRACE_EVENT_VFORK_DONE)
2367 {
2368 if (current_inferior ()->waiting_for_vfork_done)
2369 {
2370 if (debug_linux_nat)
2371 fprintf_unfiltered (gdb_stdlog,
2372 "LHEW: Got expected PTRACE_EVENT_"
2373 "VFORK_DONE from LWP %ld: stopping\n",
2374 GET_LWP (lp->ptid));
2375
2376 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2377 return 0;
2378 }
2379
2380 if (debug_linux_nat)
2381 fprintf_unfiltered (gdb_stdlog,
2382 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2383 "from LWP %ld: resuming\n",
2384 GET_LWP (lp->ptid));
2385 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2386 return 1;
2387 }
2388
2389 internal_error (__FILE__, __LINE__,
2390 _("unknown ptrace event %d"), event);
2391 }
2392
2393 /* Return non-zero if LWP is a zombie. */
2394
2395 static int
2396 linux_lwp_is_zombie (long lwp)
2397 {
2398 char buffer[MAXPATHLEN];
2399 FILE *procfile;
2400 int retval = 0;
2401
2402 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2403 procfile = fopen (buffer, "r");
2404 if (procfile == NULL)
2405 {
2406 warning (_("unable to open /proc file '%s'"), buffer);
2407 return 0;
2408 }
2409 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2410 if (strcmp (buffer, "State:\tZ (zombie)\n") == 0)
2411 {
2412 retval = 1;
2413 break;
2414 }
2415 fclose (procfile);
2416
2417 return retval;
2418 }
2419
2420 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2421 exited. */
2422
2423 static int
2424 wait_lwp (struct lwp_info *lp)
2425 {
2426 pid_t pid;
2427 int status = 0;
2428 int thread_dead = 0;
2429 sigset_t prev_mask;
2430
2431 gdb_assert (!lp->stopped);
2432 gdb_assert (lp->status == 0);
2433
2434 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2435 block_child_signals (&prev_mask);
2436
2437 for (;;)
2438 {
2439 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2440 was right and we should just call sigsuspend. */
2441
2442 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2443 if (pid == -1 && errno == ECHILD)
2444 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2445 if (pid == -1 && errno == ECHILD)
2446 {
2447 /* The thread has previously exited. We need to delete it
2448 now because, for some vendor 2.4 kernels with NPTL
2449 support backported, there won't be an exit event unless
2450 it is the main thread. 2.6 kernels will report an exit
2451 event for each thread that exits, as expected. */
2452 thread_dead = 1;
2453 if (debug_linux_nat)
2454 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2455 target_pid_to_str (lp->ptid));
2456 }
2457 if (pid != 0)
2458 break;
2459
2460 /* Bugs 10970, 12702.
2461 Thread group leader may have exited in which case we'll lock up in
2462 waitpid if there are other threads, even if they are all zombies too.
2463 Basically, we're not supposed to use waitpid this way.
2464 __WCLONE is not applicable for the leader so we can't use that.
2465 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2466 process; it gets ESRCH both for the zombie and for running processes.
2467
2468 As a workaround, check if we're waiting for the thread group leader and
2469 if it's a zombie, and avoid calling waitpid if it is.
2470
2471 This is racy, what if the tgl becomes a zombie right after we check?
2472 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2473 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2474
2475 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2476 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2477 {
2478 thread_dead = 1;
2479 if (debug_linux_nat)
2480 fprintf_unfiltered (gdb_stdlog,
2481 "WL: Thread group leader %s vanished.\n",
2482 target_pid_to_str (lp->ptid));
2483 break;
2484 }
2485
2486 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2487 get invoked despite our caller had them intentionally blocked by
2488 block_child_signals. This is sensitive only to the loop of
2489 linux_nat_wait_1 and there if we get called my_waitpid gets called
2490 again before it gets to sigsuspend so we can safely let the handlers
2491 get executed here. */
2492
2493 sigsuspend (&suspend_mask);
2494 }
2495
2496 restore_child_signals_mask (&prev_mask);
2497
2498 if (!thread_dead)
2499 {
2500 gdb_assert (pid == GET_LWP (lp->ptid));
2501
2502 if (debug_linux_nat)
2503 {
2504 fprintf_unfiltered (gdb_stdlog,
2505 "WL: waitpid %s received %s\n",
2506 target_pid_to_str (lp->ptid),
2507 status_to_str (status));
2508 }
2509
2510 /* Check if the thread has exited. */
2511 if (WIFEXITED (status) || WIFSIGNALED (status))
2512 {
2513 thread_dead = 1;
2514 if (debug_linux_nat)
2515 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2516 target_pid_to_str (lp->ptid));
2517 }
2518 }
2519
2520 if (thread_dead)
2521 {
2522 exit_lwp (lp);
2523 return 0;
2524 }
2525
2526 gdb_assert (WIFSTOPPED (status));
2527
2528 /* Handle GNU/Linux's syscall SIGTRAPs. */
2529 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2530 {
2531 /* No longer need the sysgood bit. The ptrace event ends up
2532 recorded in lp->waitstatus if we care for it. We can carry
2533 on handling the event like a regular SIGTRAP from here
2534 on. */
2535 status = W_STOPCODE (SIGTRAP);
2536 if (linux_handle_syscall_trap (lp, 1))
2537 return wait_lwp (lp);
2538 }
2539
2540 /* Handle GNU/Linux's extended waitstatus for trace events. */
2541 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2542 {
2543 if (debug_linux_nat)
2544 fprintf_unfiltered (gdb_stdlog,
2545 "WL: Handling extended status 0x%06x\n",
2546 status);
2547 if (linux_handle_extended_wait (lp, status, 1))
2548 return wait_lwp (lp);
2549 }
2550
2551 return status;
2552 }
2553
2554 /* Save the most recent siginfo for LP. This is currently only called
2555 for SIGTRAP; some ports use the si_addr field for
2556 target_stopped_data_address. In the future, it may also be used to
2557 restore the siginfo of requeued signals. */
2558
2559 static void
2560 save_siginfo (struct lwp_info *lp)
2561 {
2562 errno = 0;
2563 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2564 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2565
2566 if (errno != 0)
2567 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2568 }
2569
2570 /* Send a SIGSTOP to LP. */
2571
2572 static int
2573 stop_callback (struct lwp_info *lp, void *data)
2574 {
2575 if (!lp->stopped && !lp->signalled)
2576 {
2577 int ret;
2578
2579 if (debug_linux_nat)
2580 {
2581 fprintf_unfiltered (gdb_stdlog,
2582 "SC: kill %s **<SIGSTOP>**\n",
2583 target_pid_to_str (lp->ptid));
2584 }
2585 errno = 0;
2586 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2587 if (debug_linux_nat)
2588 {
2589 fprintf_unfiltered (gdb_stdlog,
2590 "SC: lwp kill %d %s\n",
2591 ret,
2592 errno ? safe_strerror (errno) : "ERRNO-OK");
2593 }
2594
2595 lp->signalled = 1;
2596 gdb_assert (lp->status == 0);
2597 }
2598
2599 return 0;
2600 }
2601
2602 /* Return non-zero if LWP PID has a pending SIGINT. */
2603
2604 static int
2605 linux_nat_has_pending_sigint (int pid)
2606 {
2607 sigset_t pending, blocked, ignored;
2608
2609 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2610
2611 if (sigismember (&pending, SIGINT)
2612 && !sigismember (&ignored, SIGINT))
2613 return 1;
2614
2615 return 0;
2616 }
2617
2618 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2619
2620 static int
2621 set_ignore_sigint (struct lwp_info *lp, void *data)
2622 {
2623 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2624 flag to consume the next one. */
2625 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2626 && WSTOPSIG (lp->status) == SIGINT)
2627 lp->status = 0;
2628 else
2629 lp->ignore_sigint = 1;
2630
2631 return 0;
2632 }
2633
2634 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2635 This function is called after we know the LWP has stopped; if the LWP
2636 stopped before the expected SIGINT was delivered, then it will never have
2637 arrived. Also, if the signal was delivered to a shared queue and consumed
2638 by a different thread, it will never be delivered to this LWP. */
2639
2640 static void
2641 maybe_clear_ignore_sigint (struct lwp_info *lp)
2642 {
2643 if (!lp->ignore_sigint)
2644 return;
2645
2646 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2647 {
2648 if (debug_linux_nat)
2649 fprintf_unfiltered (gdb_stdlog,
2650 "MCIS: Clearing bogus flag for %s\n",
2651 target_pid_to_str (lp->ptid));
2652 lp->ignore_sigint = 0;
2653 }
2654 }
2655
2656 /* Fetch the possible triggered data watchpoint info and store it in
2657 LP.
2658
2659 On some archs, like x86, that use debug registers to set
2660 watchpoints, it's possible that the way to know which watched
2661 address trapped, is to check the register that is used to select
2662 which address to watch. Problem is, between setting the watchpoint
2663 and reading back which data address trapped, the user may change
2664 the set of watchpoints, and, as a consequence, GDB changes the
2665 debug registers in the inferior. To avoid reading back a stale
2666 stopped-data-address when that happens, we cache in LP the fact
2667 that a watchpoint trapped, and the corresponding data address, as
2668 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2669 registers meanwhile, we have the cached data we can rely on. */
2670
2671 static void
2672 save_sigtrap (struct lwp_info *lp)
2673 {
2674 struct cleanup *old_chain;
2675
2676 if (linux_ops->to_stopped_by_watchpoint == NULL)
2677 {
2678 lp->stopped_by_watchpoint = 0;
2679 return;
2680 }
2681
2682 old_chain = save_inferior_ptid ();
2683 inferior_ptid = lp->ptid;
2684
2685 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2686
2687 if (lp->stopped_by_watchpoint)
2688 {
2689 if (linux_ops->to_stopped_data_address != NULL)
2690 lp->stopped_data_address_p =
2691 linux_ops->to_stopped_data_address (&current_target,
2692 &lp->stopped_data_address);
2693 else
2694 lp->stopped_data_address_p = 0;
2695 }
2696
2697 do_cleanups (old_chain);
2698 }
2699
2700 /* See save_sigtrap. */
2701
2702 static int
2703 linux_nat_stopped_by_watchpoint (void)
2704 {
2705 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2706
2707 gdb_assert (lp != NULL);
2708
2709 return lp->stopped_by_watchpoint;
2710 }
2711
2712 static int
2713 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2714 {
2715 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2716
2717 gdb_assert (lp != NULL);
2718
2719 *addr_p = lp->stopped_data_address;
2720
2721 return lp->stopped_data_address_p;
2722 }
2723
2724 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2725
2726 static int
2727 sigtrap_is_event (int status)
2728 {
2729 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2730 }
2731
2732 /* SIGTRAP-like events recognizer. */
2733
2734 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2735
2736 /* Check for SIGTRAP-like events in LP. */
2737
2738 static int
2739 linux_nat_lp_status_is_event (struct lwp_info *lp)
2740 {
2741 /* We check for lp->waitstatus in addition to lp->status, because we can
2742 have pending process exits recorded in lp->status
2743 and W_EXITCODE(0,0) == 0. We should probably have an additional
2744 lp->status_p flag. */
2745
2746 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2747 && linux_nat_status_is_event (lp->status));
2748 }
2749
2750 /* Set alternative SIGTRAP-like events recognizer. If
2751 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2752 applied. */
2753
2754 void
2755 linux_nat_set_status_is_event (struct target_ops *t,
2756 int (*status_is_event) (int status))
2757 {
2758 linux_nat_status_is_event = status_is_event;
2759 }
2760
2761 /* Wait until LP is stopped. */
2762
2763 static int
2764 stop_wait_callback (struct lwp_info *lp, void *data)
2765 {
2766 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2767
2768 /* If this is a vfork parent, bail out, it is not going to report
2769 any SIGSTOP until the vfork is done with. */
2770 if (inf->vfork_child != NULL)
2771 return 0;
2772
2773 if (!lp->stopped)
2774 {
2775 int status;
2776
2777 status = wait_lwp (lp);
2778 if (status == 0)
2779 return 0;
2780
2781 if (lp->ignore_sigint && WIFSTOPPED (status)
2782 && WSTOPSIG (status) == SIGINT)
2783 {
2784 lp->ignore_sigint = 0;
2785
2786 errno = 0;
2787 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2788 if (debug_linux_nat)
2789 fprintf_unfiltered (gdb_stdlog,
2790 "PTRACE_CONT %s, 0, 0 (%s) "
2791 "(discarding SIGINT)\n",
2792 target_pid_to_str (lp->ptid),
2793 errno ? safe_strerror (errno) : "OK");
2794
2795 return stop_wait_callback (lp, NULL);
2796 }
2797
2798 maybe_clear_ignore_sigint (lp);
2799
2800 if (WSTOPSIG (status) != SIGSTOP)
2801 {
2802 if (linux_nat_status_is_event (status))
2803 {
2804 /* If a LWP other than the LWP that we're reporting an
2805 event for has hit a GDB breakpoint (as opposed to
2806 some random trap signal), then just arrange for it to
2807 hit it again later. We don't keep the SIGTRAP status
2808 and don't forward the SIGTRAP signal to the LWP. We
2809 will handle the current event, eventually we will
2810 resume all LWPs, and this one will get its breakpoint
2811 trap again.
2812
2813 If we do not do this, then we run the risk that the
2814 user will delete or disable the breakpoint, but the
2815 thread will have already tripped on it. */
2816
2817 /* Save the trap's siginfo in case we need it later. */
2818 save_siginfo (lp);
2819
2820 save_sigtrap (lp);
2821
2822 /* Now resume this LWP and get the SIGSTOP event. */
2823 errno = 0;
2824 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2825 if (debug_linux_nat)
2826 {
2827 fprintf_unfiltered (gdb_stdlog,
2828 "PTRACE_CONT %s, 0, 0 (%s)\n",
2829 target_pid_to_str (lp->ptid),
2830 errno ? safe_strerror (errno) : "OK");
2831
2832 fprintf_unfiltered (gdb_stdlog,
2833 "SWC: Candidate SIGTRAP event in %s\n",
2834 target_pid_to_str (lp->ptid));
2835 }
2836 /* Hold this event/waitstatus while we check to see if
2837 there are any more (we still want to get that SIGSTOP). */
2838 stop_wait_callback (lp, NULL);
2839
2840 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2841 there's another event, throw it back into the
2842 queue. */
2843 if (lp->status)
2844 {
2845 if (debug_linux_nat)
2846 fprintf_unfiltered (gdb_stdlog,
2847 "SWC: kill %s, %s\n",
2848 target_pid_to_str (lp->ptid),
2849 status_to_str ((int) status));
2850 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2851 }
2852
2853 /* Save the sigtrap event. */
2854 lp->status = status;
2855 return 0;
2856 }
2857 else
2858 {
2859 /* The thread was stopped with a signal other than
2860 SIGSTOP, and didn't accidentally trip a breakpoint. */
2861
2862 if (debug_linux_nat)
2863 {
2864 fprintf_unfiltered (gdb_stdlog,
2865 "SWC: Pending event %s in %s\n",
2866 status_to_str ((int) status),
2867 target_pid_to_str (lp->ptid));
2868 }
2869 /* Now resume this LWP and get the SIGSTOP event. */
2870 errno = 0;
2871 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2872 if (debug_linux_nat)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2875 target_pid_to_str (lp->ptid),
2876 errno ? safe_strerror (errno) : "OK");
2877
2878 /* Hold this event/waitstatus while we check to see if
2879 there are any more (we still want to get that SIGSTOP). */
2880 stop_wait_callback (lp, NULL);
2881
2882 /* If the lp->status field is still empty, use it to
2883 hold this event. If not, then this event must be
2884 returned to the event queue of the LWP. */
2885 if (lp->status)
2886 {
2887 if (debug_linux_nat)
2888 {
2889 fprintf_unfiltered (gdb_stdlog,
2890 "SWC: kill %s, %s\n",
2891 target_pid_to_str (lp->ptid),
2892 status_to_str ((int) status));
2893 }
2894 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2895 }
2896 else
2897 lp->status = status;
2898 return 0;
2899 }
2900 }
2901 else
2902 {
2903 /* We caught the SIGSTOP that we intended to catch, so
2904 there's no SIGSTOP pending. */
2905 lp->stopped = 1;
2906 lp->signalled = 0;
2907 }
2908 }
2909
2910 return 0;
2911 }
2912
2913 /* Return non-zero if LP has a wait status pending. */
2914
2915 static int
2916 status_callback (struct lwp_info *lp, void *data)
2917 {
2918 /* Only report a pending wait status if we pretend that this has
2919 indeed been resumed. */
2920 if (!lp->resumed)
2921 return 0;
2922
2923 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2924 {
2925 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2926 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2927 0', so a clean process exit can not be stored pending in
2928 lp->status, it is indistinguishable from
2929 no-pending-status. */
2930 return 1;
2931 }
2932
2933 if (lp->status != 0)
2934 return 1;
2935
2936 return 0;
2937 }
2938
2939 /* Return non-zero if LP isn't stopped. */
2940
2941 static int
2942 running_callback (struct lwp_info *lp, void *data)
2943 {
2944 return (!lp->stopped
2945 || ((lp->status != 0
2946 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2947 && lp->resumed));
2948 }
2949
2950 /* Count the LWP's that have had events. */
2951
2952 static int
2953 count_events_callback (struct lwp_info *lp, void *data)
2954 {
2955 int *count = data;
2956
2957 gdb_assert (count != NULL);
2958
2959 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2960 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2961 (*count)++;
2962
2963 return 0;
2964 }
2965
2966 /* Select the LWP (if any) that is currently being single-stepped. */
2967
2968 static int
2969 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2970 {
2971 if (lp->last_resume_kind == resume_step
2972 && lp->status != 0)
2973 return 1;
2974 else
2975 return 0;
2976 }
2977
2978 /* Select the Nth LWP that has had a SIGTRAP event. */
2979
2980 static int
2981 select_event_lwp_callback (struct lwp_info *lp, void *data)
2982 {
2983 int *selector = data;
2984
2985 gdb_assert (selector != NULL);
2986
2987 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2988 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2989 if ((*selector)-- == 0)
2990 return 1;
2991
2992 return 0;
2993 }
2994
2995 static int
2996 cancel_breakpoint (struct lwp_info *lp)
2997 {
2998 /* Arrange for a breakpoint to be hit again later. We don't keep
2999 the SIGTRAP status and don't forward the SIGTRAP signal to the
3000 LWP. We will handle the current event, eventually we will resume
3001 this LWP, and this breakpoint will trap again.
3002
3003 If we do not do this, then we run the risk that the user will
3004 delete or disable the breakpoint, but the LWP will have already
3005 tripped on it. */
3006
3007 struct regcache *regcache = get_thread_regcache (lp->ptid);
3008 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3009 CORE_ADDR pc;
3010
3011 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3012 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3013 {
3014 if (debug_linux_nat)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "CB: Push back breakpoint for %s\n",
3017 target_pid_to_str (lp->ptid));
3018
3019 /* Back up the PC if necessary. */
3020 if (gdbarch_decr_pc_after_break (gdbarch))
3021 regcache_write_pc (regcache, pc);
3022
3023 return 1;
3024 }
3025 return 0;
3026 }
3027
3028 static int
3029 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3030 {
3031 struct lwp_info *event_lp = data;
3032
3033 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3034 if (lp == event_lp)
3035 return 0;
3036
3037 /* If a LWP other than the LWP that we're reporting an event for has
3038 hit a GDB breakpoint (as opposed to some random trap signal),
3039 then just arrange for it to hit it again later. We don't keep
3040 the SIGTRAP status and don't forward the SIGTRAP signal to the
3041 LWP. We will handle the current event, eventually we will resume
3042 all LWPs, and this one will get its breakpoint trap again.
3043
3044 If we do not do this, then we run the risk that the user will
3045 delete or disable the breakpoint, but the LWP will have already
3046 tripped on it. */
3047
3048 if (linux_nat_lp_status_is_event (lp)
3049 && cancel_breakpoint (lp))
3050 /* Throw away the SIGTRAP. */
3051 lp->status = 0;
3052
3053 return 0;
3054 }
3055
3056 /* Select one LWP out of those that have events pending. */
3057
3058 static void
3059 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3060 {
3061 int num_events = 0;
3062 int random_selector;
3063 struct lwp_info *event_lp;
3064
3065 /* Record the wait status for the original LWP. */
3066 (*orig_lp)->status = *status;
3067
3068 /* Give preference to any LWP that is being single-stepped. */
3069 event_lp = iterate_over_lwps (filter,
3070 select_singlestep_lwp_callback, NULL);
3071 if (event_lp != NULL)
3072 {
3073 if (debug_linux_nat)
3074 fprintf_unfiltered (gdb_stdlog,
3075 "SEL: Select single-step %s\n",
3076 target_pid_to_str (event_lp->ptid));
3077 }
3078 else
3079 {
3080 /* No single-stepping LWP. Select one at random, out of those
3081 which have had SIGTRAP events. */
3082
3083 /* First see how many SIGTRAP events we have. */
3084 iterate_over_lwps (filter, count_events_callback, &num_events);
3085
3086 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3087 random_selector = (int)
3088 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3089
3090 if (debug_linux_nat && num_events > 1)
3091 fprintf_unfiltered (gdb_stdlog,
3092 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3093 num_events, random_selector);
3094
3095 event_lp = iterate_over_lwps (filter,
3096 select_event_lwp_callback,
3097 &random_selector);
3098 }
3099
3100 if (event_lp != NULL)
3101 {
3102 /* Switch the event LWP. */
3103 *orig_lp = event_lp;
3104 *status = event_lp->status;
3105 }
3106
3107 /* Flush the wait status for the event LWP. */
3108 (*orig_lp)->status = 0;
3109 }
3110
3111 /* Return non-zero if LP has been resumed. */
3112
3113 static int
3114 resumed_callback (struct lwp_info *lp, void *data)
3115 {
3116 return lp->resumed;
3117 }
3118
3119 /* Stop an active thread, verify it still exists, then resume it. */
3120
3121 static int
3122 stop_and_resume_callback (struct lwp_info *lp, void *data)
3123 {
3124 if (!lp->stopped)
3125 {
3126 enum resume_kind last_resume_kind = lp->last_resume_kind;
3127 ptid_t ptid = lp->ptid;
3128
3129 stop_callback (lp, NULL);
3130 stop_wait_callback (lp, NULL);
3131
3132 /* Resume if the lwp still exists, and the core wanted it
3133 running. */
3134 if (last_resume_kind != resume_stop)
3135 {
3136 lp = find_lwp_pid (ptid);
3137 if (lp)
3138 resume_lwp (lp, lp->step);
3139 }
3140 }
3141 return 0;
3142 }
3143
3144 /* Check if we should go on and pass this event to common code.
3145 Return the affected lwp if we are, or NULL otherwise. */
3146 static struct lwp_info *
3147 linux_nat_filter_event (int lwpid, int status, int options)
3148 {
3149 struct lwp_info *lp;
3150
3151 lp = find_lwp_pid (pid_to_ptid (lwpid));
3152
3153 /* Check for stop events reported by a process we didn't already
3154 know about - anything not already in our LWP list.
3155
3156 If we're expecting to receive stopped processes after
3157 fork, vfork, and clone events, then we'll just add the
3158 new one to our list and go back to waiting for the event
3159 to be reported - the stopped process might be returned
3160 from waitpid before or after the event is. */
3161 if (WIFSTOPPED (status) && !lp)
3162 {
3163 add_to_pid_list (&stopped_pids, lwpid, status);
3164 return NULL;
3165 }
3166
3167 /* Make sure we don't report an event for the exit of an LWP not in
3168 our list, i.e. not part of the current process. This can happen
3169 if we detach from a program we originally forked and then it
3170 exits. */
3171 if (!WIFSTOPPED (status) && !lp)
3172 return NULL;
3173
3174 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3175 CLONE_PTRACE processes which do not use the thread library -
3176 otherwise we wouldn't find the new LWP this way. That doesn't
3177 currently work, and the following code is currently unreachable
3178 due to the two blocks above. If it's fixed some day, this code
3179 should be broken out into a function so that we can also pick up
3180 LWPs from the new interface. */
3181 if (!lp)
3182 {
3183 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3184 if (options & __WCLONE)
3185 lp->cloned = 1;
3186
3187 gdb_assert (WIFSTOPPED (status)
3188 && WSTOPSIG (status) == SIGSTOP);
3189 lp->signalled = 1;
3190
3191 if (!in_thread_list (inferior_ptid))
3192 {
3193 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3194 GET_PID (inferior_ptid));
3195 add_thread (inferior_ptid);
3196 }
3197
3198 add_thread (lp->ptid);
3199 }
3200
3201 /* Handle GNU/Linux's syscall SIGTRAPs. */
3202 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3203 {
3204 /* No longer need the sysgood bit. The ptrace event ends up
3205 recorded in lp->waitstatus if we care for it. We can carry
3206 on handling the event like a regular SIGTRAP from here
3207 on. */
3208 status = W_STOPCODE (SIGTRAP);
3209 if (linux_handle_syscall_trap (lp, 0))
3210 return NULL;
3211 }
3212
3213 /* Handle GNU/Linux's extended waitstatus for trace events. */
3214 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3215 {
3216 if (debug_linux_nat)
3217 fprintf_unfiltered (gdb_stdlog,
3218 "LLW: Handling extended status 0x%06x\n",
3219 status);
3220 if (linux_handle_extended_wait (lp, status, 0))
3221 return NULL;
3222 }
3223
3224 if (linux_nat_status_is_event (status))
3225 {
3226 /* Save the trap's siginfo in case we need it later. */
3227 save_siginfo (lp);
3228
3229 save_sigtrap (lp);
3230 }
3231
3232 /* Check if the thread has exited. */
3233 if ((WIFEXITED (status) || WIFSIGNALED (status))
3234 && num_lwps (GET_PID (lp->ptid)) > 1)
3235 {
3236 /* If this is the main thread, we must stop all threads and verify
3237 if they are still alive. This is because in the nptl thread model
3238 on Linux 2.4, there is no signal issued for exiting LWPs
3239 other than the main thread. We only get the main thread exit
3240 signal once all child threads have already exited. If we
3241 stop all the threads and use the stop_wait_callback to check
3242 if they have exited we can determine whether this signal
3243 should be ignored or whether it means the end of the debugged
3244 application, regardless of which threading model is being
3245 used. */
3246 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3247 {
3248 lp->stopped = 1;
3249 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3250 stop_and_resume_callback, NULL);
3251 }
3252
3253 if (debug_linux_nat)
3254 fprintf_unfiltered (gdb_stdlog,
3255 "LLW: %s exited.\n",
3256 target_pid_to_str (lp->ptid));
3257
3258 if (num_lwps (GET_PID (lp->ptid)) > 1)
3259 {
3260 /* If there is at least one more LWP, then the exit signal
3261 was not the end of the debugged application and should be
3262 ignored. */
3263 exit_lwp (lp);
3264 return NULL;
3265 }
3266 }
3267
3268 /* Check if the current LWP has previously exited. In the nptl
3269 thread model, LWPs other than the main thread do not issue
3270 signals when they exit so we must check whenever the thread has
3271 stopped. A similar check is made in stop_wait_callback(). */
3272 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3273 {
3274 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3275
3276 if (debug_linux_nat)
3277 fprintf_unfiltered (gdb_stdlog,
3278 "LLW: %s exited.\n",
3279 target_pid_to_str (lp->ptid));
3280
3281 exit_lwp (lp);
3282
3283 /* Make sure there is at least one thread running. */
3284 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3285
3286 /* Discard the event. */
3287 return NULL;
3288 }
3289
3290 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3291 an attempt to stop an LWP. */
3292 if (lp->signalled
3293 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3294 {
3295 if (debug_linux_nat)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "LLW: Delayed SIGSTOP caught for %s.\n",
3298 target_pid_to_str (lp->ptid));
3299
3300 lp->signalled = 0;
3301
3302 if (lp->last_resume_kind != resume_stop)
3303 {
3304 /* This is a delayed SIGSTOP. */
3305
3306 registers_changed ();
3307
3308 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3309 lp->step, TARGET_SIGNAL_0);
3310 if (debug_linux_nat)
3311 fprintf_unfiltered (gdb_stdlog,
3312 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3313 lp->step ?
3314 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3315 target_pid_to_str (lp->ptid));
3316
3317 lp->stopped = 0;
3318 gdb_assert (lp->resumed);
3319
3320 /* Discard the event. */
3321 return NULL;
3322 }
3323 }
3324
3325 /* Make sure we don't report a SIGINT that we have already displayed
3326 for another thread. */
3327 if (lp->ignore_sigint
3328 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3329 {
3330 if (debug_linux_nat)
3331 fprintf_unfiltered (gdb_stdlog,
3332 "LLW: Delayed SIGINT caught for %s.\n",
3333 target_pid_to_str (lp->ptid));
3334
3335 /* This is a delayed SIGINT. */
3336 lp->ignore_sigint = 0;
3337
3338 registers_changed ();
3339 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3340 lp->step, TARGET_SIGNAL_0);
3341 if (debug_linux_nat)
3342 fprintf_unfiltered (gdb_stdlog,
3343 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3344 lp->step ?
3345 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3346 target_pid_to_str (lp->ptid));
3347
3348 lp->stopped = 0;
3349 gdb_assert (lp->resumed);
3350
3351 /* Discard the event. */
3352 return NULL;
3353 }
3354
3355 /* An interesting event. */
3356 gdb_assert (lp);
3357 lp->status = status;
3358 return lp;
3359 }
3360
3361 static ptid_t
3362 linux_nat_wait_1 (struct target_ops *ops,
3363 ptid_t ptid, struct target_waitstatus *ourstatus,
3364 int target_options)
3365 {
3366 static sigset_t prev_mask;
3367 struct lwp_info *lp = NULL;
3368 int options = 0;
3369 int status = 0;
3370 pid_t pid;
3371
3372 if (debug_linux_nat)
3373 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3374
3375 /* The first time we get here after starting a new inferior, we may
3376 not have added it to the LWP list yet - this is the earliest
3377 moment at which we know its PID. */
3378 if (ptid_is_pid (inferior_ptid))
3379 {
3380 /* Upgrade the main thread's ptid. */
3381 thread_change_ptid (inferior_ptid,
3382 BUILD_LWP (GET_PID (inferior_ptid),
3383 GET_PID (inferior_ptid)));
3384
3385 lp = add_lwp (inferior_ptid);
3386 lp->resumed = 1;
3387 }
3388
3389 /* Make sure SIGCHLD is blocked. */
3390 block_child_signals (&prev_mask);
3391
3392 if (ptid_equal (ptid, minus_one_ptid))
3393 pid = -1;
3394 else if (ptid_is_pid (ptid))
3395 /* A request to wait for a specific tgid. This is not possible
3396 with waitpid, so instead, we wait for any child, and leave
3397 children we're not interested in right now with a pending
3398 status to report later. */
3399 pid = -1;
3400 else
3401 pid = GET_LWP (ptid);
3402
3403 retry:
3404 lp = NULL;
3405 status = 0;
3406
3407 /* Make sure that of those LWPs we want to get an event from, there
3408 is at least one LWP that has been resumed. If there's none, just
3409 bail out. The core may just be flushing asynchronously all
3410 events. */
3411 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3412 {
3413 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3414
3415 if (debug_linux_nat)
3416 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3417
3418 restore_child_signals_mask (&prev_mask);
3419 return minus_one_ptid;
3420 }
3421
3422 /* First check if there is a LWP with a wait status pending. */
3423 if (pid == -1)
3424 {
3425 /* Any LWP that's been resumed will do. */
3426 lp = iterate_over_lwps (ptid, status_callback, NULL);
3427 if (lp)
3428 {
3429 if (debug_linux_nat && lp->status)
3430 fprintf_unfiltered (gdb_stdlog,
3431 "LLW: Using pending wait status %s for %s.\n",
3432 status_to_str (lp->status),
3433 target_pid_to_str (lp->ptid));
3434 }
3435
3436 /* But if we don't find one, we'll have to wait, and check both
3437 cloned and uncloned processes. We start with the cloned
3438 processes. */
3439 options = __WCLONE | WNOHANG;
3440 }
3441 else if (is_lwp (ptid))
3442 {
3443 if (debug_linux_nat)
3444 fprintf_unfiltered (gdb_stdlog,
3445 "LLW: Waiting for specific LWP %s.\n",
3446 target_pid_to_str (ptid));
3447
3448 /* We have a specific LWP to check. */
3449 lp = find_lwp_pid (ptid);
3450 gdb_assert (lp);
3451
3452 if (debug_linux_nat && lp->status)
3453 fprintf_unfiltered (gdb_stdlog,
3454 "LLW: Using pending wait status %s for %s.\n",
3455 status_to_str (lp->status),
3456 target_pid_to_str (lp->ptid));
3457
3458 /* If we have to wait, take into account whether PID is a cloned
3459 process or not. And we have to convert it to something that
3460 the layer beneath us can understand. */
3461 options = lp->cloned ? __WCLONE : 0;
3462 pid = GET_LWP (ptid);
3463
3464 /* We check for lp->waitstatus in addition to lp->status,
3465 because we can have pending process exits recorded in
3466 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3467 an additional lp->status_p flag. */
3468 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3469 lp = NULL;
3470 }
3471
3472 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3473 {
3474 /* A pending SIGSTOP may interfere with the normal stream of
3475 events. In a typical case where interference is a problem,
3476 we have a SIGSTOP signal pending for LWP A while
3477 single-stepping it, encounter an event in LWP B, and take the
3478 pending SIGSTOP while trying to stop LWP A. After processing
3479 the event in LWP B, LWP A is continued, and we'll never see
3480 the SIGTRAP associated with the last time we were
3481 single-stepping LWP A. */
3482
3483 /* Resume the thread. It should halt immediately returning the
3484 pending SIGSTOP. */
3485 registers_changed ();
3486 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3487 lp->step, TARGET_SIGNAL_0);
3488 if (debug_linux_nat)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3491 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3492 target_pid_to_str (lp->ptid));
3493 lp->stopped = 0;
3494 gdb_assert (lp->resumed);
3495
3496 /* Catch the pending SIGSTOP. */
3497 status = lp->status;
3498 lp->status = 0;
3499
3500 stop_wait_callback (lp, NULL);
3501
3502 /* If the lp->status field isn't empty, we caught another signal
3503 while flushing the SIGSTOP. Return it back to the event
3504 queue of the LWP, as we already have an event to handle. */
3505 if (lp->status)
3506 {
3507 if (debug_linux_nat)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "LLW: kill %s, %s\n",
3510 target_pid_to_str (lp->ptid),
3511 status_to_str (lp->status));
3512 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3513 }
3514
3515 lp->status = status;
3516 }
3517
3518 if (!target_can_async_p ())
3519 {
3520 /* Causes SIGINT to be passed on to the attached process. */
3521 set_sigint_trap ();
3522 }
3523
3524 /* Translate generic target_wait options into waitpid options. */
3525 if (target_options & TARGET_WNOHANG)
3526 options |= WNOHANG;
3527
3528 while (lp == NULL)
3529 {
3530 pid_t lwpid;
3531
3532 lwpid = my_waitpid (pid, &status, options);
3533
3534 if (lwpid > 0)
3535 {
3536 gdb_assert (pid == -1 || lwpid == pid);
3537
3538 if (debug_linux_nat)
3539 {
3540 fprintf_unfiltered (gdb_stdlog,
3541 "LLW: waitpid %ld received %s\n",
3542 (long) lwpid, status_to_str (status));
3543 }
3544
3545 lp = linux_nat_filter_event (lwpid, status, options);
3546
3547 /* STATUS is now no longer valid, use LP->STATUS instead. */
3548 status = 0;
3549
3550 if (lp
3551 && ptid_is_pid (ptid)
3552 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3553 {
3554 gdb_assert (lp->resumed);
3555
3556 if (debug_linux_nat)
3557 fprintf (stderr,
3558 "LWP %ld got an event %06x, leaving pending.\n",
3559 ptid_get_lwp (lp->ptid), lp->status);
3560
3561 if (WIFSTOPPED (lp->status))
3562 {
3563 if (WSTOPSIG (lp->status) != SIGSTOP)
3564 {
3565 /* Cancel breakpoint hits. The breakpoint may
3566 be removed before we fetch events from this
3567 process to report to the core. It is best
3568 not to assume the moribund breakpoints
3569 heuristic always handles these cases --- it
3570 could be too many events go through to the
3571 core before this one is handled. All-stop
3572 always cancels breakpoint hits in all
3573 threads. */
3574 if (non_stop
3575 && linux_nat_lp_status_is_event (lp)
3576 && cancel_breakpoint (lp))
3577 {
3578 /* Throw away the SIGTRAP. */
3579 lp->status = 0;
3580
3581 if (debug_linux_nat)
3582 fprintf (stderr,
3583 "LLW: LWP %ld hit a breakpoint while"
3584 " waiting for another process;"
3585 " cancelled it\n",
3586 ptid_get_lwp (lp->ptid));
3587 }
3588 lp->stopped = 1;
3589 }
3590 else
3591 {
3592 lp->stopped = 1;
3593 lp->signalled = 0;
3594 }
3595 }
3596 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3597 {
3598 if (debug_linux_nat)
3599 fprintf (stderr,
3600 "Process %ld exited while stopping LWPs\n",
3601 ptid_get_lwp (lp->ptid));
3602
3603 /* This was the last lwp in the process. Since
3604 events are serialized to GDB core, and we can't
3605 report this one right now, but GDB core and the
3606 other target layers will want to be notified
3607 about the exit code/signal, leave the status
3608 pending for the next time we're able to report
3609 it. */
3610
3611 /* Prevent trying to stop this thread again. We'll
3612 never try to resume it because it has a pending
3613 status. */
3614 lp->stopped = 1;
3615
3616 /* Dead LWP's aren't expected to reported a pending
3617 sigstop. */
3618 lp->signalled = 0;
3619
3620 /* Store the pending event in the waitstatus as
3621 well, because W_EXITCODE(0,0) == 0. */
3622 store_waitstatus (&lp->waitstatus, lp->status);
3623 }
3624
3625 /* Keep looking. */
3626 lp = NULL;
3627 continue;
3628 }
3629
3630 if (lp)
3631 break;
3632 else
3633 {
3634 if (pid == -1)
3635 {
3636 /* waitpid did return something. Restart over. */
3637 options |= __WCLONE;
3638 }
3639 continue;
3640 }
3641 }
3642
3643 if (pid == -1)
3644 {
3645 /* Alternate between checking cloned and uncloned processes. */
3646 options ^= __WCLONE;
3647
3648 /* And every time we have checked both:
3649 In async mode, return to event loop;
3650 In sync mode, suspend waiting for a SIGCHLD signal. */
3651 if (options & __WCLONE)
3652 {
3653 if (target_options & TARGET_WNOHANG)
3654 {
3655 /* No interesting event. */
3656 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3657
3658 if (debug_linux_nat)
3659 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3660
3661 restore_child_signals_mask (&prev_mask);
3662 return minus_one_ptid;
3663 }
3664
3665 sigsuspend (&suspend_mask);
3666 }
3667 }
3668 else if (target_options & TARGET_WNOHANG)
3669 {
3670 /* No interesting event for PID yet. */
3671 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3672
3673 if (debug_linux_nat)
3674 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3675
3676 restore_child_signals_mask (&prev_mask);
3677 return minus_one_ptid;
3678 }
3679
3680 /* We shouldn't end up here unless we want to try again. */
3681 gdb_assert (lp == NULL);
3682 }
3683
3684 if (!target_can_async_p ())
3685 clear_sigint_trap ();
3686
3687 gdb_assert (lp);
3688
3689 status = lp->status;
3690 lp->status = 0;
3691
3692 /* Don't report signals that GDB isn't interested in, such as
3693 signals that are neither printed nor stopped upon. Stopping all
3694 threads can be a bit time-consuming so if we want decent
3695 performance with heavily multi-threaded programs, especially when
3696 they're using a high frequency timer, we'd better avoid it if we
3697 can. */
3698
3699 if (WIFSTOPPED (status))
3700 {
3701 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3702
3703 /* When using hardware single-step, we need to report every signal.
3704 Otherwise, signals in pass_mask may be short-circuited. */
3705 if (!lp->step
3706 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3707 {
3708 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3709 here? It is not clear we should. GDB may not expect
3710 other threads to run. On the other hand, not resuming
3711 newly attached threads may cause an unwanted delay in
3712 getting them running. */
3713 registers_changed ();
3714 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3715 lp->step, signo);
3716 if (debug_linux_nat)
3717 fprintf_unfiltered (gdb_stdlog,
3718 "LLW: %s %s, %s (preempt 'handle')\n",
3719 lp->step ?
3720 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3721 target_pid_to_str (lp->ptid),
3722 (signo != TARGET_SIGNAL_0
3723 ? strsignal (target_signal_to_host (signo))
3724 : "0"));
3725 lp->stopped = 0;
3726 goto retry;
3727 }
3728
3729 if (!non_stop)
3730 {
3731 /* Only do the below in all-stop, as we currently use SIGINT
3732 to implement target_stop (see linux_nat_stop) in
3733 non-stop. */
3734 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3735 {
3736 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3737 forwarded to the entire process group, that is, all LWPs
3738 will receive it - unless they're using CLONE_THREAD to
3739 share signals. Since we only want to report it once, we
3740 mark it as ignored for all LWPs except this one. */
3741 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3742 set_ignore_sigint, NULL);
3743 lp->ignore_sigint = 0;
3744 }
3745 else
3746 maybe_clear_ignore_sigint (lp);
3747 }
3748 }
3749
3750 /* This LWP is stopped now. */
3751 lp->stopped = 1;
3752
3753 if (debug_linux_nat)
3754 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3755 status_to_str (status), target_pid_to_str (lp->ptid));
3756
3757 if (!non_stop)
3758 {
3759 /* Now stop all other LWP's ... */
3760 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3761
3762 /* ... and wait until all of them have reported back that
3763 they're no longer running. */
3764 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3765
3766 /* If we're not waiting for a specific LWP, choose an event LWP
3767 from among those that have had events. Giving equal priority
3768 to all LWPs that have had events helps prevent
3769 starvation. */
3770 if (pid == -1)
3771 select_event_lwp (ptid, &lp, &status);
3772
3773 /* Now that we've selected our final event LWP, cancel any
3774 breakpoints in other LWPs that have hit a GDB breakpoint.
3775 See the comment in cancel_breakpoints_callback to find out
3776 why. */
3777 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3778
3779 /* In all-stop, from the core's perspective, all LWPs are now
3780 stopped until a new resume action is sent over. */
3781 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3782 }
3783 else
3784 {
3785 lp->resumed = 0;
3786 lp->last_resume_kind = resume_stop;
3787 }
3788
3789 if (linux_nat_status_is_event (status))
3790 {
3791 if (debug_linux_nat)
3792 fprintf_unfiltered (gdb_stdlog,
3793 "LLW: trap ptid is %s.\n",
3794 target_pid_to_str (lp->ptid));
3795 }
3796
3797 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3798 {
3799 *ourstatus = lp->waitstatus;
3800 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3801 }
3802 else
3803 store_waitstatus (ourstatus, status);
3804
3805 if (debug_linux_nat)
3806 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3807
3808 restore_child_signals_mask (&prev_mask);
3809
3810 if (lp->last_resume_kind == resume_stop
3811 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3812 && WSTOPSIG (status) == SIGSTOP)
3813 {
3814 /* A thread that has been requested to stop by GDB with
3815 target_stop, and it stopped cleanly, so report as SIG0. The
3816 use of SIGSTOP is an implementation detail. */
3817 ourstatus->value.sig = TARGET_SIGNAL_0;
3818 }
3819
3820 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3821 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3822 lp->core = -1;
3823 else
3824 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3825
3826 return lp->ptid;
3827 }
3828
3829 /* Resume LWPs that are currently stopped without any pending status
3830 to report, but are resumed from the core's perspective. */
3831
3832 static int
3833 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3834 {
3835 ptid_t *wait_ptid_p = data;
3836
3837 if (lp->stopped
3838 && lp->resumed
3839 && lp->status == 0
3840 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3841 {
3842 gdb_assert (is_executing (lp->ptid));
3843
3844 /* Don't bother if there's a breakpoint at PC that we'd hit
3845 immediately, and we're not waiting for this LWP. */
3846 if (!ptid_match (lp->ptid, *wait_ptid_p))
3847 {
3848 struct regcache *regcache = get_thread_regcache (lp->ptid);
3849 CORE_ADDR pc = regcache_read_pc (regcache);
3850
3851 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3852 return 0;
3853 }
3854
3855 if (debug_linux_nat)
3856 fprintf_unfiltered (gdb_stdlog,
3857 "RSRL: resuming stopped-resumed LWP %s\n",
3858 target_pid_to_str (lp->ptid));
3859
3860 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3861 lp->step, TARGET_SIGNAL_0);
3862 lp->stopped = 0;
3863 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3864 lp->stopped_by_watchpoint = 0;
3865 }
3866
3867 return 0;
3868 }
3869
3870 static ptid_t
3871 linux_nat_wait (struct target_ops *ops,
3872 ptid_t ptid, struct target_waitstatus *ourstatus,
3873 int target_options)
3874 {
3875 ptid_t event_ptid;
3876
3877 if (debug_linux_nat)
3878 fprintf_unfiltered (gdb_stdlog,
3879 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3880
3881 /* Flush the async file first. */
3882 if (target_can_async_p ())
3883 async_file_flush ();
3884
3885 /* Resume LWPs that are currently stopped without any pending status
3886 to report, but are resumed from the core's perspective. LWPs get
3887 in this state if we find them stopping at a time we're not
3888 interested in reporting the event (target_wait on a
3889 specific_process, for example, see linux_nat_wait_1), and
3890 meanwhile the event became uninteresting. Don't bother resuming
3891 LWPs we're not going to wait for if they'd stop immediately. */
3892 if (non_stop)
3893 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3894
3895 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3896
3897 /* If we requested any event, and something came out, assume there
3898 may be more. If we requested a specific lwp or process, also
3899 assume there may be more. */
3900 if (target_can_async_p ()
3901 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3902 || !ptid_equal (ptid, minus_one_ptid)))
3903 async_file_mark ();
3904
3905 /* Get ready for the next event. */
3906 if (target_can_async_p ())
3907 target_async (inferior_event_handler, 0);
3908
3909 return event_ptid;
3910 }
3911
3912 static int
3913 kill_callback (struct lwp_info *lp, void *data)
3914 {
3915 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3916
3917 errno = 0;
3918 kill (GET_LWP (lp->ptid), SIGKILL);
3919 if (debug_linux_nat)
3920 fprintf_unfiltered (gdb_stdlog,
3921 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3922 target_pid_to_str (lp->ptid),
3923 errno ? safe_strerror (errno) : "OK");
3924
3925 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3926
3927 errno = 0;
3928 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3929 if (debug_linux_nat)
3930 fprintf_unfiltered (gdb_stdlog,
3931 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3932 target_pid_to_str (lp->ptid),
3933 errno ? safe_strerror (errno) : "OK");
3934
3935 return 0;
3936 }
3937
3938 static int
3939 kill_wait_callback (struct lwp_info *lp, void *data)
3940 {
3941 pid_t pid;
3942
3943 /* We must make sure that there are no pending events (delayed
3944 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3945 program doesn't interfere with any following debugging session. */
3946
3947 /* For cloned processes we must check both with __WCLONE and
3948 without, since the exit status of a cloned process isn't reported
3949 with __WCLONE. */
3950 if (lp->cloned)
3951 {
3952 do
3953 {
3954 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3955 if (pid != (pid_t) -1)
3956 {
3957 if (debug_linux_nat)
3958 fprintf_unfiltered (gdb_stdlog,
3959 "KWC: wait %s received unknown.\n",
3960 target_pid_to_str (lp->ptid));
3961 /* The Linux kernel sometimes fails to kill a thread
3962 completely after PTRACE_KILL; that goes from the stop
3963 point in do_fork out to the one in
3964 get_signal_to_deliever and waits again. So kill it
3965 again. */
3966 kill_callback (lp, NULL);
3967 }
3968 }
3969 while (pid == GET_LWP (lp->ptid));
3970
3971 gdb_assert (pid == -1 && errno == ECHILD);
3972 }
3973
3974 do
3975 {
3976 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3977 if (pid != (pid_t) -1)
3978 {
3979 if (debug_linux_nat)
3980 fprintf_unfiltered (gdb_stdlog,
3981 "KWC: wait %s received unk.\n",
3982 target_pid_to_str (lp->ptid));
3983 /* See the call to kill_callback above. */
3984 kill_callback (lp, NULL);
3985 }
3986 }
3987 while (pid == GET_LWP (lp->ptid));
3988
3989 gdb_assert (pid == -1 && errno == ECHILD);
3990 return 0;
3991 }
3992
3993 static void
3994 linux_nat_kill (struct target_ops *ops)
3995 {
3996 struct target_waitstatus last;
3997 ptid_t last_ptid;
3998 int status;
3999
4000 /* If we're stopped while forking and we haven't followed yet,
4001 kill the other task. We need to do this first because the
4002 parent will be sleeping if this is a vfork. */
4003
4004 get_last_target_status (&last_ptid, &last);
4005
4006 if (last.kind == TARGET_WAITKIND_FORKED
4007 || last.kind == TARGET_WAITKIND_VFORKED)
4008 {
4009 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4010 wait (&status);
4011 }
4012
4013 if (forks_exist_p ())
4014 linux_fork_killall ();
4015 else
4016 {
4017 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4018
4019 /* Stop all threads before killing them, since ptrace requires
4020 that the thread is stopped to sucessfully PTRACE_KILL. */
4021 iterate_over_lwps (ptid, stop_callback, NULL);
4022 /* ... and wait until all of them have reported back that
4023 they're no longer running. */
4024 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4025
4026 /* Kill all LWP's ... */
4027 iterate_over_lwps (ptid, kill_callback, NULL);
4028
4029 /* ... and wait until we've flushed all events. */
4030 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4031 }
4032
4033 target_mourn_inferior ();
4034 }
4035
4036 static void
4037 linux_nat_mourn_inferior (struct target_ops *ops)
4038 {
4039 purge_lwp_list (ptid_get_pid (inferior_ptid));
4040
4041 if (! forks_exist_p ())
4042 /* Normal case, no other forks available. */
4043 linux_ops->to_mourn_inferior (ops);
4044 else
4045 /* Multi-fork case. The current inferior_ptid has exited, but
4046 there are other viable forks to debug. Delete the exiting
4047 one and context-switch to the first available. */
4048 linux_fork_mourn_inferior ();
4049 }
4050
4051 /* Convert a native/host siginfo object, into/from the siginfo in the
4052 layout of the inferiors' architecture. */
4053
4054 static void
4055 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4056 {
4057 int done = 0;
4058
4059 if (linux_nat_siginfo_fixup != NULL)
4060 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4061
4062 /* If there was no callback, or the callback didn't do anything,
4063 then just do a straight memcpy. */
4064 if (!done)
4065 {
4066 if (direction == 1)
4067 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4068 else
4069 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4070 }
4071 }
4072
4073 static LONGEST
4074 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4075 const char *annex, gdb_byte *readbuf,
4076 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4077 {
4078 int pid;
4079 struct siginfo siginfo;
4080 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4081
4082 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4083 gdb_assert (readbuf || writebuf);
4084
4085 pid = GET_LWP (inferior_ptid);
4086 if (pid == 0)
4087 pid = GET_PID (inferior_ptid);
4088
4089 if (offset > sizeof (siginfo))
4090 return -1;
4091
4092 errno = 0;
4093 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4094 if (errno != 0)
4095 return -1;
4096
4097 /* When GDB is built as a 64-bit application, ptrace writes into
4098 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4099 inferior with a 64-bit GDB should look the same as debugging it
4100 with a 32-bit GDB, we need to convert it. GDB core always sees
4101 the converted layout, so any read/write will have to be done
4102 post-conversion. */
4103 siginfo_fixup (&siginfo, inf_siginfo, 0);
4104
4105 if (offset + len > sizeof (siginfo))
4106 len = sizeof (siginfo) - offset;
4107
4108 if (readbuf != NULL)
4109 memcpy (readbuf, inf_siginfo + offset, len);
4110 else
4111 {
4112 memcpy (inf_siginfo + offset, writebuf, len);
4113
4114 /* Convert back to ptrace layout before flushing it out. */
4115 siginfo_fixup (&siginfo, inf_siginfo, 1);
4116
4117 errno = 0;
4118 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4119 if (errno != 0)
4120 return -1;
4121 }
4122
4123 return len;
4124 }
4125
4126 static LONGEST
4127 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4128 const char *annex, gdb_byte *readbuf,
4129 const gdb_byte *writebuf,
4130 ULONGEST offset, LONGEST len)
4131 {
4132 struct cleanup *old_chain;
4133 LONGEST xfer;
4134
4135 if (object == TARGET_OBJECT_SIGNAL_INFO)
4136 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4137 offset, len);
4138
4139 /* The target is connected but no live inferior is selected. Pass
4140 this request down to a lower stratum (e.g., the executable
4141 file). */
4142 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4143 return 0;
4144
4145 old_chain = save_inferior_ptid ();
4146
4147 if (is_lwp (inferior_ptid))
4148 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4149
4150 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4151 offset, len);
4152
4153 do_cleanups (old_chain);
4154 return xfer;
4155 }
4156
4157 static int
4158 linux_thread_alive (ptid_t ptid)
4159 {
4160 int err, tmp_errno;
4161
4162 gdb_assert (is_lwp (ptid));
4163
4164 /* Send signal 0 instead of anything ptrace, because ptracing a
4165 running thread errors out claiming that the thread doesn't
4166 exist. */
4167 err = kill_lwp (GET_LWP (ptid), 0);
4168 tmp_errno = errno;
4169 if (debug_linux_nat)
4170 fprintf_unfiltered (gdb_stdlog,
4171 "LLTA: KILL(SIG0) %s (%s)\n",
4172 target_pid_to_str (ptid),
4173 err ? safe_strerror (tmp_errno) : "OK");
4174
4175 if (err != 0)
4176 return 0;
4177
4178 return 1;
4179 }
4180
4181 static int
4182 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4183 {
4184 return linux_thread_alive (ptid);
4185 }
4186
4187 static char *
4188 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4189 {
4190 static char buf[64];
4191
4192 if (is_lwp (ptid)
4193 && (GET_PID (ptid) != GET_LWP (ptid)
4194 || num_lwps (GET_PID (ptid)) > 1))
4195 {
4196 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4197 return buf;
4198 }
4199
4200 return normal_pid_to_str (ptid);
4201 }
4202
4203 static char *
4204 linux_nat_thread_name (struct thread_info *thr)
4205 {
4206 int pid = ptid_get_pid (thr->ptid);
4207 long lwp = ptid_get_lwp (thr->ptid);
4208 #define FORMAT "/proc/%d/task/%ld/comm"
4209 char buf[sizeof (FORMAT) + 30];
4210 FILE *comm_file;
4211 char *result = NULL;
4212
4213 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4214 comm_file = fopen (buf, "r");
4215 if (comm_file)
4216 {
4217 /* Not exported by the kernel, so we define it here. */
4218 #define COMM_LEN 16
4219 static char line[COMM_LEN + 1];
4220
4221 if (fgets (line, sizeof (line), comm_file))
4222 {
4223 char *nl = strchr (line, '\n');
4224
4225 if (nl)
4226 *nl = '\0';
4227 if (*line != '\0')
4228 result = line;
4229 }
4230
4231 fclose (comm_file);
4232 }
4233
4234 #undef COMM_LEN
4235 #undef FORMAT
4236
4237 return result;
4238 }
4239
4240 /* Accepts an integer PID; Returns a string representing a file that
4241 can be opened to get the symbols for the child process. */
4242
4243 static char *
4244 linux_child_pid_to_exec_file (int pid)
4245 {
4246 char *name1, *name2;
4247
4248 name1 = xmalloc (MAXPATHLEN);
4249 name2 = xmalloc (MAXPATHLEN);
4250 make_cleanup (xfree, name1);
4251 make_cleanup (xfree, name2);
4252 memset (name2, 0, MAXPATHLEN);
4253
4254 sprintf (name1, "/proc/%d/exe", pid);
4255 if (readlink (name1, name2, MAXPATHLEN) > 0)
4256 return name2;
4257 else
4258 return name1;
4259 }
4260
4261 /* Service function for corefiles and info proc. */
4262
4263 static int
4264 read_mapping (FILE *mapfile,
4265 long long *addr,
4266 long long *endaddr,
4267 char *permissions,
4268 long long *offset,
4269 char *device, long long *inode, char *filename)
4270 {
4271 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4272 addr, endaddr, permissions, offset, device, inode);
4273
4274 filename[0] = '\0';
4275 if (ret > 0 && ret != EOF)
4276 {
4277 /* Eat everything up to EOL for the filename. This will prevent
4278 weird filenames (such as one with embedded whitespace) from
4279 confusing this code. It also makes this code more robust in
4280 respect to annotations the kernel may add after the filename.
4281
4282 Note the filename is used for informational purposes
4283 only. */
4284 ret += fscanf (mapfile, "%[^\n]\n", filename);
4285 }
4286
4287 return (ret != 0 && ret != EOF);
4288 }
4289
4290 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4291 regions in the inferior for a corefile. */
4292
4293 static int
4294 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4295 {
4296 int pid = PIDGET (inferior_ptid);
4297 char mapsfilename[MAXPATHLEN];
4298 FILE *mapsfile;
4299 long long addr, endaddr, size, offset, inode;
4300 char permissions[8], device[8], filename[MAXPATHLEN];
4301 int read, write, exec;
4302 struct cleanup *cleanup;
4303
4304 /* Compose the filename for the /proc memory map, and open it. */
4305 sprintf (mapsfilename, "/proc/%d/maps", pid);
4306 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4307 error (_("Could not open %s."), mapsfilename);
4308 cleanup = make_cleanup_fclose (mapsfile);
4309
4310 if (info_verbose)
4311 fprintf_filtered (gdb_stdout,
4312 "Reading memory regions from %s\n", mapsfilename);
4313
4314 /* Now iterate until end-of-file. */
4315 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4316 &offset, &device[0], &inode, &filename[0]))
4317 {
4318 size = endaddr - addr;
4319
4320 /* Get the segment's permissions. */
4321 read = (strchr (permissions, 'r') != 0);
4322 write = (strchr (permissions, 'w') != 0);
4323 exec = (strchr (permissions, 'x') != 0);
4324
4325 if (info_verbose)
4326 {
4327 fprintf_filtered (gdb_stdout,
4328 "Save segment, %s bytes at %s (%c%c%c)",
4329 plongest (size), paddress (target_gdbarch, addr),
4330 read ? 'r' : ' ',
4331 write ? 'w' : ' ', exec ? 'x' : ' ');
4332 if (filename[0])
4333 fprintf_filtered (gdb_stdout, " for %s", filename);
4334 fprintf_filtered (gdb_stdout, "\n");
4335 }
4336
4337 /* Invoke the callback function to create the corefile
4338 segment. */
4339 func (addr, size, read, write, exec, obfd);
4340 }
4341 do_cleanups (cleanup);
4342 return 0;
4343 }
4344
4345 static int
4346 find_signalled_thread (struct thread_info *info, void *data)
4347 {
4348 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4349 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4350 return 1;
4351
4352 return 0;
4353 }
4354
4355 static enum target_signal
4356 find_stop_signal (void)
4357 {
4358 struct thread_info *info =
4359 iterate_over_threads (find_signalled_thread, NULL);
4360
4361 if (info)
4362 return info->suspend.stop_signal;
4363 else
4364 return TARGET_SIGNAL_0;
4365 }
4366
4367 /* Records the thread's register state for the corefile note
4368 section. */
4369
4370 static char *
4371 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4372 char *note_data, int *note_size,
4373 enum target_signal stop_signal)
4374 {
4375 unsigned long lwp = ptid_get_lwp (ptid);
4376 struct gdbarch *gdbarch = target_gdbarch;
4377 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4378 const struct regset *regset;
4379 int core_regset_p;
4380 struct cleanup *old_chain;
4381 struct core_regset_section *sect_list;
4382 char *gdb_regset;
4383
4384 old_chain = save_inferior_ptid ();
4385 inferior_ptid = ptid;
4386 target_fetch_registers (regcache, -1);
4387 do_cleanups (old_chain);
4388
4389 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4390 sect_list = gdbarch_core_regset_sections (gdbarch);
4391
4392 /* The loop below uses the new struct core_regset_section, which stores
4393 the supported section names and sizes for the core file. Note that
4394 note PRSTATUS needs to be treated specially. But the other notes are
4395 structurally the same, so they can benefit from the new struct. */
4396 if (core_regset_p && sect_list != NULL)
4397 while (sect_list->sect_name != NULL)
4398 {
4399 regset = gdbarch_regset_from_core_section (gdbarch,
4400 sect_list->sect_name,
4401 sect_list->size);
4402 gdb_assert (regset && regset->collect_regset);
4403 gdb_regset = xmalloc (sect_list->size);
4404 regset->collect_regset (regset, regcache, -1,
4405 gdb_regset, sect_list->size);
4406
4407 if (strcmp (sect_list->sect_name, ".reg") == 0)
4408 note_data = (char *) elfcore_write_prstatus
4409 (obfd, note_data, note_size,
4410 lwp, target_signal_to_host (stop_signal),
4411 gdb_regset);
4412 else
4413 note_data = (char *) elfcore_write_register_note
4414 (obfd, note_data, note_size,
4415 sect_list->sect_name, gdb_regset,
4416 sect_list->size);
4417 xfree (gdb_regset);
4418 sect_list++;
4419 }
4420
4421 /* For architectures that does not have the struct core_regset_section
4422 implemented, we use the old method. When all the architectures have
4423 the new support, the code below should be deleted. */
4424 else
4425 {
4426 gdb_gregset_t gregs;
4427 gdb_fpregset_t fpregs;
4428
4429 if (core_regset_p
4430 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4431 sizeof (gregs)))
4432 != NULL && regset->collect_regset != NULL)
4433 regset->collect_regset (regset, regcache, -1,
4434 &gregs, sizeof (gregs));
4435 else
4436 fill_gregset (regcache, &gregs, -1);
4437
4438 note_data = (char *) elfcore_write_prstatus
4439 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4440 &gregs);
4441
4442 if (core_regset_p
4443 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4444 sizeof (fpregs)))
4445 != NULL && regset->collect_regset != NULL)
4446 regset->collect_regset (regset, regcache, -1,
4447 &fpregs, sizeof (fpregs));
4448 else
4449 fill_fpregset (regcache, &fpregs, -1);
4450
4451 note_data = (char *) elfcore_write_prfpreg (obfd,
4452 note_data,
4453 note_size,
4454 &fpregs, sizeof (fpregs));
4455 }
4456
4457 return note_data;
4458 }
4459
4460 struct linux_nat_corefile_thread_data
4461 {
4462 bfd *obfd;
4463 char *note_data;
4464 int *note_size;
4465 int num_notes;
4466 enum target_signal stop_signal;
4467 };
4468
4469 /* Called by gdbthread.c once per thread. Records the thread's
4470 register state for the corefile note section. */
4471
4472 static int
4473 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4474 {
4475 struct linux_nat_corefile_thread_data *args = data;
4476
4477 args->note_data = linux_nat_do_thread_registers (args->obfd,
4478 ti->ptid,
4479 args->note_data,
4480 args->note_size,
4481 args->stop_signal);
4482 args->num_notes++;
4483
4484 return 0;
4485 }
4486
4487 /* Enumerate spufs IDs for process PID. */
4488
4489 static void
4490 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4491 {
4492 char path[128];
4493 DIR *dir;
4494 struct dirent *entry;
4495
4496 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4497 dir = opendir (path);
4498 if (!dir)
4499 return;
4500
4501 rewinddir (dir);
4502 while ((entry = readdir (dir)) != NULL)
4503 {
4504 struct stat st;
4505 struct statfs stfs;
4506 int fd;
4507
4508 fd = atoi (entry->d_name);
4509 if (!fd)
4510 continue;
4511
4512 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4513 if (stat (path, &st) != 0)
4514 continue;
4515 if (!S_ISDIR (st.st_mode))
4516 continue;
4517
4518 if (statfs (path, &stfs) != 0)
4519 continue;
4520 if (stfs.f_type != SPUFS_MAGIC)
4521 continue;
4522
4523 callback (data, fd);
4524 }
4525
4526 closedir (dir);
4527 }
4528
4529 /* Generate corefile notes for SPU contexts. */
4530
4531 struct linux_spu_corefile_data
4532 {
4533 bfd *obfd;
4534 char *note_data;
4535 int *note_size;
4536 };
4537
4538 static void
4539 linux_spu_corefile_callback (void *data, int fd)
4540 {
4541 struct linux_spu_corefile_data *args = data;
4542 int i;
4543
4544 static const char *spu_files[] =
4545 {
4546 "object-id",
4547 "mem",
4548 "regs",
4549 "fpcr",
4550 "lslr",
4551 "decr",
4552 "decr_status",
4553 "signal1",
4554 "signal1_type",
4555 "signal2",
4556 "signal2_type",
4557 "event_mask",
4558 "event_status",
4559 "mbox_info",
4560 "ibox_info",
4561 "wbox_info",
4562 "dma_info",
4563 "proxydma_info",
4564 };
4565
4566 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4567 {
4568 char annex[32], note_name[32];
4569 gdb_byte *spu_data;
4570 LONGEST spu_len;
4571
4572 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4573 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4574 annex, &spu_data);
4575 if (spu_len > 0)
4576 {
4577 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4578 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4579 args->note_size, note_name,
4580 NT_SPU, spu_data, spu_len);
4581 xfree (spu_data);
4582 }
4583 }
4584 }
4585
4586 static char *
4587 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4588 {
4589 struct linux_spu_corefile_data args;
4590
4591 args.obfd = obfd;
4592 args.note_data = note_data;
4593 args.note_size = note_size;
4594
4595 iterate_over_spus (PIDGET (inferior_ptid),
4596 linux_spu_corefile_callback, &args);
4597
4598 return args.note_data;
4599 }
4600
4601 /* Fills the "to_make_corefile_note" target vector. Builds the note
4602 section for a corefile, and returns it in a malloc buffer. */
4603
4604 static char *
4605 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4606 {
4607 struct linux_nat_corefile_thread_data thread_args;
4608 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4609 char fname[16] = { '\0' };
4610 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4611 char psargs[80] = { '\0' };
4612 char *note_data = NULL;
4613 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4614 gdb_byte *auxv;
4615 int auxv_len;
4616
4617 if (get_exec_file (0))
4618 {
4619 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4620 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4621 if (get_inferior_args ())
4622 {
4623 char *string_end;
4624 char *psargs_end = psargs + sizeof (psargs);
4625
4626 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4627 strings fine. */
4628 string_end = memchr (psargs, 0, sizeof (psargs));
4629 if (string_end != NULL)
4630 {
4631 *string_end++ = ' ';
4632 strncpy (string_end, get_inferior_args (),
4633 psargs_end - string_end);
4634 }
4635 }
4636 note_data = (char *) elfcore_write_prpsinfo (obfd,
4637 note_data,
4638 note_size, fname, psargs);
4639 }
4640
4641 /* Dump information for threads. */
4642 thread_args.obfd = obfd;
4643 thread_args.note_data = note_data;
4644 thread_args.note_size = note_size;
4645 thread_args.num_notes = 0;
4646 thread_args.stop_signal = find_stop_signal ();
4647 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4648 gdb_assert (thread_args.num_notes != 0);
4649 note_data = thread_args.note_data;
4650
4651 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4652 NULL, &auxv);
4653 if (auxv_len > 0)
4654 {
4655 note_data = elfcore_write_note (obfd, note_data, note_size,
4656 "CORE", NT_AUXV, auxv, auxv_len);
4657 xfree (auxv);
4658 }
4659
4660 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4661
4662 make_cleanup (xfree, note_data);
4663 return note_data;
4664 }
4665
4666 /* Implement the "info proc" command. */
4667
4668 static void
4669 linux_nat_info_proc_cmd (char *args, int from_tty)
4670 {
4671 /* A long is used for pid instead of an int to avoid a loss of precision
4672 compiler warning from the output of strtoul. */
4673 long pid = PIDGET (inferior_ptid);
4674 FILE *procfile;
4675 char **argv = NULL;
4676 char buffer[MAXPATHLEN];
4677 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4678 int cmdline_f = 1;
4679 int cwd_f = 1;
4680 int exe_f = 1;
4681 int mappings_f = 0;
4682 int status_f = 0;
4683 int stat_f = 0;
4684 int all = 0;
4685 struct stat dummy;
4686
4687 if (args)
4688 {
4689 /* Break up 'args' into an argv array. */
4690 argv = gdb_buildargv (args);
4691 make_cleanup_freeargv (argv);
4692 }
4693 while (argv != NULL && *argv != NULL)
4694 {
4695 if (isdigit (argv[0][0]))
4696 {
4697 pid = strtoul (argv[0], NULL, 10);
4698 }
4699 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4700 {
4701 mappings_f = 1;
4702 }
4703 else if (strcmp (argv[0], "status") == 0)
4704 {
4705 status_f = 1;
4706 }
4707 else if (strcmp (argv[0], "stat") == 0)
4708 {
4709 stat_f = 1;
4710 }
4711 else if (strcmp (argv[0], "cmd") == 0)
4712 {
4713 cmdline_f = 1;
4714 }
4715 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4716 {
4717 exe_f = 1;
4718 }
4719 else if (strcmp (argv[0], "cwd") == 0)
4720 {
4721 cwd_f = 1;
4722 }
4723 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4724 {
4725 all = 1;
4726 }
4727 else
4728 {
4729 /* [...] (future options here). */
4730 }
4731 argv++;
4732 }
4733 if (pid == 0)
4734 error (_("No current process: you must name one."));
4735
4736 sprintf (fname1, "/proc/%ld", pid);
4737 if (stat (fname1, &dummy) != 0)
4738 error (_("No /proc directory: '%s'"), fname1);
4739
4740 printf_filtered (_("process %ld\n"), pid);
4741 if (cmdline_f || all)
4742 {
4743 sprintf (fname1, "/proc/%ld/cmdline", pid);
4744 if ((procfile = fopen (fname1, "r")) != NULL)
4745 {
4746 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4747
4748 if (fgets (buffer, sizeof (buffer), procfile))
4749 printf_filtered ("cmdline = '%s'\n", buffer);
4750 else
4751 warning (_("unable to read '%s'"), fname1);
4752 do_cleanups (cleanup);
4753 }
4754 else
4755 warning (_("unable to open /proc file '%s'"), fname1);
4756 }
4757 if (cwd_f || all)
4758 {
4759 sprintf (fname1, "/proc/%ld/cwd", pid);
4760 memset (fname2, 0, sizeof (fname2));
4761 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4762 printf_filtered ("cwd = '%s'\n", fname2);
4763 else
4764 warning (_("unable to read link '%s'"), fname1);
4765 }
4766 if (exe_f || all)
4767 {
4768 sprintf (fname1, "/proc/%ld/exe", pid);
4769 memset (fname2, 0, sizeof (fname2));
4770 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4771 printf_filtered ("exe = '%s'\n", fname2);
4772 else
4773 warning (_("unable to read link '%s'"), fname1);
4774 }
4775 if (mappings_f || all)
4776 {
4777 sprintf (fname1, "/proc/%ld/maps", pid);
4778 if ((procfile = fopen (fname1, "r")) != NULL)
4779 {
4780 long long addr, endaddr, size, offset, inode;
4781 char permissions[8], device[8], filename[MAXPATHLEN];
4782 struct cleanup *cleanup;
4783
4784 cleanup = make_cleanup_fclose (procfile);
4785 printf_filtered (_("Mapped address spaces:\n\n"));
4786 if (gdbarch_addr_bit (target_gdbarch) == 32)
4787 {
4788 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4789 "Start Addr",
4790 " End Addr",
4791 " Size", " Offset", "objfile");
4792 }
4793 else
4794 {
4795 printf_filtered (" %18s %18s %10s %10s %7s\n",
4796 "Start Addr",
4797 " End Addr",
4798 " Size", " Offset", "objfile");
4799 }
4800
4801 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4802 &offset, &device[0], &inode, &filename[0]))
4803 {
4804 size = endaddr - addr;
4805
4806 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4807 calls here (and possibly above) should be abstracted
4808 out into their own functions? Andrew suggests using
4809 a generic local_address_string instead to print out
4810 the addresses; that makes sense to me, too. */
4811
4812 if (gdbarch_addr_bit (target_gdbarch) == 32)
4813 {
4814 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4815 (unsigned long) addr, /* FIXME: pr_addr */
4816 (unsigned long) endaddr,
4817 (int) size,
4818 (unsigned int) offset,
4819 filename[0] ? filename : "");
4820 }
4821 else
4822 {
4823 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4824 (unsigned long) addr, /* FIXME: pr_addr */
4825 (unsigned long) endaddr,
4826 (int) size,
4827 (unsigned int) offset,
4828 filename[0] ? filename : "");
4829 }
4830 }
4831
4832 do_cleanups (cleanup);
4833 }
4834 else
4835 warning (_("unable to open /proc file '%s'"), fname1);
4836 }
4837 if (status_f || all)
4838 {
4839 sprintf (fname1, "/proc/%ld/status", pid);
4840 if ((procfile = fopen (fname1, "r")) != NULL)
4841 {
4842 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4843
4844 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4845 puts_filtered (buffer);
4846 do_cleanups (cleanup);
4847 }
4848 else
4849 warning (_("unable to open /proc file '%s'"), fname1);
4850 }
4851 if (stat_f || all)
4852 {
4853 sprintf (fname1, "/proc/%ld/stat", pid);
4854 if ((procfile = fopen (fname1, "r")) != NULL)
4855 {
4856 int itmp;
4857 char ctmp;
4858 long ltmp;
4859 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4860
4861 if (fscanf (procfile, "%d ", &itmp) > 0)
4862 printf_filtered (_("Process: %d\n"), itmp);
4863 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4864 printf_filtered (_("Exec file: %s\n"), buffer);
4865 if (fscanf (procfile, "%c ", &ctmp) > 0)
4866 printf_filtered (_("State: %c\n"), ctmp);
4867 if (fscanf (procfile, "%d ", &itmp) > 0)
4868 printf_filtered (_("Parent process: %d\n"), itmp);
4869 if (fscanf (procfile, "%d ", &itmp) > 0)
4870 printf_filtered (_("Process group: %d\n"), itmp);
4871 if (fscanf (procfile, "%d ", &itmp) > 0)
4872 printf_filtered (_("Session id: %d\n"), itmp);
4873 if (fscanf (procfile, "%d ", &itmp) > 0)
4874 printf_filtered (_("TTY: %d\n"), itmp);
4875 if (fscanf (procfile, "%d ", &itmp) > 0)
4876 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4877 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4878 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4879 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4880 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4881 (unsigned long) ltmp);
4882 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4883 printf_filtered (_("Minor faults, children: %lu\n"),
4884 (unsigned long) ltmp);
4885 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4886 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4887 (unsigned long) ltmp);
4888 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4889 printf_filtered (_("Major faults, children: %lu\n"),
4890 (unsigned long) ltmp);
4891 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4892 printf_filtered (_("utime: %ld\n"), ltmp);
4893 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4894 printf_filtered (_("stime: %ld\n"), ltmp);
4895 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4896 printf_filtered (_("utime, children: %ld\n"), ltmp);
4897 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4898 printf_filtered (_("stime, children: %ld\n"), ltmp);
4899 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4900 printf_filtered (_("jiffies remaining in current "
4901 "time slice: %ld\n"), ltmp);
4902 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4903 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4904 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4905 printf_filtered (_("jiffies until next timeout: %lu\n"),
4906 (unsigned long) ltmp);
4907 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4908 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4909 (unsigned long) ltmp);
4910 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4911 printf_filtered (_("start time (jiffies since "
4912 "system boot): %ld\n"), ltmp);
4913 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4914 printf_filtered (_("Virtual memory size: %lu\n"),
4915 (unsigned long) ltmp);
4916 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4917 printf_filtered (_("Resident set size: %lu\n"),
4918 (unsigned long) ltmp);
4919 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4920 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4921 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4922 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4923 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4924 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4925 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4926 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4927 #if 0 /* Don't know how architecture-dependent the rest is...
4928 Anyway the signal bitmap info is available from "status". */
4929 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4930 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4931 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4932 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4933 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4934 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4935 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4936 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4937 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4938 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4939 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4940 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4941 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4942 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4943 #endif
4944 do_cleanups (cleanup);
4945 }
4946 else
4947 warning (_("unable to open /proc file '%s'"), fname1);
4948 }
4949 }
4950
4951 /* Implement the to_xfer_partial interface for memory reads using the /proc
4952 filesystem. Because we can use a single read() call for /proc, this
4953 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4954 but it doesn't support writes. */
4955
4956 static LONGEST
4957 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4958 const char *annex, gdb_byte *readbuf,
4959 const gdb_byte *writebuf,
4960 ULONGEST offset, LONGEST len)
4961 {
4962 LONGEST ret;
4963 int fd;
4964 char filename[64];
4965
4966 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4967 return 0;
4968
4969 /* Don't bother for one word. */
4970 if (len < 3 * sizeof (long))
4971 return 0;
4972
4973 /* We could keep this file open and cache it - possibly one per
4974 thread. That requires some juggling, but is even faster. */
4975 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4976 fd = open (filename, O_RDONLY | O_LARGEFILE);
4977 if (fd == -1)
4978 return 0;
4979
4980 /* If pread64 is available, use it. It's faster if the kernel
4981 supports it (only one syscall), and it's 64-bit safe even on
4982 32-bit platforms (for instance, SPARC debugging a SPARC64
4983 application). */
4984 #ifdef HAVE_PREAD64
4985 if (pread64 (fd, readbuf, len, offset) != len)
4986 #else
4987 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4988 #endif
4989 ret = 0;
4990 else
4991 ret = len;
4992
4993 close (fd);
4994 return ret;
4995 }
4996
4997
4998 /* Enumerate spufs IDs for process PID. */
4999 static LONGEST
5000 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
5001 {
5002 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
5003 LONGEST pos = 0;
5004 LONGEST written = 0;
5005 char path[128];
5006 DIR *dir;
5007 struct dirent *entry;
5008
5009 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5010 dir = opendir (path);
5011 if (!dir)
5012 return -1;
5013
5014 rewinddir (dir);
5015 while ((entry = readdir (dir)) != NULL)
5016 {
5017 struct stat st;
5018 struct statfs stfs;
5019 int fd;
5020
5021 fd = atoi (entry->d_name);
5022 if (!fd)
5023 continue;
5024
5025 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5026 if (stat (path, &st) != 0)
5027 continue;
5028 if (!S_ISDIR (st.st_mode))
5029 continue;
5030
5031 if (statfs (path, &stfs) != 0)
5032 continue;
5033 if (stfs.f_type != SPUFS_MAGIC)
5034 continue;
5035
5036 if (pos >= offset && pos + 4 <= offset + len)
5037 {
5038 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5039 written += 4;
5040 }
5041 pos += 4;
5042 }
5043
5044 closedir (dir);
5045 return written;
5046 }
5047
5048 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5049 object type, using the /proc file system. */
5050 static LONGEST
5051 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5052 const char *annex, gdb_byte *readbuf,
5053 const gdb_byte *writebuf,
5054 ULONGEST offset, LONGEST len)
5055 {
5056 char buf[128];
5057 int fd = 0;
5058 int ret = -1;
5059 int pid = PIDGET (inferior_ptid);
5060
5061 if (!annex)
5062 {
5063 if (!readbuf)
5064 return -1;
5065 else
5066 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5067 }
5068
5069 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5070 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5071 if (fd <= 0)
5072 return -1;
5073
5074 if (offset != 0
5075 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5076 {
5077 close (fd);
5078 return 0;
5079 }
5080
5081 if (writebuf)
5082 ret = write (fd, writebuf, (size_t) len);
5083 else if (readbuf)
5084 ret = read (fd, readbuf, (size_t) len);
5085
5086 close (fd);
5087 return ret;
5088 }
5089
5090
5091 /* Parse LINE as a signal set and add its set bits to SIGS. */
5092
5093 static void
5094 add_line_to_sigset (const char *line, sigset_t *sigs)
5095 {
5096 int len = strlen (line) - 1;
5097 const char *p;
5098 int signum;
5099
5100 if (line[len] != '\n')
5101 error (_("Could not parse signal set: %s"), line);
5102
5103 p = line;
5104 signum = len * 4;
5105 while (len-- > 0)
5106 {
5107 int digit;
5108
5109 if (*p >= '0' && *p <= '9')
5110 digit = *p - '0';
5111 else if (*p >= 'a' && *p <= 'f')
5112 digit = *p - 'a' + 10;
5113 else
5114 error (_("Could not parse signal set: %s"), line);
5115
5116 signum -= 4;
5117
5118 if (digit & 1)
5119 sigaddset (sigs, signum + 1);
5120 if (digit & 2)
5121 sigaddset (sigs, signum + 2);
5122 if (digit & 4)
5123 sigaddset (sigs, signum + 3);
5124 if (digit & 8)
5125 sigaddset (sigs, signum + 4);
5126
5127 p++;
5128 }
5129 }
5130
5131 /* Find process PID's pending signals from /proc/pid/status and set
5132 SIGS to match. */
5133
5134 void
5135 linux_proc_pending_signals (int pid, sigset_t *pending,
5136 sigset_t *blocked, sigset_t *ignored)
5137 {
5138 FILE *procfile;
5139 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5140 struct cleanup *cleanup;
5141
5142 sigemptyset (pending);
5143 sigemptyset (blocked);
5144 sigemptyset (ignored);
5145 sprintf (fname, "/proc/%d/status", pid);
5146 procfile = fopen (fname, "r");
5147 if (procfile == NULL)
5148 error (_("Could not open %s"), fname);
5149 cleanup = make_cleanup_fclose (procfile);
5150
5151 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5152 {
5153 /* Normal queued signals are on the SigPnd line in the status
5154 file. However, 2.6 kernels also have a "shared" pending
5155 queue for delivering signals to a thread group, so check for
5156 a ShdPnd line also.
5157
5158 Unfortunately some Red Hat kernels include the shared pending
5159 queue but not the ShdPnd status field. */
5160
5161 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5162 add_line_to_sigset (buffer + 8, pending);
5163 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5164 add_line_to_sigset (buffer + 8, pending);
5165 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5166 add_line_to_sigset (buffer + 8, blocked);
5167 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5168 add_line_to_sigset (buffer + 8, ignored);
5169 }
5170
5171 do_cleanups (cleanup);
5172 }
5173
5174 static LONGEST
5175 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5176 const char *annex, gdb_byte *readbuf,
5177 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5178 {
5179 gdb_assert (object == TARGET_OBJECT_OSDATA);
5180
5181 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5182 }
5183
5184 static LONGEST
5185 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5186 const char *annex, gdb_byte *readbuf,
5187 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5188 {
5189 LONGEST xfer;
5190
5191 if (object == TARGET_OBJECT_AUXV)
5192 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5193 offset, len);
5194
5195 if (object == TARGET_OBJECT_OSDATA)
5196 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5197 offset, len);
5198
5199 if (object == TARGET_OBJECT_SPU)
5200 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5201 offset, len);
5202
5203 /* GDB calculates all the addresses in possibly larget width of the address.
5204 Address width needs to be masked before its final use - either by
5205 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5206
5207 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5208
5209 if (object == TARGET_OBJECT_MEMORY)
5210 {
5211 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5212
5213 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5214 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5215 }
5216
5217 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5218 offset, len);
5219 if (xfer != 0)
5220 return xfer;
5221
5222 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5223 offset, len);
5224 }
5225
5226 /* Create a prototype generic GNU/Linux target. The client can override
5227 it with local methods. */
5228
5229 static void
5230 linux_target_install_ops (struct target_ops *t)
5231 {
5232 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5233 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5234 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5235 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5236 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5237 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5238 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5239 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5240 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5241 t->to_post_attach = linux_child_post_attach;
5242 t->to_follow_fork = linux_child_follow_fork;
5243 t->to_find_memory_regions = linux_nat_find_memory_regions;
5244 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5245
5246 super_xfer_partial = t->to_xfer_partial;
5247 t->to_xfer_partial = linux_xfer_partial;
5248 }
5249
5250 struct target_ops *
5251 linux_target (void)
5252 {
5253 struct target_ops *t;
5254
5255 t = inf_ptrace_target ();
5256 linux_target_install_ops (t);
5257
5258 return t;
5259 }
5260
5261 struct target_ops *
5262 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5263 {
5264 struct target_ops *t;
5265
5266 t = inf_ptrace_trad_target (register_u_offset);
5267 linux_target_install_ops (t);
5268
5269 return t;
5270 }
5271
5272 /* target_is_async_p implementation. */
5273
5274 static int
5275 linux_nat_is_async_p (void)
5276 {
5277 /* NOTE: palves 2008-03-21: We're only async when the user requests
5278 it explicitly with the "set target-async" command.
5279 Someday, linux will always be async. */
5280 return target_async_permitted;
5281 }
5282
5283 /* target_can_async_p implementation. */
5284
5285 static int
5286 linux_nat_can_async_p (void)
5287 {
5288 /* NOTE: palves 2008-03-21: We're only async when the user requests
5289 it explicitly with the "set target-async" command.
5290 Someday, linux will always be async. */
5291 return target_async_permitted;
5292 }
5293
5294 static int
5295 linux_nat_supports_non_stop (void)
5296 {
5297 return 1;
5298 }
5299
5300 /* True if we want to support multi-process. To be removed when GDB
5301 supports multi-exec. */
5302
5303 int linux_multi_process = 1;
5304
5305 static int
5306 linux_nat_supports_multi_process (void)
5307 {
5308 return linux_multi_process;
5309 }
5310
5311 static int async_terminal_is_ours = 1;
5312
5313 /* target_terminal_inferior implementation. */
5314
5315 static void
5316 linux_nat_terminal_inferior (void)
5317 {
5318 if (!target_is_async_p ())
5319 {
5320 /* Async mode is disabled. */
5321 terminal_inferior ();
5322 return;
5323 }
5324
5325 terminal_inferior ();
5326
5327 /* Calls to target_terminal_*() are meant to be idempotent. */
5328 if (!async_terminal_is_ours)
5329 return;
5330
5331 delete_file_handler (input_fd);
5332 async_terminal_is_ours = 0;
5333 set_sigint_trap ();
5334 }
5335
5336 /* target_terminal_ours implementation. */
5337
5338 static void
5339 linux_nat_terminal_ours (void)
5340 {
5341 if (!target_is_async_p ())
5342 {
5343 /* Async mode is disabled. */
5344 terminal_ours ();
5345 return;
5346 }
5347
5348 /* GDB should never give the terminal to the inferior if the
5349 inferior is running in the background (run&, continue&, etc.),
5350 but claiming it sure should. */
5351 terminal_ours ();
5352
5353 if (async_terminal_is_ours)
5354 return;
5355
5356 clear_sigint_trap ();
5357 add_file_handler (input_fd, stdin_event_handler, 0);
5358 async_terminal_is_ours = 1;
5359 }
5360
5361 static void (*async_client_callback) (enum inferior_event_type event_type,
5362 void *context);
5363 static void *async_client_context;
5364
5365 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5366 so we notice when any child changes state, and notify the
5367 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5368 above to wait for the arrival of a SIGCHLD. */
5369
5370 static void
5371 sigchld_handler (int signo)
5372 {
5373 int old_errno = errno;
5374
5375 if (debug_linux_nat)
5376 ui_file_write_async_safe (gdb_stdlog,
5377 "sigchld\n", sizeof ("sigchld\n") - 1);
5378
5379 if (signo == SIGCHLD
5380 && linux_nat_event_pipe[0] != -1)
5381 async_file_mark (); /* Let the event loop know that there are
5382 events to handle. */
5383
5384 errno = old_errno;
5385 }
5386
5387 /* Callback registered with the target events file descriptor. */
5388
5389 static void
5390 handle_target_event (int error, gdb_client_data client_data)
5391 {
5392 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5393 }
5394
5395 /* Create/destroy the target events pipe. Returns previous state. */
5396
5397 static int
5398 linux_async_pipe (int enable)
5399 {
5400 int previous = (linux_nat_event_pipe[0] != -1);
5401
5402 if (previous != enable)
5403 {
5404 sigset_t prev_mask;
5405
5406 block_child_signals (&prev_mask);
5407
5408 if (enable)
5409 {
5410 if (pipe (linux_nat_event_pipe) == -1)
5411 internal_error (__FILE__, __LINE__,
5412 "creating event pipe failed.");
5413
5414 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5415 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5416 }
5417 else
5418 {
5419 close (linux_nat_event_pipe[0]);
5420 close (linux_nat_event_pipe[1]);
5421 linux_nat_event_pipe[0] = -1;
5422 linux_nat_event_pipe[1] = -1;
5423 }
5424
5425 restore_child_signals_mask (&prev_mask);
5426 }
5427
5428 return previous;
5429 }
5430
5431 /* target_async implementation. */
5432
5433 static void
5434 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5435 void *context), void *context)
5436 {
5437 if (callback != NULL)
5438 {
5439 async_client_callback = callback;
5440 async_client_context = context;
5441 if (!linux_async_pipe (1))
5442 {
5443 add_file_handler (linux_nat_event_pipe[0],
5444 handle_target_event, NULL);
5445 /* There may be pending events to handle. Tell the event loop
5446 to poll them. */
5447 async_file_mark ();
5448 }
5449 }
5450 else
5451 {
5452 async_client_callback = callback;
5453 async_client_context = context;
5454 delete_file_handler (linux_nat_event_pipe[0]);
5455 linux_async_pipe (0);
5456 }
5457 return;
5458 }
5459
5460 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5461 event came out. */
5462
5463 static int
5464 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5465 {
5466 if (!lwp->stopped)
5467 {
5468 ptid_t ptid = lwp->ptid;
5469
5470 if (debug_linux_nat)
5471 fprintf_unfiltered (gdb_stdlog,
5472 "LNSL: running -> suspending %s\n",
5473 target_pid_to_str (lwp->ptid));
5474
5475
5476 if (lwp->last_resume_kind == resume_stop)
5477 {
5478 if (debug_linux_nat)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "linux-nat: already stopping LWP %ld at "
5481 "GDB's request\n",
5482 ptid_get_lwp (lwp->ptid));
5483 return 0;
5484 }
5485
5486 stop_callback (lwp, NULL);
5487 lwp->last_resume_kind = resume_stop;
5488 }
5489 else
5490 {
5491 /* Already known to be stopped; do nothing. */
5492
5493 if (debug_linux_nat)
5494 {
5495 if (find_thread_ptid (lwp->ptid)->stop_requested)
5496 fprintf_unfiltered (gdb_stdlog,
5497 "LNSL: already stopped/stop_requested %s\n",
5498 target_pid_to_str (lwp->ptid));
5499 else
5500 fprintf_unfiltered (gdb_stdlog,
5501 "LNSL: already stopped/no "
5502 "stop_requested yet %s\n",
5503 target_pid_to_str (lwp->ptid));
5504 }
5505 }
5506 return 0;
5507 }
5508
5509 static void
5510 linux_nat_stop (ptid_t ptid)
5511 {
5512 if (non_stop)
5513 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5514 else
5515 linux_ops->to_stop (ptid);
5516 }
5517
5518 static void
5519 linux_nat_close (int quitting)
5520 {
5521 /* Unregister from the event loop. */
5522 if (target_is_async_p ())
5523 target_async (NULL, 0);
5524
5525 if (linux_ops->to_close)
5526 linux_ops->to_close (quitting);
5527 }
5528
5529 /* When requests are passed down from the linux-nat layer to the
5530 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5531 used. The address space pointer is stored in the inferior object,
5532 but the common code that is passed such ptid can't tell whether
5533 lwpid is a "main" process id or not (it assumes so). We reverse
5534 look up the "main" process id from the lwp here. */
5535
5536 struct address_space *
5537 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5538 {
5539 struct lwp_info *lwp;
5540 struct inferior *inf;
5541 int pid;
5542
5543 pid = GET_LWP (ptid);
5544 if (GET_LWP (ptid) == 0)
5545 {
5546 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5547 tgid. */
5548 lwp = find_lwp_pid (ptid);
5549 pid = GET_PID (lwp->ptid);
5550 }
5551 else
5552 {
5553 /* A (pid,lwpid,0) ptid. */
5554 pid = GET_PID (ptid);
5555 }
5556
5557 inf = find_inferior_pid (pid);
5558 gdb_assert (inf != NULL);
5559 return inf->aspace;
5560 }
5561
5562 int
5563 linux_nat_core_of_thread_1 (ptid_t ptid)
5564 {
5565 struct cleanup *back_to;
5566 char *filename;
5567 FILE *f;
5568 char *content = NULL;
5569 char *p;
5570 char *ts = 0;
5571 int content_read = 0;
5572 int i;
5573 int core;
5574
5575 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5576 GET_PID (ptid), GET_LWP (ptid));
5577 back_to = make_cleanup (xfree, filename);
5578
5579 f = fopen (filename, "r");
5580 if (!f)
5581 {
5582 do_cleanups (back_to);
5583 return -1;
5584 }
5585
5586 make_cleanup_fclose (f);
5587
5588 for (;;)
5589 {
5590 int n;
5591
5592 content = xrealloc (content, content_read + 1024);
5593 n = fread (content + content_read, 1, 1024, f);
5594 content_read += n;
5595 if (n < 1024)
5596 {
5597 content[content_read] = '\0';
5598 break;
5599 }
5600 }
5601
5602 make_cleanup (xfree, content);
5603
5604 p = strchr (content, '(');
5605
5606 /* Skip ")". */
5607 if (p != NULL)
5608 p = strchr (p, ')');
5609 if (p != NULL)
5610 p++;
5611
5612 /* If the first field after program name has index 0, then core number is
5613 the field with index 36. There's no constant for that anywhere. */
5614 if (p != NULL)
5615 p = strtok_r (p, " ", &ts);
5616 for (i = 0; p != NULL && i != 36; ++i)
5617 p = strtok_r (NULL, " ", &ts);
5618
5619 if (p == NULL || sscanf (p, "%d", &core) == 0)
5620 core = -1;
5621
5622 do_cleanups (back_to);
5623
5624 return core;
5625 }
5626
5627 /* Return the cached value of the processor core for thread PTID. */
5628
5629 int
5630 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5631 {
5632 struct lwp_info *info = find_lwp_pid (ptid);
5633
5634 if (info)
5635 return info->core;
5636 return -1;
5637 }
5638
5639 void
5640 linux_nat_add_target (struct target_ops *t)
5641 {
5642 /* Save the provided single-threaded target. We save this in a separate
5643 variable because another target we've inherited from (e.g. inf-ptrace)
5644 may have saved a pointer to T; we want to use it for the final
5645 process stratum target. */
5646 linux_ops_saved = *t;
5647 linux_ops = &linux_ops_saved;
5648
5649 /* Override some methods for multithreading. */
5650 t->to_create_inferior = linux_nat_create_inferior;
5651 t->to_attach = linux_nat_attach;
5652 t->to_detach = linux_nat_detach;
5653 t->to_resume = linux_nat_resume;
5654 t->to_wait = linux_nat_wait;
5655 t->to_pass_signals = linux_nat_pass_signals;
5656 t->to_xfer_partial = linux_nat_xfer_partial;
5657 t->to_kill = linux_nat_kill;
5658 t->to_mourn_inferior = linux_nat_mourn_inferior;
5659 t->to_thread_alive = linux_nat_thread_alive;
5660 t->to_pid_to_str = linux_nat_pid_to_str;
5661 t->to_thread_name = linux_nat_thread_name;
5662 t->to_has_thread_control = tc_schedlock;
5663 t->to_thread_address_space = linux_nat_thread_address_space;
5664 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5665 t->to_stopped_data_address = linux_nat_stopped_data_address;
5666
5667 t->to_can_async_p = linux_nat_can_async_p;
5668 t->to_is_async_p = linux_nat_is_async_p;
5669 t->to_supports_non_stop = linux_nat_supports_non_stop;
5670 t->to_async = linux_nat_async;
5671 t->to_terminal_inferior = linux_nat_terminal_inferior;
5672 t->to_terminal_ours = linux_nat_terminal_ours;
5673 t->to_close = linux_nat_close;
5674
5675 /* Methods for non-stop support. */
5676 t->to_stop = linux_nat_stop;
5677
5678 t->to_supports_multi_process = linux_nat_supports_multi_process;
5679
5680 t->to_core_of_thread = linux_nat_core_of_thread;
5681
5682 /* We don't change the stratum; this target will sit at
5683 process_stratum and thread_db will set at thread_stratum. This
5684 is a little strange, since this is a multi-threaded-capable
5685 target, but we want to be on the stack below thread_db, and we
5686 also want to be used for single-threaded processes. */
5687
5688 add_target (t);
5689 }
5690
5691 /* Register a method to call whenever a new thread is attached. */
5692 void
5693 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5694 {
5695 /* Save the pointer. We only support a single registered instance
5696 of the GNU/Linux native target, so we do not need to map this to
5697 T. */
5698 linux_nat_new_thread = new_thread;
5699 }
5700
5701 /* Register a method that converts a siginfo object between the layout
5702 that ptrace returns, and the layout in the architecture of the
5703 inferior. */
5704 void
5705 linux_nat_set_siginfo_fixup (struct target_ops *t,
5706 int (*siginfo_fixup) (struct siginfo *,
5707 gdb_byte *,
5708 int))
5709 {
5710 /* Save the pointer. */
5711 linux_nat_siginfo_fixup = siginfo_fixup;
5712 }
5713
5714 /* Return the saved siginfo associated with PTID. */
5715 struct siginfo *
5716 linux_nat_get_siginfo (ptid_t ptid)
5717 {
5718 struct lwp_info *lp = find_lwp_pid (ptid);
5719
5720 gdb_assert (lp != NULL);
5721
5722 return &lp->siginfo;
5723 }
5724
5725 /* Provide a prototype to silence -Wmissing-prototypes. */
5726 extern initialize_file_ftype _initialize_linux_nat;
5727
5728 void
5729 _initialize_linux_nat (void)
5730 {
5731 add_info ("proc", linux_nat_info_proc_cmd, _("\
5732 Show /proc process information about any running process.\n\
5733 Specify any process id, or use the program being debugged by default.\n\
5734 Specify any of the following keywords for detailed info:\n\
5735 mappings -- list of mapped memory regions.\n\
5736 stat -- list a bunch of random process info.\n\
5737 status -- list a different bunch of random process info.\n\
5738 all -- list all available /proc info."));
5739
5740 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5741 &debug_linux_nat, _("\
5742 Set debugging of GNU/Linux lwp module."), _("\
5743 Show debugging of GNU/Linux lwp module."), _("\
5744 Enables printf debugging output."),
5745 NULL,
5746 show_debug_linux_nat,
5747 &setdebuglist, &showdebuglist);
5748
5749 /* Save this mask as the default. */
5750 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5751
5752 /* Install a SIGCHLD handler. */
5753 sigchld_action.sa_handler = sigchld_handler;
5754 sigemptyset (&sigchld_action.sa_mask);
5755 sigchld_action.sa_flags = SA_RESTART;
5756
5757 /* Make it the default. */
5758 sigaction (SIGCHLD, &sigchld_action, NULL);
5759
5760 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5761 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5762 sigdelset (&suspend_mask, SIGCHLD);
5763
5764 sigemptyset (&blocked_mask);
5765
5766 add_setshow_boolean_cmd ("disable-randomization", class_support,
5767 &disable_randomization, _("\
5768 Set disabling of debuggee's virtual address space randomization."), _("\
5769 Show disabling of debuggee's virtual address space randomization."), _("\
5770 When this mode is on (which is the default), randomization of the virtual\n\
5771 address space is disabled. Standalone programs run with the randomization\n\
5772 enabled by default on some platforms."),
5773 &set_disable_randomization,
5774 &show_disable_randomization,
5775 &setlist, &showlist);
5776 }
5777 \f
5778
5779 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5780 the GNU/Linux Threads library and therefore doesn't really belong
5781 here. */
5782
5783 /* Read variable NAME in the target and return its value if found.
5784 Otherwise return zero. It is assumed that the type of the variable
5785 is `int'. */
5786
5787 static int
5788 get_signo (const char *name)
5789 {
5790 struct minimal_symbol *ms;
5791 int signo;
5792
5793 ms = lookup_minimal_symbol (name, NULL, NULL);
5794 if (ms == NULL)
5795 return 0;
5796
5797 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5798 sizeof (signo)) != 0)
5799 return 0;
5800
5801 return signo;
5802 }
5803
5804 /* Return the set of signals used by the threads library in *SET. */
5805
5806 void
5807 lin_thread_get_thread_signals (sigset_t *set)
5808 {
5809 struct sigaction action;
5810 int restart, cancel;
5811
5812 sigemptyset (&blocked_mask);
5813 sigemptyset (set);
5814
5815 restart = get_signo ("__pthread_sig_restart");
5816 cancel = get_signo ("__pthread_sig_cancel");
5817
5818 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5819 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5820 not provide any way for the debugger to query the signal numbers -
5821 fortunately they don't change! */
5822
5823 if (restart == 0)
5824 restart = __SIGRTMIN;
5825
5826 if (cancel == 0)
5827 cancel = __SIGRTMIN + 1;
5828
5829 sigaddset (set, restart);
5830 sigaddset (set, cancel);
5831
5832 /* The GNU/Linux Threads library makes terminating threads send a
5833 special "cancel" signal instead of SIGCHLD. Make sure we catch
5834 those (to prevent them from terminating GDB itself, which is
5835 likely to be their default action) and treat them the same way as
5836 SIGCHLD. */
5837
5838 action.sa_handler = sigchld_handler;
5839 sigemptyset (&action.sa_mask);
5840 action.sa_flags = SA_RESTART;
5841 sigaction (cancel, &action, NULL);
5842
5843 /* We block the "cancel" signal throughout this code ... */
5844 sigaddset (&blocked_mask, cancel);
5845 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5846
5847 /* ... except during a sigsuspend. */
5848 sigdelset (&suspend_mask, cancel);
5849 }
This page took 0.212569 seconds and 5 git commands to generate.