Debug output tweaks in the Linux target backends
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "nat/linux-ptrace.h"
34 #include "nat/linux-procfs.h"
35 #include "nat/linux-personality.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include <sys/stat.h> /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include <dirent.h>
57 #include "xml-support.h"
58 #include <sys/vfs.h>
59 #include "solib.h"
60 #include "nat/linux-osdata.h"
61 #include "linux-tdep.h"
62 #include "symfile.h"
63 #include "agent.h"
64 #include "tracepoint.h"
65 #include "buffer.h"
66 #include "target-descriptions.h"
67 #include "filestuff.h"
68 #include "objfiles.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
167 the use of the multi-threaded target. */
168 static struct target_ops *linux_ops;
169 static struct target_ops linux_ops_saved;
170
171 /* The method to call, if any, when a new thread is attached. */
172 static void (*linux_nat_new_thread) (struct lwp_info *);
173
174 /* The method to call, if any, when a new fork is attached. */
175 static linux_nat_new_fork_ftype *linux_nat_new_fork;
176
177 /* The method to call, if any, when a process is no longer
178 attached. */
179 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
180
181 /* Hook to call prior to resuming a thread. */
182 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
183
184 /* The method to call, if any, when the siginfo object needs to be
185 converted between the layout returned by ptrace, and the layout in
186 the architecture of the inferior. */
187 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
188 gdb_byte *,
189 int);
190
191 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
192 Called by our to_xfer_partial. */
193 static target_xfer_partial_ftype *super_xfer_partial;
194
195 /* The saved to_close method, inherited from inf-ptrace.c.
196 Called by our to_close. */
197 static void (*super_close) (struct target_ops *);
198
199 static unsigned int debug_linux_nat;
200 static void
201 show_debug_linux_nat (struct ui_file *file, int from_tty,
202 struct cmd_list_element *c, const char *value)
203 {
204 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
205 value);
206 }
207
208 struct simple_pid_list
209 {
210 int pid;
211 int status;
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Async mode support. */
217
218 /* The read/write ends of the pipe registered as waitable file in the
219 event loop. */
220 static int linux_nat_event_pipe[2] = { -1, -1 };
221
222 /* True if we're currently in async mode. */
223 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
224
225 /* Flush the event pipe. */
226
227 static void
228 async_file_flush (void)
229 {
230 int ret;
231 char buf;
232
233 do
234 {
235 ret = read (linux_nat_event_pipe[0], &buf, 1);
236 }
237 while (ret >= 0 || (ret == -1 && errno == EINTR));
238 }
239
240 /* Put something (anything, doesn't matter what, or how much) in event
241 pipe, so that the select/poll in the event-loop realizes we have
242 something to process. */
243
244 static void
245 async_file_mark (void)
246 {
247 int ret;
248
249 /* It doesn't really matter what the pipe contains, as long we end
250 up with something in it. Might as well flush the previous
251 left-overs. */
252 async_file_flush ();
253
254 do
255 {
256 ret = write (linux_nat_event_pipe[1], "+", 1);
257 }
258 while (ret == -1 && errno == EINTR);
259
260 /* Ignore EAGAIN. If the pipe is full, the event loop will already
261 be awakened anyway. */
262 }
263
264 static int kill_lwp (int lwpid, int signo);
265
266 static int stop_callback (struct lwp_info *lp, void *data);
267 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
268
269 static void block_child_signals (sigset_t *prev_mask);
270 static void restore_child_signals_mask (sigset_t *prev_mask);
271
272 struct lwp_info;
273 static struct lwp_info *add_lwp (ptid_t ptid);
274 static void purge_lwp_list (int pid);
275 static void delete_lwp (ptid_t ptid);
276 static struct lwp_info *find_lwp_pid (ptid_t ptid);
277
278 static int lwp_status_pending_p (struct lwp_info *lp);
279
280 static int check_stopped_by_breakpoint (struct lwp_info *lp);
281 static int sigtrap_is_event (int status);
282 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
283
284 \f
285 /* LWP accessors. */
286
287 /* See nat/linux-nat.h. */
288
289 ptid_t
290 ptid_of_lwp (struct lwp_info *lwp)
291 {
292 return lwp->ptid;
293 }
294
295 /* See nat/linux-nat.h. */
296
297 void
298 lwp_set_arch_private_info (struct lwp_info *lwp,
299 struct arch_lwp_info *info)
300 {
301 lwp->arch_private = info;
302 }
303
304 /* See nat/linux-nat.h. */
305
306 struct arch_lwp_info *
307 lwp_arch_private_info (struct lwp_info *lwp)
308 {
309 return lwp->arch_private;
310 }
311
312 /* See nat/linux-nat.h. */
313
314 int
315 lwp_is_stopped (struct lwp_info *lwp)
316 {
317 return lwp->stopped;
318 }
319
320 /* See nat/linux-nat.h. */
321
322 enum target_stop_reason
323 lwp_stop_reason (struct lwp_info *lwp)
324 {
325 return lwp->stop_reason;
326 }
327
328 \f
329 /* Trivial list manipulation functions to keep track of a list of
330 new stopped processes. */
331 static void
332 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
333 {
334 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
335
336 new_pid->pid = pid;
337 new_pid->status = status;
338 new_pid->next = *listp;
339 *listp = new_pid;
340 }
341
342 static int
343 in_pid_list_p (struct simple_pid_list *list, int pid)
344 {
345 struct simple_pid_list *p;
346
347 for (p = list; p != NULL; p = p->next)
348 if (p->pid == pid)
349 return 1;
350 return 0;
351 }
352
353 static int
354 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
355 {
356 struct simple_pid_list **p;
357
358 for (p = listp; *p != NULL; p = &(*p)->next)
359 if ((*p)->pid == pid)
360 {
361 struct simple_pid_list *next = (*p)->next;
362
363 *statusp = (*p)->status;
364 xfree (*p);
365 *p = next;
366 return 1;
367 }
368 return 0;
369 }
370
371 /* Initialize ptrace warnings and check for supported ptrace
372 features given PID.
373
374 ATTACHED should be nonzero iff we attached to the inferior. */
375
376 static void
377 linux_init_ptrace (pid_t pid, int attached)
378 {
379 linux_enable_event_reporting (pid, attached);
380 linux_ptrace_init_warnings ();
381 }
382
383 static void
384 linux_child_post_attach (struct target_ops *self, int pid)
385 {
386 linux_init_ptrace (pid, 1);
387 }
388
389 static void
390 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
391 {
392 linux_init_ptrace (ptid_get_pid (ptid), 0);
393 }
394
395 /* Return the number of known LWPs in the tgid given by PID. */
396
397 static int
398 num_lwps (int pid)
399 {
400 int count = 0;
401 struct lwp_info *lp;
402
403 for (lp = lwp_list; lp; lp = lp->next)
404 if (ptid_get_pid (lp->ptid) == pid)
405 count++;
406
407 return count;
408 }
409
410 /* Call delete_lwp with prototype compatible for make_cleanup. */
411
412 static void
413 delete_lwp_cleanup (void *lp_voidp)
414 {
415 struct lwp_info *lp = lp_voidp;
416
417 delete_lwp (lp->ptid);
418 }
419
420 /* Target hook for follow_fork. On entry inferior_ptid must be the
421 ptid of the followed inferior. At return, inferior_ptid will be
422 unchanged. */
423
424 static int
425 linux_child_follow_fork (struct target_ops *ops, int follow_child,
426 int detach_fork)
427 {
428 if (!follow_child)
429 {
430 struct lwp_info *child_lp = NULL;
431 int status = W_STOPCODE (0);
432 struct cleanup *old_chain;
433 int has_vforked;
434 ptid_t parent_ptid, child_ptid;
435 int parent_pid, child_pid;
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441 parent_pid = ptid_get_lwp (parent_ptid);
442 child_pid = ptid_get_lwp (child_ptid);
443
444 /* We're already attached to the parent, by default. */
445 old_chain = save_inferior_ptid ();
446 inferior_ptid = child_ptid;
447 child_lp = add_lwp (inferior_ptid);
448 child_lp->stopped = 1;
449 child_lp->last_resume_kind = resume_stop;
450
451 /* Detach new forked process? */
452 if (detach_fork)
453 {
454 make_cleanup (delete_lwp_cleanup, child_lp);
455
456 if (linux_nat_prepare_to_resume != NULL)
457 linux_nat_prepare_to_resume (child_lp);
458
459 /* When debugging an inferior in an architecture that supports
460 hardware single stepping on a kernel without commit
461 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
462 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
463 set if the parent process had them set.
464 To work around this, single step the child process
465 once before detaching to clear the flags. */
466
467 if (!gdbarch_software_single_step_p (target_thread_architecture
468 (child_lp->ptid)))
469 {
470 linux_disable_event_reporting (child_pid);
471 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
472 perror_with_name (_("Couldn't do single step"));
473 if (my_waitpid (child_pid, &status, 0) < 0)
474 perror_with_name (_("Couldn't wait vfork process"));
475 }
476
477 if (WIFSTOPPED (status))
478 {
479 int signo;
480
481 signo = WSTOPSIG (status);
482 if (signo != 0
483 && !signal_pass_state (gdb_signal_from_host (signo)))
484 signo = 0;
485 ptrace (PTRACE_DETACH, child_pid, 0, signo);
486 }
487
488 /* Resets value of inferior_ptid to parent ptid. */
489 do_cleanups (old_chain);
490 }
491 else
492 {
493 /* Let the thread_db layer learn about this new process. */
494 check_for_thread_db ();
495 }
496
497 do_cleanups (old_chain);
498
499 if (has_vforked)
500 {
501 struct lwp_info *parent_lp;
502
503 parent_lp = find_lwp_pid (parent_ptid);
504 gdb_assert (linux_supports_tracefork () >= 0);
505
506 if (linux_supports_tracevforkdone ())
507 {
508 if (debug_linux_nat)
509 fprintf_unfiltered (gdb_stdlog,
510 "LCFF: waiting for VFORK_DONE on %d\n",
511 parent_pid);
512 parent_lp->stopped = 1;
513
514 /* We'll handle the VFORK_DONE event like any other
515 event, in target_wait. */
516 }
517 else
518 {
519 /* We can't insert breakpoints until the child has
520 finished with the shared memory region. We need to
521 wait until that happens. Ideal would be to just
522 call:
523 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
524 - waitpid (parent_pid, &status, __WALL);
525 However, most architectures can't handle a syscall
526 being traced on the way out if it wasn't traced on
527 the way in.
528
529 We might also think to loop, continuing the child
530 until it exits or gets a SIGTRAP. One problem is
531 that the child might call ptrace with PTRACE_TRACEME.
532
533 There's no simple and reliable way to figure out when
534 the vforked child will be done with its copy of the
535 shared memory. We could step it out of the syscall,
536 two instructions, let it go, and then single-step the
537 parent once. When we have hardware single-step, this
538 would work; with software single-step it could still
539 be made to work but we'd have to be able to insert
540 single-step breakpoints in the child, and we'd have
541 to insert -just- the single-step breakpoint in the
542 parent. Very awkward.
543
544 In the end, the best we can do is to make sure it
545 runs for a little while. Hopefully it will be out of
546 range of any breakpoints we reinsert. Usually this
547 is only the single-step breakpoint at vfork's return
548 point. */
549
550 if (debug_linux_nat)
551 fprintf_unfiltered (gdb_stdlog,
552 "LCFF: no VFORK_DONE "
553 "support, sleeping a bit\n");
554
555 usleep (10000);
556
557 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
558 and leave it pending. The next linux_nat_resume call
559 will notice a pending event, and bypasses actually
560 resuming the inferior. */
561 parent_lp->status = 0;
562 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
563 parent_lp->stopped = 1;
564
565 /* If we're in async mode, need to tell the event loop
566 there's something here to process. */
567 if (target_is_async_p ())
568 async_file_mark ();
569 }
570 }
571 }
572 else
573 {
574 struct lwp_info *child_lp;
575
576 child_lp = add_lwp (inferior_ptid);
577 child_lp->stopped = 1;
578 child_lp->last_resume_kind = resume_stop;
579
580 /* Let the thread_db layer learn about this new process. */
581 check_for_thread_db ();
582 }
583
584 return 0;
585 }
586
587 \f
588 static int
589 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
590 {
591 return !linux_supports_tracefork ();
592 }
593
594 static int
595 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
596 {
597 return 0;
598 }
599
600 static int
601 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
602 {
603 return !linux_supports_tracefork ();
604 }
605
606 static int
607 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
608 {
609 return 0;
610 }
611
612 static int
613 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
614 {
615 return !linux_supports_tracefork ();
616 }
617
618 static int
619 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
620 {
621 return 0;
622 }
623
624 static int
625 linux_child_set_syscall_catchpoint (struct target_ops *self,
626 int pid, int needed, int any_count,
627 int table_size, int *table)
628 {
629 if (!linux_supports_tracesysgood ())
630 return 1;
631
632 /* On GNU/Linux, we ignore the arguments. It means that we only
633 enable the syscall catchpoints, but do not disable them.
634
635 Also, we do not use the `table' information because we do not
636 filter system calls here. We let GDB do the logic for us. */
637 return 0;
638 }
639
640 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
641 are processes sharing the same VM space. A multi-threaded process
642 is basically a group of such processes. However, such a grouping
643 is almost entirely a user-space issue; the kernel doesn't enforce
644 such a grouping at all (this might change in the future). In
645 general, we'll rely on the threads library (i.e. the GNU/Linux
646 Threads library) to provide such a grouping.
647
648 It is perfectly well possible to write a multi-threaded application
649 without the assistance of a threads library, by using the clone
650 system call directly. This module should be able to give some
651 rudimentary support for debugging such applications if developers
652 specify the CLONE_PTRACE flag in the clone system call, and are
653 using the Linux kernel 2.4 or above.
654
655 Note that there are some peculiarities in GNU/Linux that affect
656 this code:
657
658 - In general one should specify the __WCLONE flag to waitpid in
659 order to make it report events for any of the cloned processes
660 (and leave it out for the initial process). However, if a cloned
661 process has exited the exit status is only reported if the
662 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
663 we cannot use it since GDB must work on older systems too.
664
665 - When a traced, cloned process exits and is waited for by the
666 debugger, the kernel reassigns it to the original parent and
667 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
668 library doesn't notice this, which leads to the "zombie problem":
669 When debugged a multi-threaded process that spawns a lot of
670 threads will run out of processes, even if the threads exit,
671 because the "zombies" stay around. */
672
673 /* List of known LWPs. */
674 struct lwp_info *lwp_list;
675 \f
676
677 /* Original signal mask. */
678 static sigset_t normal_mask;
679
680 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
681 _initialize_linux_nat. */
682 static sigset_t suspend_mask;
683
684 /* Signals to block to make that sigsuspend work. */
685 static sigset_t blocked_mask;
686
687 /* SIGCHLD action. */
688 struct sigaction sigchld_action;
689
690 /* Block child signals (SIGCHLD and linux threads signals), and store
691 the previous mask in PREV_MASK. */
692
693 static void
694 block_child_signals (sigset_t *prev_mask)
695 {
696 /* Make sure SIGCHLD is blocked. */
697 if (!sigismember (&blocked_mask, SIGCHLD))
698 sigaddset (&blocked_mask, SIGCHLD);
699
700 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
701 }
702
703 /* Restore child signals mask, previously returned by
704 block_child_signals. */
705
706 static void
707 restore_child_signals_mask (sigset_t *prev_mask)
708 {
709 sigprocmask (SIG_SETMASK, prev_mask, NULL);
710 }
711
712 /* Mask of signals to pass directly to the inferior. */
713 static sigset_t pass_mask;
714
715 /* Update signals to pass to the inferior. */
716 static void
717 linux_nat_pass_signals (struct target_ops *self,
718 int numsigs, unsigned char *pass_signals)
719 {
720 int signo;
721
722 sigemptyset (&pass_mask);
723
724 for (signo = 1; signo < NSIG; signo++)
725 {
726 int target_signo = gdb_signal_from_host (signo);
727 if (target_signo < numsigs && pass_signals[target_signo])
728 sigaddset (&pass_mask, signo);
729 }
730 }
731
732 \f
733
734 /* Prototypes for local functions. */
735 static int stop_wait_callback (struct lwp_info *lp, void *data);
736 static int linux_thread_alive (ptid_t ptid);
737 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
738 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
739
740 \f
741
742 /* Destroy and free LP. */
743
744 static void
745 lwp_free (struct lwp_info *lp)
746 {
747 xfree (lp->arch_private);
748 xfree (lp);
749 }
750
751 /* Remove all LWPs belong to PID from the lwp list. */
752
753 static void
754 purge_lwp_list (int pid)
755 {
756 struct lwp_info *lp, *lpprev, *lpnext;
757
758 lpprev = NULL;
759
760 for (lp = lwp_list; lp; lp = lpnext)
761 {
762 lpnext = lp->next;
763
764 if (ptid_get_pid (lp->ptid) == pid)
765 {
766 if (lp == lwp_list)
767 lwp_list = lp->next;
768 else
769 lpprev->next = lp->next;
770
771 lwp_free (lp);
772 }
773 else
774 lpprev = lp;
775 }
776 }
777
778 /* Add the LWP specified by PTID to the list. PTID is the first LWP
779 in the process. Return a pointer to the structure describing the
780 new LWP.
781
782 This differs from add_lwp in that we don't let the arch specific
783 bits know about this new thread. Current clients of this callback
784 take the opportunity to install watchpoints in the new thread, and
785 we shouldn't do that for the first thread. If we're spawning a
786 child ("run"), the thread executes the shell wrapper first, and we
787 shouldn't touch it until it execs the program we want to debug.
788 For "attach", it'd be okay to call the callback, but it's not
789 necessary, because watchpoints can't yet have been inserted into
790 the inferior. */
791
792 static struct lwp_info *
793 add_initial_lwp (ptid_t ptid)
794 {
795 struct lwp_info *lp;
796
797 gdb_assert (ptid_lwp_p (ptid));
798
799 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
800
801 memset (lp, 0, sizeof (struct lwp_info));
802
803 lp->last_resume_kind = resume_continue;
804 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
805
806 lp->ptid = ptid;
807 lp->core = -1;
808
809 lp->next = lwp_list;
810 lwp_list = lp;
811
812 return lp;
813 }
814
815 /* Add the LWP specified by PID to the list. Return a pointer to the
816 structure describing the new LWP. The LWP should already be
817 stopped. */
818
819 static struct lwp_info *
820 add_lwp (ptid_t ptid)
821 {
822 struct lwp_info *lp;
823
824 lp = add_initial_lwp (ptid);
825
826 /* Let the arch specific bits know about this new thread. Current
827 clients of this callback take the opportunity to install
828 watchpoints in the new thread. We don't do this for the first
829 thread though. See add_initial_lwp. */
830 if (linux_nat_new_thread != NULL)
831 linux_nat_new_thread (lp);
832
833 return lp;
834 }
835
836 /* Remove the LWP specified by PID from the list. */
837
838 static void
839 delete_lwp (ptid_t ptid)
840 {
841 struct lwp_info *lp, *lpprev;
842
843 lpprev = NULL;
844
845 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
846 if (ptid_equal (lp->ptid, ptid))
847 break;
848
849 if (!lp)
850 return;
851
852 if (lpprev)
853 lpprev->next = lp->next;
854 else
855 lwp_list = lp->next;
856
857 lwp_free (lp);
858 }
859
860 /* Return a pointer to the structure describing the LWP corresponding
861 to PID. If no corresponding LWP could be found, return NULL. */
862
863 static struct lwp_info *
864 find_lwp_pid (ptid_t ptid)
865 {
866 struct lwp_info *lp;
867 int lwp;
868
869 if (ptid_lwp_p (ptid))
870 lwp = ptid_get_lwp (ptid);
871 else
872 lwp = ptid_get_pid (ptid);
873
874 for (lp = lwp_list; lp; lp = lp->next)
875 if (lwp == ptid_get_lwp (lp->ptid))
876 return lp;
877
878 return NULL;
879 }
880
881 /* See nat/linux-nat.h. */
882
883 struct lwp_info *
884 iterate_over_lwps (ptid_t filter,
885 iterate_over_lwps_ftype callback,
886 void *data)
887 {
888 struct lwp_info *lp, *lpnext;
889
890 for (lp = lwp_list; lp; lp = lpnext)
891 {
892 lpnext = lp->next;
893
894 if (ptid_match (lp->ptid, filter))
895 {
896 if ((*callback) (lp, data) != 0)
897 return lp;
898 }
899 }
900
901 return NULL;
902 }
903
904 /* Update our internal state when changing from one checkpoint to
905 another indicated by NEW_PTID. We can only switch single-threaded
906 applications, so we only create one new LWP, and the previous list
907 is discarded. */
908
909 void
910 linux_nat_switch_fork (ptid_t new_ptid)
911 {
912 struct lwp_info *lp;
913
914 purge_lwp_list (ptid_get_pid (inferior_ptid));
915
916 lp = add_lwp (new_ptid);
917 lp->stopped = 1;
918
919 /* This changes the thread's ptid while preserving the gdb thread
920 num. Also changes the inferior pid, while preserving the
921 inferior num. */
922 thread_change_ptid (inferior_ptid, new_ptid);
923
924 /* We've just told GDB core that the thread changed target id, but,
925 in fact, it really is a different thread, with different register
926 contents. */
927 registers_changed ();
928 }
929
930 /* Handle the exit of a single thread LP. */
931
932 static void
933 exit_lwp (struct lwp_info *lp)
934 {
935 struct thread_info *th = find_thread_ptid (lp->ptid);
936
937 if (th)
938 {
939 if (print_thread_events)
940 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
941
942 delete_thread (lp->ptid);
943 }
944
945 delete_lwp (lp->ptid);
946 }
947
948 /* Wait for the LWP specified by LP, which we have just attached to.
949 Returns a wait status for that LWP, to cache. */
950
951 static int
952 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
953 int *signalled)
954 {
955 pid_t new_pid, pid = ptid_get_lwp (ptid);
956 int status;
957
958 if (linux_proc_pid_is_stopped (pid))
959 {
960 if (debug_linux_nat)
961 fprintf_unfiltered (gdb_stdlog,
962 "LNPAW: Attaching to a stopped process\n");
963
964 /* The process is definitely stopped. It is in a job control
965 stop, unless the kernel predates the TASK_STOPPED /
966 TASK_TRACED distinction, in which case it might be in a
967 ptrace stop. Make sure it is in a ptrace stop; from there we
968 can kill it, signal it, et cetera.
969
970 First make sure there is a pending SIGSTOP. Since we are
971 already attached, the process can not transition from stopped
972 to running without a PTRACE_CONT; so we know this signal will
973 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
974 probably already in the queue (unless this kernel is old
975 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
976 is not an RT signal, it can only be queued once. */
977 kill_lwp (pid, SIGSTOP);
978
979 /* Finally, resume the stopped process. This will deliver the SIGSTOP
980 (or a higher priority signal, just like normal PTRACE_ATTACH). */
981 ptrace (PTRACE_CONT, pid, 0, 0);
982 }
983
984 /* Make sure the initial process is stopped. The user-level threads
985 layer might want to poke around in the inferior, and that won't
986 work if things haven't stabilized yet. */
987 new_pid = my_waitpid (pid, &status, 0);
988 if (new_pid == -1 && errno == ECHILD)
989 {
990 if (first)
991 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
992
993 /* Try again with __WCLONE to check cloned processes. */
994 new_pid = my_waitpid (pid, &status, __WCLONE);
995 *cloned = 1;
996 }
997
998 gdb_assert (pid == new_pid);
999
1000 if (!WIFSTOPPED (status))
1001 {
1002 /* The pid we tried to attach has apparently just exited. */
1003 if (debug_linux_nat)
1004 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1005 pid, status_to_str (status));
1006 return status;
1007 }
1008
1009 if (WSTOPSIG (status) != SIGSTOP)
1010 {
1011 *signalled = 1;
1012 if (debug_linux_nat)
1013 fprintf_unfiltered (gdb_stdlog,
1014 "LNPAW: Received %s after attaching\n",
1015 status_to_str (status));
1016 }
1017
1018 return status;
1019 }
1020
1021 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1022 the new LWP could not be attached, or 1 if we're already auto
1023 attached to this thread, but haven't processed the
1024 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1025 its existance, without considering it an error. */
1026
1027 int
1028 lin_lwp_attach_lwp (ptid_t ptid)
1029 {
1030 struct lwp_info *lp;
1031 int lwpid;
1032
1033 gdb_assert (ptid_lwp_p (ptid));
1034
1035 lp = find_lwp_pid (ptid);
1036 lwpid = ptid_get_lwp (ptid);
1037
1038 /* We assume that we're already attached to any LWP that is already
1039 in our list of LWPs. If we're not seeing exit events from threads
1040 and we've had PID wraparound since we last tried to stop all threads,
1041 this assumption might be wrong; fortunately, this is very unlikely
1042 to happen. */
1043 if (lp == NULL)
1044 {
1045 int status, cloned = 0, signalled = 0;
1046
1047 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1048 {
1049 if (linux_supports_tracefork ())
1050 {
1051 /* If we haven't stopped all threads when we get here,
1052 we may have seen a thread listed in thread_db's list,
1053 but not processed the PTRACE_EVENT_CLONE yet. If
1054 that's the case, ignore this new thread, and let
1055 normal event handling discover it later. */
1056 if (in_pid_list_p (stopped_pids, lwpid))
1057 {
1058 /* We've already seen this thread stop, but we
1059 haven't seen the PTRACE_EVENT_CLONE extended
1060 event yet. */
1061 if (debug_linux_nat)
1062 fprintf_unfiltered (gdb_stdlog,
1063 "LLAL: attach failed, but already seen "
1064 "this thread %s stop\n",
1065 target_pid_to_str (ptid));
1066 return 1;
1067 }
1068 else
1069 {
1070 int new_pid;
1071 int status;
1072
1073 if (debug_linux_nat)
1074 fprintf_unfiltered (gdb_stdlog,
1075 "LLAL: attach failed, and haven't seen "
1076 "this thread %s stop yet\n",
1077 target_pid_to_str (ptid));
1078
1079 /* We may or may not be attached to the LWP already.
1080 Try waitpid on it. If that errors, we're not
1081 attached to the LWP yet. Otherwise, we're
1082 already attached. */
1083 gdb_assert (lwpid > 0);
1084 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1085 if (new_pid == -1 && errno == ECHILD)
1086 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1087 if (new_pid != -1)
1088 {
1089 if (new_pid == 0)
1090 {
1091 /* The child hasn't stopped for its initial
1092 SIGSTOP stop yet. */
1093 if (debug_linux_nat)
1094 fprintf_unfiltered (gdb_stdlog,
1095 "LLAL: child hasn't "
1096 "stopped yet\n");
1097 }
1098 else if (WIFSTOPPED (status))
1099 {
1100 if (debug_linux_nat)
1101 fprintf_unfiltered (gdb_stdlog,
1102 "LLAL: adding to stopped_pids\n");
1103 add_to_pid_list (&stopped_pids, lwpid, status);
1104 }
1105 return 1;
1106 }
1107 }
1108 }
1109
1110 /* If we fail to attach to the thread, issue a warning,
1111 but continue. One way this can happen is if thread
1112 creation is interrupted; as of Linux kernel 2.6.19, a
1113 bug may place threads in the thread list and then fail
1114 to create them. */
1115 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1116 safe_strerror (errno));
1117 return -1;
1118 }
1119
1120 if (debug_linux_nat)
1121 fprintf_unfiltered (gdb_stdlog,
1122 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1123 target_pid_to_str (ptid));
1124
1125 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1126 if (!WIFSTOPPED (status))
1127 return 1;
1128
1129 lp = add_lwp (ptid);
1130 lp->stopped = 1;
1131 lp->last_resume_kind = resume_stop;
1132 lp->cloned = cloned;
1133 lp->signalled = signalled;
1134 if (WSTOPSIG (status) != SIGSTOP)
1135 {
1136 lp->resumed = 1;
1137 lp->status = status;
1138 }
1139
1140 target_post_attach (ptid_get_lwp (lp->ptid));
1141
1142 if (debug_linux_nat)
1143 {
1144 fprintf_unfiltered (gdb_stdlog,
1145 "LLAL: waitpid %s received %s\n",
1146 target_pid_to_str (ptid),
1147 status_to_str (status));
1148 }
1149 }
1150
1151 return 0;
1152 }
1153
1154 static void
1155 linux_nat_create_inferior (struct target_ops *ops,
1156 char *exec_file, char *allargs, char **env,
1157 int from_tty)
1158 {
1159 struct cleanup *restore_personality
1160 = maybe_disable_address_space_randomization (disable_randomization);
1161
1162 /* The fork_child mechanism is synchronous and calls target_wait, so
1163 we have to mask the async mode. */
1164
1165 /* Make sure we report all signals during startup. */
1166 linux_nat_pass_signals (ops, 0, NULL);
1167
1168 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1169
1170 do_cleanups (restore_personality);
1171 }
1172
1173 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1174 already attached. Returns true if a new LWP is found, false
1175 otherwise. */
1176
1177 static int
1178 attach_proc_task_lwp_callback (ptid_t ptid)
1179 {
1180 struct lwp_info *lp;
1181
1182 /* Ignore LWPs we're already attached to. */
1183 lp = find_lwp_pid (ptid);
1184 if (lp == NULL)
1185 {
1186 int lwpid = ptid_get_lwp (ptid);
1187
1188 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1189 {
1190 int err = errno;
1191
1192 /* Be quiet if we simply raced with the thread exiting.
1193 EPERM is returned if the thread's task still exists, and
1194 is marked as exited or zombie, as well as other
1195 conditions, so in that case, confirm the status in
1196 /proc/PID/status. */
1197 if (err == ESRCH
1198 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1199 {
1200 if (debug_linux_nat)
1201 {
1202 fprintf_unfiltered (gdb_stdlog,
1203 "Cannot attach to lwp %d: "
1204 "thread is gone (%d: %s)\n",
1205 lwpid, err, safe_strerror (err));
1206 }
1207 }
1208 else
1209 {
1210 warning (_("Cannot attach to lwp %d: %s"),
1211 lwpid,
1212 linux_ptrace_attach_fail_reason_string (ptid,
1213 err));
1214 }
1215 }
1216 else
1217 {
1218 if (debug_linux_nat)
1219 fprintf_unfiltered (gdb_stdlog,
1220 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1221 target_pid_to_str (ptid));
1222
1223 lp = add_lwp (ptid);
1224 lp->cloned = 1;
1225
1226 /* The next time we wait for this LWP we'll see a SIGSTOP as
1227 PTRACE_ATTACH brings it to a halt. */
1228 lp->signalled = 1;
1229
1230 /* We need to wait for a stop before being able to make the
1231 next ptrace call on this LWP. */
1232 lp->must_set_ptrace_flags = 1;
1233 }
1234
1235 return 1;
1236 }
1237 return 0;
1238 }
1239
1240 static void
1241 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1242 {
1243 struct lwp_info *lp;
1244 int status;
1245 ptid_t ptid;
1246
1247 /* Make sure we report all signals during attach. */
1248 linux_nat_pass_signals (ops, 0, NULL);
1249
1250 TRY
1251 {
1252 linux_ops->to_attach (ops, args, from_tty);
1253 }
1254 CATCH (ex, RETURN_MASK_ERROR)
1255 {
1256 pid_t pid = parse_pid_to_attach (args);
1257 struct buffer buffer;
1258 char *message, *buffer_s;
1259
1260 message = xstrdup (ex.message);
1261 make_cleanup (xfree, message);
1262
1263 buffer_init (&buffer);
1264 linux_ptrace_attach_fail_reason (pid, &buffer);
1265
1266 buffer_grow_str0 (&buffer, "");
1267 buffer_s = buffer_finish (&buffer);
1268 make_cleanup (xfree, buffer_s);
1269
1270 if (*buffer_s != '\0')
1271 throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1272 else
1273 throw_error (ex.error, "%s", message);
1274 }
1275 END_CATCH
1276
1277 /* The ptrace base target adds the main thread with (pid,0,0)
1278 format. Decorate it with lwp info. */
1279 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1280 ptid_get_pid (inferior_ptid),
1281 0);
1282 thread_change_ptid (inferior_ptid, ptid);
1283
1284 /* Add the initial process as the first LWP to the list. */
1285 lp = add_initial_lwp (ptid);
1286
1287 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1288 &lp->signalled);
1289 if (!WIFSTOPPED (status))
1290 {
1291 if (WIFEXITED (status))
1292 {
1293 int exit_code = WEXITSTATUS (status);
1294
1295 target_terminal_ours ();
1296 target_mourn_inferior ();
1297 if (exit_code == 0)
1298 error (_("Unable to attach: program exited normally."));
1299 else
1300 error (_("Unable to attach: program exited with code %d."),
1301 exit_code);
1302 }
1303 else if (WIFSIGNALED (status))
1304 {
1305 enum gdb_signal signo;
1306
1307 target_terminal_ours ();
1308 target_mourn_inferior ();
1309
1310 signo = gdb_signal_from_host (WTERMSIG (status));
1311 error (_("Unable to attach: program terminated with signal "
1312 "%s, %s."),
1313 gdb_signal_to_name (signo),
1314 gdb_signal_to_string (signo));
1315 }
1316
1317 internal_error (__FILE__, __LINE__,
1318 _("unexpected status %d for PID %ld"),
1319 status, (long) ptid_get_lwp (ptid));
1320 }
1321
1322 lp->stopped = 1;
1323
1324 /* Save the wait status to report later. */
1325 lp->resumed = 1;
1326 if (debug_linux_nat)
1327 fprintf_unfiltered (gdb_stdlog,
1328 "LNA: waitpid %ld, saving status %s\n",
1329 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1330
1331 lp->status = status;
1332
1333 /* We must attach to every LWP. If /proc is mounted, use that to
1334 find them now. The inferior may be using raw clone instead of
1335 using pthreads. But even if it is using pthreads, thread_db
1336 walks structures in the inferior's address space to find the list
1337 of threads/LWPs, and those structures may well be corrupted.
1338 Note that once thread_db is loaded, we'll still use it to list
1339 threads and associate pthread info with each LWP. */
1340 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1341 attach_proc_task_lwp_callback);
1342
1343 if (target_can_async_p ())
1344 target_async (inferior_event_handler, 0);
1345 }
1346
1347 /* Get pending status of LP. */
1348 static int
1349 get_pending_status (struct lwp_info *lp, int *status)
1350 {
1351 enum gdb_signal signo = GDB_SIGNAL_0;
1352
1353 /* If we paused threads momentarily, we may have stored pending
1354 events in lp->status or lp->waitstatus (see stop_wait_callback),
1355 and GDB core hasn't seen any signal for those threads.
1356 Otherwise, the last signal reported to the core is found in the
1357 thread object's stop_signal.
1358
1359 There's a corner case that isn't handled here at present. Only
1360 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1361 stop_signal make sense as a real signal to pass to the inferior.
1362 Some catchpoint related events, like
1363 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1364 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1365 those traps are debug API (ptrace in our case) related and
1366 induced; the inferior wouldn't see them if it wasn't being
1367 traced. Hence, we should never pass them to the inferior, even
1368 when set to pass state. Since this corner case isn't handled by
1369 infrun.c when proceeding with a signal, for consistency, neither
1370 do we handle it here (or elsewhere in the file we check for
1371 signal pass state). Normally SIGTRAP isn't set to pass state, so
1372 this is really a corner case. */
1373
1374 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1375 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1376 else if (lp->status)
1377 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1378 else if (non_stop && !is_executing (lp->ptid))
1379 {
1380 struct thread_info *tp = find_thread_ptid (lp->ptid);
1381
1382 signo = tp->suspend.stop_signal;
1383 }
1384 else if (!non_stop)
1385 {
1386 struct target_waitstatus last;
1387 ptid_t last_ptid;
1388
1389 get_last_target_status (&last_ptid, &last);
1390
1391 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1392 {
1393 struct thread_info *tp = find_thread_ptid (lp->ptid);
1394
1395 signo = tp->suspend.stop_signal;
1396 }
1397 }
1398
1399 *status = 0;
1400
1401 if (signo == GDB_SIGNAL_0)
1402 {
1403 if (debug_linux_nat)
1404 fprintf_unfiltered (gdb_stdlog,
1405 "GPT: lwp %s has no pending signal\n",
1406 target_pid_to_str (lp->ptid));
1407 }
1408 else if (!signal_pass_state (signo))
1409 {
1410 if (debug_linux_nat)
1411 fprintf_unfiltered (gdb_stdlog,
1412 "GPT: lwp %s had signal %s, "
1413 "but it is in no pass state\n",
1414 target_pid_to_str (lp->ptid),
1415 gdb_signal_to_string (signo));
1416 }
1417 else
1418 {
1419 *status = W_STOPCODE (gdb_signal_to_host (signo));
1420
1421 if (debug_linux_nat)
1422 fprintf_unfiltered (gdb_stdlog,
1423 "GPT: lwp %s has pending signal %s\n",
1424 target_pid_to_str (lp->ptid),
1425 gdb_signal_to_string (signo));
1426 }
1427
1428 return 0;
1429 }
1430
1431 static int
1432 detach_callback (struct lwp_info *lp, void *data)
1433 {
1434 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1435
1436 if (debug_linux_nat && lp->status)
1437 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1438 strsignal (WSTOPSIG (lp->status)),
1439 target_pid_to_str (lp->ptid));
1440
1441 /* If there is a pending SIGSTOP, get rid of it. */
1442 if (lp->signalled)
1443 {
1444 if (debug_linux_nat)
1445 fprintf_unfiltered (gdb_stdlog,
1446 "DC: Sending SIGCONT to %s\n",
1447 target_pid_to_str (lp->ptid));
1448
1449 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1450 lp->signalled = 0;
1451 }
1452
1453 /* We don't actually detach from the LWP that has an id equal to the
1454 overall process id just yet. */
1455 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1456 {
1457 int status = 0;
1458
1459 /* Pass on any pending signal for this LWP. */
1460 get_pending_status (lp, &status);
1461
1462 if (linux_nat_prepare_to_resume != NULL)
1463 linux_nat_prepare_to_resume (lp);
1464 errno = 0;
1465 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1466 WSTOPSIG (status)) < 0)
1467 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1468 safe_strerror (errno));
1469
1470 if (debug_linux_nat)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1473 target_pid_to_str (lp->ptid),
1474 strsignal (WSTOPSIG (status)));
1475
1476 delete_lwp (lp->ptid);
1477 }
1478
1479 return 0;
1480 }
1481
1482 static void
1483 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1484 {
1485 int pid;
1486 int status;
1487 struct lwp_info *main_lwp;
1488
1489 pid = ptid_get_pid (inferior_ptid);
1490
1491 /* Don't unregister from the event loop, as there may be other
1492 inferiors running. */
1493
1494 /* Stop all threads before detaching. ptrace requires that the
1495 thread is stopped to sucessfully detach. */
1496 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1497 /* ... and wait until all of them have reported back that
1498 they're no longer running. */
1499 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1500
1501 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1502
1503 /* Only the initial process should be left right now. */
1504 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1505
1506 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1507
1508 /* Pass on any pending signal for the last LWP. */
1509 if ((args == NULL || *args == '\0')
1510 && get_pending_status (main_lwp, &status) != -1
1511 && WIFSTOPPED (status))
1512 {
1513 char *tem;
1514
1515 /* Put the signal number in ARGS so that inf_ptrace_detach will
1516 pass it along with PTRACE_DETACH. */
1517 tem = alloca (8);
1518 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status));
1519 args = tem;
1520 if (debug_linux_nat)
1521 fprintf_unfiltered (gdb_stdlog,
1522 "LND: Sending signal %s to %s\n",
1523 args,
1524 target_pid_to_str (main_lwp->ptid));
1525 }
1526
1527 if (linux_nat_prepare_to_resume != NULL)
1528 linux_nat_prepare_to_resume (main_lwp);
1529 delete_lwp (main_lwp->ptid);
1530
1531 if (forks_exist_p ())
1532 {
1533 /* Multi-fork case. The current inferior_ptid is being detached
1534 from, but there are other viable forks to debug. Detach from
1535 the current fork, and context-switch to the first
1536 available. */
1537 linux_fork_detach (args, from_tty);
1538 }
1539 else
1540 linux_ops->to_detach (ops, args, from_tty);
1541 }
1542
1543 /* Resume execution of the inferior process. If STEP is nonzero,
1544 single-step it. If SIGNAL is nonzero, give it that signal. */
1545
1546 static void
1547 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1548 enum gdb_signal signo)
1549 {
1550 lp->step = step;
1551
1552 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1553 We only presently need that if the LWP is stepped though (to
1554 handle the case of stepping a breakpoint instruction). */
1555 if (step)
1556 {
1557 struct regcache *regcache = get_thread_regcache (lp->ptid);
1558
1559 lp->stop_pc = regcache_read_pc (regcache);
1560 }
1561 else
1562 lp->stop_pc = 0;
1563
1564 if (linux_nat_prepare_to_resume != NULL)
1565 linux_nat_prepare_to_resume (lp);
1566 linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1567
1568 /* Successfully resumed. Clear state that no longer makes sense,
1569 and mark the LWP as running. Must not do this before resuming
1570 otherwise if that fails other code will be confused. E.g., we'd
1571 later try to stop the LWP and hang forever waiting for a stop
1572 status. Note that we must not throw after this is cleared,
1573 otherwise handle_zombie_lwp_error would get confused. */
1574 lp->stopped = 0;
1575 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1576 registers_changed_ptid (lp->ptid);
1577 }
1578
1579 /* Called when we try to resume a stopped LWP and that errors out. If
1580 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1581 or about to become), discard the error, clear any pending status
1582 the LWP may have, and return true (we'll collect the exit status
1583 soon enough). Otherwise, return false. */
1584
1585 static int
1586 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1587 {
1588 /* If we get an error after resuming the LWP successfully, we'd
1589 confuse !T state for the LWP being gone. */
1590 gdb_assert (lp->stopped);
1591
1592 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1593 because even if ptrace failed with ESRCH, the tracee may be "not
1594 yet fully dead", but already refusing ptrace requests. In that
1595 case the tracee has 'R (Running)' state for a little bit
1596 (observed in Linux 3.18). See also the note on ESRCH in the
1597 ptrace(2) man page. Instead, check whether the LWP has any state
1598 other than ptrace-stopped. */
1599
1600 /* Don't assume anything if /proc/PID/status can't be read. */
1601 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1602 {
1603 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1604 lp->status = 0;
1605 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1606 return 1;
1607 }
1608 return 0;
1609 }
1610
1611 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1612 disappears while we try to resume it. */
1613
1614 static void
1615 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1616 {
1617 TRY
1618 {
1619 linux_resume_one_lwp_throw (lp, step, signo);
1620 }
1621 CATCH (ex, RETURN_MASK_ERROR)
1622 {
1623 if (!check_ptrace_stopped_lwp_gone (lp))
1624 throw_exception (ex);
1625 }
1626 END_CATCH
1627 }
1628
1629 /* Resume LP. */
1630
1631 static void
1632 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1633 {
1634 if (lp->stopped)
1635 {
1636 struct inferior *inf = find_inferior_ptid (lp->ptid);
1637
1638 if (inf->vfork_child != NULL)
1639 {
1640 if (debug_linux_nat)
1641 fprintf_unfiltered (gdb_stdlog,
1642 "RC: Not resuming %s (vfork parent)\n",
1643 target_pid_to_str (lp->ptid));
1644 }
1645 else if (!lwp_status_pending_p (lp))
1646 {
1647 if (debug_linux_nat)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "RC: Resuming sibling %s, %s, %s\n",
1650 target_pid_to_str (lp->ptid),
1651 (signo != GDB_SIGNAL_0
1652 ? strsignal (gdb_signal_to_host (signo))
1653 : "0"),
1654 step ? "step" : "resume");
1655
1656 linux_resume_one_lwp (lp, step, signo);
1657 }
1658 else
1659 {
1660 if (debug_linux_nat)
1661 fprintf_unfiltered (gdb_stdlog,
1662 "RC: Not resuming sibling %s (has pending)\n",
1663 target_pid_to_str (lp->ptid));
1664 }
1665 }
1666 else
1667 {
1668 if (debug_linux_nat)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "RC: Not resuming sibling %s (not stopped)\n",
1671 target_pid_to_str (lp->ptid));
1672 }
1673 }
1674
1675 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1676 Resume LWP with the last stop signal, if it is in pass state. */
1677
1678 static int
1679 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1680 {
1681 enum gdb_signal signo = GDB_SIGNAL_0;
1682
1683 if (lp == except)
1684 return 0;
1685
1686 if (lp->stopped)
1687 {
1688 struct thread_info *thread;
1689
1690 thread = find_thread_ptid (lp->ptid);
1691 if (thread != NULL)
1692 {
1693 signo = thread->suspend.stop_signal;
1694 thread->suspend.stop_signal = GDB_SIGNAL_0;
1695 }
1696 }
1697
1698 resume_lwp (lp, 0, signo);
1699 return 0;
1700 }
1701
1702 static int
1703 resume_clear_callback (struct lwp_info *lp, void *data)
1704 {
1705 lp->resumed = 0;
1706 lp->last_resume_kind = resume_stop;
1707 return 0;
1708 }
1709
1710 static int
1711 resume_set_callback (struct lwp_info *lp, void *data)
1712 {
1713 lp->resumed = 1;
1714 lp->last_resume_kind = resume_continue;
1715 return 0;
1716 }
1717
1718 static void
1719 linux_nat_resume (struct target_ops *ops,
1720 ptid_t ptid, int step, enum gdb_signal signo)
1721 {
1722 struct lwp_info *lp;
1723 int resume_many;
1724
1725 if (debug_linux_nat)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1728 step ? "step" : "resume",
1729 target_pid_to_str (ptid),
1730 (signo != GDB_SIGNAL_0
1731 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1732 target_pid_to_str (inferior_ptid));
1733
1734 /* A specific PTID means `step only this process id'. */
1735 resume_many = (ptid_equal (minus_one_ptid, ptid)
1736 || ptid_is_pid (ptid));
1737
1738 /* Mark the lwps we're resuming as resumed. */
1739 iterate_over_lwps (ptid, resume_set_callback, NULL);
1740
1741 /* See if it's the current inferior that should be handled
1742 specially. */
1743 if (resume_many)
1744 lp = find_lwp_pid (inferior_ptid);
1745 else
1746 lp = find_lwp_pid (ptid);
1747 gdb_assert (lp != NULL);
1748
1749 /* Remember if we're stepping. */
1750 lp->last_resume_kind = step ? resume_step : resume_continue;
1751
1752 /* If we have a pending wait status for this thread, there is no
1753 point in resuming the process. But first make sure that
1754 linux_nat_wait won't preemptively handle the event - we
1755 should never take this short-circuit if we are going to
1756 leave LP running, since we have skipped resuming all the
1757 other threads. This bit of code needs to be synchronized
1758 with linux_nat_wait. */
1759
1760 if (lp->status && WIFSTOPPED (lp->status))
1761 {
1762 if (!lp->step
1763 && WSTOPSIG (lp->status)
1764 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1765 {
1766 if (debug_linux_nat)
1767 fprintf_unfiltered (gdb_stdlog,
1768 "LLR: Not short circuiting for ignored "
1769 "status 0x%x\n", lp->status);
1770
1771 /* FIXME: What should we do if we are supposed to continue
1772 this thread with a signal? */
1773 gdb_assert (signo == GDB_SIGNAL_0);
1774 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1775 lp->status = 0;
1776 }
1777 }
1778
1779 if (lwp_status_pending_p (lp))
1780 {
1781 /* FIXME: What should we do if we are supposed to continue
1782 this thread with a signal? */
1783 gdb_assert (signo == GDB_SIGNAL_0);
1784
1785 if (debug_linux_nat)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "LLR: Short circuiting for status 0x%x\n",
1788 lp->status);
1789
1790 if (target_can_async_p ())
1791 {
1792 target_async (inferior_event_handler, 0);
1793 /* Tell the event loop we have something to process. */
1794 async_file_mark ();
1795 }
1796 return;
1797 }
1798
1799 if (resume_many)
1800 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1801
1802 if (debug_linux_nat)
1803 fprintf_unfiltered (gdb_stdlog,
1804 "LLR: %s %s, %s (resume event thread)\n",
1805 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1806 target_pid_to_str (lp->ptid),
1807 (signo != GDB_SIGNAL_0
1808 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1809
1810 linux_resume_one_lwp (lp, step, signo);
1811
1812 if (target_can_async_p ())
1813 target_async (inferior_event_handler, 0);
1814 }
1815
1816 /* Send a signal to an LWP. */
1817
1818 static int
1819 kill_lwp (int lwpid, int signo)
1820 {
1821 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1822 fails, then we are not using nptl threads and we should be using kill. */
1823
1824 #ifdef HAVE_TKILL_SYSCALL
1825 {
1826 static int tkill_failed;
1827
1828 if (!tkill_failed)
1829 {
1830 int ret;
1831
1832 errno = 0;
1833 ret = syscall (__NR_tkill, lwpid, signo);
1834 if (errno != ENOSYS)
1835 return ret;
1836 tkill_failed = 1;
1837 }
1838 }
1839 #endif
1840
1841 return kill (lwpid, signo);
1842 }
1843
1844 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1845 event, check if the core is interested in it: if not, ignore the
1846 event, and keep waiting; otherwise, we need to toggle the LWP's
1847 syscall entry/exit status, since the ptrace event itself doesn't
1848 indicate it, and report the trap to higher layers. */
1849
1850 static int
1851 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1852 {
1853 struct target_waitstatus *ourstatus = &lp->waitstatus;
1854 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1855 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1856
1857 if (stopping)
1858 {
1859 /* If we're stopping threads, there's a SIGSTOP pending, which
1860 makes it so that the LWP reports an immediate syscall return,
1861 followed by the SIGSTOP. Skip seeing that "return" using
1862 PTRACE_CONT directly, and let stop_wait_callback collect the
1863 SIGSTOP. Later when the thread is resumed, a new syscall
1864 entry event. If we didn't do this (and returned 0), we'd
1865 leave a syscall entry pending, and our caller, by using
1866 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1867 itself. Later, when the user re-resumes this LWP, we'd see
1868 another syscall entry event and we'd mistake it for a return.
1869
1870 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1871 (leaving immediately with LWP->signalled set, without issuing
1872 a PTRACE_CONT), it would still be problematic to leave this
1873 syscall enter pending, as later when the thread is resumed,
1874 it would then see the same syscall exit mentioned above,
1875 followed by the delayed SIGSTOP, while the syscall didn't
1876 actually get to execute. It seems it would be even more
1877 confusing to the user. */
1878
1879 if (debug_linux_nat)
1880 fprintf_unfiltered (gdb_stdlog,
1881 "LHST: ignoring syscall %d "
1882 "for LWP %ld (stopping threads), "
1883 "resuming with PTRACE_CONT for SIGSTOP\n",
1884 syscall_number,
1885 ptid_get_lwp (lp->ptid));
1886
1887 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1888 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1889 lp->stopped = 0;
1890 return 1;
1891 }
1892
1893 if (catch_syscall_enabled ())
1894 {
1895 /* Always update the entry/return state, even if this particular
1896 syscall isn't interesting to the core now. In async mode,
1897 the user could install a new catchpoint for this syscall
1898 between syscall enter/return, and we'll need to know to
1899 report a syscall return if that happens. */
1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1901 ? TARGET_WAITKIND_SYSCALL_RETURN
1902 : TARGET_WAITKIND_SYSCALL_ENTRY);
1903
1904 if (catching_syscall_number (syscall_number))
1905 {
1906 /* Alright, an event to report. */
1907 ourstatus->kind = lp->syscall_state;
1908 ourstatus->value.syscall_number = syscall_number;
1909
1910 if (debug_linux_nat)
1911 fprintf_unfiltered (gdb_stdlog,
1912 "LHST: stopping for %s of syscall %d"
1913 " for LWP %ld\n",
1914 lp->syscall_state
1915 == TARGET_WAITKIND_SYSCALL_ENTRY
1916 ? "entry" : "return",
1917 syscall_number,
1918 ptid_get_lwp (lp->ptid));
1919 return 0;
1920 }
1921
1922 if (debug_linux_nat)
1923 fprintf_unfiltered (gdb_stdlog,
1924 "LHST: ignoring %s of syscall %d "
1925 "for LWP %ld\n",
1926 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1927 ? "entry" : "return",
1928 syscall_number,
1929 ptid_get_lwp (lp->ptid));
1930 }
1931 else
1932 {
1933 /* If we had been syscall tracing, and hence used PT_SYSCALL
1934 before on this LWP, it could happen that the user removes all
1935 syscall catchpoints before we get to process this event.
1936 There are two noteworthy issues here:
1937
1938 - When stopped at a syscall entry event, resuming with
1939 PT_STEP still resumes executing the syscall and reports a
1940 syscall return.
1941
1942 - Only PT_SYSCALL catches syscall enters. If we last
1943 single-stepped this thread, then this event can't be a
1944 syscall enter. If we last single-stepped this thread, this
1945 has to be a syscall exit.
1946
1947 The points above mean that the next resume, be it PT_STEP or
1948 PT_CONTINUE, can not trigger a syscall trace event. */
1949 if (debug_linux_nat)
1950 fprintf_unfiltered (gdb_stdlog,
1951 "LHST: caught syscall event "
1952 "with no syscall catchpoints."
1953 " %d for LWP %ld, ignoring\n",
1954 syscall_number,
1955 ptid_get_lwp (lp->ptid));
1956 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1957 }
1958
1959 /* The core isn't interested in this event. For efficiency, avoid
1960 stopping all threads only to have the core resume them all again.
1961 Since we're not stopping threads, if we're still syscall tracing
1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1963 subsequent syscall. Simply resume using the inf-ptrace layer,
1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1965
1966 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1967 return 1;
1968 }
1969
1970 /* Handle a GNU/Linux extended wait response. If we see a clone
1971 event, we need to add the new LWP to our list (and not report the
1972 trap to higher layers). This function returns non-zero if the
1973 event should be ignored and we should wait again. If STOPPING is
1974 true, the new LWP remains stopped, otherwise it is continued. */
1975
1976 static int
1977 linux_handle_extended_wait (struct lwp_info *lp, int status,
1978 int stopping)
1979 {
1980 int pid = ptid_get_lwp (lp->ptid);
1981 struct target_waitstatus *ourstatus = &lp->waitstatus;
1982 int event = linux_ptrace_get_extended_event (status);
1983
1984 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1985 || event == PTRACE_EVENT_CLONE)
1986 {
1987 unsigned long new_pid;
1988 int ret;
1989
1990 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1991
1992 /* If we haven't already seen the new PID stop, wait for it now. */
1993 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1994 {
1995 /* The new child has a pending SIGSTOP. We can't affect it until it
1996 hits the SIGSTOP, but we're already attached. */
1997 ret = my_waitpid (new_pid, &status,
1998 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1999 if (ret == -1)
2000 perror_with_name (_("waiting for new child"));
2001 else if (ret != new_pid)
2002 internal_error (__FILE__, __LINE__,
2003 _("wait returned unexpected PID %d"), ret);
2004 else if (!WIFSTOPPED (status))
2005 internal_error (__FILE__, __LINE__,
2006 _("wait returned unexpected status 0x%x"), status);
2007 }
2008
2009 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2010
2011 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2012 {
2013 /* The arch-specific native code may need to know about new
2014 forks even if those end up never mapped to an
2015 inferior. */
2016 if (linux_nat_new_fork != NULL)
2017 linux_nat_new_fork (lp, new_pid);
2018 }
2019
2020 if (event == PTRACE_EVENT_FORK
2021 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2022 {
2023 /* Handle checkpointing by linux-fork.c here as a special
2024 case. We don't want the follow-fork-mode or 'catch fork'
2025 to interfere with this. */
2026
2027 /* This won't actually modify the breakpoint list, but will
2028 physically remove the breakpoints from the child. */
2029 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2030
2031 /* Retain child fork in ptrace (stopped) state. */
2032 if (!find_fork_pid (new_pid))
2033 add_fork (new_pid);
2034
2035 /* Report as spurious, so that infrun doesn't want to follow
2036 this fork. We're actually doing an infcall in
2037 linux-fork.c. */
2038 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2039
2040 /* Report the stop to the core. */
2041 return 0;
2042 }
2043
2044 if (event == PTRACE_EVENT_FORK)
2045 ourstatus->kind = TARGET_WAITKIND_FORKED;
2046 else if (event == PTRACE_EVENT_VFORK)
2047 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2048 else
2049 {
2050 struct lwp_info *new_lp;
2051
2052 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2053
2054 if (debug_linux_nat)
2055 fprintf_unfiltered (gdb_stdlog,
2056 "LHEW: Got clone event "
2057 "from LWP %d, new child is LWP %ld\n",
2058 pid, new_pid);
2059
2060 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2061 new_lp->cloned = 1;
2062 new_lp->stopped = 1;
2063
2064 if (WSTOPSIG (status) != SIGSTOP)
2065 {
2066 /* This can happen if someone starts sending signals to
2067 the new thread before it gets a chance to run, which
2068 have a lower number than SIGSTOP (e.g. SIGUSR1).
2069 This is an unlikely case, and harder to handle for
2070 fork / vfork than for clone, so we do not try - but
2071 we handle it for clone events here. We'll send
2072 the other signal on to the thread below. */
2073
2074 new_lp->signalled = 1;
2075 }
2076 else
2077 {
2078 struct thread_info *tp;
2079
2080 /* When we stop for an event in some other thread, and
2081 pull the thread list just as this thread has cloned,
2082 we'll have seen the new thread in the thread_db list
2083 before handling the CLONE event (glibc's
2084 pthread_create adds the new thread to the thread list
2085 before clone'ing, and has the kernel fill in the
2086 thread's tid on the clone call with
2087 CLONE_PARENT_SETTID). If that happened, and the core
2088 had requested the new thread to stop, we'll have
2089 killed it with SIGSTOP. But since SIGSTOP is not an
2090 RT signal, it can only be queued once. We need to be
2091 careful to not resume the LWP if we wanted it to
2092 stop. In that case, we'll leave the SIGSTOP pending.
2093 It will later be reported as GDB_SIGNAL_0. */
2094 tp = find_thread_ptid (new_lp->ptid);
2095 if (tp != NULL && tp->stop_requested)
2096 new_lp->last_resume_kind = resume_stop;
2097 else
2098 status = 0;
2099 }
2100
2101 /* If the thread_db layer is active, let it record the user
2102 level thread id and status, and add the thread to GDB's
2103 list. */
2104 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2105 {
2106 /* The process is not using thread_db. Add the LWP to
2107 GDB's list. */
2108 target_post_attach (ptid_get_lwp (new_lp->ptid));
2109 add_thread (new_lp->ptid);
2110 }
2111
2112 if (!stopping)
2113 {
2114 set_running (new_lp->ptid, 1);
2115 set_executing (new_lp->ptid, 1);
2116 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2117 resume_stop. */
2118 new_lp->last_resume_kind = resume_continue;
2119 }
2120
2121 if (status != 0)
2122 {
2123 /* We created NEW_LP so it cannot yet contain STATUS. */
2124 gdb_assert (new_lp->status == 0);
2125
2126 /* Save the wait status to report later. */
2127 if (debug_linux_nat)
2128 fprintf_unfiltered (gdb_stdlog,
2129 "LHEW: waitpid of new LWP %ld, "
2130 "saving status %s\n",
2131 (long) ptid_get_lwp (new_lp->ptid),
2132 status_to_str (status));
2133 new_lp->status = status;
2134 }
2135
2136 new_lp->resumed = !stopping;
2137 return 1;
2138 }
2139
2140 return 0;
2141 }
2142
2143 if (event == PTRACE_EVENT_EXEC)
2144 {
2145 if (debug_linux_nat)
2146 fprintf_unfiltered (gdb_stdlog,
2147 "LHEW: Got exec event from LWP %ld\n",
2148 ptid_get_lwp (lp->ptid));
2149
2150 ourstatus->kind = TARGET_WAITKIND_EXECD;
2151 ourstatus->value.execd_pathname
2152 = xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2153
2154 /* The thread that execed must have been resumed, but, when a
2155 thread execs, it changes its tid to the tgid, and the old
2156 tgid thread might have not been resumed. */
2157 lp->resumed = 1;
2158 return 0;
2159 }
2160
2161 if (event == PTRACE_EVENT_VFORK_DONE)
2162 {
2163 if (current_inferior ()->waiting_for_vfork_done)
2164 {
2165 if (debug_linux_nat)
2166 fprintf_unfiltered (gdb_stdlog,
2167 "LHEW: Got expected PTRACE_EVENT_"
2168 "VFORK_DONE from LWP %ld: stopping\n",
2169 ptid_get_lwp (lp->ptid));
2170
2171 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2172 return 0;
2173 }
2174
2175 if (debug_linux_nat)
2176 fprintf_unfiltered (gdb_stdlog,
2177 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2178 "from LWP %ld: ignoring\n",
2179 ptid_get_lwp (lp->ptid));
2180 return 1;
2181 }
2182
2183 internal_error (__FILE__, __LINE__,
2184 _("unknown ptrace event %d"), event);
2185 }
2186
2187 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2188 exited. */
2189
2190 static int
2191 wait_lwp (struct lwp_info *lp)
2192 {
2193 pid_t pid;
2194 int status = 0;
2195 int thread_dead = 0;
2196 sigset_t prev_mask;
2197
2198 gdb_assert (!lp->stopped);
2199 gdb_assert (lp->status == 0);
2200
2201 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2202 block_child_signals (&prev_mask);
2203
2204 for (;;)
2205 {
2206 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2207 was right and we should just call sigsuspend. */
2208
2209 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2210 if (pid == -1 && errno == ECHILD)
2211 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2212 if (pid == -1 && errno == ECHILD)
2213 {
2214 /* The thread has previously exited. We need to delete it
2215 now because, for some vendor 2.4 kernels with NPTL
2216 support backported, there won't be an exit event unless
2217 it is the main thread. 2.6 kernels will report an exit
2218 event for each thread that exits, as expected. */
2219 thread_dead = 1;
2220 if (debug_linux_nat)
2221 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2222 target_pid_to_str (lp->ptid));
2223 }
2224 if (pid != 0)
2225 break;
2226
2227 /* Bugs 10970, 12702.
2228 Thread group leader may have exited in which case we'll lock up in
2229 waitpid if there are other threads, even if they are all zombies too.
2230 Basically, we're not supposed to use waitpid this way.
2231 __WCLONE is not applicable for the leader so we can't use that.
2232 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2233 process; it gets ESRCH both for the zombie and for running processes.
2234
2235 As a workaround, check if we're waiting for the thread group leader and
2236 if it's a zombie, and avoid calling waitpid if it is.
2237
2238 This is racy, what if the tgl becomes a zombie right after we check?
2239 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2240 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2241
2242 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2243 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2244 {
2245 thread_dead = 1;
2246 if (debug_linux_nat)
2247 fprintf_unfiltered (gdb_stdlog,
2248 "WL: Thread group leader %s vanished.\n",
2249 target_pid_to_str (lp->ptid));
2250 break;
2251 }
2252
2253 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2254 get invoked despite our caller had them intentionally blocked by
2255 block_child_signals. This is sensitive only to the loop of
2256 linux_nat_wait_1 and there if we get called my_waitpid gets called
2257 again before it gets to sigsuspend so we can safely let the handlers
2258 get executed here. */
2259
2260 if (debug_linux_nat)
2261 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2262 sigsuspend (&suspend_mask);
2263 }
2264
2265 restore_child_signals_mask (&prev_mask);
2266
2267 if (!thread_dead)
2268 {
2269 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2270
2271 if (debug_linux_nat)
2272 {
2273 fprintf_unfiltered (gdb_stdlog,
2274 "WL: waitpid %s received %s\n",
2275 target_pid_to_str (lp->ptid),
2276 status_to_str (status));
2277 }
2278
2279 /* Check if the thread has exited. */
2280 if (WIFEXITED (status) || WIFSIGNALED (status))
2281 {
2282 thread_dead = 1;
2283 if (debug_linux_nat)
2284 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2285 target_pid_to_str (lp->ptid));
2286 }
2287 }
2288
2289 if (thread_dead)
2290 {
2291 exit_lwp (lp);
2292 return 0;
2293 }
2294
2295 gdb_assert (WIFSTOPPED (status));
2296 lp->stopped = 1;
2297
2298 if (lp->must_set_ptrace_flags)
2299 {
2300 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2301
2302 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
2303 lp->must_set_ptrace_flags = 0;
2304 }
2305
2306 /* Handle GNU/Linux's syscall SIGTRAPs. */
2307 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2308 {
2309 /* No longer need the sysgood bit. The ptrace event ends up
2310 recorded in lp->waitstatus if we care for it. We can carry
2311 on handling the event like a regular SIGTRAP from here
2312 on. */
2313 status = W_STOPCODE (SIGTRAP);
2314 if (linux_handle_syscall_trap (lp, 1))
2315 return wait_lwp (lp);
2316 }
2317
2318 /* Handle GNU/Linux's extended waitstatus for trace events. */
2319 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2320 && linux_is_extended_waitstatus (status))
2321 {
2322 if (debug_linux_nat)
2323 fprintf_unfiltered (gdb_stdlog,
2324 "WL: Handling extended status 0x%06x\n",
2325 status);
2326 linux_handle_extended_wait (lp, status, 1);
2327 return 0;
2328 }
2329
2330 return status;
2331 }
2332
2333 /* Send a SIGSTOP to LP. */
2334
2335 static int
2336 stop_callback (struct lwp_info *lp, void *data)
2337 {
2338 if (!lp->stopped && !lp->signalled)
2339 {
2340 int ret;
2341
2342 if (debug_linux_nat)
2343 {
2344 fprintf_unfiltered (gdb_stdlog,
2345 "SC: kill %s **<SIGSTOP>**\n",
2346 target_pid_to_str (lp->ptid));
2347 }
2348 errno = 0;
2349 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2350 if (debug_linux_nat)
2351 {
2352 fprintf_unfiltered (gdb_stdlog,
2353 "SC: lwp kill %d %s\n",
2354 ret,
2355 errno ? safe_strerror (errno) : "ERRNO-OK");
2356 }
2357
2358 lp->signalled = 1;
2359 gdb_assert (lp->status == 0);
2360 }
2361
2362 return 0;
2363 }
2364
2365 /* Request a stop on LWP. */
2366
2367 void
2368 linux_stop_lwp (struct lwp_info *lwp)
2369 {
2370 stop_callback (lwp, NULL);
2371 }
2372
2373 /* See linux-nat.h */
2374
2375 void
2376 linux_stop_and_wait_all_lwps (void)
2377 {
2378 /* Stop all LWP's ... */
2379 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2380
2381 /* ... and wait until all of them have reported back that
2382 they're no longer running. */
2383 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2384 }
2385
2386 /* See linux-nat.h */
2387
2388 void
2389 linux_unstop_all_lwps (void)
2390 {
2391 iterate_over_lwps (minus_one_ptid,
2392 resume_stopped_resumed_lwps, &minus_one_ptid);
2393 }
2394
2395 /* Return non-zero if LWP PID has a pending SIGINT. */
2396
2397 static int
2398 linux_nat_has_pending_sigint (int pid)
2399 {
2400 sigset_t pending, blocked, ignored;
2401
2402 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2403
2404 if (sigismember (&pending, SIGINT)
2405 && !sigismember (&ignored, SIGINT))
2406 return 1;
2407
2408 return 0;
2409 }
2410
2411 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2412
2413 static int
2414 set_ignore_sigint (struct lwp_info *lp, void *data)
2415 {
2416 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2417 flag to consume the next one. */
2418 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2419 && WSTOPSIG (lp->status) == SIGINT)
2420 lp->status = 0;
2421 else
2422 lp->ignore_sigint = 1;
2423
2424 return 0;
2425 }
2426
2427 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2428 This function is called after we know the LWP has stopped; if the LWP
2429 stopped before the expected SIGINT was delivered, then it will never have
2430 arrived. Also, if the signal was delivered to a shared queue and consumed
2431 by a different thread, it will never be delivered to this LWP. */
2432
2433 static void
2434 maybe_clear_ignore_sigint (struct lwp_info *lp)
2435 {
2436 if (!lp->ignore_sigint)
2437 return;
2438
2439 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2440 {
2441 if (debug_linux_nat)
2442 fprintf_unfiltered (gdb_stdlog,
2443 "MCIS: Clearing bogus flag for %s\n",
2444 target_pid_to_str (lp->ptid));
2445 lp->ignore_sigint = 0;
2446 }
2447 }
2448
2449 /* Fetch the possible triggered data watchpoint info and store it in
2450 LP.
2451
2452 On some archs, like x86, that use debug registers to set
2453 watchpoints, it's possible that the way to know which watched
2454 address trapped, is to check the register that is used to select
2455 which address to watch. Problem is, between setting the watchpoint
2456 and reading back which data address trapped, the user may change
2457 the set of watchpoints, and, as a consequence, GDB changes the
2458 debug registers in the inferior. To avoid reading back a stale
2459 stopped-data-address when that happens, we cache in LP the fact
2460 that a watchpoint trapped, and the corresponding data address, as
2461 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2462 registers meanwhile, we have the cached data we can rely on. */
2463
2464 static int
2465 check_stopped_by_watchpoint (struct lwp_info *lp)
2466 {
2467 struct cleanup *old_chain;
2468
2469 if (linux_ops->to_stopped_by_watchpoint == NULL)
2470 return 0;
2471
2472 old_chain = save_inferior_ptid ();
2473 inferior_ptid = lp->ptid;
2474
2475 if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2476 {
2477 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2478
2479 if (linux_ops->to_stopped_data_address != NULL)
2480 lp->stopped_data_address_p =
2481 linux_ops->to_stopped_data_address (&current_target,
2482 &lp->stopped_data_address);
2483 else
2484 lp->stopped_data_address_p = 0;
2485 }
2486
2487 do_cleanups (old_chain);
2488
2489 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2490 }
2491
2492 /* Called when the LWP stopped for a trap that could be explained by a
2493 watchpoint or a breakpoint. */
2494
2495 static void
2496 save_sigtrap (struct lwp_info *lp)
2497 {
2498 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2499 gdb_assert (lp->status != 0);
2500
2501 /* Check first if this was a SW/HW breakpoint before checking
2502 watchpoints, because at least s390 can't tell the data address of
2503 hardware watchpoint hits, and the kernel returns
2504 stopped-by-watchpoint as long as there's a watchpoint set. */
2505 if (linux_nat_status_is_event (lp->status))
2506 check_stopped_by_breakpoint (lp);
2507
2508 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint
2509 or hardware watchpoint. Check which is which if we got
2510 TARGET_STOPPED_BY_HW_BREAKPOINT. */
2511 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON
2512 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2513 check_stopped_by_watchpoint (lp);
2514 }
2515
2516 /* Returns true if the LWP had stopped for a watchpoint. */
2517
2518 static int
2519 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2520 {
2521 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2522
2523 gdb_assert (lp != NULL);
2524
2525 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2526 }
2527
2528 static int
2529 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2530 {
2531 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2532
2533 gdb_assert (lp != NULL);
2534
2535 *addr_p = lp->stopped_data_address;
2536
2537 return lp->stopped_data_address_p;
2538 }
2539
2540 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2541
2542 static int
2543 sigtrap_is_event (int status)
2544 {
2545 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2546 }
2547
2548 /* Set alternative SIGTRAP-like events recognizer. If
2549 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2550 applied. */
2551
2552 void
2553 linux_nat_set_status_is_event (struct target_ops *t,
2554 int (*status_is_event) (int status))
2555 {
2556 linux_nat_status_is_event = status_is_event;
2557 }
2558
2559 /* Wait until LP is stopped. */
2560
2561 static int
2562 stop_wait_callback (struct lwp_info *lp, void *data)
2563 {
2564 struct inferior *inf = find_inferior_ptid (lp->ptid);
2565
2566 /* If this is a vfork parent, bail out, it is not going to report
2567 any SIGSTOP until the vfork is done with. */
2568 if (inf->vfork_child != NULL)
2569 return 0;
2570
2571 if (!lp->stopped)
2572 {
2573 int status;
2574
2575 status = wait_lwp (lp);
2576 if (status == 0)
2577 return 0;
2578
2579 if (lp->ignore_sigint && WIFSTOPPED (status)
2580 && WSTOPSIG (status) == SIGINT)
2581 {
2582 lp->ignore_sigint = 0;
2583
2584 errno = 0;
2585 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2586 lp->stopped = 0;
2587 if (debug_linux_nat)
2588 fprintf_unfiltered (gdb_stdlog,
2589 "PTRACE_CONT %s, 0, 0 (%s) "
2590 "(discarding SIGINT)\n",
2591 target_pid_to_str (lp->ptid),
2592 errno ? safe_strerror (errno) : "OK");
2593
2594 return stop_wait_callback (lp, NULL);
2595 }
2596
2597 maybe_clear_ignore_sigint (lp);
2598
2599 if (WSTOPSIG (status) != SIGSTOP)
2600 {
2601 /* The thread was stopped with a signal other than SIGSTOP. */
2602
2603 if (debug_linux_nat)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "SWC: Pending event %s in %s\n",
2606 status_to_str ((int) status),
2607 target_pid_to_str (lp->ptid));
2608
2609 /* Save the sigtrap event. */
2610 lp->status = status;
2611 gdb_assert (lp->signalled);
2612 save_sigtrap (lp);
2613 }
2614 else
2615 {
2616 /* We caught the SIGSTOP that we intended to catch, so
2617 there's no SIGSTOP pending. */
2618
2619 if (debug_linux_nat)
2620 fprintf_unfiltered (gdb_stdlog,
2621 "SWC: Expected SIGSTOP caught for %s.\n",
2622 target_pid_to_str (lp->ptid));
2623
2624 /* Reset SIGNALLED only after the stop_wait_callback call
2625 above as it does gdb_assert on SIGNALLED. */
2626 lp->signalled = 0;
2627 }
2628 }
2629
2630 return 0;
2631 }
2632
2633 /* Return non-zero if LP has a wait status pending. Discard the
2634 pending event and resume the LWP if the event that originally
2635 caused the stop became uninteresting. */
2636
2637 static int
2638 status_callback (struct lwp_info *lp, void *data)
2639 {
2640 /* Only report a pending wait status if we pretend that this has
2641 indeed been resumed. */
2642 if (!lp->resumed)
2643 return 0;
2644
2645 if (!lwp_status_pending_p (lp))
2646 return 0;
2647
2648 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2649 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2650 {
2651 struct regcache *regcache = get_thread_regcache (lp->ptid);
2652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2653 CORE_ADDR pc;
2654 int discard = 0;
2655
2656 pc = regcache_read_pc (regcache);
2657
2658 if (pc != lp->stop_pc)
2659 {
2660 if (debug_linux_nat)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "SC: PC of %s changed. was=%s, now=%s\n",
2663 target_pid_to_str (lp->ptid),
2664 paddress (target_gdbarch (), lp->stop_pc),
2665 paddress (target_gdbarch (), pc));
2666 discard = 1;
2667 }
2668
2669 #if !USE_SIGTRAP_SIGINFO
2670 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2671 {
2672 if (debug_linux_nat)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "SC: previous breakpoint of %s, at %s gone\n",
2675 target_pid_to_str (lp->ptid),
2676 paddress (target_gdbarch (), lp->stop_pc));
2677
2678 discard = 1;
2679 }
2680 #endif
2681
2682 if (discard)
2683 {
2684 if (debug_linux_nat)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "SC: pending event of %s cancelled.\n",
2687 target_pid_to_str (lp->ptid));
2688
2689 lp->status = 0;
2690 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2691 return 0;
2692 }
2693 }
2694
2695 return 1;
2696 }
2697
2698 /* Return non-zero if LP isn't stopped. */
2699
2700 static int
2701 running_callback (struct lwp_info *lp, void *data)
2702 {
2703 return (!lp->stopped
2704 || (lwp_status_pending_p (lp) && lp->resumed));
2705 }
2706
2707 /* Count the LWP's that have had events. */
2708
2709 static int
2710 count_events_callback (struct lwp_info *lp, void *data)
2711 {
2712 int *count = data;
2713
2714 gdb_assert (count != NULL);
2715
2716 /* Select only resumed LWPs that have an event pending. */
2717 if (lp->resumed && lwp_status_pending_p (lp))
2718 (*count)++;
2719
2720 return 0;
2721 }
2722
2723 /* Select the LWP (if any) that is currently being single-stepped. */
2724
2725 static int
2726 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2727 {
2728 if (lp->last_resume_kind == resume_step
2729 && lp->status != 0)
2730 return 1;
2731 else
2732 return 0;
2733 }
2734
2735 /* Returns true if LP has a status pending. */
2736
2737 static int
2738 lwp_status_pending_p (struct lwp_info *lp)
2739 {
2740 /* We check for lp->waitstatus in addition to lp->status, because we
2741 can have pending process exits recorded in lp->status and
2742 W_EXITCODE(0,0) happens to be 0. */
2743 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2744 }
2745
2746 /* Select the Nth LWP that has had an event. */
2747
2748 static int
2749 select_event_lwp_callback (struct lwp_info *lp, void *data)
2750 {
2751 int *selector = data;
2752
2753 gdb_assert (selector != NULL);
2754
2755 /* Select only resumed LWPs that have an event pending. */
2756 if (lp->resumed && lwp_status_pending_p (lp))
2757 if ((*selector)-- == 0)
2758 return 1;
2759
2760 return 0;
2761 }
2762
2763 /* Called when the LWP got a signal/trap that could be explained by a
2764 software or hardware breakpoint. */
2765
2766 static int
2767 check_stopped_by_breakpoint (struct lwp_info *lp)
2768 {
2769 /* Arrange for a breakpoint to be hit again later. We don't keep
2770 the SIGTRAP status and don't forward the SIGTRAP signal to the
2771 LWP. We will handle the current event, eventually we will resume
2772 this LWP, and this breakpoint will trap again.
2773
2774 If we do not do this, then we run the risk that the user will
2775 delete or disable the breakpoint, but the LWP will have already
2776 tripped on it. */
2777
2778 struct regcache *regcache = get_thread_regcache (lp->ptid);
2779 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2780 CORE_ADDR pc;
2781 CORE_ADDR sw_bp_pc;
2782 #if USE_SIGTRAP_SIGINFO
2783 siginfo_t siginfo;
2784 #endif
2785
2786 pc = regcache_read_pc (regcache);
2787 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2788
2789 #if USE_SIGTRAP_SIGINFO
2790 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2791 {
2792 if (siginfo.si_signo == SIGTRAP)
2793 {
2794 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT)
2795 {
2796 if (debug_linux_nat)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "CSBB: %s stopped by software "
2799 "breakpoint\n",
2800 target_pid_to_str (lp->ptid));
2801
2802 /* Back up the PC if necessary. */
2803 if (pc != sw_bp_pc)
2804 regcache_write_pc (regcache, sw_bp_pc);
2805
2806 lp->stop_pc = sw_bp_pc;
2807 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2808 return 1;
2809 }
2810 else if (siginfo.si_code == TRAP_HWBKPT)
2811 {
2812 if (debug_linux_nat)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "CSBB: %s stopped by hardware "
2815 "breakpoint/watchpoint\n",
2816 target_pid_to_str (lp->ptid));
2817
2818 lp->stop_pc = pc;
2819 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2820 return 1;
2821 }
2822 else if (siginfo.si_code == TRAP_TRACE)
2823 {
2824 if (debug_linux_nat)
2825 fprintf_unfiltered (gdb_stdlog,
2826 "CSBB: %s stopped by trace\n",
2827 target_pid_to_str (lp->ptid));
2828 }
2829 }
2830 }
2831 #else
2832 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2833 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2834 sw_bp_pc))
2835 {
2836 /* The LWP was either continued, or stepped a software
2837 breakpoint instruction. */
2838 if (debug_linux_nat)
2839 fprintf_unfiltered (gdb_stdlog,
2840 "CSBB: %s stopped by software breakpoint\n",
2841 target_pid_to_str (lp->ptid));
2842
2843 /* Back up the PC if necessary. */
2844 if (pc != sw_bp_pc)
2845 regcache_write_pc (regcache, sw_bp_pc);
2846
2847 lp->stop_pc = sw_bp_pc;
2848 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2849 return 1;
2850 }
2851
2852 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2853 {
2854 if (debug_linux_nat)
2855 fprintf_unfiltered (gdb_stdlog,
2856 "CSBB: stopped by hardware breakpoint %s\n",
2857 target_pid_to_str (lp->ptid));
2858
2859 lp->stop_pc = pc;
2860 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2861 return 1;
2862 }
2863 #endif
2864
2865 return 0;
2866 }
2867
2868
2869 /* Returns true if the LWP had stopped for a software breakpoint. */
2870
2871 static int
2872 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2873 {
2874 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2875
2876 gdb_assert (lp != NULL);
2877
2878 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2879 }
2880
2881 /* Implement the supports_stopped_by_sw_breakpoint method. */
2882
2883 static int
2884 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2885 {
2886 return USE_SIGTRAP_SIGINFO;
2887 }
2888
2889 /* Returns true if the LWP had stopped for a hardware
2890 breakpoint/watchpoint. */
2891
2892 static int
2893 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2894 {
2895 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2896
2897 gdb_assert (lp != NULL);
2898
2899 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2900 }
2901
2902 /* Implement the supports_stopped_by_hw_breakpoint method. */
2903
2904 static int
2905 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2906 {
2907 return USE_SIGTRAP_SIGINFO;
2908 }
2909
2910 /* Select one LWP out of those that have events pending. */
2911
2912 static void
2913 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2914 {
2915 int num_events = 0;
2916 int random_selector;
2917 struct lwp_info *event_lp = NULL;
2918
2919 /* Record the wait status for the original LWP. */
2920 (*orig_lp)->status = *status;
2921
2922 /* In all-stop, give preference to the LWP that is being
2923 single-stepped. There will be at most one, and it will be the
2924 LWP that the core is most interested in. If we didn't do this,
2925 then we'd have to handle pending step SIGTRAPs somehow in case
2926 the core later continues the previously-stepped thread, as
2927 otherwise we'd report the pending SIGTRAP then, and the core, not
2928 having stepped the thread, wouldn't understand what the trap was
2929 for, and therefore would report it to the user as a random
2930 signal. */
2931 if (!non_stop)
2932 {
2933 event_lp = iterate_over_lwps (filter,
2934 select_singlestep_lwp_callback, NULL);
2935 if (event_lp != NULL)
2936 {
2937 if (debug_linux_nat)
2938 fprintf_unfiltered (gdb_stdlog,
2939 "SEL: Select single-step %s\n",
2940 target_pid_to_str (event_lp->ptid));
2941 }
2942 }
2943
2944 if (event_lp == NULL)
2945 {
2946 /* Pick one at random, out of those which have had events. */
2947
2948 /* First see how many events we have. */
2949 iterate_over_lwps (filter, count_events_callback, &num_events);
2950 gdb_assert (num_events > 0);
2951
2952 /* Now randomly pick a LWP out of those that have had
2953 events. */
2954 random_selector = (int)
2955 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2956
2957 if (debug_linux_nat && num_events > 1)
2958 fprintf_unfiltered (gdb_stdlog,
2959 "SEL: Found %d events, selecting #%d\n",
2960 num_events, random_selector);
2961
2962 event_lp = iterate_over_lwps (filter,
2963 select_event_lwp_callback,
2964 &random_selector);
2965 }
2966
2967 if (event_lp != NULL)
2968 {
2969 /* Switch the event LWP. */
2970 *orig_lp = event_lp;
2971 *status = event_lp->status;
2972 }
2973
2974 /* Flush the wait status for the event LWP. */
2975 (*orig_lp)->status = 0;
2976 }
2977
2978 /* Return non-zero if LP has been resumed. */
2979
2980 static int
2981 resumed_callback (struct lwp_info *lp, void *data)
2982 {
2983 return lp->resumed;
2984 }
2985
2986 /* Stop an active thread, verify it still exists, then resume it. If
2987 the thread ends up with a pending status, then it is not resumed,
2988 and *DATA (really a pointer to int), is set. */
2989
2990 static int
2991 stop_and_resume_callback (struct lwp_info *lp, void *data)
2992 {
2993 if (!lp->stopped)
2994 {
2995 ptid_t ptid = lp->ptid;
2996
2997 stop_callback (lp, NULL);
2998 stop_wait_callback (lp, NULL);
2999
3000 /* Resume if the lwp still exists, and the core wanted it
3001 running. */
3002 lp = find_lwp_pid (ptid);
3003 if (lp != NULL)
3004 {
3005 if (lp->last_resume_kind == resume_stop
3006 && !lwp_status_pending_p (lp))
3007 {
3008 /* The core wanted the LWP to stop. Even if it stopped
3009 cleanly (with SIGSTOP), leave the event pending. */
3010 if (debug_linux_nat)
3011 fprintf_unfiltered (gdb_stdlog,
3012 "SARC: core wanted LWP %ld stopped "
3013 "(leaving SIGSTOP pending)\n",
3014 ptid_get_lwp (lp->ptid));
3015 lp->status = W_STOPCODE (SIGSTOP);
3016 }
3017
3018 if (!lwp_status_pending_p (lp))
3019 {
3020 if (debug_linux_nat)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "SARC: re-resuming LWP %ld\n",
3023 ptid_get_lwp (lp->ptid));
3024 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3025 }
3026 else
3027 {
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "SARC: not re-resuming LWP %ld "
3031 "(has pending)\n",
3032 ptid_get_lwp (lp->ptid));
3033 }
3034 }
3035 }
3036 return 0;
3037 }
3038
3039 /* Check if we should go on and pass this event to common code.
3040 Return the affected lwp if we are, or NULL otherwise. */
3041
3042 static struct lwp_info *
3043 linux_nat_filter_event (int lwpid, int status)
3044 {
3045 struct lwp_info *lp;
3046 int event = linux_ptrace_get_extended_event (status);
3047
3048 lp = find_lwp_pid (pid_to_ptid (lwpid));
3049
3050 /* Check for stop events reported by a process we didn't already
3051 know about - anything not already in our LWP list.
3052
3053 If we're expecting to receive stopped processes after
3054 fork, vfork, and clone events, then we'll just add the
3055 new one to our list and go back to waiting for the event
3056 to be reported - the stopped process might be returned
3057 from waitpid before or after the event is.
3058
3059 But note the case of a non-leader thread exec'ing after the
3060 leader having exited, and gone from our lists. The non-leader
3061 thread changes its tid to the tgid. */
3062
3063 if (WIFSTOPPED (status) && lp == NULL
3064 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
3065 {
3066 /* A multi-thread exec after we had seen the leader exiting. */
3067 if (debug_linux_nat)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "LLW: Re-adding thread group leader LWP %d.\n",
3070 lwpid);
3071
3072 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
3073 lp->stopped = 1;
3074 lp->resumed = 1;
3075 add_thread (lp->ptid);
3076 }
3077
3078 if (WIFSTOPPED (status) && !lp)
3079 {
3080 if (debug_linux_nat)
3081 fprintf_unfiltered (gdb_stdlog,
3082 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3083 (long) lwpid, status_to_str (status));
3084 add_to_pid_list (&stopped_pids, lwpid, status);
3085 return NULL;
3086 }
3087
3088 /* Make sure we don't report an event for the exit of an LWP not in
3089 our list, i.e. not part of the current process. This can happen
3090 if we detach from a program we originally forked and then it
3091 exits. */
3092 if (!WIFSTOPPED (status) && !lp)
3093 return NULL;
3094
3095 /* This LWP is stopped now. (And if dead, this prevents it from
3096 ever being continued.) */
3097 lp->stopped = 1;
3098
3099 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3100 {
3101 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3102
3103 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), inf->attach_flag);
3104 lp->must_set_ptrace_flags = 0;
3105 }
3106
3107 /* Handle GNU/Linux's syscall SIGTRAPs. */
3108 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3109 {
3110 /* No longer need the sysgood bit. The ptrace event ends up
3111 recorded in lp->waitstatus if we care for it. We can carry
3112 on handling the event like a regular SIGTRAP from here
3113 on. */
3114 status = W_STOPCODE (SIGTRAP);
3115 if (linux_handle_syscall_trap (lp, 0))
3116 return NULL;
3117 }
3118
3119 /* Handle GNU/Linux's extended waitstatus for trace events. */
3120 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3121 && linux_is_extended_waitstatus (status))
3122 {
3123 if (debug_linux_nat)
3124 fprintf_unfiltered (gdb_stdlog,
3125 "LLW: Handling extended status 0x%06x\n",
3126 status);
3127 if (linux_handle_extended_wait (lp, status, 0))
3128 return NULL;
3129 }
3130
3131 /* Check if the thread has exited. */
3132 if (WIFEXITED (status) || WIFSIGNALED (status))
3133 {
3134 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3135 {
3136 /* If this is the main thread, we must stop all threads and
3137 verify if they are still alive. This is because in the
3138 nptl thread model on Linux 2.4, there is no signal issued
3139 for exiting LWPs other than the main thread. We only get
3140 the main thread exit signal once all child threads have
3141 already exited. If we stop all the threads and use the
3142 stop_wait_callback to check if they have exited we can
3143 determine whether this signal should be ignored or
3144 whether it means the end of the debugged application,
3145 regardless of which threading model is being used. */
3146 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3147 {
3148 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3149 stop_and_resume_callback, NULL);
3150 }
3151
3152 if (debug_linux_nat)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "LLW: %s exited.\n",
3155 target_pid_to_str (lp->ptid));
3156
3157 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3158 {
3159 /* If there is at least one more LWP, then the exit signal
3160 was not the end of the debugged application and should be
3161 ignored. */
3162 exit_lwp (lp);
3163 return NULL;
3164 }
3165 }
3166
3167 gdb_assert (lp->resumed);
3168
3169 if (debug_linux_nat)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "Process %ld exited\n",
3172 ptid_get_lwp (lp->ptid));
3173
3174 /* This was the last lwp in the process. Since events are
3175 serialized to GDB core, we may not be able report this one
3176 right now, but GDB core and the other target layers will want
3177 to be notified about the exit code/signal, leave the status
3178 pending for the next time we're able to report it. */
3179
3180 /* Dead LWP's aren't expected to reported a pending sigstop. */
3181 lp->signalled = 0;
3182
3183 /* Store the pending event in the waitstatus, because
3184 W_EXITCODE(0,0) == 0. */
3185 store_waitstatus (&lp->waitstatus, status);
3186 return lp;
3187 }
3188
3189 /* Check if the current LWP has previously exited. In the nptl
3190 thread model, LWPs other than the main thread do not issue
3191 signals when they exit so we must check whenever the thread has
3192 stopped. A similar check is made in stop_wait_callback(). */
3193 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3194 {
3195 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3196
3197 if (debug_linux_nat)
3198 fprintf_unfiltered (gdb_stdlog,
3199 "LLW: %s exited.\n",
3200 target_pid_to_str (lp->ptid));
3201
3202 exit_lwp (lp);
3203
3204 /* Make sure there is at least one thread running. */
3205 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3206
3207 /* Discard the event. */
3208 return NULL;
3209 }
3210
3211 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3212 an attempt to stop an LWP. */
3213 if (lp->signalled
3214 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3215 {
3216 lp->signalled = 0;
3217
3218 if (lp->last_resume_kind == resume_stop)
3219 {
3220 if (debug_linux_nat)
3221 fprintf_unfiltered (gdb_stdlog,
3222 "LLW: resume_stop SIGSTOP caught for %s.\n",
3223 target_pid_to_str (lp->ptid));
3224 }
3225 else
3226 {
3227 /* This is a delayed SIGSTOP. Filter out the event. */
3228
3229 if (debug_linux_nat)
3230 fprintf_unfiltered (gdb_stdlog,
3231 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3232 lp->step ?
3233 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3234 target_pid_to_str (lp->ptid));
3235
3236 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3237 gdb_assert (lp->resumed);
3238 return NULL;
3239 }
3240 }
3241
3242 /* Make sure we don't report a SIGINT that we have already displayed
3243 for another thread. */
3244 if (lp->ignore_sigint
3245 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3246 {
3247 if (debug_linux_nat)
3248 fprintf_unfiltered (gdb_stdlog,
3249 "LLW: Delayed SIGINT caught for %s.\n",
3250 target_pid_to_str (lp->ptid));
3251
3252 /* This is a delayed SIGINT. */
3253 lp->ignore_sigint = 0;
3254
3255 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3256 if (debug_linux_nat)
3257 fprintf_unfiltered (gdb_stdlog,
3258 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3259 lp->step ?
3260 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3261 target_pid_to_str (lp->ptid));
3262 gdb_assert (lp->resumed);
3263
3264 /* Discard the event. */
3265 return NULL;
3266 }
3267
3268 /* Don't report signals that GDB isn't interested in, such as
3269 signals that are neither printed nor stopped upon. Stopping all
3270 threads can be a bit time-consuming so if we want decent
3271 performance with heavily multi-threaded programs, especially when
3272 they're using a high frequency timer, we'd better avoid it if we
3273 can. */
3274 if (WIFSTOPPED (status))
3275 {
3276 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3277
3278 if (!non_stop)
3279 {
3280 /* Only do the below in all-stop, as we currently use SIGSTOP
3281 to implement target_stop (see linux_nat_stop) in
3282 non-stop. */
3283 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3284 {
3285 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3286 forwarded to the entire process group, that is, all LWPs
3287 will receive it - unless they're using CLONE_THREAD to
3288 share signals. Since we only want to report it once, we
3289 mark it as ignored for all LWPs except this one. */
3290 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3291 set_ignore_sigint, NULL);
3292 lp->ignore_sigint = 0;
3293 }
3294 else
3295 maybe_clear_ignore_sigint (lp);
3296 }
3297
3298 /* When using hardware single-step, we need to report every signal.
3299 Otherwise, signals in pass_mask may be short-circuited
3300 except signals that might be caused by a breakpoint. */
3301 if (!lp->step
3302 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3303 && !linux_wstatus_maybe_breakpoint (status))
3304 {
3305 linux_resume_one_lwp (lp, lp->step, signo);
3306 if (debug_linux_nat)
3307 fprintf_unfiltered (gdb_stdlog,
3308 "LLW: %s %s, %s (preempt 'handle')\n",
3309 lp->step ?
3310 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3311 target_pid_to_str (lp->ptid),
3312 (signo != GDB_SIGNAL_0
3313 ? strsignal (gdb_signal_to_host (signo))
3314 : "0"));
3315 return NULL;
3316 }
3317 }
3318
3319 /* An interesting event. */
3320 gdb_assert (lp);
3321 lp->status = status;
3322 save_sigtrap (lp);
3323 return lp;
3324 }
3325
3326 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3327 their exits until all other threads in the group have exited. */
3328
3329 static void
3330 check_zombie_leaders (void)
3331 {
3332 struct inferior *inf;
3333
3334 ALL_INFERIORS (inf)
3335 {
3336 struct lwp_info *leader_lp;
3337
3338 if (inf->pid == 0)
3339 continue;
3340
3341 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3342 if (leader_lp != NULL
3343 /* Check if there are other threads in the group, as we may
3344 have raced with the inferior simply exiting. */
3345 && num_lwps (inf->pid) > 1
3346 && linux_proc_pid_is_zombie (inf->pid))
3347 {
3348 if (debug_linux_nat)
3349 fprintf_unfiltered (gdb_stdlog,
3350 "CZL: Thread group leader %d zombie "
3351 "(it exited, or another thread execd).\n",
3352 inf->pid);
3353
3354 /* A leader zombie can mean one of two things:
3355
3356 - It exited, and there's an exit status pending
3357 available, or only the leader exited (not the whole
3358 program). In the latter case, we can't waitpid the
3359 leader's exit status until all other threads are gone.
3360
3361 - There are 3 or more threads in the group, and a thread
3362 other than the leader exec'd. On an exec, the Linux
3363 kernel destroys all other threads (except the execing
3364 one) in the thread group, and resets the execing thread's
3365 tid to the tgid. No exit notification is sent for the
3366 execing thread -- from the ptracer's perspective, it
3367 appears as though the execing thread just vanishes.
3368 Until we reap all other threads except the leader and the
3369 execing thread, the leader will be zombie, and the
3370 execing thread will be in `D (disc sleep)'. As soon as
3371 all other threads are reaped, the execing thread changes
3372 it's tid to the tgid, and the previous (zombie) leader
3373 vanishes, giving place to the "new" leader. We could try
3374 distinguishing the exit and exec cases, by waiting once
3375 more, and seeing if something comes out, but it doesn't
3376 sound useful. The previous leader _does_ go away, and
3377 we'll re-add the new one once we see the exec event
3378 (which is just the same as what would happen if the
3379 previous leader did exit voluntarily before some other
3380 thread execs). */
3381
3382 if (debug_linux_nat)
3383 fprintf_unfiltered (gdb_stdlog,
3384 "CZL: Thread group leader %d vanished.\n",
3385 inf->pid);
3386 exit_lwp (leader_lp);
3387 }
3388 }
3389 }
3390
3391 static ptid_t
3392 linux_nat_wait_1 (struct target_ops *ops,
3393 ptid_t ptid, struct target_waitstatus *ourstatus,
3394 int target_options)
3395 {
3396 sigset_t prev_mask;
3397 enum resume_kind last_resume_kind;
3398 struct lwp_info *lp;
3399 int status;
3400
3401 if (debug_linux_nat)
3402 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3403
3404 /* The first time we get here after starting a new inferior, we may
3405 not have added it to the LWP list yet - this is the earliest
3406 moment at which we know its PID. */
3407 if (ptid_is_pid (inferior_ptid))
3408 {
3409 /* Upgrade the main thread's ptid. */
3410 thread_change_ptid (inferior_ptid,
3411 ptid_build (ptid_get_pid (inferior_ptid),
3412 ptid_get_pid (inferior_ptid), 0));
3413
3414 lp = add_initial_lwp (inferior_ptid);
3415 lp->resumed = 1;
3416 }
3417
3418 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3419 block_child_signals (&prev_mask);
3420
3421 /* First check if there is a LWP with a wait status pending. */
3422 lp = iterate_over_lwps (ptid, status_callback, NULL);
3423 if (lp != NULL)
3424 {
3425 if (debug_linux_nat)
3426 fprintf_unfiltered (gdb_stdlog,
3427 "LLW: Using pending wait status %s for %s.\n",
3428 status_to_str (lp->status),
3429 target_pid_to_str (lp->ptid));
3430 }
3431
3432 if (!target_is_async_p ())
3433 {
3434 /* Causes SIGINT to be passed on to the attached process. */
3435 set_sigint_trap ();
3436 }
3437
3438 /* But if we don't find a pending event, we'll have to wait. Always
3439 pull all events out of the kernel. We'll randomly select an
3440 event LWP out of all that have events, to prevent starvation. */
3441
3442 while (lp == NULL)
3443 {
3444 pid_t lwpid;
3445
3446 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3447 quirks:
3448
3449 - If the thread group leader exits while other threads in the
3450 thread group still exist, waitpid(TGID, ...) hangs. That
3451 waitpid won't return an exit status until the other threads
3452 in the group are reapped.
3453
3454 - When a non-leader thread execs, that thread just vanishes
3455 without reporting an exit (so we'd hang if we waited for it
3456 explicitly in that case). The exec event is reported to
3457 the TGID pid. */
3458
3459 errno = 0;
3460 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3461 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3462 lwpid = my_waitpid (-1, &status, WNOHANG);
3463
3464 if (debug_linux_nat)
3465 fprintf_unfiltered (gdb_stdlog,
3466 "LNW: waitpid(-1, ...) returned %d, %s\n",
3467 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3468
3469 if (lwpid > 0)
3470 {
3471 if (debug_linux_nat)
3472 {
3473 fprintf_unfiltered (gdb_stdlog,
3474 "LLW: waitpid %ld received %s\n",
3475 (long) lwpid, status_to_str (status));
3476 }
3477
3478 linux_nat_filter_event (lwpid, status);
3479 /* Retry until nothing comes out of waitpid. A single
3480 SIGCHLD can indicate more than one child stopped. */
3481 continue;
3482 }
3483
3484 /* Now that we've pulled all events out of the kernel, resume
3485 LWPs that don't have an interesting event to report. */
3486 iterate_over_lwps (minus_one_ptid,
3487 resume_stopped_resumed_lwps, &minus_one_ptid);
3488
3489 /* ... and find an LWP with a status to report to the core, if
3490 any. */
3491 lp = iterate_over_lwps (ptid, status_callback, NULL);
3492 if (lp != NULL)
3493 break;
3494
3495 /* Check for zombie thread group leaders. Those can't be reaped
3496 until all other threads in the thread group are. */
3497 check_zombie_leaders ();
3498
3499 /* If there are no resumed children left, bail. We'd be stuck
3500 forever in the sigsuspend call below otherwise. */
3501 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3502 {
3503 if (debug_linux_nat)
3504 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3505
3506 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3507
3508 if (!target_is_async_p ())
3509 clear_sigint_trap ();
3510
3511 restore_child_signals_mask (&prev_mask);
3512 return minus_one_ptid;
3513 }
3514
3515 /* No interesting event to report to the core. */
3516
3517 if (target_options & TARGET_WNOHANG)
3518 {
3519 if (debug_linux_nat)
3520 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3521
3522 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3523 restore_child_signals_mask (&prev_mask);
3524 return minus_one_ptid;
3525 }
3526
3527 /* We shouldn't end up here unless we want to try again. */
3528 gdb_assert (lp == NULL);
3529
3530 /* Block until we get an event reported with SIGCHLD. */
3531 if (debug_linux_nat)
3532 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3533 sigsuspend (&suspend_mask);
3534 }
3535
3536 if (!target_is_async_p ())
3537 clear_sigint_trap ();
3538
3539 gdb_assert (lp);
3540
3541 status = lp->status;
3542 lp->status = 0;
3543
3544 if (!non_stop)
3545 {
3546 /* Now stop all other LWP's ... */
3547 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3548
3549 /* ... and wait until all of them have reported back that
3550 they're no longer running. */
3551 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3552 }
3553
3554 /* If we're not waiting for a specific LWP, choose an event LWP from
3555 among those that have had events. Giving equal priority to all
3556 LWPs that have had events helps prevent starvation. */
3557 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3558 select_event_lwp (ptid, &lp, &status);
3559
3560 gdb_assert (lp != NULL);
3561
3562 /* Now that we've selected our final event LWP, un-adjust its PC if
3563 it was a software breakpoint, and we can't reliably support the
3564 "stopped by software breakpoint" stop reason. */
3565 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3566 && !USE_SIGTRAP_SIGINFO)
3567 {
3568 struct regcache *regcache = get_thread_regcache (lp->ptid);
3569 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3570 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3571
3572 if (decr_pc != 0)
3573 {
3574 CORE_ADDR pc;
3575
3576 pc = regcache_read_pc (regcache);
3577 regcache_write_pc (regcache, pc + decr_pc);
3578 }
3579 }
3580
3581 /* We'll need this to determine whether to report a SIGSTOP as
3582 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3583 clears it. */
3584 last_resume_kind = lp->last_resume_kind;
3585
3586 if (!non_stop)
3587 {
3588 /* In all-stop, from the core's perspective, all LWPs are now
3589 stopped until a new resume action is sent over. */
3590 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3591 }
3592 else
3593 {
3594 resume_clear_callback (lp, NULL);
3595 }
3596
3597 if (linux_nat_status_is_event (status))
3598 {
3599 if (debug_linux_nat)
3600 fprintf_unfiltered (gdb_stdlog,
3601 "LLW: trap ptid is %s.\n",
3602 target_pid_to_str (lp->ptid));
3603 }
3604
3605 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3606 {
3607 *ourstatus = lp->waitstatus;
3608 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3609 }
3610 else
3611 store_waitstatus (ourstatus, status);
3612
3613 if (debug_linux_nat)
3614 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3615
3616 restore_child_signals_mask (&prev_mask);
3617
3618 if (last_resume_kind == resume_stop
3619 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3620 && WSTOPSIG (status) == SIGSTOP)
3621 {
3622 /* A thread that has been requested to stop by GDB with
3623 target_stop, and it stopped cleanly, so report as SIG0. The
3624 use of SIGSTOP is an implementation detail. */
3625 ourstatus->value.sig = GDB_SIGNAL_0;
3626 }
3627
3628 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3629 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3630 lp->core = -1;
3631 else
3632 lp->core = linux_common_core_of_thread (lp->ptid);
3633
3634 return lp->ptid;
3635 }
3636
3637 /* Resume LWPs that are currently stopped without any pending status
3638 to report, but are resumed from the core's perspective. */
3639
3640 static int
3641 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3642 {
3643 ptid_t *wait_ptid_p = data;
3644
3645 if (lp->stopped
3646 && lp->resumed
3647 && !lwp_status_pending_p (lp))
3648 {
3649 struct regcache *regcache = get_thread_regcache (lp->ptid);
3650 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3651
3652 TRY
3653 {
3654 CORE_ADDR pc = regcache_read_pc (regcache);
3655 int leave_stopped = 0;
3656
3657 /* Don't bother if there's a breakpoint at PC that we'd hit
3658 immediately, and we're not waiting for this LWP. */
3659 if (!ptid_match (lp->ptid, *wait_ptid_p))
3660 {
3661 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3662 leave_stopped = 1;
3663 }
3664
3665 if (!leave_stopped)
3666 {
3667 if (debug_linux_nat)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "RSRL: resuming stopped-resumed LWP %s at "
3670 "%s: step=%d\n",
3671 target_pid_to_str (lp->ptid),
3672 paddress (gdbarch, pc),
3673 lp->step);
3674
3675 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3676 }
3677 }
3678 CATCH (ex, RETURN_MASK_ERROR)
3679 {
3680 if (!check_ptrace_stopped_lwp_gone (lp))
3681 throw_exception (ex);
3682 }
3683 END_CATCH
3684 }
3685
3686 return 0;
3687 }
3688
3689 static ptid_t
3690 linux_nat_wait (struct target_ops *ops,
3691 ptid_t ptid, struct target_waitstatus *ourstatus,
3692 int target_options)
3693 {
3694 ptid_t event_ptid;
3695
3696 if (debug_linux_nat)
3697 {
3698 char *options_string;
3699
3700 options_string = target_options_to_string (target_options);
3701 fprintf_unfiltered (gdb_stdlog,
3702 "linux_nat_wait: [%s], [%s]\n",
3703 target_pid_to_str (ptid),
3704 options_string);
3705 xfree (options_string);
3706 }
3707
3708 /* Flush the async file first. */
3709 if (target_is_async_p ())
3710 async_file_flush ();
3711
3712 /* Resume LWPs that are currently stopped without any pending status
3713 to report, but are resumed from the core's perspective. LWPs get
3714 in this state if we find them stopping at a time we're not
3715 interested in reporting the event (target_wait on a
3716 specific_process, for example, see linux_nat_wait_1), and
3717 meanwhile the event became uninteresting. Don't bother resuming
3718 LWPs we're not going to wait for if they'd stop immediately. */
3719 if (non_stop)
3720 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3721
3722 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3723
3724 /* If we requested any event, and something came out, assume there
3725 may be more. If we requested a specific lwp or process, also
3726 assume there may be more. */
3727 if (target_is_async_p ()
3728 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3729 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3730 || !ptid_equal (ptid, minus_one_ptid)))
3731 async_file_mark ();
3732
3733 return event_ptid;
3734 }
3735
3736 static int
3737 kill_callback (struct lwp_info *lp, void *data)
3738 {
3739 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3740
3741 errno = 0;
3742 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL);
3743 if (debug_linux_nat)
3744 {
3745 int save_errno = errno;
3746
3747 fprintf_unfiltered (gdb_stdlog,
3748 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3749 target_pid_to_str (lp->ptid),
3750 save_errno ? safe_strerror (save_errno) : "OK");
3751 }
3752
3753 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3754
3755 errno = 0;
3756 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3757 if (debug_linux_nat)
3758 {
3759 int save_errno = errno;
3760
3761 fprintf_unfiltered (gdb_stdlog,
3762 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3763 target_pid_to_str (lp->ptid),
3764 save_errno ? safe_strerror (save_errno) : "OK");
3765 }
3766
3767 return 0;
3768 }
3769
3770 static int
3771 kill_wait_callback (struct lwp_info *lp, void *data)
3772 {
3773 pid_t pid;
3774
3775 /* We must make sure that there are no pending events (delayed
3776 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3777 program doesn't interfere with any following debugging session. */
3778
3779 /* For cloned processes we must check both with __WCLONE and
3780 without, since the exit status of a cloned process isn't reported
3781 with __WCLONE. */
3782 if (lp->cloned)
3783 {
3784 do
3785 {
3786 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3787 if (pid != (pid_t) -1)
3788 {
3789 if (debug_linux_nat)
3790 fprintf_unfiltered (gdb_stdlog,
3791 "KWC: wait %s received unknown.\n",
3792 target_pid_to_str (lp->ptid));
3793 /* The Linux kernel sometimes fails to kill a thread
3794 completely after PTRACE_KILL; that goes from the stop
3795 point in do_fork out to the one in
3796 get_signal_to_deliever and waits again. So kill it
3797 again. */
3798 kill_callback (lp, NULL);
3799 }
3800 }
3801 while (pid == ptid_get_lwp (lp->ptid));
3802
3803 gdb_assert (pid == -1 && errno == ECHILD);
3804 }
3805
3806 do
3807 {
3808 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3809 if (pid != (pid_t) -1)
3810 {
3811 if (debug_linux_nat)
3812 fprintf_unfiltered (gdb_stdlog,
3813 "KWC: wait %s received unk.\n",
3814 target_pid_to_str (lp->ptid));
3815 /* See the call to kill_callback above. */
3816 kill_callback (lp, NULL);
3817 }
3818 }
3819 while (pid == ptid_get_lwp (lp->ptid));
3820
3821 gdb_assert (pid == -1 && errno == ECHILD);
3822 return 0;
3823 }
3824
3825 static void
3826 linux_nat_kill (struct target_ops *ops)
3827 {
3828 struct target_waitstatus last;
3829 ptid_t last_ptid;
3830 int status;
3831
3832 /* If we're stopped while forking and we haven't followed yet,
3833 kill the other task. We need to do this first because the
3834 parent will be sleeping if this is a vfork. */
3835
3836 get_last_target_status (&last_ptid, &last);
3837
3838 if (last.kind == TARGET_WAITKIND_FORKED
3839 || last.kind == TARGET_WAITKIND_VFORKED)
3840 {
3841 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3842 wait (&status);
3843
3844 /* Let the arch-specific native code know this process is
3845 gone. */
3846 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3847 }
3848
3849 if (forks_exist_p ())
3850 linux_fork_killall ();
3851 else
3852 {
3853 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3854
3855 /* Stop all threads before killing them, since ptrace requires
3856 that the thread is stopped to sucessfully PTRACE_KILL. */
3857 iterate_over_lwps (ptid, stop_callback, NULL);
3858 /* ... and wait until all of them have reported back that
3859 they're no longer running. */
3860 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3861
3862 /* Kill all LWP's ... */
3863 iterate_over_lwps (ptid, kill_callback, NULL);
3864
3865 /* ... and wait until we've flushed all events. */
3866 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3867 }
3868
3869 target_mourn_inferior ();
3870 }
3871
3872 static void
3873 linux_nat_mourn_inferior (struct target_ops *ops)
3874 {
3875 int pid = ptid_get_pid (inferior_ptid);
3876
3877 purge_lwp_list (pid);
3878
3879 if (! forks_exist_p ())
3880 /* Normal case, no other forks available. */
3881 linux_ops->to_mourn_inferior (ops);
3882 else
3883 /* Multi-fork case. The current inferior_ptid has exited, but
3884 there are other viable forks to debug. Delete the exiting
3885 one and context-switch to the first available. */
3886 linux_fork_mourn_inferior ();
3887
3888 /* Let the arch-specific native code know this process is gone. */
3889 linux_nat_forget_process (pid);
3890 }
3891
3892 /* Convert a native/host siginfo object, into/from the siginfo in the
3893 layout of the inferiors' architecture. */
3894
3895 static void
3896 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3897 {
3898 int done = 0;
3899
3900 if (linux_nat_siginfo_fixup != NULL)
3901 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3902
3903 /* If there was no callback, or the callback didn't do anything,
3904 then just do a straight memcpy. */
3905 if (!done)
3906 {
3907 if (direction == 1)
3908 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3909 else
3910 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3911 }
3912 }
3913
3914 static enum target_xfer_status
3915 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3916 const char *annex, gdb_byte *readbuf,
3917 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3918 ULONGEST *xfered_len)
3919 {
3920 int pid;
3921 siginfo_t siginfo;
3922 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3923
3924 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3925 gdb_assert (readbuf || writebuf);
3926
3927 pid = ptid_get_lwp (inferior_ptid);
3928 if (pid == 0)
3929 pid = ptid_get_pid (inferior_ptid);
3930
3931 if (offset > sizeof (siginfo))
3932 return TARGET_XFER_E_IO;
3933
3934 errno = 0;
3935 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3936 if (errno != 0)
3937 return TARGET_XFER_E_IO;
3938
3939 /* When GDB is built as a 64-bit application, ptrace writes into
3940 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3941 inferior with a 64-bit GDB should look the same as debugging it
3942 with a 32-bit GDB, we need to convert it. GDB core always sees
3943 the converted layout, so any read/write will have to be done
3944 post-conversion. */
3945 siginfo_fixup (&siginfo, inf_siginfo, 0);
3946
3947 if (offset + len > sizeof (siginfo))
3948 len = sizeof (siginfo) - offset;
3949
3950 if (readbuf != NULL)
3951 memcpy (readbuf, inf_siginfo + offset, len);
3952 else
3953 {
3954 memcpy (inf_siginfo + offset, writebuf, len);
3955
3956 /* Convert back to ptrace layout before flushing it out. */
3957 siginfo_fixup (&siginfo, inf_siginfo, 1);
3958
3959 errno = 0;
3960 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3961 if (errno != 0)
3962 return TARGET_XFER_E_IO;
3963 }
3964
3965 *xfered_len = len;
3966 return TARGET_XFER_OK;
3967 }
3968
3969 static enum target_xfer_status
3970 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3971 const char *annex, gdb_byte *readbuf,
3972 const gdb_byte *writebuf,
3973 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3974 {
3975 struct cleanup *old_chain;
3976 enum target_xfer_status xfer;
3977
3978 if (object == TARGET_OBJECT_SIGNAL_INFO)
3979 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3980 offset, len, xfered_len);
3981
3982 /* The target is connected but no live inferior is selected. Pass
3983 this request down to a lower stratum (e.g., the executable
3984 file). */
3985 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3986 return TARGET_XFER_EOF;
3987
3988 old_chain = save_inferior_ptid ();
3989
3990 if (ptid_lwp_p (inferior_ptid))
3991 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3992
3993 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3994 offset, len, xfered_len);
3995
3996 do_cleanups (old_chain);
3997 return xfer;
3998 }
3999
4000 static int
4001 linux_thread_alive (ptid_t ptid)
4002 {
4003 int err, tmp_errno;
4004
4005 gdb_assert (ptid_lwp_p (ptid));
4006
4007 /* Send signal 0 instead of anything ptrace, because ptracing a
4008 running thread errors out claiming that the thread doesn't
4009 exist. */
4010 err = kill_lwp (ptid_get_lwp (ptid), 0);
4011 tmp_errno = errno;
4012 if (debug_linux_nat)
4013 fprintf_unfiltered (gdb_stdlog,
4014 "LLTA: KILL(SIG0) %s (%s)\n",
4015 target_pid_to_str (ptid),
4016 err ? safe_strerror (tmp_errno) : "OK");
4017
4018 if (err != 0)
4019 return 0;
4020
4021 return 1;
4022 }
4023
4024 static int
4025 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4026 {
4027 return linux_thread_alive (ptid);
4028 }
4029
4030 static char *
4031 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4032 {
4033 static char buf[64];
4034
4035 if (ptid_lwp_p (ptid)
4036 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
4037 || num_lwps (ptid_get_pid (ptid)) > 1))
4038 {
4039 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
4040 return buf;
4041 }
4042
4043 return normal_pid_to_str (ptid);
4044 }
4045
4046 static char *
4047 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
4048 {
4049 int pid = ptid_get_pid (thr->ptid);
4050 long lwp = ptid_get_lwp (thr->ptid);
4051 #define FORMAT "/proc/%d/task/%ld/comm"
4052 char buf[sizeof (FORMAT) + 30];
4053 FILE *comm_file;
4054 char *result = NULL;
4055
4056 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4057 comm_file = gdb_fopen_cloexec (buf, "r");
4058 if (comm_file)
4059 {
4060 /* Not exported by the kernel, so we define it here. */
4061 #define COMM_LEN 16
4062 static char line[COMM_LEN + 1];
4063
4064 if (fgets (line, sizeof (line), comm_file))
4065 {
4066 char *nl = strchr (line, '\n');
4067
4068 if (nl)
4069 *nl = '\0';
4070 if (*line != '\0')
4071 result = line;
4072 }
4073
4074 fclose (comm_file);
4075 }
4076
4077 #undef COMM_LEN
4078 #undef FORMAT
4079
4080 return result;
4081 }
4082
4083 /* Accepts an integer PID; Returns a string representing a file that
4084 can be opened to get the symbols for the child process. */
4085
4086 static char *
4087 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
4088 {
4089 static char buf[PATH_MAX];
4090 char name[PATH_MAX];
4091
4092 xsnprintf (name, PATH_MAX, "/proc/%d/exe", pid);
4093 memset (buf, 0, PATH_MAX);
4094 if (readlink (name, buf, PATH_MAX - 1) <= 0)
4095 strcpy (buf, name);
4096
4097 return buf;
4098 }
4099
4100 /* Implement the to_xfer_partial interface for memory reads using the /proc
4101 filesystem. Because we can use a single read() call for /proc, this
4102 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4103 but it doesn't support writes. */
4104
4105 static enum target_xfer_status
4106 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4107 const char *annex, gdb_byte *readbuf,
4108 const gdb_byte *writebuf,
4109 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
4110 {
4111 LONGEST ret;
4112 int fd;
4113 char filename[64];
4114
4115 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4116 return 0;
4117
4118 /* Don't bother for one word. */
4119 if (len < 3 * sizeof (long))
4120 return TARGET_XFER_EOF;
4121
4122 /* We could keep this file open and cache it - possibly one per
4123 thread. That requires some juggling, but is even faster. */
4124 xsnprintf (filename, sizeof filename, "/proc/%d/mem",
4125 ptid_get_pid (inferior_ptid));
4126 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4127 if (fd == -1)
4128 return TARGET_XFER_EOF;
4129
4130 /* If pread64 is available, use it. It's faster if the kernel
4131 supports it (only one syscall), and it's 64-bit safe even on
4132 32-bit platforms (for instance, SPARC debugging a SPARC64
4133 application). */
4134 #ifdef HAVE_PREAD64
4135 if (pread64 (fd, readbuf, len, offset) != len)
4136 #else
4137 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4138 #endif
4139 ret = 0;
4140 else
4141 ret = len;
4142
4143 close (fd);
4144
4145 if (ret == 0)
4146 return TARGET_XFER_EOF;
4147 else
4148 {
4149 *xfered_len = ret;
4150 return TARGET_XFER_OK;
4151 }
4152 }
4153
4154
4155 /* Enumerate spufs IDs for process PID. */
4156 static LONGEST
4157 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4158 {
4159 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4160 LONGEST pos = 0;
4161 LONGEST written = 0;
4162 char path[128];
4163 DIR *dir;
4164 struct dirent *entry;
4165
4166 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4167 dir = opendir (path);
4168 if (!dir)
4169 return -1;
4170
4171 rewinddir (dir);
4172 while ((entry = readdir (dir)) != NULL)
4173 {
4174 struct stat st;
4175 struct statfs stfs;
4176 int fd;
4177
4178 fd = atoi (entry->d_name);
4179 if (!fd)
4180 continue;
4181
4182 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4183 if (stat (path, &st) != 0)
4184 continue;
4185 if (!S_ISDIR (st.st_mode))
4186 continue;
4187
4188 if (statfs (path, &stfs) != 0)
4189 continue;
4190 if (stfs.f_type != SPUFS_MAGIC)
4191 continue;
4192
4193 if (pos >= offset && pos + 4 <= offset + len)
4194 {
4195 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4196 written += 4;
4197 }
4198 pos += 4;
4199 }
4200
4201 closedir (dir);
4202 return written;
4203 }
4204
4205 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4206 object type, using the /proc file system. */
4207
4208 static enum target_xfer_status
4209 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4210 const char *annex, gdb_byte *readbuf,
4211 const gdb_byte *writebuf,
4212 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4213 {
4214 char buf[128];
4215 int fd = 0;
4216 int ret = -1;
4217 int pid = ptid_get_pid (inferior_ptid);
4218
4219 if (!annex)
4220 {
4221 if (!readbuf)
4222 return TARGET_XFER_E_IO;
4223 else
4224 {
4225 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4226
4227 if (l < 0)
4228 return TARGET_XFER_E_IO;
4229 else if (l == 0)
4230 return TARGET_XFER_EOF;
4231 else
4232 {
4233 *xfered_len = (ULONGEST) l;
4234 return TARGET_XFER_OK;
4235 }
4236 }
4237 }
4238
4239 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4240 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4241 if (fd <= 0)
4242 return TARGET_XFER_E_IO;
4243
4244 if (offset != 0
4245 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4246 {
4247 close (fd);
4248 return TARGET_XFER_EOF;
4249 }
4250
4251 if (writebuf)
4252 ret = write (fd, writebuf, (size_t) len);
4253 else if (readbuf)
4254 ret = read (fd, readbuf, (size_t) len);
4255
4256 close (fd);
4257
4258 if (ret < 0)
4259 return TARGET_XFER_E_IO;
4260 else if (ret == 0)
4261 return TARGET_XFER_EOF;
4262 else
4263 {
4264 *xfered_len = (ULONGEST) ret;
4265 return TARGET_XFER_OK;
4266 }
4267 }
4268
4269
4270 /* Parse LINE as a signal set and add its set bits to SIGS. */
4271
4272 static void
4273 add_line_to_sigset (const char *line, sigset_t *sigs)
4274 {
4275 int len = strlen (line) - 1;
4276 const char *p;
4277 int signum;
4278
4279 if (line[len] != '\n')
4280 error (_("Could not parse signal set: %s"), line);
4281
4282 p = line;
4283 signum = len * 4;
4284 while (len-- > 0)
4285 {
4286 int digit;
4287
4288 if (*p >= '0' && *p <= '9')
4289 digit = *p - '0';
4290 else if (*p >= 'a' && *p <= 'f')
4291 digit = *p - 'a' + 10;
4292 else
4293 error (_("Could not parse signal set: %s"), line);
4294
4295 signum -= 4;
4296
4297 if (digit & 1)
4298 sigaddset (sigs, signum + 1);
4299 if (digit & 2)
4300 sigaddset (sigs, signum + 2);
4301 if (digit & 4)
4302 sigaddset (sigs, signum + 3);
4303 if (digit & 8)
4304 sigaddset (sigs, signum + 4);
4305
4306 p++;
4307 }
4308 }
4309
4310 /* Find process PID's pending signals from /proc/pid/status and set
4311 SIGS to match. */
4312
4313 void
4314 linux_proc_pending_signals (int pid, sigset_t *pending,
4315 sigset_t *blocked, sigset_t *ignored)
4316 {
4317 FILE *procfile;
4318 char buffer[PATH_MAX], fname[PATH_MAX];
4319 struct cleanup *cleanup;
4320
4321 sigemptyset (pending);
4322 sigemptyset (blocked);
4323 sigemptyset (ignored);
4324 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4325 procfile = gdb_fopen_cloexec (fname, "r");
4326 if (procfile == NULL)
4327 error (_("Could not open %s"), fname);
4328 cleanup = make_cleanup_fclose (procfile);
4329
4330 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4331 {
4332 /* Normal queued signals are on the SigPnd line in the status
4333 file. However, 2.6 kernels also have a "shared" pending
4334 queue for delivering signals to a thread group, so check for
4335 a ShdPnd line also.
4336
4337 Unfortunately some Red Hat kernels include the shared pending
4338 queue but not the ShdPnd status field. */
4339
4340 if (startswith (buffer, "SigPnd:\t"))
4341 add_line_to_sigset (buffer + 8, pending);
4342 else if (startswith (buffer, "ShdPnd:\t"))
4343 add_line_to_sigset (buffer + 8, pending);
4344 else if (startswith (buffer, "SigBlk:\t"))
4345 add_line_to_sigset (buffer + 8, blocked);
4346 else if (startswith (buffer, "SigIgn:\t"))
4347 add_line_to_sigset (buffer + 8, ignored);
4348 }
4349
4350 do_cleanups (cleanup);
4351 }
4352
4353 static enum target_xfer_status
4354 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4355 const char *annex, gdb_byte *readbuf,
4356 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4357 ULONGEST *xfered_len)
4358 {
4359 gdb_assert (object == TARGET_OBJECT_OSDATA);
4360
4361 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4362 if (*xfered_len == 0)
4363 return TARGET_XFER_EOF;
4364 else
4365 return TARGET_XFER_OK;
4366 }
4367
4368 static enum target_xfer_status
4369 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4370 const char *annex, gdb_byte *readbuf,
4371 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4372 ULONGEST *xfered_len)
4373 {
4374 enum target_xfer_status xfer;
4375
4376 if (object == TARGET_OBJECT_AUXV)
4377 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4378 offset, len, xfered_len);
4379
4380 if (object == TARGET_OBJECT_OSDATA)
4381 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4382 offset, len, xfered_len);
4383
4384 if (object == TARGET_OBJECT_SPU)
4385 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4386 offset, len, xfered_len);
4387
4388 /* GDB calculates all the addresses in possibly larget width of the address.
4389 Address width needs to be masked before its final use - either by
4390 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4391
4392 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4393
4394 if (object == TARGET_OBJECT_MEMORY)
4395 {
4396 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4397
4398 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4399 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4400 }
4401
4402 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4403 offset, len, xfered_len);
4404 if (xfer != TARGET_XFER_EOF)
4405 return xfer;
4406
4407 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4408 offset, len, xfered_len);
4409 }
4410
4411 static void
4412 cleanup_target_stop (void *arg)
4413 {
4414 ptid_t *ptid = (ptid_t *) arg;
4415
4416 gdb_assert (arg != NULL);
4417
4418 /* Unpause all */
4419 target_resume (*ptid, 0, GDB_SIGNAL_0);
4420 }
4421
4422 static VEC(static_tracepoint_marker_p) *
4423 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4424 const char *strid)
4425 {
4426 char s[IPA_CMD_BUF_SIZE];
4427 struct cleanup *old_chain;
4428 int pid = ptid_get_pid (inferior_ptid);
4429 VEC(static_tracepoint_marker_p) *markers = NULL;
4430 struct static_tracepoint_marker *marker = NULL;
4431 char *p = s;
4432 ptid_t ptid = ptid_build (pid, 0, 0);
4433
4434 /* Pause all */
4435 target_stop (ptid);
4436
4437 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4438 s[sizeof ("qTfSTM")] = 0;
4439
4440 agent_run_command (pid, s, strlen (s) + 1);
4441
4442 old_chain = make_cleanup (free_current_marker, &marker);
4443 make_cleanup (cleanup_target_stop, &ptid);
4444
4445 while (*p++ == 'm')
4446 {
4447 if (marker == NULL)
4448 marker = XCNEW (struct static_tracepoint_marker);
4449
4450 do
4451 {
4452 parse_static_tracepoint_marker_definition (p, &p, marker);
4453
4454 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4455 {
4456 VEC_safe_push (static_tracepoint_marker_p,
4457 markers, marker);
4458 marker = NULL;
4459 }
4460 else
4461 {
4462 release_static_tracepoint_marker (marker);
4463 memset (marker, 0, sizeof (*marker));
4464 }
4465 }
4466 while (*p++ == ','); /* comma-separated list */
4467
4468 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4469 s[sizeof ("qTsSTM")] = 0;
4470 agent_run_command (pid, s, strlen (s) + 1);
4471 p = s;
4472 }
4473
4474 do_cleanups (old_chain);
4475
4476 return markers;
4477 }
4478
4479 /* Create a prototype generic GNU/Linux target. The client can override
4480 it with local methods. */
4481
4482 static void
4483 linux_target_install_ops (struct target_ops *t)
4484 {
4485 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4486 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4487 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4488 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4489 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4490 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4491 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4492 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4493 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4494 t->to_post_attach = linux_child_post_attach;
4495 t->to_follow_fork = linux_child_follow_fork;
4496
4497 super_xfer_partial = t->to_xfer_partial;
4498 t->to_xfer_partial = linux_xfer_partial;
4499
4500 t->to_static_tracepoint_markers_by_strid
4501 = linux_child_static_tracepoint_markers_by_strid;
4502 }
4503
4504 struct target_ops *
4505 linux_target (void)
4506 {
4507 struct target_ops *t;
4508
4509 t = inf_ptrace_target ();
4510 linux_target_install_ops (t);
4511
4512 return t;
4513 }
4514
4515 struct target_ops *
4516 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4517 {
4518 struct target_ops *t;
4519
4520 t = inf_ptrace_trad_target (register_u_offset);
4521 linux_target_install_ops (t);
4522
4523 return t;
4524 }
4525
4526 /* target_is_async_p implementation. */
4527
4528 static int
4529 linux_nat_is_async_p (struct target_ops *ops)
4530 {
4531 return linux_is_async_p ();
4532 }
4533
4534 /* target_can_async_p implementation. */
4535
4536 static int
4537 linux_nat_can_async_p (struct target_ops *ops)
4538 {
4539 /* NOTE: palves 2008-03-21: We're only async when the user requests
4540 it explicitly with the "set target-async" command.
4541 Someday, linux will always be async. */
4542 return target_async_permitted;
4543 }
4544
4545 static int
4546 linux_nat_supports_non_stop (struct target_ops *self)
4547 {
4548 return 1;
4549 }
4550
4551 /* True if we want to support multi-process. To be removed when GDB
4552 supports multi-exec. */
4553
4554 int linux_multi_process = 1;
4555
4556 static int
4557 linux_nat_supports_multi_process (struct target_ops *self)
4558 {
4559 return linux_multi_process;
4560 }
4561
4562 static int
4563 linux_nat_supports_disable_randomization (struct target_ops *self)
4564 {
4565 #ifdef HAVE_PERSONALITY
4566 return 1;
4567 #else
4568 return 0;
4569 #endif
4570 }
4571
4572 static int async_terminal_is_ours = 1;
4573
4574 /* target_terminal_inferior implementation.
4575
4576 This is a wrapper around child_terminal_inferior to add async support. */
4577
4578 static void
4579 linux_nat_terminal_inferior (struct target_ops *self)
4580 {
4581 /* Like target_terminal_inferior, use target_can_async_p, not
4582 target_is_async_p, since at this point the target is not async
4583 yet. If it can async, then we know it will become async prior to
4584 resume. */
4585 if (!target_can_async_p ())
4586 {
4587 /* Async mode is disabled. */
4588 child_terminal_inferior (self);
4589 return;
4590 }
4591
4592 child_terminal_inferior (self);
4593
4594 /* Calls to target_terminal_*() are meant to be idempotent. */
4595 if (!async_terminal_is_ours)
4596 return;
4597
4598 delete_file_handler (input_fd);
4599 async_terminal_is_ours = 0;
4600 set_sigint_trap ();
4601 }
4602
4603 /* target_terminal_ours implementation.
4604
4605 This is a wrapper around child_terminal_ours to add async support (and
4606 implement the target_terminal_ours vs target_terminal_ours_for_output
4607 distinction). child_terminal_ours is currently no different than
4608 child_terminal_ours_for_output.
4609 We leave target_terminal_ours_for_output alone, leaving it to
4610 child_terminal_ours_for_output. */
4611
4612 static void
4613 linux_nat_terminal_ours (struct target_ops *self)
4614 {
4615 /* GDB should never give the terminal to the inferior if the
4616 inferior is running in the background (run&, continue&, etc.),
4617 but claiming it sure should. */
4618 child_terminal_ours (self);
4619
4620 if (async_terminal_is_ours)
4621 return;
4622
4623 clear_sigint_trap ();
4624 add_file_handler (input_fd, stdin_event_handler, 0);
4625 async_terminal_is_ours = 1;
4626 }
4627
4628 static void (*async_client_callback) (enum inferior_event_type event_type,
4629 void *context);
4630 static void *async_client_context;
4631
4632 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4633 so we notice when any child changes state, and notify the
4634 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4635 above to wait for the arrival of a SIGCHLD. */
4636
4637 static void
4638 sigchld_handler (int signo)
4639 {
4640 int old_errno = errno;
4641
4642 if (debug_linux_nat)
4643 ui_file_write_async_safe (gdb_stdlog,
4644 "sigchld\n", sizeof ("sigchld\n") - 1);
4645
4646 if (signo == SIGCHLD
4647 && linux_nat_event_pipe[0] != -1)
4648 async_file_mark (); /* Let the event loop know that there are
4649 events to handle. */
4650
4651 errno = old_errno;
4652 }
4653
4654 /* Callback registered with the target events file descriptor. */
4655
4656 static void
4657 handle_target_event (int error, gdb_client_data client_data)
4658 {
4659 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4660 }
4661
4662 /* Create/destroy the target events pipe. Returns previous state. */
4663
4664 static int
4665 linux_async_pipe (int enable)
4666 {
4667 int previous = linux_is_async_p ();
4668
4669 if (previous != enable)
4670 {
4671 sigset_t prev_mask;
4672
4673 /* Block child signals while we create/destroy the pipe, as
4674 their handler writes to it. */
4675 block_child_signals (&prev_mask);
4676
4677 if (enable)
4678 {
4679 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4680 internal_error (__FILE__, __LINE__,
4681 "creating event pipe failed.");
4682
4683 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4684 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4685 }
4686 else
4687 {
4688 close (linux_nat_event_pipe[0]);
4689 close (linux_nat_event_pipe[1]);
4690 linux_nat_event_pipe[0] = -1;
4691 linux_nat_event_pipe[1] = -1;
4692 }
4693
4694 restore_child_signals_mask (&prev_mask);
4695 }
4696
4697 return previous;
4698 }
4699
4700 /* target_async implementation. */
4701
4702 static void
4703 linux_nat_async (struct target_ops *ops,
4704 void (*callback) (enum inferior_event_type event_type,
4705 void *context),
4706 void *context)
4707 {
4708 if (callback != NULL)
4709 {
4710 async_client_callback = callback;
4711 async_client_context = context;
4712 if (!linux_async_pipe (1))
4713 {
4714 add_file_handler (linux_nat_event_pipe[0],
4715 handle_target_event, NULL);
4716 /* There may be pending events to handle. Tell the event loop
4717 to poll them. */
4718 async_file_mark ();
4719 }
4720 }
4721 else
4722 {
4723 async_client_callback = callback;
4724 async_client_context = context;
4725 delete_file_handler (linux_nat_event_pipe[0]);
4726 linux_async_pipe (0);
4727 }
4728 return;
4729 }
4730
4731 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4732 event came out. */
4733
4734 static int
4735 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4736 {
4737 if (!lwp->stopped)
4738 {
4739 if (debug_linux_nat)
4740 fprintf_unfiltered (gdb_stdlog,
4741 "LNSL: running -> suspending %s\n",
4742 target_pid_to_str (lwp->ptid));
4743
4744
4745 if (lwp->last_resume_kind == resume_stop)
4746 {
4747 if (debug_linux_nat)
4748 fprintf_unfiltered (gdb_stdlog,
4749 "linux-nat: already stopping LWP %ld at "
4750 "GDB's request\n",
4751 ptid_get_lwp (lwp->ptid));
4752 return 0;
4753 }
4754
4755 stop_callback (lwp, NULL);
4756 lwp->last_resume_kind = resume_stop;
4757 }
4758 else
4759 {
4760 /* Already known to be stopped; do nothing. */
4761
4762 if (debug_linux_nat)
4763 {
4764 if (find_thread_ptid (lwp->ptid)->stop_requested)
4765 fprintf_unfiltered (gdb_stdlog,
4766 "LNSL: already stopped/stop_requested %s\n",
4767 target_pid_to_str (lwp->ptid));
4768 else
4769 fprintf_unfiltered (gdb_stdlog,
4770 "LNSL: already stopped/no "
4771 "stop_requested yet %s\n",
4772 target_pid_to_str (lwp->ptid));
4773 }
4774 }
4775 return 0;
4776 }
4777
4778 static void
4779 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4780 {
4781 if (non_stop)
4782 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4783 else
4784 linux_ops->to_stop (linux_ops, ptid);
4785 }
4786
4787 static void
4788 linux_nat_close (struct target_ops *self)
4789 {
4790 /* Unregister from the event loop. */
4791 if (linux_nat_is_async_p (self))
4792 linux_nat_async (self, NULL, NULL);
4793
4794 if (linux_ops->to_close)
4795 linux_ops->to_close (linux_ops);
4796
4797 super_close (self);
4798 }
4799
4800 /* When requests are passed down from the linux-nat layer to the
4801 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4802 used. The address space pointer is stored in the inferior object,
4803 but the common code that is passed such ptid can't tell whether
4804 lwpid is a "main" process id or not (it assumes so). We reverse
4805 look up the "main" process id from the lwp here. */
4806
4807 static struct address_space *
4808 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4809 {
4810 struct lwp_info *lwp;
4811 struct inferior *inf;
4812 int pid;
4813
4814 if (ptid_get_lwp (ptid) == 0)
4815 {
4816 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4817 tgid. */
4818 lwp = find_lwp_pid (ptid);
4819 pid = ptid_get_pid (lwp->ptid);
4820 }
4821 else
4822 {
4823 /* A (pid,lwpid,0) ptid. */
4824 pid = ptid_get_pid (ptid);
4825 }
4826
4827 inf = find_inferior_pid (pid);
4828 gdb_assert (inf != NULL);
4829 return inf->aspace;
4830 }
4831
4832 /* Return the cached value of the processor core for thread PTID. */
4833
4834 static int
4835 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4836 {
4837 struct lwp_info *info = find_lwp_pid (ptid);
4838
4839 if (info)
4840 return info->core;
4841 return -1;
4842 }
4843
4844 void
4845 linux_nat_add_target (struct target_ops *t)
4846 {
4847 /* Save the provided single-threaded target. We save this in a separate
4848 variable because another target we've inherited from (e.g. inf-ptrace)
4849 may have saved a pointer to T; we want to use it for the final
4850 process stratum target. */
4851 linux_ops_saved = *t;
4852 linux_ops = &linux_ops_saved;
4853
4854 /* Override some methods for multithreading. */
4855 t->to_create_inferior = linux_nat_create_inferior;
4856 t->to_attach = linux_nat_attach;
4857 t->to_detach = linux_nat_detach;
4858 t->to_resume = linux_nat_resume;
4859 t->to_wait = linux_nat_wait;
4860 t->to_pass_signals = linux_nat_pass_signals;
4861 t->to_xfer_partial = linux_nat_xfer_partial;
4862 t->to_kill = linux_nat_kill;
4863 t->to_mourn_inferior = linux_nat_mourn_inferior;
4864 t->to_thread_alive = linux_nat_thread_alive;
4865 t->to_pid_to_str = linux_nat_pid_to_str;
4866 t->to_thread_name = linux_nat_thread_name;
4867 t->to_has_thread_control = tc_schedlock;
4868 t->to_thread_address_space = linux_nat_thread_address_space;
4869 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4870 t->to_stopped_data_address = linux_nat_stopped_data_address;
4871 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4872 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4873 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4874 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4875
4876 t->to_can_async_p = linux_nat_can_async_p;
4877 t->to_is_async_p = linux_nat_is_async_p;
4878 t->to_supports_non_stop = linux_nat_supports_non_stop;
4879 t->to_async = linux_nat_async;
4880 t->to_terminal_inferior = linux_nat_terminal_inferior;
4881 t->to_terminal_ours = linux_nat_terminal_ours;
4882
4883 super_close = t->to_close;
4884 t->to_close = linux_nat_close;
4885
4886 /* Methods for non-stop support. */
4887 t->to_stop = linux_nat_stop;
4888
4889 t->to_supports_multi_process = linux_nat_supports_multi_process;
4890
4891 t->to_supports_disable_randomization
4892 = linux_nat_supports_disable_randomization;
4893
4894 t->to_core_of_thread = linux_nat_core_of_thread;
4895
4896 /* We don't change the stratum; this target will sit at
4897 process_stratum and thread_db will set at thread_stratum. This
4898 is a little strange, since this is a multi-threaded-capable
4899 target, but we want to be on the stack below thread_db, and we
4900 also want to be used for single-threaded processes. */
4901
4902 add_target (t);
4903 }
4904
4905 /* Register a method to call whenever a new thread is attached. */
4906 void
4907 linux_nat_set_new_thread (struct target_ops *t,
4908 void (*new_thread) (struct lwp_info *))
4909 {
4910 /* Save the pointer. We only support a single registered instance
4911 of the GNU/Linux native target, so we do not need to map this to
4912 T. */
4913 linux_nat_new_thread = new_thread;
4914 }
4915
4916 /* See declaration in linux-nat.h. */
4917
4918 void
4919 linux_nat_set_new_fork (struct target_ops *t,
4920 linux_nat_new_fork_ftype *new_fork)
4921 {
4922 /* Save the pointer. */
4923 linux_nat_new_fork = new_fork;
4924 }
4925
4926 /* See declaration in linux-nat.h. */
4927
4928 void
4929 linux_nat_set_forget_process (struct target_ops *t,
4930 linux_nat_forget_process_ftype *fn)
4931 {
4932 /* Save the pointer. */
4933 linux_nat_forget_process_hook = fn;
4934 }
4935
4936 /* See declaration in linux-nat.h. */
4937
4938 void
4939 linux_nat_forget_process (pid_t pid)
4940 {
4941 if (linux_nat_forget_process_hook != NULL)
4942 linux_nat_forget_process_hook (pid);
4943 }
4944
4945 /* Register a method that converts a siginfo object between the layout
4946 that ptrace returns, and the layout in the architecture of the
4947 inferior. */
4948 void
4949 linux_nat_set_siginfo_fixup (struct target_ops *t,
4950 int (*siginfo_fixup) (siginfo_t *,
4951 gdb_byte *,
4952 int))
4953 {
4954 /* Save the pointer. */
4955 linux_nat_siginfo_fixup = siginfo_fixup;
4956 }
4957
4958 /* Register a method to call prior to resuming a thread. */
4959
4960 void
4961 linux_nat_set_prepare_to_resume (struct target_ops *t,
4962 void (*prepare_to_resume) (struct lwp_info *))
4963 {
4964 /* Save the pointer. */
4965 linux_nat_prepare_to_resume = prepare_to_resume;
4966 }
4967
4968 /* See linux-nat.h. */
4969
4970 int
4971 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4972 {
4973 int pid;
4974
4975 pid = ptid_get_lwp (ptid);
4976 if (pid == 0)
4977 pid = ptid_get_pid (ptid);
4978
4979 errno = 0;
4980 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4981 if (errno != 0)
4982 {
4983 memset (siginfo, 0, sizeof (*siginfo));
4984 return 0;
4985 }
4986 return 1;
4987 }
4988
4989 /* See nat/linux-nat.h. */
4990
4991 ptid_t
4992 current_lwp_ptid (void)
4993 {
4994 gdb_assert (ptid_lwp_p (inferior_ptid));
4995 return inferior_ptid;
4996 }
4997
4998 /* Provide a prototype to silence -Wmissing-prototypes. */
4999 extern initialize_file_ftype _initialize_linux_nat;
5000
5001 void
5002 _initialize_linux_nat (void)
5003 {
5004 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
5005 &debug_linux_nat, _("\
5006 Set debugging of GNU/Linux lwp module."), _("\
5007 Show debugging of GNU/Linux lwp module."), _("\
5008 Enables printf debugging output."),
5009 NULL,
5010 show_debug_linux_nat,
5011 &setdebuglist, &showdebuglist);
5012
5013 /* Save this mask as the default. */
5014 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5015
5016 /* Install a SIGCHLD handler. */
5017 sigchld_action.sa_handler = sigchld_handler;
5018 sigemptyset (&sigchld_action.sa_mask);
5019 sigchld_action.sa_flags = SA_RESTART;
5020
5021 /* Make it the default. */
5022 sigaction (SIGCHLD, &sigchld_action, NULL);
5023
5024 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5025 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5026 sigdelset (&suspend_mask, SIGCHLD);
5027
5028 sigemptyset (&blocked_mask);
5029
5030 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to
5031 support read-only process state. */
5032 linux_ptrace_set_additional_flags (PTRACE_O_TRACESYSGOOD
5033 | PTRACE_O_TRACEVFORKDONE
5034 | PTRACE_O_TRACEVFORK
5035 | PTRACE_O_TRACEFORK
5036 | PTRACE_O_TRACEEXEC);
5037 }
5038 \f
5039
5040 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5041 the GNU/Linux Threads library and therefore doesn't really belong
5042 here. */
5043
5044 /* Read variable NAME in the target and return its value if found.
5045 Otherwise return zero. It is assumed that the type of the variable
5046 is `int'. */
5047
5048 static int
5049 get_signo (const char *name)
5050 {
5051 struct bound_minimal_symbol ms;
5052 int signo;
5053
5054 ms = lookup_minimal_symbol (name, NULL, NULL);
5055 if (ms.minsym == NULL)
5056 return 0;
5057
5058 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5059 sizeof (signo)) != 0)
5060 return 0;
5061
5062 return signo;
5063 }
5064
5065 /* Return the set of signals used by the threads library in *SET. */
5066
5067 void
5068 lin_thread_get_thread_signals (sigset_t *set)
5069 {
5070 struct sigaction action;
5071 int restart, cancel;
5072
5073 sigemptyset (&blocked_mask);
5074 sigemptyset (set);
5075
5076 restart = get_signo ("__pthread_sig_restart");
5077 cancel = get_signo ("__pthread_sig_cancel");
5078
5079 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5080 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5081 not provide any way for the debugger to query the signal numbers -
5082 fortunately they don't change! */
5083
5084 if (restart == 0)
5085 restart = __SIGRTMIN;
5086
5087 if (cancel == 0)
5088 cancel = __SIGRTMIN + 1;
5089
5090 sigaddset (set, restart);
5091 sigaddset (set, cancel);
5092
5093 /* The GNU/Linux Threads library makes terminating threads send a
5094 special "cancel" signal instead of SIGCHLD. Make sure we catch
5095 those (to prevent them from terminating GDB itself, which is
5096 likely to be their default action) and treat them the same way as
5097 SIGCHLD. */
5098
5099 action.sa_handler = sigchld_handler;
5100 sigemptyset (&action.sa_mask);
5101 action.sa_flags = SA_RESTART;
5102 sigaction (cancel, &action, NULL);
5103
5104 /* We block the "cancel" signal throughout this code ... */
5105 sigaddset (&blocked_mask, cancel);
5106 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5107
5108 /* ... except during a sigsuspend. */
5109 sigdelset (&suspend_mask, cancel);
5110 }
This page took 0.130073 seconds and 5 git commands to generate.