2011-10-11 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif /* HAVE_PERSONALITY */
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
178
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
183 gdb_byte *,
184 int);
185
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
189 enum target_object,
190 const char *, gdb_byte *,
191 const gdb_byte *,
192 ULONGEST, LONGEST);
193
194 static int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 struct simple_pid_list
204 {
205 int pid;
206 int status;
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
212 can not be used, 1 if it can. */
213
214 static int linux_supports_tracefork_flag = -1;
215
216 /* This variable is a tri-state flag: -1 for unknown, 0 if
217 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
218
219 static int linux_supports_tracesysgood_flag = -1;
220
221 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
222 PTRACE_O_TRACEVFORKDONE. */
223
224 static int linux_supports_tracevforkdone_flag = -1;
225
226 /* Stores the current used ptrace() options. */
227 static int current_ptrace_options = 0;
228
229 /* Async mode support. */
230
231 /* The read/write ends of the pipe registered as waitable file in the
232 event loop. */
233 static int linux_nat_event_pipe[2] = { -1, -1 };
234
235 /* Flush the event pipe. */
236
237 static void
238 async_file_flush (void)
239 {
240 int ret;
241 char buf;
242
243 do
244 {
245 ret = read (linux_nat_event_pipe[0], &buf, 1);
246 }
247 while (ret >= 0 || (ret == -1 && errno == EINTR));
248 }
249
250 /* Put something (anything, doesn't matter what, or how much) in event
251 pipe, so that the select/poll in the event-loop realizes we have
252 something to process. */
253
254 static void
255 async_file_mark (void)
256 {
257 int ret;
258
259 /* It doesn't really matter what the pipe contains, as long we end
260 up with something in it. Might as well flush the previous
261 left-overs. */
262 async_file_flush ();
263
264 do
265 {
266 ret = write (linux_nat_event_pipe[1], "+", 1);
267 }
268 while (ret == -1 && errno == EINTR);
269
270 /* Ignore EAGAIN. If the pipe is full, the event loop will already
271 be awakened anyway. */
272 }
273
274 static void linux_nat_async (void (*callback)
275 (enum inferior_event_type event_type,
276 void *context),
277 void *context);
278 static int kill_lwp (int lwpid, int signo);
279
280 static int stop_callback (struct lwp_info *lp, void *data);
281
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static struct lwp_info *find_lwp_pid (ptid_t ptid);
289
290 \f
291 /* Trivial list manipulation functions to keep track of a list of
292 new stopped processes. */
293 static void
294 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
295 {
296 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
297
298 new_pid->pid = pid;
299 new_pid->status = status;
300 new_pid->next = *listp;
301 *listp = new_pid;
302 }
303
304 static int
305 in_pid_list_p (struct simple_pid_list *list, int pid)
306 {
307 struct simple_pid_list *p;
308
309 for (p = list; p != NULL; p = p->next)
310 if (p->pid == pid)
311 return 1;
312 return 0;
313 }
314
315 static int
316 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
317 {
318 struct simple_pid_list **p;
319
320 for (p = listp; *p != NULL; p = &(*p)->next)
321 if ((*p)->pid == pid)
322 {
323 struct simple_pid_list *next = (*p)->next;
324
325 *statusp = (*p)->status;
326 xfree (*p);
327 *p = next;
328 return 1;
329 }
330 return 0;
331 }
332
333 \f
334 /* A helper function for linux_test_for_tracefork, called after fork (). */
335
336 static void
337 linux_tracefork_child (void)
338 {
339 ptrace (PTRACE_TRACEME, 0, 0, 0);
340 kill (getpid (), SIGSTOP);
341 fork ();
342 _exit (0);
343 }
344
345 /* Wrapper function for waitpid which handles EINTR. */
346
347 static int
348 my_waitpid (int pid, int *statusp, int flags)
349 {
350 int ret;
351
352 do
353 {
354 ret = waitpid (pid, statusp, flags);
355 }
356 while (ret == -1 && errno == EINTR);
357
358 return ret;
359 }
360
361 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
362
363 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
364 we know that the feature is not available. This may change the tracing
365 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
366
367 However, if it succeeds, we don't know for sure that the feature is
368 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
369 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
370 fork tracing, and let it fork. If the process exits, we assume that we
371 can't use TRACEFORK; if we get the fork notification, and we can extract
372 the new child's PID, then we assume that we can. */
373
374 static void
375 linux_test_for_tracefork (int original_pid)
376 {
377 int child_pid, ret, status;
378 long second_pid;
379 sigset_t prev_mask;
380
381 /* We don't want those ptrace calls to be interrupted. */
382 block_child_signals (&prev_mask);
383
384 linux_supports_tracefork_flag = 0;
385 linux_supports_tracevforkdone_flag = 0;
386
387 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
388 if (ret != 0)
389 {
390 restore_child_signals_mask (&prev_mask);
391 return;
392 }
393
394 child_pid = fork ();
395 if (child_pid == -1)
396 perror_with_name (("fork"));
397
398 if (child_pid == 0)
399 linux_tracefork_child ();
400
401 ret = my_waitpid (child_pid, &status, 0);
402 if (ret == -1)
403 perror_with_name (("waitpid"));
404 else if (ret != child_pid)
405 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
406 if (! WIFSTOPPED (status))
407 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
408 status);
409
410 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
411 if (ret != 0)
412 {
413 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
414 if (ret != 0)
415 {
416 warning (_("linux_test_for_tracefork: failed to kill child"));
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 ret = my_waitpid (child_pid, &status, 0);
422 if (ret != child_pid)
423 warning (_("linux_test_for_tracefork: failed "
424 "to wait for killed child"));
425 else if (!WIFSIGNALED (status))
426 warning (_("linux_test_for_tracefork: unexpected "
427 "wait status 0x%x from killed child"), status);
428
429 restore_child_signals_mask (&prev_mask);
430 return;
431 }
432
433 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
434 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
435 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
436 linux_supports_tracevforkdone_flag = (ret == 0);
437
438 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
439 if (ret != 0)
440 warning (_("linux_test_for_tracefork: failed to resume child"));
441
442 ret = my_waitpid (child_pid, &status, 0);
443
444 if (ret == child_pid && WIFSTOPPED (status)
445 && status >> 16 == PTRACE_EVENT_FORK)
446 {
447 second_pid = 0;
448 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
449 if (ret == 0 && second_pid != 0)
450 {
451 int second_status;
452
453 linux_supports_tracefork_flag = 1;
454 my_waitpid (second_pid, &second_status, 0);
455 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
456 if (ret != 0)
457 warning (_("linux_test_for_tracefork: "
458 "failed to kill second child"));
459 my_waitpid (second_pid, &status, 0);
460 }
461 }
462 else
463 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
464 "(%d, status 0x%x)"), ret, status);
465
466 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: failed to kill child"));
469 my_waitpid (child_pid, &status, 0);
470
471 restore_child_signals_mask (&prev_mask);
472 }
473
474 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
475
476 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
477 we know that the feature is not available. This may change the tracing
478 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
479
480 static void
481 linux_test_for_tracesysgood (int original_pid)
482 {
483 int ret;
484 sigset_t prev_mask;
485
486 /* We don't want those ptrace calls to be interrupted. */
487 block_child_signals (&prev_mask);
488
489 linux_supports_tracesysgood_flag = 0;
490
491 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
492 if (ret != 0)
493 goto out;
494
495 linux_supports_tracesysgood_flag = 1;
496 out:
497 restore_child_signals_mask (&prev_mask);
498 }
499
500 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
501 This function also sets linux_supports_tracesysgood_flag. */
502
503 static int
504 linux_supports_tracesysgood (int pid)
505 {
506 if (linux_supports_tracesysgood_flag == -1)
507 linux_test_for_tracesysgood (pid);
508 return linux_supports_tracesysgood_flag;
509 }
510
511 /* Return non-zero iff we have tracefork functionality available.
512 This function also sets linux_supports_tracefork_flag. */
513
514 static int
515 linux_supports_tracefork (int pid)
516 {
517 if (linux_supports_tracefork_flag == -1)
518 linux_test_for_tracefork (pid);
519 return linux_supports_tracefork_flag;
520 }
521
522 static int
523 linux_supports_tracevforkdone (int pid)
524 {
525 if (linux_supports_tracefork_flag == -1)
526 linux_test_for_tracefork (pid);
527 return linux_supports_tracevforkdone_flag;
528 }
529
530 static void
531 linux_enable_tracesysgood (ptid_t ptid)
532 {
533 int pid = ptid_get_lwp (ptid);
534
535 if (pid == 0)
536 pid = ptid_get_pid (ptid);
537
538 if (linux_supports_tracesysgood (pid) == 0)
539 return;
540
541 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
542
543 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
544 }
545
546 \f
547 void
548 linux_enable_event_reporting (ptid_t ptid)
549 {
550 int pid = ptid_get_lwp (ptid);
551
552 if (pid == 0)
553 pid = ptid_get_pid (ptid);
554
555 if (! linux_supports_tracefork (pid))
556 return;
557
558 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
559 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
560
561 if (linux_supports_tracevforkdone (pid))
562 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
563
564 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
565 read-only process state. */
566
567 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
568 }
569
570 static void
571 linux_child_post_attach (int pid)
572 {
573 linux_enable_event_reporting (pid_to_ptid (pid));
574 linux_enable_tracesysgood (pid_to_ptid (pid));
575 }
576
577 static void
578 linux_child_post_startup_inferior (ptid_t ptid)
579 {
580 linux_enable_event_reporting (ptid);
581 linux_enable_tracesysgood (ptid);
582 }
583
584 static int
585 linux_child_follow_fork (struct target_ops *ops, int follow_child)
586 {
587 sigset_t prev_mask;
588 int has_vforked;
589 int parent_pid, child_pid;
590
591 block_child_signals (&prev_mask);
592
593 has_vforked = (inferior_thread ()->pending_follow.kind
594 == TARGET_WAITKIND_VFORKED);
595 parent_pid = ptid_get_lwp (inferior_ptid);
596 if (parent_pid == 0)
597 parent_pid = ptid_get_pid (inferior_ptid);
598 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
599
600 if (!detach_fork)
601 linux_enable_event_reporting (pid_to_ptid (child_pid));
602
603 if (has_vforked
604 && !non_stop /* Non-stop always resumes both branches. */
605 && (!target_is_async_p () || sync_execution)
606 && !(follow_child || detach_fork || sched_multi))
607 {
608 /* The parent stays blocked inside the vfork syscall until the
609 child execs or exits. If we don't let the child run, then
610 the parent stays blocked. If we're telling the parent to run
611 in the foreground, the user will not be able to ctrl-c to get
612 back the terminal, effectively hanging the debug session. */
613 fprintf_filtered (gdb_stderr, _("\
614 Can not resume the parent process over vfork in the foreground while\n\
615 holding the child stopped. Try \"set detach-on-fork\" or \
616 \"set schedule-multiple\".\n"));
617 /* FIXME output string > 80 columns. */
618 return 1;
619 }
620
621 if (! follow_child)
622 {
623 struct lwp_info *child_lp = NULL;
624
625 /* We're already attached to the parent, by default. */
626
627 /* Detach new forked process? */
628 if (detach_fork)
629 {
630 /* Before detaching from the child, remove all breakpoints
631 from it. If we forked, then this has already been taken
632 care of by infrun.c. If we vforked however, any
633 breakpoint inserted in the parent is visible in the
634 child, even those added while stopped in a vfork
635 catchpoint. This will remove the breakpoints from the
636 parent also, but they'll be reinserted below. */
637 if (has_vforked)
638 {
639 /* keep breakpoints list in sync. */
640 remove_breakpoints_pid (GET_PID (inferior_ptid));
641 }
642
643 if (info_verbose || debug_linux_nat)
644 {
645 target_terminal_ours ();
646 fprintf_filtered (gdb_stdlog,
647 "Detaching after fork from "
648 "child process %d.\n",
649 child_pid);
650 }
651
652 ptrace (PTRACE_DETACH, child_pid, 0, 0);
653 }
654 else
655 {
656 struct inferior *parent_inf, *child_inf;
657 struct cleanup *old_chain;
658
659 /* Add process to GDB's tables. */
660 child_inf = add_inferior (child_pid);
661
662 parent_inf = current_inferior ();
663 child_inf->attach_flag = parent_inf->attach_flag;
664 copy_terminal_info (child_inf, parent_inf);
665
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668
669 inferior_ptid = ptid_build (child_pid, child_pid, 0);
670 add_thread (inferior_ptid);
671 child_lp = add_lwp (inferior_ptid);
672 child_lp->stopped = 1;
673 child_lp->last_resume_kind = resume_stop;
674
675 /* If this is a vfork child, then the address-space is
676 shared with the parent. */
677 if (has_vforked)
678 {
679 child_inf->pspace = parent_inf->pspace;
680 child_inf->aspace = parent_inf->aspace;
681
682 /* The parent will be frozen until the child is done
683 with the shared region. Keep track of the
684 parent. */
685 child_inf->vfork_parent = parent_inf;
686 child_inf->pending_detach = 0;
687 parent_inf->vfork_child = child_inf;
688 parent_inf->pending_detach = 0;
689 }
690 else
691 {
692 child_inf->aspace = new_address_space ();
693 child_inf->pspace = add_program_space (child_inf->aspace);
694 child_inf->removable = 1;
695 set_current_program_space (child_inf->pspace);
696 clone_program_space (child_inf->pspace, parent_inf->pspace);
697
698 /* Let the shared library layer (solib-svr4) learn about
699 this new process, relocate the cloned exec, pull in
700 shared libraries, and install the solib event
701 breakpoint. If a "cloned-VM" event was propagated
702 better throughout the core, this wouldn't be
703 required. */
704 solib_create_inferior_hook (0);
705 }
706
707 /* Let the thread_db layer learn about this new process. */
708 check_for_thread_db ();
709
710 do_cleanups (old_chain);
711 }
712
713 if (has_vforked)
714 {
715 struct lwp_info *parent_lp;
716 struct inferior *parent_inf;
717
718 parent_inf = current_inferior ();
719
720 /* If we detached from the child, then we have to be careful
721 to not insert breakpoints in the parent until the child
722 is done with the shared memory region. However, if we're
723 staying attached to the child, then we can and should
724 insert breakpoints, so that we can debug it. A
725 subsequent child exec or exit is enough to know when does
726 the child stops using the parent's address space. */
727 parent_inf->waiting_for_vfork_done = detach_fork;
728 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
729
730 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
731 gdb_assert (linux_supports_tracefork_flag >= 0);
732
733 if (linux_supports_tracevforkdone (0))
734 {
735 if (debug_linux_nat)
736 fprintf_unfiltered (gdb_stdlog,
737 "LCFF: waiting for VFORK_DONE on %d\n",
738 parent_pid);
739 parent_lp->stopped = 1;
740
741 /* We'll handle the VFORK_DONE event like any other
742 event, in target_wait. */
743 }
744 else
745 {
746 /* We can't insert breakpoints until the child has
747 finished with the shared memory region. We need to
748 wait until that happens. Ideal would be to just
749 call:
750 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
751 - waitpid (parent_pid, &status, __WALL);
752 However, most architectures can't handle a syscall
753 being traced on the way out if it wasn't traced on
754 the way in.
755
756 We might also think to loop, continuing the child
757 until it exits or gets a SIGTRAP. One problem is
758 that the child might call ptrace with PTRACE_TRACEME.
759
760 There's no simple and reliable way to figure out when
761 the vforked child will be done with its copy of the
762 shared memory. We could step it out of the syscall,
763 two instructions, let it go, and then single-step the
764 parent once. When we have hardware single-step, this
765 would work; with software single-step it could still
766 be made to work but we'd have to be able to insert
767 single-step breakpoints in the child, and we'd have
768 to insert -just- the single-step breakpoint in the
769 parent. Very awkward.
770
771 In the end, the best we can do is to make sure it
772 runs for a little while. Hopefully it will be out of
773 range of any breakpoints we reinsert. Usually this
774 is only the single-step breakpoint at vfork's return
775 point. */
776
777 if (debug_linux_nat)
778 fprintf_unfiltered (gdb_stdlog,
779 "LCFF: no VFORK_DONE "
780 "support, sleeping a bit\n");
781
782 usleep (10000);
783
784 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
785 and leave it pending. The next linux_nat_resume call
786 will notice a pending event, and bypasses actually
787 resuming the inferior. */
788 parent_lp->status = 0;
789 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
790 parent_lp->stopped = 1;
791
792 /* If we're in async mode, need to tell the event loop
793 there's something here to process. */
794 if (target_can_async_p ())
795 async_file_mark ();
796 }
797 }
798 }
799 else
800 {
801 struct inferior *parent_inf, *child_inf;
802 struct lwp_info *child_lp;
803 struct program_space *parent_pspace;
804
805 if (info_verbose || debug_linux_nat)
806 {
807 target_terminal_ours ();
808 if (has_vforked)
809 fprintf_filtered (gdb_stdlog,
810 _("Attaching after process %d "
811 "vfork to child process %d.\n"),
812 parent_pid, child_pid);
813 else
814 fprintf_filtered (gdb_stdlog,
815 _("Attaching after process %d "
816 "fork to child process %d.\n"),
817 parent_pid, child_pid);
818 }
819
820 /* Add the new inferior first, so that the target_detach below
821 doesn't unpush the target. */
822
823 child_inf = add_inferior (child_pid);
824
825 parent_inf = current_inferior ();
826 child_inf->attach_flag = parent_inf->attach_flag;
827 copy_terminal_info (child_inf, parent_inf);
828
829 parent_pspace = parent_inf->pspace;
830
831 /* If we're vforking, we want to hold on to the parent until the
832 child exits or execs. At child exec or exit time we can
833 remove the old breakpoints from the parent and detach or
834 resume debugging it. Otherwise, detach the parent now; we'll
835 want to reuse it's program/address spaces, but we can't set
836 them to the child before removing breakpoints from the
837 parent, otherwise, the breakpoints module could decide to
838 remove breakpoints from the wrong process (since they'd be
839 assigned to the same address space). */
840
841 if (has_vforked)
842 {
843 gdb_assert (child_inf->vfork_parent == NULL);
844 gdb_assert (parent_inf->vfork_child == NULL);
845 child_inf->vfork_parent = parent_inf;
846 child_inf->pending_detach = 0;
847 parent_inf->vfork_child = child_inf;
848 parent_inf->pending_detach = detach_fork;
849 parent_inf->waiting_for_vfork_done = 0;
850 }
851 else if (detach_fork)
852 target_detach (NULL, 0);
853
854 /* Note that the detach above makes PARENT_INF dangling. */
855
856 /* Add the child thread to the appropriate lists, and switch to
857 this new thread, before cloning the program space, and
858 informing the solib layer about this new process. */
859
860 inferior_ptid = ptid_build (child_pid, child_pid, 0);
861 add_thread (inferior_ptid);
862 child_lp = add_lwp (inferior_ptid);
863 child_lp->stopped = 1;
864 child_lp->last_resume_kind = resume_stop;
865
866 /* If this is a vfork child, then the address-space is shared
867 with the parent. If we detached from the parent, then we can
868 reuse the parent's program/address spaces. */
869 if (has_vforked || detach_fork)
870 {
871 child_inf->pspace = parent_pspace;
872 child_inf->aspace = child_inf->pspace->aspace;
873 }
874 else
875 {
876 child_inf->aspace = new_address_space ();
877 child_inf->pspace = add_program_space (child_inf->aspace);
878 child_inf->removable = 1;
879 set_current_program_space (child_inf->pspace);
880 clone_program_space (child_inf->pspace, parent_pspace);
881
882 /* Let the shared library layer (solib-svr4) learn about
883 this new process, relocate the cloned exec, pull in
884 shared libraries, and install the solib event breakpoint.
885 If a "cloned-VM" event was propagated better throughout
886 the core, this wouldn't be required. */
887 solib_create_inferior_hook (0);
888 }
889
890 /* Let the thread_db layer learn about this new process. */
891 check_for_thread_db ();
892 }
893
894 restore_child_signals_mask (&prev_mask);
895 return 0;
896 }
897
898 \f
899 static int
900 linux_child_insert_fork_catchpoint (int pid)
901 {
902 return !linux_supports_tracefork (pid);
903 }
904
905 static int
906 linux_child_remove_fork_catchpoint (int pid)
907 {
908 return 0;
909 }
910
911 static int
912 linux_child_insert_vfork_catchpoint (int pid)
913 {
914 return !linux_supports_tracefork (pid);
915 }
916
917 static int
918 linux_child_remove_vfork_catchpoint (int pid)
919 {
920 return 0;
921 }
922
923 static int
924 linux_child_insert_exec_catchpoint (int pid)
925 {
926 return !linux_supports_tracefork (pid);
927 }
928
929 static int
930 linux_child_remove_exec_catchpoint (int pid)
931 {
932 return 0;
933 }
934
935 static int
936 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
937 int table_size, int *table)
938 {
939 if (!linux_supports_tracesysgood (pid))
940 return 1;
941
942 /* On GNU/Linux, we ignore the arguments. It means that we only
943 enable the syscall catchpoints, but do not disable them.
944
945 Also, we do not use the `table' information because we do not
946 filter system calls here. We let GDB do the logic for us. */
947 return 0;
948 }
949
950 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
951 are processes sharing the same VM space. A multi-threaded process
952 is basically a group of such processes. However, such a grouping
953 is almost entirely a user-space issue; the kernel doesn't enforce
954 such a grouping at all (this might change in the future). In
955 general, we'll rely on the threads library (i.e. the GNU/Linux
956 Threads library) to provide such a grouping.
957
958 It is perfectly well possible to write a multi-threaded application
959 without the assistance of a threads library, by using the clone
960 system call directly. This module should be able to give some
961 rudimentary support for debugging such applications if developers
962 specify the CLONE_PTRACE flag in the clone system call, and are
963 using the Linux kernel 2.4 or above.
964
965 Note that there are some peculiarities in GNU/Linux that affect
966 this code:
967
968 - In general one should specify the __WCLONE flag to waitpid in
969 order to make it report events for any of the cloned processes
970 (and leave it out for the initial process). However, if a cloned
971 process has exited the exit status is only reported if the
972 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
973 we cannot use it since GDB must work on older systems too.
974
975 - When a traced, cloned process exits and is waited for by the
976 debugger, the kernel reassigns it to the original parent and
977 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
978 library doesn't notice this, which leads to the "zombie problem":
979 When debugged a multi-threaded process that spawns a lot of
980 threads will run out of processes, even if the threads exit,
981 because the "zombies" stay around. */
982
983 /* List of known LWPs. */
984 struct lwp_info *lwp_list;
985 \f
986
987 /* Original signal mask. */
988 static sigset_t normal_mask;
989
990 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
991 _initialize_linux_nat. */
992 static sigset_t suspend_mask;
993
994 /* Signals to block to make that sigsuspend work. */
995 static sigset_t blocked_mask;
996
997 /* SIGCHLD action. */
998 struct sigaction sigchld_action;
999
1000 /* Block child signals (SIGCHLD and linux threads signals), and store
1001 the previous mask in PREV_MASK. */
1002
1003 static void
1004 block_child_signals (sigset_t *prev_mask)
1005 {
1006 /* Make sure SIGCHLD is blocked. */
1007 if (!sigismember (&blocked_mask, SIGCHLD))
1008 sigaddset (&blocked_mask, SIGCHLD);
1009
1010 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1011 }
1012
1013 /* Restore child signals mask, previously returned by
1014 block_child_signals. */
1015
1016 static void
1017 restore_child_signals_mask (sigset_t *prev_mask)
1018 {
1019 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1020 }
1021
1022 /* Mask of signals to pass directly to the inferior. */
1023 static sigset_t pass_mask;
1024
1025 /* Update signals to pass to the inferior. */
1026 static void
1027 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1028 {
1029 int signo;
1030
1031 sigemptyset (&pass_mask);
1032
1033 for (signo = 1; signo < NSIG; signo++)
1034 {
1035 int target_signo = target_signal_from_host (signo);
1036 if (target_signo < numsigs && pass_signals[target_signo])
1037 sigaddset (&pass_mask, signo);
1038 }
1039 }
1040
1041 \f
1042
1043 /* Prototypes for local functions. */
1044 static int stop_wait_callback (struct lwp_info *lp, void *data);
1045 static int linux_thread_alive (ptid_t ptid);
1046 static char *linux_child_pid_to_exec_file (int pid);
1047
1048 \f
1049 /* Convert wait status STATUS to a string. Used for printing debug
1050 messages only. */
1051
1052 static char *
1053 status_to_str (int status)
1054 {
1055 static char buf[64];
1056
1057 if (WIFSTOPPED (status))
1058 {
1059 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1060 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1061 strsignal (SIGTRAP));
1062 else
1063 snprintf (buf, sizeof (buf), "%s (stopped)",
1064 strsignal (WSTOPSIG (status)));
1065 }
1066 else if (WIFSIGNALED (status))
1067 snprintf (buf, sizeof (buf), "%s (terminated)",
1068 strsignal (WTERMSIG (status)));
1069 else
1070 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1071
1072 return buf;
1073 }
1074
1075 /* Remove all LWPs belong to PID from the lwp list. */
1076
1077 static void
1078 purge_lwp_list (int pid)
1079 {
1080 struct lwp_info *lp, *lpprev, *lpnext;
1081
1082 lpprev = NULL;
1083
1084 for (lp = lwp_list; lp; lp = lpnext)
1085 {
1086 lpnext = lp->next;
1087
1088 if (ptid_get_pid (lp->ptid) == pid)
1089 {
1090 if (lp == lwp_list)
1091 lwp_list = lp->next;
1092 else
1093 lpprev->next = lp->next;
1094
1095 xfree (lp);
1096 }
1097 else
1098 lpprev = lp;
1099 }
1100 }
1101
1102 /* Return the number of known LWPs in the tgid given by PID. */
1103
1104 static int
1105 num_lwps (int pid)
1106 {
1107 int count = 0;
1108 struct lwp_info *lp;
1109
1110 for (lp = lwp_list; lp; lp = lp->next)
1111 if (ptid_get_pid (lp->ptid) == pid)
1112 count++;
1113
1114 return count;
1115 }
1116
1117 /* Add the LWP specified by PID to the list. Return a pointer to the
1118 structure describing the new LWP. The LWP should already be stopped
1119 (with an exception for the very first LWP). */
1120
1121 static struct lwp_info *
1122 add_lwp (ptid_t ptid)
1123 {
1124 struct lwp_info *lp;
1125
1126 gdb_assert (is_lwp (ptid));
1127
1128 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1129
1130 memset (lp, 0, sizeof (struct lwp_info));
1131
1132 lp->last_resume_kind = resume_continue;
1133 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1134
1135 lp->ptid = ptid;
1136 lp->core = -1;
1137
1138 lp->next = lwp_list;
1139 lwp_list = lp;
1140
1141 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1142 linux_nat_new_thread (ptid);
1143
1144 return lp;
1145 }
1146
1147 /* Remove the LWP specified by PID from the list. */
1148
1149 static void
1150 delete_lwp (ptid_t ptid)
1151 {
1152 struct lwp_info *lp, *lpprev;
1153
1154 lpprev = NULL;
1155
1156 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1157 if (ptid_equal (lp->ptid, ptid))
1158 break;
1159
1160 if (!lp)
1161 return;
1162
1163 if (lpprev)
1164 lpprev->next = lp->next;
1165 else
1166 lwp_list = lp->next;
1167
1168 xfree (lp);
1169 }
1170
1171 /* Return a pointer to the structure describing the LWP corresponding
1172 to PID. If no corresponding LWP could be found, return NULL. */
1173
1174 static struct lwp_info *
1175 find_lwp_pid (ptid_t ptid)
1176 {
1177 struct lwp_info *lp;
1178 int lwp;
1179
1180 if (is_lwp (ptid))
1181 lwp = GET_LWP (ptid);
1182 else
1183 lwp = GET_PID (ptid);
1184
1185 for (lp = lwp_list; lp; lp = lp->next)
1186 if (lwp == GET_LWP (lp->ptid))
1187 return lp;
1188
1189 return NULL;
1190 }
1191
1192 /* Call CALLBACK with its second argument set to DATA for every LWP in
1193 the list. If CALLBACK returns 1 for a particular LWP, return a
1194 pointer to the structure describing that LWP immediately.
1195 Otherwise return NULL. */
1196
1197 struct lwp_info *
1198 iterate_over_lwps (ptid_t filter,
1199 int (*callback) (struct lwp_info *, void *),
1200 void *data)
1201 {
1202 struct lwp_info *lp, *lpnext;
1203
1204 for (lp = lwp_list; lp; lp = lpnext)
1205 {
1206 lpnext = lp->next;
1207
1208 if (ptid_match (lp->ptid, filter))
1209 {
1210 if ((*callback) (lp, data))
1211 return lp;
1212 }
1213 }
1214
1215 return NULL;
1216 }
1217
1218 /* Update our internal state when changing from one checkpoint to
1219 another indicated by NEW_PTID. We can only switch single-threaded
1220 applications, so we only create one new LWP, and the previous list
1221 is discarded. */
1222
1223 void
1224 linux_nat_switch_fork (ptid_t new_ptid)
1225 {
1226 struct lwp_info *lp;
1227
1228 purge_lwp_list (GET_PID (inferior_ptid));
1229
1230 lp = add_lwp (new_ptid);
1231 lp->stopped = 1;
1232
1233 /* This changes the thread's ptid while preserving the gdb thread
1234 num. Also changes the inferior pid, while preserving the
1235 inferior num. */
1236 thread_change_ptid (inferior_ptid, new_ptid);
1237
1238 /* We've just told GDB core that the thread changed target id, but,
1239 in fact, it really is a different thread, with different register
1240 contents. */
1241 registers_changed ();
1242 }
1243
1244 /* Handle the exit of a single thread LP. */
1245
1246 static void
1247 exit_lwp (struct lwp_info *lp)
1248 {
1249 struct thread_info *th = find_thread_ptid (lp->ptid);
1250
1251 if (th)
1252 {
1253 if (print_thread_events)
1254 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1255
1256 delete_thread (lp->ptid);
1257 }
1258
1259 delete_lwp (lp->ptid);
1260 }
1261
1262 /* Detect `T (stopped)' in `/proc/PID/status'.
1263 Other states including `T (tracing stop)' are reported as false. */
1264
1265 static int
1266 pid_is_stopped (pid_t pid)
1267 {
1268 FILE *status_file;
1269 char buf[100];
1270 int retval = 0;
1271
1272 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1273 status_file = fopen (buf, "r");
1274 if (status_file != NULL)
1275 {
1276 int have_state = 0;
1277
1278 while (fgets (buf, sizeof (buf), status_file))
1279 {
1280 if (strncmp (buf, "State:", 6) == 0)
1281 {
1282 have_state = 1;
1283 break;
1284 }
1285 }
1286 if (have_state && strstr (buf, "T (stopped)") != NULL)
1287 retval = 1;
1288 fclose (status_file);
1289 }
1290 return retval;
1291 }
1292
1293 /* Wait for the LWP specified by LP, which we have just attached to.
1294 Returns a wait status for that LWP, to cache. */
1295
1296 static int
1297 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1298 int *signalled)
1299 {
1300 pid_t new_pid, pid = GET_LWP (ptid);
1301 int status;
1302
1303 if (pid_is_stopped (pid))
1304 {
1305 if (debug_linux_nat)
1306 fprintf_unfiltered (gdb_stdlog,
1307 "LNPAW: Attaching to a stopped process\n");
1308
1309 /* The process is definitely stopped. It is in a job control
1310 stop, unless the kernel predates the TASK_STOPPED /
1311 TASK_TRACED distinction, in which case it might be in a
1312 ptrace stop. Make sure it is in a ptrace stop; from there we
1313 can kill it, signal it, et cetera.
1314
1315 First make sure there is a pending SIGSTOP. Since we are
1316 already attached, the process can not transition from stopped
1317 to running without a PTRACE_CONT; so we know this signal will
1318 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1319 probably already in the queue (unless this kernel is old
1320 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1321 is not an RT signal, it can only be queued once. */
1322 kill_lwp (pid, SIGSTOP);
1323
1324 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1325 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1326 ptrace (PTRACE_CONT, pid, 0, 0);
1327 }
1328
1329 /* Make sure the initial process is stopped. The user-level threads
1330 layer might want to poke around in the inferior, and that won't
1331 work if things haven't stabilized yet. */
1332 new_pid = my_waitpid (pid, &status, 0);
1333 if (new_pid == -1 && errno == ECHILD)
1334 {
1335 if (first)
1336 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1337
1338 /* Try again with __WCLONE to check cloned processes. */
1339 new_pid = my_waitpid (pid, &status, __WCLONE);
1340 *cloned = 1;
1341 }
1342
1343 gdb_assert (pid == new_pid);
1344
1345 if (!WIFSTOPPED (status))
1346 {
1347 /* The pid we tried to attach has apparently just exited. */
1348 if (debug_linux_nat)
1349 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1350 pid, status_to_str (status));
1351 return status;
1352 }
1353
1354 if (WSTOPSIG (status) != SIGSTOP)
1355 {
1356 *signalled = 1;
1357 if (debug_linux_nat)
1358 fprintf_unfiltered (gdb_stdlog,
1359 "LNPAW: Received %s after attaching\n",
1360 status_to_str (status));
1361 }
1362
1363 return status;
1364 }
1365
1366 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1367 the new LWP could not be attached, or 1 if we're already auto
1368 attached to this thread, but haven't processed the
1369 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1370 its existance, without considering it an error. */
1371
1372 int
1373 lin_lwp_attach_lwp (ptid_t ptid)
1374 {
1375 struct lwp_info *lp;
1376 sigset_t prev_mask;
1377 int lwpid;
1378
1379 gdb_assert (is_lwp (ptid));
1380
1381 block_child_signals (&prev_mask);
1382
1383 lp = find_lwp_pid (ptid);
1384 lwpid = GET_LWP (ptid);
1385
1386 /* We assume that we're already attached to any LWP that has an id
1387 equal to the overall process id, and to any LWP that is already
1388 in our list of LWPs. If we're not seeing exit events from threads
1389 and we've had PID wraparound since we last tried to stop all threads,
1390 this assumption might be wrong; fortunately, this is very unlikely
1391 to happen. */
1392 if (lwpid != GET_PID (ptid) && lp == NULL)
1393 {
1394 int status, cloned = 0, signalled = 0;
1395
1396 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1397 {
1398 if (linux_supports_tracefork_flag)
1399 {
1400 /* If we haven't stopped all threads when we get here,
1401 we may have seen a thread listed in thread_db's list,
1402 but not processed the PTRACE_EVENT_CLONE yet. If
1403 that's the case, ignore this new thread, and let
1404 normal event handling discover it later. */
1405 if (in_pid_list_p (stopped_pids, lwpid))
1406 {
1407 /* We've already seen this thread stop, but we
1408 haven't seen the PTRACE_EVENT_CLONE extended
1409 event yet. */
1410 restore_child_signals_mask (&prev_mask);
1411 return 0;
1412 }
1413 else
1414 {
1415 int new_pid;
1416 int status;
1417
1418 /* See if we've got a stop for this new child
1419 pending. If so, we're already attached. */
1420 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1421 if (new_pid == -1 && errno == ECHILD)
1422 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1423 if (new_pid != -1)
1424 {
1425 if (WIFSTOPPED (status))
1426 add_to_pid_list (&stopped_pids, lwpid, status);
1427
1428 restore_child_signals_mask (&prev_mask);
1429 return 1;
1430 }
1431 }
1432 }
1433
1434 /* If we fail to attach to the thread, issue a warning,
1435 but continue. One way this can happen is if thread
1436 creation is interrupted; as of Linux kernel 2.6.19, a
1437 bug may place threads in the thread list and then fail
1438 to create them. */
1439 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1440 safe_strerror (errno));
1441 restore_child_signals_mask (&prev_mask);
1442 return -1;
1443 }
1444
1445 if (debug_linux_nat)
1446 fprintf_unfiltered (gdb_stdlog,
1447 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1448 target_pid_to_str (ptid));
1449
1450 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1451 if (!WIFSTOPPED (status))
1452 {
1453 restore_child_signals_mask (&prev_mask);
1454 return 1;
1455 }
1456
1457 lp = add_lwp (ptid);
1458 lp->stopped = 1;
1459 lp->cloned = cloned;
1460 lp->signalled = signalled;
1461 if (WSTOPSIG (status) != SIGSTOP)
1462 {
1463 lp->resumed = 1;
1464 lp->status = status;
1465 }
1466
1467 target_post_attach (GET_LWP (lp->ptid));
1468
1469 if (debug_linux_nat)
1470 {
1471 fprintf_unfiltered (gdb_stdlog,
1472 "LLAL: waitpid %s received %s\n",
1473 target_pid_to_str (ptid),
1474 status_to_str (status));
1475 }
1476 }
1477 else
1478 {
1479 /* We assume that the LWP representing the original process is
1480 already stopped. Mark it as stopped in the data structure
1481 that the GNU/linux ptrace layer uses to keep track of
1482 threads. Note that this won't have already been done since
1483 the main thread will have, we assume, been stopped by an
1484 attach from a different layer. */
1485 if (lp == NULL)
1486 lp = add_lwp (ptid);
1487 lp->stopped = 1;
1488 }
1489
1490 lp->last_resume_kind = resume_stop;
1491 restore_child_signals_mask (&prev_mask);
1492 return 0;
1493 }
1494
1495 static void
1496 linux_nat_create_inferior (struct target_ops *ops,
1497 char *exec_file, char *allargs, char **env,
1498 int from_tty)
1499 {
1500 #ifdef HAVE_PERSONALITY
1501 int personality_orig = 0, personality_set = 0;
1502 #endif /* HAVE_PERSONALITY */
1503
1504 /* The fork_child mechanism is synchronous and calls target_wait, so
1505 we have to mask the async mode. */
1506
1507 #ifdef HAVE_PERSONALITY
1508 if (disable_randomization)
1509 {
1510 errno = 0;
1511 personality_orig = personality (0xffffffff);
1512 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1513 {
1514 personality_set = 1;
1515 personality (personality_orig | ADDR_NO_RANDOMIZE);
1516 }
1517 if (errno != 0 || (personality_set
1518 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1519 warning (_("Error disabling address space randomization: %s"),
1520 safe_strerror (errno));
1521 }
1522 #endif /* HAVE_PERSONALITY */
1523
1524 /* Make sure we report all signals during startup. */
1525 linux_nat_pass_signals (0, NULL);
1526
1527 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1528
1529 #ifdef HAVE_PERSONALITY
1530 if (personality_set)
1531 {
1532 errno = 0;
1533 personality (personality_orig);
1534 if (errno != 0)
1535 warning (_("Error restoring address space randomization: %s"),
1536 safe_strerror (errno));
1537 }
1538 #endif /* HAVE_PERSONALITY */
1539 }
1540
1541 static void
1542 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1543 {
1544 struct lwp_info *lp;
1545 int status;
1546 ptid_t ptid;
1547
1548 /* Make sure we report all signals during attach. */
1549 linux_nat_pass_signals (0, NULL);
1550
1551 linux_ops->to_attach (ops, args, from_tty);
1552
1553 /* The ptrace base target adds the main thread with (pid,0,0)
1554 format. Decorate it with lwp info. */
1555 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1556 thread_change_ptid (inferior_ptid, ptid);
1557
1558 /* Add the initial process as the first LWP to the list. */
1559 lp = add_lwp (ptid);
1560
1561 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1562 &lp->signalled);
1563 if (!WIFSTOPPED (status))
1564 {
1565 if (WIFEXITED (status))
1566 {
1567 int exit_code = WEXITSTATUS (status);
1568
1569 target_terminal_ours ();
1570 target_mourn_inferior ();
1571 if (exit_code == 0)
1572 error (_("Unable to attach: program exited normally."));
1573 else
1574 error (_("Unable to attach: program exited with code %d."),
1575 exit_code);
1576 }
1577 else if (WIFSIGNALED (status))
1578 {
1579 enum target_signal signo;
1580
1581 target_terminal_ours ();
1582 target_mourn_inferior ();
1583
1584 signo = target_signal_from_host (WTERMSIG (status));
1585 error (_("Unable to attach: program terminated with signal "
1586 "%s, %s."),
1587 target_signal_to_name (signo),
1588 target_signal_to_string (signo));
1589 }
1590
1591 internal_error (__FILE__, __LINE__,
1592 _("unexpected status %d for PID %ld"),
1593 status, (long) GET_LWP (ptid));
1594 }
1595
1596 lp->stopped = 1;
1597
1598 /* Save the wait status to report later. */
1599 lp->resumed = 1;
1600 if (debug_linux_nat)
1601 fprintf_unfiltered (gdb_stdlog,
1602 "LNA: waitpid %ld, saving status %s\n",
1603 (long) GET_PID (lp->ptid), status_to_str (status));
1604
1605 lp->status = status;
1606
1607 if (target_can_async_p ())
1608 target_async (inferior_event_handler, 0);
1609 }
1610
1611 /* Get pending status of LP. */
1612 static int
1613 get_pending_status (struct lwp_info *lp, int *status)
1614 {
1615 enum target_signal signo = TARGET_SIGNAL_0;
1616
1617 /* If we paused threads momentarily, we may have stored pending
1618 events in lp->status or lp->waitstatus (see stop_wait_callback),
1619 and GDB core hasn't seen any signal for those threads.
1620 Otherwise, the last signal reported to the core is found in the
1621 thread object's stop_signal.
1622
1623 There's a corner case that isn't handled here at present. Only
1624 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1625 stop_signal make sense as a real signal to pass to the inferior.
1626 Some catchpoint related events, like
1627 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1628 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1629 those traps are debug API (ptrace in our case) related and
1630 induced; the inferior wouldn't see them if it wasn't being
1631 traced. Hence, we should never pass them to the inferior, even
1632 when set to pass state. Since this corner case isn't handled by
1633 infrun.c when proceeding with a signal, for consistency, neither
1634 do we handle it here (or elsewhere in the file we check for
1635 signal pass state). Normally SIGTRAP isn't set to pass state, so
1636 this is really a corner case. */
1637
1638 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1639 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1640 else if (lp->status)
1641 signo = target_signal_from_host (WSTOPSIG (lp->status));
1642 else if (non_stop && !is_executing (lp->ptid))
1643 {
1644 struct thread_info *tp = find_thread_ptid (lp->ptid);
1645
1646 signo = tp->suspend.stop_signal;
1647 }
1648 else if (!non_stop)
1649 {
1650 struct target_waitstatus last;
1651 ptid_t last_ptid;
1652
1653 get_last_target_status (&last_ptid, &last);
1654
1655 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1656 {
1657 struct thread_info *tp = find_thread_ptid (lp->ptid);
1658
1659 signo = tp->suspend.stop_signal;
1660 }
1661 }
1662
1663 *status = 0;
1664
1665 if (signo == TARGET_SIGNAL_0)
1666 {
1667 if (debug_linux_nat)
1668 fprintf_unfiltered (gdb_stdlog,
1669 "GPT: lwp %s has no pending signal\n",
1670 target_pid_to_str (lp->ptid));
1671 }
1672 else if (!signal_pass_state (signo))
1673 {
1674 if (debug_linux_nat)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "GPT: lwp %s had signal %s, "
1677 "but it is in no pass state\n",
1678 target_pid_to_str (lp->ptid),
1679 target_signal_to_string (signo));
1680 }
1681 else
1682 {
1683 *status = W_STOPCODE (target_signal_to_host (signo));
1684
1685 if (debug_linux_nat)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "GPT: lwp %s has pending signal %s\n",
1688 target_pid_to_str (lp->ptid),
1689 target_signal_to_string (signo));
1690 }
1691
1692 return 0;
1693 }
1694
1695 static int
1696 detach_callback (struct lwp_info *lp, void *data)
1697 {
1698 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1699
1700 if (debug_linux_nat && lp->status)
1701 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1702 strsignal (WSTOPSIG (lp->status)),
1703 target_pid_to_str (lp->ptid));
1704
1705 /* If there is a pending SIGSTOP, get rid of it. */
1706 if (lp->signalled)
1707 {
1708 if (debug_linux_nat)
1709 fprintf_unfiltered (gdb_stdlog,
1710 "DC: Sending SIGCONT to %s\n",
1711 target_pid_to_str (lp->ptid));
1712
1713 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1714 lp->signalled = 0;
1715 }
1716
1717 /* We don't actually detach from the LWP that has an id equal to the
1718 overall process id just yet. */
1719 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1720 {
1721 int status = 0;
1722
1723 /* Pass on any pending signal for this LWP. */
1724 get_pending_status (lp, &status);
1725
1726 errno = 0;
1727 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1728 WSTOPSIG (status)) < 0)
1729 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1730 safe_strerror (errno));
1731
1732 if (debug_linux_nat)
1733 fprintf_unfiltered (gdb_stdlog,
1734 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1735 target_pid_to_str (lp->ptid),
1736 strsignal (WSTOPSIG (status)));
1737
1738 delete_lwp (lp->ptid);
1739 }
1740
1741 return 0;
1742 }
1743
1744 static void
1745 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1746 {
1747 int pid;
1748 int status;
1749 struct lwp_info *main_lwp;
1750
1751 pid = GET_PID (inferior_ptid);
1752
1753 if (target_can_async_p ())
1754 linux_nat_async (NULL, 0);
1755
1756 /* Stop all threads before detaching. ptrace requires that the
1757 thread is stopped to sucessfully detach. */
1758 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1759 /* ... and wait until all of them have reported back that
1760 they're no longer running. */
1761 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1762
1763 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1764
1765 /* Only the initial process should be left right now. */
1766 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1767
1768 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1769
1770 /* Pass on any pending signal for the last LWP. */
1771 if ((args == NULL || *args == '\0')
1772 && get_pending_status (main_lwp, &status) != -1
1773 && WIFSTOPPED (status))
1774 {
1775 /* Put the signal number in ARGS so that inf_ptrace_detach will
1776 pass it along with PTRACE_DETACH. */
1777 args = alloca (8);
1778 sprintf (args, "%d", (int) WSTOPSIG (status));
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "LND: Sending signal %s to %s\n",
1782 args,
1783 target_pid_to_str (main_lwp->ptid));
1784 }
1785
1786 delete_lwp (main_lwp->ptid);
1787
1788 if (forks_exist_p ())
1789 {
1790 /* Multi-fork case. The current inferior_ptid is being detached
1791 from, but there are other viable forks to debug. Detach from
1792 the current fork, and context-switch to the first
1793 available. */
1794 linux_fork_detach (args, from_tty);
1795
1796 if (non_stop && target_can_async_p ())
1797 target_async (inferior_event_handler, 0);
1798 }
1799 else
1800 linux_ops->to_detach (ops, args, from_tty);
1801 }
1802
1803 /* Resume LP. */
1804
1805 static void
1806 resume_lwp (struct lwp_info *lp, int step)
1807 {
1808 if (lp->stopped)
1809 {
1810 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1811
1812 if (inf->vfork_child != NULL)
1813 {
1814 if (debug_linux_nat)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "RC: Not resuming %s (vfork parent)\n",
1817 target_pid_to_str (lp->ptid));
1818 }
1819 else if (lp->status == 0
1820 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1821 {
1822 if (debug_linux_nat)
1823 fprintf_unfiltered (gdb_stdlog,
1824 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1825 target_pid_to_str (lp->ptid));
1826
1827 linux_ops->to_resume (linux_ops,
1828 pid_to_ptid (GET_LWP (lp->ptid)),
1829 step, TARGET_SIGNAL_0);
1830 lp->stopped = 0;
1831 lp->step = step;
1832 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1833 lp->stopped_by_watchpoint = 0;
1834 }
1835 else
1836 {
1837 if (debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog,
1839 "RC: Not resuming sibling %s (has pending)\n",
1840 target_pid_to_str (lp->ptid));
1841 }
1842 }
1843 else
1844 {
1845 if (debug_linux_nat)
1846 fprintf_unfiltered (gdb_stdlog,
1847 "RC: Not resuming sibling %s (not stopped)\n",
1848 target_pid_to_str (lp->ptid));
1849 }
1850 }
1851
1852 static int
1853 resume_callback (struct lwp_info *lp, void *data)
1854 {
1855 resume_lwp (lp, 0);
1856 return 0;
1857 }
1858
1859 static int
1860 resume_clear_callback (struct lwp_info *lp, void *data)
1861 {
1862 lp->resumed = 0;
1863 lp->last_resume_kind = resume_stop;
1864 return 0;
1865 }
1866
1867 static int
1868 resume_set_callback (struct lwp_info *lp, void *data)
1869 {
1870 lp->resumed = 1;
1871 lp->last_resume_kind = resume_continue;
1872 return 0;
1873 }
1874
1875 static void
1876 linux_nat_resume (struct target_ops *ops,
1877 ptid_t ptid, int step, enum target_signal signo)
1878 {
1879 sigset_t prev_mask;
1880 struct lwp_info *lp;
1881 int resume_many;
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1886 step ? "step" : "resume",
1887 target_pid_to_str (ptid),
1888 (signo != TARGET_SIGNAL_0
1889 ? strsignal (target_signal_to_host (signo)) : "0"),
1890 target_pid_to_str (inferior_ptid));
1891
1892 block_child_signals (&prev_mask);
1893
1894 /* A specific PTID means `step only this process id'. */
1895 resume_many = (ptid_equal (minus_one_ptid, ptid)
1896 || ptid_is_pid (ptid));
1897
1898 /* Mark the lwps we're resuming as resumed. */
1899 iterate_over_lwps (ptid, resume_set_callback, NULL);
1900
1901 /* See if it's the current inferior that should be handled
1902 specially. */
1903 if (resume_many)
1904 lp = find_lwp_pid (inferior_ptid);
1905 else
1906 lp = find_lwp_pid (ptid);
1907 gdb_assert (lp != NULL);
1908
1909 /* Remember if we're stepping. */
1910 lp->step = step;
1911 lp->last_resume_kind = step ? resume_step : resume_continue;
1912
1913 /* If we have a pending wait status for this thread, there is no
1914 point in resuming the process. But first make sure that
1915 linux_nat_wait won't preemptively handle the event - we
1916 should never take this short-circuit if we are going to
1917 leave LP running, since we have skipped resuming all the
1918 other threads. This bit of code needs to be synchronized
1919 with linux_nat_wait. */
1920
1921 if (lp->status && WIFSTOPPED (lp->status))
1922 {
1923 if (!lp->step
1924 && WSTOPSIG (lp->status)
1925 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1926 {
1927 if (debug_linux_nat)
1928 fprintf_unfiltered (gdb_stdlog,
1929 "LLR: Not short circuiting for ignored "
1930 "status 0x%x\n", lp->status);
1931
1932 /* FIXME: What should we do if we are supposed to continue
1933 this thread with a signal? */
1934 gdb_assert (signo == TARGET_SIGNAL_0);
1935 signo = target_signal_from_host (WSTOPSIG (lp->status));
1936 lp->status = 0;
1937 }
1938 }
1939
1940 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1941 {
1942 /* FIXME: What should we do if we are supposed to continue
1943 this thread with a signal? */
1944 gdb_assert (signo == TARGET_SIGNAL_0);
1945
1946 if (debug_linux_nat)
1947 fprintf_unfiltered (gdb_stdlog,
1948 "LLR: Short circuiting for status 0x%x\n",
1949 lp->status);
1950
1951 restore_child_signals_mask (&prev_mask);
1952 if (target_can_async_p ())
1953 {
1954 target_async (inferior_event_handler, 0);
1955 /* Tell the event loop we have something to process. */
1956 async_file_mark ();
1957 }
1958 return;
1959 }
1960
1961 /* Mark LWP as not stopped to prevent it from being continued by
1962 resume_callback. */
1963 lp->stopped = 0;
1964
1965 if (resume_many)
1966 iterate_over_lwps (ptid, resume_callback, NULL);
1967
1968 /* Convert to something the lower layer understands. */
1969 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1970
1971 linux_ops->to_resume (linux_ops, ptid, step, signo);
1972 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1973 lp->stopped_by_watchpoint = 0;
1974
1975 if (debug_linux_nat)
1976 fprintf_unfiltered (gdb_stdlog,
1977 "LLR: %s %s, %s (resume event thread)\n",
1978 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1979 target_pid_to_str (ptid),
1980 (signo != TARGET_SIGNAL_0
1981 ? strsignal (target_signal_to_host (signo)) : "0"));
1982
1983 restore_child_signals_mask (&prev_mask);
1984 if (target_can_async_p ())
1985 target_async (inferior_event_handler, 0);
1986 }
1987
1988 /* Send a signal to an LWP. */
1989
1990 static int
1991 kill_lwp (int lwpid, int signo)
1992 {
1993 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1994 fails, then we are not using nptl threads and we should be using kill. */
1995
1996 #ifdef HAVE_TKILL_SYSCALL
1997 {
1998 static int tkill_failed;
1999
2000 if (!tkill_failed)
2001 {
2002 int ret;
2003
2004 errno = 0;
2005 ret = syscall (__NR_tkill, lwpid, signo);
2006 if (errno != ENOSYS)
2007 return ret;
2008 tkill_failed = 1;
2009 }
2010 }
2011 #endif
2012
2013 return kill (lwpid, signo);
2014 }
2015
2016 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2017 event, check if the core is interested in it: if not, ignore the
2018 event, and keep waiting; otherwise, we need to toggle the LWP's
2019 syscall entry/exit status, since the ptrace event itself doesn't
2020 indicate it, and report the trap to higher layers. */
2021
2022 static int
2023 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2024 {
2025 struct target_waitstatus *ourstatus = &lp->waitstatus;
2026 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2027 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2028
2029 if (stopping)
2030 {
2031 /* If we're stopping threads, there's a SIGSTOP pending, which
2032 makes it so that the LWP reports an immediate syscall return,
2033 followed by the SIGSTOP. Skip seeing that "return" using
2034 PTRACE_CONT directly, and let stop_wait_callback collect the
2035 SIGSTOP. Later when the thread is resumed, a new syscall
2036 entry event. If we didn't do this (and returned 0), we'd
2037 leave a syscall entry pending, and our caller, by using
2038 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2039 itself. Later, when the user re-resumes this LWP, we'd see
2040 another syscall entry event and we'd mistake it for a return.
2041
2042 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2043 (leaving immediately with LWP->signalled set, without issuing
2044 a PTRACE_CONT), it would still be problematic to leave this
2045 syscall enter pending, as later when the thread is resumed,
2046 it would then see the same syscall exit mentioned above,
2047 followed by the delayed SIGSTOP, while the syscall didn't
2048 actually get to execute. It seems it would be even more
2049 confusing to the user. */
2050
2051 if (debug_linux_nat)
2052 fprintf_unfiltered (gdb_stdlog,
2053 "LHST: ignoring syscall %d "
2054 "for LWP %ld (stopping threads), "
2055 "resuming with PTRACE_CONT for SIGSTOP\n",
2056 syscall_number,
2057 GET_LWP (lp->ptid));
2058
2059 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2060 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2061 return 1;
2062 }
2063
2064 if (catch_syscall_enabled ())
2065 {
2066 /* Always update the entry/return state, even if this particular
2067 syscall isn't interesting to the core now. In async mode,
2068 the user could install a new catchpoint for this syscall
2069 between syscall enter/return, and we'll need to know to
2070 report a syscall return if that happens. */
2071 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2072 ? TARGET_WAITKIND_SYSCALL_RETURN
2073 : TARGET_WAITKIND_SYSCALL_ENTRY);
2074
2075 if (catching_syscall_number (syscall_number))
2076 {
2077 /* Alright, an event to report. */
2078 ourstatus->kind = lp->syscall_state;
2079 ourstatus->value.syscall_number = syscall_number;
2080
2081 if (debug_linux_nat)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "LHST: stopping for %s of syscall %d"
2084 " for LWP %ld\n",
2085 lp->syscall_state
2086 == TARGET_WAITKIND_SYSCALL_ENTRY
2087 ? "entry" : "return",
2088 syscall_number,
2089 GET_LWP (lp->ptid));
2090 return 0;
2091 }
2092
2093 if (debug_linux_nat)
2094 fprintf_unfiltered (gdb_stdlog,
2095 "LHST: ignoring %s of syscall %d "
2096 "for LWP %ld\n",
2097 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2098 ? "entry" : "return",
2099 syscall_number,
2100 GET_LWP (lp->ptid));
2101 }
2102 else
2103 {
2104 /* If we had been syscall tracing, and hence used PT_SYSCALL
2105 before on this LWP, it could happen that the user removes all
2106 syscall catchpoints before we get to process this event.
2107 There are two noteworthy issues here:
2108
2109 - When stopped at a syscall entry event, resuming with
2110 PT_STEP still resumes executing the syscall and reports a
2111 syscall return.
2112
2113 - Only PT_SYSCALL catches syscall enters. If we last
2114 single-stepped this thread, then this event can't be a
2115 syscall enter. If we last single-stepped this thread, this
2116 has to be a syscall exit.
2117
2118 The points above mean that the next resume, be it PT_STEP or
2119 PT_CONTINUE, can not trigger a syscall trace event. */
2120 if (debug_linux_nat)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "LHST: caught syscall event "
2123 "with no syscall catchpoints."
2124 " %d for LWP %ld, ignoring\n",
2125 syscall_number,
2126 GET_LWP (lp->ptid));
2127 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2128 }
2129
2130 /* The core isn't interested in this event. For efficiency, avoid
2131 stopping all threads only to have the core resume them all again.
2132 Since we're not stopping threads, if we're still syscall tracing
2133 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2134 subsequent syscall. Simply resume using the inf-ptrace layer,
2135 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2136
2137 /* Note that gdbarch_get_syscall_number may access registers, hence
2138 fill a regcache. */
2139 registers_changed ();
2140 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2141 lp->step, TARGET_SIGNAL_0);
2142 return 1;
2143 }
2144
2145 /* Handle a GNU/Linux extended wait response. If we see a clone
2146 event, we need to add the new LWP to our list (and not report the
2147 trap to higher layers). This function returns non-zero if the
2148 event should be ignored and we should wait again. If STOPPING is
2149 true, the new LWP remains stopped, otherwise it is continued. */
2150
2151 static int
2152 linux_handle_extended_wait (struct lwp_info *lp, int status,
2153 int stopping)
2154 {
2155 int pid = GET_LWP (lp->ptid);
2156 struct target_waitstatus *ourstatus = &lp->waitstatus;
2157 int event = status >> 16;
2158
2159 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2160 || event == PTRACE_EVENT_CLONE)
2161 {
2162 unsigned long new_pid;
2163 int ret;
2164
2165 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2166
2167 /* If we haven't already seen the new PID stop, wait for it now. */
2168 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2169 {
2170 /* The new child has a pending SIGSTOP. We can't affect it until it
2171 hits the SIGSTOP, but we're already attached. */
2172 ret = my_waitpid (new_pid, &status,
2173 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2174 if (ret == -1)
2175 perror_with_name (_("waiting for new child"));
2176 else if (ret != new_pid)
2177 internal_error (__FILE__, __LINE__,
2178 _("wait returned unexpected PID %d"), ret);
2179 else if (!WIFSTOPPED (status))
2180 internal_error (__FILE__, __LINE__,
2181 _("wait returned unexpected status 0x%x"), status);
2182 }
2183
2184 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2185
2186 if (event == PTRACE_EVENT_FORK
2187 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2188 {
2189 /* Handle checkpointing by linux-fork.c here as a special
2190 case. We don't want the follow-fork-mode or 'catch fork'
2191 to interfere with this. */
2192
2193 /* This won't actually modify the breakpoint list, but will
2194 physically remove the breakpoints from the child. */
2195 detach_breakpoints (new_pid);
2196
2197 /* Retain child fork in ptrace (stopped) state. */
2198 if (!find_fork_pid (new_pid))
2199 add_fork (new_pid);
2200
2201 /* Report as spurious, so that infrun doesn't want to follow
2202 this fork. We're actually doing an infcall in
2203 linux-fork.c. */
2204 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2205 linux_enable_event_reporting (pid_to_ptid (new_pid));
2206
2207 /* Report the stop to the core. */
2208 return 0;
2209 }
2210
2211 if (event == PTRACE_EVENT_FORK)
2212 ourstatus->kind = TARGET_WAITKIND_FORKED;
2213 else if (event == PTRACE_EVENT_VFORK)
2214 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2215 else
2216 {
2217 struct lwp_info *new_lp;
2218
2219 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2220
2221 if (debug_linux_nat)
2222 fprintf_unfiltered (gdb_stdlog,
2223 "LHEW: Got clone event "
2224 "from LWP %d, new child is LWP %ld\n",
2225 pid, new_pid);
2226
2227 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2228 new_lp->cloned = 1;
2229 new_lp->stopped = 1;
2230
2231 if (WSTOPSIG (status) != SIGSTOP)
2232 {
2233 /* This can happen if someone starts sending signals to
2234 the new thread before it gets a chance to run, which
2235 have a lower number than SIGSTOP (e.g. SIGUSR1).
2236 This is an unlikely case, and harder to handle for
2237 fork / vfork than for clone, so we do not try - but
2238 we handle it for clone events here. We'll send
2239 the other signal on to the thread below. */
2240
2241 new_lp->signalled = 1;
2242 }
2243 else
2244 {
2245 struct thread_info *tp;
2246
2247 /* When we stop for an event in some other thread, and
2248 pull the thread list just as this thread has cloned,
2249 we'll have seen the new thread in the thread_db list
2250 before handling the CLONE event (glibc's
2251 pthread_create adds the new thread to the thread list
2252 before clone'ing, and has the kernel fill in the
2253 thread's tid on the clone call with
2254 CLONE_PARENT_SETTID). If that happened, and the core
2255 had requested the new thread to stop, we'll have
2256 killed it with SIGSTOP. But since SIGSTOP is not an
2257 RT signal, it can only be queued once. We need to be
2258 careful to not resume the LWP if we wanted it to
2259 stop. In that case, we'll leave the SIGSTOP pending.
2260 It will later be reported as TARGET_SIGNAL_0. */
2261 tp = find_thread_ptid (new_lp->ptid);
2262 if (tp != NULL && tp->stop_requested)
2263 new_lp->last_resume_kind = resume_stop;
2264 else
2265 status = 0;
2266 }
2267
2268 if (non_stop)
2269 {
2270 /* Add the new thread to GDB's lists as soon as possible
2271 so that:
2272
2273 1) the frontend doesn't have to wait for a stop to
2274 display them, and,
2275
2276 2) we tag it with the correct running state. */
2277
2278 /* If the thread_db layer is active, let it know about
2279 this new thread, and add it to GDB's list. */
2280 if (!thread_db_attach_lwp (new_lp->ptid))
2281 {
2282 /* We're not using thread_db. Add it to GDB's
2283 list. */
2284 target_post_attach (GET_LWP (new_lp->ptid));
2285 add_thread (new_lp->ptid);
2286 }
2287
2288 if (!stopping)
2289 {
2290 set_running (new_lp->ptid, 1);
2291 set_executing (new_lp->ptid, 1);
2292 }
2293 }
2294
2295 if (status != 0)
2296 {
2297 /* We created NEW_LP so it cannot yet contain STATUS. */
2298 gdb_assert (new_lp->status == 0);
2299
2300 /* Save the wait status to report later. */
2301 if (debug_linux_nat)
2302 fprintf_unfiltered (gdb_stdlog,
2303 "LHEW: waitpid of new LWP %ld, "
2304 "saving status %s\n",
2305 (long) GET_LWP (new_lp->ptid),
2306 status_to_str (status));
2307 new_lp->status = status;
2308 }
2309
2310 /* Note the need to use the low target ops to resume, to
2311 handle resuming with PT_SYSCALL if we have syscall
2312 catchpoints. */
2313 if (!stopping)
2314 {
2315 new_lp->resumed = 1;
2316
2317 if (status == 0)
2318 {
2319 if (debug_linux_nat)
2320 fprintf_unfiltered (gdb_stdlog,
2321 "LHEW: resuming new LWP %ld\n",
2322 GET_LWP (new_lp->ptid));
2323 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2324 0, TARGET_SIGNAL_0);
2325 new_lp->stopped = 0;
2326 }
2327 }
2328
2329 if (debug_linux_nat)
2330 fprintf_unfiltered (gdb_stdlog,
2331 "LHEW: resuming parent LWP %d\n", pid);
2332 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2333 0, TARGET_SIGNAL_0);
2334
2335 return 1;
2336 }
2337
2338 return 0;
2339 }
2340
2341 if (event == PTRACE_EVENT_EXEC)
2342 {
2343 if (debug_linux_nat)
2344 fprintf_unfiltered (gdb_stdlog,
2345 "LHEW: Got exec event from LWP %ld\n",
2346 GET_LWP (lp->ptid));
2347
2348 ourstatus->kind = TARGET_WAITKIND_EXECD;
2349 ourstatus->value.execd_pathname
2350 = xstrdup (linux_child_pid_to_exec_file (pid));
2351
2352 return 0;
2353 }
2354
2355 if (event == PTRACE_EVENT_VFORK_DONE)
2356 {
2357 if (current_inferior ()->waiting_for_vfork_done)
2358 {
2359 if (debug_linux_nat)
2360 fprintf_unfiltered (gdb_stdlog,
2361 "LHEW: Got expected PTRACE_EVENT_"
2362 "VFORK_DONE from LWP %ld: stopping\n",
2363 GET_LWP (lp->ptid));
2364
2365 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2366 return 0;
2367 }
2368
2369 if (debug_linux_nat)
2370 fprintf_unfiltered (gdb_stdlog,
2371 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2372 "from LWP %ld: resuming\n",
2373 GET_LWP (lp->ptid));
2374 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2375 return 1;
2376 }
2377
2378 internal_error (__FILE__, __LINE__,
2379 _("unknown ptrace event %d"), event);
2380 }
2381
2382 /* Return non-zero if LWP is a zombie. */
2383
2384 static int
2385 linux_lwp_is_zombie (long lwp)
2386 {
2387 char buffer[MAXPATHLEN];
2388 FILE *procfile;
2389 int retval;
2390 int have_state;
2391
2392 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2393 procfile = fopen (buffer, "r");
2394 if (procfile == NULL)
2395 {
2396 warning (_("unable to open /proc file '%s'"), buffer);
2397 return 0;
2398 }
2399
2400 have_state = 0;
2401 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2402 if (strncmp (buffer, "State:", 6) == 0)
2403 {
2404 have_state = 1;
2405 break;
2406 }
2407 retval = (have_state
2408 && strcmp (buffer, "State:\tZ (zombie)\n") == 0);
2409 fclose (procfile);
2410 return retval;
2411 }
2412
2413 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2414 exited. */
2415
2416 static int
2417 wait_lwp (struct lwp_info *lp)
2418 {
2419 pid_t pid;
2420 int status = 0;
2421 int thread_dead = 0;
2422 sigset_t prev_mask;
2423
2424 gdb_assert (!lp->stopped);
2425 gdb_assert (lp->status == 0);
2426
2427 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2428 block_child_signals (&prev_mask);
2429
2430 for (;;)
2431 {
2432 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2433 was right and we should just call sigsuspend. */
2434
2435 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2436 if (pid == -1 && errno == ECHILD)
2437 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2438 if (pid == -1 && errno == ECHILD)
2439 {
2440 /* The thread has previously exited. We need to delete it
2441 now because, for some vendor 2.4 kernels with NPTL
2442 support backported, there won't be an exit event unless
2443 it is the main thread. 2.6 kernels will report an exit
2444 event for each thread that exits, as expected. */
2445 thread_dead = 1;
2446 if (debug_linux_nat)
2447 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2448 target_pid_to_str (lp->ptid));
2449 }
2450 if (pid != 0)
2451 break;
2452
2453 /* Bugs 10970, 12702.
2454 Thread group leader may have exited in which case we'll lock up in
2455 waitpid if there are other threads, even if they are all zombies too.
2456 Basically, we're not supposed to use waitpid this way.
2457 __WCLONE is not applicable for the leader so we can't use that.
2458 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2459 process; it gets ESRCH both for the zombie and for running processes.
2460
2461 As a workaround, check if we're waiting for the thread group leader and
2462 if it's a zombie, and avoid calling waitpid if it is.
2463
2464 This is racy, what if the tgl becomes a zombie right after we check?
2465 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2466 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2467
2468 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2469 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2470 {
2471 thread_dead = 1;
2472 if (debug_linux_nat)
2473 fprintf_unfiltered (gdb_stdlog,
2474 "WL: Thread group leader %s vanished.\n",
2475 target_pid_to_str (lp->ptid));
2476 break;
2477 }
2478
2479 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2480 get invoked despite our caller had them intentionally blocked by
2481 block_child_signals. This is sensitive only to the loop of
2482 linux_nat_wait_1 and there if we get called my_waitpid gets called
2483 again before it gets to sigsuspend so we can safely let the handlers
2484 get executed here. */
2485
2486 sigsuspend (&suspend_mask);
2487 }
2488
2489 restore_child_signals_mask (&prev_mask);
2490
2491 if (!thread_dead)
2492 {
2493 gdb_assert (pid == GET_LWP (lp->ptid));
2494
2495 if (debug_linux_nat)
2496 {
2497 fprintf_unfiltered (gdb_stdlog,
2498 "WL: waitpid %s received %s\n",
2499 target_pid_to_str (lp->ptid),
2500 status_to_str (status));
2501 }
2502
2503 /* Check if the thread has exited. */
2504 if (WIFEXITED (status) || WIFSIGNALED (status))
2505 {
2506 thread_dead = 1;
2507 if (debug_linux_nat)
2508 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2509 target_pid_to_str (lp->ptid));
2510 }
2511 }
2512
2513 if (thread_dead)
2514 {
2515 exit_lwp (lp);
2516 return 0;
2517 }
2518
2519 gdb_assert (WIFSTOPPED (status));
2520
2521 /* Handle GNU/Linux's syscall SIGTRAPs. */
2522 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2523 {
2524 /* No longer need the sysgood bit. The ptrace event ends up
2525 recorded in lp->waitstatus if we care for it. We can carry
2526 on handling the event like a regular SIGTRAP from here
2527 on. */
2528 status = W_STOPCODE (SIGTRAP);
2529 if (linux_handle_syscall_trap (lp, 1))
2530 return wait_lwp (lp);
2531 }
2532
2533 /* Handle GNU/Linux's extended waitstatus for trace events. */
2534 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2535 {
2536 if (debug_linux_nat)
2537 fprintf_unfiltered (gdb_stdlog,
2538 "WL: Handling extended status 0x%06x\n",
2539 status);
2540 if (linux_handle_extended_wait (lp, status, 1))
2541 return wait_lwp (lp);
2542 }
2543
2544 return status;
2545 }
2546
2547 /* Save the most recent siginfo for LP. This is currently only called
2548 for SIGTRAP; some ports use the si_addr field for
2549 target_stopped_data_address. In the future, it may also be used to
2550 restore the siginfo of requeued signals. */
2551
2552 static void
2553 save_siginfo (struct lwp_info *lp)
2554 {
2555 errno = 0;
2556 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2557 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2558
2559 if (errno != 0)
2560 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2561 }
2562
2563 /* Send a SIGSTOP to LP. */
2564
2565 static int
2566 stop_callback (struct lwp_info *lp, void *data)
2567 {
2568 if (!lp->stopped && !lp->signalled)
2569 {
2570 int ret;
2571
2572 if (debug_linux_nat)
2573 {
2574 fprintf_unfiltered (gdb_stdlog,
2575 "SC: kill %s **<SIGSTOP>**\n",
2576 target_pid_to_str (lp->ptid));
2577 }
2578 errno = 0;
2579 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2580 if (debug_linux_nat)
2581 {
2582 fprintf_unfiltered (gdb_stdlog,
2583 "SC: lwp kill %d %s\n",
2584 ret,
2585 errno ? safe_strerror (errno) : "ERRNO-OK");
2586 }
2587
2588 lp->signalled = 1;
2589 gdb_assert (lp->status == 0);
2590 }
2591
2592 return 0;
2593 }
2594
2595 /* Return non-zero if LWP PID has a pending SIGINT. */
2596
2597 static int
2598 linux_nat_has_pending_sigint (int pid)
2599 {
2600 sigset_t pending, blocked, ignored;
2601
2602 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2603
2604 if (sigismember (&pending, SIGINT)
2605 && !sigismember (&ignored, SIGINT))
2606 return 1;
2607
2608 return 0;
2609 }
2610
2611 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2612
2613 static int
2614 set_ignore_sigint (struct lwp_info *lp, void *data)
2615 {
2616 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2617 flag to consume the next one. */
2618 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2619 && WSTOPSIG (lp->status) == SIGINT)
2620 lp->status = 0;
2621 else
2622 lp->ignore_sigint = 1;
2623
2624 return 0;
2625 }
2626
2627 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2628 This function is called after we know the LWP has stopped; if the LWP
2629 stopped before the expected SIGINT was delivered, then it will never have
2630 arrived. Also, if the signal was delivered to a shared queue and consumed
2631 by a different thread, it will never be delivered to this LWP. */
2632
2633 static void
2634 maybe_clear_ignore_sigint (struct lwp_info *lp)
2635 {
2636 if (!lp->ignore_sigint)
2637 return;
2638
2639 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2640 {
2641 if (debug_linux_nat)
2642 fprintf_unfiltered (gdb_stdlog,
2643 "MCIS: Clearing bogus flag for %s\n",
2644 target_pid_to_str (lp->ptid));
2645 lp->ignore_sigint = 0;
2646 }
2647 }
2648
2649 /* Fetch the possible triggered data watchpoint info and store it in
2650 LP.
2651
2652 On some archs, like x86, that use debug registers to set
2653 watchpoints, it's possible that the way to know which watched
2654 address trapped, is to check the register that is used to select
2655 which address to watch. Problem is, between setting the watchpoint
2656 and reading back which data address trapped, the user may change
2657 the set of watchpoints, and, as a consequence, GDB changes the
2658 debug registers in the inferior. To avoid reading back a stale
2659 stopped-data-address when that happens, we cache in LP the fact
2660 that a watchpoint trapped, and the corresponding data address, as
2661 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2662 registers meanwhile, we have the cached data we can rely on. */
2663
2664 static void
2665 save_sigtrap (struct lwp_info *lp)
2666 {
2667 struct cleanup *old_chain;
2668
2669 if (linux_ops->to_stopped_by_watchpoint == NULL)
2670 {
2671 lp->stopped_by_watchpoint = 0;
2672 return;
2673 }
2674
2675 old_chain = save_inferior_ptid ();
2676 inferior_ptid = lp->ptid;
2677
2678 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2679
2680 if (lp->stopped_by_watchpoint)
2681 {
2682 if (linux_ops->to_stopped_data_address != NULL)
2683 lp->stopped_data_address_p =
2684 linux_ops->to_stopped_data_address (&current_target,
2685 &lp->stopped_data_address);
2686 else
2687 lp->stopped_data_address_p = 0;
2688 }
2689
2690 do_cleanups (old_chain);
2691 }
2692
2693 /* See save_sigtrap. */
2694
2695 static int
2696 linux_nat_stopped_by_watchpoint (void)
2697 {
2698 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2699
2700 gdb_assert (lp != NULL);
2701
2702 return lp->stopped_by_watchpoint;
2703 }
2704
2705 static int
2706 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2707 {
2708 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2709
2710 gdb_assert (lp != NULL);
2711
2712 *addr_p = lp->stopped_data_address;
2713
2714 return lp->stopped_data_address_p;
2715 }
2716
2717 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2718
2719 static int
2720 sigtrap_is_event (int status)
2721 {
2722 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2723 }
2724
2725 /* SIGTRAP-like events recognizer. */
2726
2727 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2728
2729 /* Check for SIGTRAP-like events in LP. */
2730
2731 static int
2732 linux_nat_lp_status_is_event (struct lwp_info *lp)
2733 {
2734 /* We check for lp->waitstatus in addition to lp->status, because we can
2735 have pending process exits recorded in lp->status
2736 and W_EXITCODE(0,0) == 0. We should probably have an additional
2737 lp->status_p flag. */
2738
2739 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2740 && linux_nat_status_is_event (lp->status));
2741 }
2742
2743 /* Set alternative SIGTRAP-like events recognizer. If
2744 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2745 applied. */
2746
2747 void
2748 linux_nat_set_status_is_event (struct target_ops *t,
2749 int (*status_is_event) (int status))
2750 {
2751 linux_nat_status_is_event = status_is_event;
2752 }
2753
2754 /* Wait until LP is stopped. */
2755
2756 static int
2757 stop_wait_callback (struct lwp_info *lp, void *data)
2758 {
2759 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2760
2761 /* If this is a vfork parent, bail out, it is not going to report
2762 any SIGSTOP until the vfork is done with. */
2763 if (inf->vfork_child != NULL)
2764 return 0;
2765
2766 if (!lp->stopped)
2767 {
2768 int status;
2769
2770 status = wait_lwp (lp);
2771 if (status == 0)
2772 return 0;
2773
2774 if (lp->ignore_sigint && WIFSTOPPED (status)
2775 && WSTOPSIG (status) == SIGINT)
2776 {
2777 lp->ignore_sigint = 0;
2778
2779 errno = 0;
2780 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2781 if (debug_linux_nat)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "PTRACE_CONT %s, 0, 0 (%s) "
2784 "(discarding SIGINT)\n",
2785 target_pid_to_str (lp->ptid),
2786 errno ? safe_strerror (errno) : "OK");
2787
2788 return stop_wait_callback (lp, NULL);
2789 }
2790
2791 maybe_clear_ignore_sigint (lp);
2792
2793 if (WSTOPSIG (status) != SIGSTOP)
2794 {
2795 if (linux_nat_status_is_event (status))
2796 {
2797 /* If a LWP other than the LWP that we're reporting an
2798 event for has hit a GDB breakpoint (as opposed to
2799 some random trap signal), then just arrange for it to
2800 hit it again later. We don't keep the SIGTRAP status
2801 and don't forward the SIGTRAP signal to the LWP. We
2802 will handle the current event, eventually we will
2803 resume all LWPs, and this one will get its breakpoint
2804 trap again.
2805
2806 If we do not do this, then we run the risk that the
2807 user will delete or disable the breakpoint, but the
2808 thread will have already tripped on it. */
2809
2810 /* Save the trap's siginfo in case we need it later. */
2811 save_siginfo (lp);
2812
2813 save_sigtrap (lp);
2814
2815 /* Now resume this LWP and get the SIGSTOP event. */
2816 errno = 0;
2817 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2818 if (debug_linux_nat)
2819 {
2820 fprintf_unfiltered (gdb_stdlog,
2821 "PTRACE_CONT %s, 0, 0 (%s)\n",
2822 target_pid_to_str (lp->ptid),
2823 errno ? safe_strerror (errno) : "OK");
2824
2825 fprintf_unfiltered (gdb_stdlog,
2826 "SWC: Candidate SIGTRAP event in %s\n",
2827 target_pid_to_str (lp->ptid));
2828 }
2829 /* Hold this event/waitstatus while we check to see if
2830 there are any more (we still want to get that SIGSTOP). */
2831 stop_wait_callback (lp, NULL);
2832
2833 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2834 there's another event, throw it back into the
2835 queue. */
2836 if (lp->status)
2837 {
2838 if (debug_linux_nat)
2839 fprintf_unfiltered (gdb_stdlog,
2840 "SWC: kill %s, %s\n",
2841 target_pid_to_str (lp->ptid),
2842 status_to_str ((int) status));
2843 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2844 }
2845
2846 /* Save the sigtrap event. */
2847 lp->status = status;
2848 return 0;
2849 }
2850 else
2851 {
2852 /* The thread was stopped with a signal other than
2853 SIGSTOP, and didn't accidentally trip a breakpoint. */
2854
2855 if (debug_linux_nat)
2856 {
2857 fprintf_unfiltered (gdb_stdlog,
2858 "SWC: Pending event %s in %s\n",
2859 status_to_str ((int) status),
2860 target_pid_to_str (lp->ptid));
2861 }
2862 /* Now resume this LWP and get the SIGSTOP event. */
2863 errno = 0;
2864 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2865 if (debug_linux_nat)
2866 fprintf_unfiltered (gdb_stdlog,
2867 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2868 target_pid_to_str (lp->ptid),
2869 errno ? safe_strerror (errno) : "OK");
2870
2871 /* Hold this event/waitstatus while we check to see if
2872 there are any more (we still want to get that SIGSTOP). */
2873 stop_wait_callback (lp, NULL);
2874
2875 /* If the lp->status field is still empty, use it to
2876 hold this event. If not, then this event must be
2877 returned to the event queue of the LWP. */
2878 if (lp->status)
2879 {
2880 if (debug_linux_nat)
2881 {
2882 fprintf_unfiltered (gdb_stdlog,
2883 "SWC: kill %s, %s\n",
2884 target_pid_to_str (lp->ptid),
2885 status_to_str ((int) status));
2886 }
2887 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2888 }
2889 else
2890 lp->status = status;
2891 return 0;
2892 }
2893 }
2894 else
2895 {
2896 /* We caught the SIGSTOP that we intended to catch, so
2897 there's no SIGSTOP pending. */
2898 lp->stopped = 1;
2899 lp->signalled = 0;
2900 }
2901 }
2902
2903 return 0;
2904 }
2905
2906 /* Return non-zero if LP has a wait status pending. */
2907
2908 static int
2909 status_callback (struct lwp_info *lp, void *data)
2910 {
2911 /* Only report a pending wait status if we pretend that this has
2912 indeed been resumed. */
2913 if (!lp->resumed)
2914 return 0;
2915
2916 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2917 {
2918 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2919 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2920 0', so a clean process exit can not be stored pending in
2921 lp->status, it is indistinguishable from
2922 no-pending-status. */
2923 return 1;
2924 }
2925
2926 if (lp->status != 0)
2927 return 1;
2928
2929 return 0;
2930 }
2931
2932 /* Return non-zero if LP isn't stopped. */
2933
2934 static int
2935 running_callback (struct lwp_info *lp, void *data)
2936 {
2937 return (!lp->stopped
2938 || ((lp->status != 0
2939 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2940 && lp->resumed));
2941 }
2942
2943 /* Count the LWP's that have had events. */
2944
2945 static int
2946 count_events_callback (struct lwp_info *lp, void *data)
2947 {
2948 int *count = data;
2949
2950 gdb_assert (count != NULL);
2951
2952 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2953 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2954 (*count)++;
2955
2956 return 0;
2957 }
2958
2959 /* Select the LWP (if any) that is currently being single-stepped. */
2960
2961 static int
2962 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2963 {
2964 if (lp->last_resume_kind == resume_step
2965 && lp->status != 0)
2966 return 1;
2967 else
2968 return 0;
2969 }
2970
2971 /* Select the Nth LWP that has had a SIGTRAP event. */
2972
2973 static int
2974 select_event_lwp_callback (struct lwp_info *lp, void *data)
2975 {
2976 int *selector = data;
2977
2978 gdb_assert (selector != NULL);
2979
2980 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2981 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2982 if ((*selector)-- == 0)
2983 return 1;
2984
2985 return 0;
2986 }
2987
2988 static int
2989 cancel_breakpoint (struct lwp_info *lp)
2990 {
2991 /* Arrange for a breakpoint to be hit again later. We don't keep
2992 the SIGTRAP status and don't forward the SIGTRAP signal to the
2993 LWP. We will handle the current event, eventually we will resume
2994 this LWP, and this breakpoint will trap again.
2995
2996 If we do not do this, then we run the risk that the user will
2997 delete or disable the breakpoint, but the LWP will have already
2998 tripped on it. */
2999
3000 struct regcache *regcache = get_thread_regcache (lp->ptid);
3001 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3002 CORE_ADDR pc;
3003
3004 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3005 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3006 {
3007 if (debug_linux_nat)
3008 fprintf_unfiltered (gdb_stdlog,
3009 "CB: Push back breakpoint for %s\n",
3010 target_pid_to_str (lp->ptid));
3011
3012 /* Back up the PC if necessary. */
3013 if (gdbarch_decr_pc_after_break (gdbarch))
3014 regcache_write_pc (regcache, pc);
3015
3016 return 1;
3017 }
3018 return 0;
3019 }
3020
3021 static int
3022 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3023 {
3024 struct lwp_info *event_lp = data;
3025
3026 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3027 if (lp == event_lp)
3028 return 0;
3029
3030 /* If a LWP other than the LWP that we're reporting an event for has
3031 hit a GDB breakpoint (as opposed to some random trap signal),
3032 then just arrange for it to hit it again later. We don't keep
3033 the SIGTRAP status and don't forward the SIGTRAP signal to the
3034 LWP. We will handle the current event, eventually we will resume
3035 all LWPs, and this one will get its breakpoint trap again.
3036
3037 If we do not do this, then we run the risk that the user will
3038 delete or disable the breakpoint, but the LWP will have already
3039 tripped on it. */
3040
3041 if (linux_nat_lp_status_is_event (lp)
3042 && cancel_breakpoint (lp))
3043 /* Throw away the SIGTRAP. */
3044 lp->status = 0;
3045
3046 return 0;
3047 }
3048
3049 /* Select one LWP out of those that have events pending. */
3050
3051 static void
3052 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3053 {
3054 int num_events = 0;
3055 int random_selector;
3056 struct lwp_info *event_lp;
3057
3058 /* Record the wait status for the original LWP. */
3059 (*orig_lp)->status = *status;
3060
3061 /* Give preference to any LWP that is being single-stepped. */
3062 event_lp = iterate_over_lwps (filter,
3063 select_singlestep_lwp_callback, NULL);
3064 if (event_lp != NULL)
3065 {
3066 if (debug_linux_nat)
3067 fprintf_unfiltered (gdb_stdlog,
3068 "SEL: Select single-step %s\n",
3069 target_pid_to_str (event_lp->ptid));
3070 }
3071 else
3072 {
3073 /* No single-stepping LWP. Select one at random, out of those
3074 which have had SIGTRAP events. */
3075
3076 /* First see how many SIGTRAP events we have. */
3077 iterate_over_lwps (filter, count_events_callback, &num_events);
3078
3079 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3080 random_selector = (int)
3081 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3082
3083 if (debug_linux_nat && num_events > 1)
3084 fprintf_unfiltered (gdb_stdlog,
3085 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3086 num_events, random_selector);
3087
3088 event_lp = iterate_over_lwps (filter,
3089 select_event_lwp_callback,
3090 &random_selector);
3091 }
3092
3093 if (event_lp != NULL)
3094 {
3095 /* Switch the event LWP. */
3096 *orig_lp = event_lp;
3097 *status = event_lp->status;
3098 }
3099
3100 /* Flush the wait status for the event LWP. */
3101 (*orig_lp)->status = 0;
3102 }
3103
3104 /* Return non-zero if LP has been resumed. */
3105
3106 static int
3107 resumed_callback (struct lwp_info *lp, void *data)
3108 {
3109 return lp->resumed;
3110 }
3111
3112 /* Stop an active thread, verify it still exists, then resume it. */
3113
3114 static int
3115 stop_and_resume_callback (struct lwp_info *lp, void *data)
3116 {
3117 if (!lp->stopped)
3118 {
3119 enum resume_kind last_resume_kind = lp->last_resume_kind;
3120 ptid_t ptid = lp->ptid;
3121
3122 stop_callback (lp, NULL);
3123 stop_wait_callback (lp, NULL);
3124
3125 /* Resume if the lwp still exists, and the core wanted it
3126 running. */
3127 if (last_resume_kind != resume_stop)
3128 {
3129 lp = find_lwp_pid (ptid);
3130 if (lp)
3131 resume_lwp (lp, lp->step);
3132 }
3133 }
3134 return 0;
3135 }
3136
3137 /* Check if we should go on and pass this event to common code.
3138 Return the affected lwp if we are, or NULL otherwise. */
3139 static struct lwp_info *
3140 linux_nat_filter_event (int lwpid, int status, int options)
3141 {
3142 struct lwp_info *lp;
3143
3144 lp = find_lwp_pid (pid_to_ptid (lwpid));
3145
3146 /* Check for stop events reported by a process we didn't already
3147 know about - anything not already in our LWP list.
3148
3149 If we're expecting to receive stopped processes after
3150 fork, vfork, and clone events, then we'll just add the
3151 new one to our list and go back to waiting for the event
3152 to be reported - the stopped process might be returned
3153 from waitpid before or after the event is. */
3154 if (WIFSTOPPED (status) && !lp)
3155 {
3156 add_to_pid_list (&stopped_pids, lwpid, status);
3157 return NULL;
3158 }
3159
3160 /* Make sure we don't report an event for the exit of an LWP not in
3161 our list, i.e. not part of the current process. This can happen
3162 if we detach from a program we originally forked and then it
3163 exits. */
3164 if (!WIFSTOPPED (status) && !lp)
3165 return NULL;
3166
3167 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3168 CLONE_PTRACE processes which do not use the thread library -
3169 otherwise we wouldn't find the new LWP this way. That doesn't
3170 currently work, and the following code is currently unreachable
3171 due to the two blocks above. If it's fixed some day, this code
3172 should be broken out into a function so that we can also pick up
3173 LWPs from the new interface. */
3174 if (!lp)
3175 {
3176 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3177 if (options & __WCLONE)
3178 lp->cloned = 1;
3179
3180 gdb_assert (WIFSTOPPED (status)
3181 && WSTOPSIG (status) == SIGSTOP);
3182 lp->signalled = 1;
3183
3184 if (!in_thread_list (inferior_ptid))
3185 {
3186 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3187 GET_PID (inferior_ptid));
3188 add_thread (inferior_ptid);
3189 }
3190
3191 add_thread (lp->ptid);
3192 }
3193
3194 /* Handle GNU/Linux's syscall SIGTRAPs. */
3195 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3196 {
3197 /* No longer need the sysgood bit. The ptrace event ends up
3198 recorded in lp->waitstatus if we care for it. We can carry
3199 on handling the event like a regular SIGTRAP from here
3200 on. */
3201 status = W_STOPCODE (SIGTRAP);
3202 if (linux_handle_syscall_trap (lp, 0))
3203 return NULL;
3204 }
3205
3206 /* Handle GNU/Linux's extended waitstatus for trace events. */
3207 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3208 {
3209 if (debug_linux_nat)
3210 fprintf_unfiltered (gdb_stdlog,
3211 "LLW: Handling extended status 0x%06x\n",
3212 status);
3213 if (linux_handle_extended_wait (lp, status, 0))
3214 return NULL;
3215 }
3216
3217 if (linux_nat_status_is_event (status))
3218 {
3219 /* Save the trap's siginfo in case we need it later. */
3220 save_siginfo (lp);
3221
3222 save_sigtrap (lp);
3223 }
3224
3225 /* Check if the thread has exited. */
3226 if ((WIFEXITED (status) || WIFSIGNALED (status))
3227 && num_lwps (GET_PID (lp->ptid)) > 1)
3228 {
3229 /* If this is the main thread, we must stop all threads and verify
3230 if they are still alive. This is because in the nptl thread model
3231 on Linux 2.4, there is no signal issued for exiting LWPs
3232 other than the main thread. We only get the main thread exit
3233 signal once all child threads have already exited. If we
3234 stop all the threads and use the stop_wait_callback to check
3235 if they have exited we can determine whether this signal
3236 should be ignored or whether it means the end of the debugged
3237 application, regardless of which threading model is being
3238 used. */
3239 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3240 {
3241 lp->stopped = 1;
3242 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3243 stop_and_resume_callback, NULL);
3244 }
3245
3246 if (debug_linux_nat)
3247 fprintf_unfiltered (gdb_stdlog,
3248 "LLW: %s exited.\n",
3249 target_pid_to_str (lp->ptid));
3250
3251 if (num_lwps (GET_PID (lp->ptid)) > 1)
3252 {
3253 /* If there is at least one more LWP, then the exit signal
3254 was not the end of the debugged application and should be
3255 ignored. */
3256 exit_lwp (lp);
3257 return NULL;
3258 }
3259 }
3260
3261 /* Check if the current LWP has previously exited. In the nptl
3262 thread model, LWPs other than the main thread do not issue
3263 signals when they exit so we must check whenever the thread has
3264 stopped. A similar check is made in stop_wait_callback(). */
3265 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3266 {
3267 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3268
3269 if (debug_linux_nat)
3270 fprintf_unfiltered (gdb_stdlog,
3271 "LLW: %s exited.\n",
3272 target_pid_to_str (lp->ptid));
3273
3274 exit_lwp (lp);
3275
3276 /* Make sure there is at least one thread running. */
3277 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3278
3279 /* Discard the event. */
3280 return NULL;
3281 }
3282
3283 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3284 an attempt to stop an LWP. */
3285 if (lp->signalled
3286 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3287 {
3288 if (debug_linux_nat)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "LLW: Delayed SIGSTOP caught for %s.\n",
3291 target_pid_to_str (lp->ptid));
3292
3293 lp->signalled = 0;
3294
3295 if (lp->last_resume_kind != resume_stop)
3296 {
3297 /* This is a delayed SIGSTOP. */
3298
3299 registers_changed ();
3300
3301 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3302 lp->step, TARGET_SIGNAL_0);
3303 if (debug_linux_nat)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3306 lp->step ?
3307 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3308 target_pid_to_str (lp->ptid));
3309
3310 lp->stopped = 0;
3311 gdb_assert (lp->resumed);
3312
3313 /* Discard the event. */
3314 return NULL;
3315 }
3316 }
3317
3318 /* Make sure we don't report a SIGINT that we have already displayed
3319 for another thread. */
3320 if (lp->ignore_sigint
3321 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3322 {
3323 if (debug_linux_nat)
3324 fprintf_unfiltered (gdb_stdlog,
3325 "LLW: Delayed SIGINT caught for %s.\n",
3326 target_pid_to_str (lp->ptid));
3327
3328 /* This is a delayed SIGINT. */
3329 lp->ignore_sigint = 0;
3330
3331 registers_changed ();
3332 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3333 lp->step, TARGET_SIGNAL_0);
3334 if (debug_linux_nat)
3335 fprintf_unfiltered (gdb_stdlog,
3336 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3337 lp->step ?
3338 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3339 target_pid_to_str (lp->ptid));
3340
3341 lp->stopped = 0;
3342 gdb_assert (lp->resumed);
3343
3344 /* Discard the event. */
3345 return NULL;
3346 }
3347
3348 /* An interesting event. */
3349 gdb_assert (lp);
3350 lp->status = status;
3351 return lp;
3352 }
3353
3354 static ptid_t
3355 linux_nat_wait_1 (struct target_ops *ops,
3356 ptid_t ptid, struct target_waitstatus *ourstatus,
3357 int target_options)
3358 {
3359 static sigset_t prev_mask;
3360 enum resume_kind last_resume_kind;
3361 struct lwp_info *lp = NULL;
3362 int options = 0;
3363 int status = 0;
3364 pid_t pid;
3365
3366 if (debug_linux_nat)
3367 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3368
3369 /* The first time we get here after starting a new inferior, we may
3370 not have added it to the LWP list yet - this is the earliest
3371 moment at which we know its PID. */
3372 if (ptid_is_pid (inferior_ptid))
3373 {
3374 /* Upgrade the main thread's ptid. */
3375 thread_change_ptid (inferior_ptid,
3376 BUILD_LWP (GET_PID (inferior_ptid),
3377 GET_PID (inferior_ptid)));
3378
3379 lp = add_lwp (inferior_ptid);
3380 lp->resumed = 1;
3381 }
3382
3383 /* Make sure SIGCHLD is blocked. */
3384 block_child_signals (&prev_mask);
3385
3386 if (ptid_equal (ptid, minus_one_ptid))
3387 pid = -1;
3388 else if (ptid_is_pid (ptid))
3389 /* A request to wait for a specific tgid. This is not possible
3390 with waitpid, so instead, we wait for any child, and leave
3391 children we're not interested in right now with a pending
3392 status to report later. */
3393 pid = -1;
3394 else
3395 pid = GET_LWP (ptid);
3396
3397 retry:
3398 lp = NULL;
3399 status = 0;
3400
3401 /* Make sure that of those LWPs we want to get an event from, there
3402 is at least one LWP that has been resumed. If there's none, just
3403 bail out. The core may just be flushing asynchronously all
3404 events. */
3405 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3406 {
3407 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3408
3409 if (debug_linux_nat)
3410 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3411
3412 restore_child_signals_mask (&prev_mask);
3413 return minus_one_ptid;
3414 }
3415
3416 /* First check if there is a LWP with a wait status pending. */
3417 if (pid == -1)
3418 {
3419 /* Any LWP that's been resumed will do. */
3420 lp = iterate_over_lwps (ptid, status_callback, NULL);
3421 if (lp)
3422 {
3423 if (debug_linux_nat && lp->status)
3424 fprintf_unfiltered (gdb_stdlog,
3425 "LLW: Using pending wait status %s for %s.\n",
3426 status_to_str (lp->status),
3427 target_pid_to_str (lp->ptid));
3428 }
3429
3430 /* But if we don't find one, we'll have to wait, and check both
3431 cloned and uncloned processes. We start with the cloned
3432 processes. */
3433 options = __WCLONE | WNOHANG;
3434 }
3435 else if (is_lwp (ptid))
3436 {
3437 if (debug_linux_nat)
3438 fprintf_unfiltered (gdb_stdlog,
3439 "LLW: Waiting for specific LWP %s.\n",
3440 target_pid_to_str (ptid));
3441
3442 /* We have a specific LWP to check. */
3443 lp = find_lwp_pid (ptid);
3444 gdb_assert (lp);
3445
3446 if (debug_linux_nat && lp->status)
3447 fprintf_unfiltered (gdb_stdlog,
3448 "LLW: Using pending wait status %s for %s.\n",
3449 status_to_str (lp->status),
3450 target_pid_to_str (lp->ptid));
3451
3452 /* If we have to wait, take into account whether PID is a cloned
3453 process or not. And we have to convert it to something that
3454 the layer beneath us can understand. */
3455 options = lp->cloned ? __WCLONE : 0;
3456 pid = GET_LWP (ptid);
3457
3458 /* We check for lp->waitstatus in addition to lp->status,
3459 because we can have pending process exits recorded in
3460 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3461 an additional lp->status_p flag. */
3462 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3463 lp = NULL;
3464 }
3465
3466 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3467 {
3468 /* A pending SIGSTOP may interfere with the normal stream of
3469 events. In a typical case where interference is a problem,
3470 we have a SIGSTOP signal pending for LWP A while
3471 single-stepping it, encounter an event in LWP B, and take the
3472 pending SIGSTOP while trying to stop LWP A. After processing
3473 the event in LWP B, LWP A is continued, and we'll never see
3474 the SIGTRAP associated with the last time we were
3475 single-stepping LWP A. */
3476
3477 /* Resume the thread. It should halt immediately returning the
3478 pending SIGSTOP. */
3479 registers_changed ();
3480 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3481 lp->step, TARGET_SIGNAL_0);
3482 if (debug_linux_nat)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3485 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3486 target_pid_to_str (lp->ptid));
3487 lp->stopped = 0;
3488 gdb_assert (lp->resumed);
3489
3490 /* Catch the pending SIGSTOP. */
3491 status = lp->status;
3492 lp->status = 0;
3493
3494 stop_wait_callback (lp, NULL);
3495
3496 /* If the lp->status field isn't empty, we caught another signal
3497 while flushing the SIGSTOP. Return it back to the event
3498 queue of the LWP, as we already have an event to handle. */
3499 if (lp->status)
3500 {
3501 if (debug_linux_nat)
3502 fprintf_unfiltered (gdb_stdlog,
3503 "LLW: kill %s, %s\n",
3504 target_pid_to_str (lp->ptid),
3505 status_to_str (lp->status));
3506 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3507 }
3508
3509 lp->status = status;
3510 }
3511
3512 if (!target_can_async_p ())
3513 {
3514 /* Causes SIGINT to be passed on to the attached process. */
3515 set_sigint_trap ();
3516 }
3517
3518 /* Translate generic target_wait options into waitpid options. */
3519 if (target_options & TARGET_WNOHANG)
3520 options |= WNOHANG;
3521
3522 while (lp == NULL)
3523 {
3524 pid_t lwpid;
3525
3526 lwpid = my_waitpid (pid, &status, options);
3527
3528 if (lwpid > 0)
3529 {
3530 gdb_assert (pid == -1 || lwpid == pid);
3531
3532 if (debug_linux_nat)
3533 {
3534 fprintf_unfiltered (gdb_stdlog,
3535 "LLW: waitpid %ld received %s\n",
3536 (long) lwpid, status_to_str (status));
3537 }
3538
3539 lp = linux_nat_filter_event (lwpid, status, options);
3540
3541 /* STATUS is now no longer valid, use LP->STATUS instead. */
3542 status = 0;
3543
3544 if (lp
3545 && ptid_is_pid (ptid)
3546 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3547 {
3548 gdb_assert (lp->resumed);
3549
3550 if (debug_linux_nat)
3551 fprintf (stderr,
3552 "LWP %ld got an event %06x, leaving pending.\n",
3553 ptid_get_lwp (lp->ptid), lp->status);
3554
3555 if (WIFSTOPPED (lp->status))
3556 {
3557 if (WSTOPSIG (lp->status) != SIGSTOP)
3558 {
3559 /* Cancel breakpoint hits. The breakpoint may
3560 be removed before we fetch events from this
3561 process to report to the core. It is best
3562 not to assume the moribund breakpoints
3563 heuristic always handles these cases --- it
3564 could be too many events go through to the
3565 core before this one is handled. All-stop
3566 always cancels breakpoint hits in all
3567 threads. */
3568 if (non_stop
3569 && linux_nat_lp_status_is_event (lp)
3570 && cancel_breakpoint (lp))
3571 {
3572 /* Throw away the SIGTRAP. */
3573 lp->status = 0;
3574
3575 if (debug_linux_nat)
3576 fprintf (stderr,
3577 "LLW: LWP %ld hit a breakpoint while"
3578 " waiting for another process;"
3579 " cancelled it\n",
3580 ptid_get_lwp (lp->ptid));
3581 }
3582 lp->stopped = 1;
3583 }
3584 else
3585 {
3586 lp->stopped = 1;
3587 lp->signalled = 0;
3588 }
3589 }
3590 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3591 {
3592 if (debug_linux_nat)
3593 fprintf (stderr,
3594 "Process %ld exited while stopping LWPs\n",
3595 ptid_get_lwp (lp->ptid));
3596
3597 /* This was the last lwp in the process. Since
3598 events are serialized to GDB core, and we can't
3599 report this one right now, but GDB core and the
3600 other target layers will want to be notified
3601 about the exit code/signal, leave the status
3602 pending for the next time we're able to report
3603 it. */
3604
3605 /* Prevent trying to stop this thread again. We'll
3606 never try to resume it because it has a pending
3607 status. */
3608 lp->stopped = 1;
3609
3610 /* Dead LWP's aren't expected to reported a pending
3611 sigstop. */
3612 lp->signalled = 0;
3613
3614 /* Store the pending event in the waitstatus as
3615 well, because W_EXITCODE(0,0) == 0. */
3616 store_waitstatus (&lp->waitstatus, lp->status);
3617 }
3618
3619 /* Keep looking. */
3620 lp = NULL;
3621 continue;
3622 }
3623
3624 if (lp)
3625 break;
3626 else
3627 {
3628 if (pid == -1)
3629 {
3630 /* waitpid did return something. Restart over. */
3631 options |= __WCLONE;
3632 }
3633 continue;
3634 }
3635 }
3636
3637 if (pid == -1)
3638 {
3639 /* Alternate between checking cloned and uncloned processes. */
3640 options ^= __WCLONE;
3641
3642 /* And every time we have checked both:
3643 In async mode, return to event loop;
3644 In sync mode, suspend waiting for a SIGCHLD signal. */
3645 if (options & __WCLONE)
3646 {
3647 if (target_options & TARGET_WNOHANG)
3648 {
3649 /* No interesting event. */
3650 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3651
3652 if (debug_linux_nat)
3653 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3654
3655 restore_child_signals_mask (&prev_mask);
3656 return minus_one_ptid;
3657 }
3658
3659 sigsuspend (&suspend_mask);
3660 }
3661 }
3662 else if (target_options & TARGET_WNOHANG)
3663 {
3664 /* No interesting event for PID yet. */
3665 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3666
3667 if (debug_linux_nat)
3668 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3669
3670 restore_child_signals_mask (&prev_mask);
3671 return minus_one_ptid;
3672 }
3673
3674 /* We shouldn't end up here unless we want to try again. */
3675 gdb_assert (lp == NULL);
3676 }
3677
3678 if (!target_can_async_p ())
3679 clear_sigint_trap ();
3680
3681 gdb_assert (lp);
3682
3683 status = lp->status;
3684 lp->status = 0;
3685
3686 /* Don't report signals that GDB isn't interested in, such as
3687 signals that are neither printed nor stopped upon. Stopping all
3688 threads can be a bit time-consuming so if we want decent
3689 performance with heavily multi-threaded programs, especially when
3690 they're using a high frequency timer, we'd better avoid it if we
3691 can. */
3692
3693 if (WIFSTOPPED (status))
3694 {
3695 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3696
3697 /* When using hardware single-step, we need to report every signal.
3698 Otherwise, signals in pass_mask may be short-circuited. */
3699 if (!lp->step
3700 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3701 {
3702 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3703 here? It is not clear we should. GDB may not expect
3704 other threads to run. On the other hand, not resuming
3705 newly attached threads may cause an unwanted delay in
3706 getting them running. */
3707 registers_changed ();
3708 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3709 lp->step, signo);
3710 if (debug_linux_nat)
3711 fprintf_unfiltered (gdb_stdlog,
3712 "LLW: %s %s, %s (preempt 'handle')\n",
3713 lp->step ?
3714 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3715 target_pid_to_str (lp->ptid),
3716 (signo != TARGET_SIGNAL_0
3717 ? strsignal (target_signal_to_host (signo))
3718 : "0"));
3719 lp->stopped = 0;
3720 goto retry;
3721 }
3722
3723 if (!non_stop)
3724 {
3725 /* Only do the below in all-stop, as we currently use SIGINT
3726 to implement target_stop (see linux_nat_stop) in
3727 non-stop. */
3728 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3729 {
3730 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3731 forwarded to the entire process group, that is, all LWPs
3732 will receive it - unless they're using CLONE_THREAD to
3733 share signals. Since we only want to report it once, we
3734 mark it as ignored for all LWPs except this one. */
3735 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3736 set_ignore_sigint, NULL);
3737 lp->ignore_sigint = 0;
3738 }
3739 else
3740 maybe_clear_ignore_sigint (lp);
3741 }
3742 }
3743
3744 /* This LWP is stopped now. */
3745 lp->stopped = 1;
3746
3747 if (debug_linux_nat)
3748 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3749 status_to_str (status), target_pid_to_str (lp->ptid));
3750
3751 if (!non_stop)
3752 {
3753 /* Now stop all other LWP's ... */
3754 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3755
3756 /* ... and wait until all of them have reported back that
3757 they're no longer running. */
3758 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3759
3760 /* If we're not waiting for a specific LWP, choose an event LWP
3761 from among those that have had events. Giving equal priority
3762 to all LWPs that have had events helps prevent
3763 starvation. */
3764 if (pid == -1)
3765 select_event_lwp (ptid, &lp, &status);
3766
3767 /* Now that we've selected our final event LWP, cancel any
3768 breakpoints in other LWPs that have hit a GDB breakpoint.
3769 See the comment in cancel_breakpoints_callback to find out
3770 why. */
3771 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3772
3773 /* We'll need this to determine whether to report a SIGSTOP as
3774 TARGET_WAITKIND_0. Need to take a copy because
3775 resume_clear_callback clears it. */
3776 last_resume_kind = lp->last_resume_kind;
3777
3778 /* In all-stop, from the core's perspective, all LWPs are now
3779 stopped until a new resume action is sent over. */
3780 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3781 }
3782 else
3783 {
3784 /* See above. */
3785 last_resume_kind = lp->last_resume_kind;
3786 resume_clear_callback (lp, NULL);
3787 }
3788
3789 if (linux_nat_status_is_event (status))
3790 {
3791 if (debug_linux_nat)
3792 fprintf_unfiltered (gdb_stdlog,
3793 "LLW: trap ptid is %s.\n",
3794 target_pid_to_str (lp->ptid));
3795 }
3796
3797 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3798 {
3799 *ourstatus = lp->waitstatus;
3800 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3801 }
3802 else
3803 store_waitstatus (ourstatus, status);
3804
3805 if (debug_linux_nat)
3806 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3807
3808 restore_child_signals_mask (&prev_mask);
3809
3810 if (last_resume_kind == resume_stop
3811 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3812 && WSTOPSIG (status) == SIGSTOP)
3813 {
3814 /* A thread that has been requested to stop by GDB with
3815 target_stop, and it stopped cleanly, so report as SIG0. The
3816 use of SIGSTOP is an implementation detail. */
3817 ourstatus->value.sig = TARGET_SIGNAL_0;
3818 }
3819
3820 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3821 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3822 lp->core = -1;
3823 else
3824 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3825
3826 return lp->ptid;
3827 }
3828
3829 /* Resume LWPs that are currently stopped without any pending status
3830 to report, but are resumed from the core's perspective. */
3831
3832 static int
3833 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3834 {
3835 ptid_t *wait_ptid_p = data;
3836
3837 if (lp->stopped
3838 && lp->resumed
3839 && lp->status == 0
3840 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3841 {
3842 gdb_assert (is_executing (lp->ptid));
3843
3844 /* Don't bother if there's a breakpoint at PC that we'd hit
3845 immediately, and we're not waiting for this LWP. */
3846 if (!ptid_match (lp->ptid, *wait_ptid_p))
3847 {
3848 struct regcache *regcache = get_thread_regcache (lp->ptid);
3849 CORE_ADDR pc = regcache_read_pc (regcache);
3850
3851 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3852 return 0;
3853 }
3854
3855 if (debug_linux_nat)
3856 fprintf_unfiltered (gdb_stdlog,
3857 "RSRL: resuming stopped-resumed LWP %s\n",
3858 target_pid_to_str (lp->ptid));
3859
3860 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3861 lp->step, TARGET_SIGNAL_0);
3862 lp->stopped = 0;
3863 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3864 lp->stopped_by_watchpoint = 0;
3865 }
3866
3867 return 0;
3868 }
3869
3870 static ptid_t
3871 linux_nat_wait (struct target_ops *ops,
3872 ptid_t ptid, struct target_waitstatus *ourstatus,
3873 int target_options)
3874 {
3875 ptid_t event_ptid;
3876
3877 if (debug_linux_nat)
3878 fprintf_unfiltered (gdb_stdlog,
3879 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3880
3881 /* Flush the async file first. */
3882 if (target_can_async_p ())
3883 async_file_flush ();
3884
3885 /* Resume LWPs that are currently stopped without any pending status
3886 to report, but are resumed from the core's perspective. LWPs get
3887 in this state if we find them stopping at a time we're not
3888 interested in reporting the event (target_wait on a
3889 specific_process, for example, see linux_nat_wait_1), and
3890 meanwhile the event became uninteresting. Don't bother resuming
3891 LWPs we're not going to wait for if they'd stop immediately. */
3892 if (non_stop)
3893 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3894
3895 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3896
3897 /* If we requested any event, and something came out, assume there
3898 may be more. If we requested a specific lwp or process, also
3899 assume there may be more. */
3900 if (target_can_async_p ()
3901 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3902 || !ptid_equal (ptid, minus_one_ptid)))
3903 async_file_mark ();
3904
3905 /* Get ready for the next event. */
3906 if (target_can_async_p ())
3907 target_async (inferior_event_handler, 0);
3908
3909 return event_ptid;
3910 }
3911
3912 static int
3913 kill_callback (struct lwp_info *lp, void *data)
3914 {
3915 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3916
3917 errno = 0;
3918 kill (GET_LWP (lp->ptid), SIGKILL);
3919 if (debug_linux_nat)
3920 fprintf_unfiltered (gdb_stdlog,
3921 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3922 target_pid_to_str (lp->ptid),
3923 errno ? safe_strerror (errno) : "OK");
3924
3925 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3926
3927 errno = 0;
3928 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3929 if (debug_linux_nat)
3930 fprintf_unfiltered (gdb_stdlog,
3931 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3932 target_pid_to_str (lp->ptid),
3933 errno ? safe_strerror (errno) : "OK");
3934
3935 return 0;
3936 }
3937
3938 static int
3939 kill_wait_callback (struct lwp_info *lp, void *data)
3940 {
3941 pid_t pid;
3942
3943 /* We must make sure that there are no pending events (delayed
3944 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3945 program doesn't interfere with any following debugging session. */
3946
3947 /* For cloned processes we must check both with __WCLONE and
3948 without, since the exit status of a cloned process isn't reported
3949 with __WCLONE. */
3950 if (lp->cloned)
3951 {
3952 do
3953 {
3954 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3955 if (pid != (pid_t) -1)
3956 {
3957 if (debug_linux_nat)
3958 fprintf_unfiltered (gdb_stdlog,
3959 "KWC: wait %s received unknown.\n",
3960 target_pid_to_str (lp->ptid));
3961 /* The Linux kernel sometimes fails to kill a thread
3962 completely after PTRACE_KILL; that goes from the stop
3963 point in do_fork out to the one in
3964 get_signal_to_deliever and waits again. So kill it
3965 again. */
3966 kill_callback (lp, NULL);
3967 }
3968 }
3969 while (pid == GET_LWP (lp->ptid));
3970
3971 gdb_assert (pid == -1 && errno == ECHILD);
3972 }
3973
3974 do
3975 {
3976 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3977 if (pid != (pid_t) -1)
3978 {
3979 if (debug_linux_nat)
3980 fprintf_unfiltered (gdb_stdlog,
3981 "KWC: wait %s received unk.\n",
3982 target_pid_to_str (lp->ptid));
3983 /* See the call to kill_callback above. */
3984 kill_callback (lp, NULL);
3985 }
3986 }
3987 while (pid == GET_LWP (lp->ptid));
3988
3989 gdb_assert (pid == -1 && errno == ECHILD);
3990 return 0;
3991 }
3992
3993 static void
3994 linux_nat_kill (struct target_ops *ops)
3995 {
3996 struct target_waitstatus last;
3997 ptid_t last_ptid;
3998 int status;
3999
4000 /* If we're stopped while forking and we haven't followed yet,
4001 kill the other task. We need to do this first because the
4002 parent will be sleeping if this is a vfork. */
4003
4004 get_last_target_status (&last_ptid, &last);
4005
4006 if (last.kind == TARGET_WAITKIND_FORKED
4007 || last.kind == TARGET_WAITKIND_VFORKED)
4008 {
4009 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4010 wait (&status);
4011 }
4012
4013 if (forks_exist_p ())
4014 linux_fork_killall ();
4015 else
4016 {
4017 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4018
4019 /* Stop all threads before killing them, since ptrace requires
4020 that the thread is stopped to sucessfully PTRACE_KILL. */
4021 iterate_over_lwps (ptid, stop_callback, NULL);
4022 /* ... and wait until all of them have reported back that
4023 they're no longer running. */
4024 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4025
4026 /* Kill all LWP's ... */
4027 iterate_over_lwps (ptid, kill_callback, NULL);
4028
4029 /* ... and wait until we've flushed all events. */
4030 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4031 }
4032
4033 target_mourn_inferior ();
4034 }
4035
4036 static void
4037 linux_nat_mourn_inferior (struct target_ops *ops)
4038 {
4039 purge_lwp_list (ptid_get_pid (inferior_ptid));
4040
4041 if (! forks_exist_p ())
4042 /* Normal case, no other forks available. */
4043 linux_ops->to_mourn_inferior (ops);
4044 else
4045 /* Multi-fork case. The current inferior_ptid has exited, but
4046 there are other viable forks to debug. Delete the exiting
4047 one and context-switch to the first available. */
4048 linux_fork_mourn_inferior ();
4049 }
4050
4051 /* Convert a native/host siginfo object, into/from the siginfo in the
4052 layout of the inferiors' architecture. */
4053
4054 static void
4055 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4056 {
4057 int done = 0;
4058
4059 if (linux_nat_siginfo_fixup != NULL)
4060 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4061
4062 /* If there was no callback, or the callback didn't do anything,
4063 then just do a straight memcpy. */
4064 if (!done)
4065 {
4066 if (direction == 1)
4067 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4068 else
4069 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4070 }
4071 }
4072
4073 static LONGEST
4074 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4075 const char *annex, gdb_byte *readbuf,
4076 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4077 {
4078 int pid;
4079 struct siginfo siginfo;
4080 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4081
4082 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4083 gdb_assert (readbuf || writebuf);
4084
4085 pid = GET_LWP (inferior_ptid);
4086 if (pid == 0)
4087 pid = GET_PID (inferior_ptid);
4088
4089 if (offset > sizeof (siginfo))
4090 return -1;
4091
4092 errno = 0;
4093 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4094 if (errno != 0)
4095 return -1;
4096
4097 /* When GDB is built as a 64-bit application, ptrace writes into
4098 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4099 inferior with a 64-bit GDB should look the same as debugging it
4100 with a 32-bit GDB, we need to convert it. GDB core always sees
4101 the converted layout, so any read/write will have to be done
4102 post-conversion. */
4103 siginfo_fixup (&siginfo, inf_siginfo, 0);
4104
4105 if (offset + len > sizeof (siginfo))
4106 len = sizeof (siginfo) - offset;
4107
4108 if (readbuf != NULL)
4109 memcpy (readbuf, inf_siginfo + offset, len);
4110 else
4111 {
4112 memcpy (inf_siginfo + offset, writebuf, len);
4113
4114 /* Convert back to ptrace layout before flushing it out. */
4115 siginfo_fixup (&siginfo, inf_siginfo, 1);
4116
4117 errno = 0;
4118 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4119 if (errno != 0)
4120 return -1;
4121 }
4122
4123 return len;
4124 }
4125
4126 static LONGEST
4127 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4128 const char *annex, gdb_byte *readbuf,
4129 const gdb_byte *writebuf,
4130 ULONGEST offset, LONGEST len)
4131 {
4132 struct cleanup *old_chain;
4133 LONGEST xfer;
4134
4135 if (object == TARGET_OBJECT_SIGNAL_INFO)
4136 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4137 offset, len);
4138
4139 /* The target is connected but no live inferior is selected. Pass
4140 this request down to a lower stratum (e.g., the executable
4141 file). */
4142 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4143 return 0;
4144
4145 old_chain = save_inferior_ptid ();
4146
4147 if (is_lwp (inferior_ptid))
4148 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4149
4150 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4151 offset, len);
4152
4153 do_cleanups (old_chain);
4154 return xfer;
4155 }
4156
4157 static int
4158 linux_thread_alive (ptid_t ptid)
4159 {
4160 int err, tmp_errno;
4161
4162 gdb_assert (is_lwp (ptid));
4163
4164 /* Send signal 0 instead of anything ptrace, because ptracing a
4165 running thread errors out claiming that the thread doesn't
4166 exist. */
4167 err = kill_lwp (GET_LWP (ptid), 0);
4168 tmp_errno = errno;
4169 if (debug_linux_nat)
4170 fprintf_unfiltered (gdb_stdlog,
4171 "LLTA: KILL(SIG0) %s (%s)\n",
4172 target_pid_to_str (ptid),
4173 err ? safe_strerror (tmp_errno) : "OK");
4174
4175 if (err != 0)
4176 return 0;
4177
4178 return 1;
4179 }
4180
4181 static int
4182 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4183 {
4184 return linux_thread_alive (ptid);
4185 }
4186
4187 static char *
4188 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4189 {
4190 static char buf[64];
4191
4192 if (is_lwp (ptid)
4193 && (GET_PID (ptid) != GET_LWP (ptid)
4194 || num_lwps (GET_PID (ptid)) > 1))
4195 {
4196 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4197 return buf;
4198 }
4199
4200 return normal_pid_to_str (ptid);
4201 }
4202
4203 static char *
4204 linux_nat_thread_name (struct thread_info *thr)
4205 {
4206 int pid = ptid_get_pid (thr->ptid);
4207 long lwp = ptid_get_lwp (thr->ptid);
4208 #define FORMAT "/proc/%d/task/%ld/comm"
4209 char buf[sizeof (FORMAT) + 30];
4210 FILE *comm_file;
4211 char *result = NULL;
4212
4213 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4214 comm_file = fopen (buf, "r");
4215 if (comm_file)
4216 {
4217 /* Not exported by the kernel, so we define it here. */
4218 #define COMM_LEN 16
4219 static char line[COMM_LEN + 1];
4220
4221 if (fgets (line, sizeof (line), comm_file))
4222 {
4223 char *nl = strchr (line, '\n');
4224
4225 if (nl)
4226 *nl = '\0';
4227 if (*line != '\0')
4228 result = line;
4229 }
4230
4231 fclose (comm_file);
4232 }
4233
4234 #undef COMM_LEN
4235 #undef FORMAT
4236
4237 return result;
4238 }
4239
4240 /* Accepts an integer PID; Returns a string representing a file that
4241 can be opened to get the symbols for the child process. */
4242
4243 static char *
4244 linux_child_pid_to_exec_file (int pid)
4245 {
4246 char *name1, *name2;
4247
4248 name1 = xmalloc (MAXPATHLEN);
4249 name2 = xmalloc (MAXPATHLEN);
4250 make_cleanup (xfree, name1);
4251 make_cleanup (xfree, name2);
4252 memset (name2, 0, MAXPATHLEN);
4253
4254 sprintf (name1, "/proc/%d/exe", pid);
4255 if (readlink (name1, name2, MAXPATHLEN) > 0)
4256 return name2;
4257 else
4258 return name1;
4259 }
4260
4261 /* Service function for corefiles and info proc. */
4262
4263 static int
4264 read_mapping (FILE *mapfile,
4265 long long *addr,
4266 long long *endaddr,
4267 char *permissions,
4268 long long *offset,
4269 char *device, long long *inode, char *filename)
4270 {
4271 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4272 addr, endaddr, permissions, offset, device, inode);
4273
4274 filename[0] = '\0';
4275 if (ret > 0 && ret != EOF)
4276 {
4277 /* Eat everything up to EOL for the filename. This will prevent
4278 weird filenames (such as one with embedded whitespace) from
4279 confusing this code. It also makes this code more robust in
4280 respect to annotations the kernel may add after the filename.
4281
4282 Note the filename is used for informational purposes
4283 only. */
4284 ret += fscanf (mapfile, "%[^\n]\n", filename);
4285 }
4286
4287 return (ret != 0 && ret != EOF);
4288 }
4289
4290 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4291 regions in the inferior for a corefile. */
4292
4293 static int
4294 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4295 {
4296 int pid = PIDGET (inferior_ptid);
4297 char mapsfilename[MAXPATHLEN];
4298 FILE *mapsfile;
4299 long long addr, endaddr, size, offset, inode;
4300 char permissions[8], device[8], filename[MAXPATHLEN];
4301 int read, write, exec;
4302 struct cleanup *cleanup;
4303
4304 /* Compose the filename for the /proc memory map, and open it. */
4305 sprintf (mapsfilename, "/proc/%d/maps", pid);
4306 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4307 error (_("Could not open %s."), mapsfilename);
4308 cleanup = make_cleanup_fclose (mapsfile);
4309
4310 if (info_verbose)
4311 fprintf_filtered (gdb_stdout,
4312 "Reading memory regions from %s\n", mapsfilename);
4313
4314 /* Now iterate until end-of-file. */
4315 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4316 &offset, &device[0], &inode, &filename[0]))
4317 {
4318 size = endaddr - addr;
4319
4320 /* Get the segment's permissions. */
4321 read = (strchr (permissions, 'r') != 0);
4322 write = (strchr (permissions, 'w') != 0);
4323 exec = (strchr (permissions, 'x') != 0);
4324
4325 if (info_verbose)
4326 {
4327 fprintf_filtered (gdb_stdout,
4328 "Save segment, %s bytes at %s (%c%c%c)",
4329 plongest (size), paddress (target_gdbarch, addr),
4330 read ? 'r' : ' ',
4331 write ? 'w' : ' ', exec ? 'x' : ' ');
4332 if (filename[0])
4333 fprintf_filtered (gdb_stdout, " for %s", filename);
4334 fprintf_filtered (gdb_stdout, "\n");
4335 }
4336
4337 /* Invoke the callback function to create the corefile
4338 segment. */
4339 func (addr, size, read, write, exec, obfd);
4340 }
4341 do_cleanups (cleanup);
4342 return 0;
4343 }
4344
4345 static int
4346 find_signalled_thread (struct thread_info *info, void *data)
4347 {
4348 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4349 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4350 return 1;
4351
4352 return 0;
4353 }
4354
4355 static enum target_signal
4356 find_stop_signal (void)
4357 {
4358 struct thread_info *info =
4359 iterate_over_threads (find_signalled_thread, NULL);
4360
4361 if (info)
4362 return info->suspend.stop_signal;
4363 else
4364 return TARGET_SIGNAL_0;
4365 }
4366
4367 /* Records the thread's register state for the corefile note
4368 section. */
4369
4370 static char *
4371 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4372 char *note_data, int *note_size,
4373 enum target_signal stop_signal)
4374 {
4375 unsigned long lwp = ptid_get_lwp (ptid);
4376 struct gdbarch *gdbarch = target_gdbarch;
4377 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4378 const struct regset *regset;
4379 int core_regset_p;
4380 struct cleanup *old_chain;
4381 struct core_regset_section *sect_list;
4382 char *gdb_regset;
4383
4384 old_chain = save_inferior_ptid ();
4385 inferior_ptid = ptid;
4386 target_fetch_registers (regcache, -1);
4387 do_cleanups (old_chain);
4388
4389 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4390 sect_list = gdbarch_core_regset_sections (gdbarch);
4391
4392 /* The loop below uses the new struct core_regset_section, which stores
4393 the supported section names and sizes for the core file. Note that
4394 note PRSTATUS needs to be treated specially. But the other notes are
4395 structurally the same, so they can benefit from the new struct. */
4396 if (core_regset_p && sect_list != NULL)
4397 while (sect_list->sect_name != NULL)
4398 {
4399 regset = gdbarch_regset_from_core_section (gdbarch,
4400 sect_list->sect_name,
4401 sect_list->size);
4402 gdb_assert (regset && regset->collect_regset);
4403 gdb_regset = xmalloc (sect_list->size);
4404 regset->collect_regset (regset, regcache, -1,
4405 gdb_regset, sect_list->size);
4406
4407 if (strcmp (sect_list->sect_name, ".reg") == 0)
4408 note_data = (char *) elfcore_write_prstatus
4409 (obfd, note_data, note_size,
4410 lwp, target_signal_to_host (stop_signal),
4411 gdb_regset);
4412 else
4413 note_data = (char *) elfcore_write_register_note
4414 (obfd, note_data, note_size,
4415 sect_list->sect_name, gdb_regset,
4416 sect_list->size);
4417 xfree (gdb_regset);
4418 sect_list++;
4419 }
4420
4421 /* For architectures that does not have the struct core_regset_section
4422 implemented, we use the old method. When all the architectures have
4423 the new support, the code below should be deleted. */
4424 else
4425 {
4426 gdb_gregset_t gregs;
4427 gdb_fpregset_t fpregs;
4428
4429 if (core_regset_p
4430 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4431 sizeof (gregs)))
4432 != NULL && regset->collect_regset != NULL)
4433 regset->collect_regset (regset, regcache, -1,
4434 &gregs, sizeof (gregs));
4435 else
4436 fill_gregset (regcache, &gregs, -1);
4437
4438 note_data = (char *) elfcore_write_prstatus
4439 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4440 &gregs);
4441
4442 if (core_regset_p
4443 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4444 sizeof (fpregs)))
4445 != NULL && regset->collect_regset != NULL)
4446 regset->collect_regset (regset, regcache, -1,
4447 &fpregs, sizeof (fpregs));
4448 else
4449 fill_fpregset (regcache, &fpregs, -1);
4450
4451 note_data = (char *) elfcore_write_prfpreg (obfd,
4452 note_data,
4453 note_size,
4454 &fpregs, sizeof (fpregs));
4455 }
4456
4457 return note_data;
4458 }
4459
4460 struct linux_nat_corefile_thread_data
4461 {
4462 bfd *obfd;
4463 char *note_data;
4464 int *note_size;
4465 int num_notes;
4466 enum target_signal stop_signal;
4467 };
4468
4469 /* Called by gdbthread.c once per thread. Records the thread's
4470 register state for the corefile note section. */
4471
4472 static int
4473 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4474 {
4475 struct linux_nat_corefile_thread_data *args = data;
4476
4477 args->note_data = linux_nat_do_thread_registers (args->obfd,
4478 ti->ptid,
4479 args->note_data,
4480 args->note_size,
4481 args->stop_signal);
4482 args->num_notes++;
4483
4484 return 0;
4485 }
4486
4487 /* Enumerate spufs IDs for process PID. */
4488
4489 static void
4490 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4491 {
4492 char path[128];
4493 DIR *dir;
4494 struct dirent *entry;
4495
4496 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4497 dir = opendir (path);
4498 if (!dir)
4499 return;
4500
4501 rewinddir (dir);
4502 while ((entry = readdir (dir)) != NULL)
4503 {
4504 struct stat st;
4505 struct statfs stfs;
4506 int fd;
4507
4508 fd = atoi (entry->d_name);
4509 if (!fd)
4510 continue;
4511
4512 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4513 if (stat (path, &st) != 0)
4514 continue;
4515 if (!S_ISDIR (st.st_mode))
4516 continue;
4517
4518 if (statfs (path, &stfs) != 0)
4519 continue;
4520 if (stfs.f_type != SPUFS_MAGIC)
4521 continue;
4522
4523 callback (data, fd);
4524 }
4525
4526 closedir (dir);
4527 }
4528
4529 /* Generate corefile notes for SPU contexts. */
4530
4531 struct linux_spu_corefile_data
4532 {
4533 bfd *obfd;
4534 char *note_data;
4535 int *note_size;
4536 };
4537
4538 static void
4539 linux_spu_corefile_callback (void *data, int fd)
4540 {
4541 struct linux_spu_corefile_data *args = data;
4542 int i;
4543
4544 static const char *spu_files[] =
4545 {
4546 "object-id",
4547 "mem",
4548 "regs",
4549 "fpcr",
4550 "lslr",
4551 "decr",
4552 "decr_status",
4553 "signal1",
4554 "signal1_type",
4555 "signal2",
4556 "signal2_type",
4557 "event_mask",
4558 "event_status",
4559 "mbox_info",
4560 "ibox_info",
4561 "wbox_info",
4562 "dma_info",
4563 "proxydma_info",
4564 };
4565
4566 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4567 {
4568 char annex[32], note_name[32];
4569 gdb_byte *spu_data;
4570 LONGEST spu_len;
4571
4572 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4573 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4574 annex, &spu_data);
4575 if (spu_len > 0)
4576 {
4577 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4578 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4579 args->note_size, note_name,
4580 NT_SPU, spu_data, spu_len);
4581 xfree (spu_data);
4582 }
4583 }
4584 }
4585
4586 static char *
4587 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4588 {
4589 struct linux_spu_corefile_data args;
4590
4591 args.obfd = obfd;
4592 args.note_data = note_data;
4593 args.note_size = note_size;
4594
4595 iterate_over_spus (PIDGET (inferior_ptid),
4596 linux_spu_corefile_callback, &args);
4597
4598 return args.note_data;
4599 }
4600
4601 /* Fills the "to_make_corefile_note" target vector. Builds the note
4602 section for a corefile, and returns it in a malloc buffer. */
4603
4604 static char *
4605 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4606 {
4607 struct linux_nat_corefile_thread_data thread_args;
4608 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4609 char fname[16] = { '\0' };
4610 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4611 char psargs[80] = { '\0' };
4612 char *note_data = NULL;
4613 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4614 gdb_byte *auxv;
4615 int auxv_len;
4616
4617 if (get_exec_file (0))
4618 {
4619 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4620 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4621 if (get_inferior_args ())
4622 {
4623 char *string_end;
4624 char *psargs_end = psargs + sizeof (psargs);
4625
4626 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4627 strings fine. */
4628 string_end = memchr (psargs, 0, sizeof (psargs));
4629 if (string_end != NULL)
4630 {
4631 *string_end++ = ' ';
4632 strncpy (string_end, get_inferior_args (),
4633 psargs_end - string_end);
4634 }
4635 }
4636 note_data = (char *) elfcore_write_prpsinfo (obfd,
4637 note_data,
4638 note_size, fname, psargs);
4639 }
4640
4641 /* Dump information for threads. */
4642 thread_args.obfd = obfd;
4643 thread_args.note_data = note_data;
4644 thread_args.note_size = note_size;
4645 thread_args.num_notes = 0;
4646 thread_args.stop_signal = find_stop_signal ();
4647 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4648 gdb_assert (thread_args.num_notes != 0);
4649 note_data = thread_args.note_data;
4650
4651 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4652 NULL, &auxv);
4653 if (auxv_len > 0)
4654 {
4655 note_data = elfcore_write_note (obfd, note_data, note_size,
4656 "CORE", NT_AUXV, auxv, auxv_len);
4657 xfree (auxv);
4658 }
4659
4660 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4661
4662 make_cleanup (xfree, note_data);
4663 return note_data;
4664 }
4665
4666 /* Implement the "info proc" command. */
4667
4668 static void
4669 linux_nat_info_proc_cmd (char *args, int from_tty)
4670 {
4671 /* A long is used for pid instead of an int to avoid a loss of precision
4672 compiler warning from the output of strtoul. */
4673 long pid = PIDGET (inferior_ptid);
4674 FILE *procfile;
4675 char **argv = NULL;
4676 char buffer[MAXPATHLEN];
4677 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4678 int cmdline_f = 1;
4679 int cwd_f = 1;
4680 int exe_f = 1;
4681 int mappings_f = 0;
4682 int status_f = 0;
4683 int stat_f = 0;
4684 int all = 0;
4685 struct stat dummy;
4686
4687 if (args)
4688 {
4689 /* Break up 'args' into an argv array. */
4690 argv = gdb_buildargv (args);
4691 make_cleanup_freeargv (argv);
4692 }
4693 while (argv != NULL && *argv != NULL)
4694 {
4695 if (isdigit (argv[0][0]))
4696 {
4697 pid = strtoul (argv[0], NULL, 10);
4698 }
4699 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4700 {
4701 mappings_f = 1;
4702 }
4703 else if (strcmp (argv[0], "status") == 0)
4704 {
4705 status_f = 1;
4706 }
4707 else if (strcmp (argv[0], "stat") == 0)
4708 {
4709 stat_f = 1;
4710 }
4711 else if (strcmp (argv[0], "cmd") == 0)
4712 {
4713 cmdline_f = 1;
4714 }
4715 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4716 {
4717 exe_f = 1;
4718 }
4719 else if (strcmp (argv[0], "cwd") == 0)
4720 {
4721 cwd_f = 1;
4722 }
4723 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4724 {
4725 all = 1;
4726 }
4727 else
4728 {
4729 /* [...] (future options here). */
4730 }
4731 argv++;
4732 }
4733 if (pid == 0)
4734 error (_("No current process: you must name one."));
4735
4736 sprintf (fname1, "/proc/%ld", pid);
4737 if (stat (fname1, &dummy) != 0)
4738 error (_("No /proc directory: '%s'"), fname1);
4739
4740 printf_filtered (_("process %ld\n"), pid);
4741 if (cmdline_f || all)
4742 {
4743 sprintf (fname1, "/proc/%ld/cmdline", pid);
4744 if ((procfile = fopen (fname1, "r")) != NULL)
4745 {
4746 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4747
4748 if (fgets (buffer, sizeof (buffer), procfile))
4749 printf_filtered ("cmdline = '%s'\n", buffer);
4750 else
4751 warning (_("unable to read '%s'"), fname1);
4752 do_cleanups (cleanup);
4753 }
4754 else
4755 warning (_("unable to open /proc file '%s'"), fname1);
4756 }
4757 if (cwd_f || all)
4758 {
4759 sprintf (fname1, "/proc/%ld/cwd", pid);
4760 memset (fname2, 0, sizeof (fname2));
4761 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4762 printf_filtered ("cwd = '%s'\n", fname2);
4763 else
4764 warning (_("unable to read link '%s'"), fname1);
4765 }
4766 if (exe_f || all)
4767 {
4768 sprintf (fname1, "/proc/%ld/exe", pid);
4769 memset (fname2, 0, sizeof (fname2));
4770 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4771 printf_filtered ("exe = '%s'\n", fname2);
4772 else
4773 warning (_("unable to read link '%s'"), fname1);
4774 }
4775 if (mappings_f || all)
4776 {
4777 sprintf (fname1, "/proc/%ld/maps", pid);
4778 if ((procfile = fopen (fname1, "r")) != NULL)
4779 {
4780 long long addr, endaddr, size, offset, inode;
4781 char permissions[8], device[8], filename[MAXPATHLEN];
4782 struct cleanup *cleanup;
4783
4784 cleanup = make_cleanup_fclose (procfile);
4785 printf_filtered (_("Mapped address spaces:\n\n"));
4786 if (gdbarch_addr_bit (target_gdbarch) == 32)
4787 {
4788 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4789 "Start Addr",
4790 " End Addr",
4791 " Size", " Offset", "objfile");
4792 }
4793 else
4794 {
4795 printf_filtered (" %18s %18s %10s %10s %7s\n",
4796 "Start Addr",
4797 " End Addr",
4798 " Size", " Offset", "objfile");
4799 }
4800
4801 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4802 &offset, &device[0], &inode, &filename[0]))
4803 {
4804 size = endaddr - addr;
4805
4806 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4807 calls here (and possibly above) should be abstracted
4808 out into their own functions? Andrew suggests using
4809 a generic local_address_string instead to print out
4810 the addresses; that makes sense to me, too. */
4811
4812 if (gdbarch_addr_bit (target_gdbarch) == 32)
4813 {
4814 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4815 (unsigned long) addr, /* FIXME: pr_addr */
4816 (unsigned long) endaddr,
4817 (int) size,
4818 (unsigned int) offset,
4819 filename[0] ? filename : "");
4820 }
4821 else
4822 {
4823 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4824 (unsigned long) addr, /* FIXME: pr_addr */
4825 (unsigned long) endaddr,
4826 (int) size,
4827 (unsigned int) offset,
4828 filename[0] ? filename : "");
4829 }
4830 }
4831
4832 do_cleanups (cleanup);
4833 }
4834 else
4835 warning (_("unable to open /proc file '%s'"), fname1);
4836 }
4837 if (status_f || all)
4838 {
4839 sprintf (fname1, "/proc/%ld/status", pid);
4840 if ((procfile = fopen (fname1, "r")) != NULL)
4841 {
4842 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4843
4844 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4845 puts_filtered (buffer);
4846 do_cleanups (cleanup);
4847 }
4848 else
4849 warning (_("unable to open /proc file '%s'"), fname1);
4850 }
4851 if (stat_f || all)
4852 {
4853 sprintf (fname1, "/proc/%ld/stat", pid);
4854 if ((procfile = fopen (fname1, "r")) != NULL)
4855 {
4856 int itmp;
4857 char ctmp;
4858 long ltmp;
4859 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4860
4861 if (fscanf (procfile, "%d ", &itmp) > 0)
4862 printf_filtered (_("Process: %d\n"), itmp);
4863 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4864 printf_filtered (_("Exec file: %s\n"), buffer);
4865 if (fscanf (procfile, "%c ", &ctmp) > 0)
4866 printf_filtered (_("State: %c\n"), ctmp);
4867 if (fscanf (procfile, "%d ", &itmp) > 0)
4868 printf_filtered (_("Parent process: %d\n"), itmp);
4869 if (fscanf (procfile, "%d ", &itmp) > 0)
4870 printf_filtered (_("Process group: %d\n"), itmp);
4871 if (fscanf (procfile, "%d ", &itmp) > 0)
4872 printf_filtered (_("Session id: %d\n"), itmp);
4873 if (fscanf (procfile, "%d ", &itmp) > 0)
4874 printf_filtered (_("TTY: %d\n"), itmp);
4875 if (fscanf (procfile, "%d ", &itmp) > 0)
4876 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4877 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4878 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4879 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4880 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4881 (unsigned long) ltmp);
4882 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4883 printf_filtered (_("Minor faults, children: %lu\n"),
4884 (unsigned long) ltmp);
4885 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4886 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4887 (unsigned long) ltmp);
4888 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4889 printf_filtered (_("Major faults, children: %lu\n"),
4890 (unsigned long) ltmp);
4891 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4892 printf_filtered (_("utime: %ld\n"), ltmp);
4893 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4894 printf_filtered (_("stime: %ld\n"), ltmp);
4895 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4896 printf_filtered (_("utime, children: %ld\n"), ltmp);
4897 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4898 printf_filtered (_("stime, children: %ld\n"), ltmp);
4899 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4900 printf_filtered (_("jiffies remaining in current "
4901 "time slice: %ld\n"), ltmp);
4902 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4903 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4904 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4905 printf_filtered (_("jiffies until next timeout: %lu\n"),
4906 (unsigned long) ltmp);
4907 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4908 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4909 (unsigned long) ltmp);
4910 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4911 printf_filtered (_("start time (jiffies since "
4912 "system boot): %ld\n"), ltmp);
4913 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4914 printf_filtered (_("Virtual memory size: %lu\n"),
4915 (unsigned long) ltmp);
4916 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4917 printf_filtered (_("Resident set size: %lu\n"),
4918 (unsigned long) ltmp);
4919 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4920 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4921 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4922 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4923 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4924 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4925 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4926 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4927 #if 0 /* Don't know how architecture-dependent the rest is...
4928 Anyway the signal bitmap info is available from "status". */
4929 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4930 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4931 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4932 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4933 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4934 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4935 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4936 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4937 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4938 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4939 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4940 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4941 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4942 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4943 #endif
4944 do_cleanups (cleanup);
4945 }
4946 else
4947 warning (_("unable to open /proc file '%s'"), fname1);
4948 }
4949 }
4950
4951 /* Implement the to_xfer_partial interface for memory reads using the /proc
4952 filesystem. Because we can use a single read() call for /proc, this
4953 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4954 but it doesn't support writes. */
4955
4956 static LONGEST
4957 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4958 const char *annex, gdb_byte *readbuf,
4959 const gdb_byte *writebuf,
4960 ULONGEST offset, LONGEST len)
4961 {
4962 LONGEST ret;
4963 int fd;
4964 char filename[64];
4965
4966 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4967 return 0;
4968
4969 /* Don't bother for one word. */
4970 if (len < 3 * sizeof (long))
4971 return 0;
4972
4973 /* We could keep this file open and cache it - possibly one per
4974 thread. That requires some juggling, but is even faster. */
4975 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4976 fd = open (filename, O_RDONLY | O_LARGEFILE);
4977 if (fd == -1)
4978 return 0;
4979
4980 /* If pread64 is available, use it. It's faster if the kernel
4981 supports it (only one syscall), and it's 64-bit safe even on
4982 32-bit platforms (for instance, SPARC debugging a SPARC64
4983 application). */
4984 #ifdef HAVE_PREAD64
4985 if (pread64 (fd, readbuf, len, offset) != len)
4986 #else
4987 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4988 #endif
4989 ret = 0;
4990 else
4991 ret = len;
4992
4993 close (fd);
4994 return ret;
4995 }
4996
4997
4998 /* Enumerate spufs IDs for process PID. */
4999 static LONGEST
5000 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
5001 {
5002 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
5003 LONGEST pos = 0;
5004 LONGEST written = 0;
5005 char path[128];
5006 DIR *dir;
5007 struct dirent *entry;
5008
5009 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5010 dir = opendir (path);
5011 if (!dir)
5012 return -1;
5013
5014 rewinddir (dir);
5015 while ((entry = readdir (dir)) != NULL)
5016 {
5017 struct stat st;
5018 struct statfs stfs;
5019 int fd;
5020
5021 fd = atoi (entry->d_name);
5022 if (!fd)
5023 continue;
5024
5025 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5026 if (stat (path, &st) != 0)
5027 continue;
5028 if (!S_ISDIR (st.st_mode))
5029 continue;
5030
5031 if (statfs (path, &stfs) != 0)
5032 continue;
5033 if (stfs.f_type != SPUFS_MAGIC)
5034 continue;
5035
5036 if (pos >= offset && pos + 4 <= offset + len)
5037 {
5038 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5039 written += 4;
5040 }
5041 pos += 4;
5042 }
5043
5044 closedir (dir);
5045 return written;
5046 }
5047
5048 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5049 object type, using the /proc file system. */
5050 static LONGEST
5051 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5052 const char *annex, gdb_byte *readbuf,
5053 const gdb_byte *writebuf,
5054 ULONGEST offset, LONGEST len)
5055 {
5056 char buf[128];
5057 int fd = 0;
5058 int ret = -1;
5059 int pid = PIDGET (inferior_ptid);
5060
5061 if (!annex)
5062 {
5063 if (!readbuf)
5064 return -1;
5065 else
5066 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5067 }
5068
5069 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5070 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5071 if (fd <= 0)
5072 return -1;
5073
5074 if (offset != 0
5075 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5076 {
5077 close (fd);
5078 return 0;
5079 }
5080
5081 if (writebuf)
5082 ret = write (fd, writebuf, (size_t) len);
5083 else if (readbuf)
5084 ret = read (fd, readbuf, (size_t) len);
5085
5086 close (fd);
5087 return ret;
5088 }
5089
5090
5091 /* Parse LINE as a signal set and add its set bits to SIGS. */
5092
5093 static void
5094 add_line_to_sigset (const char *line, sigset_t *sigs)
5095 {
5096 int len = strlen (line) - 1;
5097 const char *p;
5098 int signum;
5099
5100 if (line[len] != '\n')
5101 error (_("Could not parse signal set: %s"), line);
5102
5103 p = line;
5104 signum = len * 4;
5105 while (len-- > 0)
5106 {
5107 int digit;
5108
5109 if (*p >= '0' && *p <= '9')
5110 digit = *p - '0';
5111 else if (*p >= 'a' && *p <= 'f')
5112 digit = *p - 'a' + 10;
5113 else
5114 error (_("Could not parse signal set: %s"), line);
5115
5116 signum -= 4;
5117
5118 if (digit & 1)
5119 sigaddset (sigs, signum + 1);
5120 if (digit & 2)
5121 sigaddset (sigs, signum + 2);
5122 if (digit & 4)
5123 sigaddset (sigs, signum + 3);
5124 if (digit & 8)
5125 sigaddset (sigs, signum + 4);
5126
5127 p++;
5128 }
5129 }
5130
5131 /* Find process PID's pending signals from /proc/pid/status and set
5132 SIGS to match. */
5133
5134 void
5135 linux_proc_pending_signals (int pid, sigset_t *pending,
5136 sigset_t *blocked, sigset_t *ignored)
5137 {
5138 FILE *procfile;
5139 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5140 struct cleanup *cleanup;
5141
5142 sigemptyset (pending);
5143 sigemptyset (blocked);
5144 sigemptyset (ignored);
5145 sprintf (fname, "/proc/%d/status", pid);
5146 procfile = fopen (fname, "r");
5147 if (procfile == NULL)
5148 error (_("Could not open %s"), fname);
5149 cleanup = make_cleanup_fclose (procfile);
5150
5151 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5152 {
5153 /* Normal queued signals are on the SigPnd line in the status
5154 file. However, 2.6 kernels also have a "shared" pending
5155 queue for delivering signals to a thread group, so check for
5156 a ShdPnd line also.
5157
5158 Unfortunately some Red Hat kernels include the shared pending
5159 queue but not the ShdPnd status field. */
5160
5161 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5162 add_line_to_sigset (buffer + 8, pending);
5163 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5164 add_line_to_sigset (buffer + 8, pending);
5165 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5166 add_line_to_sigset (buffer + 8, blocked);
5167 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5168 add_line_to_sigset (buffer + 8, ignored);
5169 }
5170
5171 do_cleanups (cleanup);
5172 }
5173
5174 static LONGEST
5175 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5176 const char *annex, gdb_byte *readbuf,
5177 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5178 {
5179 gdb_assert (object == TARGET_OBJECT_OSDATA);
5180
5181 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5182 }
5183
5184 static LONGEST
5185 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5186 const char *annex, gdb_byte *readbuf,
5187 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5188 {
5189 LONGEST xfer;
5190
5191 if (object == TARGET_OBJECT_AUXV)
5192 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5193 offset, len);
5194
5195 if (object == TARGET_OBJECT_OSDATA)
5196 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5197 offset, len);
5198
5199 if (object == TARGET_OBJECT_SPU)
5200 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5201 offset, len);
5202
5203 /* GDB calculates all the addresses in possibly larget width of the address.
5204 Address width needs to be masked before its final use - either by
5205 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5206
5207 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5208
5209 if (object == TARGET_OBJECT_MEMORY)
5210 {
5211 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5212
5213 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5214 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5215 }
5216
5217 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5218 offset, len);
5219 if (xfer != 0)
5220 return xfer;
5221
5222 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5223 offset, len);
5224 }
5225
5226 /* Create a prototype generic GNU/Linux target. The client can override
5227 it with local methods. */
5228
5229 static void
5230 linux_target_install_ops (struct target_ops *t)
5231 {
5232 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5233 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5234 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5235 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5236 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5237 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5238 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5239 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5240 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5241 t->to_post_attach = linux_child_post_attach;
5242 t->to_follow_fork = linux_child_follow_fork;
5243 t->to_find_memory_regions = linux_nat_find_memory_regions;
5244 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5245
5246 super_xfer_partial = t->to_xfer_partial;
5247 t->to_xfer_partial = linux_xfer_partial;
5248 }
5249
5250 struct target_ops *
5251 linux_target (void)
5252 {
5253 struct target_ops *t;
5254
5255 t = inf_ptrace_target ();
5256 linux_target_install_ops (t);
5257
5258 return t;
5259 }
5260
5261 struct target_ops *
5262 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5263 {
5264 struct target_ops *t;
5265
5266 t = inf_ptrace_trad_target (register_u_offset);
5267 linux_target_install_ops (t);
5268
5269 return t;
5270 }
5271
5272 /* target_is_async_p implementation. */
5273
5274 static int
5275 linux_nat_is_async_p (void)
5276 {
5277 /* NOTE: palves 2008-03-21: We're only async when the user requests
5278 it explicitly with the "set target-async" command.
5279 Someday, linux will always be async. */
5280 return target_async_permitted;
5281 }
5282
5283 /* target_can_async_p implementation. */
5284
5285 static int
5286 linux_nat_can_async_p (void)
5287 {
5288 /* NOTE: palves 2008-03-21: We're only async when the user requests
5289 it explicitly with the "set target-async" command.
5290 Someday, linux will always be async. */
5291 return target_async_permitted;
5292 }
5293
5294 static int
5295 linux_nat_supports_non_stop (void)
5296 {
5297 return 1;
5298 }
5299
5300 /* True if we want to support multi-process. To be removed when GDB
5301 supports multi-exec. */
5302
5303 int linux_multi_process = 1;
5304
5305 static int
5306 linux_nat_supports_multi_process (void)
5307 {
5308 return linux_multi_process;
5309 }
5310
5311 static int
5312 linux_nat_supports_disable_randomization (void)
5313 {
5314 #ifdef HAVE_PERSONALITY
5315 return 1;
5316 #else
5317 return 0;
5318 #endif
5319 }
5320
5321 static int async_terminal_is_ours = 1;
5322
5323 /* target_terminal_inferior implementation. */
5324
5325 static void
5326 linux_nat_terminal_inferior (void)
5327 {
5328 if (!target_is_async_p ())
5329 {
5330 /* Async mode is disabled. */
5331 terminal_inferior ();
5332 return;
5333 }
5334
5335 terminal_inferior ();
5336
5337 /* Calls to target_terminal_*() are meant to be idempotent. */
5338 if (!async_terminal_is_ours)
5339 return;
5340
5341 delete_file_handler (input_fd);
5342 async_terminal_is_ours = 0;
5343 set_sigint_trap ();
5344 }
5345
5346 /* target_terminal_ours implementation. */
5347
5348 static void
5349 linux_nat_terminal_ours (void)
5350 {
5351 if (!target_is_async_p ())
5352 {
5353 /* Async mode is disabled. */
5354 terminal_ours ();
5355 return;
5356 }
5357
5358 /* GDB should never give the terminal to the inferior if the
5359 inferior is running in the background (run&, continue&, etc.),
5360 but claiming it sure should. */
5361 terminal_ours ();
5362
5363 if (async_terminal_is_ours)
5364 return;
5365
5366 clear_sigint_trap ();
5367 add_file_handler (input_fd, stdin_event_handler, 0);
5368 async_terminal_is_ours = 1;
5369 }
5370
5371 static void (*async_client_callback) (enum inferior_event_type event_type,
5372 void *context);
5373 static void *async_client_context;
5374
5375 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5376 so we notice when any child changes state, and notify the
5377 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5378 above to wait for the arrival of a SIGCHLD. */
5379
5380 static void
5381 sigchld_handler (int signo)
5382 {
5383 int old_errno = errno;
5384
5385 if (debug_linux_nat)
5386 ui_file_write_async_safe (gdb_stdlog,
5387 "sigchld\n", sizeof ("sigchld\n") - 1);
5388
5389 if (signo == SIGCHLD
5390 && linux_nat_event_pipe[0] != -1)
5391 async_file_mark (); /* Let the event loop know that there are
5392 events to handle. */
5393
5394 errno = old_errno;
5395 }
5396
5397 /* Callback registered with the target events file descriptor. */
5398
5399 static void
5400 handle_target_event (int error, gdb_client_data client_data)
5401 {
5402 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5403 }
5404
5405 /* Create/destroy the target events pipe. Returns previous state. */
5406
5407 static int
5408 linux_async_pipe (int enable)
5409 {
5410 int previous = (linux_nat_event_pipe[0] != -1);
5411
5412 if (previous != enable)
5413 {
5414 sigset_t prev_mask;
5415
5416 block_child_signals (&prev_mask);
5417
5418 if (enable)
5419 {
5420 if (pipe (linux_nat_event_pipe) == -1)
5421 internal_error (__FILE__, __LINE__,
5422 "creating event pipe failed.");
5423
5424 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5425 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5426 }
5427 else
5428 {
5429 close (linux_nat_event_pipe[0]);
5430 close (linux_nat_event_pipe[1]);
5431 linux_nat_event_pipe[0] = -1;
5432 linux_nat_event_pipe[1] = -1;
5433 }
5434
5435 restore_child_signals_mask (&prev_mask);
5436 }
5437
5438 return previous;
5439 }
5440
5441 /* target_async implementation. */
5442
5443 static void
5444 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5445 void *context), void *context)
5446 {
5447 if (callback != NULL)
5448 {
5449 async_client_callback = callback;
5450 async_client_context = context;
5451 if (!linux_async_pipe (1))
5452 {
5453 add_file_handler (linux_nat_event_pipe[0],
5454 handle_target_event, NULL);
5455 /* There may be pending events to handle. Tell the event loop
5456 to poll them. */
5457 async_file_mark ();
5458 }
5459 }
5460 else
5461 {
5462 async_client_callback = callback;
5463 async_client_context = context;
5464 delete_file_handler (linux_nat_event_pipe[0]);
5465 linux_async_pipe (0);
5466 }
5467 return;
5468 }
5469
5470 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5471 event came out. */
5472
5473 static int
5474 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5475 {
5476 if (!lwp->stopped)
5477 {
5478 ptid_t ptid = lwp->ptid;
5479
5480 if (debug_linux_nat)
5481 fprintf_unfiltered (gdb_stdlog,
5482 "LNSL: running -> suspending %s\n",
5483 target_pid_to_str (lwp->ptid));
5484
5485
5486 if (lwp->last_resume_kind == resume_stop)
5487 {
5488 if (debug_linux_nat)
5489 fprintf_unfiltered (gdb_stdlog,
5490 "linux-nat: already stopping LWP %ld at "
5491 "GDB's request\n",
5492 ptid_get_lwp (lwp->ptid));
5493 return 0;
5494 }
5495
5496 stop_callback (lwp, NULL);
5497 lwp->last_resume_kind = resume_stop;
5498 }
5499 else
5500 {
5501 /* Already known to be stopped; do nothing. */
5502
5503 if (debug_linux_nat)
5504 {
5505 if (find_thread_ptid (lwp->ptid)->stop_requested)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "LNSL: already stopped/stop_requested %s\n",
5508 target_pid_to_str (lwp->ptid));
5509 else
5510 fprintf_unfiltered (gdb_stdlog,
5511 "LNSL: already stopped/no "
5512 "stop_requested yet %s\n",
5513 target_pid_to_str (lwp->ptid));
5514 }
5515 }
5516 return 0;
5517 }
5518
5519 static void
5520 linux_nat_stop (ptid_t ptid)
5521 {
5522 if (non_stop)
5523 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5524 else
5525 linux_ops->to_stop (ptid);
5526 }
5527
5528 static void
5529 linux_nat_close (int quitting)
5530 {
5531 /* Unregister from the event loop. */
5532 if (target_is_async_p ())
5533 target_async (NULL, 0);
5534
5535 if (linux_ops->to_close)
5536 linux_ops->to_close (quitting);
5537 }
5538
5539 /* When requests are passed down from the linux-nat layer to the
5540 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5541 used. The address space pointer is stored in the inferior object,
5542 but the common code that is passed such ptid can't tell whether
5543 lwpid is a "main" process id or not (it assumes so). We reverse
5544 look up the "main" process id from the lwp here. */
5545
5546 struct address_space *
5547 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5548 {
5549 struct lwp_info *lwp;
5550 struct inferior *inf;
5551 int pid;
5552
5553 pid = GET_LWP (ptid);
5554 if (GET_LWP (ptid) == 0)
5555 {
5556 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5557 tgid. */
5558 lwp = find_lwp_pid (ptid);
5559 pid = GET_PID (lwp->ptid);
5560 }
5561 else
5562 {
5563 /* A (pid,lwpid,0) ptid. */
5564 pid = GET_PID (ptid);
5565 }
5566
5567 inf = find_inferior_pid (pid);
5568 gdb_assert (inf != NULL);
5569 return inf->aspace;
5570 }
5571
5572 int
5573 linux_nat_core_of_thread_1 (ptid_t ptid)
5574 {
5575 struct cleanup *back_to;
5576 char *filename;
5577 FILE *f;
5578 char *content = NULL;
5579 char *p;
5580 char *ts = 0;
5581 int content_read = 0;
5582 int i;
5583 int core;
5584
5585 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5586 GET_PID (ptid), GET_LWP (ptid));
5587 back_to = make_cleanup (xfree, filename);
5588
5589 f = fopen (filename, "r");
5590 if (!f)
5591 {
5592 do_cleanups (back_to);
5593 return -1;
5594 }
5595
5596 make_cleanup_fclose (f);
5597
5598 for (;;)
5599 {
5600 int n;
5601
5602 content = xrealloc (content, content_read + 1024);
5603 n = fread (content + content_read, 1, 1024, f);
5604 content_read += n;
5605 if (n < 1024)
5606 {
5607 content[content_read] = '\0';
5608 break;
5609 }
5610 }
5611
5612 make_cleanup (xfree, content);
5613
5614 p = strchr (content, '(');
5615
5616 /* Skip ")". */
5617 if (p != NULL)
5618 p = strchr (p, ')');
5619 if (p != NULL)
5620 p++;
5621
5622 /* If the first field after program name has index 0, then core number is
5623 the field with index 36. There's no constant for that anywhere. */
5624 if (p != NULL)
5625 p = strtok_r (p, " ", &ts);
5626 for (i = 0; p != NULL && i != 36; ++i)
5627 p = strtok_r (NULL, " ", &ts);
5628
5629 if (p == NULL || sscanf (p, "%d", &core) == 0)
5630 core = -1;
5631
5632 do_cleanups (back_to);
5633
5634 return core;
5635 }
5636
5637 /* Return the cached value of the processor core for thread PTID. */
5638
5639 int
5640 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5641 {
5642 struct lwp_info *info = find_lwp_pid (ptid);
5643
5644 if (info)
5645 return info->core;
5646 return -1;
5647 }
5648
5649 void
5650 linux_nat_add_target (struct target_ops *t)
5651 {
5652 /* Save the provided single-threaded target. We save this in a separate
5653 variable because another target we've inherited from (e.g. inf-ptrace)
5654 may have saved a pointer to T; we want to use it for the final
5655 process stratum target. */
5656 linux_ops_saved = *t;
5657 linux_ops = &linux_ops_saved;
5658
5659 /* Override some methods for multithreading. */
5660 t->to_create_inferior = linux_nat_create_inferior;
5661 t->to_attach = linux_nat_attach;
5662 t->to_detach = linux_nat_detach;
5663 t->to_resume = linux_nat_resume;
5664 t->to_wait = linux_nat_wait;
5665 t->to_pass_signals = linux_nat_pass_signals;
5666 t->to_xfer_partial = linux_nat_xfer_partial;
5667 t->to_kill = linux_nat_kill;
5668 t->to_mourn_inferior = linux_nat_mourn_inferior;
5669 t->to_thread_alive = linux_nat_thread_alive;
5670 t->to_pid_to_str = linux_nat_pid_to_str;
5671 t->to_thread_name = linux_nat_thread_name;
5672 t->to_has_thread_control = tc_schedlock;
5673 t->to_thread_address_space = linux_nat_thread_address_space;
5674 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5675 t->to_stopped_data_address = linux_nat_stopped_data_address;
5676
5677 t->to_can_async_p = linux_nat_can_async_p;
5678 t->to_is_async_p = linux_nat_is_async_p;
5679 t->to_supports_non_stop = linux_nat_supports_non_stop;
5680 t->to_async = linux_nat_async;
5681 t->to_terminal_inferior = linux_nat_terminal_inferior;
5682 t->to_terminal_ours = linux_nat_terminal_ours;
5683 t->to_close = linux_nat_close;
5684
5685 /* Methods for non-stop support. */
5686 t->to_stop = linux_nat_stop;
5687
5688 t->to_supports_multi_process = linux_nat_supports_multi_process;
5689
5690 t->to_supports_disable_randomization
5691 = linux_nat_supports_disable_randomization;
5692
5693 t->to_core_of_thread = linux_nat_core_of_thread;
5694
5695 /* We don't change the stratum; this target will sit at
5696 process_stratum and thread_db will set at thread_stratum. This
5697 is a little strange, since this is a multi-threaded-capable
5698 target, but we want to be on the stack below thread_db, and we
5699 also want to be used for single-threaded processes. */
5700
5701 add_target (t);
5702 }
5703
5704 /* Register a method to call whenever a new thread is attached. */
5705 void
5706 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5707 {
5708 /* Save the pointer. We only support a single registered instance
5709 of the GNU/Linux native target, so we do not need to map this to
5710 T. */
5711 linux_nat_new_thread = new_thread;
5712 }
5713
5714 /* Register a method that converts a siginfo object between the layout
5715 that ptrace returns, and the layout in the architecture of the
5716 inferior. */
5717 void
5718 linux_nat_set_siginfo_fixup (struct target_ops *t,
5719 int (*siginfo_fixup) (struct siginfo *,
5720 gdb_byte *,
5721 int))
5722 {
5723 /* Save the pointer. */
5724 linux_nat_siginfo_fixup = siginfo_fixup;
5725 }
5726
5727 /* Return the saved siginfo associated with PTID. */
5728 struct siginfo *
5729 linux_nat_get_siginfo (ptid_t ptid)
5730 {
5731 struct lwp_info *lp = find_lwp_pid (ptid);
5732
5733 gdb_assert (lp != NULL);
5734
5735 return &lp->siginfo;
5736 }
5737
5738 /* Provide a prototype to silence -Wmissing-prototypes. */
5739 extern initialize_file_ftype _initialize_linux_nat;
5740
5741 void
5742 _initialize_linux_nat (void)
5743 {
5744 add_info ("proc", linux_nat_info_proc_cmd, _("\
5745 Show /proc process information about any running process.\n\
5746 Specify any process id, or use the program being debugged by default.\n\
5747 Specify any of the following keywords for detailed info:\n\
5748 mappings -- list of mapped memory regions.\n\
5749 stat -- list a bunch of random process info.\n\
5750 status -- list a different bunch of random process info.\n\
5751 all -- list all available /proc info."));
5752
5753 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5754 &debug_linux_nat, _("\
5755 Set debugging of GNU/Linux lwp module."), _("\
5756 Show debugging of GNU/Linux lwp module."), _("\
5757 Enables printf debugging output."),
5758 NULL,
5759 show_debug_linux_nat,
5760 &setdebuglist, &showdebuglist);
5761
5762 /* Save this mask as the default. */
5763 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5764
5765 /* Install a SIGCHLD handler. */
5766 sigchld_action.sa_handler = sigchld_handler;
5767 sigemptyset (&sigchld_action.sa_mask);
5768 sigchld_action.sa_flags = SA_RESTART;
5769
5770 /* Make it the default. */
5771 sigaction (SIGCHLD, &sigchld_action, NULL);
5772
5773 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5774 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5775 sigdelset (&suspend_mask, SIGCHLD);
5776
5777 sigemptyset (&blocked_mask);
5778 }
5779 \f
5780
5781 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5782 the GNU/Linux Threads library and therefore doesn't really belong
5783 here. */
5784
5785 /* Read variable NAME in the target and return its value if found.
5786 Otherwise return zero. It is assumed that the type of the variable
5787 is `int'. */
5788
5789 static int
5790 get_signo (const char *name)
5791 {
5792 struct minimal_symbol *ms;
5793 int signo;
5794
5795 ms = lookup_minimal_symbol (name, NULL, NULL);
5796 if (ms == NULL)
5797 return 0;
5798
5799 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5800 sizeof (signo)) != 0)
5801 return 0;
5802
5803 return signo;
5804 }
5805
5806 /* Return the set of signals used by the threads library in *SET. */
5807
5808 void
5809 lin_thread_get_thread_signals (sigset_t *set)
5810 {
5811 struct sigaction action;
5812 int restart, cancel;
5813
5814 sigemptyset (&blocked_mask);
5815 sigemptyset (set);
5816
5817 restart = get_signo ("__pthread_sig_restart");
5818 cancel = get_signo ("__pthread_sig_cancel");
5819
5820 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5821 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5822 not provide any way for the debugger to query the signal numbers -
5823 fortunately they don't change! */
5824
5825 if (restart == 0)
5826 restart = __SIGRTMIN;
5827
5828 if (cancel == 0)
5829 cancel = __SIGRTMIN + 1;
5830
5831 sigaddset (set, restart);
5832 sigaddset (set, cancel);
5833
5834 /* The GNU/Linux Threads library makes terminating threads send a
5835 special "cancel" signal instead of SIGCHLD. Make sure we catch
5836 those (to prevent them from terminating GDB itself, which is
5837 likely to be their default action) and treat them the same way as
5838 SIGCHLD. */
5839
5840 action.sa_handler = sigchld_handler;
5841 sigemptyset (&action.sa_mask);
5842 action.sa_flags = SA_RESTART;
5843 sigaction (cancel, &action, NULL);
5844
5845 /* We block the "cancel" signal throughout this code ... */
5846 sigaddset (&blocked_mask, cancel);
5847 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5848
5849 /* ... except during a sigsuspend. */
5850 sigdelset (&suspend_mask, cancel);
5851 }
This page took 0.183637 seconds and 5 git commands to generate.