2011-10-10 Pedro Alves <pedro@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-ptrace.h"
34 #include "linux-procfs.h"
35 #include "linux-fork.h"
36 #include "gdbthread.h"
37 #include "gdbcmd.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62
63 #ifndef SPUFS_MAGIC
64 #define SPUFS_MAGIC 0x23c9b64e
65 #endif
66
67 #ifdef HAVE_PERSONALITY
68 # include <sys/personality.h>
69 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
70 # define ADDR_NO_RANDOMIZE 0x0040000
71 # endif
72 #endif /* HAVE_PERSONALITY */
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without
93 __WCLONED.
94
95 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
96 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
97 blocked, the signal becomes pending and sigsuspend immediately
98 notices it and returns.
99
100 Waiting for events in async mode
101 ================================
102
103 In async mode, GDB should always be ready to handle both user input
104 and target events, so neither blocking waitpid nor sigsuspend are
105 viable options. Instead, we should asynchronously notify the GDB main
106 event loop whenever there's an unprocessed event from the target. We
107 detect asynchronous target events by handling SIGCHLD signals. To
108 notify the event loop about target events, the self-pipe trick is used
109 --- a pipe is registered as waitable event source in the event loop,
110 the event loop select/poll's on the read end of this pipe (as well on
111 other event sources, e.g., stdin), and the SIGCHLD handler writes a
112 byte to this pipe. This is more portable than relying on
113 pselect/ppoll, since on kernels that lack those syscalls, libc
114 emulates them with select/poll+sigprocmask, and that is racy
115 (a.k.a. plain broken).
116
117 Obviously, if we fail to notify the event loop if there's a target
118 event, it's bad. OTOH, if we notify the event loop when there's no
119 event from the target, linux_nat_wait will detect that there's no real
120 event to report, and return event of type TARGET_WAITKIND_IGNORE.
121 This is mostly harmless, but it will waste time and is better avoided.
122
123 The main design point is that every time GDB is outside linux-nat.c,
124 we have a SIGCHLD handler installed that is called when something
125 happens to the target and notifies the GDB event loop. Whenever GDB
126 core decides to handle the event, and calls into linux-nat.c, we
127 process things as in sync mode, except that the we never block in
128 sigsuspend.
129
130 While processing an event, we may end up momentarily blocked in
131 waitpid calls. Those waitpid calls, while blocking, are guarantied to
132 return quickly. E.g., in all-stop mode, before reporting to the core
133 that an LWP hit a breakpoint, all LWPs are stopped by sending them
134 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
135 Note that this is different from blocking indefinitely waiting for the
136 next event --- here, we're already handling an event.
137
138 Use of signals
139 ==============
140
141 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
142 signal is not entirely significant; we just need for a signal to be delivered,
143 so that we can intercept it. SIGSTOP's advantage is that it can not be
144 blocked. A disadvantage is that it is not a real-time signal, so it can only
145 be queued once; we do not keep track of other sources of SIGSTOP.
146
147 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
148 use them, because they have special behavior when the signal is generated -
149 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
150 kills the entire thread group.
151
152 A delivered SIGSTOP would stop the entire thread group, not just the thread we
153 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
154 cancel it (by PTRACE_CONT without passing SIGSTOP).
155
156 We could use a real-time signal instead. This would solve those problems; we
157 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
158 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
159 generates it, and there are races with trying to find a signal that is not
160 blocked. */
161
162 #ifndef O_LARGEFILE
163 #define O_LARGEFILE 0
164 #endif
165
166 /* Unlike other extended result codes, WSTOPSIG (status) on
167 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
168 instead SIGTRAP with bit 7 set. */
169 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
170
171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
172 the use of the multi-threaded target. */
173 static struct target_ops *linux_ops;
174 static struct target_ops linux_ops_saved;
175
176 /* The method to call, if any, when a new thread is attached. */
177 static void (*linux_nat_new_thread) (ptid_t);
178
179 /* The method to call, if any, when the siginfo object needs to be
180 converted between the layout returned by ptrace, and the layout in
181 the architecture of the inferior. */
182 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
183 gdb_byte *,
184 int);
185
186 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
187 Called by our to_xfer_partial. */
188 static LONGEST (*super_xfer_partial) (struct target_ops *,
189 enum target_object,
190 const char *, gdb_byte *,
191 const gdb_byte *,
192 ULONGEST, LONGEST);
193
194 static int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 struct simple_pid_list
204 {
205 int pid;
206 int status;
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
212 can not be used, 1 if it can. */
213
214 static int linux_supports_tracefork_flag = -1;
215
216 /* This variable is a tri-state flag: -1 for unknown, 0 if
217 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
218
219 static int linux_supports_tracesysgood_flag = -1;
220
221 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
222 PTRACE_O_TRACEVFORKDONE. */
223
224 static int linux_supports_tracevforkdone_flag = -1;
225
226 /* Stores the current used ptrace() options. */
227 static int current_ptrace_options = 0;
228
229 /* Async mode support. */
230
231 /* The read/write ends of the pipe registered as waitable file in the
232 event loop. */
233 static int linux_nat_event_pipe[2] = { -1, -1 };
234
235 /* Flush the event pipe. */
236
237 static void
238 async_file_flush (void)
239 {
240 int ret;
241 char buf;
242
243 do
244 {
245 ret = read (linux_nat_event_pipe[0], &buf, 1);
246 }
247 while (ret >= 0 || (ret == -1 && errno == EINTR));
248 }
249
250 /* Put something (anything, doesn't matter what, or how much) in event
251 pipe, so that the select/poll in the event-loop realizes we have
252 something to process. */
253
254 static void
255 async_file_mark (void)
256 {
257 int ret;
258
259 /* It doesn't really matter what the pipe contains, as long we end
260 up with something in it. Might as well flush the previous
261 left-overs. */
262 async_file_flush ();
263
264 do
265 {
266 ret = write (linux_nat_event_pipe[1], "+", 1);
267 }
268 while (ret == -1 && errno == EINTR);
269
270 /* Ignore EAGAIN. If the pipe is full, the event loop will already
271 be awakened anyway. */
272 }
273
274 static void linux_nat_async (void (*callback)
275 (enum inferior_event_type event_type,
276 void *context),
277 void *context);
278 static int kill_lwp (int lwpid, int signo);
279
280 static int stop_callback (struct lwp_info *lp, void *data);
281
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static struct lwp_info *find_lwp_pid (ptid_t ptid);
289
290 \f
291 /* Trivial list manipulation functions to keep track of a list of
292 new stopped processes. */
293 static void
294 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
295 {
296 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
297
298 new_pid->pid = pid;
299 new_pid->status = status;
300 new_pid->next = *listp;
301 *listp = new_pid;
302 }
303
304 static int
305 in_pid_list_p (struct simple_pid_list *list, int pid)
306 {
307 struct simple_pid_list *p;
308
309 for (p = list; p != NULL; p = p->next)
310 if (p->pid == pid)
311 return 1;
312 return 0;
313 }
314
315 static int
316 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
317 {
318 struct simple_pid_list **p;
319
320 for (p = listp; *p != NULL; p = &(*p)->next)
321 if ((*p)->pid == pid)
322 {
323 struct simple_pid_list *next = (*p)->next;
324
325 *statusp = (*p)->status;
326 xfree (*p);
327 *p = next;
328 return 1;
329 }
330 return 0;
331 }
332
333 \f
334 /* A helper function for linux_test_for_tracefork, called after fork (). */
335
336 static void
337 linux_tracefork_child (void)
338 {
339 ptrace (PTRACE_TRACEME, 0, 0, 0);
340 kill (getpid (), SIGSTOP);
341 fork ();
342 _exit (0);
343 }
344
345 /* Wrapper function for waitpid which handles EINTR. */
346
347 static int
348 my_waitpid (int pid, int *statusp, int flags)
349 {
350 int ret;
351
352 do
353 {
354 ret = waitpid (pid, statusp, flags);
355 }
356 while (ret == -1 && errno == EINTR);
357
358 return ret;
359 }
360
361 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
362
363 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
364 we know that the feature is not available. This may change the tracing
365 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
366
367 However, if it succeeds, we don't know for sure that the feature is
368 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
369 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
370 fork tracing, and let it fork. If the process exits, we assume that we
371 can't use TRACEFORK; if we get the fork notification, and we can extract
372 the new child's PID, then we assume that we can. */
373
374 static void
375 linux_test_for_tracefork (int original_pid)
376 {
377 int child_pid, ret, status;
378 long second_pid;
379 sigset_t prev_mask;
380
381 /* We don't want those ptrace calls to be interrupted. */
382 block_child_signals (&prev_mask);
383
384 linux_supports_tracefork_flag = 0;
385 linux_supports_tracevforkdone_flag = 0;
386
387 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
388 if (ret != 0)
389 {
390 restore_child_signals_mask (&prev_mask);
391 return;
392 }
393
394 child_pid = fork ();
395 if (child_pid == -1)
396 perror_with_name (("fork"));
397
398 if (child_pid == 0)
399 linux_tracefork_child ();
400
401 ret = my_waitpid (child_pid, &status, 0);
402 if (ret == -1)
403 perror_with_name (("waitpid"));
404 else if (ret != child_pid)
405 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
406 if (! WIFSTOPPED (status))
407 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
408 status);
409
410 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
411 if (ret != 0)
412 {
413 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
414 if (ret != 0)
415 {
416 warning (_("linux_test_for_tracefork: failed to kill child"));
417 restore_child_signals_mask (&prev_mask);
418 return;
419 }
420
421 ret = my_waitpid (child_pid, &status, 0);
422 if (ret != child_pid)
423 warning (_("linux_test_for_tracefork: failed "
424 "to wait for killed child"));
425 else if (!WIFSIGNALED (status))
426 warning (_("linux_test_for_tracefork: unexpected "
427 "wait status 0x%x from killed child"), status);
428
429 restore_child_signals_mask (&prev_mask);
430 return;
431 }
432
433 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
434 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
435 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
436 linux_supports_tracevforkdone_flag = (ret == 0);
437
438 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
439 if (ret != 0)
440 warning (_("linux_test_for_tracefork: failed to resume child"));
441
442 ret = my_waitpid (child_pid, &status, 0);
443
444 if (ret == child_pid && WIFSTOPPED (status)
445 && status >> 16 == PTRACE_EVENT_FORK)
446 {
447 second_pid = 0;
448 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
449 if (ret == 0 && second_pid != 0)
450 {
451 int second_status;
452
453 linux_supports_tracefork_flag = 1;
454 my_waitpid (second_pid, &second_status, 0);
455 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
456 if (ret != 0)
457 warning (_("linux_test_for_tracefork: "
458 "failed to kill second child"));
459 my_waitpid (second_pid, &status, 0);
460 }
461 }
462 else
463 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
464 "(%d, status 0x%x)"), ret, status);
465
466 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: failed to kill child"));
469 my_waitpid (child_pid, &status, 0);
470
471 restore_child_signals_mask (&prev_mask);
472 }
473
474 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
475
476 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
477 we know that the feature is not available. This may change the tracing
478 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
479
480 static void
481 linux_test_for_tracesysgood (int original_pid)
482 {
483 int ret;
484 sigset_t prev_mask;
485
486 /* We don't want those ptrace calls to be interrupted. */
487 block_child_signals (&prev_mask);
488
489 linux_supports_tracesysgood_flag = 0;
490
491 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
492 if (ret != 0)
493 goto out;
494
495 linux_supports_tracesysgood_flag = 1;
496 out:
497 restore_child_signals_mask (&prev_mask);
498 }
499
500 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
501 This function also sets linux_supports_tracesysgood_flag. */
502
503 static int
504 linux_supports_tracesysgood (int pid)
505 {
506 if (linux_supports_tracesysgood_flag == -1)
507 linux_test_for_tracesysgood (pid);
508 return linux_supports_tracesysgood_flag;
509 }
510
511 /* Return non-zero iff we have tracefork functionality available.
512 This function also sets linux_supports_tracefork_flag. */
513
514 static int
515 linux_supports_tracefork (int pid)
516 {
517 if (linux_supports_tracefork_flag == -1)
518 linux_test_for_tracefork (pid);
519 return linux_supports_tracefork_flag;
520 }
521
522 static int
523 linux_supports_tracevforkdone (int pid)
524 {
525 if (linux_supports_tracefork_flag == -1)
526 linux_test_for_tracefork (pid);
527 return linux_supports_tracevforkdone_flag;
528 }
529
530 static void
531 linux_enable_tracesysgood (ptid_t ptid)
532 {
533 int pid = ptid_get_lwp (ptid);
534
535 if (pid == 0)
536 pid = ptid_get_pid (ptid);
537
538 if (linux_supports_tracesysgood (pid) == 0)
539 return;
540
541 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
542
543 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
544 }
545
546 \f
547 void
548 linux_enable_event_reporting (ptid_t ptid)
549 {
550 int pid = ptid_get_lwp (ptid);
551
552 if (pid == 0)
553 pid = ptid_get_pid (ptid);
554
555 if (! linux_supports_tracefork (pid))
556 return;
557
558 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
559 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
560
561 if (linux_supports_tracevforkdone (pid))
562 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
563
564 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
565 read-only process state. */
566
567 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
568 }
569
570 static void
571 linux_child_post_attach (int pid)
572 {
573 linux_enable_event_reporting (pid_to_ptid (pid));
574 check_for_thread_db ();
575 linux_enable_tracesysgood (pid_to_ptid (pid));
576 }
577
578 static void
579 linux_child_post_startup_inferior (ptid_t ptid)
580 {
581 linux_enable_event_reporting (ptid);
582 check_for_thread_db ();
583 linux_enable_tracesysgood (ptid);
584 }
585
586 static int
587 linux_child_follow_fork (struct target_ops *ops, int follow_child)
588 {
589 sigset_t prev_mask;
590 int has_vforked;
591 int parent_pid, child_pid;
592
593 block_child_signals (&prev_mask);
594
595 has_vforked = (inferior_thread ()->pending_follow.kind
596 == TARGET_WAITKIND_VFORKED);
597 parent_pid = ptid_get_lwp (inferior_ptid);
598 if (parent_pid == 0)
599 parent_pid = ptid_get_pid (inferior_ptid);
600 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
601
602 if (!detach_fork)
603 linux_enable_event_reporting (pid_to_ptid (child_pid));
604
605 if (has_vforked
606 && !non_stop /* Non-stop always resumes both branches. */
607 && (!target_is_async_p () || sync_execution)
608 && !(follow_child || detach_fork || sched_multi))
609 {
610 /* The parent stays blocked inside the vfork syscall until the
611 child execs or exits. If we don't let the child run, then
612 the parent stays blocked. If we're telling the parent to run
613 in the foreground, the user will not be able to ctrl-c to get
614 back the terminal, effectively hanging the debug session. */
615 fprintf_filtered (gdb_stderr, _("\
616 Can not resume the parent process over vfork in the foreground while\n\
617 holding the child stopped. Try \"set detach-on-fork\" or \
618 \"set schedule-multiple\".\n"));
619 /* FIXME output string > 80 columns. */
620 return 1;
621 }
622
623 if (! follow_child)
624 {
625 struct lwp_info *child_lp = NULL;
626
627 /* We're already attached to the parent, by default. */
628
629 /* Detach new forked process? */
630 if (detach_fork)
631 {
632 /* Before detaching from the child, remove all breakpoints
633 from it. If we forked, then this has already been taken
634 care of by infrun.c. If we vforked however, any
635 breakpoint inserted in the parent is visible in the
636 child, even those added while stopped in a vfork
637 catchpoint. This will remove the breakpoints from the
638 parent also, but they'll be reinserted below. */
639 if (has_vforked)
640 {
641 /* keep breakpoints list in sync. */
642 remove_breakpoints_pid (GET_PID (inferior_ptid));
643 }
644
645 if (info_verbose || debug_linux_nat)
646 {
647 target_terminal_ours ();
648 fprintf_filtered (gdb_stdlog,
649 "Detaching after fork from "
650 "child process %d.\n",
651 child_pid);
652 }
653
654 ptrace (PTRACE_DETACH, child_pid, 0, 0);
655 }
656 else
657 {
658 struct inferior *parent_inf, *child_inf;
659 struct cleanup *old_chain;
660
661 /* Add process to GDB's tables. */
662 child_inf = add_inferior (child_pid);
663
664 parent_inf = current_inferior ();
665 child_inf->attach_flag = parent_inf->attach_flag;
666 copy_terminal_info (child_inf, parent_inf);
667
668 old_chain = save_inferior_ptid ();
669 save_current_program_space ();
670
671 inferior_ptid = ptid_build (child_pid, child_pid, 0);
672 add_thread (inferior_ptid);
673 child_lp = add_lwp (inferior_ptid);
674 child_lp->stopped = 1;
675 child_lp->last_resume_kind = resume_stop;
676
677 /* If this is a vfork child, then the address-space is
678 shared with the parent. */
679 if (has_vforked)
680 {
681 child_inf->pspace = parent_inf->pspace;
682 child_inf->aspace = parent_inf->aspace;
683
684 /* The parent will be frozen until the child is done
685 with the shared region. Keep track of the
686 parent. */
687 child_inf->vfork_parent = parent_inf;
688 child_inf->pending_detach = 0;
689 parent_inf->vfork_child = child_inf;
690 parent_inf->pending_detach = 0;
691 }
692 else
693 {
694 child_inf->aspace = new_address_space ();
695 child_inf->pspace = add_program_space (child_inf->aspace);
696 child_inf->removable = 1;
697 set_current_program_space (child_inf->pspace);
698 clone_program_space (child_inf->pspace, parent_inf->pspace);
699
700 /* Let the shared library layer (solib-svr4) learn about
701 this new process, relocate the cloned exec, pull in
702 shared libraries, and install the solib event
703 breakpoint. If a "cloned-VM" event was propagated
704 better throughout the core, this wouldn't be
705 required. */
706 solib_create_inferior_hook (0);
707 }
708
709 /* Let the thread_db layer learn about this new process. */
710 check_for_thread_db ();
711
712 do_cleanups (old_chain);
713 }
714
715 if (has_vforked)
716 {
717 struct lwp_info *parent_lp;
718 struct inferior *parent_inf;
719
720 parent_inf = current_inferior ();
721
722 /* If we detached from the child, then we have to be careful
723 to not insert breakpoints in the parent until the child
724 is done with the shared memory region. However, if we're
725 staying attached to the child, then we can and should
726 insert breakpoints, so that we can debug it. A
727 subsequent child exec or exit is enough to know when does
728 the child stops using the parent's address space. */
729 parent_inf->waiting_for_vfork_done = detach_fork;
730 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
731
732 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
733 gdb_assert (linux_supports_tracefork_flag >= 0);
734
735 if (linux_supports_tracevforkdone (0))
736 {
737 if (debug_linux_nat)
738 fprintf_unfiltered (gdb_stdlog,
739 "LCFF: waiting for VFORK_DONE on %d\n",
740 parent_pid);
741 parent_lp->stopped = 1;
742
743 /* We'll handle the VFORK_DONE event like any other
744 event, in target_wait. */
745 }
746 else
747 {
748 /* We can't insert breakpoints until the child has
749 finished with the shared memory region. We need to
750 wait until that happens. Ideal would be to just
751 call:
752 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
753 - waitpid (parent_pid, &status, __WALL);
754 However, most architectures can't handle a syscall
755 being traced on the way out if it wasn't traced on
756 the way in.
757
758 We might also think to loop, continuing the child
759 until it exits or gets a SIGTRAP. One problem is
760 that the child might call ptrace with PTRACE_TRACEME.
761
762 There's no simple and reliable way to figure out when
763 the vforked child will be done with its copy of the
764 shared memory. We could step it out of the syscall,
765 two instructions, let it go, and then single-step the
766 parent once. When we have hardware single-step, this
767 would work; with software single-step it could still
768 be made to work but we'd have to be able to insert
769 single-step breakpoints in the child, and we'd have
770 to insert -just- the single-step breakpoint in the
771 parent. Very awkward.
772
773 In the end, the best we can do is to make sure it
774 runs for a little while. Hopefully it will be out of
775 range of any breakpoints we reinsert. Usually this
776 is only the single-step breakpoint at vfork's return
777 point. */
778
779 if (debug_linux_nat)
780 fprintf_unfiltered (gdb_stdlog,
781 "LCFF: no VFORK_DONE "
782 "support, sleeping a bit\n");
783
784 usleep (10000);
785
786 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
787 and leave it pending. The next linux_nat_resume call
788 will notice a pending event, and bypasses actually
789 resuming the inferior. */
790 parent_lp->status = 0;
791 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
792 parent_lp->stopped = 1;
793
794 /* If we're in async mode, need to tell the event loop
795 there's something here to process. */
796 if (target_can_async_p ())
797 async_file_mark ();
798 }
799 }
800 }
801 else
802 {
803 struct inferior *parent_inf, *child_inf;
804 struct lwp_info *child_lp;
805 struct program_space *parent_pspace;
806
807 if (info_verbose || debug_linux_nat)
808 {
809 target_terminal_ours ();
810 if (has_vforked)
811 fprintf_filtered (gdb_stdlog,
812 _("Attaching after process %d "
813 "vfork to child process %d.\n"),
814 parent_pid, child_pid);
815 else
816 fprintf_filtered (gdb_stdlog,
817 _("Attaching after process %d "
818 "fork to child process %d.\n"),
819 parent_pid, child_pid);
820 }
821
822 /* Add the new inferior first, so that the target_detach below
823 doesn't unpush the target. */
824
825 child_inf = add_inferior (child_pid);
826
827 parent_inf = current_inferior ();
828 child_inf->attach_flag = parent_inf->attach_flag;
829 copy_terminal_info (child_inf, parent_inf);
830
831 parent_pspace = parent_inf->pspace;
832
833 /* If we're vforking, we want to hold on to the parent until the
834 child exits or execs. At child exec or exit time we can
835 remove the old breakpoints from the parent and detach or
836 resume debugging it. Otherwise, detach the parent now; we'll
837 want to reuse it's program/address spaces, but we can't set
838 them to the child before removing breakpoints from the
839 parent, otherwise, the breakpoints module could decide to
840 remove breakpoints from the wrong process (since they'd be
841 assigned to the same address space). */
842
843 if (has_vforked)
844 {
845 gdb_assert (child_inf->vfork_parent == NULL);
846 gdb_assert (parent_inf->vfork_child == NULL);
847 child_inf->vfork_parent = parent_inf;
848 child_inf->pending_detach = 0;
849 parent_inf->vfork_child = child_inf;
850 parent_inf->pending_detach = detach_fork;
851 parent_inf->waiting_for_vfork_done = 0;
852 }
853 else if (detach_fork)
854 target_detach (NULL, 0);
855
856 /* Note that the detach above makes PARENT_INF dangling. */
857
858 /* Add the child thread to the appropriate lists, and switch to
859 this new thread, before cloning the program space, and
860 informing the solib layer about this new process. */
861
862 inferior_ptid = ptid_build (child_pid, child_pid, 0);
863 add_thread (inferior_ptid);
864 child_lp = add_lwp (inferior_ptid);
865 child_lp->stopped = 1;
866 child_lp->last_resume_kind = resume_stop;
867
868 /* If this is a vfork child, then the address-space is shared
869 with the parent. If we detached from the parent, then we can
870 reuse the parent's program/address spaces. */
871 if (has_vforked || detach_fork)
872 {
873 child_inf->pspace = parent_pspace;
874 child_inf->aspace = child_inf->pspace->aspace;
875 }
876 else
877 {
878 child_inf->aspace = new_address_space ();
879 child_inf->pspace = add_program_space (child_inf->aspace);
880 child_inf->removable = 1;
881 set_current_program_space (child_inf->pspace);
882 clone_program_space (child_inf->pspace, parent_pspace);
883
884 /* Let the shared library layer (solib-svr4) learn about
885 this new process, relocate the cloned exec, pull in
886 shared libraries, and install the solib event breakpoint.
887 If a "cloned-VM" event was propagated better throughout
888 the core, this wouldn't be required. */
889 solib_create_inferior_hook (0);
890 }
891
892 /* Let the thread_db layer learn about this new process. */
893 check_for_thread_db ();
894 }
895
896 restore_child_signals_mask (&prev_mask);
897 return 0;
898 }
899
900 \f
901 static int
902 linux_child_insert_fork_catchpoint (int pid)
903 {
904 return !linux_supports_tracefork (pid);
905 }
906
907 static int
908 linux_child_remove_fork_catchpoint (int pid)
909 {
910 return 0;
911 }
912
913 static int
914 linux_child_insert_vfork_catchpoint (int pid)
915 {
916 return !linux_supports_tracefork (pid);
917 }
918
919 static int
920 linux_child_remove_vfork_catchpoint (int pid)
921 {
922 return 0;
923 }
924
925 static int
926 linux_child_insert_exec_catchpoint (int pid)
927 {
928 return !linux_supports_tracefork (pid);
929 }
930
931 static int
932 linux_child_remove_exec_catchpoint (int pid)
933 {
934 return 0;
935 }
936
937 static int
938 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
939 int table_size, int *table)
940 {
941 if (!linux_supports_tracesysgood (pid))
942 return 1;
943
944 /* On GNU/Linux, we ignore the arguments. It means that we only
945 enable the syscall catchpoints, but do not disable them.
946
947 Also, we do not use the `table' information because we do not
948 filter system calls here. We let GDB do the logic for us. */
949 return 0;
950 }
951
952 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
953 are processes sharing the same VM space. A multi-threaded process
954 is basically a group of such processes. However, such a grouping
955 is almost entirely a user-space issue; the kernel doesn't enforce
956 such a grouping at all (this might change in the future). In
957 general, we'll rely on the threads library (i.e. the GNU/Linux
958 Threads library) to provide such a grouping.
959
960 It is perfectly well possible to write a multi-threaded application
961 without the assistance of a threads library, by using the clone
962 system call directly. This module should be able to give some
963 rudimentary support for debugging such applications if developers
964 specify the CLONE_PTRACE flag in the clone system call, and are
965 using the Linux kernel 2.4 or above.
966
967 Note that there are some peculiarities in GNU/Linux that affect
968 this code:
969
970 - In general one should specify the __WCLONE flag to waitpid in
971 order to make it report events for any of the cloned processes
972 (and leave it out for the initial process). However, if a cloned
973 process has exited the exit status is only reported if the
974 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
975 we cannot use it since GDB must work on older systems too.
976
977 - When a traced, cloned process exits and is waited for by the
978 debugger, the kernel reassigns it to the original parent and
979 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
980 library doesn't notice this, which leads to the "zombie problem":
981 When debugged a multi-threaded process that spawns a lot of
982 threads will run out of processes, even if the threads exit,
983 because the "zombies" stay around. */
984
985 /* List of known LWPs. */
986 struct lwp_info *lwp_list;
987 \f
988
989 /* Original signal mask. */
990 static sigset_t normal_mask;
991
992 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
993 _initialize_linux_nat. */
994 static sigset_t suspend_mask;
995
996 /* Signals to block to make that sigsuspend work. */
997 static sigset_t blocked_mask;
998
999 /* SIGCHLD action. */
1000 struct sigaction sigchld_action;
1001
1002 /* Block child signals (SIGCHLD and linux threads signals), and store
1003 the previous mask in PREV_MASK. */
1004
1005 static void
1006 block_child_signals (sigset_t *prev_mask)
1007 {
1008 /* Make sure SIGCHLD is blocked. */
1009 if (!sigismember (&blocked_mask, SIGCHLD))
1010 sigaddset (&blocked_mask, SIGCHLD);
1011
1012 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1013 }
1014
1015 /* Restore child signals mask, previously returned by
1016 block_child_signals. */
1017
1018 static void
1019 restore_child_signals_mask (sigset_t *prev_mask)
1020 {
1021 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1022 }
1023
1024 /* Mask of signals to pass directly to the inferior. */
1025 static sigset_t pass_mask;
1026
1027 /* Update signals to pass to the inferior. */
1028 static void
1029 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1030 {
1031 int signo;
1032
1033 sigemptyset (&pass_mask);
1034
1035 for (signo = 1; signo < NSIG; signo++)
1036 {
1037 int target_signo = target_signal_from_host (signo);
1038 if (target_signo < numsigs && pass_signals[target_signo])
1039 sigaddset (&pass_mask, signo);
1040 }
1041 }
1042
1043 \f
1044
1045 /* Prototypes for local functions. */
1046 static int stop_wait_callback (struct lwp_info *lp, void *data);
1047 static int linux_thread_alive (ptid_t ptid);
1048 static char *linux_child_pid_to_exec_file (int pid);
1049
1050 \f
1051 /* Convert wait status STATUS to a string. Used for printing debug
1052 messages only. */
1053
1054 static char *
1055 status_to_str (int status)
1056 {
1057 static char buf[64];
1058
1059 if (WIFSTOPPED (status))
1060 {
1061 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1062 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1063 strsignal (SIGTRAP));
1064 else
1065 snprintf (buf, sizeof (buf), "%s (stopped)",
1066 strsignal (WSTOPSIG (status)));
1067 }
1068 else if (WIFSIGNALED (status))
1069 snprintf (buf, sizeof (buf), "%s (terminated)",
1070 strsignal (WTERMSIG (status)));
1071 else
1072 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1073
1074 return buf;
1075 }
1076
1077 /* Remove all LWPs belong to PID from the lwp list. */
1078
1079 static void
1080 purge_lwp_list (int pid)
1081 {
1082 struct lwp_info *lp, *lpprev, *lpnext;
1083
1084 lpprev = NULL;
1085
1086 for (lp = lwp_list; lp; lp = lpnext)
1087 {
1088 lpnext = lp->next;
1089
1090 if (ptid_get_pid (lp->ptid) == pid)
1091 {
1092 if (lp == lwp_list)
1093 lwp_list = lp->next;
1094 else
1095 lpprev->next = lp->next;
1096
1097 xfree (lp);
1098 }
1099 else
1100 lpprev = lp;
1101 }
1102 }
1103
1104 /* Return the number of known LWPs in the tgid given by PID. */
1105
1106 static int
1107 num_lwps (int pid)
1108 {
1109 int count = 0;
1110 struct lwp_info *lp;
1111
1112 for (lp = lwp_list; lp; lp = lp->next)
1113 if (ptid_get_pid (lp->ptid) == pid)
1114 count++;
1115
1116 return count;
1117 }
1118
1119 /* Add the LWP specified by PID to the list. Return a pointer to the
1120 structure describing the new LWP. The LWP should already be stopped
1121 (with an exception for the very first LWP). */
1122
1123 static struct lwp_info *
1124 add_lwp (ptid_t ptid)
1125 {
1126 struct lwp_info *lp;
1127
1128 gdb_assert (is_lwp (ptid));
1129
1130 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1131
1132 memset (lp, 0, sizeof (struct lwp_info));
1133
1134 lp->last_resume_kind = resume_continue;
1135 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1136
1137 lp->ptid = ptid;
1138 lp->core = -1;
1139
1140 lp->next = lwp_list;
1141 lwp_list = lp;
1142
1143 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1144 linux_nat_new_thread (ptid);
1145
1146 return lp;
1147 }
1148
1149 /* Remove the LWP specified by PID from the list. */
1150
1151 static void
1152 delete_lwp (ptid_t ptid)
1153 {
1154 struct lwp_info *lp, *lpprev;
1155
1156 lpprev = NULL;
1157
1158 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1159 if (ptid_equal (lp->ptid, ptid))
1160 break;
1161
1162 if (!lp)
1163 return;
1164
1165 if (lpprev)
1166 lpprev->next = lp->next;
1167 else
1168 lwp_list = lp->next;
1169
1170 xfree (lp);
1171 }
1172
1173 /* Return a pointer to the structure describing the LWP corresponding
1174 to PID. If no corresponding LWP could be found, return NULL. */
1175
1176 static struct lwp_info *
1177 find_lwp_pid (ptid_t ptid)
1178 {
1179 struct lwp_info *lp;
1180 int lwp;
1181
1182 if (is_lwp (ptid))
1183 lwp = GET_LWP (ptid);
1184 else
1185 lwp = GET_PID (ptid);
1186
1187 for (lp = lwp_list; lp; lp = lp->next)
1188 if (lwp == GET_LWP (lp->ptid))
1189 return lp;
1190
1191 return NULL;
1192 }
1193
1194 /* Call CALLBACK with its second argument set to DATA for every LWP in
1195 the list. If CALLBACK returns 1 for a particular LWP, return a
1196 pointer to the structure describing that LWP immediately.
1197 Otherwise return NULL. */
1198
1199 struct lwp_info *
1200 iterate_over_lwps (ptid_t filter,
1201 int (*callback) (struct lwp_info *, void *),
1202 void *data)
1203 {
1204 struct lwp_info *lp, *lpnext;
1205
1206 for (lp = lwp_list; lp; lp = lpnext)
1207 {
1208 lpnext = lp->next;
1209
1210 if (ptid_match (lp->ptid, filter))
1211 {
1212 if ((*callback) (lp, data))
1213 return lp;
1214 }
1215 }
1216
1217 return NULL;
1218 }
1219
1220 /* Update our internal state when changing from one checkpoint to
1221 another indicated by NEW_PTID. We can only switch single-threaded
1222 applications, so we only create one new LWP, and the previous list
1223 is discarded. */
1224
1225 void
1226 linux_nat_switch_fork (ptid_t new_ptid)
1227 {
1228 struct lwp_info *lp;
1229
1230 purge_lwp_list (GET_PID (inferior_ptid));
1231
1232 lp = add_lwp (new_ptid);
1233 lp->stopped = 1;
1234
1235 /* This changes the thread's ptid while preserving the gdb thread
1236 num. Also changes the inferior pid, while preserving the
1237 inferior num. */
1238 thread_change_ptid (inferior_ptid, new_ptid);
1239
1240 /* We've just told GDB core that the thread changed target id, but,
1241 in fact, it really is a different thread, with different register
1242 contents. */
1243 registers_changed ();
1244 }
1245
1246 /* Handle the exit of a single thread LP. */
1247
1248 static void
1249 exit_lwp (struct lwp_info *lp)
1250 {
1251 struct thread_info *th = find_thread_ptid (lp->ptid);
1252
1253 if (th)
1254 {
1255 if (print_thread_events)
1256 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1257
1258 delete_thread (lp->ptid);
1259 }
1260
1261 delete_lwp (lp->ptid);
1262 }
1263
1264 /* Detect `T (stopped)' in `/proc/PID/status'.
1265 Other states including `T (tracing stop)' are reported as false. */
1266
1267 static int
1268 pid_is_stopped (pid_t pid)
1269 {
1270 FILE *status_file;
1271 char buf[100];
1272 int retval = 0;
1273
1274 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1275 status_file = fopen (buf, "r");
1276 if (status_file != NULL)
1277 {
1278 int have_state = 0;
1279
1280 while (fgets (buf, sizeof (buf), status_file))
1281 {
1282 if (strncmp (buf, "State:", 6) == 0)
1283 {
1284 have_state = 1;
1285 break;
1286 }
1287 }
1288 if (have_state && strstr (buf, "T (stopped)") != NULL)
1289 retval = 1;
1290 fclose (status_file);
1291 }
1292 return retval;
1293 }
1294
1295 /* Wait for the LWP specified by LP, which we have just attached to.
1296 Returns a wait status for that LWP, to cache. */
1297
1298 static int
1299 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1300 int *signalled)
1301 {
1302 pid_t new_pid, pid = GET_LWP (ptid);
1303 int status;
1304
1305 if (pid_is_stopped (pid))
1306 {
1307 if (debug_linux_nat)
1308 fprintf_unfiltered (gdb_stdlog,
1309 "LNPAW: Attaching to a stopped process\n");
1310
1311 /* The process is definitely stopped. It is in a job control
1312 stop, unless the kernel predates the TASK_STOPPED /
1313 TASK_TRACED distinction, in which case it might be in a
1314 ptrace stop. Make sure it is in a ptrace stop; from there we
1315 can kill it, signal it, et cetera.
1316
1317 First make sure there is a pending SIGSTOP. Since we are
1318 already attached, the process can not transition from stopped
1319 to running without a PTRACE_CONT; so we know this signal will
1320 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1321 probably already in the queue (unless this kernel is old
1322 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1323 is not an RT signal, it can only be queued once. */
1324 kill_lwp (pid, SIGSTOP);
1325
1326 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1327 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1328 ptrace (PTRACE_CONT, pid, 0, 0);
1329 }
1330
1331 /* Make sure the initial process is stopped. The user-level threads
1332 layer might want to poke around in the inferior, and that won't
1333 work if things haven't stabilized yet. */
1334 new_pid = my_waitpid (pid, &status, 0);
1335 if (new_pid == -1 && errno == ECHILD)
1336 {
1337 if (first)
1338 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1339
1340 /* Try again with __WCLONE to check cloned processes. */
1341 new_pid = my_waitpid (pid, &status, __WCLONE);
1342 *cloned = 1;
1343 }
1344
1345 gdb_assert (pid == new_pid);
1346
1347 if (!WIFSTOPPED (status))
1348 {
1349 /* The pid we tried to attach has apparently just exited. */
1350 if (debug_linux_nat)
1351 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1352 pid, status_to_str (status));
1353 return status;
1354 }
1355
1356 if (WSTOPSIG (status) != SIGSTOP)
1357 {
1358 *signalled = 1;
1359 if (debug_linux_nat)
1360 fprintf_unfiltered (gdb_stdlog,
1361 "LNPAW: Received %s after attaching\n",
1362 status_to_str (status));
1363 }
1364
1365 return status;
1366 }
1367
1368 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1369 the new LWP could not be attached, or 1 if we're already auto
1370 attached to this thread, but haven't processed the
1371 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1372 its existance, without considering it an error. */
1373
1374 int
1375 lin_lwp_attach_lwp (ptid_t ptid)
1376 {
1377 struct lwp_info *lp;
1378 sigset_t prev_mask;
1379 int lwpid;
1380
1381 gdb_assert (is_lwp (ptid));
1382
1383 block_child_signals (&prev_mask);
1384
1385 lp = find_lwp_pid (ptid);
1386 lwpid = GET_LWP (ptid);
1387
1388 /* We assume that we're already attached to any LWP that has an id
1389 equal to the overall process id, and to any LWP that is already
1390 in our list of LWPs. If we're not seeing exit events from threads
1391 and we've had PID wraparound since we last tried to stop all threads,
1392 this assumption might be wrong; fortunately, this is very unlikely
1393 to happen. */
1394 if (lwpid != GET_PID (ptid) && lp == NULL)
1395 {
1396 int status, cloned = 0, signalled = 0;
1397
1398 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1399 {
1400 if (linux_supports_tracefork_flag)
1401 {
1402 /* If we haven't stopped all threads when we get here,
1403 we may have seen a thread listed in thread_db's list,
1404 but not processed the PTRACE_EVENT_CLONE yet. If
1405 that's the case, ignore this new thread, and let
1406 normal event handling discover it later. */
1407 if (in_pid_list_p (stopped_pids, lwpid))
1408 {
1409 /* We've already seen this thread stop, but we
1410 haven't seen the PTRACE_EVENT_CLONE extended
1411 event yet. */
1412 restore_child_signals_mask (&prev_mask);
1413 return 0;
1414 }
1415 else
1416 {
1417 int new_pid;
1418 int status;
1419
1420 /* See if we've got a stop for this new child
1421 pending. If so, we're already attached. */
1422 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1423 if (new_pid == -1 && errno == ECHILD)
1424 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1425 if (new_pid != -1)
1426 {
1427 if (WIFSTOPPED (status))
1428 add_to_pid_list (&stopped_pids, lwpid, status);
1429
1430 restore_child_signals_mask (&prev_mask);
1431 return 1;
1432 }
1433 }
1434 }
1435
1436 /* If we fail to attach to the thread, issue a warning,
1437 but continue. One way this can happen is if thread
1438 creation is interrupted; as of Linux kernel 2.6.19, a
1439 bug may place threads in the thread list and then fail
1440 to create them. */
1441 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1442 safe_strerror (errno));
1443 restore_child_signals_mask (&prev_mask);
1444 return -1;
1445 }
1446
1447 if (debug_linux_nat)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1450 target_pid_to_str (ptid));
1451
1452 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1453 if (!WIFSTOPPED (status))
1454 {
1455 restore_child_signals_mask (&prev_mask);
1456 return 1;
1457 }
1458
1459 lp = add_lwp (ptid);
1460 lp->stopped = 1;
1461 lp->cloned = cloned;
1462 lp->signalled = signalled;
1463 if (WSTOPSIG (status) != SIGSTOP)
1464 {
1465 lp->resumed = 1;
1466 lp->status = status;
1467 }
1468
1469 target_post_attach (GET_LWP (lp->ptid));
1470
1471 if (debug_linux_nat)
1472 {
1473 fprintf_unfiltered (gdb_stdlog,
1474 "LLAL: waitpid %s received %s\n",
1475 target_pid_to_str (ptid),
1476 status_to_str (status));
1477 }
1478 }
1479 else
1480 {
1481 /* We assume that the LWP representing the original process is
1482 already stopped. Mark it as stopped in the data structure
1483 that the GNU/linux ptrace layer uses to keep track of
1484 threads. Note that this won't have already been done since
1485 the main thread will have, we assume, been stopped by an
1486 attach from a different layer. */
1487 if (lp == NULL)
1488 lp = add_lwp (ptid);
1489 lp->stopped = 1;
1490 }
1491
1492 lp->last_resume_kind = resume_stop;
1493 restore_child_signals_mask (&prev_mask);
1494 return 0;
1495 }
1496
1497 static void
1498 linux_nat_create_inferior (struct target_ops *ops,
1499 char *exec_file, char *allargs, char **env,
1500 int from_tty)
1501 {
1502 #ifdef HAVE_PERSONALITY
1503 int personality_orig = 0, personality_set = 0;
1504 #endif /* HAVE_PERSONALITY */
1505
1506 /* The fork_child mechanism is synchronous and calls target_wait, so
1507 we have to mask the async mode. */
1508
1509 #ifdef HAVE_PERSONALITY
1510 if (disable_randomization)
1511 {
1512 errno = 0;
1513 personality_orig = personality (0xffffffff);
1514 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1515 {
1516 personality_set = 1;
1517 personality (personality_orig | ADDR_NO_RANDOMIZE);
1518 }
1519 if (errno != 0 || (personality_set
1520 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1521 warning (_("Error disabling address space randomization: %s"),
1522 safe_strerror (errno));
1523 }
1524 #endif /* HAVE_PERSONALITY */
1525
1526 /* Make sure we report all signals during startup. */
1527 linux_nat_pass_signals (0, NULL);
1528
1529 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1530
1531 #ifdef HAVE_PERSONALITY
1532 if (personality_set)
1533 {
1534 errno = 0;
1535 personality (personality_orig);
1536 if (errno != 0)
1537 warning (_("Error restoring address space randomization: %s"),
1538 safe_strerror (errno));
1539 }
1540 #endif /* HAVE_PERSONALITY */
1541 }
1542
1543 static void
1544 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1545 {
1546 struct lwp_info *lp;
1547 int status;
1548 ptid_t ptid;
1549
1550 /* Make sure we report all signals during attach. */
1551 linux_nat_pass_signals (0, NULL);
1552
1553 linux_ops->to_attach (ops, args, from_tty);
1554
1555 /* The ptrace base target adds the main thread with (pid,0,0)
1556 format. Decorate it with lwp info. */
1557 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1558 thread_change_ptid (inferior_ptid, ptid);
1559
1560 /* Add the initial process as the first LWP to the list. */
1561 lp = add_lwp (ptid);
1562
1563 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1564 &lp->signalled);
1565 if (!WIFSTOPPED (status))
1566 {
1567 if (WIFEXITED (status))
1568 {
1569 int exit_code = WEXITSTATUS (status);
1570
1571 target_terminal_ours ();
1572 target_mourn_inferior ();
1573 if (exit_code == 0)
1574 error (_("Unable to attach: program exited normally."));
1575 else
1576 error (_("Unable to attach: program exited with code %d."),
1577 exit_code);
1578 }
1579 else if (WIFSIGNALED (status))
1580 {
1581 enum target_signal signo;
1582
1583 target_terminal_ours ();
1584 target_mourn_inferior ();
1585
1586 signo = target_signal_from_host (WTERMSIG (status));
1587 error (_("Unable to attach: program terminated with signal "
1588 "%s, %s."),
1589 target_signal_to_name (signo),
1590 target_signal_to_string (signo));
1591 }
1592
1593 internal_error (__FILE__, __LINE__,
1594 _("unexpected status %d for PID %ld"),
1595 status, (long) GET_LWP (ptid));
1596 }
1597
1598 lp->stopped = 1;
1599
1600 /* Save the wait status to report later. */
1601 lp->resumed = 1;
1602 if (debug_linux_nat)
1603 fprintf_unfiltered (gdb_stdlog,
1604 "LNA: waitpid %ld, saving status %s\n",
1605 (long) GET_PID (lp->ptid), status_to_str (status));
1606
1607 lp->status = status;
1608
1609 if (target_can_async_p ())
1610 target_async (inferior_event_handler, 0);
1611 }
1612
1613 /* Get pending status of LP. */
1614 static int
1615 get_pending_status (struct lwp_info *lp, int *status)
1616 {
1617 enum target_signal signo = TARGET_SIGNAL_0;
1618
1619 /* If we paused threads momentarily, we may have stored pending
1620 events in lp->status or lp->waitstatus (see stop_wait_callback),
1621 and GDB core hasn't seen any signal for those threads.
1622 Otherwise, the last signal reported to the core is found in the
1623 thread object's stop_signal.
1624
1625 There's a corner case that isn't handled here at present. Only
1626 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1627 stop_signal make sense as a real signal to pass to the inferior.
1628 Some catchpoint related events, like
1629 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1630 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1631 those traps are debug API (ptrace in our case) related and
1632 induced; the inferior wouldn't see them if it wasn't being
1633 traced. Hence, we should never pass them to the inferior, even
1634 when set to pass state. Since this corner case isn't handled by
1635 infrun.c when proceeding with a signal, for consistency, neither
1636 do we handle it here (or elsewhere in the file we check for
1637 signal pass state). Normally SIGTRAP isn't set to pass state, so
1638 this is really a corner case. */
1639
1640 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1641 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1642 else if (lp->status)
1643 signo = target_signal_from_host (WSTOPSIG (lp->status));
1644 else if (non_stop && !is_executing (lp->ptid))
1645 {
1646 struct thread_info *tp = find_thread_ptid (lp->ptid);
1647
1648 signo = tp->suspend.stop_signal;
1649 }
1650 else if (!non_stop)
1651 {
1652 struct target_waitstatus last;
1653 ptid_t last_ptid;
1654
1655 get_last_target_status (&last_ptid, &last);
1656
1657 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1658 {
1659 struct thread_info *tp = find_thread_ptid (lp->ptid);
1660
1661 signo = tp->suspend.stop_signal;
1662 }
1663 }
1664
1665 *status = 0;
1666
1667 if (signo == TARGET_SIGNAL_0)
1668 {
1669 if (debug_linux_nat)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "GPT: lwp %s has no pending signal\n",
1672 target_pid_to_str (lp->ptid));
1673 }
1674 else if (!signal_pass_state (signo))
1675 {
1676 if (debug_linux_nat)
1677 fprintf_unfiltered (gdb_stdlog,
1678 "GPT: lwp %s had signal %s, "
1679 "but it is in no pass state\n",
1680 target_pid_to_str (lp->ptid),
1681 target_signal_to_string (signo));
1682 }
1683 else
1684 {
1685 *status = W_STOPCODE (target_signal_to_host (signo));
1686
1687 if (debug_linux_nat)
1688 fprintf_unfiltered (gdb_stdlog,
1689 "GPT: lwp %s has pending signal %s\n",
1690 target_pid_to_str (lp->ptid),
1691 target_signal_to_string (signo));
1692 }
1693
1694 return 0;
1695 }
1696
1697 static int
1698 detach_callback (struct lwp_info *lp, void *data)
1699 {
1700 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1701
1702 if (debug_linux_nat && lp->status)
1703 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1704 strsignal (WSTOPSIG (lp->status)),
1705 target_pid_to_str (lp->ptid));
1706
1707 /* If there is a pending SIGSTOP, get rid of it. */
1708 if (lp->signalled)
1709 {
1710 if (debug_linux_nat)
1711 fprintf_unfiltered (gdb_stdlog,
1712 "DC: Sending SIGCONT to %s\n",
1713 target_pid_to_str (lp->ptid));
1714
1715 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1716 lp->signalled = 0;
1717 }
1718
1719 /* We don't actually detach from the LWP that has an id equal to the
1720 overall process id just yet. */
1721 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1722 {
1723 int status = 0;
1724
1725 /* Pass on any pending signal for this LWP. */
1726 get_pending_status (lp, &status);
1727
1728 errno = 0;
1729 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1730 WSTOPSIG (status)) < 0)
1731 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1732 safe_strerror (errno));
1733
1734 if (debug_linux_nat)
1735 fprintf_unfiltered (gdb_stdlog,
1736 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1737 target_pid_to_str (lp->ptid),
1738 strsignal (WSTOPSIG (status)));
1739
1740 delete_lwp (lp->ptid);
1741 }
1742
1743 return 0;
1744 }
1745
1746 static void
1747 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1748 {
1749 int pid;
1750 int status;
1751 struct lwp_info *main_lwp;
1752
1753 pid = GET_PID (inferior_ptid);
1754
1755 if (target_can_async_p ())
1756 linux_nat_async (NULL, 0);
1757
1758 /* Stop all threads before detaching. ptrace requires that the
1759 thread is stopped to sucessfully detach. */
1760 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1761 /* ... and wait until all of them have reported back that
1762 they're no longer running. */
1763 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1764
1765 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1766
1767 /* Only the initial process should be left right now. */
1768 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1769
1770 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1771
1772 /* Pass on any pending signal for the last LWP. */
1773 if ((args == NULL || *args == '\0')
1774 && get_pending_status (main_lwp, &status) != -1
1775 && WIFSTOPPED (status))
1776 {
1777 /* Put the signal number in ARGS so that inf_ptrace_detach will
1778 pass it along with PTRACE_DETACH. */
1779 args = alloca (8);
1780 sprintf (args, "%d", (int) WSTOPSIG (status));
1781 if (debug_linux_nat)
1782 fprintf_unfiltered (gdb_stdlog,
1783 "LND: Sending signal %s to %s\n",
1784 args,
1785 target_pid_to_str (main_lwp->ptid));
1786 }
1787
1788 delete_lwp (main_lwp->ptid);
1789
1790 if (forks_exist_p ())
1791 {
1792 /* Multi-fork case. The current inferior_ptid is being detached
1793 from, but there are other viable forks to debug. Detach from
1794 the current fork, and context-switch to the first
1795 available. */
1796 linux_fork_detach (args, from_tty);
1797
1798 if (non_stop && target_can_async_p ())
1799 target_async (inferior_event_handler, 0);
1800 }
1801 else
1802 linux_ops->to_detach (ops, args, from_tty);
1803 }
1804
1805 /* Resume LP. */
1806
1807 static void
1808 resume_lwp (struct lwp_info *lp, int step)
1809 {
1810 if (lp->stopped)
1811 {
1812 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1813
1814 if (inf->vfork_child != NULL)
1815 {
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "RC: Not resuming %s (vfork parent)\n",
1819 target_pid_to_str (lp->ptid));
1820 }
1821 else if (lp->status == 0
1822 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1823 {
1824 if (debug_linux_nat)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1827 target_pid_to_str (lp->ptid));
1828
1829 linux_ops->to_resume (linux_ops,
1830 pid_to_ptid (GET_LWP (lp->ptid)),
1831 step, TARGET_SIGNAL_0);
1832 lp->stopped = 0;
1833 lp->step = step;
1834 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1835 lp->stopped_by_watchpoint = 0;
1836 }
1837 else
1838 {
1839 if (debug_linux_nat)
1840 fprintf_unfiltered (gdb_stdlog,
1841 "RC: Not resuming sibling %s (has pending)\n",
1842 target_pid_to_str (lp->ptid));
1843 }
1844 }
1845 else
1846 {
1847 if (debug_linux_nat)
1848 fprintf_unfiltered (gdb_stdlog,
1849 "RC: Not resuming sibling %s (not stopped)\n",
1850 target_pid_to_str (lp->ptid));
1851 }
1852 }
1853
1854 static int
1855 resume_callback (struct lwp_info *lp, void *data)
1856 {
1857 resume_lwp (lp, 0);
1858 return 0;
1859 }
1860
1861 static int
1862 resume_clear_callback (struct lwp_info *lp, void *data)
1863 {
1864 lp->resumed = 0;
1865 lp->last_resume_kind = resume_stop;
1866 return 0;
1867 }
1868
1869 static int
1870 resume_set_callback (struct lwp_info *lp, void *data)
1871 {
1872 lp->resumed = 1;
1873 lp->last_resume_kind = resume_continue;
1874 return 0;
1875 }
1876
1877 static void
1878 linux_nat_resume (struct target_ops *ops,
1879 ptid_t ptid, int step, enum target_signal signo)
1880 {
1881 sigset_t prev_mask;
1882 struct lwp_info *lp;
1883 int resume_many;
1884
1885 if (debug_linux_nat)
1886 fprintf_unfiltered (gdb_stdlog,
1887 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1888 step ? "step" : "resume",
1889 target_pid_to_str (ptid),
1890 (signo != TARGET_SIGNAL_0
1891 ? strsignal (target_signal_to_host (signo)) : "0"),
1892 target_pid_to_str (inferior_ptid));
1893
1894 block_child_signals (&prev_mask);
1895
1896 /* A specific PTID means `step only this process id'. */
1897 resume_many = (ptid_equal (minus_one_ptid, ptid)
1898 || ptid_is_pid (ptid));
1899
1900 /* Mark the lwps we're resuming as resumed. */
1901 iterate_over_lwps (ptid, resume_set_callback, NULL);
1902
1903 /* See if it's the current inferior that should be handled
1904 specially. */
1905 if (resume_many)
1906 lp = find_lwp_pid (inferior_ptid);
1907 else
1908 lp = find_lwp_pid (ptid);
1909 gdb_assert (lp != NULL);
1910
1911 /* Remember if we're stepping. */
1912 lp->step = step;
1913 lp->last_resume_kind = step ? resume_step : resume_continue;
1914
1915 /* If we have a pending wait status for this thread, there is no
1916 point in resuming the process. But first make sure that
1917 linux_nat_wait won't preemptively handle the event - we
1918 should never take this short-circuit if we are going to
1919 leave LP running, since we have skipped resuming all the
1920 other threads. This bit of code needs to be synchronized
1921 with linux_nat_wait. */
1922
1923 if (lp->status && WIFSTOPPED (lp->status))
1924 {
1925 if (!lp->step
1926 && WSTOPSIG (lp->status)
1927 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1928 {
1929 if (debug_linux_nat)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "LLR: Not short circuiting for ignored "
1932 "status 0x%x\n", lp->status);
1933
1934 /* FIXME: What should we do if we are supposed to continue
1935 this thread with a signal? */
1936 gdb_assert (signo == TARGET_SIGNAL_0);
1937 signo = target_signal_from_host (WSTOPSIG (lp->status));
1938 lp->status = 0;
1939 }
1940 }
1941
1942 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1943 {
1944 /* FIXME: What should we do if we are supposed to continue
1945 this thread with a signal? */
1946 gdb_assert (signo == TARGET_SIGNAL_0);
1947
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "LLR: Short circuiting for status 0x%x\n",
1951 lp->status);
1952
1953 restore_child_signals_mask (&prev_mask);
1954 if (target_can_async_p ())
1955 {
1956 target_async (inferior_event_handler, 0);
1957 /* Tell the event loop we have something to process. */
1958 async_file_mark ();
1959 }
1960 return;
1961 }
1962
1963 /* Mark LWP as not stopped to prevent it from being continued by
1964 resume_callback. */
1965 lp->stopped = 0;
1966
1967 if (resume_many)
1968 iterate_over_lwps (ptid, resume_callback, NULL);
1969
1970 /* Convert to something the lower layer understands. */
1971 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1972
1973 linux_ops->to_resume (linux_ops, ptid, step, signo);
1974 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1975 lp->stopped_by_watchpoint = 0;
1976
1977 if (debug_linux_nat)
1978 fprintf_unfiltered (gdb_stdlog,
1979 "LLR: %s %s, %s (resume event thread)\n",
1980 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1981 target_pid_to_str (ptid),
1982 (signo != TARGET_SIGNAL_0
1983 ? strsignal (target_signal_to_host (signo)) : "0"));
1984
1985 restore_child_signals_mask (&prev_mask);
1986 if (target_can_async_p ())
1987 target_async (inferior_event_handler, 0);
1988 }
1989
1990 /* Send a signal to an LWP. */
1991
1992 static int
1993 kill_lwp (int lwpid, int signo)
1994 {
1995 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1996 fails, then we are not using nptl threads and we should be using kill. */
1997
1998 #ifdef HAVE_TKILL_SYSCALL
1999 {
2000 static int tkill_failed;
2001
2002 if (!tkill_failed)
2003 {
2004 int ret;
2005
2006 errno = 0;
2007 ret = syscall (__NR_tkill, lwpid, signo);
2008 if (errno != ENOSYS)
2009 return ret;
2010 tkill_failed = 1;
2011 }
2012 }
2013 #endif
2014
2015 return kill (lwpid, signo);
2016 }
2017
2018 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2019 event, check if the core is interested in it: if not, ignore the
2020 event, and keep waiting; otherwise, we need to toggle the LWP's
2021 syscall entry/exit status, since the ptrace event itself doesn't
2022 indicate it, and report the trap to higher layers. */
2023
2024 static int
2025 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2026 {
2027 struct target_waitstatus *ourstatus = &lp->waitstatus;
2028 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2029 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2030
2031 if (stopping)
2032 {
2033 /* If we're stopping threads, there's a SIGSTOP pending, which
2034 makes it so that the LWP reports an immediate syscall return,
2035 followed by the SIGSTOP. Skip seeing that "return" using
2036 PTRACE_CONT directly, and let stop_wait_callback collect the
2037 SIGSTOP. Later when the thread is resumed, a new syscall
2038 entry event. If we didn't do this (and returned 0), we'd
2039 leave a syscall entry pending, and our caller, by using
2040 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2041 itself. Later, when the user re-resumes this LWP, we'd see
2042 another syscall entry event and we'd mistake it for a return.
2043
2044 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2045 (leaving immediately with LWP->signalled set, without issuing
2046 a PTRACE_CONT), it would still be problematic to leave this
2047 syscall enter pending, as later when the thread is resumed,
2048 it would then see the same syscall exit mentioned above,
2049 followed by the delayed SIGSTOP, while the syscall didn't
2050 actually get to execute. It seems it would be even more
2051 confusing to the user. */
2052
2053 if (debug_linux_nat)
2054 fprintf_unfiltered (gdb_stdlog,
2055 "LHST: ignoring syscall %d "
2056 "for LWP %ld (stopping threads), "
2057 "resuming with PTRACE_CONT for SIGSTOP\n",
2058 syscall_number,
2059 GET_LWP (lp->ptid));
2060
2061 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2062 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2063 return 1;
2064 }
2065
2066 if (catch_syscall_enabled ())
2067 {
2068 /* Always update the entry/return state, even if this particular
2069 syscall isn't interesting to the core now. In async mode,
2070 the user could install a new catchpoint for this syscall
2071 between syscall enter/return, and we'll need to know to
2072 report a syscall return if that happens. */
2073 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2074 ? TARGET_WAITKIND_SYSCALL_RETURN
2075 : TARGET_WAITKIND_SYSCALL_ENTRY);
2076
2077 if (catching_syscall_number (syscall_number))
2078 {
2079 /* Alright, an event to report. */
2080 ourstatus->kind = lp->syscall_state;
2081 ourstatus->value.syscall_number = syscall_number;
2082
2083 if (debug_linux_nat)
2084 fprintf_unfiltered (gdb_stdlog,
2085 "LHST: stopping for %s of syscall %d"
2086 " for LWP %ld\n",
2087 lp->syscall_state
2088 == TARGET_WAITKIND_SYSCALL_ENTRY
2089 ? "entry" : "return",
2090 syscall_number,
2091 GET_LWP (lp->ptid));
2092 return 0;
2093 }
2094
2095 if (debug_linux_nat)
2096 fprintf_unfiltered (gdb_stdlog,
2097 "LHST: ignoring %s of syscall %d "
2098 "for LWP %ld\n",
2099 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2100 ? "entry" : "return",
2101 syscall_number,
2102 GET_LWP (lp->ptid));
2103 }
2104 else
2105 {
2106 /* If we had been syscall tracing, and hence used PT_SYSCALL
2107 before on this LWP, it could happen that the user removes all
2108 syscall catchpoints before we get to process this event.
2109 There are two noteworthy issues here:
2110
2111 - When stopped at a syscall entry event, resuming with
2112 PT_STEP still resumes executing the syscall and reports a
2113 syscall return.
2114
2115 - Only PT_SYSCALL catches syscall enters. If we last
2116 single-stepped this thread, then this event can't be a
2117 syscall enter. If we last single-stepped this thread, this
2118 has to be a syscall exit.
2119
2120 The points above mean that the next resume, be it PT_STEP or
2121 PT_CONTINUE, can not trigger a syscall trace event. */
2122 if (debug_linux_nat)
2123 fprintf_unfiltered (gdb_stdlog,
2124 "LHST: caught syscall event "
2125 "with no syscall catchpoints."
2126 " %d for LWP %ld, ignoring\n",
2127 syscall_number,
2128 GET_LWP (lp->ptid));
2129 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2130 }
2131
2132 /* The core isn't interested in this event. For efficiency, avoid
2133 stopping all threads only to have the core resume them all again.
2134 Since we're not stopping threads, if we're still syscall tracing
2135 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2136 subsequent syscall. Simply resume using the inf-ptrace layer,
2137 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2138
2139 /* Note that gdbarch_get_syscall_number may access registers, hence
2140 fill a regcache. */
2141 registers_changed ();
2142 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2143 lp->step, TARGET_SIGNAL_0);
2144 return 1;
2145 }
2146
2147 /* Handle a GNU/Linux extended wait response. If we see a clone
2148 event, we need to add the new LWP to our list (and not report the
2149 trap to higher layers). This function returns non-zero if the
2150 event should be ignored and we should wait again. If STOPPING is
2151 true, the new LWP remains stopped, otherwise it is continued. */
2152
2153 static int
2154 linux_handle_extended_wait (struct lwp_info *lp, int status,
2155 int stopping)
2156 {
2157 int pid = GET_LWP (lp->ptid);
2158 struct target_waitstatus *ourstatus = &lp->waitstatus;
2159 int event = status >> 16;
2160
2161 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2162 || event == PTRACE_EVENT_CLONE)
2163 {
2164 unsigned long new_pid;
2165 int ret;
2166
2167 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2168
2169 /* If we haven't already seen the new PID stop, wait for it now. */
2170 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2171 {
2172 /* The new child has a pending SIGSTOP. We can't affect it until it
2173 hits the SIGSTOP, but we're already attached. */
2174 ret = my_waitpid (new_pid, &status,
2175 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2176 if (ret == -1)
2177 perror_with_name (_("waiting for new child"));
2178 else if (ret != new_pid)
2179 internal_error (__FILE__, __LINE__,
2180 _("wait returned unexpected PID %d"), ret);
2181 else if (!WIFSTOPPED (status))
2182 internal_error (__FILE__, __LINE__,
2183 _("wait returned unexpected status 0x%x"), status);
2184 }
2185
2186 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2187
2188 if (event == PTRACE_EVENT_FORK
2189 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2190 {
2191 /* Handle checkpointing by linux-fork.c here as a special
2192 case. We don't want the follow-fork-mode or 'catch fork'
2193 to interfere with this. */
2194
2195 /* This won't actually modify the breakpoint list, but will
2196 physically remove the breakpoints from the child. */
2197 detach_breakpoints (new_pid);
2198
2199 /* Retain child fork in ptrace (stopped) state. */
2200 if (!find_fork_pid (new_pid))
2201 add_fork (new_pid);
2202
2203 /* Report as spurious, so that infrun doesn't want to follow
2204 this fork. We're actually doing an infcall in
2205 linux-fork.c. */
2206 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2207 linux_enable_event_reporting (pid_to_ptid (new_pid));
2208
2209 /* Report the stop to the core. */
2210 return 0;
2211 }
2212
2213 if (event == PTRACE_EVENT_FORK)
2214 ourstatus->kind = TARGET_WAITKIND_FORKED;
2215 else if (event == PTRACE_EVENT_VFORK)
2216 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2217 else
2218 {
2219 struct lwp_info *new_lp;
2220
2221 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2222
2223 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2224 new_lp->cloned = 1;
2225 new_lp->stopped = 1;
2226
2227 if (WSTOPSIG (status) != SIGSTOP)
2228 {
2229 /* This can happen if someone starts sending signals to
2230 the new thread before it gets a chance to run, which
2231 have a lower number than SIGSTOP (e.g. SIGUSR1).
2232 This is an unlikely case, and harder to handle for
2233 fork / vfork than for clone, so we do not try - but
2234 we handle it for clone events here. We'll send
2235 the other signal on to the thread below. */
2236
2237 new_lp->signalled = 1;
2238 }
2239 else
2240 {
2241 struct thread_info *tp;
2242
2243 /* When we stop for an event in some other thread, and
2244 pull the thread list just as this thread has cloned,
2245 we'll have seen the new thread in the thread_db list
2246 before handling the CLONE event (glibc's
2247 pthread_create adds the new thread to the thread list
2248 before clone'ing, and has the kernel fill in the
2249 thread's tid on the clone call with
2250 CLONE_PARENT_SETTID). If that happened, and the core
2251 had requested the new thread to stop, we'll have
2252 killed it with SIGSTOP. But since SIGSTOP is not an
2253 RT signal, it can only be queued once. We need to be
2254 careful to not resume the LWP if we wanted it to
2255 stop. In that case, we'll leave the SIGSTOP pending.
2256 It will later be reported as TARGET_SIGNAL_0. */
2257 tp = find_thread_ptid (new_lp->ptid);
2258 if (tp != NULL && tp->stop_requested)
2259 new_lp->last_resume_kind = resume_stop;
2260 else
2261 status = 0;
2262 }
2263
2264 if (non_stop)
2265 {
2266 /* Add the new thread to GDB's lists as soon as possible
2267 so that:
2268
2269 1) the frontend doesn't have to wait for a stop to
2270 display them, and,
2271
2272 2) we tag it with the correct running state. */
2273
2274 /* If the thread_db layer is active, let it know about
2275 this new thread, and add it to GDB's list. */
2276 if (!thread_db_attach_lwp (new_lp->ptid))
2277 {
2278 /* We're not using thread_db. Add it to GDB's
2279 list. */
2280 target_post_attach (GET_LWP (new_lp->ptid));
2281 add_thread (new_lp->ptid);
2282 }
2283
2284 if (!stopping)
2285 {
2286 set_running (new_lp->ptid, 1);
2287 set_executing (new_lp->ptid, 1);
2288 }
2289 }
2290
2291 if (status != 0)
2292 {
2293 /* We created NEW_LP so it cannot yet contain STATUS. */
2294 gdb_assert (new_lp->status == 0);
2295
2296 /* Save the wait status to report later. */
2297 if (debug_linux_nat)
2298 fprintf_unfiltered (gdb_stdlog,
2299 "LHEW: waitpid of new LWP %ld, "
2300 "saving status %s\n",
2301 (long) GET_LWP (new_lp->ptid),
2302 status_to_str (status));
2303 new_lp->status = status;
2304 }
2305
2306 /* Note the need to use the low target ops to resume, to
2307 handle resuming with PT_SYSCALL if we have syscall
2308 catchpoints. */
2309 if (!stopping)
2310 {
2311 new_lp->resumed = 1;
2312
2313 if (status == 0)
2314 {
2315 if (debug_linux_nat)
2316 fprintf_unfiltered (gdb_stdlog,
2317 "LHEW: resuming new LWP %ld\n",
2318 GET_LWP (new_lp->ptid));
2319 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2320 0, TARGET_SIGNAL_0);
2321 new_lp->stopped = 0;
2322 }
2323 }
2324
2325 if (debug_linux_nat)
2326 fprintf_unfiltered (gdb_stdlog,
2327 "LHEW: Got clone event "
2328 "from LWP %ld, resuming\n",
2329 GET_LWP (lp->ptid));
2330 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2331 0, TARGET_SIGNAL_0);
2332
2333 return 1;
2334 }
2335
2336 return 0;
2337 }
2338
2339 if (event == PTRACE_EVENT_EXEC)
2340 {
2341 if (debug_linux_nat)
2342 fprintf_unfiltered (gdb_stdlog,
2343 "LHEW: Got exec event from LWP %ld\n",
2344 GET_LWP (lp->ptid));
2345
2346 ourstatus->kind = TARGET_WAITKIND_EXECD;
2347 ourstatus->value.execd_pathname
2348 = xstrdup (linux_child_pid_to_exec_file (pid));
2349
2350 return 0;
2351 }
2352
2353 if (event == PTRACE_EVENT_VFORK_DONE)
2354 {
2355 if (current_inferior ()->waiting_for_vfork_done)
2356 {
2357 if (debug_linux_nat)
2358 fprintf_unfiltered (gdb_stdlog,
2359 "LHEW: Got expected PTRACE_EVENT_"
2360 "VFORK_DONE from LWP %ld: stopping\n",
2361 GET_LWP (lp->ptid));
2362
2363 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2364 return 0;
2365 }
2366
2367 if (debug_linux_nat)
2368 fprintf_unfiltered (gdb_stdlog,
2369 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2370 "from LWP %ld: resuming\n",
2371 GET_LWP (lp->ptid));
2372 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2373 return 1;
2374 }
2375
2376 internal_error (__FILE__, __LINE__,
2377 _("unknown ptrace event %d"), event);
2378 }
2379
2380 /* Return non-zero if LWP is a zombie. */
2381
2382 static int
2383 linux_lwp_is_zombie (long lwp)
2384 {
2385 char buffer[MAXPATHLEN];
2386 FILE *procfile;
2387 int retval = 0;
2388
2389 xsnprintf (buffer, sizeof (buffer), "/proc/%ld/status", lwp);
2390 procfile = fopen (buffer, "r");
2391 if (procfile == NULL)
2392 {
2393 warning (_("unable to open /proc file '%s'"), buffer);
2394 return 0;
2395 }
2396 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
2397 if (strcmp (buffer, "State:\tZ (zombie)\n") == 0)
2398 {
2399 retval = 1;
2400 break;
2401 }
2402 fclose (procfile);
2403
2404 return retval;
2405 }
2406
2407 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2408 exited. */
2409
2410 static int
2411 wait_lwp (struct lwp_info *lp)
2412 {
2413 pid_t pid;
2414 int status = 0;
2415 int thread_dead = 0;
2416 sigset_t prev_mask;
2417
2418 gdb_assert (!lp->stopped);
2419 gdb_assert (lp->status == 0);
2420
2421 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2422 block_child_signals (&prev_mask);
2423
2424 for (;;)
2425 {
2426 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2427 was right and we should just call sigsuspend. */
2428
2429 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2430 if (pid == -1 && errno == ECHILD)
2431 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2432 if (pid == -1 && errno == ECHILD)
2433 {
2434 /* The thread has previously exited. We need to delete it
2435 now because, for some vendor 2.4 kernels with NPTL
2436 support backported, there won't be an exit event unless
2437 it is the main thread. 2.6 kernels will report an exit
2438 event for each thread that exits, as expected. */
2439 thread_dead = 1;
2440 if (debug_linux_nat)
2441 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2442 target_pid_to_str (lp->ptid));
2443 }
2444 if (pid != 0)
2445 break;
2446
2447 /* Bugs 10970, 12702.
2448 Thread group leader may have exited in which case we'll lock up in
2449 waitpid if there are other threads, even if they are all zombies too.
2450 Basically, we're not supposed to use waitpid this way.
2451 __WCLONE is not applicable for the leader so we can't use that.
2452 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2453 process; it gets ESRCH both for the zombie and for running processes.
2454
2455 As a workaround, check if we're waiting for the thread group leader and
2456 if it's a zombie, and avoid calling waitpid if it is.
2457
2458 This is racy, what if the tgl becomes a zombie right after we check?
2459 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2460 waiting waitpid but the linux_lwp_is_zombie is safe this way. */
2461
2462 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2463 && linux_lwp_is_zombie (GET_LWP (lp->ptid)))
2464 {
2465 thread_dead = 1;
2466 if (debug_linux_nat)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "WL: Thread group leader %s vanished.\n",
2469 target_pid_to_str (lp->ptid));
2470 break;
2471 }
2472
2473 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2474 get invoked despite our caller had them intentionally blocked by
2475 block_child_signals. This is sensitive only to the loop of
2476 linux_nat_wait_1 and there if we get called my_waitpid gets called
2477 again before it gets to sigsuspend so we can safely let the handlers
2478 get executed here. */
2479
2480 sigsuspend (&suspend_mask);
2481 }
2482
2483 restore_child_signals_mask (&prev_mask);
2484
2485 if (!thread_dead)
2486 {
2487 gdb_assert (pid == GET_LWP (lp->ptid));
2488
2489 if (debug_linux_nat)
2490 {
2491 fprintf_unfiltered (gdb_stdlog,
2492 "WL: waitpid %s received %s\n",
2493 target_pid_to_str (lp->ptid),
2494 status_to_str (status));
2495 }
2496
2497 /* Check if the thread has exited. */
2498 if (WIFEXITED (status) || WIFSIGNALED (status))
2499 {
2500 thread_dead = 1;
2501 if (debug_linux_nat)
2502 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2503 target_pid_to_str (lp->ptid));
2504 }
2505 }
2506
2507 if (thread_dead)
2508 {
2509 exit_lwp (lp);
2510 return 0;
2511 }
2512
2513 gdb_assert (WIFSTOPPED (status));
2514
2515 /* Handle GNU/Linux's syscall SIGTRAPs. */
2516 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2517 {
2518 /* No longer need the sysgood bit. The ptrace event ends up
2519 recorded in lp->waitstatus if we care for it. We can carry
2520 on handling the event like a regular SIGTRAP from here
2521 on. */
2522 status = W_STOPCODE (SIGTRAP);
2523 if (linux_handle_syscall_trap (lp, 1))
2524 return wait_lwp (lp);
2525 }
2526
2527 /* Handle GNU/Linux's extended waitstatus for trace events. */
2528 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2529 {
2530 if (debug_linux_nat)
2531 fprintf_unfiltered (gdb_stdlog,
2532 "WL: Handling extended status 0x%06x\n",
2533 status);
2534 if (linux_handle_extended_wait (lp, status, 1))
2535 return wait_lwp (lp);
2536 }
2537
2538 return status;
2539 }
2540
2541 /* Save the most recent siginfo for LP. This is currently only called
2542 for SIGTRAP; some ports use the si_addr field for
2543 target_stopped_data_address. In the future, it may also be used to
2544 restore the siginfo of requeued signals. */
2545
2546 static void
2547 save_siginfo (struct lwp_info *lp)
2548 {
2549 errno = 0;
2550 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2551 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2552
2553 if (errno != 0)
2554 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2555 }
2556
2557 /* Send a SIGSTOP to LP. */
2558
2559 static int
2560 stop_callback (struct lwp_info *lp, void *data)
2561 {
2562 if (!lp->stopped && !lp->signalled)
2563 {
2564 int ret;
2565
2566 if (debug_linux_nat)
2567 {
2568 fprintf_unfiltered (gdb_stdlog,
2569 "SC: kill %s **<SIGSTOP>**\n",
2570 target_pid_to_str (lp->ptid));
2571 }
2572 errno = 0;
2573 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2574 if (debug_linux_nat)
2575 {
2576 fprintf_unfiltered (gdb_stdlog,
2577 "SC: lwp kill %d %s\n",
2578 ret,
2579 errno ? safe_strerror (errno) : "ERRNO-OK");
2580 }
2581
2582 lp->signalled = 1;
2583 gdb_assert (lp->status == 0);
2584 }
2585
2586 return 0;
2587 }
2588
2589 /* Return non-zero if LWP PID has a pending SIGINT. */
2590
2591 static int
2592 linux_nat_has_pending_sigint (int pid)
2593 {
2594 sigset_t pending, blocked, ignored;
2595
2596 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2597
2598 if (sigismember (&pending, SIGINT)
2599 && !sigismember (&ignored, SIGINT))
2600 return 1;
2601
2602 return 0;
2603 }
2604
2605 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2606
2607 static int
2608 set_ignore_sigint (struct lwp_info *lp, void *data)
2609 {
2610 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2611 flag to consume the next one. */
2612 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2613 && WSTOPSIG (lp->status) == SIGINT)
2614 lp->status = 0;
2615 else
2616 lp->ignore_sigint = 1;
2617
2618 return 0;
2619 }
2620
2621 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2622 This function is called after we know the LWP has stopped; if the LWP
2623 stopped before the expected SIGINT was delivered, then it will never have
2624 arrived. Also, if the signal was delivered to a shared queue and consumed
2625 by a different thread, it will never be delivered to this LWP. */
2626
2627 static void
2628 maybe_clear_ignore_sigint (struct lwp_info *lp)
2629 {
2630 if (!lp->ignore_sigint)
2631 return;
2632
2633 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2634 {
2635 if (debug_linux_nat)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "MCIS: Clearing bogus flag for %s\n",
2638 target_pid_to_str (lp->ptid));
2639 lp->ignore_sigint = 0;
2640 }
2641 }
2642
2643 /* Fetch the possible triggered data watchpoint info and store it in
2644 LP.
2645
2646 On some archs, like x86, that use debug registers to set
2647 watchpoints, it's possible that the way to know which watched
2648 address trapped, is to check the register that is used to select
2649 which address to watch. Problem is, between setting the watchpoint
2650 and reading back which data address trapped, the user may change
2651 the set of watchpoints, and, as a consequence, GDB changes the
2652 debug registers in the inferior. To avoid reading back a stale
2653 stopped-data-address when that happens, we cache in LP the fact
2654 that a watchpoint trapped, and the corresponding data address, as
2655 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2656 registers meanwhile, we have the cached data we can rely on. */
2657
2658 static void
2659 save_sigtrap (struct lwp_info *lp)
2660 {
2661 struct cleanup *old_chain;
2662
2663 if (linux_ops->to_stopped_by_watchpoint == NULL)
2664 {
2665 lp->stopped_by_watchpoint = 0;
2666 return;
2667 }
2668
2669 old_chain = save_inferior_ptid ();
2670 inferior_ptid = lp->ptid;
2671
2672 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2673
2674 if (lp->stopped_by_watchpoint)
2675 {
2676 if (linux_ops->to_stopped_data_address != NULL)
2677 lp->stopped_data_address_p =
2678 linux_ops->to_stopped_data_address (&current_target,
2679 &lp->stopped_data_address);
2680 else
2681 lp->stopped_data_address_p = 0;
2682 }
2683
2684 do_cleanups (old_chain);
2685 }
2686
2687 /* See save_sigtrap. */
2688
2689 static int
2690 linux_nat_stopped_by_watchpoint (void)
2691 {
2692 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2693
2694 gdb_assert (lp != NULL);
2695
2696 return lp->stopped_by_watchpoint;
2697 }
2698
2699 static int
2700 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2701 {
2702 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2703
2704 gdb_assert (lp != NULL);
2705
2706 *addr_p = lp->stopped_data_address;
2707
2708 return lp->stopped_data_address_p;
2709 }
2710
2711 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2712
2713 static int
2714 sigtrap_is_event (int status)
2715 {
2716 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2717 }
2718
2719 /* SIGTRAP-like events recognizer. */
2720
2721 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2722
2723 /* Check for SIGTRAP-like events in LP. */
2724
2725 static int
2726 linux_nat_lp_status_is_event (struct lwp_info *lp)
2727 {
2728 /* We check for lp->waitstatus in addition to lp->status, because we can
2729 have pending process exits recorded in lp->status
2730 and W_EXITCODE(0,0) == 0. We should probably have an additional
2731 lp->status_p flag. */
2732
2733 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2734 && linux_nat_status_is_event (lp->status));
2735 }
2736
2737 /* Set alternative SIGTRAP-like events recognizer. If
2738 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2739 applied. */
2740
2741 void
2742 linux_nat_set_status_is_event (struct target_ops *t,
2743 int (*status_is_event) (int status))
2744 {
2745 linux_nat_status_is_event = status_is_event;
2746 }
2747
2748 /* Wait until LP is stopped. */
2749
2750 static int
2751 stop_wait_callback (struct lwp_info *lp, void *data)
2752 {
2753 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2754
2755 /* If this is a vfork parent, bail out, it is not going to report
2756 any SIGSTOP until the vfork is done with. */
2757 if (inf->vfork_child != NULL)
2758 return 0;
2759
2760 if (!lp->stopped)
2761 {
2762 int status;
2763
2764 status = wait_lwp (lp);
2765 if (status == 0)
2766 return 0;
2767
2768 if (lp->ignore_sigint && WIFSTOPPED (status)
2769 && WSTOPSIG (status) == SIGINT)
2770 {
2771 lp->ignore_sigint = 0;
2772
2773 errno = 0;
2774 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2775 if (debug_linux_nat)
2776 fprintf_unfiltered (gdb_stdlog,
2777 "PTRACE_CONT %s, 0, 0 (%s) "
2778 "(discarding SIGINT)\n",
2779 target_pid_to_str (lp->ptid),
2780 errno ? safe_strerror (errno) : "OK");
2781
2782 return stop_wait_callback (lp, NULL);
2783 }
2784
2785 maybe_clear_ignore_sigint (lp);
2786
2787 if (WSTOPSIG (status) != SIGSTOP)
2788 {
2789 if (linux_nat_status_is_event (status))
2790 {
2791 /* If a LWP other than the LWP that we're reporting an
2792 event for has hit a GDB breakpoint (as opposed to
2793 some random trap signal), then just arrange for it to
2794 hit it again later. We don't keep the SIGTRAP status
2795 and don't forward the SIGTRAP signal to the LWP. We
2796 will handle the current event, eventually we will
2797 resume all LWPs, and this one will get its breakpoint
2798 trap again.
2799
2800 If we do not do this, then we run the risk that the
2801 user will delete or disable the breakpoint, but the
2802 thread will have already tripped on it. */
2803
2804 /* Save the trap's siginfo in case we need it later. */
2805 save_siginfo (lp);
2806
2807 save_sigtrap (lp);
2808
2809 /* Now resume this LWP and get the SIGSTOP event. */
2810 errno = 0;
2811 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2812 if (debug_linux_nat)
2813 {
2814 fprintf_unfiltered (gdb_stdlog,
2815 "PTRACE_CONT %s, 0, 0 (%s)\n",
2816 target_pid_to_str (lp->ptid),
2817 errno ? safe_strerror (errno) : "OK");
2818
2819 fprintf_unfiltered (gdb_stdlog,
2820 "SWC: Candidate SIGTRAP event in %s\n",
2821 target_pid_to_str (lp->ptid));
2822 }
2823 /* Hold this event/waitstatus while we check to see if
2824 there are any more (we still want to get that SIGSTOP). */
2825 stop_wait_callback (lp, NULL);
2826
2827 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2828 there's another event, throw it back into the
2829 queue. */
2830 if (lp->status)
2831 {
2832 if (debug_linux_nat)
2833 fprintf_unfiltered (gdb_stdlog,
2834 "SWC: kill %s, %s\n",
2835 target_pid_to_str (lp->ptid),
2836 status_to_str ((int) status));
2837 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2838 }
2839
2840 /* Save the sigtrap event. */
2841 lp->status = status;
2842 return 0;
2843 }
2844 else
2845 {
2846 /* The thread was stopped with a signal other than
2847 SIGSTOP, and didn't accidentally trip a breakpoint. */
2848
2849 if (debug_linux_nat)
2850 {
2851 fprintf_unfiltered (gdb_stdlog,
2852 "SWC: Pending event %s in %s\n",
2853 status_to_str ((int) status),
2854 target_pid_to_str (lp->ptid));
2855 }
2856 /* Now resume this LWP and get the SIGSTOP event. */
2857 errno = 0;
2858 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2859 if (debug_linux_nat)
2860 fprintf_unfiltered (gdb_stdlog,
2861 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2862 target_pid_to_str (lp->ptid),
2863 errno ? safe_strerror (errno) : "OK");
2864
2865 /* Hold this event/waitstatus while we check to see if
2866 there are any more (we still want to get that SIGSTOP). */
2867 stop_wait_callback (lp, NULL);
2868
2869 /* If the lp->status field is still empty, use it to
2870 hold this event. If not, then this event must be
2871 returned to the event queue of the LWP. */
2872 if (lp->status)
2873 {
2874 if (debug_linux_nat)
2875 {
2876 fprintf_unfiltered (gdb_stdlog,
2877 "SWC: kill %s, %s\n",
2878 target_pid_to_str (lp->ptid),
2879 status_to_str ((int) status));
2880 }
2881 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2882 }
2883 else
2884 lp->status = status;
2885 return 0;
2886 }
2887 }
2888 else
2889 {
2890 /* We caught the SIGSTOP that we intended to catch, so
2891 there's no SIGSTOP pending. */
2892 lp->stopped = 1;
2893 lp->signalled = 0;
2894 }
2895 }
2896
2897 return 0;
2898 }
2899
2900 /* Return non-zero if LP has a wait status pending. */
2901
2902 static int
2903 status_callback (struct lwp_info *lp, void *data)
2904 {
2905 /* Only report a pending wait status if we pretend that this has
2906 indeed been resumed. */
2907 if (!lp->resumed)
2908 return 0;
2909
2910 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2911 {
2912 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2913 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2914 0', so a clean process exit can not be stored pending in
2915 lp->status, it is indistinguishable from
2916 no-pending-status. */
2917 return 1;
2918 }
2919
2920 if (lp->status != 0)
2921 return 1;
2922
2923 return 0;
2924 }
2925
2926 /* Return non-zero if LP isn't stopped. */
2927
2928 static int
2929 running_callback (struct lwp_info *lp, void *data)
2930 {
2931 return (!lp->stopped
2932 || ((lp->status != 0
2933 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2934 && lp->resumed));
2935 }
2936
2937 /* Count the LWP's that have had events. */
2938
2939 static int
2940 count_events_callback (struct lwp_info *lp, void *data)
2941 {
2942 int *count = data;
2943
2944 gdb_assert (count != NULL);
2945
2946 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2947 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2948 (*count)++;
2949
2950 return 0;
2951 }
2952
2953 /* Select the LWP (if any) that is currently being single-stepped. */
2954
2955 static int
2956 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2957 {
2958 if (lp->last_resume_kind == resume_step
2959 && lp->status != 0)
2960 return 1;
2961 else
2962 return 0;
2963 }
2964
2965 /* Select the Nth LWP that has had a SIGTRAP event. */
2966
2967 static int
2968 select_event_lwp_callback (struct lwp_info *lp, void *data)
2969 {
2970 int *selector = data;
2971
2972 gdb_assert (selector != NULL);
2973
2974 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2975 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2976 if ((*selector)-- == 0)
2977 return 1;
2978
2979 return 0;
2980 }
2981
2982 static int
2983 cancel_breakpoint (struct lwp_info *lp)
2984 {
2985 /* Arrange for a breakpoint to be hit again later. We don't keep
2986 the SIGTRAP status and don't forward the SIGTRAP signal to the
2987 LWP. We will handle the current event, eventually we will resume
2988 this LWP, and this breakpoint will trap again.
2989
2990 If we do not do this, then we run the risk that the user will
2991 delete or disable the breakpoint, but the LWP will have already
2992 tripped on it. */
2993
2994 struct regcache *regcache = get_thread_regcache (lp->ptid);
2995 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2996 CORE_ADDR pc;
2997
2998 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2999 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3000 {
3001 if (debug_linux_nat)
3002 fprintf_unfiltered (gdb_stdlog,
3003 "CB: Push back breakpoint for %s\n",
3004 target_pid_to_str (lp->ptid));
3005
3006 /* Back up the PC if necessary. */
3007 if (gdbarch_decr_pc_after_break (gdbarch))
3008 regcache_write_pc (regcache, pc);
3009
3010 return 1;
3011 }
3012 return 0;
3013 }
3014
3015 static int
3016 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3017 {
3018 struct lwp_info *event_lp = data;
3019
3020 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3021 if (lp == event_lp)
3022 return 0;
3023
3024 /* If a LWP other than the LWP that we're reporting an event for has
3025 hit a GDB breakpoint (as opposed to some random trap signal),
3026 then just arrange for it to hit it again later. We don't keep
3027 the SIGTRAP status and don't forward the SIGTRAP signal to the
3028 LWP. We will handle the current event, eventually we will resume
3029 all LWPs, and this one will get its breakpoint trap again.
3030
3031 If we do not do this, then we run the risk that the user will
3032 delete or disable the breakpoint, but the LWP will have already
3033 tripped on it. */
3034
3035 if (linux_nat_lp_status_is_event (lp)
3036 && cancel_breakpoint (lp))
3037 /* Throw away the SIGTRAP. */
3038 lp->status = 0;
3039
3040 return 0;
3041 }
3042
3043 /* Select one LWP out of those that have events pending. */
3044
3045 static void
3046 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3047 {
3048 int num_events = 0;
3049 int random_selector;
3050 struct lwp_info *event_lp;
3051
3052 /* Record the wait status for the original LWP. */
3053 (*orig_lp)->status = *status;
3054
3055 /* Give preference to any LWP that is being single-stepped. */
3056 event_lp = iterate_over_lwps (filter,
3057 select_singlestep_lwp_callback, NULL);
3058 if (event_lp != NULL)
3059 {
3060 if (debug_linux_nat)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "SEL: Select single-step %s\n",
3063 target_pid_to_str (event_lp->ptid));
3064 }
3065 else
3066 {
3067 /* No single-stepping LWP. Select one at random, out of those
3068 which have had SIGTRAP events. */
3069
3070 /* First see how many SIGTRAP events we have. */
3071 iterate_over_lwps (filter, count_events_callback, &num_events);
3072
3073 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3074 random_selector = (int)
3075 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3076
3077 if (debug_linux_nat && num_events > 1)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3080 num_events, random_selector);
3081
3082 event_lp = iterate_over_lwps (filter,
3083 select_event_lwp_callback,
3084 &random_selector);
3085 }
3086
3087 if (event_lp != NULL)
3088 {
3089 /* Switch the event LWP. */
3090 *orig_lp = event_lp;
3091 *status = event_lp->status;
3092 }
3093
3094 /* Flush the wait status for the event LWP. */
3095 (*orig_lp)->status = 0;
3096 }
3097
3098 /* Return non-zero if LP has been resumed. */
3099
3100 static int
3101 resumed_callback (struct lwp_info *lp, void *data)
3102 {
3103 return lp->resumed;
3104 }
3105
3106 /* Stop an active thread, verify it still exists, then resume it. */
3107
3108 static int
3109 stop_and_resume_callback (struct lwp_info *lp, void *data)
3110 {
3111 if (!lp->stopped)
3112 {
3113 enum resume_kind last_resume_kind = lp->last_resume_kind;
3114 ptid_t ptid = lp->ptid;
3115
3116 stop_callback (lp, NULL);
3117 stop_wait_callback (lp, NULL);
3118
3119 /* Resume if the lwp still exists, and the core wanted it
3120 running. */
3121 if (last_resume_kind != resume_stop)
3122 {
3123 lp = find_lwp_pid (ptid);
3124 if (lp)
3125 resume_lwp (lp, lp->step);
3126 }
3127 }
3128 return 0;
3129 }
3130
3131 /* Check if we should go on and pass this event to common code.
3132 Return the affected lwp if we are, or NULL otherwise. */
3133 static struct lwp_info *
3134 linux_nat_filter_event (int lwpid, int status, int options)
3135 {
3136 struct lwp_info *lp;
3137
3138 lp = find_lwp_pid (pid_to_ptid (lwpid));
3139
3140 /* Check for stop events reported by a process we didn't already
3141 know about - anything not already in our LWP list.
3142
3143 If we're expecting to receive stopped processes after
3144 fork, vfork, and clone events, then we'll just add the
3145 new one to our list and go back to waiting for the event
3146 to be reported - the stopped process might be returned
3147 from waitpid before or after the event is. */
3148 if (WIFSTOPPED (status) && !lp)
3149 {
3150 add_to_pid_list (&stopped_pids, lwpid, status);
3151 return NULL;
3152 }
3153
3154 /* Make sure we don't report an event for the exit of an LWP not in
3155 our list, i.e. not part of the current process. This can happen
3156 if we detach from a program we originally forked and then it
3157 exits. */
3158 if (!WIFSTOPPED (status) && !lp)
3159 return NULL;
3160
3161 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3162 CLONE_PTRACE processes which do not use the thread library -
3163 otherwise we wouldn't find the new LWP this way. That doesn't
3164 currently work, and the following code is currently unreachable
3165 due to the two blocks above. If it's fixed some day, this code
3166 should be broken out into a function so that we can also pick up
3167 LWPs from the new interface. */
3168 if (!lp)
3169 {
3170 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3171 if (options & __WCLONE)
3172 lp->cloned = 1;
3173
3174 gdb_assert (WIFSTOPPED (status)
3175 && WSTOPSIG (status) == SIGSTOP);
3176 lp->signalled = 1;
3177
3178 if (!in_thread_list (inferior_ptid))
3179 {
3180 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3181 GET_PID (inferior_ptid));
3182 add_thread (inferior_ptid);
3183 }
3184
3185 add_thread (lp->ptid);
3186 }
3187
3188 /* Handle GNU/Linux's syscall SIGTRAPs. */
3189 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3190 {
3191 /* No longer need the sysgood bit. The ptrace event ends up
3192 recorded in lp->waitstatus if we care for it. We can carry
3193 on handling the event like a regular SIGTRAP from here
3194 on. */
3195 status = W_STOPCODE (SIGTRAP);
3196 if (linux_handle_syscall_trap (lp, 0))
3197 return NULL;
3198 }
3199
3200 /* Handle GNU/Linux's extended waitstatus for trace events. */
3201 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3202 {
3203 if (debug_linux_nat)
3204 fprintf_unfiltered (gdb_stdlog,
3205 "LLW: Handling extended status 0x%06x\n",
3206 status);
3207 if (linux_handle_extended_wait (lp, status, 0))
3208 return NULL;
3209 }
3210
3211 if (linux_nat_status_is_event (status))
3212 {
3213 /* Save the trap's siginfo in case we need it later. */
3214 save_siginfo (lp);
3215
3216 save_sigtrap (lp);
3217 }
3218
3219 /* Check if the thread has exited. */
3220 if ((WIFEXITED (status) || WIFSIGNALED (status))
3221 && num_lwps (GET_PID (lp->ptid)) > 1)
3222 {
3223 /* If this is the main thread, we must stop all threads and verify
3224 if they are still alive. This is because in the nptl thread model
3225 on Linux 2.4, there is no signal issued for exiting LWPs
3226 other than the main thread. We only get the main thread exit
3227 signal once all child threads have already exited. If we
3228 stop all the threads and use the stop_wait_callback to check
3229 if they have exited we can determine whether this signal
3230 should be ignored or whether it means the end of the debugged
3231 application, regardless of which threading model is being
3232 used. */
3233 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3234 {
3235 lp->stopped = 1;
3236 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3237 stop_and_resume_callback, NULL);
3238 }
3239
3240 if (debug_linux_nat)
3241 fprintf_unfiltered (gdb_stdlog,
3242 "LLW: %s exited.\n",
3243 target_pid_to_str (lp->ptid));
3244
3245 if (num_lwps (GET_PID (lp->ptid)) > 1)
3246 {
3247 /* If there is at least one more LWP, then the exit signal
3248 was not the end of the debugged application and should be
3249 ignored. */
3250 exit_lwp (lp);
3251 return NULL;
3252 }
3253 }
3254
3255 /* Check if the current LWP has previously exited. In the nptl
3256 thread model, LWPs other than the main thread do not issue
3257 signals when they exit so we must check whenever the thread has
3258 stopped. A similar check is made in stop_wait_callback(). */
3259 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3260 {
3261 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3262
3263 if (debug_linux_nat)
3264 fprintf_unfiltered (gdb_stdlog,
3265 "LLW: %s exited.\n",
3266 target_pid_to_str (lp->ptid));
3267
3268 exit_lwp (lp);
3269
3270 /* Make sure there is at least one thread running. */
3271 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3272
3273 /* Discard the event. */
3274 return NULL;
3275 }
3276
3277 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3278 an attempt to stop an LWP. */
3279 if (lp->signalled
3280 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3281 {
3282 if (debug_linux_nat)
3283 fprintf_unfiltered (gdb_stdlog,
3284 "LLW: Delayed SIGSTOP caught for %s.\n",
3285 target_pid_to_str (lp->ptid));
3286
3287 lp->signalled = 0;
3288
3289 if (lp->last_resume_kind != resume_stop)
3290 {
3291 /* This is a delayed SIGSTOP. */
3292
3293 registers_changed ();
3294
3295 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3296 lp->step, TARGET_SIGNAL_0);
3297 if (debug_linux_nat)
3298 fprintf_unfiltered (gdb_stdlog,
3299 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3300 lp->step ?
3301 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3302 target_pid_to_str (lp->ptid));
3303
3304 lp->stopped = 0;
3305 gdb_assert (lp->resumed);
3306
3307 /* Discard the event. */
3308 return NULL;
3309 }
3310 }
3311
3312 /* Make sure we don't report a SIGINT that we have already displayed
3313 for another thread. */
3314 if (lp->ignore_sigint
3315 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3316 {
3317 if (debug_linux_nat)
3318 fprintf_unfiltered (gdb_stdlog,
3319 "LLW: Delayed SIGINT caught for %s.\n",
3320 target_pid_to_str (lp->ptid));
3321
3322 /* This is a delayed SIGINT. */
3323 lp->ignore_sigint = 0;
3324
3325 registers_changed ();
3326 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3327 lp->step, TARGET_SIGNAL_0);
3328 if (debug_linux_nat)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3331 lp->step ?
3332 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3333 target_pid_to_str (lp->ptid));
3334
3335 lp->stopped = 0;
3336 gdb_assert (lp->resumed);
3337
3338 /* Discard the event. */
3339 return NULL;
3340 }
3341
3342 /* An interesting event. */
3343 gdb_assert (lp);
3344 lp->status = status;
3345 return lp;
3346 }
3347
3348 static ptid_t
3349 linux_nat_wait_1 (struct target_ops *ops,
3350 ptid_t ptid, struct target_waitstatus *ourstatus,
3351 int target_options)
3352 {
3353 static sigset_t prev_mask;
3354 enum resume_kind last_resume_kind;
3355 struct lwp_info *lp = NULL;
3356 int options = 0;
3357 int status = 0;
3358 pid_t pid;
3359
3360 if (debug_linux_nat)
3361 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3362
3363 /* The first time we get here after starting a new inferior, we may
3364 not have added it to the LWP list yet - this is the earliest
3365 moment at which we know its PID. */
3366 if (ptid_is_pid (inferior_ptid))
3367 {
3368 /* Upgrade the main thread's ptid. */
3369 thread_change_ptid (inferior_ptid,
3370 BUILD_LWP (GET_PID (inferior_ptid),
3371 GET_PID (inferior_ptid)));
3372
3373 lp = add_lwp (inferior_ptid);
3374 lp->resumed = 1;
3375 }
3376
3377 /* Make sure SIGCHLD is blocked. */
3378 block_child_signals (&prev_mask);
3379
3380 if (ptid_equal (ptid, minus_one_ptid))
3381 pid = -1;
3382 else if (ptid_is_pid (ptid))
3383 /* A request to wait for a specific tgid. This is not possible
3384 with waitpid, so instead, we wait for any child, and leave
3385 children we're not interested in right now with a pending
3386 status to report later. */
3387 pid = -1;
3388 else
3389 pid = GET_LWP (ptid);
3390
3391 retry:
3392 lp = NULL;
3393 status = 0;
3394
3395 /* Make sure that of those LWPs we want to get an event from, there
3396 is at least one LWP that has been resumed. If there's none, just
3397 bail out. The core may just be flushing asynchronously all
3398 events. */
3399 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3400 {
3401 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3402
3403 if (debug_linux_nat)
3404 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3405
3406 restore_child_signals_mask (&prev_mask);
3407 return minus_one_ptid;
3408 }
3409
3410 /* First check if there is a LWP with a wait status pending. */
3411 if (pid == -1)
3412 {
3413 /* Any LWP that's been resumed will do. */
3414 lp = iterate_over_lwps (ptid, status_callback, NULL);
3415 if (lp)
3416 {
3417 if (debug_linux_nat && lp->status)
3418 fprintf_unfiltered (gdb_stdlog,
3419 "LLW: Using pending wait status %s for %s.\n",
3420 status_to_str (lp->status),
3421 target_pid_to_str (lp->ptid));
3422 }
3423
3424 /* But if we don't find one, we'll have to wait, and check both
3425 cloned and uncloned processes. We start with the cloned
3426 processes. */
3427 options = __WCLONE | WNOHANG;
3428 }
3429 else if (is_lwp (ptid))
3430 {
3431 if (debug_linux_nat)
3432 fprintf_unfiltered (gdb_stdlog,
3433 "LLW: Waiting for specific LWP %s.\n",
3434 target_pid_to_str (ptid));
3435
3436 /* We have a specific LWP to check. */
3437 lp = find_lwp_pid (ptid);
3438 gdb_assert (lp);
3439
3440 if (debug_linux_nat && lp->status)
3441 fprintf_unfiltered (gdb_stdlog,
3442 "LLW: Using pending wait status %s for %s.\n",
3443 status_to_str (lp->status),
3444 target_pid_to_str (lp->ptid));
3445
3446 /* If we have to wait, take into account whether PID is a cloned
3447 process or not. And we have to convert it to something that
3448 the layer beneath us can understand. */
3449 options = lp->cloned ? __WCLONE : 0;
3450 pid = GET_LWP (ptid);
3451
3452 /* We check for lp->waitstatus in addition to lp->status,
3453 because we can have pending process exits recorded in
3454 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3455 an additional lp->status_p flag. */
3456 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3457 lp = NULL;
3458 }
3459
3460 if (lp && lp->signalled && lp->last_resume_kind != resume_stop)
3461 {
3462 /* A pending SIGSTOP may interfere with the normal stream of
3463 events. In a typical case where interference is a problem,
3464 we have a SIGSTOP signal pending for LWP A while
3465 single-stepping it, encounter an event in LWP B, and take the
3466 pending SIGSTOP while trying to stop LWP A. After processing
3467 the event in LWP B, LWP A is continued, and we'll never see
3468 the SIGTRAP associated with the last time we were
3469 single-stepping LWP A. */
3470
3471 /* Resume the thread. It should halt immediately returning the
3472 pending SIGSTOP. */
3473 registers_changed ();
3474 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3475 lp->step, TARGET_SIGNAL_0);
3476 if (debug_linux_nat)
3477 fprintf_unfiltered (gdb_stdlog,
3478 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3479 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3480 target_pid_to_str (lp->ptid));
3481 lp->stopped = 0;
3482 gdb_assert (lp->resumed);
3483
3484 /* Catch the pending SIGSTOP. */
3485 status = lp->status;
3486 lp->status = 0;
3487
3488 stop_wait_callback (lp, NULL);
3489
3490 /* If the lp->status field isn't empty, we caught another signal
3491 while flushing the SIGSTOP. Return it back to the event
3492 queue of the LWP, as we already have an event to handle. */
3493 if (lp->status)
3494 {
3495 if (debug_linux_nat)
3496 fprintf_unfiltered (gdb_stdlog,
3497 "LLW: kill %s, %s\n",
3498 target_pid_to_str (lp->ptid),
3499 status_to_str (lp->status));
3500 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3501 }
3502
3503 lp->status = status;
3504 }
3505
3506 if (!target_can_async_p ())
3507 {
3508 /* Causes SIGINT to be passed on to the attached process. */
3509 set_sigint_trap ();
3510 }
3511
3512 /* Translate generic target_wait options into waitpid options. */
3513 if (target_options & TARGET_WNOHANG)
3514 options |= WNOHANG;
3515
3516 while (lp == NULL)
3517 {
3518 pid_t lwpid;
3519
3520 lwpid = my_waitpid (pid, &status, options);
3521
3522 if (lwpid > 0)
3523 {
3524 gdb_assert (pid == -1 || lwpid == pid);
3525
3526 if (debug_linux_nat)
3527 {
3528 fprintf_unfiltered (gdb_stdlog,
3529 "LLW: waitpid %ld received %s\n",
3530 (long) lwpid, status_to_str (status));
3531 }
3532
3533 lp = linux_nat_filter_event (lwpid, status, options);
3534
3535 /* STATUS is now no longer valid, use LP->STATUS instead. */
3536 status = 0;
3537
3538 if (lp
3539 && ptid_is_pid (ptid)
3540 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3541 {
3542 gdb_assert (lp->resumed);
3543
3544 if (debug_linux_nat)
3545 fprintf (stderr,
3546 "LWP %ld got an event %06x, leaving pending.\n",
3547 ptid_get_lwp (lp->ptid), lp->status);
3548
3549 if (WIFSTOPPED (lp->status))
3550 {
3551 if (WSTOPSIG (lp->status) != SIGSTOP)
3552 {
3553 /* Cancel breakpoint hits. The breakpoint may
3554 be removed before we fetch events from this
3555 process to report to the core. It is best
3556 not to assume the moribund breakpoints
3557 heuristic always handles these cases --- it
3558 could be too many events go through to the
3559 core before this one is handled. All-stop
3560 always cancels breakpoint hits in all
3561 threads. */
3562 if (non_stop
3563 && linux_nat_lp_status_is_event (lp)
3564 && cancel_breakpoint (lp))
3565 {
3566 /* Throw away the SIGTRAP. */
3567 lp->status = 0;
3568
3569 if (debug_linux_nat)
3570 fprintf (stderr,
3571 "LLW: LWP %ld hit a breakpoint while"
3572 " waiting for another process;"
3573 " cancelled it\n",
3574 ptid_get_lwp (lp->ptid));
3575 }
3576 lp->stopped = 1;
3577 }
3578 else
3579 {
3580 lp->stopped = 1;
3581 lp->signalled = 0;
3582 }
3583 }
3584 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3585 {
3586 if (debug_linux_nat)
3587 fprintf (stderr,
3588 "Process %ld exited while stopping LWPs\n",
3589 ptid_get_lwp (lp->ptid));
3590
3591 /* This was the last lwp in the process. Since
3592 events are serialized to GDB core, and we can't
3593 report this one right now, but GDB core and the
3594 other target layers will want to be notified
3595 about the exit code/signal, leave the status
3596 pending for the next time we're able to report
3597 it. */
3598
3599 /* Prevent trying to stop this thread again. We'll
3600 never try to resume it because it has a pending
3601 status. */
3602 lp->stopped = 1;
3603
3604 /* Dead LWP's aren't expected to reported a pending
3605 sigstop. */
3606 lp->signalled = 0;
3607
3608 /* Store the pending event in the waitstatus as
3609 well, because W_EXITCODE(0,0) == 0. */
3610 store_waitstatus (&lp->waitstatus, lp->status);
3611 }
3612
3613 /* Keep looking. */
3614 lp = NULL;
3615 continue;
3616 }
3617
3618 if (lp)
3619 break;
3620 else
3621 {
3622 if (pid == -1)
3623 {
3624 /* waitpid did return something. Restart over. */
3625 options |= __WCLONE;
3626 }
3627 continue;
3628 }
3629 }
3630
3631 if (pid == -1)
3632 {
3633 /* Alternate between checking cloned and uncloned processes. */
3634 options ^= __WCLONE;
3635
3636 /* And every time we have checked both:
3637 In async mode, return to event loop;
3638 In sync mode, suspend waiting for a SIGCHLD signal. */
3639 if (options & __WCLONE)
3640 {
3641 if (target_options & TARGET_WNOHANG)
3642 {
3643 /* No interesting event. */
3644 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3645
3646 if (debug_linux_nat)
3647 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3648
3649 restore_child_signals_mask (&prev_mask);
3650 return minus_one_ptid;
3651 }
3652
3653 sigsuspend (&suspend_mask);
3654 }
3655 }
3656 else if (target_options & TARGET_WNOHANG)
3657 {
3658 /* No interesting event for PID yet. */
3659 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3660
3661 if (debug_linux_nat)
3662 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3663
3664 restore_child_signals_mask (&prev_mask);
3665 return minus_one_ptid;
3666 }
3667
3668 /* We shouldn't end up here unless we want to try again. */
3669 gdb_assert (lp == NULL);
3670 }
3671
3672 if (!target_can_async_p ())
3673 clear_sigint_trap ();
3674
3675 gdb_assert (lp);
3676
3677 status = lp->status;
3678 lp->status = 0;
3679
3680 /* Don't report signals that GDB isn't interested in, such as
3681 signals that are neither printed nor stopped upon. Stopping all
3682 threads can be a bit time-consuming so if we want decent
3683 performance with heavily multi-threaded programs, especially when
3684 they're using a high frequency timer, we'd better avoid it if we
3685 can. */
3686
3687 if (WIFSTOPPED (status))
3688 {
3689 enum target_signal signo = target_signal_from_host (WSTOPSIG (status));
3690
3691 /* When using hardware single-step, we need to report every signal.
3692 Otherwise, signals in pass_mask may be short-circuited. */
3693 if (!lp->step
3694 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3695 {
3696 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3697 here? It is not clear we should. GDB may not expect
3698 other threads to run. On the other hand, not resuming
3699 newly attached threads may cause an unwanted delay in
3700 getting them running. */
3701 registers_changed ();
3702 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3703 lp->step, signo);
3704 if (debug_linux_nat)
3705 fprintf_unfiltered (gdb_stdlog,
3706 "LLW: %s %s, %s (preempt 'handle')\n",
3707 lp->step ?
3708 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3709 target_pid_to_str (lp->ptid),
3710 (signo != TARGET_SIGNAL_0
3711 ? strsignal (target_signal_to_host (signo))
3712 : "0"));
3713 lp->stopped = 0;
3714 goto retry;
3715 }
3716
3717 if (!non_stop)
3718 {
3719 /* Only do the below in all-stop, as we currently use SIGINT
3720 to implement target_stop (see linux_nat_stop) in
3721 non-stop. */
3722 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3723 {
3724 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3725 forwarded to the entire process group, that is, all LWPs
3726 will receive it - unless they're using CLONE_THREAD to
3727 share signals. Since we only want to report it once, we
3728 mark it as ignored for all LWPs except this one. */
3729 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3730 set_ignore_sigint, NULL);
3731 lp->ignore_sigint = 0;
3732 }
3733 else
3734 maybe_clear_ignore_sigint (lp);
3735 }
3736 }
3737
3738 /* This LWP is stopped now. */
3739 lp->stopped = 1;
3740
3741 if (debug_linux_nat)
3742 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3743 status_to_str (status), target_pid_to_str (lp->ptid));
3744
3745 if (!non_stop)
3746 {
3747 /* Now stop all other LWP's ... */
3748 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3749
3750 /* ... and wait until all of them have reported back that
3751 they're no longer running. */
3752 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3753
3754 /* If we're not waiting for a specific LWP, choose an event LWP
3755 from among those that have had events. Giving equal priority
3756 to all LWPs that have had events helps prevent
3757 starvation. */
3758 if (pid == -1)
3759 select_event_lwp (ptid, &lp, &status);
3760
3761 /* Now that we've selected our final event LWP, cancel any
3762 breakpoints in other LWPs that have hit a GDB breakpoint.
3763 See the comment in cancel_breakpoints_callback to find out
3764 why. */
3765 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3766
3767 /* We'll need this to determine whether to report a SIGSTOP as
3768 TARGET_WAITKIND_0. Need to take a copy because
3769 resume_clear_callback clears it. */
3770 last_resume_kind = lp->last_resume_kind;
3771
3772 /* In all-stop, from the core's perspective, all LWPs are now
3773 stopped until a new resume action is sent over. */
3774 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3775 }
3776 else
3777 {
3778 /* See above. */
3779 last_resume_kind = lp->last_resume_kind;
3780 resume_clear_callback (lp, NULL);
3781 }
3782
3783 if (linux_nat_status_is_event (status))
3784 {
3785 if (debug_linux_nat)
3786 fprintf_unfiltered (gdb_stdlog,
3787 "LLW: trap ptid is %s.\n",
3788 target_pid_to_str (lp->ptid));
3789 }
3790
3791 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3792 {
3793 *ourstatus = lp->waitstatus;
3794 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3795 }
3796 else
3797 store_waitstatus (ourstatus, status);
3798
3799 if (debug_linux_nat)
3800 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3801
3802 restore_child_signals_mask (&prev_mask);
3803
3804 if (last_resume_kind == resume_stop
3805 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3806 && WSTOPSIG (status) == SIGSTOP)
3807 {
3808 /* A thread that has been requested to stop by GDB with
3809 target_stop, and it stopped cleanly, so report as SIG0. The
3810 use of SIGSTOP is an implementation detail. */
3811 ourstatus->value.sig = TARGET_SIGNAL_0;
3812 }
3813
3814 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3815 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3816 lp->core = -1;
3817 else
3818 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3819
3820 return lp->ptid;
3821 }
3822
3823 /* Resume LWPs that are currently stopped without any pending status
3824 to report, but are resumed from the core's perspective. */
3825
3826 static int
3827 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3828 {
3829 ptid_t *wait_ptid_p = data;
3830
3831 if (lp->stopped
3832 && lp->resumed
3833 && lp->status == 0
3834 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3835 {
3836 gdb_assert (is_executing (lp->ptid));
3837
3838 /* Don't bother if there's a breakpoint at PC that we'd hit
3839 immediately, and we're not waiting for this LWP. */
3840 if (!ptid_match (lp->ptid, *wait_ptid_p))
3841 {
3842 struct regcache *regcache = get_thread_regcache (lp->ptid);
3843 CORE_ADDR pc = regcache_read_pc (regcache);
3844
3845 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3846 return 0;
3847 }
3848
3849 if (debug_linux_nat)
3850 fprintf_unfiltered (gdb_stdlog,
3851 "RSRL: resuming stopped-resumed LWP %s\n",
3852 target_pid_to_str (lp->ptid));
3853
3854 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3855 lp->step, TARGET_SIGNAL_0);
3856 lp->stopped = 0;
3857 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3858 lp->stopped_by_watchpoint = 0;
3859 }
3860
3861 return 0;
3862 }
3863
3864 static ptid_t
3865 linux_nat_wait (struct target_ops *ops,
3866 ptid_t ptid, struct target_waitstatus *ourstatus,
3867 int target_options)
3868 {
3869 ptid_t event_ptid;
3870
3871 if (debug_linux_nat)
3872 fprintf_unfiltered (gdb_stdlog,
3873 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3874
3875 /* Flush the async file first. */
3876 if (target_can_async_p ())
3877 async_file_flush ();
3878
3879 /* Resume LWPs that are currently stopped without any pending status
3880 to report, but are resumed from the core's perspective. LWPs get
3881 in this state if we find them stopping at a time we're not
3882 interested in reporting the event (target_wait on a
3883 specific_process, for example, see linux_nat_wait_1), and
3884 meanwhile the event became uninteresting. Don't bother resuming
3885 LWPs we're not going to wait for if they'd stop immediately. */
3886 if (non_stop)
3887 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3888
3889 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3890
3891 /* If we requested any event, and something came out, assume there
3892 may be more. If we requested a specific lwp or process, also
3893 assume there may be more. */
3894 if (target_can_async_p ()
3895 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3896 || !ptid_equal (ptid, minus_one_ptid)))
3897 async_file_mark ();
3898
3899 /* Get ready for the next event. */
3900 if (target_can_async_p ())
3901 target_async (inferior_event_handler, 0);
3902
3903 return event_ptid;
3904 }
3905
3906 static int
3907 kill_callback (struct lwp_info *lp, void *data)
3908 {
3909 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3910
3911 errno = 0;
3912 kill (GET_LWP (lp->ptid), SIGKILL);
3913 if (debug_linux_nat)
3914 fprintf_unfiltered (gdb_stdlog,
3915 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3916 target_pid_to_str (lp->ptid),
3917 errno ? safe_strerror (errno) : "OK");
3918
3919 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3920
3921 errno = 0;
3922 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3923 if (debug_linux_nat)
3924 fprintf_unfiltered (gdb_stdlog,
3925 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3926 target_pid_to_str (lp->ptid),
3927 errno ? safe_strerror (errno) : "OK");
3928
3929 return 0;
3930 }
3931
3932 static int
3933 kill_wait_callback (struct lwp_info *lp, void *data)
3934 {
3935 pid_t pid;
3936
3937 /* We must make sure that there are no pending events (delayed
3938 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3939 program doesn't interfere with any following debugging session. */
3940
3941 /* For cloned processes we must check both with __WCLONE and
3942 without, since the exit status of a cloned process isn't reported
3943 with __WCLONE. */
3944 if (lp->cloned)
3945 {
3946 do
3947 {
3948 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3949 if (pid != (pid_t) -1)
3950 {
3951 if (debug_linux_nat)
3952 fprintf_unfiltered (gdb_stdlog,
3953 "KWC: wait %s received unknown.\n",
3954 target_pid_to_str (lp->ptid));
3955 /* The Linux kernel sometimes fails to kill a thread
3956 completely after PTRACE_KILL; that goes from the stop
3957 point in do_fork out to the one in
3958 get_signal_to_deliever and waits again. So kill it
3959 again. */
3960 kill_callback (lp, NULL);
3961 }
3962 }
3963 while (pid == GET_LWP (lp->ptid));
3964
3965 gdb_assert (pid == -1 && errno == ECHILD);
3966 }
3967
3968 do
3969 {
3970 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3971 if (pid != (pid_t) -1)
3972 {
3973 if (debug_linux_nat)
3974 fprintf_unfiltered (gdb_stdlog,
3975 "KWC: wait %s received unk.\n",
3976 target_pid_to_str (lp->ptid));
3977 /* See the call to kill_callback above. */
3978 kill_callback (lp, NULL);
3979 }
3980 }
3981 while (pid == GET_LWP (lp->ptid));
3982
3983 gdb_assert (pid == -1 && errno == ECHILD);
3984 return 0;
3985 }
3986
3987 static void
3988 linux_nat_kill (struct target_ops *ops)
3989 {
3990 struct target_waitstatus last;
3991 ptid_t last_ptid;
3992 int status;
3993
3994 /* If we're stopped while forking and we haven't followed yet,
3995 kill the other task. We need to do this first because the
3996 parent will be sleeping if this is a vfork. */
3997
3998 get_last_target_status (&last_ptid, &last);
3999
4000 if (last.kind == TARGET_WAITKIND_FORKED
4001 || last.kind == TARGET_WAITKIND_VFORKED)
4002 {
4003 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4004 wait (&status);
4005 }
4006
4007 if (forks_exist_p ())
4008 linux_fork_killall ();
4009 else
4010 {
4011 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4012
4013 /* Stop all threads before killing them, since ptrace requires
4014 that the thread is stopped to sucessfully PTRACE_KILL. */
4015 iterate_over_lwps (ptid, stop_callback, NULL);
4016 /* ... and wait until all of them have reported back that
4017 they're no longer running. */
4018 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4019
4020 /* Kill all LWP's ... */
4021 iterate_over_lwps (ptid, kill_callback, NULL);
4022
4023 /* ... and wait until we've flushed all events. */
4024 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4025 }
4026
4027 target_mourn_inferior ();
4028 }
4029
4030 static void
4031 linux_nat_mourn_inferior (struct target_ops *ops)
4032 {
4033 purge_lwp_list (ptid_get_pid (inferior_ptid));
4034
4035 if (! forks_exist_p ())
4036 /* Normal case, no other forks available. */
4037 linux_ops->to_mourn_inferior (ops);
4038 else
4039 /* Multi-fork case. The current inferior_ptid has exited, but
4040 there are other viable forks to debug. Delete the exiting
4041 one and context-switch to the first available. */
4042 linux_fork_mourn_inferior ();
4043 }
4044
4045 /* Convert a native/host siginfo object, into/from the siginfo in the
4046 layout of the inferiors' architecture. */
4047
4048 static void
4049 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
4050 {
4051 int done = 0;
4052
4053 if (linux_nat_siginfo_fixup != NULL)
4054 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4055
4056 /* If there was no callback, or the callback didn't do anything,
4057 then just do a straight memcpy. */
4058 if (!done)
4059 {
4060 if (direction == 1)
4061 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4062 else
4063 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4064 }
4065 }
4066
4067 static LONGEST
4068 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4069 const char *annex, gdb_byte *readbuf,
4070 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4071 {
4072 int pid;
4073 struct siginfo siginfo;
4074 gdb_byte inf_siginfo[sizeof (struct siginfo)];
4075
4076 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4077 gdb_assert (readbuf || writebuf);
4078
4079 pid = GET_LWP (inferior_ptid);
4080 if (pid == 0)
4081 pid = GET_PID (inferior_ptid);
4082
4083 if (offset > sizeof (siginfo))
4084 return -1;
4085
4086 errno = 0;
4087 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4088 if (errno != 0)
4089 return -1;
4090
4091 /* When GDB is built as a 64-bit application, ptrace writes into
4092 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4093 inferior with a 64-bit GDB should look the same as debugging it
4094 with a 32-bit GDB, we need to convert it. GDB core always sees
4095 the converted layout, so any read/write will have to be done
4096 post-conversion. */
4097 siginfo_fixup (&siginfo, inf_siginfo, 0);
4098
4099 if (offset + len > sizeof (siginfo))
4100 len = sizeof (siginfo) - offset;
4101
4102 if (readbuf != NULL)
4103 memcpy (readbuf, inf_siginfo + offset, len);
4104 else
4105 {
4106 memcpy (inf_siginfo + offset, writebuf, len);
4107
4108 /* Convert back to ptrace layout before flushing it out. */
4109 siginfo_fixup (&siginfo, inf_siginfo, 1);
4110
4111 errno = 0;
4112 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4113 if (errno != 0)
4114 return -1;
4115 }
4116
4117 return len;
4118 }
4119
4120 static LONGEST
4121 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4122 const char *annex, gdb_byte *readbuf,
4123 const gdb_byte *writebuf,
4124 ULONGEST offset, LONGEST len)
4125 {
4126 struct cleanup *old_chain;
4127 LONGEST xfer;
4128
4129 if (object == TARGET_OBJECT_SIGNAL_INFO)
4130 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4131 offset, len);
4132
4133 /* The target is connected but no live inferior is selected. Pass
4134 this request down to a lower stratum (e.g., the executable
4135 file). */
4136 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4137 return 0;
4138
4139 old_chain = save_inferior_ptid ();
4140
4141 if (is_lwp (inferior_ptid))
4142 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4143
4144 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4145 offset, len);
4146
4147 do_cleanups (old_chain);
4148 return xfer;
4149 }
4150
4151 static int
4152 linux_thread_alive (ptid_t ptid)
4153 {
4154 int err, tmp_errno;
4155
4156 gdb_assert (is_lwp (ptid));
4157
4158 /* Send signal 0 instead of anything ptrace, because ptracing a
4159 running thread errors out claiming that the thread doesn't
4160 exist. */
4161 err = kill_lwp (GET_LWP (ptid), 0);
4162 tmp_errno = errno;
4163 if (debug_linux_nat)
4164 fprintf_unfiltered (gdb_stdlog,
4165 "LLTA: KILL(SIG0) %s (%s)\n",
4166 target_pid_to_str (ptid),
4167 err ? safe_strerror (tmp_errno) : "OK");
4168
4169 if (err != 0)
4170 return 0;
4171
4172 return 1;
4173 }
4174
4175 static int
4176 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4177 {
4178 return linux_thread_alive (ptid);
4179 }
4180
4181 static char *
4182 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4183 {
4184 static char buf[64];
4185
4186 if (is_lwp (ptid)
4187 && (GET_PID (ptid) != GET_LWP (ptid)
4188 || num_lwps (GET_PID (ptid)) > 1))
4189 {
4190 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4191 return buf;
4192 }
4193
4194 return normal_pid_to_str (ptid);
4195 }
4196
4197 static char *
4198 linux_nat_thread_name (struct thread_info *thr)
4199 {
4200 int pid = ptid_get_pid (thr->ptid);
4201 long lwp = ptid_get_lwp (thr->ptid);
4202 #define FORMAT "/proc/%d/task/%ld/comm"
4203 char buf[sizeof (FORMAT) + 30];
4204 FILE *comm_file;
4205 char *result = NULL;
4206
4207 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4208 comm_file = fopen (buf, "r");
4209 if (comm_file)
4210 {
4211 /* Not exported by the kernel, so we define it here. */
4212 #define COMM_LEN 16
4213 static char line[COMM_LEN + 1];
4214
4215 if (fgets (line, sizeof (line), comm_file))
4216 {
4217 char *nl = strchr (line, '\n');
4218
4219 if (nl)
4220 *nl = '\0';
4221 if (*line != '\0')
4222 result = line;
4223 }
4224
4225 fclose (comm_file);
4226 }
4227
4228 #undef COMM_LEN
4229 #undef FORMAT
4230
4231 return result;
4232 }
4233
4234 /* Accepts an integer PID; Returns a string representing a file that
4235 can be opened to get the symbols for the child process. */
4236
4237 static char *
4238 linux_child_pid_to_exec_file (int pid)
4239 {
4240 char *name1, *name2;
4241
4242 name1 = xmalloc (MAXPATHLEN);
4243 name2 = xmalloc (MAXPATHLEN);
4244 make_cleanup (xfree, name1);
4245 make_cleanup (xfree, name2);
4246 memset (name2, 0, MAXPATHLEN);
4247
4248 sprintf (name1, "/proc/%d/exe", pid);
4249 if (readlink (name1, name2, MAXPATHLEN) > 0)
4250 return name2;
4251 else
4252 return name1;
4253 }
4254
4255 /* Service function for corefiles and info proc. */
4256
4257 static int
4258 read_mapping (FILE *mapfile,
4259 long long *addr,
4260 long long *endaddr,
4261 char *permissions,
4262 long long *offset,
4263 char *device, long long *inode, char *filename)
4264 {
4265 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4266 addr, endaddr, permissions, offset, device, inode);
4267
4268 filename[0] = '\0';
4269 if (ret > 0 && ret != EOF)
4270 {
4271 /* Eat everything up to EOL for the filename. This will prevent
4272 weird filenames (such as one with embedded whitespace) from
4273 confusing this code. It also makes this code more robust in
4274 respect to annotations the kernel may add after the filename.
4275
4276 Note the filename is used for informational purposes
4277 only. */
4278 ret += fscanf (mapfile, "%[^\n]\n", filename);
4279 }
4280
4281 return (ret != 0 && ret != EOF);
4282 }
4283
4284 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4285 regions in the inferior for a corefile. */
4286
4287 static int
4288 linux_nat_find_memory_regions (find_memory_region_ftype func, void *obfd)
4289 {
4290 int pid = PIDGET (inferior_ptid);
4291 char mapsfilename[MAXPATHLEN];
4292 FILE *mapsfile;
4293 long long addr, endaddr, size, offset, inode;
4294 char permissions[8], device[8], filename[MAXPATHLEN];
4295 int read, write, exec;
4296 struct cleanup *cleanup;
4297
4298 /* Compose the filename for the /proc memory map, and open it. */
4299 sprintf (mapsfilename, "/proc/%d/maps", pid);
4300 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4301 error (_("Could not open %s."), mapsfilename);
4302 cleanup = make_cleanup_fclose (mapsfile);
4303
4304 if (info_verbose)
4305 fprintf_filtered (gdb_stdout,
4306 "Reading memory regions from %s\n", mapsfilename);
4307
4308 /* Now iterate until end-of-file. */
4309 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4310 &offset, &device[0], &inode, &filename[0]))
4311 {
4312 size = endaddr - addr;
4313
4314 /* Get the segment's permissions. */
4315 read = (strchr (permissions, 'r') != 0);
4316 write = (strchr (permissions, 'w') != 0);
4317 exec = (strchr (permissions, 'x') != 0);
4318
4319 if (info_verbose)
4320 {
4321 fprintf_filtered (gdb_stdout,
4322 "Save segment, %s bytes at %s (%c%c%c)",
4323 plongest (size), paddress (target_gdbarch, addr),
4324 read ? 'r' : ' ',
4325 write ? 'w' : ' ', exec ? 'x' : ' ');
4326 if (filename[0])
4327 fprintf_filtered (gdb_stdout, " for %s", filename);
4328 fprintf_filtered (gdb_stdout, "\n");
4329 }
4330
4331 /* Invoke the callback function to create the corefile
4332 segment. */
4333 func (addr, size, read, write, exec, obfd);
4334 }
4335 do_cleanups (cleanup);
4336 return 0;
4337 }
4338
4339 static int
4340 find_signalled_thread (struct thread_info *info, void *data)
4341 {
4342 if (info->suspend.stop_signal != TARGET_SIGNAL_0
4343 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4344 return 1;
4345
4346 return 0;
4347 }
4348
4349 static enum target_signal
4350 find_stop_signal (void)
4351 {
4352 struct thread_info *info =
4353 iterate_over_threads (find_signalled_thread, NULL);
4354
4355 if (info)
4356 return info->suspend.stop_signal;
4357 else
4358 return TARGET_SIGNAL_0;
4359 }
4360
4361 /* Records the thread's register state for the corefile note
4362 section. */
4363
4364 static char *
4365 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4366 char *note_data, int *note_size,
4367 enum target_signal stop_signal)
4368 {
4369 unsigned long lwp = ptid_get_lwp (ptid);
4370 struct gdbarch *gdbarch = target_gdbarch;
4371 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4372 const struct regset *regset;
4373 int core_regset_p;
4374 struct cleanup *old_chain;
4375 struct core_regset_section *sect_list;
4376 char *gdb_regset;
4377
4378 old_chain = save_inferior_ptid ();
4379 inferior_ptid = ptid;
4380 target_fetch_registers (regcache, -1);
4381 do_cleanups (old_chain);
4382
4383 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4384 sect_list = gdbarch_core_regset_sections (gdbarch);
4385
4386 /* The loop below uses the new struct core_regset_section, which stores
4387 the supported section names and sizes for the core file. Note that
4388 note PRSTATUS needs to be treated specially. But the other notes are
4389 structurally the same, so they can benefit from the new struct. */
4390 if (core_regset_p && sect_list != NULL)
4391 while (sect_list->sect_name != NULL)
4392 {
4393 regset = gdbarch_regset_from_core_section (gdbarch,
4394 sect_list->sect_name,
4395 sect_list->size);
4396 gdb_assert (regset && regset->collect_regset);
4397 gdb_regset = xmalloc (sect_list->size);
4398 regset->collect_regset (regset, regcache, -1,
4399 gdb_regset, sect_list->size);
4400
4401 if (strcmp (sect_list->sect_name, ".reg") == 0)
4402 note_data = (char *) elfcore_write_prstatus
4403 (obfd, note_data, note_size,
4404 lwp, target_signal_to_host (stop_signal),
4405 gdb_regset);
4406 else
4407 note_data = (char *) elfcore_write_register_note
4408 (obfd, note_data, note_size,
4409 sect_list->sect_name, gdb_regset,
4410 sect_list->size);
4411 xfree (gdb_regset);
4412 sect_list++;
4413 }
4414
4415 /* For architectures that does not have the struct core_regset_section
4416 implemented, we use the old method. When all the architectures have
4417 the new support, the code below should be deleted. */
4418 else
4419 {
4420 gdb_gregset_t gregs;
4421 gdb_fpregset_t fpregs;
4422
4423 if (core_regset_p
4424 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4425 sizeof (gregs)))
4426 != NULL && regset->collect_regset != NULL)
4427 regset->collect_regset (regset, regcache, -1,
4428 &gregs, sizeof (gregs));
4429 else
4430 fill_gregset (regcache, &gregs, -1);
4431
4432 note_data = (char *) elfcore_write_prstatus
4433 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4434 &gregs);
4435
4436 if (core_regset_p
4437 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4438 sizeof (fpregs)))
4439 != NULL && regset->collect_regset != NULL)
4440 regset->collect_regset (regset, regcache, -1,
4441 &fpregs, sizeof (fpregs));
4442 else
4443 fill_fpregset (regcache, &fpregs, -1);
4444
4445 note_data = (char *) elfcore_write_prfpreg (obfd,
4446 note_data,
4447 note_size,
4448 &fpregs, sizeof (fpregs));
4449 }
4450
4451 return note_data;
4452 }
4453
4454 struct linux_nat_corefile_thread_data
4455 {
4456 bfd *obfd;
4457 char *note_data;
4458 int *note_size;
4459 int num_notes;
4460 enum target_signal stop_signal;
4461 };
4462
4463 /* Called by gdbthread.c once per thread. Records the thread's
4464 register state for the corefile note section. */
4465
4466 static int
4467 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4468 {
4469 struct linux_nat_corefile_thread_data *args = data;
4470
4471 args->note_data = linux_nat_do_thread_registers (args->obfd,
4472 ti->ptid,
4473 args->note_data,
4474 args->note_size,
4475 args->stop_signal);
4476 args->num_notes++;
4477
4478 return 0;
4479 }
4480
4481 /* Enumerate spufs IDs for process PID. */
4482
4483 static void
4484 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4485 {
4486 char path[128];
4487 DIR *dir;
4488 struct dirent *entry;
4489
4490 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4491 dir = opendir (path);
4492 if (!dir)
4493 return;
4494
4495 rewinddir (dir);
4496 while ((entry = readdir (dir)) != NULL)
4497 {
4498 struct stat st;
4499 struct statfs stfs;
4500 int fd;
4501
4502 fd = atoi (entry->d_name);
4503 if (!fd)
4504 continue;
4505
4506 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4507 if (stat (path, &st) != 0)
4508 continue;
4509 if (!S_ISDIR (st.st_mode))
4510 continue;
4511
4512 if (statfs (path, &stfs) != 0)
4513 continue;
4514 if (stfs.f_type != SPUFS_MAGIC)
4515 continue;
4516
4517 callback (data, fd);
4518 }
4519
4520 closedir (dir);
4521 }
4522
4523 /* Generate corefile notes for SPU contexts. */
4524
4525 struct linux_spu_corefile_data
4526 {
4527 bfd *obfd;
4528 char *note_data;
4529 int *note_size;
4530 };
4531
4532 static void
4533 linux_spu_corefile_callback (void *data, int fd)
4534 {
4535 struct linux_spu_corefile_data *args = data;
4536 int i;
4537
4538 static const char *spu_files[] =
4539 {
4540 "object-id",
4541 "mem",
4542 "regs",
4543 "fpcr",
4544 "lslr",
4545 "decr",
4546 "decr_status",
4547 "signal1",
4548 "signal1_type",
4549 "signal2",
4550 "signal2_type",
4551 "event_mask",
4552 "event_status",
4553 "mbox_info",
4554 "ibox_info",
4555 "wbox_info",
4556 "dma_info",
4557 "proxydma_info",
4558 };
4559
4560 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4561 {
4562 char annex[32], note_name[32];
4563 gdb_byte *spu_data;
4564 LONGEST spu_len;
4565
4566 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4567 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4568 annex, &spu_data);
4569 if (spu_len > 0)
4570 {
4571 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4572 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4573 args->note_size, note_name,
4574 NT_SPU, spu_data, spu_len);
4575 xfree (spu_data);
4576 }
4577 }
4578 }
4579
4580 static char *
4581 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4582 {
4583 struct linux_spu_corefile_data args;
4584
4585 args.obfd = obfd;
4586 args.note_data = note_data;
4587 args.note_size = note_size;
4588
4589 iterate_over_spus (PIDGET (inferior_ptid),
4590 linux_spu_corefile_callback, &args);
4591
4592 return args.note_data;
4593 }
4594
4595 /* Fills the "to_make_corefile_note" target vector. Builds the note
4596 section for a corefile, and returns it in a malloc buffer. */
4597
4598 static char *
4599 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4600 {
4601 struct linux_nat_corefile_thread_data thread_args;
4602 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4603 char fname[16] = { '\0' };
4604 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4605 char psargs[80] = { '\0' };
4606 char *note_data = NULL;
4607 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4608 gdb_byte *auxv;
4609 int auxv_len;
4610
4611 if (get_exec_file (0))
4612 {
4613 strncpy (fname, lbasename (get_exec_file (0)), sizeof (fname));
4614 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4615 if (get_inferior_args ())
4616 {
4617 char *string_end;
4618 char *psargs_end = psargs + sizeof (psargs);
4619
4620 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4621 strings fine. */
4622 string_end = memchr (psargs, 0, sizeof (psargs));
4623 if (string_end != NULL)
4624 {
4625 *string_end++ = ' ';
4626 strncpy (string_end, get_inferior_args (),
4627 psargs_end - string_end);
4628 }
4629 }
4630 note_data = (char *) elfcore_write_prpsinfo (obfd,
4631 note_data,
4632 note_size, fname, psargs);
4633 }
4634
4635 /* Dump information for threads. */
4636 thread_args.obfd = obfd;
4637 thread_args.note_data = note_data;
4638 thread_args.note_size = note_size;
4639 thread_args.num_notes = 0;
4640 thread_args.stop_signal = find_stop_signal ();
4641 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4642 gdb_assert (thread_args.num_notes != 0);
4643 note_data = thread_args.note_data;
4644
4645 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4646 NULL, &auxv);
4647 if (auxv_len > 0)
4648 {
4649 note_data = elfcore_write_note (obfd, note_data, note_size,
4650 "CORE", NT_AUXV, auxv, auxv_len);
4651 xfree (auxv);
4652 }
4653
4654 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4655
4656 make_cleanup (xfree, note_data);
4657 return note_data;
4658 }
4659
4660 /* Implement the "info proc" command. */
4661
4662 static void
4663 linux_nat_info_proc_cmd (char *args, int from_tty)
4664 {
4665 /* A long is used for pid instead of an int to avoid a loss of precision
4666 compiler warning from the output of strtoul. */
4667 long pid = PIDGET (inferior_ptid);
4668 FILE *procfile;
4669 char **argv = NULL;
4670 char buffer[MAXPATHLEN];
4671 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4672 int cmdline_f = 1;
4673 int cwd_f = 1;
4674 int exe_f = 1;
4675 int mappings_f = 0;
4676 int status_f = 0;
4677 int stat_f = 0;
4678 int all = 0;
4679 struct stat dummy;
4680
4681 if (args)
4682 {
4683 /* Break up 'args' into an argv array. */
4684 argv = gdb_buildargv (args);
4685 make_cleanup_freeargv (argv);
4686 }
4687 while (argv != NULL && *argv != NULL)
4688 {
4689 if (isdigit (argv[0][0]))
4690 {
4691 pid = strtoul (argv[0], NULL, 10);
4692 }
4693 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4694 {
4695 mappings_f = 1;
4696 }
4697 else if (strcmp (argv[0], "status") == 0)
4698 {
4699 status_f = 1;
4700 }
4701 else if (strcmp (argv[0], "stat") == 0)
4702 {
4703 stat_f = 1;
4704 }
4705 else if (strcmp (argv[0], "cmd") == 0)
4706 {
4707 cmdline_f = 1;
4708 }
4709 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4710 {
4711 exe_f = 1;
4712 }
4713 else if (strcmp (argv[0], "cwd") == 0)
4714 {
4715 cwd_f = 1;
4716 }
4717 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4718 {
4719 all = 1;
4720 }
4721 else
4722 {
4723 /* [...] (future options here). */
4724 }
4725 argv++;
4726 }
4727 if (pid == 0)
4728 error (_("No current process: you must name one."));
4729
4730 sprintf (fname1, "/proc/%ld", pid);
4731 if (stat (fname1, &dummy) != 0)
4732 error (_("No /proc directory: '%s'"), fname1);
4733
4734 printf_filtered (_("process %ld\n"), pid);
4735 if (cmdline_f || all)
4736 {
4737 sprintf (fname1, "/proc/%ld/cmdline", pid);
4738 if ((procfile = fopen (fname1, "r")) != NULL)
4739 {
4740 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4741
4742 if (fgets (buffer, sizeof (buffer), procfile))
4743 printf_filtered ("cmdline = '%s'\n", buffer);
4744 else
4745 warning (_("unable to read '%s'"), fname1);
4746 do_cleanups (cleanup);
4747 }
4748 else
4749 warning (_("unable to open /proc file '%s'"), fname1);
4750 }
4751 if (cwd_f || all)
4752 {
4753 sprintf (fname1, "/proc/%ld/cwd", pid);
4754 memset (fname2, 0, sizeof (fname2));
4755 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4756 printf_filtered ("cwd = '%s'\n", fname2);
4757 else
4758 warning (_("unable to read link '%s'"), fname1);
4759 }
4760 if (exe_f || all)
4761 {
4762 sprintf (fname1, "/proc/%ld/exe", pid);
4763 memset (fname2, 0, sizeof (fname2));
4764 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4765 printf_filtered ("exe = '%s'\n", fname2);
4766 else
4767 warning (_("unable to read link '%s'"), fname1);
4768 }
4769 if (mappings_f || all)
4770 {
4771 sprintf (fname1, "/proc/%ld/maps", pid);
4772 if ((procfile = fopen (fname1, "r")) != NULL)
4773 {
4774 long long addr, endaddr, size, offset, inode;
4775 char permissions[8], device[8], filename[MAXPATHLEN];
4776 struct cleanup *cleanup;
4777
4778 cleanup = make_cleanup_fclose (procfile);
4779 printf_filtered (_("Mapped address spaces:\n\n"));
4780 if (gdbarch_addr_bit (target_gdbarch) == 32)
4781 {
4782 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4783 "Start Addr",
4784 " End Addr",
4785 " Size", " Offset", "objfile");
4786 }
4787 else
4788 {
4789 printf_filtered (" %18s %18s %10s %10s %7s\n",
4790 "Start Addr",
4791 " End Addr",
4792 " Size", " Offset", "objfile");
4793 }
4794
4795 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4796 &offset, &device[0], &inode, &filename[0]))
4797 {
4798 size = endaddr - addr;
4799
4800 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4801 calls here (and possibly above) should be abstracted
4802 out into their own functions? Andrew suggests using
4803 a generic local_address_string instead to print out
4804 the addresses; that makes sense to me, too. */
4805
4806 if (gdbarch_addr_bit (target_gdbarch) == 32)
4807 {
4808 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4809 (unsigned long) addr, /* FIXME: pr_addr */
4810 (unsigned long) endaddr,
4811 (int) size,
4812 (unsigned int) offset,
4813 filename[0] ? filename : "");
4814 }
4815 else
4816 {
4817 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4818 (unsigned long) addr, /* FIXME: pr_addr */
4819 (unsigned long) endaddr,
4820 (int) size,
4821 (unsigned int) offset,
4822 filename[0] ? filename : "");
4823 }
4824 }
4825
4826 do_cleanups (cleanup);
4827 }
4828 else
4829 warning (_("unable to open /proc file '%s'"), fname1);
4830 }
4831 if (status_f || all)
4832 {
4833 sprintf (fname1, "/proc/%ld/status", pid);
4834 if ((procfile = fopen (fname1, "r")) != NULL)
4835 {
4836 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4837
4838 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4839 puts_filtered (buffer);
4840 do_cleanups (cleanup);
4841 }
4842 else
4843 warning (_("unable to open /proc file '%s'"), fname1);
4844 }
4845 if (stat_f || all)
4846 {
4847 sprintf (fname1, "/proc/%ld/stat", pid);
4848 if ((procfile = fopen (fname1, "r")) != NULL)
4849 {
4850 int itmp;
4851 char ctmp;
4852 long ltmp;
4853 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4854
4855 if (fscanf (procfile, "%d ", &itmp) > 0)
4856 printf_filtered (_("Process: %d\n"), itmp);
4857 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4858 printf_filtered (_("Exec file: %s\n"), buffer);
4859 if (fscanf (procfile, "%c ", &ctmp) > 0)
4860 printf_filtered (_("State: %c\n"), ctmp);
4861 if (fscanf (procfile, "%d ", &itmp) > 0)
4862 printf_filtered (_("Parent process: %d\n"), itmp);
4863 if (fscanf (procfile, "%d ", &itmp) > 0)
4864 printf_filtered (_("Process group: %d\n"), itmp);
4865 if (fscanf (procfile, "%d ", &itmp) > 0)
4866 printf_filtered (_("Session id: %d\n"), itmp);
4867 if (fscanf (procfile, "%d ", &itmp) > 0)
4868 printf_filtered (_("TTY: %d\n"), itmp);
4869 if (fscanf (procfile, "%d ", &itmp) > 0)
4870 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4871 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4872 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4873 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4874 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4875 (unsigned long) ltmp);
4876 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4877 printf_filtered (_("Minor faults, children: %lu\n"),
4878 (unsigned long) ltmp);
4879 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4880 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4881 (unsigned long) ltmp);
4882 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4883 printf_filtered (_("Major faults, children: %lu\n"),
4884 (unsigned long) ltmp);
4885 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4886 printf_filtered (_("utime: %ld\n"), ltmp);
4887 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4888 printf_filtered (_("stime: %ld\n"), ltmp);
4889 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4890 printf_filtered (_("utime, children: %ld\n"), ltmp);
4891 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4892 printf_filtered (_("stime, children: %ld\n"), ltmp);
4893 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4894 printf_filtered (_("jiffies remaining in current "
4895 "time slice: %ld\n"), ltmp);
4896 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4897 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4898 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4899 printf_filtered (_("jiffies until next timeout: %lu\n"),
4900 (unsigned long) ltmp);
4901 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4902 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4903 (unsigned long) ltmp);
4904 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4905 printf_filtered (_("start time (jiffies since "
4906 "system boot): %ld\n"), ltmp);
4907 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4908 printf_filtered (_("Virtual memory size: %lu\n"),
4909 (unsigned long) ltmp);
4910 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4911 printf_filtered (_("Resident set size: %lu\n"),
4912 (unsigned long) ltmp);
4913 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4914 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4915 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4916 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4917 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4918 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4919 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4920 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4921 #if 0 /* Don't know how architecture-dependent the rest is...
4922 Anyway the signal bitmap info is available from "status". */
4923 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4924 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4925 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4926 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4927 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4928 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4929 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4930 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4931 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4932 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4933 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4934 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4935 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4936 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4937 #endif
4938 do_cleanups (cleanup);
4939 }
4940 else
4941 warning (_("unable to open /proc file '%s'"), fname1);
4942 }
4943 }
4944
4945 /* Implement the to_xfer_partial interface for memory reads using the /proc
4946 filesystem. Because we can use a single read() call for /proc, this
4947 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4948 but it doesn't support writes. */
4949
4950 static LONGEST
4951 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4952 const char *annex, gdb_byte *readbuf,
4953 const gdb_byte *writebuf,
4954 ULONGEST offset, LONGEST len)
4955 {
4956 LONGEST ret;
4957 int fd;
4958 char filename[64];
4959
4960 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4961 return 0;
4962
4963 /* Don't bother for one word. */
4964 if (len < 3 * sizeof (long))
4965 return 0;
4966
4967 /* We could keep this file open and cache it - possibly one per
4968 thread. That requires some juggling, but is even faster. */
4969 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4970 fd = open (filename, O_RDONLY | O_LARGEFILE);
4971 if (fd == -1)
4972 return 0;
4973
4974 /* If pread64 is available, use it. It's faster if the kernel
4975 supports it (only one syscall), and it's 64-bit safe even on
4976 32-bit platforms (for instance, SPARC debugging a SPARC64
4977 application). */
4978 #ifdef HAVE_PREAD64
4979 if (pread64 (fd, readbuf, len, offset) != len)
4980 #else
4981 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4982 #endif
4983 ret = 0;
4984 else
4985 ret = len;
4986
4987 close (fd);
4988 return ret;
4989 }
4990
4991
4992 /* Enumerate spufs IDs for process PID. */
4993 static LONGEST
4994 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4995 {
4996 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4997 LONGEST pos = 0;
4998 LONGEST written = 0;
4999 char path[128];
5000 DIR *dir;
5001 struct dirent *entry;
5002
5003 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
5004 dir = opendir (path);
5005 if (!dir)
5006 return -1;
5007
5008 rewinddir (dir);
5009 while ((entry = readdir (dir)) != NULL)
5010 {
5011 struct stat st;
5012 struct statfs stfs;
5013 int fd;
5014
5015 fd = atoi (entry->d_name);
5016 if (!fd)
5017 continue;
5018
5019 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
5020 if (stat (path, &st) != 0)
5021 continue;
5022 if (!S_ISDIR (st.st_mode))
5023 continue;
5024
5025 if (statfs (path, &stfs) != 0)
5026 continue;
5027 if (stfs.f_type != SPUFS_MAGIC)
5028 continue;
5029
5030 if (pos >= offset && pos + 4 <= offset + len)
5031 {
5032 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
5033 written += 4;
5034 }
5035 pos += 4;
5036 }
5037
5038 closedir (dir);
5039 return written;
5040 }
5041
5042 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
5043 object type, using the /proc file system. */
5044 static LONGEST
5045 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
5046 const char *annex, gdb_byte *readbuf,
5047 const gdb_byte *writebuf,
5048 ULONGEST offset, LONGEST len)
5049 {
5050 char buf[128];
5051 int fd = 0;
5052 int ret = -1;
5053 int pid = PIDGET (inferior_ptid);
5054
5055 if (!annex)
5056 {
5057 if (!readbuf)
5058 return -1;
5059 else
5060 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5061 }
5062
5063 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
5064 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5065 if (fd <= 0)
5066 return -1;
5067
5068 if (offset != 0
5069 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5070 {
5071 close (fd);
5072 return 0;
5073 }
5074
5075 if (writebuf)
5076 ret = write (fd, writebuf, (size_t) len);
5077 else if (readbuf)
5078 ret = read (fd, readbuf, (size_t) len);
5079
5080 close (fd);
5081 return ret;
5082 }
5083
5084
5085 /* Parse LINE as a signal set and add its set bits to SIGS. */
5086
5087 static void
5088 add_line_to_sigset (const char *line, sigset_t *sigs)
5089 {
5090 int len = strlen (line) - 1;
5091 const char *p;
5092 int signum;
5093
5094 if (line[len] != '\n')
5095 error (_("Could not parse signal set: %s"), line);
5096
5097 p = line;
5098 signum = len * 4;
5099 while (len-- > 0)
5100 {
5101 int digit;
5102
5103 if (*p >= '0' && *p <= '9')
5104 digit = *p - '0';
5105 else if (*p >= 'a' && *p <= 'f')
5106 digit = *p - 'a' + 10;
5107 else
5108 error (_("Could not parse signal set: %s"), line);
5109
5110 signum -= 4;
5111
5112 if (digit & 1)
5113 sigaddset (sigs, signum + 1);
5114 if (digit & 2)
5115 sigaddset (sigs, signum + 2);
5116 if (digit & 4)
5117 sigaddset (sigs, signum + 3);
5118 if (digit & 8)
5119 sigaddset (sigs, signum + 4);
5120
5121 p++;
5122 }
5123 }
5124
5125 /* Find process PID's pending signals from /proc/pid/status and set
5126 SIGS to match. */
5127
5128 void
5129 linux_proc_pending_signals (int pid, sigset_t *pending,
5130 sigset_t *blocked, sigset_t *ignored)
5131 {
5132 FILE *procfile;
5133 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
5134 struct cleanup *cleanup;
5135
5136 sigemptyset (pending);
5137 sigemptyset (blocked);
5138 sigemptyset (ignored);
5139 sprintf (fname, "/proc/%d/status", pid);
5140 procfile = fopen (fname, "r");
5141 if (procfile == NULL)
5142 error (_("Could not open %s"), fname);
5143 cleanup = make_cleanup_fclose (procfile);
5144
5145 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
5146 {
5147 /* Normal queued signals are on the SigPnd line in the status
5148 file. However, 2.6 kernels also have a "shared" pending
5149 queue for delivering signals to a thread group, so check for
5150 a ShdPnd line also.
5151
5152 Unfortunately some Red Hat kernels include the shared pending
5153 queue but not the ShdPnd status field. */
5154
5155 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
5156 add_line_to_sigset (buffer + 8, pending);
5157 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
5158 add_line_to_sigset (buffer + 8, pending);
5159 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
5160 add_line_to_sigset (buffer + 8, blocked);
5161 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
5162 add_line_to_sigset (buffer + 8, ignored);
5163 }
5164
5165 do_cleanups (cleanup);
5166 }
5167
5168 static LONGEST
5169 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
5170 const char *annex, gdb_byte *readbuf,
5171 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5172 {
5173 gdb_assert (object == TARGET_OBJECT_OSDATA);
5174
5175 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5176 }
5177
5178 static LONGEST
5179 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5180 const char *annex, gdb_byte *readbuf,
5181 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5182 {
5183 LONGEST xfer;
5184
5185 if (object == TARGET_OBJECT_AUXV)
5186 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5187 offset, len);
5188
5189 if (object == TARGET_OBJECT_OSDATA)
5190 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5191 offset, len);
5192
5193 if (object == TARGET_OBJECT_SPU)
5194 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5195 offset, len);
5196
5197 /* GDB calculates all the addresses in possibly larget width of the address.
5198 Address width needs to be masked before its final use - either by
5199 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5200
5201 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5202
5203 if (object == TARGET_OBJECT_MEMORY)
5204 {
5205 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5206
5207 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5208 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5209 }
5210
5211 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5212 offset, len);
5213 if (xfer != 0)
5214 return xfer;
5215
5216 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5217 offset, len);
5218 }
5219
5220 /* Create a prototype generic GNU/Linux target. The client can override
5221 it with local methods. */
5222
5223 static void
5224 linux_target_install_ops (struct target_ops *t)
5225 {
5226 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5227 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
5228 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5229 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
5230 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5231 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
5232 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5233 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5234 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5235 t->to_post_attach = linux_child_post_attach;
5236 t->to_follow_fork = linux_child_follow_fork;
5237 t->to_find_memory_regions = linux_nat_find_memory_regions;
5238 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5239
5240 super_xfer_partial = t->to_xfer_partial;
5241 t->to_xfer_partial = linux_xfer_partial;
5242 }
5243
5244 struct target_ops *
5245 linux_target (void)
5246 {
5247 struct target_ops *t;
5248
5249 t = inf_ptrace_target ();
5250 linux_target_install_ops (t);
5251
5252 return t;
5253 }
5254
5255 struct target_ops *
5256 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5257 {
5258 struct target_ops *t;
5259
5260 t = inf_ptrace_trad_target (register_u_offset);
5261 linux_target_install_ops (t);
5262
5263 return t;
5264 }
5265
5266 /* target_is_async_p implementation. */
5267
5268 static int
5269 linux_nat_is_async_p (void)
5270 {
5271 /* NOTE: palves 2008-03-21: We're only async when the user requests
5272 it explicitly with the "set target-async" command.
5273 Someday, linux will always be async. */
5274 return target_async_permitted;
5275 }
5276
5277 /* target_can_async_p implementation. */
5278
5279 static int
5280 linux_nat_can_async_p (void)
5281 {
5282 /* NOTE: palves 2008-03-21: We're only async when the user requests
5283 it explicitly with the "set target-async" command.
5284 Someday, linux will always be async. */
5285 return target_async_permitted;
5286 }
5287
5288 static int
5289 linux_nat_supports_non_stop (void)
5290 {
5291 return 1;
5292 }
5293
5294 /* True if we want to support multi-process. To be removed when GDB
5295 supports multi-exec. */
5296
5297 int linux_multi_process = 1;
5298
5299 static int
5300 linux_nat_supports_multi_process (void)
5301 {
5302 return linux_multi_process;
5303 }
5304
5305 static int
5306 linux_nat_supports_disable_randomization (void)
5307 {
5308 #ifdef HAVE_PERSONALITY
5309 return 1;
5310 #else
5311 return 0;
5312 #endif
5313 }
5314
5315 static int async_terminal_is_ours = 1;
5316
5317 /* target_terminal_inferior implementation. */
5318
5319 static void
5320 linux_nat_terminal_inferior (void)
5321 {
5322 if (!target_is_async_p ())
5323 {
5324 /* Async mode is disabled. */
5325 terminal_inferior ();
5326 return;
5327 }
5328
5329 terminal_inferior ();
5330
5331 /* Calls to target_terminal_*() are meant to be idempotent. */
5332 if (!async_terminal_is_ours)
5333 return;
5334
5335 delete_file_handler (input_fd);
5336 async_terminal_is_ours = 0;
5337 set_sigint_trap ();
5338 }
5339
5340 /* target_terminal_ours implementation. */
5341
5342 static void
5343 linux_nat_terminal_ours (void)
5344 {
5345 if (!target_is_async_p ())
5346 {
5347 /* Async mode is disabled. */
5348 terminal_ours ();
5349 return;
5350 }
5351
5352 /* GDB should never give the terminal to the inferior if the
5353 inferior is running in the background (run&, continue&, etc.),
5354 but claiming it sure should. */
5355 terminal_ours ();
5356
5357 if (async_terminal_is_ours)
5358 return;
5359
5360 clear_sigint_trap ();
5361 add_file_handler (input_fd, stdin_event_handler, 0);
5362 async_terminal_is_ours = 1;
5363 }
5364
5365 static void (*async_client_callback) (enum inferior_event_type event_type,
5366 void *context);
5367 static void *async_client_context;
5368
5369 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5370 so we notice when any child changes state, and notify the
5371 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5372 above to wait for the arrival of a SIGCHLD. */
5373
5374 static void
5375 sigchld_handler (int signo)
5376 {
5377 int old_errno = errno;
5378
5379 if (debug_linux_nat)
5380 ui_file_write_async_safe (gdb_stdlog,
5381 "sigchld\n", sizeof ("sigchld\n") - 1);
5382
5383 if (signo == SIGCHLD
5384 && linux_nat_event_pipe[0] != -1)
5385 async_file_mark (); /* Let the event loop know that there are
5386 events to handle. */
5387
5388 errno = old_errno;
5389 }
5390
5391 /* Callback registered with the target events file descriptor. */
5392
5393 static void
5394 handle_target_event (int error, gdb_client_data client_data)
5395 {
5396 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5397 }
5398
5399 /* Create/destroy the target events pipe. Returns previous state. */
5400
5401 static int
5402 linux_async_pipe (int enable)
5403 {
5404 int previous = (linux_nat_event_pipe[0] != -1);
5405
5406 if (previous != enable)
5407 {
5408 sigset_t prev_mask;
5409
5410 block_child_signals (&prev_mask);
5411
5412 if (enable)
5413 {
5414 if (pipe (linux_nat_event_pipe) == -1)
5415 internal_error (__FILE__, __LINE__,
5416 "creating event pipe failed.");
5417
5418 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5419 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5420 }
5421 else
5422 {
5423 close (linux_nat_event_pipe[0]);
5424 close (linux_nat_event_pipe[1]);
5425 linux_nat_event_pipe[0] = -1;
5426 linux_nat_event_pipe[1] = -1;
5427 }
5428
5429 restore_child_signals_mask (&prev_mask);
5430 }
5431
5432 return previous;
5433 }
5434
5435 /* target_async implementation. */
5436
5437 static void
5438 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5439 void *context), void *context)
5440 {
5441 if (callback != NULL)
5442 {
5443 async_client_callback = callback;
5444 async_client_context = context;
5445 if (!linux_async_pipe (1))
5446 {
5447 add_file_handler (linux_nat_event_pipe[0],
5448 handle_target_event, NULL);
5449 /* There may be pending events to handle. Tell the event loop
5450 to poll them. */
5451 async_file_mark ();
5452 }
5453 }
5454 else
5455 {
5456 async_client_callback = callback;
5457 async_client_context = context;
5458 delete_file_handler (linux_nat_event_pipe[0]);
5459 linux_async_pipe (0);
5460 }
5461 return;
5462 }
5463
5464 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5465 event came out. */
5466
5467 static int
5468 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5469 {
5470 if (!lwp->stopped)
5471 {
5472 ptid_t ptid = lwp->ptid;
5473
5474 if (debug_linux_nat)
5475 fprintf_unfiltered (gdb_stdlog,
5476 "LNSL: running -> suspending %s\n",
5477 target_pid_to_str (lwp->ptid));
5478
5479
5480 if (lwp->last_resume_kind == resume_stop)
5481 {
5482 if (debug_linux_nat)
5483 fprintf_unfiltered (gdb_stdlog,
5484 "linux-nat: already stopping LWP %ld at "
5485 "GDB's request\n",
5486 ptid_get_lwp (lwp->ptid));
5487 return 0;
5488 }
5489
5490 stop_callback (lwp, NULL);
5491 lwp->last_resume_kind = resume_stop;
5492 }
5493 else
5494 {
5495 /* Already known to be stopped; do nothing. */
5496
5497 if (debug_linux_nat)
5498 {
5499 if (find_thread_ptid (lwp->ptid)->stop_requested)
5500 fprintf_unfiltered (gdb_stdlog,
5501 "LNSL: already stopped/stop_requested %s\n",
5502 target_pid_to_str (lwp->ptid));
5503 else
5504 fprintf_unfiltered (gdb_stdlog,
5505 "LNSL: already stopped/no "
5506 "stop_requested yet %s\n",
5507 target_pid_to_str (lwp->ptid));
5508 }
5509 }
5510 return 0;
5511 }
5512
5513 static void
5514 linux_nat_stop (ptid_t ptid)
5515 {
5516 if (non_stop)
5517 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5518 else
5519 linux_ops->to_stop (ptid);
5520 }
5521
5522 static void
5523 linux_nat_close (int quitting)
5524 {
5525 /* Unregister from the event loop. */
5526 if (target_is_async_p ())
5527 target_async (NULL, 0);
5528
5529 if (linux_ops->to_close)
5530 linux_ops->to_close (quitting);
5531 }
5532
5533 /* When requests are passed down from the linux-nat layer to the
5534 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5535 used. The address space pointer is stored in the inferior object,
5536 but the common code that is passed such ptid can't tell whether
5537 lwpid is a "main" process id or not (it assumes so). We reverse
5538 look up the "main" process id from the lwp here. */
5539
5540 struct address_space *
5541 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5542 {
5543 struct lwp_info *lwp;
5544 struct inferior *inf;
5545 int pid;
5546
5547 pid = GET_LWP (ptid);
5548 if (GET_LWP (ptid) == 0)
5549 {
5550 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5551 tgid. */
5552 lwp = find_lwp_pid (ptid);
5553 pid = GET_PID (lwp->ptid);
5554 }
5555 else
5556 {
5557 /* A (pid,lwpid,0) ptid. */
5558 pid = GET_PID (ptid);
5559 }
5560
5561 inf = find_inferior_pid (pid);
5562 gdb_assert (inf != NULL);
5563 return inf->aspace;
5564 }
5565
5566 int
5567 linux_nat_core_of_thread_1 (ptid_t ptid)
5568 {
5569 struct cleanup *back_to;
5570 char *filename;
5571 FILE *f;
5572 char *content = NULL;
5573 char *p;
5574 char *ts = 0;
5575 int content_read = 0;
5576 int i;
5577 int core;
5578
5579 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5580 GET_PID (ptid), GET_LWP (ptid));
5581 back_to = make_cleanup (xfree, filename);
5582
5583 f = fopen (filename, "r");
5584 if (!f)
5585 {
5586 do_cleanups (back_to);
5587 return -1;
5588 }
5589
5590 make_cleanup_fclose (f);
5591
5592 for (;;)
5593 {
5594 int n;
5595
5596 content = xrealloc (content, content_read + 1024);
5597 n = fread (content + content_read, 1, 1024, f);
5598 content_read += n;
5599 if (n < 1024)
5600 {
5601 content[content_read] = '\0';
5602 break;
5603 }
5604 }
5605
5606 make_cleanup (xfree, content);
5607
5608 p = strchr (content, '(');
5609
5610 /* Skip ")". */
5611 if (p != NULL)
5612 p = strchr (p, ')');
5613 if (p != NULL)
5614 p++;
5615
5616 /* If the first field after program name has index 0, then core number is
5617 the field with index 36. There's no constant for that anywhere. */
5618 if (p != NULL)
5619 p = strtok_r (p, " ", &ts);
5620 for (i = 0; p != NULL && i != 36; ++i)
5621 p = strtok_r (NULL, " ", &ts);
5622
5623 if (p == NULL || sscanf (p, "%d", &core) == 0)
5624 core = -1;
5625
5626 do_cleanups (back_to);
5627
5628 return core;
5629 }
5630
5631 /* Return the cached value of the processor core for thread PTID. */
5632
5633 int
5634 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5635 {
5636 struct lwp_info *info = find_lwp_pid (ptid);
5637
5638 if (info)
5639 return info->core;
5640 return -1;
5641 }
5642
5643 void
5644 linux_nat_add_target (struct target_ops *t)
5645 {
5646 /* Save the provided single-threaded target. We save this in a separate
5647 variable because another target we've inherited from (e.g. inf-ptrace)
5648 may have saved a pointer to T; we want to use it for the final
5649 process stratum target. */
5650 linux_ops_saved = *t;
5651 linux_ops = &linux_ops_saved;
5652
5653 /* Override some methods for multithreading. */
5654 t->to_create_inferior = linux_nat_create_inferior;
5655 t->to_attach = linux_nat_attach;
5656 t->to_detach = linux_nat_detach;
5657 t->to_resume = linux_nat_resume;
5658 t->to_wait = linux_nat_wait;
5659 t->to_pass_signals = linux_nat_pass_signals;
5660 t->to_xfer_partial = linux_nat_xfer_partial;
5661 t->to_kill = linux_nat_kill;
5662 t->to_mourn_inferior = linux_nat_mourn_inferior;
5663 t->to_thread_alive = linux_nat_thread_alive;
5664 t->to_pid_to_str = linux_nat_pid_to_str;
5665 t->to_thread_name = linux_nat_thread_name;
5666 t->to_has_thread_control = tc_schedlock;
5667 t->to_thread_address_space = linux_nat_thread_address_space;
5668 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5669 t->to_stopped_data_address = linux_nat_stopped_data_address;
5670
5671 t->to_can_async_p = linux_nat_can_async_p;
5672 t->to_is_async_p = linux_nat_is_async_p;
5673 t->to_supports_non_stop = linux_nat_supports_non_stop;
5674 t->to_async = linux_nat_async;
5675 t->to_terminal_inferior = linux_nat_terminal_inferior;
5676 t->to_terminal_ours = linux_nat_terminal_ours;
5677 t->to_close = linux_nat_close;
5678
5679 /* Methods for non-stop support. */
5680 t->to_stop = linux_nat_stop;
5681
5682 t->to_supports_multi_process = linux_nat_supports_multi_process;
5683
5684 t->to_supports_disable_randomization
5685 = linux_nat_supports_disable_randomization;
5686
5687 t->to_core_of_thread = linux_nat_core_of_thread;
5688
5689 /* We don't change the stratum; this target will sit at
5690 process_stratum and thread_db will set at thread_stratum. This
5691 is a little strange, since this is a multi-threaded-capable
5692 target, but we want to be on the stack below thread_db, and we
5693 also want to be used for single-threaded processes. */
5694
5695 add_target (t);
5696 }
5697
5698 /* Register a method to call whenever a new thread is attached. */
5699 void
5700 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5701 {
5702 /* Save the pointer. We only support a single registered instance
5703 of the GNU/Linux native target, so we do not need to map this to
5704 T. */
5705 linux_nat_new_thread = new_thread;
5706 }
5707
5708 /* Register a method that converts a siginfo object between the layout
5709 that ptrace returns, and the layout in the architecture of the
5710 inferior. */
5711 void
5712 linux_nat_set_siginfo_fixup (struct target_ops *t,
5713 int (*siginfo_fixup) (struct siginfo *,
5714 gdb_byte *,
5715 int))
5716 {
5717 /* Save the pointer. */
5718 linux_nat_siginfo_fixup = siginfo_fixup;
5719 }
5720
5721 /* Return the saved siginfo associated with PTID. */
5722 struct siginfo *
5723 linux_nat_get_siginfo (ptid_t ptid)
5724 {
5725 struct lwp_info *lp = find_lwp_pid (ptid);
5726
5727 gdb_assert (lp != NULL);
5728
5729 return &lp->siginfo;
5730 }
5731
5732 /* Provide a prototype to silence -Wmissing-prototypes. */
5733 extern initialize_file_ftype _initialize_linux_nat;
5734
5735 void
5736 _initialize_linux_nat (void)
5737 {
5738 add_info ("proc", linux_nat_info_proc_cmd, _("\
5739 Show /proc process information about any running process.\n\
5740 Specify any process id, or use the program being debugged by default.\n\
5741 Specify any of the following keywords for detailed info:\n\
5742 mappings -- list of mapped memory regions.\n\
5743 stat -- list a bunch of random process info.\n\
5744 status -- list a different bunch of random process info.\n\
5745 all -- list all available /proc info."));
5746
5747 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5748 &debug_linux_nat, _("\
5749 Set debugging of GNU/Linux lwp module."), _("\
5750 Show debugging of GNU/Linux lwp module."), _("\
5751 Enables printf debugging output."),
5752 NULL,
5753 show_debug_linux_nat,
5754 &setdebuglist, &showdebuglist);
5755
5756 /* Save this mask as the default. */
5757 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5758
5759 /* Install a SIGCHLD handler. */
5760 sigchld_action.sa_handler = sigchld_handler;
5761 sigemptyset (&sigchld_action.sa_mask);
5762 sigchld_action.sa_flags = SA_RESTART;
5763
5764 /* Make it the default. */
5765 sigaction (SIGCHLD, &sigchld_action, NULL);
5766
5767 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5768 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5769 sigdelset (&suspend_mask, SIGCHLD);
5770
5771 sigemptyset (&blocked_mask);
5772 }
5773 \f
5774
5775 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5776 the GNU/Linux Threads library and therefore doesn't really belong
5777 here. */
5778
5779 /* Read variable NAME in the target and return its value if found.
5780 Otherwise return zero. It is assumed that the type of the variable
5781 is `int'. */
5782
5783 static int
5784 get_signo (const char *name)
5785 {
5786 struct minimal_symbol *ms;
5787 int signo;
5788
5789 ms = lookup_minimal_symbol (name, NULL, NULL);
5790 if (ms == NULL)
5791 return 0;
5792
5793 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5794 sizeof (signo)) != 0)
5795 return 0;
5796
5797 return signo;
5798 }
5799
5800 /* Return the set of signals used by the threads library in *SET. */
5801
5802 void
5803 lin_thread_get_thread_signals (sigset_t *set)
5804 {
5805 struct sigaction action;
5806 int restart, cancel;
5807
5808 sigemptyset (&blocked_mask);
5809 sigemptyset (set);
5810
5811 restart = get_signo ("__pthread_sig_restart");
5812 cancel = get_signo ("__pthread_sig_cancel");
5813
5814 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5815 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5816 not provide any way for the debugger to query the signal numbers -
5817 fortunately they don't change! */
5818
5819 if (restart == 0)
5820 restart = __SIGRTMIN;
5821
5822 if (cancel == 0)
5823 cancel = __SIGRTMIN + 1;
5824
5825 sigaddset (set, restart);
5826 sigaddset (set, cancel);
5827
5828 /* The GNU/Linux Threads library makes terminating threads send a
5829 special "cancel" signal instead of SIGCHLD. Make sure we catch
5830 those (to prevent them from terminating GDB itself, which is
5831 likely to be their default action) and treat them the same way as
5832 SIGCHLD. */
5833
5834 action.sa_handler = sigchld_handler;
5835 sigemptyset (&action.sa_mask);
5836 action.sa_flags = SA_RESTART;
5837 sigaction (cancel, &action, NULL);
5838
5839 /* We block the "cancel" signal throughout this code ... */
5840 sigaddset (&blocked_mask, cancel);
5841 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5842
5843 /* ... except during a sigsuspend. */
5844 sigdelset (&suspend_mask, cancel);
5845 }
This page took 0.155274 seconds and 5 git commands to generate.