gdb/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58 #include "solib.h"
59
60 #ifndef SPUFS_MAGIC
61 #define SPUFS_MAGIC 0x23c9b64e
62 #endif
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif /* HAVE_PERSONALITY */
70
71 /* This comment documents high-level logic of this file.
72
73 Waiting for events in sync mode
74 ===============================
75
76 When waiting for an event in a specific thread, we just use waitpid, passing
77 the specific pid, and not passing WNOHANG.
78
79 When waiting for an event in all threads, waitpid is not quite good. Prior to
80 version 2.4, Linux can either wait for event in main thread, or in secondary
81 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
82 miss an event. The solution is to use non-blocking waitpid, together with
83 sigsuspend. First, we use non-blocking waitpid to get an event in the main
84 process, if any. Second, we use non-blocking waitpid with the __WCLONED
85 flag to check for events in cloned processes. If nothing is found, we use
86 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
87 happened to a child process -- and SIGCHLD will be delivered both for events
88 in main debugged process and in cloned processes. As soon as we know there's
89 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
90
91 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
92 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
93 blocked, the signal becomes pending and sigsuspend immediately
94 notices it and returns.
95
96 Waiting for events in async mode
97 ================================
98
99 In async mode, GDB should always be ready to handle both user input
100 and target events, so neither blocking waitpid nor sigsuspend are
101 viable options. Instead, we should asynchronously notify the GDB main
102 event loop whenever there's an unprocessed event from the target. We
103 detect asynchronous target events by handling SIGCHLD signals. To
104 notify the event loop about target events, the self-pipe trick is used
105 --- a pipe is registered as waitable event source in the event loop,
106 the event loop select/poll's on the read end of this pipe (as well on
107 other event sources, e.g., stdin), and the SIGCHLD handler writes a
108 byte to this pipe. This is more portable than relying on
109 pselect/ppoll, since on kernels that lack those syscalls, libc
110 emulates them with select/poll+sigprocmask, and that is racy
111 (a.k.a. plain broken).
112
113 Obviously, if we fail to notify the event loop if there's a target
114 event, it's bad. OTOH, if we notify the event loop when there's no
115 event from the target, linux_nat_wait will detect that there's no real
116 event to report, and return event of type TARGET_WAITKIND_IGNORE.
117 This is mostly harmless, but it will waste time and is better avoided.
118
119 The main design point is that every time GDB is outside linux-nat.c,
120 we have a SIGCHLD handler installed that is called when something
121 happens to the target and notifies the GDB event loop. Whenever GDB
122 core decides to handle the event, and calls into linux-nat.c, we
123 process things as in sync mode, except that the we never block in
124 sigsuspend.
125
126 While processing an event, we may end up momentarily blocked in
127 waitpid calls. Those waitpid calls, while blocking, are guarantied to
128 return quickly. E.g., in all-stop mode, before reporting to the core
129 that an LWP hit a breakpoint, all LWPs are stopped by sending them
130 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
131 Note that this is different from blocking indefinitely waiting for the
132 next event --- here, we're already handling an event.
133
134 Use of signals
135 ==============
136
137 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
138 signal is not entirely significant; we just need for a signal to be delivered,
139 so that we can intercept it. SIGSTOP's advantage is that it can not be
140 blocked. A disadvantage is that it is not a real-time signal, so it can only
141 be queued once; we do not keep track of other sources of SIGSTOP.
142
143 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
144 use them, because they have special behavior when the signal is generated -
145 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
146 kills the entire thread group.
147
148 A delivered SIGSTOP would stop the entire thread group, not just the thread we
149 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
150 cancel it (by PTRACE_CONT without passing SIGSTOP).
151
152 We could use a real-time signal instead. This would solve those problems; we
153 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
154 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
155 generates it, and there are races with trying to find a signal that is not
156 blocked. */
157
158 #ifndef O_LARGEFILE
159 #define O_LARGEFILE 0
160 #endif
161
162 /* If the system headers did not provide the constants, hard-code the normal
163 values. */
164 #ifndef PTRACE_EVENT_FORK
165
166 #define PTRACE_SETOPTIONS 0x4200
167 #define PTRACE_GETEVENTMSG 0x4201
168
169 /* options set using PTRACE_SETOPTIONS */
170 #define PTRACE_O_TRACESYSGOOD 0x00000001
171 #define PTRACE_O_TRACEFORK 0x00000002
172 #define PTRACE_O_TRACEVFORK 0x00000004
173 #define PTRACE_O_TRACECLONE 0x00000008
174 #define PTRACE_O_TRACEEXEC 0x00000010
175 #define PTRACE_O_TRACEVFORKDONE 0x00000020
176 #define PTRACE_O_TRACEEXIT 0x00000040
177
178 /* Wait extended result codes for the above trace options. */
179 #define PTRACE_EVENT_FORK 1
180 #define PTRACE_EVENT_VFORK 2
181 #define PTRACE_EVENT_CLONE 3
182 #define PTRACE_EVENT_EXEC 4
183 #define PTRACE_EVENT_VFORK_DONE 5
184 #define PTRACE_EVENT_EXIT 6
185
186 #endif /* PTRACE_EVENT_FORK */
187
188 /* Unlike other extended result codes, WSTOPSIG (status) on
189 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
190 instead SIGTRAP with bit 7 set. */
191 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
192
193 /* We can't always assume that this flag is available, but all systems
194 with the ptrace event handlers also have __WALL, so it's safe to use
195 here. */
196 #ifndef __WALL
197 #define __WALL 0x40000000 /* Wait for any child. */
198 #endif
199
200 #ifndef PTRACE_GETSIGINFO
201 # define PTRACE_GETSIGINFO 0x4202
202 # define PTRACE_SETSIGINFO 0x4203
203 #endif
204
205 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
206 the use of the multi-threaded target. */
207 static struct target_ops *linux_ops;
208 static struct target_ops linux_ops_saved;
209
210 /* The method to call, if any, when a new thread is attached. */
211 static void (*linux_nat_new_thread) (ptid_t);
212
213 /* The method to call, if any, when the siginfo object needs to be
214 converted between the layout returned by ptrace, and the layout in
215 the architecture of the inferior. */
216 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
217 gdb_byte *,
218 int);
219
220 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
221 Called by our to_xfer_partial. */
222 static LONGEST (*super_xfer_partial) (struct target_ops *,
223 enum target_object,
224 const char *, gdb_byte *,
225 const gdb_byte *,
226 ULONGEST, LONGEST);
227
228 static int debug_linux_nat;
229 static void
230 show_debug_linux_nat (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
234 value);
235 }
236
237 static int debug_linux_nat_async = 0;
238 static void
239 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
240 struct cmd_list_element *c, const char *value)
241 {
242 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
243 value);
244 }
245
246 static int disable_randomization = 1;
247
248 static void
249 show_disable_randomization (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 #ifdef HAVE_PERSONALITY
253 fprintf_filtered (file, _("\
254 Disabling randomization of debuggee's virtual address space is %s.\n"),
255 value);
256 #else /* !HAVE_PERSONALITY */
257 fputs_filtered (_("\
258 Disabling randomization of debuggee's virtual address space is unsupported on\n\
259 this platform.\n"), file);
260 #endif /* !HAVE_PERSONALITY */
261 }
262
263 static void
264 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
265 {
266 #ifndef HAVE_PERSONALITY
267 error (_("\
268 Disabling randomization of debuggee's virtual address space is unsupported on\n\
269 this platform."));
270 #endif /* !HAVE_PERSONALITY */
271 }
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371
372 new_pid->pid = pid;
373 new_pid->status = status;
374 new_pid->next = *listp;
375 *listp = new_pid;
376 }
377
378 static int
379 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
380 {
381 struct simple_pid_list **p;
382
383 for (p = listp; *p != NULL; p = &(*p)->next)
384 if ((*p)->pid == pid)
385 {
386 struct simple_pid_list *next = (*p)->next;
387
388 *status = (*p)->status;
389 xfree (*p);
390 *p = next;
391 return 1;
392 }
393 return 0;
394 }
395
396 static void
397 linux_record_stopped_pid (int pid, int status)
398 {
399 add_to_pid_list (&stopped_pids, pid, status);
400 }
401
402 \f
403 /* A helper function for linux_test_for_tracefork, called after fork (). */
404
405 static void
406 linux_tracefork_child (void)
407 {
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *status, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, status, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (has_vforked
672 && !non_stop /* Non-stop always resumes both branches. */
673 && (!target_is_async_p () || sync_execution)
674 && !(follow_child || detach_fork || sched_multi))
675 {
676 /* The parent stays blocked inside the vfork syscall until the
677 child execs or exits. If we don't let the child run, then
678 the parent stays blocked. If we're telling the parent to run
679 in the foreground, the user will not be able to ctrl-c to get
680 back the terminal, effectively hanging the debug session. */
681 fprintf_filtered (gdb_stderr, _("\
682 Can not resume the parent process over vfork in the foreground while\n\
683 holding the child stopped. Try \"set detach-on-fork\" or \
684 \"set schedule-multiple\".\n"));
685 return 1;
686 }
687
688 if (! follow_child)
689 {
690 struct lwp_info *child_lp = NULL;
691
692 /* We're already attached to the parent, by default. */
693
694 /* Detach new forked process? */
695 if (detach_fork)
696 {
697 /* Before detaching from the child, remove all breakpoints
698 from it. If we forked, then this has already been taken
699 care of by infrun.c. If we vforked however, any
700 breakpoint inserted in the parent is visible in the
701 child, even those added while stopped in a vfork
702 catchpoint. This will remove the breakpoints from the
703 parent also, but they'll be reinserted below. */
704 if (has_vforked)
705 {
706 /* keep breakpoints list in sync. */
707 remove_breakpoints_pid (GET_PID (inferior_ptid));
708 }
709
710 if (info_verbose || debug_linux_nat)
711 {
712 target_terminal_ours ();
713 fprintf_filtered (gdb_stdlog,
714 "Detaching after fork from child process %d.\n",
715 child_pid);
716 }
717
718 ptrace (PTRACE_DETACH, child_pid, 0, 0);
719 }
720 else
721 {
722 struct inferior *parent_inf, *child_inf;
723 struct cleanup *old_chain;
724
725 /* Add process to GDB's tables. */
726 child_inf = add_inferior (child_pid);
727
728 parent_inf = current_inferior ();
729 child_inf->attach_flag = parent_inf->attach_flag;
730 copy_terminal_info (child_inf, parent_inf);
731
732 old_chain = save_inferior_ptid ();
733 save_current_program_space ();
734
735 inferior_ptid = ptid_build (child_pid, child_pid, 0);
736 add_thread (inferior_ptid);
737 child_lp = add_lwp (inferior_ptid);
738 child_lp->stopped = 1;
739 child_lp->resumed = 1;
740
741 /* If this is a vfork child, then the address-space is
742 shared with the parent. */
743 if (has_vforked)
744 {
745 child_inf->pspace = parent_inf->pspace;
746 child_inf->aspace = parent_inf->aspace;
747
748 /* The parent will be frozen until the child is done
749 with the shared region. Keep track of the
750 parent. */
751 child_inf->vfork_parent = parent_inf;
752 child_inf->pending_detach = 0;
753 parent_inf->vfork_child = child_inf;
754 parent_inf->pending_detach = 0;
755 }
756 else
757 {
758 child_inf->aspace = new_address_space ();
759 child_inf->pspace = add_program_space (child_inf->aspace);
760 child_inf->removable = 1;
761 set_current_program_space (child_inf->pspace);
762 clone_program_space (child_inf->pspace, parent_inf->pspace);
763
764 /* Let the shared library layer (solib-svr4) learn about
765 this new process, relocate the cloned exec, pull in
766 shared libraries, and install the solib event
767 breakpoint. If a "cloned-VM" event was propagated
768 better throughout the core, this wouldn't be
769 required. */
770 solib_create_inferior_hook (0);
771 }
772
773 /* Let the thread_db layer learn about this new process. */
774 check_for_thread_db ();
775
776 do_cleanups (old_chain);
777 }
778
779 if (has_vforked)
780 {
781 struct lwp_info *lp;
782 struct inferior *parent_inf;
783
784 parent_inf = current_inferior ();
785
786 /* If we detached from the child, then we have to be careful
787 to not insert breakpoints in the parent until the child
788 is done with the shared memory region. However, if we're
789 staying attached to the child, then we can and should
790 insert breakpoints, so that we can debug it. A
791 subsequent child exec or exit is enough to know when does
792 the child stops using the parent's address space. */
793 parent_inf->waiting_for_vfork_done = detach_fork;
794 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
795
796 lp = find_lwp_pid (pid_to_ptid (parent_pid));
797 gdb_assert (linux_supports_tracefork_flag >= 0);
798 if (linux_supports_tracevforkdone (0))
799 {
800 if (debug_linux_nat)
801 fprintf_unfiltered (gdb_stdlog,
802 "LCFF: waiting for VFORK_DONE on %d\n",
803 parent_pid);
804
805 lp->stopped = 1;
806 lp->resumed = 1;
807
808 /* We'll handle the VFORK_DONE event like any other
809 event, in target_wait. */
810 }
811 else
812 {
813 /* We can't insert breakpoints until the child has
814 finished with the shared memory region. We need to
815 wait until that happens. Ideal would be to just
816 call:
817 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
818 - waitpid (parent_pid, &status, __WALL);
819 However, most architectures can't handle a syscall
820 being traced on the way out if it wasn't traced on
821 the way in.
822
823 We might also think to loop, continuing the child
824 until it exits or gets a SIGTRAP. One problem is
825 that the child might call ptrace with PTRACE_TRACEME.
826
827 There's no simple and reliable way to figure out when
828 the vforked child will be done with its copy of the
829 shared memory. We could step it out of the syscall,
830 two instructions, let it go, and then single-step the
831 parent once. When we have hardware single-step, this
832 would work; with software single-step it could still
833 be made to work but we'd have to be able to insert
834 single-step breakpoints in the child, and we'd have
835 to insert -just- the single-step breakpoint in the
836 parent. Very awkward.
837
838 In the end, the best we can do is to make sure it
839 runs for a little while. Hopefully it will be out of
840 range of any breakpoints we reinsert. Usually this
841 is only the single-step breakpoint at vfork's return
842 point. */
843
844 if (debug_linux_nat)
845 fprintf_unfiltered (gdb_stdlog,
846 "LCFF: no VFORK_DONE support, sleeping a bit\n");
847
848 usleep (10000);
849
850 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
851 and leave it pending. The next linux_nat_resume call
852 will notice a pending event, and bypasses actually
853 resuming the inferior. */
854 lp->status = 0;
855 lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
856 lp->stopped = 0;
857 lp->resumed = 1;
858
859 /* If we're in async mode, need to tell the event loop
860 there's something here to process. */
861 if (target_can_async_p ())
862 async_file_mark ();
863 }
864 }
865 }
866 else
867 {
868 struct inferior *parent_inf, *child_inf;
869 struct lwp_info *lp;
870 struct program_space *parent_pspace;
871
872 if (info_verbose || debug_linux_nat)
873 {
874 target_terminal_ours ();
875 if (has_vforked)
876 fprintf_filtered (gdb_stdlog, _("\
877 Attaching after process %d vfork to child process %d.\n"),
878 parent_pid, child_pid);
879 else
880 fprintf_filtered (gdb_stdlog, _("\
881 Attaching after process %d fork to child process %d.\n"),
882 parent_pid, child_pid);
883 }
884
885 /* Add the new inferior first, so that the target_detach below
886 doesn't unpush the target. */
887
888 child_inf = add_inferior (child_pid);
889
890 parent_inf = current_inferior ();
891 child_inf->attach_flag = parent_inf->attach_flag;
892 copy_terminal_info (child_inf, parent_inf);
893
894 parent_pspace = parent_inf->pspace;
895
896 /* If we're vforking, we want to hold on to the parent until the
897 child exits or execs. At child exec or exit time we can
898 remove the old breakpoints from the parent and detach or
899 resume debugging it. Otherwise, detach the parent now; we'll
900 want to reuse it's program/address spaces, but we can't set
901 them to the child before removing breakpoints from the
902 parent, otherwise, the breakpoints module could decide to
903 remove breakpoints from the wrong process (since they'd be
904 assigned to the same address space). */
905
906 if (has_vforked)
907 {
908 gdb_assert (child_inf->vfork_parent == NULL);
909 gdb_assert (parent_inf->vfork_child == NULL);
910 child_inf->vfork_parent = parent_inf;
911 child_inf->pending_detach = 0;
912 parent_inf->vfork_child = child_inf;
913 parent_inf->pending_detach = detach_fork;
914 parent_inf->waiting_for_vfork_done = 0;
915 }
916 else if (detach_fork)
917 target_detach (NULL, 0);
918
919 /* Note that the detach above makes PARENT_INF dangling. */
920
921 /* Add the child thread to the appropriate lists, and switch to
922 this new thread, before cloning the program space, and
923 informing the solib layer about this new process. */
924
925 inferior_ptid = ptid_build (child_pid, child_pid, 0);
926 add_thread (inferior_ptid);
927 lp = add_lwp (inferior_ptid);
928 lp->stopped = 1;
929 lp->resumed = 1;
930
931 /* If this is a vfork child, then the address-space is shared
932 with the parent. If we detached from the parent, then we can
933 reuse the parent's program/address spaces. */
934 if (has_vforked || detach_fork)
935 {
936 child_inf->pspace = parent_pspace;
937 child_inf->aspace = child_inf->pspace->aspace;
938 }
939 else
940 {
941 child_inf->aspace = new_address_space ();
942 child_inf->pspace = add_program_space (child_inf->aspace);
943 child_inf->removable = 1;
944 set_current_program_space (child_inf->pspace);
945 clone_program_space (child_inf->pspace, parent_pspace);
946
947 /* Let the shared library layer (solib-svr4) learn about
948 this new process, relocate the cloned exec, pull in
949 shared libraries, and install the solib event breakpoint.
950 If a "cloned-VM" event was propagated better throughout
951 the core, this wouldn't be required. */
952 solib_create_inferior_hook (0);
953 }
954
955 /* Let the thread_db layer learn about this new process. */
956 check_for_thread_db ();
957 }
958
959 restore_child_signals_mask (&prev_mask);
960 return 0;
961 }
962
963 \f
964 static void
965 linux_child_insert_fork_catchpoint (int pid)
966 {
967 if (! linux_supports_tracefork (pid))
968 error (_("Your system does not support fork catchpoints."));
969 }
970
971 static void
972 linux_child_insert_vfork_catchpoint (int pid)
973 {
974 if (!linux_supports_tracefork (pid))
975 error (_("Your system does not support vfork catchpoints."));
976 }
977
978 static void
979 linux_child_insert_exec_catchpoint (int pid)
980 {
981 if (!linux_supports_tracefork (pid))
982 error (_("Your system does not support exec catchpoints."));
983 }
984
985 static int
986 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
987 int table_size, int *table)
988 {
989 if (! linux_supports_tracesysgood (pid))
990 error (_("Your system does not support syscall catchpoints."));
991 /* On GNU/Linux, we ignore the arguments. It means that we only
992 enable the syscall catchpoints, but do not disable them.
993
994 Also, we do not use the `table' information because we do not
995 filter system calls here. We let GDB do the logic for us. */
996 return 0;
997 }
998
999 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1000 are processes sharing the same VM space. A multi-threaded process
1001 is basically a group of such processes. However, such a grouping
1002 is almost entirely a user-space issue; the kernel doesn't enforce
1003 such a grouping at all (this might change in the future). In
1004 general, we'll rely on the threads library (i.e. the GNU/Linux
1005 Threads library) to provide such a grouping.
1006
1007 It is perfectly well possible to write a multi-threaded application
1008 without the assistance of a threads library, by using the clone
1009 system call directly. This module should be able to give some
1010 rudimentary support for debugging such applications if developers
1011 specify the CLONE_PTRACE flag in the clone system call, and are
1012 using the Linux kernel 2.4 or above.
1013
1014 Note that there are some peculiarities in GNU/Linux that affect
1015 this code:
1016
1017 - In general one should specify the __WCLONE flag to waitpid in
1018 order to make it report events for any of the cloned processes
1019 (and leave it out for the initial process). However, if a cloned
1020 process has exited the exit status is only reported if the
1021 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1022 we cannot use it since GDB must work on older systems too.
1023
1024 - When a traced, cloned process exits and is waited for by the
1025 debugger, the kernel reassigns it to the original parent and
1026 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1027 library doesn't notice this, which leads to the "zombie problem":
1028 When debugged a multi-threaded process that spawns a lot of
1029 threads will run out of processes, even if the threads exit,
1030 because the "zombies" stay around. */
1031
1032 /* List of known LWPs. */
1033 struct lwp_info *lwp_list;
1034 \f
1035
1036 /* Original signal mask. */
1037 static sigset_t normal_mask;
1038
1039 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1040 _initialize_linux_nat. */
1041 static sigset_t suspend_mask;
1042
1043 /* Signals to block to make that sigsuspend work. */
1044 static sigset_t blocked_mask;
1045
1046 /* SIGCHLD action. */
1047 struct sigaction sigchld_action;
1048
1049 /* Block child signals (SIGCHLD and linux threads signals), and store
1050 the previous mask in PREV_MASK. */
1051
1052 static void
1053 block_child_signals (sigset_t *prev_mask)
1054 {
1055 /* Make sure SIGCHLD is blocked. */
1056 if (!sigismember (&blocked_mask, SIGCHLD))
1057 sigaddset (&blocked_mask, SIGCHLD);
1058
1059 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1060 }
1061
1062 /* Restore child signals mask, previously returned by
1063 block_child_signals. */
1064
1065 static void
1066 restore_child_signals_mask (sigset_t *prev_mask)
1067 {
1068 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1069 }
1070 \f
1071
1072 /* Prototypes for local functions. */
1073 static int stop_wait_callback (struct lwp_info *lp, void *data);
1074 static int linux_thread_alive (ptid_t ptid);
1075 static char *linux_child_pid_to_exec_file (int pid);
1076
1077 \f
1078 /* Convert wait status STATUS to a string. Used for printing debug
1079 messages only. */
1080
1081 static char *
1082 status_to_str (int status)
1083 {
1084 static char buf[64];
1085
1086 if (WIFSTOPPED (status))
1087 {
1088 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1089 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1090 strsignal (SIGTRAP));
1091 else
1092 snprintf (buf, sizeof (buf), "%s (stopped)",
1093 strsignal (WSTOPSIG (status)));
1094 }
1095 else if (WIFSIGNALED (status))
1096 snprintf (buf, sizeof (buf), "%s (terminated)",
1097 strsignal (WSTOPSIG (status)));
1098 else
1099 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1100
1101 return buf;
1102 }
1103
1104 /* Remove all LWPs belong to PID from the lwp list. */
1105
1106 static void
1107 purge_lwp_list (int pid)
1108 {
1109 struct lwp_info *lp, *lpprev, *lpnext;
1110
1111 lpprev = NULL;
1112
1113 for (lp = lwp_list; lp; lp = lpnext)
1114 {
1115 lpnext = lp->next;
1116
1117 if (ptid_get_pid (lp->ptid) == pid)
1118 {
1119 if (lp == lwp_list)
1120 lwp_list = lp->next;
1121 else
1122 lpprev->next = lp->next;
1123
1124 xfree (lp);
1125 }
1126 else
1127 lpprev = lp;
1128 }
1129 }
1130
1131 /* Return the number of known LWPs in the tgid given by PID. */
1132
1133 static int
1134 num_lwps (int pid)
1135 {
1136 int count = 0;
1137 struct lwp_info *lp;
1138
1139 for (lp = lwp_list; lp; lp = lp->next)
1140 if (ptid_get_pid (lp->ptid) == pid)
1141 count++;
1142
1143 return count;
1144 }
1145
1146 /* Add the LWP specified by PID to the list. Return a pointer to the
1147 structure describing the new LWP. The LWP should already be stopped
1148 (with an exception for the very first LWP). */
1149
1150 static struct lwp_info *
1151 add_lwp (ptid_t ptid)
1152 {
1153 struct lwp_info *lp;
1154
1155 gdb_assert (is_lwp (ptid));
1156
1157 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1158
1159 memset (lp, 0, sizeof (struct lwp_info));
1160
1161 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1162
1163 lp->ptid = ptid;
1164 lp->core = -1;
1165
1166 lp->next = lwp_list;
1167 lwp_list = lp;
1168
1169 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1170 linux_nat_new_thread (ptid);
1171
1172 return lp;
1173 }
1174
1175 /* Remove the LWP specified by PID from the list. */
1176
1177 static void
1178 delete_lwp (ptid_t ptid)
1179 {
1180 struct lwp_info *lp, *lpprev;
1181
1182 lpprev = NULL;
1183
1184 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1185 if (ptid_equal (lp->ptid, ptid))
1186 break;
1187
1188 if (!lp)
1189 return;
1190
1191 if (lpprev)
1192 lpprev->next = lp->next;
1193 else
1194 lwp_list = lp->next;
1195
1196 xfree (lp);
1197 }
1198
1199 /* Return a pointer to the structure describing the LWP corresponding
1200 to PID. If no corresponding LWP could be found, return NULL. */
1201
1202 static struct lwp_info *
1203 find_lwp_pid (ptid_t ptid)
1204 {
1205 struct lwp_info *lp;
1206 int lwp;
1207
1208 if (is_lwp (ptid))
1209 lwp = GET_LWP (ptid);
1210 else
1211 lwp = GET_PID (ptid);
1212
1213 for (lp = lwp_list; lp; lp = lp->next)
1214 if (lwp == GET_LWP (lp->ptid))
1215 return lp;
1216
1217 return NULL;
1218 }
1219
1220 /* Call CALLBACK with its second argument set to DATA for every LWP in
1221 the list. If CALLBACK returns 1 for a particular LWP, return a
1222 pointer to the structure describing that LWP immediately.
1223 Otherwise return NULL. */
1224
1225 struct lwp_info *
1226 iterate_over_lwps (ptid_t filter,
1227 int (*callback) (struct lwp_info *, void *),
1228 void *data)
1229 {
1230 struct lwp_info *lp, *lpnext;
1231
1232 for (lp = lwp_list; lp; lp = lpnext)
1233 {
1234 lpnext = lp->next;
1235
1236 if (ptid_match (lp->ptid, filter))
1237 {
1238 if ((*callback) (lp, data))
1239 return lp;
1240 }
1241 }
1242
1243 return NULL;
1244 }
1245
1246 /* Update our internal state when changing from one checkpoint to
1247 another indicated by NEW_PTID. We can only switch single-threaded
1248 applications, so we only create one new LWP, and the previous list
1249 is discarded. */
1250
1251 void
1252 linux_nat_switch_fork (ptid_t new_ptid)
1253 {
1254 struct lwp_info *lp;
1255
1256 purge_lwp_list (GET_PID (inferior_ptid));
1257
1258 lp = add_lwp (new_ptid);
1259 lp->stopped = 1;
1260
1261 /* This changes the thread's ptid while preserving the gdb thread
1262 num. Also changes the inferior pid, while preserving the
1263 inferior num. */
1264 thread_change_ptid (inferior_ptid, new_ptid);
1265
1266 /* We've just told GDB core that the thread changed target id, but,
1267 in fact, it really is a different thread, with different register
1268 contents. */
1269 registers_changed ();
1270 }
1271
1272 /* Handle the exit of a single thread LP. */
1273
1274 static void
1275 exit_lwp (struct lwp_info *lp)
1276 {
1277 struct thread_info *th = find_thread_ptid (lp->ptid);
1278
1279 if (th)
1280 {
1281 if (print_thread_events)
1282 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1283
1284 delete_thread (lp->ptid);
1285 }
1286
1287 delete_lwp (lp->ptid);
1288 }
1289
1290 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1291
1292 int
1293 linux_proc_get_tgid (int lwpid)
1294 {
1295 FILE *status_file;
1296 char buf[100];
1297 int tgid = -1;
1298
1299 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1300 status_file = fopen (buf, "r");
1301 if (status_file != NULL)
1302 {
1303 while (fgets (buf, sizeof (buf), status_file))
1304 {
1305 if (strncmp (buf, "Tgid:", 5) == 0)
1306 {
1307 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1308 break;
1309 }
1310 }
1311
1312 fclose (status_file);
1313 }
1314
1315 return tgid;
1316 }
1317
1318 /* Detect `T (stopped)' in `/proc/PID/status'.
1319 Other states including `T (tracing stop)' are reported as false. */
1320
1321 static int
1322 pid_is_stopped (pid_t pid)
1323 {
1324 FILE *status_file;
1325 char buf[100];
1326 int retval = 0;
1327
1328 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1329 status_file = fopen (buf, "r");
1330 if (status_file != NULL)
1331 {
1332 int have_state = 0;
1333
1334 while (fgets (buf, sizeof (buf), status_file))
1335 {
1336 if (strncmp (buf, "State:", 6) == 0)
1337 {
1338 have_state = 1;
1339 break;
1340 }
1341 }
1342 if (have_state && strstr (buf, "T (stopped)") != NULL)
1343 retval = 1;
1344 fclose (status_file);
1345 }
1346 return retval;
1347 }
1348
1349 /* Wait for the LWP specified by LP, which we have just attached to.
1350 Returns a wait status for that LWP, to cache. */
1351
1352 static int
1353 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1354 int *signalled)
1355 {
1356 pid_t new_pid, pid = GET_LWP (ptid);
1357 int status;
1358
1359 if (pid_is_stopped (pid))
1360 {
1361 if (debug_linux_nat)
1362 fprintf_unfiltered (gdb_stdlog,
1363 "LNPAW: Attaching to a stopped process\n");
1364
1365 /* The process is definitely stopped. It is in a job control
1366 stop, unless the kernel predates the TASK_STOPPED /
1367 TASK_TRACED distinction, in which case it might be in a
1368 ptrace stop. Make sure it is in a ptrace stop; from there we
1369 can kill it, signal it, et cetera.
1370
1371 First make sure there is a pending SIGSTOP. Since we are
1372 already attached, the process can not transition from stopped
1373 to running without a PTRACE_CONT; so we know this signal will
1374 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1375 probably already in the queue (unless this kernel is old
1376 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1377 is not an RT signal, it can only be queued once. */
1378 kill_lwp (pid, SIGSTOP);
1379
1380 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1381 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1382 ptrace (PTRACE_CONT, pid, 0, 0);
1383 }
1384
1385 /* Make sure the initial process is stopped. The user-level threads
1386 layer might want to poke around in the inferior, and that won't
1387 work if things haven't stabilized yet. */
1388 new_pid = my_waitpid (pid, &status, 0);
1389 if (new_pid == -1 && errno == ECHILD)
1390 {
1391 if (first)
1392 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1393
1394 /* Try again with __WCLONE to check cloned processes. */
1395 new_pid = my_waitpid (pid, &status, __WCLONE);
1396 *cloned = 1;
1397 }
1398
1399 gdb_assert (pid == new_pid);
1400
1401 if (!WIFSTOPPED (status))
1402 {
1403 /* The pid we tried to attach has apparently just exited. */
1404 if (debug_linux_nat)
1405 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1406 pid, status_to_str (status));
1407 return status;
1408 }
1409
1410 if (WSTOPSIG (status) != SIGSTOP)
1411 {
1412 *signalled = 1;
1413 if (debug_linux_nat)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "LNPAW: Received %s after attaching\n",
1416 status_to_str (status));
1417 }
1418
1419 return status;
1420 }
1421
1422 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1423 if the new LWP could not be attached. */
1424
1425 int
1426 lin_lwp_attach_lwp (ptid_t ptid)
1427 {
1428 struct lwp_info *lp;
1429 sigset_t prev_mask;
1430
1431 gdb_assert (is_lwp (ptid));
1432
1433 block_child_signals (&prev_mask);
1434
1435 lp = find_lwp_pid (ptid);
1436
1437 /* We assume that we're already attached to any LWP that has an id
1438 equal to the overall process id, and to any LWP that is already
1439 in our list of LWPs. If we're not seeing exit events from threads
1440 and we've had PID wraparound since we last tried to stop all threads,
1441 this assumption might be wrong; fortunately, this is very unlikely
1442 to happen. */
1443 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1444 {
1445 int status, cloned = 0, signalled = 0;
1446
1447 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1448 {
1449 /* If we fail to attach to the thread, issue a warning,
1450 but continue. One way this can happen is if thread
1451 creation is interrupted; as of Linux kernel 2.6.19, a
1452 bug may place threads in the thread list and then fail
1453 to create them. */
1454 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1455 safe_strerror (errno));
1456 restore_child_signals_mask (&prev_mask);
1457 return -1;
1458 }
1459
1460 if (debug_linux_nat)
1461 fprintf_unfiltered (gdb_stdlog,
1462 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1463 target_pid_to_str (ptid));
1464
1465 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1466 if (!WIFSTOPPED (status))
1467 return -1;
1468
1469 lp = add_lwp (ptid);
1470 lp->stopped = 1;
1471 lp->cloned = cloned;
1472 lp->signalled = signalled;
1473 if (WSTOPSIG (status) != SIGSTOP)
1474 {
1475 lp->resumed = 1;
1476 lp->status = status;
1477 }
1478
1479 target_post_attach (GET_LWP (lp->ptid));
1480
1481 if (debug_linux_nat)
1482 {
1483 fprintf_unfiltered (gdb_stdlog,
1484 "LLAL: waitpid %s received %s\n",
1485 target_pid_to_str (ptid),
1486 status_to_str (status));
1487 }
1488 }
1489 else
1490 {
1491 /* We assume that the LWP representing the original process is
1492 already stopped. Mark it as stopped in the data structure
1493 that the GNU/linux ptrace layer uses to keep track of
1494 threads. Note that this won't have already been done since
1495 the main thread will have, we assume, been stopped by an
1496 attach from a different layer. */
1497 if (lp == NULL)
1498 lp = add_lwp (ptid);
1499 lp->stopped = 1;
1500 }
1501
1502 restore_child_signals_mask (&prev_mask);
1503 return 0;
1504 }
1505
1506 static void
1507 linux_nat_create_inferior (struct target_ops *ops,
1508 char *exec_file, char *allargs, char **env,
1509 int from_tty)
1510 {
1511 #ifdef HAVE_PERSONALITY
1512 int personality_orig = 0, personality_set = 0;
1513 #endif /* HAVE_PERSONALITY */
1514
1515 /* The fork_child mechanism is synchronous and calls target_wait, so
1516 we have to mask the async mode. */
1517
1518 #ifdef HAVE_PERSONALITY
1519 if (disable_randomization)
1520 {
1521 errno = 0;
1522 personality_orig = personality (0xffffffff);
1523 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1524 {
1525 personality_set = 1;
1526 personality (personality_orig | ADDR_NO_RANDOMIZE);
1527 }
1528 if (errno != 0 || (personality_set
1529 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1530 warning (_("Error disabling address space randomization: %s"),
1531 safe_strerror (errno));
1532 }
1533 #endif /* HAVE_PERSONALITY */
1534
1535 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1536
1537 #ifdef HAVE_PERSONALITY
1538 if (personality_set)
1539 {
1540 errno = 0;
1541 personality (personality_orig);
1542 if (errno != 0)
1543 warning (_("Error restoring address space randomization: %s"),
1544 safe_strerror (errno));
1545 }
1546 #endif /* HAVE_PERSONALITY */
1547 }
1548
1549 static void
1550 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1551 {
1552 struct lwp_info *lp;
1553 int status;
1554 ptid_t ptid;
1555
1556 linux_ops->to_attach (ops, args, from_tty);
1557
1558 /* The ptrace base target adds the main thread with (pid,0,0)
1559 format. Decorate it with lwp info. */
1560 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1561 thread_change_ptid (inferior_ptid, ptid);
1562
1563 /* Add the initial process as the first LWP to the list. */
1564 lp = add_lwp (ptid);
1565
1566 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1567 &lp->signalled);
1568 if (!WIFSTOPPED (status))
1569 {
1570 if (WIFEXITED (status))
1571 {
1572 int exit_code = WEXITSTATUS (status);
1573
1574 target_terminal_ours ();
1575 target_mourn_inferior ();
1576 if (exit_code == 0)
1577 error (_("Unable to attach: program exited normally."));
1578 else
1579 error (_("Unable to attach: program exited with code %d."),
1580 exit_code);
1581 }
1582 else if (WIFSIGNALED (status))
1583 {
1584 enum target_signal signo;
1585
1586 target_terminal_ours ();
1587 target_mourn_inferior ();
1588
1589 signo = target_signal_from_host (WTERMSIG (status));
1590 error (_("Unable to attach: program terminated with signal "
1591 "%s, %s."),
1592 target_signal_to_name (signo),
1593 target_signal_to_string (signo));
1594 }
1595
1596 internal_error (__FILE__, __LINE__,
1597 _("unexpected status %d for PID %ld"),
1598 status, (long) GET_LWP (ptid));
1599 }
1600
1601 lp->stopped = 1;
1602
1603 /* Save the wait status to report later. */
1604 lp->resumed = 1;
1605 if (debug_linux_nat)
1606 fprintf_unfiltered (gdb_stdlog,
1607 "LNA: waitpid %ld, saving status %s\n",
1608 (long) GET_PID (lp->ptid), status_to_str (status));
1609
1610 lp->status = status;
1611
1612 if (target_can_async_p ())
1613 target_async (inferior_event_handler, 0);
1614 }
1615
1616 /* Get pending status of LP. */
1617 static int
1618 get_pending_status (struct lwp_info *lp, int *status)
1619 {
1620 enum target_signal signo = TARGET_SIGNAL_0;
1621
1622 /* If we paused threads momentarily, we may have stored pending
1623 events in lp->status or lp->waitstatus (see stop_wait_callback),
1624 and GDB core hasn't seen any signal for those threads.
1625 Otherwise, the last signal reported to the core is found in the
1626 thread object's stop_signal.
1627
1628 There's a corner case that isn't handled here at present. Only
1629 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1630 stop_signal make sense as a real signal to pass to the inferior.
1631 Some catchpoint related events, like
1632 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1633 to TARGET_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1634 those traps are debug API (ptrace in our case) related and
1635 induced; the inferior wouldn't see them if it wasn't being
1636 traced. Hence, we should never pass them to the inferior, even
1637 when set to pass state. Since this corner case isn't handled by
1638 infrun.c when proceeding with a signal, for consistency, neither
1639 do we handle it here (or elsewhere in the file we check for
1640 signal pass state). Normally SIGTRAP isn't set to pass state, so
1641 this is really a corner case. */
1642
1643 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1644 signo = TARGET_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1645 else if (lp->status)
1646 signo = target_signal_from_host (WSTOPSIG (lp->status));
1647 else if (non_stop && !is_executing (lp->ptid))
1648 {
1649 struct thread_info *tp = find_thread_ptid (lp->ptid);
1650
1651 signo = tp->stop_signal;
1652 }
1653 else if (!non_stop)
1654 {
1655 struct target_waitstatus last;
1656 ptid_t last_ptid;
1657
1658 get_last_target_status (&last_ptid, &last);
1659
1660 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1661 {
1662 struct thread_info *tp = find_thread_ptid (lp->ptid);
1663
1664 signo = tp->stop_signal;
1665 }
1666 }
1667
1668 *status = 0;
1669
1670 if (signo == TARGET_SIGNAL_0)
1671 {
1672 if (debug_linux_nat)
1673 fprintf_unfiltered (gdb_stdlog,
1674 "GPT: lwp %s has no pending signal\n",
1675 target_pid_to_str (lp->ptid));
1676 }
1677 else if (!signal_pass_state (signo))
1678 {
1679 if (debug_linux_nat)
1680 fprintf_unfiltered (gdb_stdlog, "\
1681 GPT: lwp %s had signal %s, but it is in no pass state\n",
1682 target_pid_to_str (lp->ptid),
1683 target_signal_to_string (signo));
1684 }
1685 else
1686 {
1687 *status = W_STOPCODE (target_signal_to_host (signo));
1688
1689 if (debug_linux_nat)
1690 fprintf_unfiltered (gdb_stdlog,
1691 "GPT: lwp %s has pending signal %s\n",
1692 target_pid_to_str (lp->ptid),
1693 target_signal_to_string (signo));
1694 }
1695
1696 return 0;
1697 }
1698
1699 static int
1700 detach_callback (struct lwp_info *lp, void *data)
1701 {
1702 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1703
1704 if (debug_linux_nat && lp->status)
1705 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1706 strsignal (WSTOPSIG (lp->status)),
1707 target_pid_to_str (lp->ptid));
1708
1709 /* If there is a pending SIGSTOP, get rid of it. */
1710 if (lp->signalled)
1711 {
1712 if (debug_linux_nat)
1713 fprintf_unfiltered (gdb_stdlog,
1714 "DC: Sending SIGCONT to %s\n",
1715 target_pid_to_str (lp->ptid));
1716
1717 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1718 lp->signalled = 0;
1719 }
1720
1721 /* We don't actually detach from the LWP that has an id equal to the
1722 overall process id just yet. */
1723 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1724 {
1725 int status = 0;
1726
1727 /* Pass on any pending signal for this LWP. */
1728 get_pending_status (lp, &status);
1729
1730 errno = 0;
1731 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1732 WSTOPSIG (status)) < 0)
1733 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1734 safe_strerror (errno));
1735
1736 if (debug_linux_nat)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1739 target_pid_to_str (lp->ptid),
1740 strsignal (WSTOPSIG (status)));
1741
1742 delete_lwp (lp->ptid);
1743 }
1744
1745 return 0;
1746 }
1747
1748 static void
1749 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1750 {
1751 int pid;
1752 int status;
1753 struct lwp_info *main_lwp;
1754
1755 pid = GET_PID (inferior_ptid);
1756
1757 if (target_can_async_p ())
1758 linux_nat_async (NULL, 0);
1759
1760 /* Stop all threads before detaching. ptrace requires that the
1761 thread is stopped to sucessfully detach. */
1762 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1763 /* ... and wait until all of them have reported back that
1764 they're no longer running. */
1765 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1766
1767 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1768
1769 /* Only the initial process should be left right now. */
1770 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1771
1772 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1773
1774 /* Pass on any pending signal for the last LWP. */
1775 if ((args == NULL || *args == '\0')
1776 && get_pending_status (main_lwp, &status) != -1
1777 && WIFSTOPPED (status))
1778 {
1779 /* Put the signal number in ARGS so that inf_ptrace_detach will
1780 pass it along with PTRACE_DETACH. */
1781 args = alloca (8);
1782 sprintf (args, "%d", (int) WSTOPSIG (status));
1783 if (debug_linux_nat)
1784 fprintf_unfiltered (gdb_stdlog,
1785 "LND: Sending signal %s to %s\n",
1786 args,
1787 target_pid_to_str (main_lwp->ptid));
1788 }
1789
1790 delete_lwp (main_lwp->ptid);
1791
1792 if (forks_exist_p ())
1793 {
1794 /* Multi-fork case. The current inferior_ptid is being detached
1795 from, but there are other viable forks to debug. Detach from
1796 the current fork, and context-switch to the first
1797 available. */
1798 linux_fork_detach (args, from_tty);
1799
1800 if (non_stop && target_can_async_p ())
1801 target_async (inferior_event_handler, 0);
1802 }
1803 else
1804 linux_ops->to_detach (ops, args, from_tty);
1805 }
1806
1807 /* Resume LP. */
1808
1809 static int
1810 resume_callback (struct lwp_info *lp, void *data)
1811 {
1812 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1813
1814 if (lp->stopped && inf->vfork_child != NULL)
1815 {
1816 if (debug_linux_nat)
1817 fprintf_unfiltered (gdb_stdlog,
1818 "RC: Not resuming %s (vfork parent)\n",
1819 target_pid_to_str (lp->ptid));
1820 }
1821 else if (lp->stopped && lp->status == 0)
1822 {
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1826 target_pid_to_str (lp->ptid));
1827
1828 linux_ops->to_resume (linux_ops,
1829 pid_to_ptid (GET_LWP (lp->ptid)),
1830 0, TARGET_SIGNAL_0);
1831 if (debug_linux_nat)
1832 fprintf_unfiltered (gdb_stdlog,
1833 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1834 target_pid_to_str (lp->ptid));
1835 lp->stopped = 0;
1836 lp->step = 0;
1837 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1838 lp->stopped_by_watchpoint = 0;
1839 }
1840 else if (lp->stopped && debug_linux_nat)
1841 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1842 target_pid_to_str (lp->ptid));
1843 else if (debug_linux_nat)
1844 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1845 target_pid_to_str (lp->ptid));
1846
1847 return 0;
1848 }
1849
1850 static int
1851 resume_clear_callback (struct lwp_info *lp, void *data)
1852 {
1853 lp->resumed = 0;
1854 return 0;
1855 }
1856
1857 static int
1858 resume_set_callback (struct lwp_info *lp, void *data)
1859 {
1860 lp->resumed = 1;
1861 return 0;
1862 }
1863
1864 static void
1865 linux_nat_resume (struct target_ops *ops,
1866 ptid_t ptid, int step, enum target_signal signo)
1867 {
1868 sigset_t prev_mask;
1869 struct lwp_info *lp;
1870 int resume_many;
1871
1872 if (debug_linux_nat)
1873 fprintf_unfiltered (gdb_stdlog,
1874 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1875 step ? "step" : "resume",
1876 target_pid_to_str (ptid),
1877 signo ? strsignal (signo) : "0",
1878 target_pid_to_str (inferior_ptid));
1879
1880 block_child_signals (&prev_mask);
1881
1882 /* A specific PTID means `step only this process id'. */
1883 resume_many = (ptid_equal (minus_one_ptid, ptid)
1884 || ptid_is_pid (ptid));
1885
1886 /* Mark the lwps we're resuming as resumed. */
1887 iterate_over_lwps (ptid, resume_set_callback, NULL);
1888
1889 /* See if it's the current inferior that should be handled
1890 specially. */
1891 if (resume_many)
1892 lp = find_lwp_pid (inferior_ptid);
1893 else
1894 lp = find_lwp_pid (ptid);
1895 gdb_assert (lp != NULL);
1896
1897 /* Remember if we're stepping. */
1898 lp->step = step;
1899
1900 /* If we have a pending wait status for this thread, there is no
1901 point in resuming the process. But first make sure that
1902 linux_nat_wait won't preemptively handle the event - we
1903 should never take this short-circuit if we are going to
1904 leave LP running, since we have skipped resuming all the
1905 other threads. This bit of code needs to be synchronized
1906 with linux_nat_wait. */
1907
1908 if (lp->status && WIFSTOPPED (lp->status))
1909 {
1910 int saved_signo;
1911 struct inferior *inf;
1912
1913 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1914 gdb_assert (inf);
1915 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1916
1917 /* Defer to common code if we're gaining control of the
1918 inferior. */
1919 if (inf->stop_soon == NO_STOP_QUIETLY
1920 && signal_stop_state (saved_signo) == 0
1921 && signal_print_state (saved_signo) == 0
1922 && signal_pass_state (saved_signo) == 1)
1923 {
1924 if (debug_linux_nat)
1925 fprintf_unfiltered (gdb_stdlog,
1926 "LLR: Not short circuiting for ignored "
1927 "status 0x%x\n", lp->status);
1928
1929 /* FIXME: What should we do if we are supposed to continue
1930 this thread with a signal? */
1931 gdb_assert (signo == TARGET_SIGNAL_0);
1932 signo = saved_signo;
1933 lp->status = 0;
1934 }
1935 }
1936
1937 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1938 {
1939 /* FIXME: What should we do if we are supposed to continue
1940 this thread with a signal? */
1941 gdb_assert (signo == TARGET_SIGNAL_0);
1942
1943 if (debug_linux_nat)
1944 fprintf_unfiltered (gdb_stdlog,
1945 "LLR: Short circuiting for status 0x%x\n",
1946 lp->status);
1947
1948 restore_child_signals_mask (&prev_mask);
1949 if (target_can_async_p ())
1950 {
1951 target_async (inferior_event_handler, 0);
1952 /* Tell the event loop we have something to process. */
1953 async_file_mark ();
1954 }
1955 return;
1956 }
1957
1958 /* Mark LWP as not stopped to prevent it from being continued by
1959 resume_callback. */
1960 lp->stopped = 0;
1961
1962 if (resume_many)
1963 iterate_over_lwps (ptid, resume_callback, NULL);
1964
1965 /* Convert to something the lower layer understands. */
1966 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1967
1968 linux_ops->to_resume (linux_ops, ptid, step, signo);
1969 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1970 lp->stopped_by_watchpoint = 0;
1971
1972 if (debug_linux_nat)
1973 fprintf_unfiltered (gdb_stdlog,
1974 "LLR: %s %s, %s (resume event thread)\n",
1975 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1976 target_pid_to_str (ptid),
1977 signo ? strsignal (signo) : "0");
1978
1979 restore_child_signals_mask (&prev_mask);
1980 if (target_can_async_p ())
1981 target_async (inferior_event_handler, 0);
1982 }
1983
1984 /* Send a signal to an LWP. */
1985
1986 static int
1987 kill_lwp (int lwpid, int signo)
1988 {
1989 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1990 fails, then we are not using nptl threads and we should be using kill. */
1991
1992 #ifdef HAVE_TKILL_SYSCALL
1993 {
1994 static int tkill_failed;
1995
1996 if (!tkill_failed)
1997 {
1998 int ret;
1999
2000 errno = 0;
2001 ret = syscall (__NR_tkill, lwpid, signo);
2002 if (errno != ENOSYS)
2003 return ret;
2004 tkill_failed = 1;
2005 }
2006 }
2007 #endif
2008
2009 return kill (lwpid, signo);
2010 }
2011
2012 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2013 event, check if the core is interested in it: if not, ignore the
2014 event, and keep waiting; otherwise, we need to toggle the LWP's
2015 syscall entry/exit status, since the ptrace event itself doesn't
2016 indicate it, and report the trap to higher layers. */
2017
2018 static int
2019 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2020 {
2021 struct target_waitstatus *ourstatus = &lp->waitstatus;
2022 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2023 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2024
2025 if (stopping)
2026 {
2027 /* If we're stopping threads, there's a SIGSTOP pending, which
2028 makes it so that the LWP reports an immediate syscall return,
2029 followed by the SIGSTOP. Skip seeing that "return" using
2030 PTRACE_CONT directly, and let stop_wait_callback collect the
2031 SIGSTOP. Later when the thread is resumed, a new syscall
2032 entry event. If we didn't do this (and returned 0), we'd
2033 leave a syscall entry pending, and our caller, by using
2034 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2035 itself. Later, when the user re-resumes this LWP, we'd see
2036 another syscall entry event and we'd mistake it for a return.
2037
2038 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2039 (leaving immediately with LWP->signalled set, without issuing
2040 a PTRACE_CONT), it would still be problematic to leave this
2041 syscall enter pending, as later when the thread is resumed,
2042 it would then see the same syscall exit mentioned above,
2043 followed by the delayed SIGSTOP, while the syscall didn't
2044 actually get to execute. It seems it would be even more
2045 confusing to the user. */
2046
2047 if (debug_linux_nat)
2048 fprintf_unfiltered (gdb_stdlog,
2049 "LHST: ignoring syscall %d "
2050 "for LWP %ld (stopping threads), "
2051 "resuming with PTRACE_CONT for SIGSTOP\n",
2052 syscall_number,
2053 GET_LWP (lp->ptid));
2054
2055 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2056 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2057 return 1;
2058 }
2059
2060 if (catch_syscall_enabled ())
2061 {
2062 /* Always update the entry/return state, even if this particular
2063 syscall isn't interesting to the core now. In async mode,
2064 the user could install a new catchpoint for this syscall
2065 between syscall enter/return, and we'll need to know to
2066 report a syscall return if that happens. */
2067 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2068 ? TARGET_WAITKIND_SYSCALL_RETURN
2069 : TARGET_WAITKIND_SYSCALL_ENTRY);
2070
2071 if (catching_syscall_number (syscall_number))
2072 {
2073 /* Alright, an event to report. */
2074 ourstatus->kind = lp->syscall_state;
2075 ourstatus->value.syscall_number = syscall_number;
2076
2077 if (debug_linux_nat)
2078 fprintf_unfiltered (gdb_stdlog,
2079 "LHST: stopping for %s of syscall %d"
2080 " for LWP %ld\n",
2081 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2082 ? "entry" : "return",
2083 syscall_number,
2084 GET_LWP (lp->ptid));
2085 return 0;
2086 }
2087
2088 if (debug_linux_nat)
2089 fprintf_unfiltered (gdb_stdlog,
2090 "LHST: ignoring %s of syscall %d "
2091 "for LWP %ld\n",
2092 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2093 ? "entry" : "return",
2094 syscall_number,
2095 GET_LWP (lp->ptid));
2096 }
2097 else
2098 {
2099 /* If we had been syscall tracing, and hence used PT_SYSCALL
2100 before on this LWP, it could happen that the user removes all
2101 syscall catchpoints before we get to process this event.
2102 There are two noteworthy issues here:
2103
2104 - When stopped at a syscall entry event, resuming with
2105 PT_STEP still resumes executing the syscall and reports a
2106 syscall return.
2107
2108 - Only PT_SYSCALL catches syscall enters. If we last
2109 single-stepped this thread, then this event can't be a
2110 syscall enter. If we last single-stepped this thread, this
2111 has to be a syscall exit.
2112
2113 The points above mean that the next resume, be it PT_STEP or
2114 PT_CONTINUE, can not trigger a syscall trace event. */
2115 if (debug_linux_nat)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "LHST: caught syscall event with no syscall catchpoints."
2118 " %d for LWP %ld, ignoring\n",
2119 syscall_number,
2120 GET_LWP (lp->ptid));
2121 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2122 }
2123
2124 /* The core isn't interested in this event. For efficiency, avoid
2125 stopping all threads only to have the core resume them all again.
2126 Since we're not stopping threads, if we're still syscall tracing
2127 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2128 subsequent syscall. Simply resume using the inf-ptrace layer,
2129 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2130
2131 /* Note that gdbarch_get_syscall_number may access registers, hence
2132 fill a regcache. */
2133 registers_changed ();
2134 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2135 lp->step, TARGET_SIGNAL_0);
2136 return 1;
2137 }
2138
2139 /* Handle a GNU/Linux extended wait response. If we see a clone
2140 event, we need to add the new LWP to our list (and not report the
2141 trap to higher layers). This function returns non-zero if the
2142 event should be ignored and we should wait again. If STOPPING is
2143 true, the new LWP remains stopped, otherwise it is continued. */
2144
2145 static int
2146 linux_handle_extended_wait (struct lwp_info *lp, int status,
2147 int stopping)
2148 {
2149 int pid = GET_LWP (lp->ptid);
2150 struct target_waitstatus *ourstatus = &lp->waitstatus;
2151 int event = status >> 16;
2152
2153 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2154 || event == PTRACE_EVENT_CLONE)
2155 {
2156 unsigned long new_pid;
2157 int ret;
2158
2159 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2160
2161 /* If we haven't already seen the new PID stop, wait for it now. */
2162 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2163 {
2164 /* The new child has a pending SIGSTOP. We can't affect it until it
2165 hits the SIGSTOP, but we're already attached. */
2166 ret = my_waitpid (new_pid, &status,
2167 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2168 if (ret == -1)
2169 perror_with_name (_("waiting for new child"));
2170 else if (ret != new_pid)
2171 internal_error (__FILE__, __LINE__,
2172 _("wait returned unexpected PID %d"), ret);
2173 else if (!WIFSTOPPED (status))
2174 internal_error (__FILE__, __LINE__,
2175 _("wait returned unexpected status 0x%x"), status);
2176 }
2177
2178 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2179
2180 if (event == PTRACE_EVENT_FORK
2181 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2182 {
2183 struct fork_info *fp;
2184
2185 /* Handle checkpointing by linux-fork.c here as a special
2186 case. We don't want the follow-fork-mode or 'catch fork'
2187 to interfere with this. */
2188
2189 /* This won't actually modify the breakpoint list, but will
2190 physically remove the breakpoints from the child. */
2191 detach_breakpoints (new_pid);
2192
2193 /* Retain child fork in ptrace (stopped) state. */
2194 fp = find_fork_pid (new_pid);
2195 if (!fp)
2196 fp = add_fork (new_pid);
2197
2198 /* Report as spurious, so that infrun doesn't want to follow
2199 this fork. We're actually doing an infcall in
2200 linux-fork.c. */
2201 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2202 linux_enable_event_reporting (pid_to_ptid (new_pid));
2203
2204 /* Report the stop to the core. */
2205 return 0;
2206 }
2207
2208 if (event == PTRACE_EVENT_FORK)
2209 ourstatus->kind = TARGET_WAITKIND_FORKED;
2210 else if (event == PTRACE_EVENT_VFORK)
2211 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2212 else
2213 {
2214 struct lwp_info *new_lp;
2215
2216 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2217
2218 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2219 new_lp->cloned = 1;
2220 new_lp->stopped = 1;
2221
2222 if (WSTOPSIG (status) != SIGSTOP)
2223 {
2224 /* This can happen if someone starts sending signals to
2225 the new thread before it gets a chance to run, which
2226 have a lower number than SIGSTOP (e.g. SIGUSR1).
2227 This is an unlikely case, and harder to handle for
2228 fork / vfork than for clone, so we do not try - but
2229 we handle it for clone events here. We'll send
2230 the other signal on to the thread below. */
2231
2232 new_lp->signalled = 1;
2233 }
2234 else
2235 status = 0;
2236
2237 if (non_stop)
2238 {
2239 /* Add the new thread to GDB's lists as soon as possible
2240 so that:
2241
2242 1) the frontend doesn't have to wait for a stop to
2243 display them, and,
2244
2245 2) we tag it with the correct running state. */
2246
2247 /* If the thread_db layer is active, let it know about
2248 this new thread, and add it to GDB's list. */
2249 if (!thread_db_attach_lwp (new_lp->ptid))
2250 {
2251 /* We're not using thread_db. Add it to GDB's
2252 list. */
2253 target_post_attach (GET_LWP (new_lp->ptid));
2254 add_thread (new_lp->ptid);
2255 }
2256
2257 if (!stopping)
2258 {
2259 set_running (new_lp->ptid, 1);
2260 set_executing (new_lp->ptid, 1);
2261 }
2262 }
2263
2264 /* Note the need to use the low target ops to resume, to
2265 handle resuming with PT_SYSCALL if we have syscall
2266 catchpoints. */
2267 if (!stopping)
2268 {
2269 int signo;
2270
2271 new_lp->stopped = 0;
2272 new_lp->resumed = 1;
2273
2274 signo = (status
2275 ? target_signal_from_host (WSTOPSIG (status))
2276 : TARGET_SIGNAL_0);
2277
2278 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2279 0, signo);
2280 }
2281 else
2282 {
2283 if (status != 0)
2284 {
2285 /* We created NEW_LP so it cannot yet contain STATUS. */
2286 gdb_assert (new_lp->status == 0);
2287
2288 /* Save the wait status to report later. */
2289 if (debug_linux_nat)
2290 fprintf_unfiltered (gdb_stdlog,
2291 "LHEW: waitpid of new LWP %ld, "
2292 "saving status %s\n",
2293 (long) GET_LWP (new_lp->ptid),
2294 status_to_str (status));
2295 new_lp->status = status;
2296 }
2297 }
2298
2299 if (debug_linux_nat)
2300 fprintf_unfiltered (gdb_stdlog,
2301 "LHEW: Got clone event from LWP %ld, resuming\n",
2302 GET_LWP (lp->ptid));
2303 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2304 0, TARGET_SIGNAL_0);
2305
2306 return 1;
2307 }
2308
2309 return 0;
2310 }
2311
2312 if (event == PTRACE_EVENT_EXEC)
2313 {
2314 if (debug_linux_nat)
2315 fprintf_unfiltered (gdb_stdlog,
2316 "LHEW: Got exec event from LWP %ld\n",
2317 GET_LWP (lp->ptid));
2318
2319 ourstatus->kind = TARGET_WAITKIND_EXECD;
2320 ourstatus->value.execd_pathname
2321 = xstrdup (linux_child_pid_to_exec_file (pid));
2322
2323 return 0;
2324 }
2325
2326 if (event == PTRACE_EVENT_VFORK_DONE)
2327 {
2328 if (current_inferior ()->waiting_for_vfork_done)
2329 {
2330 if (debug_linux_nat)
2331 fprintf_unfiltered (gdb_stdlog, "\
2332 LHEW: Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping\n",
2333 GET_LWP (lp->ptid));
2334
2335 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2336 return 0;
2337 }
2338
2339 if (debug_linux_nat)
2340 fprintf_unfiltered (gdb_stdlog, "\
2341 LHEW: Got PTRACE_EVENT_VFORK_DONE from LWP %ld: resuming\n",
2342 GET_LWP (lp->ptid));
2343 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2344 return 1;
2345 }
2346
2347 internal_error (__FILE__, __LINE__,
2348 _("unknown ptrace event %d"), event);
2349 }
2350
2351 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2352 exited. */
2353
2354 static int
2355 wait_lwp (struct lwp_info *lp)
2356 {
2357 pid_t pid;
2358 int status;
2359 int thread_dead = 0;
2360
2361 gdb_assert (!lp->stopped);
2362 gdb_assert (lp->status == 0);
2363
2364 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2365 if (pid == -1 && errno == ECHILD)
2366 {
2367 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2368 if (pid == -1 && errno == ECHILD)
2369 {
2370 /* The thread has previously exited. We need to delete it
2371 now because, for some vendor 2.4 kernels with NPTL
2372 support backported, there won't be an exit event unless
2373 it is the main thread. 2.6 kernels will report an exit
2374 event for each thread that exits, as expected. */
2375 thread_dead = 1;
2376 if (debug_linux_nat)
2377 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2378 target_pid_to_str (lp->ptid));
2379 }
2380 }
2381
2382 if (!thread_dead)
2383 {
2384 gdb_assert (pid == GET_LWP (lp->ptid));
2385
2386 if (debug_linux_nat)
2387 {
2388 fprintf_unfiltered (gdb_stdlog,
2389 "WL: waitpid %s received %s\n",
2390 target_pid_to_str (lp->ptid),
2391 status_to_str (status));
2392 }
2393 }
2394
2395 /* Check if the thread has exited. */
2396 if (WIFEXITED (status) || WIFSIGNALED (status))
2397 {
2398 thread_dead = 1;
2399 if (debug_linux_nat)
2400 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2401 target_pid_to_str (lp->ptid));
2402 }
2403
2404 if (thread_dead)
2405 {
2406 exit_lwp (lp);
2407 return 0;
2408 }
2409
2410 gdb_assert (WIFSTOPPED (status));
2411
2412 /* Handle GNU/Linux's syscall SIGTRAPs. */
2413 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2414 {
2415 /* No longer need the sysgood bit. The ptrace event ends up
2416 recorded in lp->waitstatus if we care for it. We can carry
2417 on handling the event like a regular SIGTRAP from here
2418 on. */
2419 status = W_STOPCODE (SIGTRAP);
2420 if (linux_handle_syscall_trap (lp, 1))
2421 return wait_lwp (lp);
2422 }
2423
2424 /* Handle GNU/Linux's extended waitstatus for trace events. */
2425 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2426 {
2427 if (debug_linux_nat)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "WL: Handling extended status 0x%06x\n",
2430 status);
2431 if (linux_handle_extended_wait (lp, status, 1))
2432 return wait_lwp (lp);
2433 }
2434
2435 return status;
2436 }
2437
2438 /* Save the most recent siginfo for LP. This is currently only called
2439 for SIGTRAP; some ports use the si_addr field for
2440 target_stopped_data_address. In the future, it may also be used to
2441 restore the siginfo of requeued signals. */
2442
2443 static void
2444 save_siginfo (struct lwp_info *lp)
2445 {
2446 errno = 0;
2447 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2448 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2449
2450 if (errno != 0)
2451 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2452 }
2453
2454 /* Send a SIGSTOP to LP. */
2455
2456 static int
2457 stop_callback (struct lwp_info *lp, void *data)
2458 {
2459 if (!lp->stopped && !lp->signalled)
2460 {
2461 int ret;
2462
2463 if (debug_linux_nat)
2464 {
2465 fprintf_unfiltered (gdb_stdlog,
2466 "SC: kill %s **<SIGSTOP>**\n",
2467 target_pid_to_str (lp->ptid));
2468 }
2469 errno = 0;
2470 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2471 if (debug_linux_nat)
2472 {
2473 fprintf_unfiltered (gdb_stdlog,
2474 "SC: lwp kill %d %s\n",
2475 ret,
2476 errno ? safe_strerror (errno) : "ERRNO-OK");
2477 }
2478
2479 lp->signalled = 1;
2480 gdb_assert (lp->status == 0);
2481 }
2482
2483 return 0;
2484 }
2485
2486 /* Return non-zero if LWP PID has a pending SIGINT. */
2487
2488 static int
2489 linux_nat_has_pending_sigint (int pid)
2490 {
2491 sigset_t pending, blocked, ignored;
2492
2493 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2494
2495 if (sigismember (&pending, SIGINT)
2496 && !sigismember (&ignored, SIGINT))
2497 return 1;
2498
2499 return 0;
2500 }
2501
2502 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2503
2504 static int
2505 set_ignore_sigint (struct lwp_info *lp, void *data)
2506 {
2507 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2508 flag to consume the next one. */
2509 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2510 && WSTOPSIG (lp->status) == SIGINT)
2511 lp->status = 0;
2512 else
2513 lp->ignore_sigint = 1;
2514
2515 return 0;
2516 }
2517
2518 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2519 This function is called after we know the LWP has stopped; if the LWP
2520 stopped before the expected SIGINT was delivered, then it will never have
2521 arrived. Also, if the signal was delivered to a shared queue and consumed
2522 by a different thread, it will never be delivered to this LWP. */
2523
2524 static void
2525 maybe_clear_ignore_sigint (struct lwp_info *lp)
2526 {
2527 if (!lp->ignore_sigint)
2528 return;
2529
2530 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2531 {
2532 if (debug_linux_nat)
2533 fprintf_unfiltered (gdb_stdlog,
2534 "MCIS: Clearing bogus flag for %s\n",
2535 target_pid_to_str (lp->ptid));
2536 lp->ignore_sigint = 0;
2537 }
2538 }
2539
2540 /* Fetch the possible triggered data watchpoint info and store it in
2541 LP.
2542
2543 On some archs, like x86, that use debug registers to set
2544 watchpoints, it's possible that the way to know which watched
2545 address trapped, is to check the register that is used to select
2546 which address to watch. Problem is, between setting the watchpoint
2547 and reading back which data address trapped, the user may change
2548 the set of watchpoints, and, as a consequence, GDB changes the
2549 debug registers in the inferior. To avoid reading back a stale
2550 stopped-data-address when that happens, we cache in LP the fact
2551 that a watchpoint trapped, and the corresponding data address, as
2552 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2553 registers meanwhile, we have the cached data we can rely on. */
2554
2555 static void
2556 save_sigtrap (struct lwp_info *lp)
2557 {
2558 struct cleanup *old_chain;
2559
2560 if (linux_ops->to_stopped_by_watchpoint == NULL)
2561 {
2562 lp->stopped_by_watchpoint = 0;
2563 return;
2564 }
2565
2566 old_chain = save_inferior_ptid ();
2567 inferior_ptid = lp->ptid;
2568
2569 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2570
2571 if (lp->stopped_by_watchpoint)
2572 {
2573 if (linux_ops->to_stopped_data_address != NULL)
2574 lp->stopped_data_address_p =
2575 linux_ops->to_stopped_data_address (&current_target,
2576 &lp->stopped_data_address);
2577 else
2578 lp->stopped_data_address_p = 0;
2579 }
2580
2581 do_cleanups (old_chain);
2582 }
2583
2584 /* See save_sigtrap. */
2585
2586 static int
2587 linux_nat_stopped_by_watchpoint (void)
2588 {
2589 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2590
2591 gdb_assert (lp != NULL);
2592
2593 return lp->stopped_by_watchpoint;
2594 }
2595
2596 static int
2597 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2598 {
2599 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2600
2601 gdb_assert (lp != NULL);
2602
2603 *addr_p = lp->stopped_data_address;
2604
2605 return lp->stopped_data_address_p;
2606 }
2607
2608 /* Wait until LP is stopped. */
2609
2610 static int
2611 stop_wait_callback (struct lwp_info *lp, void *data)
2612 {
2613 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2614
2615 /* If this is a vfork parent, bail out, it is not going to report
2616 any SIGSTOP until the vfork is done with. */
2617 if (inf->vfork_child != NULL)
2618 return 0;
2619
2620 if (!lp->stopped)
2621 {
2622 int status;
2623
2624 status = wait_lwp (lp);
2625 if (status == 0)
2626 return 0;
2627
2628 if (lp->ignore_sigint && WIFSTOPPED (status)
2629 && WSTOPSIG (status) == SIGINT)
2630 {
2631 lp->ignore_sigint = 0;
2632
2633 errno = 0;
2634 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2635 if (debug_linux_nat)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2638 target_pid_to_str (lp->ptid),
2639 errno ? safe_strerror (errno) : "OK");
2640
2641 return stop_wait_callback (lp, NULL);
2642 }
2643
2644 maybe_clear_ignore_sigint (lp);
2645
2646 if (WSTOPSIG (status) != SIGSTOP)
2647 {
2648 if (WSTOPSIG (status) == SIGTRAP)
2649 {
2650 /* If a LWP other than the LWP that we're reporting an
2651 event for has hit a GDB breakpoint (as opposed to
2652 some random trap signal), then just arrange for it to
2653 hit it again later. We don't keep the SIGTRAP status
2654 and don't forward the SIGTRAP signal to the LWP. We
2655 will handle the current event, eventually we will
2656 resume all LWPs, and this one will get its breakpoint
2657 trap again.
2658
2659 If we do not do this, then we run the risk that the
2660 user will delete or disable the breakpoint, but the
2661 thread will have already tripped on it. */
2662
2663 /* Save the trap's siginfo in case we need it later. */
2664 save_siginfo (lp);
2665
2666 save_sigtrap (lp);
2667
2668 /* Now resume this LWP and get the SIGSTOP event. */
2669 errno = 0;
2670 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2671 if (debug_linux_nat)
2672 {
2673 fprintf_unfiltered (gdb_stdlog,
2674 "PTRACE_CONT %s, 0, 0 (%s)\n",
2675 target_pid_to_str (lp->ptid),
2676 errno ? safe_strerror (errno) : "OK");
2677
2678 fprintf_unfiltered (gdb_stdlog,
2679 "SWC: Candidate SIGTRAP event in %s\n",
2680 target_pid_to_str (lp->ptid));
2681 }
2682 /* Hold this event/waitstatus while we check to see if
2683 there are any more (we still want to get that SIGSTOP). */
2684 stop_wait_callback (lp, NULL);
2685
2686 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2687 there's another event, throw it back into the
2688 queue. */
2689 if (lp->status)
2690 {
2691 if (debug_linux_nat)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "SWC: kill %s, %s\n",
2694 target_pid_to_str (lp->ptid),
2695 status_to_str ((int) status));
2696 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2697 }
2698
2699 /* Save the sigtrap event. */
2700 lp->status = status;
2701 return 0;
2702 }
2703 else
2704 {
2705 /* The thread was stopped with a signal other than
2706 SIGSTOP, and didn't accidentally trip a breakpoint. */
2707
2708 if (debug_linux_nat)
2709 {
2710 fprintf_unfiltered (gdb_stdlog,
2711 "SWC: Pending event %s in %s\n",
2712 status_to_str ((int) status),
2713 target_pid_to_str (lp->ptid));
2714 }
2715 /* Now resume this LWP and get the SIGSTOP event. */
2716 errno = 0;
2717 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2718 if (debug_linux_nat)
2719 fprintf_unfiltered (gdb_stdlog,
2720 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2721 target_pid_to_str (lp->ptid),
2722 errno ? safe_strerror (errno) : "OK");
2723
2724 /* Hold this event/waitstatus while we check to see if
2725 there are any more (we still want to get that SIGSTOP). */
2726 stop_wait_callback (lp, NULL);
2727
2728 /* If the lp->status field is still empty, use it to
2729 hold this event. If not, then this event must be
2730 returned to the event queue of the LWP. */
2731 if (lp->status)
2732 {
2733 if (debug_linux_nat)
2734 {
2735 fprintf_unfiltered (gdb_stdlog,
2736 "SWC: kill %s, %s\n",
2737 target_pid_to_str (lp->ptid),
2738 status_to_str ((int) status));
2739 }
2740 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2741 }
2742 else
2743 lp->status = status;
2744 return 0;
2745 }
2746 }
2747 else
2748 {
2749 /* We caught the SIGSTOP that we intended to catch, so
2750 there's no SIGSTOP pending. */
2751 lp->stopped = 1;
2752 lp->signalled = 0;
2753 }
2754 }
2755
2756 return 0;
2757 }
2758
2759 /* Return non-zero if LP has a wait status pending. */
2760
2761 static int
2762 status_callback (struct lwp_info *lp, void *data)
2763 {
2764 /* Only report a pending wait status if we pretend that this has
2765 indeed been resumed. */
2766 if (!lp->resumed)
2767 return 0;
2768
2769 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2770 {
2771 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2772 or a a pending process exit. Note that `W_EXITCODE(0,0) ==
2773 0', so a clean process exit can not be stored pending in
2774 lp->status, it is indistinguishable from
2775 no-pending-status. */
2776 return 1;
2777 }
2778
2779 if (lp->status != 0)
2780 return 1;
2781
2782 return 0;
2783 }
2784
2785 /* Return non-zero if LP isn't stopped. */
2786
2787 static int
2788 running_callback (struct lwp_info *lp, void *data)
2789 {
2790 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2791 }
2792
2793 /* Count the LWP's that have had events. */
2794
2795 static int
2796 count_events_callback (struct lwp_info *lp, void *data)
2797 {
2798 int *count = data;
2799
2800 gdb_assert (count != NULL);
2801
2802 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2803 if (lp->status != 0 && lp->resumed
2804 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2805 (*count)++;
2806
2807 return 0;
2808 }
2809
2810 /* Select the LWP (if any) that is currently being single-stepped. */
2811
2812 static int
2813 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2814 {
2815 if (lp->step && lp->status != 0)
2816 return 1;
2817 else
2818 return 0;
2819 }
2820
2821 /* Select the Nth LWP that has had a SIGTRAP event. */
2822
2823 static int
2824 select_event_lwp_callback (struct lwp_info *lp, void *data)
2825 {
2826 int *selector = data;
2827
2828 gdb_assert (selector != NULL);
2829
2830 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2831 if (lp->status != 0 && lp->resumed
2832 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2833 if ((*selector)-- == 0)
2834 return 1;
2835
2836 return 0;
2837 }
2838
2839 static int
2840 cancel_breakpoint (struct lwp_info *lp)
2841 {
2842 /* Arrange for a breakpoint to be hit again later. We don't keep
2843 the SIGTRAP status and don't forward the SIGTRAP signal to the
2844 LWP. We will handle the current event, eventually we will resume
2845 this LWP, and this breakpoint will trap again.
2846
2847 If we do not do this, then we run the risk that the user will
2848 delete or disable the breakpoint, but the LWP will have already
2849 tripped on it. */
2850
2851 struct regcache *regcache = get_thread_regcache (lp->ptid);
2852 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2853 CORE_ADDR pc;
2854
2855 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2856 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2857 {
2858 if (debug_linux_nat)
2859 fprintf_unfiltered (gdb_stdlog,
2860 "CB: Push back breakpoint for %s\n",
2861 target_pid_to_str (lp->ptid));
2862
2863 /* Back up the PC if necessary. */
2864 if (gdbarch_decr_pc_after_break (gdbarch))
2865 regcache_write_pc (regcache, pc);
2866
2867 return 1;
2868 }
2869 return 0;
2870 }
2871
2872 static int
2873 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2874 {
2875 struct lwp_info *event_lp = data;
2876
2877 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2878 if (lp == event_lp)
2879 return 0;
2880
2881 /* If a LWP other than the LWP that we're reporting an event for has
2882 hit a GDB breakpoint (as opposed to some random trap signal),
2883 then just arrange for it to hit it again later. We don't keep
2884 the SIGTRAP status and don't forward the SIGTRAP signal to the
2885 LWP. We will handle the current event, eventually we will resume
2886 all LWPs, and this one will get its breakpoint trap again.
2887
2888 If we do not do this, then we run the risk that the user will
2889 delete or disable the breakpoint, but the LWP will have already
2890 tripped on it. */
2891
2892 if (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2893 && lp->status != 0
2894 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2895 && cancel_breakpoint (lp))
2896 /* Throw away the SIGTRAP. */
2897 lp->status = 0;
2898
2899 return 0;
2900 }
2901
2902 /* Select one LWP out of those that have events pending. */
2903
2904 static void
2905 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2906 {
2907 int num_events = 0;
2908 int random_selector;
2909 struct lwp_info *event_lp;
2910
2911 /* Record the wait status for the original LWP. */
2912 (*orig_lp)->status = *status;
2913
2914 /* Give preference to any LWP that is being single-stepped. */
2915 event_lp = iterate_over_lwps (filter,
2916 select_singlestep_lwp_callback, NULL);
2917 if (event_lp != NULL)
2918 {
2919 if (debug_linux_nat)
2920 fprintf_unfiltered (gdb_stdlog,
2921 "SEL: Select single-step %s\n",
2922 target_pid_to_str (event_lp->ptid));
2923 }
2924 else
2925 {
2926 /* No single-stepping LWP. Select one at random, out of those
2927 which have had SIGTRAP events. */
2928
2929 /* First see how many SIGTRAP events we have. */
2930 iterate_over_lwps (filter, count_events_callback, &num_events);
2931
2932 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2933 random_selector = (int)
2934 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2935
2936 if (debug_linux_nat && num_events > 1)
2937 fprintf_unfiltered (gdb_stdlog,
2938 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2939 num_events, random_selector);
2940
2941 event_lp = iterate_over_lwps (filter,
2942 select_event_lwp_callback,
2943 &random_selector);
2944 }
2945
2946 if (event_lp != NULL)
2947 {
2948 /* Switch the event LWP. */
2949 *orig_lp = event_lp;
2950 *status = event_lp->status;
2951 }
2952
2953 /* Flush the wait status for the event LWP. */
2954 (*orig_lp)->status = 0;
2955 }
2956
2957 /* Return non-zero if LP has been resumed. */
2958
2959 static int
2960 resumed_callback (struct lwp_info *lp, void *data)
2961 {
2962 return lp->resumed;
2963 }
2964
2965 /* Stop an active thread, verify it still exists, then resume it. */
2966
2967 static int
2968 stop_and_resume_callback (struct lwp_info *lp, void *data)
2969 {
2970 struct lwp_info *ptr;
2971
2972 if (!lp->stopped && !lp->signalled)
2973 {
2974 stop_callback (lp, NULL);
2975 stop_wait_callback (lp, NULL);
2976 /* Resume if the lwp still exists. */
2977 for (ptr = lwp_list; ptr; ptr = ptr->next)
2978 if (lp == ptr)
2979 {
2980 resume_callback (lp, NULL);
2981 resume_set_callback (lp, NULL);
2982 }
2983 }
2984 return 0;
2985 }
2986
2987 /* Check if we should go on and pass this event to common code.
2988 Return the affected lwp if we are, or NULL otherwise. */
2989 static struct lwp_info *
2990 linux_nat_filter_event (int lwpid, int status, int options)
2991 {
2992 struct lwp_info *lp;
2993
2994 lp = find_lwp_pid (pid_to_ptid (lwpid));
2995
2996 /* Check for stop events reported by a process we didn't already
2997 know about - anything not already in our LWP list.
2998
2999 If we're expecting to receive stopped processes after
3000 fork, vfork, and clone events, then we'll just add the
3001 new one to our list and go back to waiting for the event
3002 to be reported - the stopped process might be returned
3003 from waitpid before or after the event is. */
3004 if (WIFSTOPPED (status) && !lp)
3005 {
3006 linux_record_stopped_pid (lwpid, status);
3007 return NULL;
3008 }
3009
3010 /* Make sure we don't report an event for the exit of an LWP not in
3011 our list, i.e. not part of the current process. This can happen
3012 if we detach from a program we original forked and then it
3013 exits. */
3014 if (!WIFSTOPPED (status) && !lp)
3015 return NULL;
3016
3017 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
3018 CLONE_PTRACE processes which do not use the thread library -
3019 otherwise we wouldn't find the new LWP this way. That doesn't
3020 currently work, and the following code is currently unreachable
3021 due to the two blocks above. If it's fixed some day, this code
3022 should be broken out into a function so that we can also pick up
3023 LWPs from the new interface. */
3024 if (!lp)
3025 {
3026 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
3027 if (options & __WCLONE)
3028 lp->cloned = 1;
3029
3030 gdb_assert (WIFSTOPPED (status)
3031 && WSTOPSIG (status) == SIGSTOP);
3032 lp->signalled = 1;
3033
3034 if (!in_thread_list (inferior_ptid))
3035 {
3036 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
3037 GET_PID (inferior_ptid));
3038 add_thread (inferior_ptid);
3039 }
3040
3041 add_thread (lp->ptid);
3042 }
3043
3044 /* Handle GNU/Linux's syscall SIGTRAPs. */
3045 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3046 {
3047 /* No longer need the sysgood bit. The ptrace event ends up
3048 recorded in lp->waitstatus if we care for it. We can carry
3049 on handling the event like a regular SIGTRAP from here
3050 on. */
3051 status = W_STOPCODE (SIGTRAP);
3052 if (linux_handle_syscall_trap (lp, 0))
3053 return NULL;
3054 }
3055
3056 /* Handle GNU/Linux's extended waitstatus for trace events. */
3057 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3058 {
3059 if (debug_linux_nat)
3060 fprintf_unfiltered (gdb_stdlog,
3061 "LLW: Handling extended status 0x%06x\n",
3062 status);
3063 if (linux_handle_extended_wait (lp, status, 0))
3064 return NULL;
3065 }
3066
3067 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3068 {
3069 /* Save the trap's siginfo in case we need it later. */
3070 save_siginfo (lp);
3071
3072 save_sigtrap (lp);
3073 }
3074
3075 /* Check if the thread has exited. */
3076 if ((WIFEXITED (status) || WIFSIGNALED (status))
3077 && num_lwps (GET_PID (lp->ptid)) > 1)
3078 {
3079 /* If this is the main thread, we must stop all threads and verify
3080 if they are still alive. This is because in the nptl thread model
3081 on Linux 2.4, there is no signal issued for exiting LWPs
3082 other than the main thread. We only get the main thread exit
3083 signal once all child threads have already exited. If we
3084 stop all the threads and use the stop_wait_callback to check
3085 if they have exited we can determine whether this signal
3086 should be ignored or whether it means the end of the debugged
3087 application, regardless of which threading model is being
3088 used. */
3089 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3090 {
3091 lp->stopped = 1;
3092 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3093 stop_and_resume_callback, NULL);
3094 }
3095
3096 if (debug_linux_nat)
3097 fprintf_unfiltered (gdb_stdlog,
3098 "LLW: %s exited.\n",
3099 target_pid_to_str (lp->ptid));
3100
3101 if (num_lwps (GET_PID (lp->ptid)) > 1)
3102 {
3103 /* If there is at least one more LWP, then the exit signal
3104 was not the end of the debugged application and should be
3105 ignored. */
3106 exit_lwp (lp);
3107 return NULL;
3108 }
3109 }
3110
3111 /* Check if the current LWP has previously exited. In the nptl
3112 thread model, LWPs other than the main thread do not issue
3113 signals when they exit so we must check whenever the thread has
3114 stopped. A similar check is made in stop_wait_callback(). */
3115 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3116 {
3117 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3118
3119 if (debug_linux_nat)
3120 fprintf_unfiltered (gdb_stdlog,
3121 "LLW: %s exited.\n",
3122 target_pid_to_str (lp->ptid));
3123
3124 exit_lwp (lp);
3125
3126 /* Make sure there is at least one thread running. */
3127 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3128
3129 /* Discard the event. */
3130 return NULL;
3131 }
3132
3133 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3134 an attempt to stop an LWP. */
3135 if (lp->signalled
3136 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3137 {
3138 if (debug_linux_nat)
3139 fprintf_unfiltered (gdb_stdlog,
3140 "LLW: Delayed SIGSTOP caught for %s.\n",
3141 target_pid_to_str (lp->ptid));
3142
3143 /* This is a delayed SIGSTOP. */
3144 lp->signalled = 0;
3145
3146 registers_changed ();
3147
3148 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3149 lp->step, TARGET_SIGNAL_0);
3150 if (debug_linux_nat)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3153 lp->step ?
3154 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3155 target_pid_to_str (lp->ptid));
3156
3157 lp->stopped = 0;
3158 gdb_assert (lp->resumed);
3159
3160 /* Discard the event. */
3161 return NULL;
3162 }
3163
3164 /* Make sure we don't report a SIGINT that we have already displayed
3165 for another thread. */
3166 if (lp->ignore_sigint
3167 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3168 {
3169 if (debug_linux_nat)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "LLW: Delayed SIGINT caught for %s.\n",
3172 target_pid_to_str (lp->ptid));
3173
3174 /* This is a delayed SIGINT. */
3175 lp->ignore_sigint = 0;
3176
3177 registers_changed ();
3178 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3179 lp->step, TARGET_SIGNAL_0);
3180 if (debug_linux_nat)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3183 lp->step ?
3184 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3185 target_pid_to_str (lp->ptid));
3186
3187 lp->stopped = 0;
3188 gdb_assert (lp->resumed);
3189
3190 /* Discard the event. */
3191 return NULL;
3192 }
3193
3194 /* An interesting event. */
3195 gdb_assert (lp);
3196 lp->status = status;
3197 return lp;
3198 }
3199
3200 static ptid_t
3201 linux_nat_wait_1 (struct target_ops *ops,
3202 ptid_t ptid, struct target_waitstatus *ourstatus,
3203 int target_options)
3204 {
3205 static sigset_t prev_mask;
3206 struct lwp_info *lp = NULL;
3207 int options = 0;
3208 int status = 0;
3209 pid_t pid;
3210
3211 if (debug_linux_nat_async)
3212 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3213
3214 /* The first time we get here after starting a new inferior, we may
3215 not have added it to the LWP list yet - this is the earliest
3216 moment at which we know its PID. */
3217 if (ptid_is_pid (inferior_ptid))
3218 {
3219 /* Upgrade the main thread's ptid. */
3220 thread_change_ptid (inferior_ptid,
3221 BUILD_LWP (GET_PID (inferior_ptid),
3222 GET_PID (inferior_ptid)));
3223
3224 lp = add_lwp (inferior_ptid);
3225 lp->resumed = 1;
3226 }
3227
3228 /* Make sure SIGCHLD is blocked. */
3229 block_child_signals (&prev_mask);
3230
3231 if (ptid_equal (ptid, minus_one_ptid))
3232 pid = -1;
3233 else if (ptid_is_pid (ptid))
3234 /* A request to wait for a specific tgid. This is not possible
3235 with waitpid, so instead, we wait for any child, and leave
3236 children we're not interested in right now with a pending
3237 status to report later. */
3238 pid = -1;
3239 else
3240 pid = GET_LWP (ptid);
3241
3242 retry:
3243 lp = NULL;
3244 status = 0;
3245
3246 /* Make sure that of those LWPs we want to get an event from, there
3247 is at least one LWP that has been resumed. If there's none, just
3248 bail out. The core may just be flushing asynchronously all
3249 events. */
3250 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3251 {
3252 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3253
3254 if (debug_linux_nat_async)
3255 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3256
3257 restore_child_signals_mask (&prev_mask);
3258 return minus_one_ptid;
3259 }
3260
3261 /* First check if there is a LWP with a wait status pending. */
3262 if (pid == -1)
3263 {
3264 /* Any LWP that's been resumed will do. */
3265 lp = iterate_over_lwps (ptid, status_callback, NULL);
3266 if (lp)
3267 {
3268 if (debug_linux_nat && lp->status)
3269 fprintf_unfiltered (gdb_stdlog,
3270 "LLW: Using pending wait status %s for %s.\n",
3271 status_to_str (lp->status),
3272 target_pid_to_str (lp->ptid));
3273 }
3274
3275 /* But if we don't find one, we'll have to wait, and check both
3276 cloned and uncloned processes. We start with the cloned
3277 processes. */
3278 options = __WCLONE | WNOHANG;
3279 }
3280 else if (is_lwp (ptid))
3281 {
3282 if (debug_linux_nat)
3283 fprintf_unfiltered (gdb_stdlog,
3284 "LLW: Waiting for specific LWP %s.\n",
3285 target_pid_to_str (ptid));
3286
3287 /* We have a specific LWP to check. */
3288 lp = find_lwp_pid (ptid);
3289 gdb_assert (lp);
3290
3291 if (debug_linux_nat && lp->status)
3292 fprintf_unfiltered (gdb_stdlog,
3293 "LLW: Using pending wait status %s for %s.\n",
3294 status_to_str (lp->status),
3295 target_pid_to_str (lp->ptid));
3296
3297 /* If we have to wait, take into account whether PID is a cloned
3298 process or not. And we have to convert it to something that
3299 the layer beneath us can understand. */
3300 options = lp->cloned ? __WCLONE : 0;
3301 pid = GET_LWP (ptid);
3302
3303 /* We check for lp->waitstatus in addition to lp->status,
3304 because we can have pending process exits recorded in
3305 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3306 an additional lp->status_p flag. */
3307 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3308 lp = NULL;
3309 }
3310
3311 if (lp && lp->signalled)
3312 {
3313 /* A pending SIGSTOP may interfere with the normal stream of
3314 events. In a typical case where interference is a problem,
3315 we have a SIGSTOP signal pending for LWP A while
3316 single-stepping it, encounter an event in LWP B, and take the
3317 pending SIGSTOP while trying to stop LWP A. After processing
3318 the event in LWP B, LWP A is continued, and we'll never see
3319 the SIGTRAP associated with the last time we were
3320 single-stepping LWP A. */
3321
3322 /* Resume the thread. It should halt immediately returning the
3323 pending SIGSTOP. */
3324 registers_changed ();
3325 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3326 lp->step, TARGET_SIGNAL_0);
3327 if (debug_linux_nat)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
3330 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3331 target_pid_to_str (lp->ptid));
3332 lp->stopped = 0;
3333 gdb_assert (lp->resumed);
3334
3335 /* Catch the pending SIGSTOP. */
3336 status = lp->status;
3337 lp->status = 0;
3338
3339 stop_wait_callback (lp, NULL);
3340
3341 /* If the lp->status field isn't empty, we caught another signal
3342 while flushing the SIGSTOP. Return it back to the event
3343 queue of the LWP, as we already have an event to handle. */
3344 if (lp->status)
3345 {
3346 if (debug_linux_nat)
3347 fprintf_unfiltered (gdb_stdlog,
3348 "LLW: kill %s, %s\n",
3349 target_pid_to_str (lp->ptid),
3350 status_to_str (lp->status));
3351 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
3352 }
3353
3354 lp->status = status;
3355 }
3356
3357 if (!target_can_async_p ())
3358 {
3359 /* Causes SIGINT to be passed on to the attached process. */
3360 set_sigint_trap ();
3361 }
3362
3363 /* Translate generic target_wait options into waitpid options. */
3364 if (target_options & TARGET_WNOHANG)
3365 options |= WNOHANG;
3366
3367 while (lp == NULL)
3368 {
3369 pid_t lwpid;
3370
3371 lwpid = my_waitpid (pid, &status, options);
3372
3373 if (lwpid > 0)
3374 {
3375 gdb_assert (pid == -1 || lwpid == pid);
3376
3377 if (debug_linux_nat)
3378 {
3379 fprintf_unfiltered (gdb_stdlog,
3380 "LLW: waitpid %ld received %s\n",
3381 (long) lwpid, status_to_str (status));
3382 }
3383
3384 lp = linux_nat_filter_event (lwpid, status, options);
3385
3386 /* STATUS is now no longer valid, use LP->STATUS instead. */
3387 status = 0;
3388
3389 if (lp
3390 && ptid_is_pid (ptid)
3391 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3392 {
3393 gdb_assert (lp->resumed);
3394
3395 if (debug_linux_nat)
3396 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3397 ptid_get_lwp (lp->ptid), lp->status);
3398
3399 if (WIFSTOPPED (lp->status))
3400 {
3401 if (WSTOPSIG (lp->status) != SIGSTOP)
3402 {
3403 /* Cancel breakpoint hits. The breakpoint may
3404 be removed before we fetch events from this
3405 process to report to the core. It is best
3406 not to assume the moribund breakpoints
3407 heuristic always handles these cases --- it
3408 could be too many events go through to the
3409 core before this one is handled. All-stop
3410 always cancels breakpoint hits in all
3411 threads. */
3412 if (non_stop
3413 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
3414 && WSTOPSIG (lp->status) == SIGTRAP
3415 && cancel_breakpoint (lp))
3416 {
3417 /* Throw away the SIGTRAP. */
3418 lp->status = 0;
3419
3420 if (debug_linux_nat)
3421 fprintf (stderr,
3422 "LLW: LWP %ld hit a breakpoint while waiting "
3423 "for another process; cancelled it\n",
3424 ptid_get_lwp (lp->ptid));
3425 }
3426 lp->stopped = 1;
3427 }
3428 else
3429 {
3430 lp->stopped = 1;
3431 lp->signalled = 0;
3432 }
3433 }
3434 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3435 {
3436 if (debug_linux_nat)
3437 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3438 ptid_get_lwp (lp->ptid));
3439
3440 /* This was the last lwp in the process. Since
3441 events are serialized to GDB core, and we can't
3442 report this one right now, but GDB core and the
3443 other target layers will want to be notified
3444 about the exit code/signal, leave the status
3445 pending for the next time we're able to report
3446 it. */
3447
3448 /* Prevent trying to stop this thread again. We'll
3449 never try to resume it because it has a pending
3450 status. */
3451 lp->stopped = 1;
3452
3453 /* Dead LWP's aren't expected to reported a pending
3454 sigstop. */
3455 lp->signalled = 0;
3456
3457 /* Store the pending event in the waitstatus as
3458 well, because W_EXITCODE(0,0) == 0. */
3459 store_waitstatus (&lp->waitstatus, lp->status);
3460 }
3461
3462 /* Keep looking. */
3463 lp = NULL;
3464 continue;
3465 }
3466
3467 if (lp)
3468 break;
3469 else
3470 {
3471 if (pid == -1)
3472 {
3473 /* waitpid did return something. Restart over. */
3474 options |= __WCLONE;
3475 }
3476 continue;
3477 }
3478 }
3479
3480 if (pid == -1)
3481 {
3482 /* Alternate between checking cloned and uncloned processes. */
3483 options ^= __WCLONE;
3484
3485 /* And every time we have checked both:
3486 In async mode, return to event loop;
3487 In sync mode, suspend waiting for a SIGCHLD signal. */
3488 if (options & __WCLONE)
3489 {
3490 if (target_options & TARGET_WNOHANG)
3491 {
3492 /* No interesting event. */
3493 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3494
3495 if (debug_linux_nat_async)
3496 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3497
3498 restore_child_signals_mask (&prev_mask);
3499 return minus_one_ptid;
3500 }
3501
3502 sigsuspend (&suspend_mask);
3503 }
3504 }
3505 else if (target_options & TARGET_WNOHANG)
3506 {
3507 /* No interesting event for PID yet. */
3508 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3509
3510 if (debug_linux_nat_async)
3511 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3512
3513 restore_child_signals_mask (&prev_mask);
3514 return minus_one_ptid;
3515 }
3516
3517 /* We shouldn't end up here unless we want to try again. */
3518 gdb_assert (lp == NULL);
3519 }
3520
3521 if (!target_can_async_p ())
3522 clear_sigint_trap ();
3523
3524 gdb_assert (lp);
3525
3526 status = lp->status;
3527 lp->status = 0;
3528
3529 /* Don't report signals that GDB isn't interested in, such as
3530 signals that are neither printed nor stopped upon. Stopping all
3531 threads can be a bit time-consuming so if we want decent
3532 performance with heavily multi-threaded programs, especially when
3533 they're using a high frequency timer, we'd better avoid it if we
3534 can. */
3535
3536 if (WIFSTOPPED (status))
3537 {
3538 int signo = target_signal_from_host (WSTOPSIG (status));
3539 struct inferior *inf;
3540
3541 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3542 gdb_assert (inf);
3543
3544 /* Defer to common code if we get a signal while
3545 single-stepping, since that may need special care, e.g. to
3546 skip the signal handler, or, if we're gaining control of the
3547 inferior. */
3548 if (!lp->step
3549 && inf->stop_soon == NO_STOP_QUIETLY
3550 && signal_stop_state (signo) == 0
3551 && signal_print_state (signo) == 0
3552 && signal_pass_state (signo) == 1)
3553 {
3554 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3555 here? It is not clear we should. GDB may not expect
3556 other threads to run. On the other hand, not resuming
3557 newly attached threads may cause an unwanted delay in
3558 getting them running. */
3559 registers_changed ();
3560 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3561 lp->step, signo);
3562 if (debug_linux_nat)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "LLW: %s %s, %s (preempt 'handle')\n",
3565 lp->step ?
3566 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3567 target_pid_to_str (lp->ptid),
3568 signo ? strsignal (signo) : "0");
3569 lp->stopped = 0;
3570 goto retry;
3571 }
3572
3573 if (!non_stop)
3574 {
3575 /* Only do the below in all-stop, as we currently use SIGINT
3576 to implement target_stop (see linux_nat_stop) in
3577 non-stop. */
3578 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3579 {
3580 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3581 forwarded to the entire process group, that is, all LWPs
3582 will receive it - unless they're using CLONE_THREAD to
3583 share signals. Since we only want to report it once, we
3584 mark it as ignored for all LWPs except this one. */
3585 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3586 set_ignore_sigint, NULL);
3587 lp->ignore_sigint = 0;
3588 }
3589 else
3590 maybe_clear_ignore_sigint (lp);
3591 }
3592 }
3593
3594 /* This LWP is stopped now. */
3595 lp->stopped = 1;
3596
3597 if (debug_linux_nat)
3598 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3599 status_to_str (status), target_pid_to_str (lp->ptid));
3600
3601 if (!non_stop)
3602 {
3603 /* Now stop all other LWP's ... */
3604 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3605
3606 /* ... and wait until all of them have reported back that
3607 they're no longer running. */
3608 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3609
3610 /* If we're not waiting for a specific LWP, choose an event LWP
3611 from among those that have had events. Giving equal priority
3612 to all LWPs that have had events helps prevent
3613 starvation. */
3614 if (pid == -1)
3615 select_event_lwp (ptid, &lp, &status);
3616
3617 /* Now that we've selected our final event LWP, cancel any
3618 breakpoints in other LWPs that have hit a GDB breakpoint.
3619 See the comment in cancel_breakpoints_callback to find out
3620 why. */
3621 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3622
3623 /* In all-stop, from the core's perspective, all LWPs are now
3624 stopped until a new resume action is sent over. */
3625 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3626 }
3627 else
3628 lp->resumed = 0;
3629
3630 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3631 {
3632 if (debug_linux_nat)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "LLW: trap ptid is %s.\n",
3635 target_pid_to_str (lp->ptid));
3636 }
3637
3638 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3639 {
3640 *ourstatus = lp->waitstatus;
3641 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3642 }
3643 else
3644 store_waitstatus (ourstatus, status);
3645
3646 if (debug_linux_nat_async)
3647 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3648
3649 restore_child_signals_mask (&prev_mask);
3650
3651 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3652 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3653 lp->core = -1;
3654 else
3655 lp->core = linux_nat_core_of_thread_1 (lp->ptid);
3656
3657 return lp->ptid;
3658 }
3659
3660 /* Resume LWPs that are currently stopped without any pending status
3661 to report, but are resumed from the core's perspective. */
3662
3663 static int
3664 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3665 {
3666 ptid_t *wait_ptid_p = data;
3667
3668 if (lp->stopped
3669 && lp->resumed
3670 && lp->status == 0
3671 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3672 {
3673 gdb_assert (is_executing (lp->ptid));
3674
3675 /* Don't bother if there's a breakpoint at PC that we'd hit
3676 immediately, and we're not waiting for this LWP. */
3677 if (!ptid_match (lp->ptid, *wait_ptid_p))
3678 {
3679 struct regcache *regcache = get_thread_regcache (lp->ptid);
3680 CORE_ADDR pc = regcache_read_pc (regcache);
3681
3682 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3683 return 0;
3684 }
3685
3686 if (debug_linux_nat)
3687 fprintf_unfiltered (gdb_stdlog,
3688 "RSRL: resuming stopped-resumed LWP %s\n",
3689 target_pid_to_str (lp->ptid));
3690
3691 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3692 lp->step, TARGET_SIGNAL_0);
3693 lp->stopped = 0;
3694 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
3695 lp->stopped_by_watchpoint = 0;
3696 }
3697
3698 return 0;
3699 }
3700
3701 static ptid_t
3702 linux_nat_wait (struct target_ops *ops,
3703 ptid_t ptid, struct target_waitstatus *ourstatus,
3704 int target_options)
3705 {
3706 ptid_t event_ptid;
3707
3708 if (debug_linux_nat)
3709 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3710
3711 /* Flush the async file first. */
3712 if (target_can_async_p ())
3713 async_file_flush ();
3714
3715 /* Resume LWPs that are currently stopped without any pending status
3716 to report, but are resumed from the core's perspective. LWPs get
3717 in this state if we find them stopping at a time we're not
3718 interested in reporting the event (target_wait on a
3719 specific_process, for example, see linux_nat_wait_1), and
3720 meanwhile the event became uninteresting. Don't bother resuming
3721 LWPs we're not going to wait for if they'd stop immediately. */
3722 if (non_stop)
3723 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3724
3725 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3726
3727 /* If we requested any event, and something came out, assume there
3728 may be more. If we requested a specific lwp or process, also
3729 assume there may be more. */
3730 if (target_can_async_p ()
3731 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3732 || !ptid_equal (ptid, minus_one_ptid)))
3733 async_file_mark ();
3734
3735 /* Get ready for the next event. */
3736 if (target_can_async_p ())
3737 target_async (inferior_event_handler, 0);
3738
3739 return event_ptid;
3740 }
3741
3742 static int
3743 kill_callback (struct lwp_info *lp, void *data)
3744 {
3745 errno = 0;
3746 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3747 if (debug_linux_nat)
3748 fprintf_unfiltered (gdb_stdlog,
3749 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3750 target_pid_to_str (lp->ptid),
3751 errno ? safe_strerror (errno) : "OK");
3752
3753 return 0;
3754 }
3755
3756 static int
3757 kill_wait_callback (struct lwp_info *lp, void *data)
3758 {
3759 pid_t pid;
3760
3761 /* We must make sure that there are no pending events (delayed
3762 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3763 program doesn't interfere with any following debugging session. */
3764
3765 /* For cloned processes we must check both with __WCLONE and
3766 without, since the exit status of a cloned process isn't reported
3767 with __WCLONE. */
3768 if (lp->cloned)
3769 {
3770 do
3771 {
3772 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3773 if (pid != (pid_t) -1)
3774 {
3775 if (debug_linux_nat)
3776 fprintf_unfiltered (gdb_stdlog,
3777 "KWC: wait %s received unknown.\n",
3778 target_pid_to_str (lp->ptid));
3779 /* The Linux kernel sometimes fails to kill a thread
3780 completely after PTRACE_KILL; that goes from the stop
3781 point in do_fork out to the one in
3782 get_signal_to_deliever and waits again. So kill it
3783 again. */
3784 kill_callback (lp, NULL);
3785 }
3786 }
3787 while (pid == GET_LWP (lp->ptid));
3788
3789 gdb_assert (pid == -1 && errno == ECHILD);
3790 }
3791
3792 do
3793 {
3794 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3795 if (pid != (pid_t) -1)
3796 {
3797 if (debug_linux_nat)
3798 fprintf_unfiltered (gdb_stdlog,
3799 "KWC: wait %s received unk.\n",
3800 target_pid_to_str (lp->ptid));
3801 /* See the call to kill_callback above. */
3802 kill_callback (lp, NULL);
3803 }
3804 }
3805 while (pid == GET_LWP (lp->ptid));
3806
3807 gdb_assert (pid == -1 && errno == ECHILD);
3808 return 0;
3809 }
3810
3811 static void
3812 linux_nat_kill (struct target_ops *ops)
3813 {
3814 struct target_waitstatus last;
3815 ptid_t last_ptid;
3816 int status;
3817
3818 /* If we're stopped while forking and we haven't followed yet,
3819 kill the other task. We need to do this first because the
3820 parent will be sleeping if this is a vfork. */
3821
3822 get_last_target_status (&last_ptid, &last);
3823
3824 if (last.kind == TARGET_WAITKIND_FORKED
3825 || last.kind == TARGET_WAITKIND_VFORKED)
3826 {
3827 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3828 wait (&status);
3829 }
3830
3831 if (forks_exist_p ())
3832 linux_fork_killall ();
3833 else
3834 {
3835 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3836
3837 /* Stop all threads before killing them, since ptrace requires
3838 that the thread is stopped to sucessfully PTRACE_KILL. */
3839 iterate_over_lwps (ptid, stop_callback, NULL);
3840 /* ... and wait until all of them have reported back that
3841 they're no longer running. */
3842 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3843
3844 /* Kill all LWP's ... */
3845 iterate_over_lwps (ptid, kill_callback, NULL);
3846
3847 /* ... and wait until we've flushed all events. */
3848 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3849 }
3850
3851 target_mourn_inferior ();
3852 }
3853
3854 static void
3855 linux_nat_mourn_inferior (struct target_ops *ops)
3856 {
3857 purge_lwp_list (ptid_get_pid (inferior_ptid));
3858
3859 if (! forks_exist_p ())
3860 /* Normal case, no other forks available. */
3861 linux_ops->to_mourn_inferior (ops);
3862 else
3863 /* Multi-fork case. The current inferior_ptid has exited, but
3864 there are other viable forks to debug. Delete the exiting
3865 one and context-switch to the first available. */
3866 linux_fork_mourn_inferior ();
3867 }
3868
3869 /* Convert a native/host siginfo object, into/from the siginfo in the
3870 layout of the inferiors' architecture. */
3871
3872 static void
3873 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3874 {
3875 int done = 0;
3876
3877 if (linux_nat_siginfo_fixup != NULL)
3878 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3879
3880 /* If there was no callback, or the callback didn't do anything,
3881 then just do a straight memcpy. */
3882 if (!done)
3883 {
3884 if (direction == 1)
3885 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3886 else
3887 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3888 }
3889 }
3890
3891 static LONGEST
3892 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3893 const char *annex, gdb_byte *readbuf,
3894 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3895 {
3896 int pid;
3897 struct siginfo siginfo;
3898 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3899
3900 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3901 gdb_assert (readbuf || writebuf);
3902
3903 pid = GET_LWP (inferior_ptid);
3904 if (pid == 0)
3905 pid = GET_PID (inferior_ptid);
3906
3907 if (offset > sizeof (siginfo))
3908 return -1;
3909
3910 errno = 0;
3911 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3912 if (errno != 0)
3913 return -1;
3914
3915 /* When GDB is built as a 64-bit application, ptrace writes into
3916 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3917 inferior with a 64-bit GDB should look the same as debugging it
3918 with a 32-bit GDB, we need to convert it. GDB core always sees
3919 the converted layout, so any read/write will have to be done
3920 post-conversion. */
3921 siginfo_fixup (&siginfo, inf_siginfo, 0);
3922
3923 if (offset + len > sizeof (siginfo))
3924 len = sizeof (siginfo) - offset;
3925
3926 if (readbuf != NULL)
3927 memcpy (readbuf, inf_siginfo + offset, len);
3928 else
3929 {
3930 memcpy (inf_siginfo + offset, writebuf, len);
3931
3932 /* Convert back to ptrace layout before flushing it out. */
3933 siginfo_fixup (&siginfo, inf_siginfo, 1);
3934
3935 errno = 0;
3936 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3937 if (errno != 0)
3938 return -1;
3939 }
3940
3941 return len;
3942 }
3943
3944 static LONGEST
3945 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3946 const char *annex, gdb_byte *readbuf,
3947 const gdb_byte *writebuf,
3948 ULONGEST offset, LONGEST len)
3949 {
3950 struct cleanup *old_chain;
3951 LONGEST xfer;
3952
3953 if (object == TARGET_OBJECT_SIGNAL_INFO)
3954 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3955 offset, len);
3956
3957 /* The target is connected but no live inferior is selected. Pass
3958 this request down to a lower stratum (e.g., the executable
3959 file). */
3960 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3961 return 0;
3962
3963 old_chain = save_inferior_ptid ();
3964
3965 if (is_lwp (inferior_ptid))
3966 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3967
3968 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3969 offset, len);
3970
3971 do_cleanups (old_chain);
3972 return xfer;
3973 }
3974
3975 static int
3976 linux_thread_alive (ptid_t ptid)
3977 {
3978 int err;
3979
3980 gdb_assert (is_lwp (ptid));
3981
3982 /* Send signal 0 instead of anything ptrace, because ptracing a
3983 running thread errors out claiming that the thread doesn't
3984 exist. */
3985 err = kill_lwp (GET_LWP (ptid), 0);
3986
3987 if (debug_linux_nat)
3988 fprintf_unfiltered (gdb_stdlog,
3989 "LLTA: KILL(SIG0) %s (%s)\n",
3990 target_pid_to_str (ptid),
3991 err ? safe_strerror (err) : "OK");
3992
3993 if (err != 0)
3994 return 0;
3995
3996 return 1;
3997 }
3998
3999 static int
4000 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4001 {
4002 return linux_thread_alive (ptid);
4003 }
4004
4005 static char *
4006 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4007 {
4008 static char buf[64];
4009
4010 if (is_lwp (ptid)
4011 && (GET_PID (ptid) != GET_LWP (ptid)
4012 || num_lwps (GET_PID (ptid)) > 1))
4013 {
4014 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4015 return buf;
4016 }
4017
4018 return normal_pid_to_str (ptid);
4019 }
4020
4021 /* Accepts an integer PID; Returns a string representing a file that
4022 can be opened to get the symbols for the child process. */
4023
4024 static char *
4025 linux_child_pid_to_exec_file (int pid)
4026 {
4027 char *name1, *name2;
4028
4029 name1 = xmalloc (MAXPATHLEN);
4030 name2 = xmalloc (MAXPATHLEN);
4031 make_cleanup (xfree, name1);
4032 make_cleanup (xfree, name2);
4033 memset (name2, 0, MAXPATHLEN);
4034
4035 sprintf (name1, "/proc/%d/exe", pid);
4036 if (readlink (name1, name2, MAXPATHLEN) > 0)
4037 return name2;
4038 else
4039 return name1;
4040 }
4041
4042 /* Service function for corefiles and info proc. */
4043
4044 static int
4045 read_mapping (FILE *mapfile,
4046 long long *addr,
4047 long long *endaddr,
4048 char *permissions,
4049 long long *offset,
4050 char *device, long long *inode, char *filename)
4051 {
4052 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
4053 addr, endaddr, permissions, offset, device, inode);
4054
4055 filename[0] = '\0';
4056 if (ret > 0 && ret != EOF)
4057 {
4058 /* Eat everything up to EOL for the filename. This will prevent
4059 weird filenames (such as one with embedded whitespace) from
4060 confusing this code. It also makes this code more robust in
4061 respect to annotations the kernel may add after the filename.
4062
4063 Note the filename is used for informational purposes
4064 only. */
4065 ret += fscanf (mapfile, "%[^\n]\n", filename);
4066 }
4067
4068 return (ret != 0 && ret != EOF);
4069 }
4070
4071 /* Fills the "to_find_memory_regions" target vector. Lists the memory
4072 regions in the inferior for a corefile. */
4073
4074 static int
4075 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
4076 unsigned long,
4077 int, int, int, void *), void *obfd)
4078 {
4079 int pid = PIDGET (inferior_ptid);
4080 char mapsfilename[MAXPATHLEN];
4081 FILE *mapsfile;
4082 long long addr, endaddr, size, offset, inode;
4083 char permissions[8], device[8], filename[MAXPATHLEN];
4084 int read, write, exec;
4085 struct cleanup *cleanup;
4086
4087 /* Compose the filename for the /proc memory map, and open it. */
4088 sprintf (mapsfilename, "/proc/%d/maps", pid);
4089 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
4090 error (_("Could not open %s."), mapsfilename);
4091 cleanup = make_cleanup_fclose (mapsfile);
4092
4093 if (info_verbose)
4094 fprintf_filtered (gdb_stdout,
4095 "Reading memory regions from %s\n", mapsfilename);
4096
4097 /* Now iterate until end-of-file. */
4098 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
4099 &offset, &device[0], &inode, &filename[0]))
4100 {
4101 size = endaddr - addr;
4102
4103 /* Get the segment's permissions. */
4104 read = (strchr (permissions, 'r') != 0);
4105 write = (strchr (permissions, 'w') != 0);
4106 exec = (strchr (permissions, 'x') != 0);
4107
4108 if (info_verbose)
4109 {
4110 fprintf_filtered (gdb_stdout,
4111 "Save segment, %s bytes at %s (%c%c%c)",
4112 plongest (size), paddress (target_gdbarch, addr),
4113 read ? 'r' : ' ',
4114 write ? 'w' : ' ', exec ? 'x' : ' ');
4115 if (filename[0])
4116 fprintf_filtered (gdb_stdout, " for %s", filename);
4117 fprintf_filtered (gdb_stdout, "\n");
4118 }
4119
4120 /* Invoke the callback function to create the corefile
4121 segment. */
4122 func (addr, size, read, write, exec, obfd);
4123 }
4124 do_cleanups (cleanup);
4125 return 0;
4126 }
4127
4128 static int
4129 find_signalled_thread (struct thread_info *info, void *data)
4130 {
4131 if (info->stop_signal != TARGET_SIGNAL_0
4132 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
4133 return 1;
4134
4135 return 0;
4136 }
4137
4138 static enum target_signal
4139 find_stop_signal (void)
4140 {
4141 struct thread_info *info =
4142 iterate_over_threads (find_signalled_thread, NULL);
4143
4144 if (info)
4145 return info->stop_signal;
4146 else
4147 return TARGET_SIGNAL_0;
4148 }
4149
4150 /* Records the thread's register state for the corefile note
4151 section. */
4152
4153 static char *
4154 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
4155 char *note_data, int *note_size,
4156 enum target_signal stop_signal)
4157 {
4158 unsigned long lwp = ptid_get_lwp (ptid);
4159 struct gdbarch *gdbarch = target_gdbarch;
4160 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
4161 const struct regset *regset;
4162 int core_regset_p;
4163 struct cleanup *old_chain;
4164 struct core_regset_section *sect_list;
4165 char *gdb_regset;
4166
4167 old_chain = save_inferior_ptid ();
4168 inferior_ptid = ptid;
4169 target_fetch_registers (regcache, -1);
4170 do_cleanups (old_chain);
4171
4172 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4173 sect_list = gdbarch_core_regset_sections (gdbarch);
4174
4175 /* The loop below uses the new struct core_regset_section, which stores
4176 the supported section names and sizes for the core file. Note that
4177 note PRSTATUS needs to be treated specially. But the other notes are
4178 structurally the same, so they can benefit from the new struct. */
4179 if (core_regset_p && sect_list != NULL)
4180 while (sect_list->sect_name != NULL)
4181 {
4182 regset = gdbarch_regset_from_core_section (gdbarch,
4183 sect_list->sect_name,
4184 sect_list->size);
4185 gdb_assert (regset && regset->collect_regset);
4186 gdb_regset = xmalloc (sect_list->size);
4187 regset->collect_regset (regset, regcache, -1,
4188 gdb_regset, sect_list->size);
4189
4190 if (strcmp (sect_list->sect_name, ".reg") == 0)
4191 note_data = (char *) elfcore_write_prstatus
4192 (obfd, note_data, note_size,
4193 lwp, target_signal_to_host (stop_signal),
4194 gdb_regset);
4195 else
4196 note_data = (char *) elfcore_write_register_note
4197 (obfd, note_data, note_size,
4198 sect_list->sect_name, gdb_regset,
4199 sect_list->size);
4200 xfree (gdb_regset);
4201 sect_list++;
4202 }
4203
4204 /* For architectures that does not have the struct core_regset_section
4205 implemented, we use the old method. When all the architectures have
4206 the new support, the code below should be deleted. */
4207 else
4208 {
4209 gdb_gregset_t gregs;
4210 gdb_fpregset_t fpregs;
4211
4212 if (core_regset_p
4213 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4214 sizeof (gregs))) != NULL
4215 && regset->collect_regset != NULL)
4216 regset->collect_regset (regset, regcache, -1,
4217 &gregs, sizeof (gregs));
4218 else
4219 fill_gregset (regcache, &gregs, -1);
4220
4221 note_data = (char *) elfcore_write_prstatus
4222 (obfd, note_data, note_size, lwp, target_signal_to_host (stop_signal),
4223 &gregs);
4224
4225 if (core_regset_p
4226 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4227 sizeof (fpregs))) != NULL
4228 && regset->collect_regset != NULL)
4229 regset->collect_regset (regset, regcache, -1,
4230 &fpregs, sizeof (fpregs));
4231 else
4232 fill_fpregset (regcache, &fpregs, -1);
4233
4234 note_data = (char *) elfcore_write_prfpreg (obfd,
4235 note_data,
4236 note_size,
4237 &fpregs, sizeof (fpregs));
4238 }
4239
4240 return note_data;
4241 }
4242
4243 struct linux_nat_corefile_thread_data
4244 {
4245 bfd *obfd;
4246 char *note_data;
4247 int *note_size;
4248 int num_notes;
4249 enum target_signal stop_signal;
4250 };
4251
4252 /* Called by gdbthread.c once per thread. Records the thread's
4253 register state for the corefile note section. */
4254
4255 static int
4256 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
4257 {
4258 struct linux_nat_corefile_thread_data *args = data;
4259
4260 args->note_data = linux_nat_do_thread_registers (args->obfd,
4261 ti->ptid,
4262 args->note_data,
4263 args->note_size,
4264 args->stop_signal);
4265 args->num_notes++;
4266
4267 return 0;
4268 }
4269
4270 /* Enumerate spufs IDs for process PID. */
4271
4272 static void
4273 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
4274 {
4275 char path[128];
4276 DIR *dir;
4277 struct dirent *entry;
4278
4279 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4280 dir = opendir (path);
4281 if (!dir)
4282 return;
4283
4284 rewinddir (dir);
4285 while ((entry = readdir (dir)) != NULL)
4286 {
4287 struct stat st;
4288 struct statfs stfs;
4289 int fd;
4290
4291 fd = atoi (entry->d_name);
4292 if (!fd)
4293 continue;
4294
4295 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4296 if (stat (path, &st) != 0)
4297 continue;
4298 if (!S_ISDIR (st.st_mode))
4299 continue;
4300
4301 if (statfs (path, &stfs) != 0)
4302 continue;
4303 if (stfs.f_type != SPUFS_MAGIC)
4304 continue;
4305
4306 callback (data, fd);
4307 }
4308
4309 closedir (dir);
4310 }
4311
4312 /* Generate corefile notes for SPU contexts. */
4313
4314 struct linux_spu_corefile_data
4315 {
4316 bfd *obfd;
4317 char *note_data;
4318 int *note_size;
4319 };
4320
4321 static void
4322 linux_spu_corefile_callback (void *data, int fd)
4323 {
4324 struct linux_spu_corefile_data *args = data;
4325 int i;
4326
4327 static const char *spu_files[] =
4328 {
4329 "object-id",
4330 "mem",
4331 "regs",
4332 "fpcr",
4333 "lslr",
4334 "decr",
4335 "decr_status",
4336 "signal1",
4337 "signal1_type",
4338 "signal2",
4339 "signal2_type",
4340 "event_mask",
4341 "event_status",
4342 "mbox_info",
4343 "ibox_info",
4344 "wbox_info",
4345 "dma_info",
4346 "proxydma_info",
4347 };
4348
4349 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
4350 {
4351 char annex[32], note_name[32];
4352 gdb_byte *spu_data;
4353 LONGEST spu_len;
4354
4355 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
4356 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
4357 annex, &spu_data);
4358 if (spu_len > 0)
4359 {
4360 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
4361 args->note_data = elfcore_write_note (args->obfd, args->note_data,
4362 args->note_size, note_name,
4363 NT_SPU, spu_data, spu_len);
4364 xfree (spu_data);
4365 }
4366 }
4367 }
4368
4369 static char *
4370 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
4371 {
4372 struct linux_spu_corefile_data args;
4373
4374 args.obfd = obfd;
4375 args.note_data = note_data;
4376 args.note_size = note_size;
4377
4378 iterate_over_spus (PIDGET (inferior_ptid),
4379 linux_spu_corefile_callback, &args);
4380
4381 return args.note_data;
4382 }
4383
4384 /* Fills the "to_make_corefile_note" target vector. Builds the note
4385 section for a corefile, and returns it in a malloc buffer. */
4386
4387 static char *
4388 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4389 {
4390 struct linux_nat_corefile_thread_data thread_args;
4391 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
4392 char fname[16] = { '\0' };
4393 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
4394 char psargs[80] = { '\0' };
4395 char *note_data = NULL;
4396 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
4397 gdb_byte *auxv;
4398 int auxv_len;
4399
4400 if (get_exec_file (0))
4401 {
4402 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
4403 strncpy (psargs, get_exec_file (0), sizeof (psargs));
4404 if (get_inferior_args ())
4405 {
4406 char *string_end;
4407 char *psargs_end = psargs + sizeof (psargs);
4408
4409 /* linux_elfcore_write_prpsinfo () handles zero unterminated
4410 strings fine. */
4411 string_end = memchr (psargs, 0, sizeof (psargs));
4412 if (string_end != NULL)
4413 {
4414 *string_end++ = ' ';
4415 strncpy (string_end, get_inferior_args (),
4416 psargs_end - string_end);
4417 }
4418 }
4419 note_data = (char *) elfcore_write_prpsinfo (obfd,
4420 note_data,
4421 note_size, fname, psargs);
4422 }
4423
4424 /* Dump information for threads. */
4425 thread_args.obfd = obfd;
4426 thread_args.note_data = note_data;
4427 thread_args.note_size = note_size;
4428 thread_args.num_notes = 0;
4429 thread_args.stop_signal = find_stop_signal ();
4430 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
4431 gdb_assert (thread_args.num_notes != 0);
4432 note_data = thread_args.note_data;
4433
4434 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
4435 NULL, &auxv);
4436 if (auxv_len > 0)
4437 {
4438 note_data = elfcore_write_note (obfd, note_data, note_size,
4439 "CORE", NT_AUXV, auxv, auxv_len);
4440 xfree (auxv);
4441 }
4442
4443 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
4444
4445 make_cleanup (xfree, note_data);
4446 return note_data;
4447 }
4448
4449 /* Implement the "info proc" command. */
4450
4451 static void
4452 linux_nat_info_proc_cmd (char *args, int from_tty)
4453 {
4454 /* A long is used for pid instead of an int to avoid a loss of precision
4455 compiler warning from the output of strtoul. */
4456 long pid = PIDGET (inferior_ptid);
4457 FILE *procfile;
4458 char **argv = NULL;
4459 char buffer[MAXPATHLEN];
4460 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
4461 int cmdline_f = 1;
4462 int cwd_f = 1;
4463 int exe_f = 1;
4464 int mappings_f = 0;
4465 int status_f = 0;
4466 int stat_f = 0;
4467 int all = 0;
4468 struct stat dummy;
4469
4470 if (args)
4471 {
4472 /* Break up 'args' into an argv array. */
4473 argv = gdb_buildargv (args);
4474 make_cleanup_freeargv (argv);
4475 }
4476 while (argv != NULL && *argv != NULL)
4477 {
4478 if (isdigit (argv[0][0]))
4479 {
4480 pid = strtoul (argv[0], NULL, 10);
4481 }
4482 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4483 {
4484 mappings_f = 1;
4485 }
4486 else if (strcmp (argv[0], "status") == 0)
4487 {
4488 status_f = 1;
4489 }
4490 else if (strcmp (argv[0], "stat") == 0)
4491 {
4492 stat_f = 1;
4493 }
4494 else if (strcmp (argv[0], "cmd") == 0)
4495 {
4496 cmdline_f = 1;
4497 }
4498 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4499 {
4500 exe_f = 1;
4501 }
4502 else if (strcmp (argv[0], "cwd") == 0)
4503 {
4504 cwd_f = 1;
4505 }
4506 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4507 {
4508 all = 1;
4509 }
4510 else
4511 {
4512 /* [...] (future options here) */
4513 }
4514 argv++;
4515 }
4516 if (pid == 0)
4517 error (_("No current process: you must name one."));
4518
4519 sprintf (fname1, "/proc/%ld", pid);
4520 if (stat (fname1, &dummy) != 0)
4521 error (_("No /proc directory: '%s'"), fname1);
4522
4523 printf_filtered (_("process %ld\n"), pid);
4524 if (cmdline_f || all)
4525 {
4526 sprintf (fname1, "/proc/%ld/cmdline", pid);
4527 if ((procfile = fopen (fname1, "r")) != NULL)
4528 {
4529 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4530
4531 if (fgets (buffer, sizeof (buffer), procfile))
4532 printf_filtered ("cmdline = '%s'\n", buffer);
4533 else
4534 warning (_("unable to read '%s'"), fname1);
4535 do_cleanups (cleanup);
4536 }
4537 else
4538 warning (_("unable to open /proc file '%s'"), fname1);
4539 }
4540 if (cwd_f || all)
4541 {
4542 sprintf (fname1, "/proc/%ld/cwd", pid);
4543 memset (fname2, 0, sizeof (fname2));
4544 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4545 printf_filtered ("cwd = '%s'\n", fname2);
4546 else
4547 warning (_("unable to read link '%s'"), fname1);
4548 }
4549 if (exe_f || all)
4550 {
4551 sprintf (fname1, "/proc/%ld/exe", pid);
4552 memset (fname2, 0, sizeof (fname2));
4553 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4554 printf_filtered ("exe = '%s'\n", fname2);
4555 else
4556 warning (_("unable to read link '%s'"), fname1);
4557 }
4558 if (mappings_f || all)
4559 {
4560 sprintf (fname1, "/proc/%ld/maps", pid);
4561 if ((procfile = fopen (fname1, "r")) != NULL)
4562 {
4563 long long addr, endaddr, size, offset, inode;
4564 char permissions[8], device[8], filename[MAXPATHLEN];
4565 struct cleanup *cleanup;
4566
4567 cleanup = make_cleanup_fclose (procfile);
4568 printf_filtered (_("Mapped address spaces:\n\n"));
4569 if (gdbarch_addr_bit (target_gdbarch) == 32)
4570 {
4571 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4572 "Start Addr",
4573 " End Addr",
4574 " Size", " Offset", "objfile");
4575 }
4576 else
4577 {
4578 printf_filtered (" %18s %18s %10s %10s %7s\n",
4579 "Start Addr",
4580 " End Addr",
4581 " Size", " Offset", "objfile");
4582 }
4583
4584 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4585 &offset, &device[0], &inode, &filename[0]))
4586 {
4587 size = endaddr - addr;
4588
4589 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4590 calls here (and possibly above) should be abstracted
4591 out into their own functions? Andrew suggests using
4592 a generic local_address_string instead to print out
4593 the addresses; that makes sense to me, too. */
4594
4595 if (gdbarch_addr_bit (target_gdbarch) == 32)
4596 {
4597 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4598 (unsigned long) addr, /* FIXME: pr_addr */
4599 (unsigned long) endaddr,
4600 (int) size,
4601 (unsigned int) offset,
4602 filename[0] ? filename : "");
4603 }
4604 else
4605 {
4606 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4607 (unsigned long) addr, /* FIXME: pr_addr */
4608 (unsigned long) endaddr,
4609 (int) size,
4610 (unsigned int) offset,
4611 filename[0] ? filename : "");
4612 }
4613 }
4614
4615 do_cleanups (cleanup);
4616 }
4617 else
4618 warning (_("unable to open /proc file '%s'"), fname1);
4619 }
4620 if (status_f || all)
4621 {
4622 sprintf (fname1, "/proc/%ld/status", pid);
4623 if ((procfile = fopen (fname1, "r")) != NULL)
4624 {
4625 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4626
4627 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4628 puts_filtered (buffer);
4629 do_cleanups (cleanup);
4630 }
4631 else
4632 warning (_("unable to open /proc file '%s'"), fname1);
4633 }
4634 if (stat_f || all)
4635 {
4636 sprintf (fname1, "/proc/%ld/stat", pid);
4637 if ((procfile = fopen (fname1, "r")) != NULL)
4638 {
4639 int itmp;
4640 char ctmp;
4641 long ltmp;
4642 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4643
4644 if (fscanf (procfile, "%d ", &itmp) > 0)
4645 printf_filtered (_("Process: %d\n"), itmp);
4646 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4647 printf_filtered (_("Exec file: %s\n"), buffer);
4648 if (fscanf (procfile, "%c ", &ctmp) > 0)
4649 printf_filtered (_("State: %c\n"), ctmp);
4650 if (fscanf (procfile, "%d ", &itmp) > 0)
4651 printf_filtered (_("Parent process: %d\n"), itmp);
4652 if (fscanf (procfile, "%d ", &itmp) > 0)
4653 printf_filtered (_("Process group: %d\n"), itmp);
4654 if (fscanf (procfile, "%d ", &itmp) > 0)
4655 printf_filtered (_("Session id: %d\n"), itmp);
4656 if (fscanf (procfile, "%d ", &itmp) > 0)
4657 printf_filtered (_("TTY: %d\n"), itmp);
4658 if (fscanf (procfile, "%d ", &itmp) > 0)
4659 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4660 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4661 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4662 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4663 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4664 (unsigned long) ltmp);
4665 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4666 printf_filtered (_("Minor faults, children: %lu\n"),
4667 (unsigned long) ltmp);
4668 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4669 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4670 (unsigned long) ltmp);
4671 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4672 printf_filtered (_("Major faults, children: %lu\n"),
4673 (unsigned long) ltmp);
4674 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4675 printf_filtered (_("utime: %ld\n"), ltmp);
4676 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4677 printf_filtered (_("stime: %ld\n"), ltmp);
4678 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4679 printf_filtered (_("utime, children: %ld\n"), ltmp);
4680 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4681 printf_filtered (_("stime, children: %ld\n"), ltmp);
4682 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4683 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4684 ltmp);
4685 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4686 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4687 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4688 printf_filtered (_("jiffies until next timeout: %lu\n"),
4689 (unsigned long) ltmp);
4690 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4691 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4692 (unsigned long) ltmp);
4693 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4694 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4695 ltmp);
4696 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4697 printf_filtered (_("Virtual memory size: %lu\n"),
4698 (unsigned long) ltmp);
4699 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4700 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4701 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4702 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4703 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4704 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4705 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4706 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4707 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4708 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4709 #if 0 /* Don't know how architecture-dependent the rest is...
4710 Anyway the signal bitmap info is available from "status". */
4711 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4712 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4713 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4714 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4715 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4716 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4717 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4718 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4719 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4720 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4721 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4722 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4723 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4724 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4725 #endif
4726 do_cleanups (cleanup);
4727 }
4728 else
4729 warning (_("unable to open /proc file '%s'"), fname1);
4730 }
4731 }
4732
4733 /* Implement the to_xfer_partial interface for memory reads using the /proc
4734 filesystem. Because we can use a single read() call for /proc, this
4735 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4736 but it doesn't support writes. */
4737
4738 static LONGEST
4739 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4740 const char *annex, gdb_byte *readbuf,
4741 const gdb_byte *writebuf,
4742 ULONGEST offset, LONGEST len)
4743 {
4744 LONGEST ret;
4745 int fd;
4746 char filename[64];
4747
4748 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4749 return 0;
4750
4751 /* Don't bother for one word. */
4752 if (len < 3 * sizeof (long))
4753 return 0;
4754
4755 /* We could keep this file open and cache it - possibly one per
4756 thread. That requires some juggling, but is even faster. */
4757 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4758 fd = open (filename, O_RDONLY | O_LARGEFILE);
4759 if (fd == -1)
4760 return 0;
4761
4762 /* If pread64 is available, use it. It's faster if the kernel
4763 supports it (only one syscall), and it's 64-bit safe even on
4764 32-bit platforms (for instance, SPARC debugging a SPARC64
4765 application). */
4766 #ifdef HAVE_PREAD64
4767 if (pread64 (fd, readbuf, len, offset) != len)
4768 #else
4769 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4770 #endif
4771 ret = 0;
4772 else
4773 ret = len;
4774
4775 close (fd);
4776 return ret;
4777 }
4778
4779
4780 /* Enumerate spufs IDs for process PID. */
4781 static LONGEST
4782 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4783 {
4784 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4785 LONGEST pos = 0;
4786 LONGEST written = 0;
4787 char path[128];
4788 DIR *dir;
4789 struct dirent *entry;
4790
4791 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4792 dir = opendir (path);
4793 if (!dir)
4794 return -1;
4795
4796 rewinddir (dir);
4797 while ((entry = readdir (dir)) != NULL)
4798 {
4799 struct stat st;
4800 struct statfs stfs;
4801 int fd;
4802
4803 fd = atoi (entry->d_name);
4804 if (!fd)
4805 continue;
4806
4807 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4808 if (stat (path, &st) != 0)
4809 continue;
4810 if (!S_ISDIR (st.st_mode))
4811 continue;
4812
4813 if (statfs (path, &stfs) != 0)
4814 continue;
4815 if (stfs.f_type != SPUFS_MAGIC)
4816 continue;
4817
4818 if (pos >= offset && pos + 4 <= offset + len)
4819 {
4820 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4821 written += 4;
4822 }
4823 pos += 4;
4824 }
4825
4826 closedir (dir);
4827 return written;
4828 }
4829
4830 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4831 object type, using the /proc file system. */
4832 static LONGEST
4833 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4834 const char *annex, gdb_byte *readbuf,
4835 const gdb_byte *writebuf,
4836 ULONGEST offset, LONGEST len)
4837 {
4838 char buf[128];
4839 int fd = 0;
4840 int ret = -1;
4841 int pid = PIDGET (inferior_ptid);
4842
4843 if (!annex)
4844 {
4845 if (!readbuf)
4846 return -1;
4847 else
4848 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4849 }
4850
4851 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4852 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4853 if (fd <= 0)
4854 return -1;
4855
4856 if (offset != 0
4857 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4858 {
4859 close (fd);
4860 return 0;
4861 }
4862
4863 if (writebuf)
4864 ret = write (fd, writebuf, (size_t) len);
4865 else if (readbuf)
4866 ret = read (fd, readbuf, (size_t) len);
4867
4868 close (fd);
4869 return ret;
4870 }
4871
4872
4873 /* Parse LINE as a signal set and add its set bits to SIGS. */
4874
4875 static void
4876 add_line_to_sigset (const char *line, sigset_t *sigs)
4877 {
4878 int len = strlen (line) - 1;
4879 const char *p;
4880 int signum;
4881
4882 if (line[len] != '\n')
4883 error (_("Could not parse signal set: %s"), line);
4884
4885 p = line;
4886 signum = len * 4;
4887 while (len-- > 0)
4888 {
4889 int digit;
4890
4891 if (*p >= '0' && *p <= '9')
4892 digit = *p - '0';
4893 else if (*p >= 'a' && *p <= 'f')
4894 digit = *p - 'a' + 10;
4895 else
4896 error (_("Could not parse signal set: %s"), line);
4897
4898 signum -= 4;
4899
4900 if (digit & 1)
4901 sigaddset (sigs, signum + 1);
4902 if (digit & 2)
4903 sigaddset (sigs, signum + 2);
4904 if (digit & 4)
4905 sigaddset (sigs, signum + 3);
4906 if (digit & 8)
4907 sigaddset (sigs, signum + 4);
4908
4909 p++;
4910 }
4911 }
4912
4913 /* Find process PID's pending signals from /proc/pid/status and set
4914 SIGS to match. */
4915
4916 void
4917 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4918 {
4919 FILE *procfile;
4920 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4921 struct cleanup *cleanup;
4922
4923 sigemptyset (pending);
4924 sigemptyset (blocked);
4925 sigemptyset (ignored);
4926 sprintf (fname, "/proc/%d/status", pid);
4927 procfile = fopen (fname, "r");
4928 if (procfile == NULL)
4929 error (_("Could not open %s"), fname);
4930 cleanup = make_cleanup_fclose (procfile);
4931
4932 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4933 {
4934 /* Normal queued signals are on the SigPnd line in the status
4935 file. However, 2.6 kernels also have a "shared" pending
4936 queue for delivering signals to a thread group, so check for
4937 a ShdPnd line also.
4938
4939 Unfortunately some Red Hat kernels include the shared pending
4940 queue but not the ShdPnd status field. */
4941
4942 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4943 add_line_to_sigset (buffer + 8, pending);
4944 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4945 add_line_to_sigset (buffer + 8, pending);
4946 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4947 add_line_to_sigset (buffer + 8, blocked);
4948 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4949 add_line_to_sigset (buffer + 8, ignored);
4950 }
4951
4952 do_cleanups (cleanup);
4953 }
4954
4955 static LONGEST
4956 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4957 const char *annex, gdb_byte *readbuf,
4958 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4959 {
4960 /* We make the process list snapshot when the object starts to be
4961 read. */
4962 static const char *buf;
4963 static LONGEST len_avail = -1;
4964 static struct obstack obstack;
4965
4966 DIR *dirp;
4967
4968 gdb_assert (object == TARGET_OBJECT_OSDATA);
4969
4970 if (!annex)
4971 {
4972 if (offset == 0)
4973 {
4974 if (len_avail != -1 && len_avail != 0)
4975 obstack_free (&obstack, NULL);
4976 len_avail = 0;
4977 buf = NULL;
4978 obstack_init (&obstack);
4979 obstack_grow_str (&obstack, "<osdata type=\"types\">\n");
4980
4981 obstack_xml_printf (
4982 &obstack,
4983 "<item>"
4984 "<column name=\"Type\">processes</column>"
4985 "<column name=\"Description\">Listing of all processes</column>"
4986 "</item>");
4987
4988 obstack_grow_str0 (&obstack, "</osdata>\n");
4989 buf = obstack_finish (&obstack);
4990 len_avail = strlen (buf);
4991 }
4992
4993 if (offset >= len_avail)
4994 {
4995 /* Done. Get rid of the obstack. */
4996 obstack_free (&obstack, NULL);
4997 buf = NULL;
4998 len_avail = 0;
4999 return 0;
5000 }
5001
5002 if (len > len_avail - offset)
5003 len = len_avail - offset;
5004 memcpy (readbuf, buf + offset, len);
5005
5006 return len;
5007 }
5008
5009 if (strcmp (annex, "processes") != 0)
5010 return 0;
5011
5012 gdb_assert (readbuf && !writebuf);
5013
5014 if (offset == 0)
5015 {
5016 if (len_avail != -1 && len_avail != 0)
5017 obstack_free (&obstack, NULL);
5018 len_avail = 0;
5019 buf = NULL;
5020 obstack_init (&obstack);
5021 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
5022
5023 dirp = opendir ("/proc");
5024 if (dirp)
5025 {
5026 struct dirent *dp;
5027
5028 while ((dp = readdir (dirp)) != NULL)
5029 {
5030 struct stat statbuf;
5031 char procentry[sizeof ("/proc/4294967295")];
5032
5033 if (!isdigit (dp->d_name[0])
5034 || NAMELEN (dp) > sizeof ("4294967295") - 1)
5035 continue;
5036
5037 sprintf (procentry, "/proc/%s", dp->d_name);
5038 if (stat (procentry, &statbuf) == 0
5039 && S_ISDIR (statbuf.st_mode))
5040 {
5041 char *pathname;
5042 FILE *f;
5043 char cmd[MAXPATHLEN + 1];
5044 struct passwd *entry;
5045
5046 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
5047 entry = getpwuid (statbuf.st_uid);
5048
5049 if ((f = fopen (pathname, "r")) != NULL)
5050 {
5051 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
5052
5053 if (len > 0)
5054 {
5055 int i;
5056
5057 for (i = 0; i < len; i++)
5058 if (cmd[i] == '\0')
5059 cmd[i] = ' ';
5060 cmd[len] = '\0';
5061
5062 obstack_xml_printf (
5063 &obstack,
5064 "<item>"
5065 "<column name=\"pid\">%s</column>"
5066 "<column name=\"user\">%s</column>"
5067 "<column name=\"command\">%s</column>"
5068 "</item>",
5069 dp->d_name,
5070 entry ? entry->pw_name : "?",
5071 cmd);
5072 }
5073 fclose (f);
5074 }
5075
5076 xfree (pathname);
5077 }
5078 }
5079
5080 closedir (dirp);
5081 }
5082
5083 obstack_grow_str0 (&obstack, "</osdata>\n");
5084 buf = obstack_finish (&obstack);
5085 len_avail = strlen (buf);
5086 }
5087
5088 if (offset >= len_avail)
5089 {
5090 /* Done. Get rid of the obstack. */
5091 obstack_free (&obstack, NULL);
5092 buf = NULL;
5093 len_avail = 0;
5094 return 0;
5095 }
5096
5097 if (len > len_avail - offset)
5098 len = len_avail - offset;
5099 memcpy (readbuf, buf + offset, len);
5100
5101 return len;
5102 }
5103
5104 static LONGEST
5105 linux_xfer_partial (struct target_ops *ops, enum target_object object,
5106 const char *annex, gdb_byte *readbuf,
5107 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5108 {
5109 LONGEST xfer;
5110
5111 if (object == TARGET_OBJECT_AUXV)
5112 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
5113 offset, len);
5114
5115 if (object == TARGET_OBJECT_OSDATA)
5116 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
5117 offset, len);
5118
5119 if (object == TARGET_OBJECT_SPU)
5120 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
5121 offset, len);
5122
5123 /* GDB calculates all the addresses in possibly larget width of the address.
5124 Address width needs to be masked before its final use - either by
5125 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
5126
5127 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
5128
5129 if (object == TARGET_OBJECT_MEMORY)
5130 {
5131 int addr_bit = gdbarch_addr_bit (target_gdbarch);
5132
5133 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
5134 offset &= ((ULONGEST) 1 << addr_bit) - 1;
5135 }
5136
5137 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
5138 offset, len);
5139 if (xfer != 0)
5140 return xfer;
5141
5142 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
5143 offset, len);
5144 }
5145
5146 /* Create a prototype generic GNU/Linux target. The client can override
5147 it with local methods. */
5148
5149 static void
5150 linux_target_install_ops (struct target_ops *t)
5151 {
5152 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
5153 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
5154 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
5155 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
5156 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
5157 t->to_post_startup_inferior = linux_child_post_startup_inferior;
5158 t->to_post_attach = linux_child_post_attach;
5159 t->to_follow_fork = linux_child_follow_fork;
5160 t->to_find_memory_regions = linux_nat_find_memory_regions;
5161 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
5162
5163 super_xfer_partial = t->to_xfer_partial;
5164 t->to_xfer_partial = linux_xfer_partial;
5165 }
5166
5167 struct target_ops *
5168 linux_target (void)
5169 {
5170 struct target_ops *t;
5171
5172 t = inf_ptrace_target ();
5173 linux_target_install_ops (t);
5174
5175 return t;
5176 }
5177
5178 struct target_ops *
5179 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
5180 {
5181 struct target_ops *t;
5182
5183 t = inf_ptrace_trad_target (register_u_offset);
5184 linux_target_install_ops (t);
5185
5186 return t;
5187 }
5188
5189 /* target_is_async_p implementation. */
5190
5191 static int
5192 linux_nat_is_async_p (void)
5193 {
5194 /* NOTE: palves 2008-03-21: We're only async when the user requests
5195 it explicitly with the "set target-async" command.
5196 Someday, linux will always be async. */
5197 if (!target_async_permitted)
5198 return 0;
5199
5200 /* See target.h/target_async_mask. */
5201 return linux_nat_async_mask_value;
5202 }
5203
5204 /* target_can_async_p implementation. */
5205
5206 static int
5207 linux_nat_can_async_p (void)
5208 {
5209 /* NOTE: palves 2008-03-21: We're only async when the user requests
5210 it explicitly with the "set target-async" command.
5211 Someday, linux will always be async. */
5212 if (!target_async_permitted)
5213 return 0;
5214
5215 /* See target.h/target_async_mask. */
5216 return linux_nat_async_mask_value;
5217 }
5218
5219 static int
5220 linux_nat_supports_non_stop (void)
5221 {
5222 return 1;
5223 }
5224
5225 /* True if we want to support multi-process. To be removed when GDB
5226 supports multi-exec. */
5227
5228 int linux_multi_process = 1;
5229
5230 static int
5231 linux_nat_supports_multi_process (void)
5232 {
5233 return linux_multi_process;
5234 }
5235
5236 /* target_async_mask implementation. */
5237
5238 static int
5239 linux_nat_async_mask (int new_mask)
5240 {
5241 int curr_mask = linux_nat_async_mask_value;
5242
5243 if (curr_mask != new_mask)
5244 {
5245 if (new_mask == 0)
5246 {
5247 linux_nat_async (NULL, 0);
5248 linux_nat_async_mask_value = new_mask;
5249 }
5250 else
5251 {
5252 linux_nat_async_mask_value = new_mask;
5253
5254 /* If we're going out of async-mask in all-stop, then the
5255 inferior is stopped. The next resume will call
5256 target_async. In non-stop, the target event source
5257 should be always registered in the event loop. Do so
5258 now. */
5259 if (non_stop)
5260 linux_nat_async (inferior_event_handler, 0);
5261 }
5262 }
5263
5264 return curr_mask;
5265 }
5266
5267 static int async_terminal_is_ours = 1;
5268
5269 /* target_terminal_inferior implementation. */
5270
5271 static void
5272 linux_nat_terminal_inferior (void)
5273 {
5274 if (!target_is_async_p ())
5275 {
5276 /* Async mode is disabled. */
5277 terminal_inferior ();
5278 return;
5279 }
5280
5281 terminal_inferior ();
5282
5283 /* Calls to target_terminal_*() are meant to be idempotent. */
5284 if (!async_terminal_is_ours)
5285 return;
5286
5287 delete_file_handler (input_fd);
5288 async_terminal_is_ours = 0;
5289 set_sigint_trap ();
5290 }
5291
5292 /* target_terminal_ours implementation. */
5293
5294 static void
5295 linux_nat_terminal_ours (void)
5296 {
5297 if (!target_is_async_p ())
5298 {
5299 /* Async mode is disabled. */
5300 terminal_ours ();
5301 return;
5302 }
5303
5304 /* GDB should never give the terminal to the inferior if the
5305 inferior is running in the background (run&, continue&, etc.),
5306 but claiming it sure should. */
5307 terminal_ours ();
5308
5309 if (async_terminal_is_ours)
5310 return;
5311
5312 clear_sigint_trap ();
5313 add_file_handler (input_fd, stdin_event_handler, 0);
5314 async_terminal_is_ours = 1;
5315 }
5316
5317 static void (*async_client_callback) (enum inferior_event_type event_type,
5318 void *context);
5319 static void *async_client_context;
5320
5321 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5322 so we notice when any child changes state, and notify the
5323 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
5324 above to wait for the arrival of a SIGCHLD. */
5325
5326 static void
5327 sigchld_handler (int signo)
5328 {
5329 int old_errno = errno;
5330
5331 if (debug_linux_nat_async)
5332 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
5333
5334 if (signo == SIGCHLD
5335 && linux_nat_event_pipe[0] != -1)
5336 async_file_mark (); /* Let the event loop know that there are
5337 events to handle. */
5338
5339 errno = old_errno;
5340 }
5341
5342 /* Callback registered with the target events file descriptor. */
5343
5344 static void
5345 handle_target_event (int error, gdb_client_data client_data)
5346 {
5347 (*async_client_callback) (INF_REG_EVENT, async_client_context);
5348 }
5349
5350 /* Create/destroy the target events pipe. Returns previous state. */
5351
5352 static int
5353 linux_async_pipe (int enable)
5354 {
5355 int previous = (linux_nat_event_pipe[0] != -1);
5356
5357 if (previous != enable)
5358 {
5359 sigset_t prev_mask;
5360
5361 block_child_signals (&prev_mask);
5362
5363 if (enable)
5364 {
5365 if (pipe (linux_nat_event_pipe) == -1)
5366 internal_error (__FILE__, __LINE__,
5367 "creating event pipe failed.");
5368
5369 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
5370 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
5371 }
5372 else
5373 {
5374 close (linux_nat_event_pipe[0]);
5375 close (linux_nat_event_pipe[1]);
5376 linux_nat_event_pipe[0] = -1;
5377 linux_nat_event_pipe[1] = -1;
5378 }
5379
5380 restore_child_signals_mask (&prev_mask);
5381 }
5382
5383 return previous;
5384 }
5385
5386 /* target_async implementation. */
5387
5388 static void
5389 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
5390 void *context), void *context)
5391 {
5392 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
5393 internal_error (__FILE__, __LINE__,
5394 "Calling target_async when async is masked");
5395
5396 if (callback != NULL)
5397 {
5398 async_client_callback = callback;
5399 async_client_context = context;
5400 if (!linux_async_pipe (1))
5401 {
5402 add_file_handler (linux_nat_event_pipe[0],
5403 handle_target_event, NULL);
5404 /* There may be pending events to handle. Tell the event loop
5405 to poll them. */
5406 async_file_mark ();
5407 }
5408 }
5409 else
5410 {
5411 async_client_callback = callback;
5412 async_client_context = context;
5413 delete_file_handler (linux_nat_event_pipe[0]);
5414 linux_async_pipe (0);
5415 }
5416 return;
5417 }
5418
5419 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
5420 event came out. */
5421
5422 static int
5423 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
5424 {
5425 if (!lwp->stopped)
5426 {
5427 ptid_t ptid = lwp->ptid;
5428
5429 if (debug_linux_nat)
5430 fprintf_unfiltered (gdb_stdlog,
5431 "LNSL: running -> suspending %s\n",
5432 target_pid_to_str (lwp->ptid));
5433
5434
5435 stop_callback (lwp, NULL);
5436 stop_wait_callback (lwp, NULL);
5437
5438 /* If the lwp exits while we try to stop it, there's nothing
5439 else to do. */
5440 lwp = find_lwp_pid (ptid);
5441 if (lwp == NULL)
5442 return 0;
5443
5444 /* If we didn't collect any signal other than SIGSTOP while
5445 stopping the LWP, push a SIGNAL_0 event. In either case, the
5446 event-loop will end up calling target_wait which will collect
5447 these. */
5448 if (lwp->status == 0)
5449 lwp->status = W_STOPCODE (0);
5450 async_file_mark ();
5451 }
5452 else
5453 {
5454 /* Already known to be stopped; do nothing. */
5455
5456 if (debug_linux_nat)
5457 {
5458 if (find_thread_ptid (lwp->ptid)->stop_requested)
5459 fprintf_unfiltered (gdb_stdlog, "\
5460 LNSL: already stopped/stop_requested %s\n",
5461 target_pid_to_str (lwp->ptid));
5462 else
5463 fprintf_unfiltered (gdb_stdlog, "\
5464 LNSL: already stopped/no stop_requested yet %s\n",
5465 target_pid_to_str (lwp->ptid));
5466 }
5467 }
5468 return 0;
5469 }
5470
5471 static void
5472 linux_nat_stop (ptid_t ptid)
5473 {
5474 if (non_stop)
5475 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5476 else
5477 linux_ops->to_stop (ptid);
5478 }
5479
5480 static void
5481 linux_nat_close (int quitting)
5482 {
5483 /* Unregister from the event loop. */
5484 if (target_is_async_p ())
5485 target_async (NULL, 0);
5486
5487 /* Reset the async_masking. */
5488 linux_nat_async_mask_value = 1;
5489
5490 if (linux_ops->to_close)
5491 linux_ops->to_close (quitting);
5492 }
5493
5494 /* When requests are passed down from the linux-nat layer to the
5495 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5496 used. The address space pointer is stored in the inferior object,
5497 but the common code that is passed such ptid can't tell whether
5498 lwpid is a "main" process id or not (it assumes so). We reverse
5499 look up the "main" process id from the lwp here. */
5500
5501 struct address_space *
5502 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5503 {
5504 struct lwp_info *lwp;
5505 struct inferior *inf;
5506 int pid;
5507
5508 pid = GET_LWP (ptid);
5509 if (GET_LWP (ptid) == 0)
5510 {
5511 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5512 tgid. */
5513 lwp = find_lwp_pid (ptid);
5514 pid = GET_PID (lwp->ptid);
5515 }
5516 else
5517 {
5518 /* A (pid,lwpid,0) ptid. */
5519 pid = GET_PID (ptid);
5520 }
5521
5522 inf = find_inferior_pid (pid);
5523 gdb_assert (inf != NULL);
5524 return inf->aspace;
5525 }
5526
5527 int
5528 linux_nat_core_of_thread_1 (ptid_t ptid)
5529 {
5530 struct cleanup *back_to;
5531 char *filename;
5532 FILE *f;
5533 char *content = NULL;
5534 char *p;
5535 char *ts = 0;
5536 int content_read = 0;
5537 int i;
5538 int core;
5539
5540 filename = xstrprintf ("/proc/%d/task/%ld/stat",
5541 GET_PID (ptid), GET_LWP (ptid));
5542 back_to = make_cleanup (xfree, filename);
5543
5544 f = fopen (filename, "r");
5545 if (!f)
5546 {
5547 do_cleanups (back_to);
5548 return -1;
5549 }
5550
5551 make_cleanup_fclose (f);
5552
5553 for (;;)
5554 {
5555 int n;
5556
5557 content = xrealloc (content, content_read + 1024);
5558 n = fread (content + content_read, 1, 1024, f);
5559 content_read += n;
5560 if (n < 1024)
5561 {
5562 content[content_read] = '\0';
5563 break;
5564 }
5565 }
5566
5567 make_cleanup (xfree, content);
5568
5569 p = strchr (content, '(');
5570
5571 /* Skip ")". */
5572 if (p != NULL)
5573 p = strchr (p, ')');
5574 if (p != NULL)
5575 p++;
5576
5577 /* If the first field after program name has index 0, then core number is
5578 the field with index 36. There's no constant for that anywhere. */
5579 if (p != NULL)
5580 p = strtok_r (p, " ", &ts);
5581 for (i = 0; p != NULL && i != 36; ++i)
5582 p = strtok_r (NULL, " ", &ts);
5583
5584 if (p == NULL || sscanf (p, "%d", &core) == 0)
5585 core = -1;
5586
5587 do_cleanups (back_to);
5588
5589 return core;
5590 }
5591
5592 /* Return the cached value of the processor core for thread PTID. */
5593
5594 int
5595 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5596 {
5597 struct lwp_info *info = find_lwp_pid (ptid);
5598
5599 if (info)
5600 return info->core;
5601 return -1;
5602 }
5603
5604 void
5605 linux_nat_add_target (struct target_ops *t)
5606 {
5607 /* Save the provided single-threaded target. We save this in a separate
5608 variable because another target we've inherited from (e.g. inf-ptrace)
5609 may have saved a pointer to T; we want to use it for the final
5610 process stratum target. */
5611 linux_ops_saved = *t;
5612 linux_ops = &linux_ops_saved;
5613
5614 /* Override some methods for multithreading. */
5615 t->to_create_inferior = linux_nat_create_inferior;
5616 t->to_attach = linux_nat_attach;
5617 t->to_detach = linux_nat_detach;
5618 t->to_resume = linux_nat_resume;
5619 t->to_wait = linux_nat_wait;
5620 t->to_xfer_partial = linux_nat_xfer_partial;
5621 t->to_kill = linux_nat_kill;
5622 t->to_mourn_inferior = linux_nat_mourn_inferior;
5623 t->to_thread_alive = linux_nat_thread_alive;
5624 t->to_pid_to_str = linux_nat_pid_to_str;
5625 t->to_has_thread_control = tc_schedlock;
5626 t->to_thread_address_space = linux_nat_thread_address_space;
5627 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5628 t->to_stopped_data_address = linux_nat_stopped_data_address;
5629
5630 t->to_can_async_p = linux_nat_can_async_p;
5631 t->to_is_async_p = linux_nat_is_async_p;
5632 t->to_supports_non_stop = linux_nat_supports_non_stop;
5633 t->to_async = linux_nat_async;
5634 t->to_async_mask = linux_nat_async_mask;
5635 t->to_terminal_inferior = linux_nat_terminal_inferior;
5636 t->to_terminal_ours = linux_nat_terminal_ours;
5637 t->to_close = linux_nat_close;
5638
5639 /* Methods for non-stop support. */
5640 t->to_stop = linux_nat_stop;
5641
5642 t->to_supports_multi_process = linux_nat_supports_multi_process;
5643
5644 t->to_core_of_thread = linux_nat_core_of_thread;
5645
5646 /* We don't change the stratum; this target will sit at
5647 process_stratum and thread_db will set at thread_stratum. This
5648 is a little strange, since this is a multi-threaded-capable
5649 target, but we want to be on the stack below thread_db, and we
5650 also want to be used for single-threaded processes. */
5651
5652 add_target (t);
5653 }
5654
5655 /* Register a method to call whenever a new thread is attached. */
5656 void
5657 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5658 {
5659 /* Save the pointer. We only support a single registered instance
5660 of the GNU/Linux native target, so we do not need to map this to
5661 T. */
5662 linux_nat_new_thread = new_thread;
5663 }
5664
5665 /* Register a method that converts a siginfo object between the layout
5666 that ptrace returns, and the layout in the architecture of the
5667 inferior. */
5668 void
5669 linux_nat_set_siginfo_fixup (struct target_ops *t,
5670 int (*siginfo_fixup) (struct siginfo *,
5671 gdb_byte *,
5672 int))
5673 {
5674 /* Save the pointer. */
5675 linux_nat_siginfo_fixup = siginfo_fixup;
5676 }
5677
5678 /* Return the saved siginfo associated with PTID. */
5679 struct siginfo *
5680 linux_nat_get_siginfo (ptid_t ptid)
5681 {
5682 struct lwp_info *lp = find_lwp_pid (ptid);
5683
5684 gdb_assert (lp != NULL);
5685
5686 return &lp->siginfo;
5687 }
5688
5689 /* Provide a prototype to silence -Wmissing-prototypes. */
5690 extern initialize_file_ftype _initialize_linux_nat;
5691
5692 void
5693 _initialize_linux_nat (void)
5694 {
5695 add_info ("proc", linux_nat_info_proc_cmd, _("\
5696 Show /proc process information about any running process.\n\
5697 Specify any process id, or use the program being debugged by default.\n\
5698 Specify any of the following keywords for detailed info:\n\
5699 mappings -- list of mapped memory regions.\n\
5700 stat -- list a bunch of random process info.\n\
5701 status -- list a different bunch of random process info.\n\
5702 all -- list all available /proc info."));
5703
5704 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5705 &debug_linux_nat, _("\
5706 Set debugging of GNU/Linux lwp module."), _("\
5707 Show debugging of GNU/Linux lwp module."), _("\
5708 Enables printf debugging output."),
5709 NULL,
5710 show_debug_linux_nat,
5711 &setdebuglist, &showdebuglist);
5712
5713 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5714 &debug_linux_nat_async, _("\
5715 Set debugging of GNU/Linux async lwp module."), _("\
5716 Show debugging of GNU/Linux async lwp module."), _("\
5717 Enables printf debugging output."),
5718 NULL,
5719 show_debug_linux_nat_async,
5720 &setdebuglist, &showdebuglist);
5721
5722 /* Save this mask as the default. */
5723 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5724
5725 /* Install a SIGCHLD handler. */
5726 sigchld_action.sa_handler = sigchld_handler;
5727 sigemptyset (&sigchld_action.sa_mask);
5728 sigchld_action.sa_flags = SA_RESTART;
5729
5730 /* Make it the default. */
5731 sigaction (SIGCHLD, &sigchld_action, NULL);
5732
5733 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5734 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5735 sigdelset (&suspend_mask, SIGCHLD);
5736
5737 sigemptyset (&blocked_mask);
5738
5739 add_setshow_boolean_cmd ("disable-randomization", class_support,
5740 &disable_randomization, _("\
5741 Set disabling of debuggee's virtual address space randomization."), _("\
5742 Show disabling of debuggee's virtual address space randomization."), _("\
5743 When this mode is on (which is the default), randomization of the virtual\n\
5744 address space is disabled. Standalone programs run with the randomization\n\
5745 enabled by default on some platforms."),
5746 &set_disable_randomization,
5747 &show_disable_randomization,
5748 &setlist, &showlist);
5749 }
5750 \f
5751
5752 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5753 the GNU/Linux Threads library and therefore doesn't really belong
5754 here. */
5755
5756 /* Read variable NAME in the target and return its value if found.
5757 Otherwise return zero. It is assumed that the type of the variable
5758 is `int'. */
5759
5760 static int
5761 get_signo (const char *name)
5762 {
5763 struct minimal_symbol *ms;
5764 int signo;
5765
5766 ms = lookup_minimal_symbol (name, NULL, NULL);
5767 if (ms == NULL)
5768 return 0;
5769
5770 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5771 sizeof (signo)) != 0)
5772 return 0;
5773
5774 return signo;
5775 }
5776
5777 /* Return the set of signals used by the threads library in *SET. */
5778
5779 void
5780 lin_thread_get_thread_signals (sigset_t *set)
5781 {
5782 struct sigaction action;
5783 int restart, cancel;
5784
5785 sigemptyset (&blocked_mask);
5786 sigemptyset (set);
5787
5788 restart = get_signo ("__pthread_sig_restart");
5789 cancel = get_signo ("__pthread_sig_cancel");
5790
5791 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5792 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5793 not provide any way for the debugger to query the signal numbers -
5794 fortunately they don't change! */
5795
5796 if (restart == 0)
5797 restart = __SIGRTMIN;
5798
5799 if (cancel == 0)
5800 cancel = __SIGRTMIN + 1;
5801
5802 sigaddset (set, restart);
5803 sigaddset (set, cancel);
5804
5805 /* The GNU/Linux Threads library makes terminating threads send a
5806 special "cancel" signal instead of SIGCHLD. Make sure we catch
5807 those (to prevent them from terminating GDB itself, which is
5808 likely to be their default action) and treat them the same way as
5809 SIGCHLD. */
5810
5811 action.sa_handler = sigchld_handler;
5812 sigemptyset (&action.sa_mask);
5813 action.sa_flags = SA_RESTART;
5814 sigaction (cancel, &action, NULL);
5815
5816 /* We block the "cancel" signal throughout this code ... */
5817 sigaddset (&blocked_mask, cancel);
5818 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5819
5820 /* ... except during a sigsuspend. */
5821 sigdelset (&suspend_mask, cancel);
5822 }
This page took 0.143777 seconds and 5 git commands to generate.