Implementing catch syscall.
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "gdb_wait.h"
26 #include "gdb_assert.h"
27 #ifdef HAVE_TKILL_SYSCALL
28 #include <unistd.h>
29 #include <sys/syscall.h>
30 #endif
31 #include <sys/ptrace.h>
32 #include "linux-nat.h"
33 #include "linux-fork.h"
34 #include "gdbthread.h"
35 #include "gdbcmd.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "inf-ptrace.h"
39 #include "auxv.h"
40 #include <sys/param.h> /* for MAXPATHLEN */
41 #include <sys/procfs.h> /* for elf_gregset etc. */
42 #include "elf-bfd.h" /* for elfcore_write_* */
43 #include "gregset.h" /* for gregset */
44 #include "gdbcore.h" /* for get_exec_file */
45 #include <ctype.h> /* for isdigit */
46 #include "gdbthread.h" /* for struct thread_info etc. */
47 #include "gdb_stat.h" /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include "gdb_dirent.h"
55 #include "xml-support.h"
56 #include "terminal.h"
57 #include <sys/vfs.h>
58
59 #ifndef SPUFS_MAGIC
60 #define SPUFS_MAGIC 0x23c9b64e
61 #endif
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif /* HAVE_PERSONALITY */
69
70 /* To be used when one needs to know wether a
71 WSTOPSIG (status) is a syscall */
72 #define TRAP_IS_SYSCALL (SIGTRAP | 0x80)
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid, passing
80 the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good. Prior to
83 version 2.4, Linux can either wait for event in main thread, or in secondary
84 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
85 miss an event. The solution is to use non-blocking waitpid, together with
86 sigsuspend. First, we use non-blocking waitpid to get an event in the main
87 process, if any. Second, we use non-blocking waitpid with the __WCLONED
88 flag to check for events in cloned processes. If nothing is found, we use
89 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
90 happened to a child process -- and SIGCHLD will be delivered both for events
91 in main debugged process and in cloned processes. As soon as we know there's
92 an event, we get back to calling nonblocking waitpid with and without __WCLONED.
93
94 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
95 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
96 blocked, the signal becomes pending and sigsuspend immediately
97 notices it and returns.
98
99 Waiting for events in async mode
100 ================================
101
102 In async mode, GDB should always be ready to handle both user input
103 and target events, so neither blocking waitpid nor sigsuspend are
104 viable options. Instead, we should asynchronously notify the GDB main
105 event loop whenever there's an unprocessed event from the target. We
106 detect asynchronous target events by handling SIGCHLD signals. To
107 notify the event loop about target events, the self-pipe trick is used
108 --- a pipe is registered as waitable event source in the event loop,
109 the event loop select/poll's on the read end of this pipe (as well on
110 other event sources, e.g., stdin), and the SIGCHLD handler writes a
111 byte to this pipe. This is more portable than relying on
112 pselect/ppoll, since on kernels that lack those syscalls, libc
113 emulates them with select/poll+sigprocmask, and that is racy
114 (a.k.a. plain broken).
115
116 Obviously, if we fail to notify the event loop if there's a target
117 event, it's bad. OTOH, if we notify the event loop when there's no
118 event from the target, linux_nat_wait will detect that there's no real
119 event to report, and return event of type TARGET_WAITKIND_IGNORE.
120 This is mostly harmless, but it will waste time and is better avoided.
121
122 The main design point is that every time GDB is outside linux-nat.c,
123 we have a SIGCHLD handler installed that is called when something
124 happens to the target and notifies the GDB event loop. Whenever GDB
125 core decides to handle the event, and calls into linux-nat.c, we
126 process things as in sync mode, except that the we never block in
127 sigsuspend.
128
129 While processing an event, we may end up momentarily blocked in
130 waitpid calls. Those waitpid calls, while blocking, are guarantied to
131 return quickly. E.g., in all-stop mode, before reporting to the core
132 that an LWP hit a breakpoint, all LWPs are stopped by sending them
133 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
134 Note that this is different from blocking indefinitely waiting for the
135 next event --- here, we're already handling an event.
136
137 Use of signals
138 ==============
139
140 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
141 signal is not entirely significant; we just need for a signal to be delivered,
142 so that we can intercept it. SIGSTOP's advantage is that it can not be
143 blocked. A disadvantage is that it is not a real-time signal, so it can only
144 be queued once; we do not keep track of other sources of SIGSTOP.
145
146 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
147 use them, because they have special behavior when the signal is generated -
148 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
149 kills the entire thread group.
150
151 A delivered SIGSTOP would stop the entire thread group, not just the thread we
152 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
153 cancel it (by PTRACE_CONT without passing SIGSTOP).
154
155 We could use a real-time signal instead. This would solve those problems; we
156 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
157 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
158 generates it, and there are races with trying to find a signal that is not
159 blocked. */
160
161 #ifndef O_LARGEFILE
162 #define O_LARGEFILE 0
163 #endif
164
165 /* If the system headers did not provide the constants, hard-code the normal
166 values. */
167 #ifndef PTRACE_EVENT_FORK
168
169 #define PTRACE_SETOPTIONS 0x4200
170 #define PTRACE_GETEVENTMSG 0x4201
171
172 /* options set using PTRACE_SETOPTIONS */
173 #define PTRACE_O_TRACESYSGOOD 0x00000001
174 #define PTRACE_O_TRACEFORK 0x00000002
175 #define PTRACE_O_TRACEVFORK 0x00000004
176 #define PTRACE_O_TRACECLONE 0x00000008
177 #define PTRACE_O_TRACEEXEC 0x00000010
178 #define PTRACE_O_TRACEVFORKDONE 0x00000020
179 #define PTRACE_O_TRACEEXIT 0x00000040
180
181 /* Wait extended result codes for the above trace options. */
182 #define PTRACE_EVENT_FORK 1
183 #define PTRACE_EVENT_VFORK 2
184 #define PTRACE_EVENT_CLONE 3
185 #define PTRACE_EVENT_EXEC 4
186 #define PTRACE_EVENT_VFORK_DONE 5
187 #define PTRACE_EVENT_EXIT 6
188
189 #endif /* PTRACE_EVENT_FORK */
190
191 /* We can't always assume that this flag is available, but all systems
192 with the ptrace event handlers also have __WALL, so it's safe to use
193 here. */
194 #ifndef __WALL
195 #define __WALL 0x40000000 /* Wait for any child. */
196 #endif
197
198 #ifndef PTRACE_GETSIGINFO
199 # define PTRACE_GETSIGINFO 0x4202
200 # define PTRACE_SETSIGINFO 0x4203
201 #endif
202
203 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
204 the use of the multi-threaded target. */
205 static struct target_ops *linux_ops;
206 static struct target_ops linux_ops_saved;
207
208 /* The method to call, if any, when a new thread is attached. */
209 static void (*linux_nat_new_thread) (ptid_t);
210
211 /* The method to call, if any, when the siginfo object needs to be
212 converted between the layout returned by ptrace, and the layout in
213 the architecture of the inferior. */
214 static int (*linux_nat_siginfo_fixup) (struct siginfo *,
215 gdb_byte *,
216 int);
217
218 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
219 Called by our to_xfer_partial. */
220 static LONGEST (*super_xfer_partial) (struct target_ops *,
221 enum target_object,
222 const char *, gdb_byte *,
223 const gdb_byte *,
224 ULONGEST, LONGEST);
225
226 static int debug_linux_nat;
227 static void
228 show_debug_linux_nat (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
232 value);
233 }
234
235 static int debug_linux_nat_async = 0;
236 static void
237 show_debug_linux_nat_async (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"),
241 value);
242 }
243
244 static int disable_randomization = 1;
245
246 static void
247 show_disable_randomization (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 #ifdef HAVE_PERSONALITY
251 fprintf_filtered (file, _("\
252 Disabling randomization of debuggee's virtual address space is %s.\n"),
253 value);
254 #else /* !HAVE_PERSONALITY */
255 fputs_filtered (_("\
256 Disabling randomization of debuggee's virtual address space is unsupported on\n\
257 this platform.\n"), file);
258 #endif /* !HAVE_PERSONALITY */
259 }
260
261 static void
262 set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c)
263 {
264 #ifndef HAVE_PERSONALITY
265 error (_("\
266 Disabling randomization of debuggee's virtual address space is unsupported on\n\
267 this platform."));
268 #endif /* !HAVE_PERSONALITY */
269 }
270
271 static int linux_parent_pid;
272
273 struct simple_pid_list
274 {
275 int pid;
276 int status;
277 struct simple_pid_list *next;
278 };
279 struct simple_pid_list *stopped_pids;
280
281 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
282 can not be used, 1 if it can. */
283
284 static int linux_supports_tracefork_flag = -1;
285
286 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACESYSGOOD
287 can not be used, 1 if it can. */
288
289 static int linux_supports_tracesysgood_flag = -1;
290
291 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
292 PTRACE_O_TRACEVFORKDONE. */
293
294 static int linux_supports_tracevforkdone_flag = -1;
295
296 /* Async mode support */
297
298 /* Zero if the async mode, although enabled, is masked, which means
299 linux_nat_wait should behave as if async mode was off. */
300 static int linux_nat_async_mask_value = 1;
301
302 /* Stores the current used ptrace() options. */
303 static int current_ptrace_options = 0;
304
305 /* The read/write ends of the pipe registered as waitable file in the
306 event loop. */
307 static int linux_nat_event_pipe[2] = { -1, -1 };
308
309 /* Flush the event pipe. */
310
311 static void
312 async_file_flush (void)
313 {
314 int ret;
315 char buf;
316
317 do
318 {
319 ret = read (linux_nat_event_pipe[0], &buf, 1);
320 }
321 while (ret >= 0 || (ret == -1 && errno == EINTR));
322 }
323
324 /* Put something (anything, doesn't matter what, or how much) in event
325 pipe, so that the select/poll in the event-loop realizes we have
326 something to process. */
327
328 static void
329 async_file_mark (void)
330 {
331 int ret;
332
333 /* It doesn't really matter what the pipe contains, as long we end
334 up with something in it. Might as well flush the previous
335 left-overs. */
336 async_file_flush ();
337
338 do
339 {
340 ret = write (linux_nat_event_pipe[1], "+", 1);
341 }
342 while (ret == -1 && errno == EINTR);
343
344 /* Ignore EAGAIN. If the pipe is full, the event loop will already
345 be awakened anyway. */
346 }
347
348 static void linux_nat_async (void (*callback)
349 (enum inferior_event_type event_type, void *context),
350 void *context);
351 static int linux_nat_async_mask (int mask);
352 static int kill_lwp (int lwpid, int signo);
353
354 static int stop_callback (struct lwp_info *lp, void *data);
355
356 static void block_child_signals (sigset_t *prev_mask);
357 static void restore_child_signals_mask (sigset_t *prev_mask);
358
359 struct lwp_info;
360 static struct lwp_info *add_lwp (ptid_t ptid);
361 static void purge_lwp_list (int pid);
362 static struct lwp_info *find_lwp_pid (ptid_t ptid);
363
364 \f
365 /* Trivial list manipulation functions to keep track of a list of
366 new stopped processes. */
367 static void
368 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
369 {
370 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
371 new_pid->pid = pid;
372 new_pid->status = status;
373 new_pid->next = *listp;
374 *listp = new_pid;
375 }
376
377 static int
378 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status)
379 {
380 struct simple_pid_list **p;
381
382 for (p = listp; *p != NULL; p = &(*p)->next)
383 if ((*p)->pid == pid)
384 {
385 struct simple_pid_list *next = (*p)->next;
386 *status = (*p)->status;
387 xfree (*p);
388 *p = next;
389 return 1;
390 }
391 return 0;
392 }
393
394 static void
395 linux_record_stopped_pid (int pid, int status)
396 {
397 add_to_pid_list (&stopped_pids, pid, status);
398 }
399
400 \f
401 /* A helper function for linux_test_for_tracefork, called after fork (). */
402
403 static void
404 linux_tracefork_child (void)
405 {
406 int ret;
407
408 ptrace (PTRACE_TRACEME, 0, 0, 0);
409 kill (getpid (), SIGSTOP);
410 fork ();
411 _exit (0);
412 }
413
414 /* Wrapper function for waitpid which handles EINTR. */
415
416 static int
417 my_waitpid (int pid, int *status, int flags)
418 {
419 int ret;
420
421 do
422 {
423 ret = waitpid (pid, status, flags);
424 }
425 while (ret == -1 && errno == EINTR);
426
427 return ret;
428 }
429
430 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
431
432 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
433 we know that the feature is not available. This may change the tracing
434 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
435
436 However, if it succeeds, we don't know for sure that the feature is
437 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
438 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
439 fork tracing, and let it fork. If the process exits, we assume that we
440 can't use TRACEFORK; if we get the fork notification, and we can extract
441 the new child's PID, then we assume that we can. */
442
443 static void
444 linux_test_for_tracefork (int original_pid)
445 {
446 int child_pid, ret, status;
447 long second_pid;
448 sigset_t prev_mask;
449
450 /* We don't want those ptrace calls to be interrupted. */
451 block_child_signals (&prev_mask);
452
453 linux_supports_tracefork_flag = 0;
454 linux_supports_tracevforkdone_flag = 0;
455
456 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
457 if (ret != 0)
458 {
459 restore_child_signals_mask (&prev_mask);
460 return;
461 }
462
463 child_pid = fork ();
464 if (child_pid == -1)
465 perror_with_name (("fork"));
466
467 if (child_pid == 0)
468 linux_tracefork_child ();
469
470 ret = my_waitpid (child_pid, &status, 0);
471 if (ret == -1)
472 perror_with_name (("waitpid"));
473 else if (ret != child_pid)
474 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
475 if (! WIFSTOPPED (status))
476 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status);
477
478 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
479 if (ret != 0)
480 {
481 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
482 if (ret != 0)
483 {
484 warning (_("linux_test_for_tracefork: failed to kill child"));
485 restore_child_signals_mask (&prev_mask);
486 return;
487 }
488
489 ret = my_waitpid (child_pid, &status, 0);
490 if (ret != child_pid)
491 warning (_("linux_test_for_tracefork: failed to wait for killed child"));
492 else if (!WIFSIGNALED (status))
493 warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from "
494 "killed child"), status);
495
496 restore_child_signals_mask (&prev_mask);
497 return;
498 }
499
500 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
501 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
502 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
503 linux_supports_tracevforkdone_flag = (ret == 0);
504
505 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
506 if (ret != 0)
507 warning (_("linux_test_for_tracefork: failed to resume child"));
508
509 ret = my_waitpid (child_pid, &status, 0);
510
511 if (ret == child_pid && WIFSTOPPED (status)
512 && status >> 16 == PTRACE_EVENT_FORK)
513 {
514 second_pid = 0;
515 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
516 if (ret == 0 && second_pid != 0)
517 {
518 int second_status;
519
520 linux_supports_tracefork_flag = 1;
521 my_waitpid (second_pid, &second_status, 0);
522 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
523 if (ret != 0)
524 warning (_("linux_test_for_tracefork: failed to kill second child"));
525 my_waitpid (second_pid, &status, 0);
526 }
527 }
528 else
529 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
530 "(%d, status 0x%x)"), ret, status);
531
532 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
533 if (ret != 0)
534 warning (_("linux_test_for_tracefork: failed to kill child"));
535 my_waitpid (child_pid, &status, 0);
536
537 restore_child_signals_mask (&prev_mask);
538 }
539
540 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
541
542 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
543 we know that the feature is not available. This may change the tracing
544 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
545
546 static void
547 linux_test_for_tracesysgood (int original_pid)
548 {
549 int ret;
550 sigset_t prev_mask;
551
552 /* We don't want those ptrace calls to be interrupted. */
553 block_child_signals (&prev_mask);
554
555 linux_supports_tracesysgood_flag = 0;
556
557 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
558 if (ret != 0)
559 goto out;
560
561 linux_supports_tracesysgood_flag = 1;
562 out:
563 restore_child_signals_mask (&prev_mask);
564 }
565
566 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
567 This function also sets linux_supports_tracesysgood_flag. */
568
569 static int
570 linux_supports_tracesysgood (int pid)
571 {
572 if (linux_supports_tracesysgood_flag == -1)
573 linux_test_for_tracesysgood (pid);
574 return linux_supports_tracesysgood_flag;
575 }
576
577 /* Return non-zero iff we have tracefork functionality available.
578 This function also sets linux_supports_tracefork_flag. */
579
580 static int
581 linux_supports_tracefork (int pid)
582 {
583 if (linux_supports_tracefork_flag == -1)
584 linux_test_for_tracefork (pid);
585 return linux_supports_tracefork_flag;
586 }
587
588 static int
589 linux_supports_tracevforkdone (int pid)
590 {
591 if (linux_supports_tracefork_flag == -1)
592 linux_test_for_tracefork (pid);
593 return linux_supports_tracevforkdone_flag;
594 }
595
596 static void
597 linux_enable_tracesysgood (ptid_t ptid)
598 {
599 int pid = ptid_get_lwp (ptid);
600
601 if (pid == 0)
602 pid = ptid_get_pid (ptid);
603
604 if (linux_supports_tracesysgood (pid) == 0)
605 return;
606
607 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
608
609 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
610 }
611
612 \f
613 void
614 linux_enable_event_reporting (ptid_t ptid)
615 {
616 int pid = ptid_get_lwp (ptid);
617
618 if (pid == 0)
619 pid = ptid_get_pid (ptid);
620
621 if (! linux_supports_tracefork (pid))
622 return;
623
624 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
625 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
626
627 if (linux_supports_tracevforkdone (pid))
628 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
629
630 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
631 read-only process state. */
632
633 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
634 }
635
636 static void
637 linux_child_post_attach (int pid)
638 {
639 linux_enable_event_reporting (pid_to_ptid (pid));
640 check_for_thread_db ();
641 linux_enable_tracesysgood (pid_to_ptid (pid));
642 }
643
644 static void
645 linux_child_post_startup_inferior (ptid_t ptid)
646 {
647 linux_enable_event_reporting (ptid);
648 check_for_thread_db ();
649 linux_enable_tracesysgood (ptid);
650 }
651
652 static int
653 linux_child_follow_fork (struct target_ops *ops, int follow_child)
654 {
655 sigset_t prev_mask;
656 int has_vforked;
657 int parent_pid, child_pid;
658
659 block_child_signals (&prev_mask);
660
661 has_vforked = (inferior_thread ()->pending_follow.kind
662 == TARGET_WAITKIND_VFORKED);
663 parent_pid = ptid_get_lwp (inferior_ptid);
664 if (parent_pid == 0)
665 parent_pid = ptid_get_pid (inferior_ptid);
666 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
667
668 if (!detach_fork)
669 linux_enable_event_reporting (pid_to_ptid (child_pid));
670
671 if (! follow_child)
672 {
673 /* We're already attached to the parent, by default. */
674
675 /* Before detaching from the child, remove all breakpoints from
676 it. If we forked, then this has already been taken care of
677 by infrun.c. If we vforked however, any breakpoint inserted
678 in the parent is visible in the child, even those added while
679 stopped in a vfork catchpoint. This won't actually modify
680 the breakpoint list, but will physically remove the
681 breakpoints from the child. This will remove the breakpoints
682 from the parent also, but they'll be reinserted below. */
683 if (has_vforked)
684 detach_breakpoints (child_pid);
685
686 /* Detach new forked process? */
687 if (detach_fork)
688 {
689 if (info_verbose || debug_linux_nat)
690 {
691 target_terminal_ours ();
692 fprintf_filtered (gdb_stdlog,
693 "Detaching after fork from child process %d.\n",
694 child_pid);
695 }
696
697 ptrace (PTRACE_DETACH, child_pid, 0, 0);
698 }
699 else
700 {
701 struct inferior *parent_inf, *child_inf;
702 struct lwp_info *lp;
703 struct cleanup *old_chain;
704
705 /* Add process to GDB's tables. */
706 child_inf = add_inferior (child_pid);
707
708 parent_inf = current_inferior ();
709 child_inf->attach_flag = parent_inf->attach_flag;
710 copy_terminal_info (child_inf, parent_inf);
711
712 old_chain = save_inferior_ptid ();
713
714 inferior_ptid = ptid_build (child_pid, child_pid, 0);
715 add_thread (inferior_ptid);
716 lp = add_lwp (inferior_ptid);
717 lp->stopped = 1;
718
719 check_for_thread_db ();
720
721 do_cleanups (old_chain);
722 }
723
724 if (has_vforked)
725 {
726 gdb_assert (linux_supports_tracefork_flag >= 0);
727 if (linux_supports_tracevforkdone (0))
728 {
729 int status;
730
731 ptrace (PTRACE_CONT, parent_pid, 0, 0);
732 my_waitpid (parent_pid, &status, __WALL);
733 if ((status >> 16) != PTRACE_EVENT_VFORK_DONE)
734 warning (_("Unexpected waitpid result %06x when waiting for "
735 "vfork-done"), status);
736 }
737 else
738 {
739 /* We can't insert breakpoints until the child has
740 finished with the shared memory region. We need to
741 wait until that happens. Ideal would be to just
742 call:
743 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
744 - waitpid (parent_pid, &status, __WALL);
745 However, most architectures can't handle a syscall
746 being traced on the way out if it wasn't traced on
747 the way in.
748
749 We might also think to loop, continuing the child
750 until it exits or gets a SIGTRAP. One problem is
751 that the child might call ptrace with PTRACE_TRACEME.
752
753 There's no simple and reliable way to figure out when
754 the vforked child will be done with its copy of the
755 shared memory. We could step it out of the syscall,
756 two instructions, let it go, and then single-step the
757 parent once. When we have hardware single-step, this
758 would work; with software single-step it could still
759 be made to work but we'd have to be able to insert
760 single-step breakpoints in the child, and we'd have
761 to insert -just- the single-step breakpoint in the
762 parent. Very awkward.
763
764 In the end, the best we can do is to make sure it
765 runs for a little while. Hopefully it will be out of
766 range of any breakpoints we reinsert. Usually this
767 is only the single-step breakpoint at vfork's return
768 point. */
769
770 usleep (10000);
771 }
772
773 /* Since we vforked, breakpoints were removed in the parent
774 too. Put them back. */
775 reattach_breakpoints (parent_pid);
776 }
777 }
778 else
779 {
780 struct thread_info *tp;
781 struct inferior *parent_inf, *child_inf;
782 struct lwp_info *lp;
783
784 /* Before detaching from the parent, remove all breakpoints from it. */
785 remove_breakpoints ();
786
787 if (info_verbose || debug_linux_nat)
788 {
789 target_terminal_ours ();
790 fprintf_filtered (gdb_stdlog,
791 "Attaching after fork to child process %d.\n",
792 child_pid);
793 }
794
795 /* Add the new inferior first, so that the target_detach below
796 doesn't unpush the target. */
797
798 child_inf = add_inferior (child_pid);
799
800 parent_inf = current_inferior ();
801 child_inf->attach_flag = parent_inf->attach_flag;
802 copy_terminal_info (child_inf, parent_inf);
803
804 /* If we're vforking, we may want to hold on to the parent until
805 the child exits or execs. At exec time we can remove the old
806 breakpoints from the parent and detach it; at exit time we
807 could do the same (or even, sneakily, resume debugging it - the
808 child's exec has failed, or something similar).
809
810 This doesn't clean up "properly", because we can't call
811 target_detach, but that's OK; if the current target is "child",
812 then it doesn't need any further cleanups, and lin_lwp will
813 generally not encounter vfork (vfork is defined to fork
814 in libpthread.so).
815
816 The holding part is very easy if we have VFORKDONE events;
817 but keeping track of both processes is beyond GDB at the
818 moment. So we don't expose the parent to the rest of GDB.
819 Instead we quietly hold onto it until such time as we can
820 safely resume it. */
821
822 if (has_vforked)
823 {
824 struct lwp_info *parent_lwp;
825
826 linux_parent_pid = parent_pid;
827
828 /* Get rid of the inferior on the core side as well. */
829 inferior_ptid = null_ptid;
830 detach_inferior (parent_pid);
831
832 /* Also get rid of all its lwps. We will detach from this
833 inferior soon-ish, but, we will still get an exit event
834 reported through waitpid when it exits. If we didn't get
835 rid of the lwps from our list, we would end up reporting
836 the inferior exit to the core, which would then try to
837 mourn a non-existing (from the core's perspective)
838 inferior. */
839 parent_lwp = find_lwp_pid (pid_to_ptid (parent_pid));
840 purge_lwp_list (GET_PID (parent_lwp->ptid));
841 linux_parent_pid = parent_pid;
842 }
843 else if (detach_fork)
844 target_detach (NULL, 0);
845
846 inferior_ptid = ptid_build (child_pid, child_pid, 0);
847 add_thread (inferior_ptid);
848 lp = add_lwp (inferior_ptid);
849 lp->stopped = 1;
850
851 check_for_thread_db ();
852 }
853
854 restore_child_signals_mask (&prev_mask);
855 return 0;
856 }
857
858 \f
859 static void
860 linux_child_insert_fork_catchpoint (int pid)
861 {
862 if (! linux_supports_tracefork (pid))
863 error (_("Your system does not support fork catchpoints."));
864 }
865
866 static void
867 linux_child_insert_vfork_catchpoint (int pid)
868 {
869 if (!linux_supports_tracefork (pid))
870 error (_("Your system does not support vfork catchpoints."));
871 }
872
873 static void
874 linux_child_insert_exec_catchpoint (int pid)
875 {
876 if (!linux_supports_tracefork (pid))
877 error (_("Your system does not support exec catchpoints."));
878 }
879
880 static int
881 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
882 int table_size, int *table)
883 {
884 if (! linux_supports_tracesysgood (pid))
885 error (_("Your system does not support syscall catchpoints."));
886 /* On GNU/Linux, we ignore the arguments. It means that we only
887 enable the syscall catchpoints, but do not disable them.
888
889 Also, we do not use the `table' information because we do not
890 filter system calls here. We let GDB do the logic for us. */
891 return 0;
892 }
893
894 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
895 are processes sharing the same VM space. A multi-threaded process
896 is basically a group of such processes. However, such a grouping
897 is almost entirely a user-space issue; the kernel doesn't enforce
898 such a grouping at all (this might change in the future). In
899 general, we'll rely on the threads library (i.e. the GNU/Linux
900 Threads library) to provide such a grouping.
901
902 It is perfectly well possible to write a multi-threaded application
903 without the assistance of a threads library, by using the clone
904 system call directly. This module should be able to give some
905 rudimentary support for debugging such applications if developers
906 specify the CLONE_PTRACE flag in the clone system call, and are
907 using the Linux kernel 2.4 or above.
908
909 Note that there are some peculiarities in GNU/Linux that affect
910 this code:
911
912 - In general one should specify the __WCLONE flag to waitpid in
913 order to make it report events for any of the cloned processes
914 (and leave it out for the initial process). However, if a cloned
915 process has exited the exit status is only reported if the
916 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
917 we cannot use it since GDB must work on older systems too.
918
919 - When a traced, cloned process exits and is waited for by the
920 debugger, the kernel reassigns it to the original parent and
921 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
922 library doesn't notice this, which leads to the "zombie problem":
923 When debugged a multi-threaded process that spawns a lot of
924 threads will run out of processes, even if the threads exit,
925 because the "zombies" stay around. */
926
927 /* List of known LWPs. */
928 struct lwp_info *lwp_list;
929 \f
930
931 /* Original signal mask. */
932 static sigset_t normal_mask;
933
934 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
935 _initialize_linux_nat. */
936 static sigset_t suspend_mask;
937
938 /* Signals to block to make that sigsuspend work. */
939 static sigset_t blocked_mask;
940
941 /* SIGCHLD action. */
942 struct sigaction sigchld_action;
943
944 /* Block child signals (SIGCHLD and linux threads signals), and store
945 the previous mask in PREV_MASK. */
946
947 static void
948 block_child_signals (sigset_t *prev_mask)
949 {
950 /* Make sure SIGCHLD is blocked. */
951 if (!sigismember (&blocked_mask, SIGCHLD))
952 sigaddset (&blocked_mask, SIGCHLD);
953
954 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
955 }
956
957 /* Restore child signals mask, previously returned by
958 block_child_signals. */
959
960 static void
961 restore_child_signals_mask (sigset_t *prev_mask)
962 {
963 sigprocmask (SIG_SETMASK, prev_mask, NULL);
964 }
965 \f
966
967 /* Prototypes for local functions. */
968 static int stop_wait_callback (struct lwp_info *lp, void *data);
969 static int linux_thread_alive (ptid_t ptid);
970 static char *linux_child_pid_to_exec_file (int pid);
971 static int cancel_breakpoint (struct lwp_info *lp);
972
973 \f
974 /* Convert wait status STATUS to a string. Used for printing debug
975 messages only. */
976
977 static char *
978 status_to_str (int status)
979 {
980 static char buf[64];
981
982 if (WIFSTOPPED (status))
983 snprintf (buf, sizeof (buf), "%s (stopped)",
984 strsignal (WSTOPSIG (status)));
985 else if (WIFSIGNALED (status))
986 snprintf (buf, sizeof (buf), "%s (terminated)",
987 strsignal (WSTOPSIG (status)));
988 else
989 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
990
991 return buf;
992 }
993
994 /* Initialize the list of LWPs. Note that this module, contrary to
995 what GDB's generic threads layer does for its thread list,
996 re-initializes the LWP lists whenever we mourn or detach (which
997 doesn't involve mourning) the inferior. */
998
999 static void
1000 init_lwp_list (void)
1001 {
1002 struct lwp_info *lp, *lpnext;
1003
1004 for (lp = lwp_list; lp; lp = lpnext)
1005 {
1006 lpnext = lp->next;
1007 xfree (lp);
1008 }
1009
1010 lwp_list = NULL;
1011 }
1012
1013 /* Remove all LWPs belong to PID from the lwp list. */
1014
1015 static void
1016 purge_lwp_list (int pid)
1017 {
1018 struct lwp_info *lp, *lpprev, *lpnext;
1019
1020 lpprev = NULL;
1021
1022 for (lp = lwp_list; lp; lp = lpnext)
1023 {
1024 lpnext = lp->next;
1025
1026 if (ptid_get_pid (lp->ptid) == pid)
1027 {
1028 if (lp == lwp_list)
1029 lwp_list = lp->next;
1030 else
1031 lpprev->next = lp->next;
1032
1033 xfree (lp);
1034 }
1035 else
1036 lpprev = lp;
1037 }
1038 }
1039
1040 /* Return the number of known LWPs in the tgid given by PID. */
1041
1042 static int
1043 num_lwps (int pid)
1044 {
1045 int count = 0;
1046 struct lwp_info *lp;
1047
1048 for (lp = lwp_list; lp; lp = lp->next)
1049 if (ptid_get_pid (lp->ptid) == pid)
1050 count++;
1051
1052 return count;
1053 }
1054
1055 /* Add the LWP specified by PID to the list. Return a pointer to the
1056 structure describing the new LWP. The LWP should already be stopped
1057 (with an exception for the very first LWP). */
1058
1059 static struct lwp_info *
1060 add_lwp (ptid_t ptid)
1061 {
1062 struct lwp_info *lp;
1063
1064 gdb_assert (is_lwp (ptid));
1065
1066 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1067
1068 memset (lp, 0, sizeof (struct lwp_info));
1069
1070 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1071
1072 lp->ptid = ptid;
1073
1074 lp->next = lwp_list;
1075 lwp_list = lp;
1076
1077 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1078 linux_nat_new_thread (ptid);
1079
1080 return lp;
1081 }
1082
1083 /* Remove the LWP specified by PID from the list. */
1084
1085 static void
1086 delete_lwp (ptid_t ptid)
1087 {
1088 struct lwp_info *lp, *lpprev;
1089
1090 lpprev = NULL;
1091
1092 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1093 if (ptid_equal (lp->ptid, ptid))
1094 break;
1095
1096 if (!lp)
1097 return;
1098
1099 if (lpprev)
1100 lpprev->next = lp->next;
1101 else
1102 lwp_list = lp->next;
1103
1104 xfree (lp);
1105 }
1106
1107 /* Return a pointer to the structure describing the LWP corresponding
1108 to PID. If no corresponding LWP could be found, return NULL. */
1109
1110 static struct lwp_info *
1111 find_lwp_pid (ptid_t ptid)
1112 {
1113 struct lwp_info *lp;
1114 int lwp;
1115
1116 if (is_lwp (ptid))
1117 lwp = GET_LWP (ptid);
1118 else
1119 lwp = GET_PID (ptid);
1120
1121 for (lp = lwp_list; lp; lp = lp->next)
1122 if (lwp == GET_LWP (lp->ptid))
1123 return lp;
1124
1125 return NULL;
1126 }
1127
1128 /* Returns true if PTID matches filter FILTER. FILTER can be the wild
1129 card MINUS_ONE_PTID (all ptid match it); can be a ptid representing
1130 a process (ptid_is_pid returns true), in which case, all lwps of
1131 that give process match, lwps of other process do not; or, it can
1132 represent a specific thread, in which case, only that thread will
1133 match true. PTID must represent an LWP, it can never be a wild
1134 card. */
1135
1136 static int
1137 ptid_match (ptid_t ptid, ptid_t filter)
1138 {
1139 /* Since both parameters have the same type, prevent easy mistakes
1140 from happening. */
1141 gdb_assert (!ptid_equal (ptid, minus_one_ptid)
1142 && !ptid_equal (ptid, null_ptid));
1143
1144 if (ptid_equal (filter, minus_one_ptid))
1145 return 1;
1146 if (ptid_is_pid (filter)
1147 && ptid_get_pid (ptid) == ptid_get_pid (filter))
1148 return 1;
1149 else if (ptid_equal (ptid, filter))
1150 return 1;
1151
1152 return 0;
1153 }
1154
1155 /* Call CALLBACK with its second argument set to DATA for every LWP in
1156 the list. If CALLBACK returns 1 for a particular LWP, return a
1157 pointer to the structure describing that LWP immediately.
1158 Otherwise return NULL. */
1159
1160 struct lwp_info *
1161 iterate_over_lwps (ptid_t filter,
1162 int (*callback) (struct lwp_info *, void *),
1163 void *data)
1164 {
1165 struct lwp_info *lp, *lpnext;
1166
1167 for (lp = lwp_list; lp; lp = lpnext)
1168 {
1169 lpnext = lp->next;
1170
1171 if (ptid_match (lp->ptid, filter))
1172 {
1173 if ((*callback) (lp, data))
1174 return lp;
1175 }
1176 }
1177
1178 return NULL;
1179 }
1180
1181 /* Update our internal state when changing from one checkpoint to
1182 another indicated by NEW_PTID. We can only switch single-threaded
1183 applications, so we only create one new LWP, and the previous list
1184 is discarded. */
1185
1186 void
1187 linux_nat_switch_fork (ptid_t new_ptid)
1188 {
1189 struct lwp_info *lp;
1190
1191 purge_lwp_list (GET_PID (inferior_ptid));
1192
1193 lp = add_lwp (new_ptid);
1194 lp->stopped = 1;
1195
1196 /* This changes the thread's ptid while preserving the gdb thread
1197 num. Also changes the inferior pid, while preserving the
1198 inferior num. */
1199 thread_change_ptid (inferior_ptid, new_ptid);
1200
1201 /* We've just told GDB core that the thread changed target id, but,
1202 in fact, it really is a different thread, with different register
1203 contents. */
1204 registers_changed ();
1205 }
1206
1207 /* Handle the exit of a single thread LP. */
1208
1209 static void
1210 exit_lwp (struct lwp_info *lp)
1211 {
1212 struct thread_info *th = find_thread_ptid (lp->ptid);
1213
1214 if (th)
1215 {
1216 if (print_thread_events)
1217 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1218
1219 delete_thread (lp->ptid);
1220 }
1221
1222 delete_lwp (lp->ptid);
1223 }
1224
1225 /* Return an lwp's tgid, found in `/proc/PID/status'. */
1226
1227 int
1228 linux_proc_get_tgid (int lwpid)
1229 {
1230 FILE *status_file;
1231 char buf[100];
1232 int tgid = -1;
1233
1234 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) lwpid);
1235 status_file = fopen (buf, "r");
1236 if (status_file != NULL)
1237 {
1238 while (fgets (buf, sizeof (buf), status_file))
1239 {
1240 if (strncmp (buf, "Tgid:", 5) == 0)
1241 {
1242 tgid = strtoul (buf + strlen ("Tgid:"), NULL, 10);
1243 break;
1244 }
1245 }
1246
1247 fclose (status_file);
1248 }
1249
1250 return tgid;
1251 }
1252
1253 /* Detect `T (stopped)' in `/proc/PID/status'.
1254 Other states including `T (tracing stop)' are reported as false. */
1255
1256 static int
1257 pid_is_stopped (pid_t pid)
1258 {
1259 FILE *status_file;
1260 char buf[100];
1261 int retval = 0;
1262
1263 snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid);
1264 status_file = fopen (buf, "r");
1265 if (status_file != NULL)
1266 {
1267 int have_state = 0;
1268
1269 while (fgets (buf, sizeof (buf), status_file))
1270 {
1271 if (strncmp (buf, "State:", 6) == 0)
1272 {
1273 have_state = 1;
1274 break;
1275 }
1276 }
1277 if (have_state && strstr (buf, "T (stopped)") != NULL)
1278 retval = 1;
1279 fclose (status_file);
1280 }
1281 return retval;
1282 }
1283
1284 /* Wait for the LWP specified by LP, which we have just attached to.
1285 Returns a wait status for that LWP, to cache. */
1286
1287 static int
1288 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1289 int *signalled)
1290 {
1291 pid_t new_pid, pid = GET_LWP (ptid);
1292 int status;
1293
1294 if (pid_is_stopped (pid))
1295 {
1296 if (debug_linux_nat)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "LNPAW: Attaching to a stopped process\n");
1299
1300 /* The process is definitely stopped. It is in a job control
1301 stop, unless the kernel predates the TASK_STOPPED /
1302 TASK_TRACED distinction, in which case it might be in a
1303 ptrace stop. Make sure it is in a ptrace stop; from there we
1304 can kill it, signal it, et cetera.
1305
1306 First make sure there is a pending SIGSTOP. Since we are
1307 already attached, the process can not transition from stopped
1308 to running without a PTRACE_CONT; so we know this signal will
1309 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1310 probably already in the queue (unless this kernel is old
1311 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1312 is not an RT signal, it can only be queued once. */
1313 kill_lwp (pid, SIGSTOP);
1314
1315 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1316 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1317 ptrace (PTRACE_CONT, pid, 0, 0);
1318 }
1319
1320 /* Make sure the initial process is stopped. The user-level threads
1321 layer might want to poke around in the inferior, and that won't
1322 work if things haven't stabilized yet. */
1323 new_pid = my_waitpid (pid, &status, 0);
1324 if (new_pid == -1 && errno == ECHILD)
1325 {
1326 if (first)
1327 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1328
1329 /* Try again with __WCLONE to check cloned processes. */
1330 new_pid = my_waitpid (pid, &status, __WCLONE);
1331 *cloned = 1;
1332 }
1333
1334 gdb_assert (pid == new_pid && WIFSTOPPED (status));
1335
1336 if (WSTOPSIG (status) != SIGSTOP)
1337 {
1338 *signalled = 1;
1339 if (debug_linux_nat)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "LNPAW: Received %s after attaching\n",
1342 status_to_str (status));
1343 }
1344
1345 return status;
1346 }
1347
1348 /* Attach to the LWP specified by PID. Return 0 if successful or -1
1349 if the new LWP could not be attached. */
1350
1351 int
1352 lin_lwp_attach_lwp (ptid_t ptid)
1353 {
1354 struct lwp_info *lp;
1355 sigset_t prev_mask;
1356
1357 gdb_assert (is_lwp (ptid));
1358
1359 block_child_signals (&prev_mask);
1360
1361 lp = find_lwp_pid (ptid);
1362
1363 /* We assume that we're already attached to any LWP that has an id
1364 equal to the overall process id, and to any LWP that is already
1365 in our list of LWPs. If we're not seeing exit events from threads
1366 and we've had PID wraparound since we last tried to stop all threads,
1367 this assumption might be wrong; fortunately, this is very unlikely
1368 to happen. */
1369 if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL)
1370 {
1371 int status, cloned = 0, signalled = 0;
1372
1373 if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0)
1374 {
1375 /* If we fail to attach to the thread, issue a warning,
1376 but continue. One way this can happen is if thread
1377 creation is interrupted; as of Linux kernel 2.6.19, a
1378 bug may place threads in the thread list and then fail
1379 to create them. */
1380 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1381 safe_strerror (errno));
1382 restore_child_signals_mask (&prev_mask);
1383 return -1;
1384 }
1385
1386 if (debug_linux_nat)
1387 fprintf_unfiltered (gdb_stdlog,
1388 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1389 target_pid_to_str (ptid));
1390
1391 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1392 lp = add_lwp (ptid);
1393 lp->stopped = 1;
1394 lp->cloned = cloned;
1395 lp->signalled = signalled;
1396 if (WSTOPSIG (status) != SIGSTOP)
1397 {
1398 lp->resumed = 1;
1399 lp->status = status;
1400 }
1401
1402 target_post_attach (GET_LWP (lp->ptid));
1403
1404 if (debug_linux_nat)
1405 {
1406 fprintf_unfiltered (gdb_stdlog,
1407 "LLAL: waitpid %s received %s\n",
1408 target_pid_to_str (ptid),
1409 status_to_str (status));
1410 }
1411 }
1412 else
1413 {
1414 /* We assume that the LWP representing the original process is
1415 already stopped. Mark it as stopped in the data structure
1416 that the GNU/linux ptrace layer uses to keep track of
1417 threads. Note that this won't have already been done since
1418 the main thread will have, we assume, been stopped by an
1419 attach from a different layer. */
1420 if (lp == NULL)
1421 lp = add_lwp (ptid);
1422 lp->stopped = 1;
1423 }
1424
1425 restore_child_signals_mask (&prev_mask);
1426 return 0;
1427 }
1428
1429 static void
1430 linux_nat_create_inferior (struct target_ops *ops,
1431 char *exec_file, char *allargs, char **env,
1432 int from_tty)
1433 {
1434 #ifdef HAVE_PERSONALITY
1435 int personality_orig = 0, personality_set = 0;
1436 #endif /* HAVE_PERSONALITY */
1437
1438 /* The fork_child mechanism is synchronous and calls target_wait, so
1439 we have to mask the async mode. */
1440
1441 #ifdef HAVE_PERSONALITY
1442 if (disable_randomization)
1443 {
1444 errno = 0;
1445 personality_orig = personality (0xffffffff);
1446 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1447 {
1448 personality_set = 1;
1449 personality (personality_orig | ADDR_NO_RANDOMIZE);
1450 }
1451 if (errno != 0 || (personality_set
1452 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1453 warning (_("Error disabling address space randomization: %s"),
1454 safe_strerror (errno));
1455 }
1456 #endif /* HAVE_PERSONALITY */
1457
1458 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1459
1460 #ifdef HAVE_PERSONALITY
1461 if (personality_set)
1462 {
1463 errno = 0;
1464 personality (personality_orig);
1465 if (errno != 0)
1466 warning (_("Error restoring address space randomization: %s"),
1467 safe_strerror (errno));
1468 }
1469 #endif /* HAVE_PERSONALITY */
1470 }
1471
1472 static void
1473 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1474 {
1475 struct lwp_info *lp;
1476 int status;
1477 ptid_t ptid;
1478
1479 linux_ops->to_attach (ops, args, from_tty);
1480
1481 /* The ptrace base target adds the main thread with (pid,0,0)
1482 format. Decorate it with lwp info. */
1483 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1484 thread_change_ptid (inferior_ptid, ptid);
1485
1486 /* Add the initial process as the first LWP to the list. */
1487 lp = add_lwp (ptid);
1488
1489 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1490 &lp->signalled);
1491 lp->stopped = 1;
1492
1493 /* Save the wait status to report later. */
1494 lp->resumed = 1;
1495 if (debug_linux_nat)
1496 fprintf_unfiltered (gdb_stdlog,
1497 "LNA: waitpid %ld, saving status %s\n",
1498 (long) GET_PID (lp->ptid), status_to_str (status));
1499
1500 lp->status = status;
1501
1502 if (target_can_async_p ())
1503 target_async (inferior_event_handler, 0);
1504 }
1505
1506 /* Get pending status of LP. */
1507 static int
1508 get_pending_status (struct lwp_info *lp, int *status)
1509 {
1510 struct target_waitstatus last;
1511 ptid_t last_ptid;
1512
1513 get_last_target_status (&last_ptid, &last);
1514
1515 /* If this lwp is the ptid that GDB is processing an event from, the
1516 signal will be in stop_signal. Otherwise, we may cache pending
1517 events in lp->status while trying to stop all threads (see
1518 stop_wait_callback). */
1519
1520 *status = 0;
1521
1522 if (non_stop)
1523 {
1524 enum target_signal signo = TARGET_SIGNAL_0;
1525
1526 if (is_executing (lp->ptid))
1527 {
1528 /* If the core thought this lwp was executing --- e.g., the
1529 executing property hasn't been updated yet, but the
1530 thread has been stopped with a stop_callback /
1531 stop_wait_callback sequence (see linux_nat_detach for
1532 example) --- we can only have pending events in the local
1533 queue. */
1534 signo = target_signal_from_host (WSTOPSIG (lp->status));
1535 }
1536 else
1537 {
1538 /* If the core knows the thread is not executing, then we
1539 have the last signal recorded in
1540 thread_info->stop_signal. */
1541
1542 struct thread_info *tp = find_thread_ptid (lp->ptid);
1543 signo = tp->stop_signal;
1544 }
1545
1546 if (signo != TARGET_SIGNAL_0
1547 && !signal_pass_state (signo))
1548 {
1549 if (debug_linux_nat)
1550 fprintf_unfiltered (gdb_stdlog, "\
1551 GPT: lwp %s had signal %s, but it is in no pass state\n",
1552 target_pid_to_str (lp->ptid),
1553 target_signal_to_string (signo));
1554 }
1555 else
1556 {
1557 if (signo != TARGET_SIGNAL_0)
1558 *status = W_STOPCODE (target_signal_to_host (signo));
1559
1560 if (debug_linux_nat)
1561 fprintf_unfiltered (gdb_stdlog,
1562 "GPT: lwp %s as pending signal %s\n",
1563 target_pid_to_str (lp->ptid),
1564 target_signal_to_string (signo));
1565 }
1566 }
1567 else
1568 {
1569 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1570 {
1571 struct thread_info *tp = find_thread_ptid (lp->ptid);
1572 if (tp->stop_signal != TARGET_SIGNAL_0
1573 && signal_pass_state (tp->stop_signal))
1574 *status = W_STOPCODE (target_signal_to_host (tp->stop_signal));
1575 }
1576 else
1577 *status = lp->status;
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int
1584 detach_callback (struct lwp_info *lp, void *data)
1585 {
1586 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1587
1588 if (debug_linux_nat && lp->status)
1589 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1590 strsignal (WSTOPSIG (lp->status)),
1591 target_pid_to_str (lp->ptid));
1592
1593 /* If there is a pending SIGSTOP, get rid of it. */
1594 if (lp->signalled)
1595 {
1596 if (debug_linux_nat)
1597 fprintf_unfiltered (gdb_stdlog,
1598 "DC: Sending SIGCONT to %s\n",
1599 target_pid_to_str (lp->ptid));
1600
1601 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1602 lp->signalled = 0;
1603 }
1604
1605 /* We don't actually detach from the LWP that has an id equal to the
1606 overall process id just yet. */
1607 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1608 {
1609 int status = 0;
1610
1611 /* Pass on any pending signal for this LWP. */
1612 get_pending_status (lp, &status);
1613
1614 errno = 0;
1615 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1616 WSTOPSIG (status)) < 0)
1617 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1618 safe_strerror (errno));
1619
1620 if (debug_linux_nat)
1621 fprintf_unfiltered (gdb_stdlog,
1622 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1623 target_pid_to_str (lp->ptid),
1624 strsignal (WSTOPSIG (status)));
1625
1626 delete_lwp (lp->ptid);
1627 }
1628
1629 return 0;
1630 }
1631
1632 static void
1633 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1634 {
1635 int pid;
1636 int status;
1637 enum target_signal sig;
1638 struct lwp_info *main_lwp;
1639
1640 pid = GET_PID (inferior_ptid);
1641
1642 if (target_can_async_p ())
1643 linux_nat_async (NULL, 0);
1644
1645 /* Stop all threads before detaching. ptrace requires that the
1646 thread is stopped to sucessfully detach. */
1647 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1648 /* ... and wait until all of them have reported back that
1649 they're no longer running. */
1650 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1651
1652 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1653
1654 /* Only the initial process should be left right now. */
1655 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1656
1657 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1658
1659 /* Pass on any pending signal for the last LWP. */
1660 if ((args == NULL || *args == '\0')
1661 && get_pending_status (main_lwp, &status) != -1
1662 && WIFSTOPPED (status))
1663 {
1664 /* Put the signal number in ARGS so that inf_ptrace_detach will
1665 pass it along with PTRACE_DETACH. */
1666 args = alloca (8);
1667 sprintf (args, "%d", (int) WSTOPSIG (status));
1668 fprintf_unfiltered (gdb_stdlog,
1669 "LND: Sending signal %s to %s\n",
1670 args,
1671 target_pid_to_str (main_lwp->ptid));
1672 }
1673
1674 delete_lwp (main_lwp->ptid);
1675
1676 if (forks_exist_p ())
1677 {
1678 /* Multi-fork case. The current inferior_ptid is being detached
1679 from, but there are other viable forks to debug. Detach from
1680 the current fork, and context-switch to the first
1681 available. */
1682 linux_fork_detach (args, from_tty);
1683
1684 if (non_stop && target_can_async_p ())
1685 target_async (inferior_event_handler, 0);
1686 }
1687 else
1688 linux_ops->to_detach (ops, args, from_tty);
1689 }
1690
1691 /* Resume LP. */
1692
1693 static int
1694 resume_callback (struct lwp_info *lp, void *data)
1695 {
1696 if (lp->stopped && lp->status == 0)
1697 {
1698 if (debug_linux_nat)
1699 fprintf_unfiltered (gdb_stdlog,
1700 "RC: PTRACE_CONT %s, 0, 0 (resuming sibling)\n",
1701 target_pid_to_str (lp->ptid));
1702
1703 linux_ops->to_resume (linux_ops,
1704 pid_to_ptid (GET_LWP (lp->ptid)),
1705 0, TARGET_SIGNAL_0);
1706 if (debug_linux_nat)
1707 fprintf_unfiltered (gdb_stdlog,
1708 "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n",
1709 target_pid_to_str (lp->ptid));
1710 lp->stopped = 0;
1711 lp->step = 0;
1712 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1713 }
1714 else if (lp->stopped && debug_linux_nat)
1715 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n",
1716 target_pid_to_str (lp->ptid));
1717 else if (debug_linux_nat)
1718 fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n",
1719 target_pid_to_str (lp->ptid));
1720
1721 return 0;
1722 }
1723
1724 static int
1725 resume_clear_callback (struct lwp_info *lp, void *data)
1726 {
1727 lp->resumed = 0;
1728 return 0;
1729 }
1730
1731 static int
1732 resume_set_callback (struct lwp_info *lp, void *data)
1733 {
1734 lp->resumed = 1;
1735 return 0;
1736 }
1737
1738 static void
1739 linux_nat_resume (struct target_ops *ops,
1740 ptid_t ptid, int step, enum target_signal signo)
1741 {
1742 sigset_t prev_mask;
1743 struct lwp_info *lp;
1744 int resume_many;
1745
1746 if (debug_linux_nat)
1747 fprintf_unfiltered (gdb_stdlog,
1748 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1749 step ? "step" : "resume",
1750 target_pid_to_str (ptid),
1751 signo ? strsignal (signo) : "0",
1752 target_pid_to_str (inferior_ptid));
1753
1754 block_child_signals (&prev_mask);
1755
1756 /* A specific PTID means `step only this process id'. */
1757 resume_many = (ptid_equal (minus_one_ptid, ptid)
1758 || ptid_is_pid (ptid));
1759
1760 if (!non_stop)
1761 {
1762 /* Mark the lwps we're resuming as resumed. */
1763 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
1764 iterate_over_lwps (ptid, resume_set_callback, NULL);
1765 }
1766 else
1767 iterate_over_lwps (minus_one_ptid, resume_set_callback, NULL);
1768
1769 /* See if it's the current inferior that should be handled
1770 specially. */
1771 if (resume_many)
1772 lp = find_lwp_pid (inferior_ptid);
1773 else
1774 lp = find_lwp_pid (ptid);
1775 gdb_assert (lp != NULL);
1776
1777 /* Remember if we're stepping. */
1778 lp->step = step;
1779
1780 /* If we have a pending wait status for this thread, there is no
1781 point in resuming the process. But first make sure that
1782 linux_nat_wait won't preemptively handle the event - we
1783 should never take this short-circuit if we are going to
1784 leave LP running, since we have skipped resuming all the
1785 other threads. This bit of code needs to be synchronized
1786 with linux_nat_wait. */
1787
1788 if (lp->status && WIFSTOPPED (lp->status))
1789 {
1790 int saved_signo;
1791 struct inferior *inf;
1792
1793 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1794 gdb_assert (inf);
1795 saved_signo = target_signal_from_host (WSTOPSIG (lp->status));
1796
1797 /* Defer to common code if we're gaining control of the
1798 inferior. */
1799 if (inf->stop_soon == NO_STOP_QUIETLY
1800 && signal_stop_state (saved_signo) == 0
1801 && signal_print_state (saved_signo) == 0
1802 && signal_pass_state (saved_signo) == 1)
1803 {
1804 if (debug_linux_nat)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "LLR: Not short circuiting for ignored "
1807 "status 0x%x\n", lp->status);
1808
1809 /* FIXME: What should we do if we are supposed to continue
1810 this thread with a signal? */
1811 gdb_assert (signo == TARGET_SIGNAL_0);
1812 signo = saved_signo;
1813 lp->status = 0;
1814 }
1815 }
1816
1817 if (lp->status)
1818 {
1819 /* FIXME: What should we do if we are supposed to continue
1820 this thread with a signal? */
1821 gdb_assert (signo == TARGET_SIGNAL_0);
1822
1823 if (debug_linux_nat)
1824 fprintf_unfiltered (gdb_stdlog,
1825 "LLR: Short circuiting for status 0x%x\n",
1826 lp->status);
1827
1828 restore_child_signals_mask (&prev_mask);
1829 if (target_can_async_p ())
1830 {
1831 target_async (inferior_event_handler, 0);
1832 /* Tell the event loop we have something to process. */
1833 async_file_mark ();
1834 }
1835 return;
1836 }
1837
1838 /* Mark LWP as not stopped to prevent it from being continued by
1839 resume_callback. */
1840 lp->stopped = 0;
1841
1842 if (resume_many)
1843 iterate_over_lwps (ptid, resume_callback, NULL);
1844
1845 /* Convert to something the lower layer understands. */
1846 ptid = pid_to_ptid (GET_LWP (lp->ptid));
1847
1848 linux_ops->to_resume (linux_ops, ptid, step, signo);
1849 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
1850
1851 if (debug_linux_nat)
1852 fprintf_unfiltered (gdb_stdlog,
1853 "LLR: %s %s, %s (resume event thread)\n",
1854 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1855 target_pid_to_str (ptid),
1856 signo ? strsignal (signo) : "0");
1857
1858 restore_child_signals_mask (&prev_mask);
1859 if (target_can_async_p ())
1860 target_async (inferior_event_handler, 0);
1861 }
1862
1863 /* Issue kill to specified lwp. */
1864
1865 static int tkill_failed;
1866
1867 static int
1868 kill_lwp (int lwpid, int signo)
1869 {
1870 errno = 0;
1871
1872 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1873 fails, then we are not using nptl threads and we should be using kill. */
1874
1875 #ifdef HAVE_TKILL_SYSCALL
1876 if (!tkill_failed)
1877 {
1878 int ret = syscall (__NR_tkill, lwpid, signo);
1879 if (errno != ENOSYS)
1880 return ret;
1881 errno = 0;
1882 tkill_failed = 1;
1883 }
1884 #endif
1885
1886 return kill (lwpid, signo);
1887 }
1888
1889 /* Handle a GNU/Linux extended wait response. If we see a clone
1890 event, we need to add the new LWP to our list (and not report the
1891 trap to higher layers). This function returns non-zero if the
1892 event should be ignored and we should wait again. If STOPPING is
1893 true, the new LWP remains stopped, otherwise it is continued. */
1894
1895 static int
1896 linux_handle_extended_wait (struct lwp_info *lp, int status,
1897 int stopping)
1898 {
1899 int pid = GET_LWP (lp->ptid);
1900 struct target_waitstatus *ourstatus = &lp->waitstatus;
1901 struct lwp_info *new_lp = NULL;
1902 int event = status >> 16;
1903
1904 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1905 || event == PTRACE_EVENT_CLONE)
1906 {
1907 unsigned long new_pid;
1908 int ret;
1909
1910 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1911
1912 /* If we haven't already seen the new PID stop, wait for it now. */
1913 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1914 {
1915 /* The new child has a pending SIGSTOP. We can't affect it until it
1916 hits the SIGSTOP, but we're already attached. */
1917 ret = my_waitpid (new_pid, &status,
1918 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
1919 if (ret == -1)
1920 perror_with_name (_("waiting for new child"));
1921 else if (ret != new_pid)
1922 internal_error (__FILE__, __LINE__,
1923 _("wait returned unexpected PID %d"), ret);
1924 else if (!WIFSTOPPED (status))
1925 internal_error (__FILE__, __LINE__,
1926 _("wait returned unexpected status 0x%x"), status);
1927 }
1928
1929 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
1930
1931 if (event == PTRACE_EVENT_FORK
1932 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
1933 {
1934 struct fork_info *fp;
1935
1936 /* Handle checkpointing by linux-fork.c here as a special
1937 case. We don't want the follow-fork-mode or 'catch fork'
1938 to interfere with this. */
1939
1940 /* This won't actually modify the breakpoint list, but will
1941 physically remove the breakpoints from the child. */
1942 detach_breakpoints (new_pid);
1943
1944 /* Retain child fork in ptrace (stopped) state. */
1945 fp = find_fork_pid (new_pid);
1946 if (!fp)
1947 fp = add_fork (new_pid);
1948
1949 /* Report as spurious, so that infrun doesn't want to follow
1950 this fork. We're actually doing an infcall in
1951 linux-fork.c. */
1952 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1953 linux_enable_event_reporting (pid_to_ptid (new_pid));
1954
1955 /* Report the stop to the core. */
1956 return 0;
1957 }
1958
1959 if (event == PTRACE_EVENT_FORK)
1960 ourstatus->kind = TARGET_WAITKIND_FORKED;
1961 else if (event == PTRACE_EVENT_VFORK)
1962 ourstatus->kind = TARGET_WAITKIND_VFORKED;
1963 else
1964 {
1965 struct cleanup *old_chain;
1966
1967 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1968 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
1969 new_lp->cloned = 1;
1970 new_lp->stopped = 1;
1971
1972 if (WSTOPSIG (status) != SIGSTOP)
1973 {
1974 /* This can happen if someone starts sending signals to
1975 the new thread before it gets a chance to run, which
1976 have a lower number than SIGSTOP (e.g. SIGUSR1).
1977 This is an unlikely case, and harder to handle for
1978 fork / vfork than for clone, so we do not try - but
1979 we handle it for clone events here. We'll send
1980 the other signal on to the thread below. */
1981
1982 new_lp->signalled = 1;
1983 }
1984 else
1985 status = 0;
1986
1987 if (non_stop)
1988 {
1989 /* Add the new thread to GDB's lists as soon as possible
1990 so that:
1991
1992 1) the frontend doesn't have to wait for a stop to
1993 display them, and,
1994
1995 2) we tag it with the correct running state. */
1996
1997 /* If the thread_db layer is active, let it know about
1998 this new thread, and add it to GDB's list. */
1999 if (!thread_db_attach_lwp (new_lp->ptid))
2000 {
2001 /* We're not using thread_db. Add it to GDB's
2002 list. */
2003 target_post_attach (GET_LWP (new_lp->ptid));
2004 add_thread (new_lp->ptid);
2005 }
2006
2007 if (!stopping)
2008 {
2009 set_running (new_lp->ptid, 1);
2010 set_executing (new_lp->ptid, 1);
2011 }
2012 }
2013
2014 if (!stopping)
2015 {
2016 new_lp->stopped = 0;
2017 new_lp->resumed = 1;
2018 ptrace (PTRACE_CONT, new_pid, 0,
2019 status ? WSTOPSIG (status) : 0);
2020 }
2021
2022 if (debug_linux_nat)
2023 fprintf_unfiltered (gdb_stdlog,
2024 "LHEW: Got clone event from LWP %ld, resuming\n",
2025 GET_LWP (lp->ptid));
2026 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2027
2028 return 1;
2029 }
2030
2031 return 0;
2032 }
2033
2034 if (event == PTRACE_EVENT_EXEC)
2035 {
2036 if (debug_linux_nat)
2037 fprintf_unfiltered (gdb_stdlog,
2038 "LHEW: Got exec event from LWP %ld\n",
2039 GET_LWP (lp->ptid));
2040
2041 ourstatus->kind = TARGET_WAITKIND_EXECD;
2042 ourstatus->value.execd_pathname
2043 = xstrdup (linux_child_pid_to_exec_file (pid));
2044
2045 if (linux_parent_pid)
2046 {
2047 detach_breakpoints (linux_parent_pid);
2048 ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0);
2049
2050 linux_parent_pid = 0;
2051 }
2052
2053 /* At this point, all inserted breakpoints are gone. Doing this
2054 as soon as we detect an exec prevents the badness of deleting
2055 a breakpoint writing the current "shadow contents" to lift
2056 the bp. That shadow is NOT valid after an exec.
2057
2058 Note that we have to do this after the detach_breakpoints
2059 call above, otherwise breakpoints wouldn't be lifted from the
2060 parent on a vfork, because detach_breakpoints would think
2061 that breakpoints are not inserted. */
2062 mark_breakpoints_out ();
2063 return 0;
2064 }
2065
2066 /* Used for 'catch syscall' feature. */
2067 if (WSTOPSIG (status) == TRAP_IS_SYSCALL)
2068 {
2069 if (catch_syscall_enabled () == 0)
2070 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2071 else
2072 {
2073 struct regcache *regcache = get_thread_regcache (lp->ptid);
2074 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2075
2076 ourstatus->value.syscall_number =
2077 (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2078
2079 /* If we are catching this specific syscall number, then we
2080 should update the target_status to reflect which event
2081 has occurred. But if this syscall is not to be caught,
2082 then we can safely mark the event as a SYSCALL_RETURN.
2083
2084 This is particularly needed if:
2085
2086 - We are catching any syscalls, or
2087 - We are catching the syscall "exit"
2088
2089 In this case, as the syscall "exit" *doesn't* return,
2090 then GDB would be confused because it would mark the last
2091 syscall event as a SYSCALL_ENTRY. After that, if we re-ran the
2092 inferior GDB will think that the first syscall event is
2093 the opposite of a SYSCALL_ENTRY, which is the SYSCALL_RETURN.
2094 Therefore, GDB would report inverted syscall events. */
2095 if (catching_syscall_number (ourstatus->value.syscall_number))
2096 ourstatus->kind =
2097 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY) ?
2098 TARGET_WAITKIND_SYSCALL_RETURN : TARGET_WAITKIND_SYSCALL_ENTRY;
2099 else
2100 ourstatus->kind = TARGET_WAITKIND_SYSCALL_RETURN;
2101
2102 lp->syscall_state = ourstatus->kind;
2103 }
2104 return 0;
2105 }
2106
2107 internal_error (__FILE__, __LINE__,
2108 _("unknown ptrace event %d"), event);
2109 }
2110
2111 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2112 exited. */
2113
2114 static int
2115 wait_lwp (struct lwp_info *lp)
2116 {
2117 pid_t pid;
2118 int status;
2119 int thread_dead = 0;
2120
2121 gdb_assert (!lp->stopped);
2122 gdb_assert (lp->status == 0);
2123
2124 pid = my_waitpid (GET_LWP (lp->ptid), &status, 0);
2125 if (pid == -1 && errno == ECHILD)
2126 {
2127 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE);
2128 if (pid == -1 && errno == ECHILD)
2129 {
2130 /* The thread has previously exited. We need to delete it
2131 now because, for some vendor 2.4 kernels with NPTL
2132 support backported, there won't be an exit event unless
2133 it is the main thread. 2.6 kernels will report an exit
2134 event for each thread that exits, as expected. */
2135 thread_dead = 1;
2136 if (debug_linux_nat)
2137 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2138 target_pid_to_str (lp->ptid));
2139 }
2140 }
2141
2142 if (!thread_dead)
2143 {
2144 gdb_assert (pid == GET_LWP (lp->ptid));
2145
2146 if (debug_linux_nat)
2147 {
2148 fprintf_unfiltered (gdb_stdlog,
2149 "WL: waitpid %s received %s\n",
2150 target_pid_to_str (lp->ptid),
2151 status_to_str (status));
2152 }
2153 }
2154
2155 /* Check if the thread has exited. */
2156 if (WIFEXITED (status) || WIFSIGNALED (status))
2157 {
2158 thread_dead = 1;
2159 if (debug_linux_nat)
2160 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2161 target_pid_to_str (lp->ptid));
2162 }
2163
2164 if (thread_dead)
2165 {
2166 exit_lwp (lp);
2167 return 0;
2168 }
2169
2170 gdb_assert (WIFSTOPPED (status));
2171
2172 /* Handle GNU/Linux's extended waitstatus for trace events. */
2173 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2174 {
2175 if (debug_linux_nat)
2176 fprintf_unfiltered (gdb_stdlog,
2177 "WL: Handling extended status 0x%06x\n",
2178 status);
2179 if (linux_handle_extended_wait (lp, status, 1))
2180 return wait_lwp (lp);
2181 }
2182
2183 return status;
2184 }
2185
2186 /* Save the most recent siginfo for LP. This is currently only called
2187 for SIGTRAP; some ports use the si_addr field for
2188 target_stopped_data_address. In the future, it may also be used to
2189 restore the siginfo of requeued signals. */
2190
2191 static void
2192 save_siginfo (struct lwp_info *lp)
2193 {
2194 errno = 0;
2195 ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid),
2196 (PTRACE_TYPE_ARG3) 0, &lp->siginfo);
2197
2198 if (errno != 0)
2199 memset (&lp->siginfo, 0, sizeof (lp->siginfo));
2200 }
2201
2202 /* Send a SIGSTOP to LP. */
2203
2204 static int
2205 stop_callback (struct lwp_info *lp, void *data)
2206 {
2207 if (!lp->stopped && !lp->signalled)
2208 {
2209 int ret;
2210
2211 if (debug_linux_nat)
2212 {
2213 fprintf_unfiltered (gdb_stdlog,
2214 "SC: kill %s **<SIGSTOP>**\n",
2215 target_pid_to_str (lp->ptid));
2216 }
2217 errno = 0;
2218 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2219 if (debug_linux_nat)
2220 {
2221 fprintf_unfiltered (gdb_stdlog,
2222 "SC: lwp kill %d %s\n",
2223 ret,
2224 errno ? safe_strerror (errno) : "ERRNO-OK");
2225 }
2226
2227 lp->signalled = 1;
2228 gdb_assert (lp->status == 0);
2229 }
2230
2231 return 0;
2232 }
2233
2234 /* Return non-zero if LWP PID has a pending SIGINT. */
2235
2236 static int
2237 linux_nat_has_pending_sigint (int pid)
2238 {
2239 sigset_t pending, blocked, ignored;
2240 int i;
2241
2242 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2243
2244 if (sigismember (&pending, SIGINT)
2245 && !sigismember (&ignored, SIGINT))
2246 return 1;
2247
2248 return 0;
2249 }
2250
2251 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2252
2253 static int
2254 set_ignore_sigint (struct lwp_info *lp, void *data)
2255 {
2256 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2257 flag to consume the next one. */
2258 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2259 && WSTOPSIG (lp->status) == SIGINT)
2260 lp->status = 0;
2261 else
2262 lp->ignore_sigint = 1;
2263
2264 return 0;
2265 }
2266
2267 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2268 This function is called after we know the LWP has stopped; if the LWP
2269 stopped before the expected SIGINT was delivered, then it will never have
2270 arrived. Also, if the signal was delivered to a shared queue and consumed
2271 by a different thread, it will never be delivered to this LWP. */
2272
2273 static void
2274 maybe_clear_ignore_sigint (struct lwp_info *lp)
2275 {
2276 if (!lp->ignore_sigint)
2277 return;
2278
2279 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2280 {
2281 if (debug_linux_nat)
2282 fprintf_unfiltered (gdb_stdlog,
2283 "MCIS: Clearing bogus flag for %s\n",
2284 target_pid_to_str (lp->ptid));
2285 lp->ignore_sigint = 0;
2286 }
2287 }
2288
2289 /* Wait until LP is stopped. */
2290
2291 static int
2292 stop_wait_callback (struct lwp_info *lp, void *data)
2293 {
2294 if (!lp->stopped)
2295 {
2296 int status;
2297
2298 status = wait_lwp (lp);
2299 if (status == 0)
2300 return 0;
2301
2302 if (lp->ignore_sigint && WIFSTOPPED (status)
2303 && WSTOPSIG (status) == SIGINT)
2304 {
2305 lp->ignore_sigint = 0;
2306
2307 errno = 0;
2308 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2309 if (debug_linux_nat)
2310 fprintf_unfiltered (gdb_stdlog,
2311 "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n",
2312 target_pid_to_str (lp->ptid),
2313 errno ? safe_strerror (errno) : "OK");
2314
2315 return stop_wait_callback (lp, NULL);
2316 }
2317
2318 maybe_clear_ignore_sigint (lp);
2319
2320 if (WSTOPSIG (status) != SIGSTOP)
2321 {
2322 if (WSTOPSIG (status) == SIGTRAP)
2323 {
2324 /* If a LWP other than the LWP that we're reporting an
2325 event for has hit a GDB breakpoint (as opposed to
2326 some random trap signal), then just arrange for it to
2327 hit it again later. We don't keep the SIGTRAP status
2328 and don't forward the SIGTRAP signal to the LWP. We
2329 will handle the current event, eventually we will
2330 resume all LWPs, and this one will get its breakpoint
2331 trap again.
2332
2333 If we do not do this, then we run the risk that the
2334 user will delete or disable the breakpoint, but the
2335 thread will have already tripped on it. */
2336
2337 /* Save the trap's siginfo in case we need it later. */
2338 save_siginfo (lp);
2339
2340 /* Now resume this LWP and get the SIGSTOP event. */
2341 errno = 0;
2342 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2343 if (debug_linux_nat)
2344 {
2345 fprintf_unfiltered (gdb_stdlog,
2346 "PTRACE_CONT %s, 0, 0 (%s)\n",
2347 target_pid_to_str (lp->ptid),
2348 errno ? safe_strerror (errno) : "OK");
2349
2350 fprintf_unfiltered (gdb_stdlog,
2351 "SWC: Candidate SIGTRAP event in %s\n",
2352 target_pid_to_str (lp->ptid));
2353 }
2354 /* Hold this event/waitstatus while we check to see if
2355 there are any more (we still want to get that SIGSTOP). */
2356 stop_wait_callback (lp, NULL);
2357
2358 /* Hold the SIGTRAP for handling by linux_nat_wait. If
2359 there's another event, throw it back into the
2360 queue. */
2361 if (lp->status)
2362 {
2363 if (debug_linux_nat)
2364 fprintf_unfiltered (gdb_stdlog,
2365 "SWC: kill %s, %s\n",
2366 target_pid_to_str (lp->ptid),
2367 status_to_str ((int) status));
2368 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status));
2369 }
2370
2371 /* Save the sigtrap event. */
2372 lp->status = status;
2373 return 0;
2374 }
2375 else
2376 {
2377 /* The thread was stopped with a signal other than
2378 SIGSTOP, and didn't accidentally trip a breakpoint. */
2379
2380 if (debug_linux_nat)
2381 {
2382 fprintf_unfiltered (gdb_stdlog,
2383 "SWC: Pending event %s in %s\n",
2384 status_to_str ((int) status),
2385 target_pid_to_str (lp->ptid));
2386 }
2387 /* Now resume this LWP and get the SIGSTOP event. */
2388 errno = 0;
2389 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2390 if (debug_linux_nat)
2391 fprintf_unfiltered (gdb_stdlog,
2392 "SWC: PTRACE_CONT %s, 0, 0 (%s)\n",
2393 target_pid_to_str (lp->ptid),
2394 errno ? safe_strerror (errno) : "OK");
2395
2396 /* Hold this event/waitstatus while we check to see if
2397 there are any more (we still want to get that SIGSTOP). */
2398 stop_wait_callback (lp, NULL);
2399
2400 /* If the lp->status field is still empty, use it to
2401 hold this event. If not, then this event must be
2402 returned to the event queue of the LWP. */
2403 if (lp->status)
2404 {
2405 if (debug_linux_nat)
2406 {
2407 fprintf_unfiltered (gdb_stdlog,
2408 "SWC: kill %s, %s\n",
2409 target_pid_to_str (lp->ptid),
2410 status_to_str ((int) status));
2411 }
2412 kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status));
2413 }
2414 else
2415 lp->status = status;
2416 return 0;
2417 }
2418 }
2419 else
2420 {
2421 /* We caught the SIGSTOP that we intended to catch, so
2422 there's no SIGSTOP pending. */
2423 lp->stopped = 1;
2424 lp->signalled = 0;
2425 }
2426 }
2427
2428 return 0;
2429 }
2430
2431 /* Return non-zero if LP has a wait status pending. */
2432
2433 static int
2434 status_callback (struct lwp_info *lp, void *data)
2435 {
2436 /* Only report a pending wait status if we pretend that this has
2437 indeed been resumed. */
2438 /* We check for lp->waitstatus in addition to lp->status, because we
2439 can have pending process exits recorded in lp->waitstatus, and
2440 W_EXITCODE(0,0) == 0. */
2441 return ((lp->status != 0
2442 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2443 && lp->resumed);
2444 }
2445
2446 /* Return non-zero if LP isn't stopped. */
2447
2448 static int
2449 running_callback (struct lwp_info *lp, void *data)
2450 {
2451 return (lp->stopped == 0 || (lp->status != 0 && lp->resumed));
2452 }
2453
2454 /* Count the LWP's that have had events. */
2455
2456 static int
2457 count_events_callback (struct lwp_info *lp, void *data)
2458 {
2459 int *count = data;
2460
2461 gdb_assert (count != NULL);
2462
2463 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2464 if (lp->status != 0 && lp->resumed
2465 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2466 (*count)++;
2467
2468 return 0;
2469 }
2470
2471 /* Select the LWP (if any) that is currently being single-stepped. */
2472
2473 static int
2474 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2475 {
2476 if (lp->step && lp->status != 0)
2477 return 1;
2478 else
2479 return 0;
2480 }
2481
2482 /* Select the Nth LWP that has had a SIGTRAP event. */
2483
2484 static int
2485 select_event_lwp_callback (struct lwp_info *lp, void *data)
2486 {
2487 int *selector = data;
2488
2489 gdb_assert (selector != NULL);
2490
2491 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2492 if (lp->status != 0 && lp->resumed
2493 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP)
2494 if ((*selector)-- == 0)
2495 return 1;
2496
2497 return 0;
2498 }
2499
2500 static int
2501 cancel_breakpoint (struct lwp_info *lp)
2502 {
2503 /* Arrange for a breakpoint to be hit again later. We don't keep
2504 the SIGTRAP status and don't forward the SIGTRAP signal to the
2505 LWP. We will handle the current event, eventually we will resume
2506 this LWP, and this breakpoint will trap again.
2507
2508 If we do not do this, then we run the risk that the user will
2509 delete or disable the breakpoint, but the LWP will have already
2510 tripped on it. */
2511
2512 struct regcache *regcache = get_thread_regcache (lp->ptid);
2513 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2514 CORE_ADDR pc;
2515
2516 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2517 if (breakpoint_inserted_here_p (pc))
2518 {
2519 if (debug_linux_nat)
2520 fprintf_unfiltered (gdb_stdlog,
2521 "CB: Push back breakpoint for %s\n",
2522 target_pid_to_str (lp->ptid));
2523
2524 /* Back up the PC if necessary. */
2525 if (gdbarch_decr_pc_after_break (gdbarch))
2526 regcache_write_pc (regcache, pc);
2527
2528 return 1;
2529 }
2530 return 0;
2531 }
2532
2533 static int
2534 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2535 {
2536 struct lwp_info *event_lp = data;
2537
2538 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2539 if (lp == event_lp)
2540 return 0;
2541
2542 /* If a LWP other than the LWP that we're reporting an event for has
2543 hit a GDB breakpoint (as opposed to some random trap signal),
2544 then just arrange for it to hit it again later. We don't keep
2545 the SIGTRAP status and don't forward the SIGTRAP signal to the
2546 LWP. We will handle the current event, eventually we will resume
2547 all LWPs, and this one will get its breakpoint trap again.
2548
2549 If we do not do this, then we run the risk that the user will
2550 delete or disable the breakpoint, but the LWP will have already
2551 tripped on it. */
2552
2553 if (lp->status != 0
2554 && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP
2555 && cancel_breakpoint (lp))
2556 /* Throw away the SIGTRAP. */
2557 lp->status = 0;
2558
2559 return 0;
2560 }
2561
2562 /* Select one LWP out of those that have events pending. */
2563
2564 static void
2565 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2566 {
2567 int num_events = 0;
2568 int random_selector;
2569 struct lwp_info *event_lp;
2570
2571 /* Record the wait status for the original LWP. */
2572 (*orig_lp)->status = *status;
2573
2574 /* Give preference to any LWP that is being single-stepped. */
2575 event_lp = iterate_over_lwps (filter,
2576 select_singlestep_lwp_callback, NULL);
2577 if (event_lp != NULL)
2578 {
2579 if (debug_linux_nat)
2580 fprintf_unfiltered (gdb_stdlog,
2581 "SEL: Select single-step %s\n",
2582 target_pid_to_str (event_lp->ptid));
2583 }
2584 else
2585 {
2586 /* No single-stepping LWP. Select one at random, out of those
2587 which have had SIGTRAP events. */
2588
2589 /* First see how many SIGTRAP events we have. */
2590 iterate_over_lwps (filter, count_events_callback, &num_events);
2591
2592 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2593 random_selector = (int)
2594 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2595
2596 if (debug_linux_nat && num_events > 1)
2597 fprintf_unfiltered (gdb_stdlog,
2598 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2599 num_events, random_selector);
2600
2601 event_lp = iterate_over_lwps (filter,
2602 select_event_lwp_callback,
2603 &random_selector);
2604 }
2605
2606 if (event_lp != NULL)
2607 {
2608 /* Switch the event LWP. */
2609 *orig_lp = event_lp;
2610 *status = event_lp->status;
2611 }
2612
2613 /* Flush the wait status for the event LWP. */
2614 (*orig_lp)->status = 0;
2615 }
2616
2617 /* Return non-zero if LP has been resumed. */
2618
2619 static int
2620 resumed_callback (struct lwp_info *lp, void *data)
2621 {
2622 return lp->resumed;
2623 }
2624
2625 /* Stop an active thread, verify it still exists, then resume it. */
2626
2627 static int
2628 stop_and_resume_callback (struct lwp_info *lp, void *data)
2629 {
2630 struct lwp_info *ptr;
2631
2632 if (!lp->stopped && !lp->signalled)
2633 {
2634 stop_callback (lp, NULL);
2635 stop_wait_callback (lp, NULL);
2636 /* Resume if the lwp still exists. */
2637 for (ptr = lwp_list; ptr; ptr = ptr->next)
2638 if (lp == ptr)
2639 {
2640 resume_callback (lp, NULL);
2641 resume_set_callback (lp, NULL);
2642 }
2643 }
2644 return 0;
2645 }
2646
2647 /* Check if we should go on and pass this event to common code.
2648 Return the affected lwp if we are, or NULL otherwise. */
2649 static struct lwp_info *
2650 linux_nat_filter_event (int lwpid, int status, int options)
2651 {
2652 struct lwp_info *lp;
2653
2654 lp = find_lwp_pid (pid_to_ptid (lwpid));
2655
2656 /* Check for stop events reported by a process we didn't already
2657 know about - anything not already in our LWP list.
2658
2659 If we're expecting to receive stopped processes after
2660 fork, vfork, and clone events, then we'll just add the
2661 new one to our list and go back to waiting for the event
2662 to be reported - the stopped process might be returned
2663 from waitpid before or after the event is. */
2664 if (WIFSTOPPED (status) && !lp)
2665 {
2666 linux_record_stopped_pid (lwpid, status);
2667 return NULL;
2668 }
2669
2670 /* Make sure we don't report an event for the exit of an LWP not in
2671 our list, i.e. not part of the current process. This can happen
2672 if we detach from a program we original forked and then it
2673 exits. */
2674 if (!WIFSTOPPED (status) && !lp)
2675 return NULL;
2676
2677 /* NOTE drow/2003-06-17: This code seems to be meant for debugging
2678 CLONE_PTRACE processes which do not use the thread library -
2679 otherwise we wouldn't find the new LWP this way. That doesn't
2680 currently work, and the following code is currently unreachable
2681 due to the two blocks above. If it's fixed some day, this code
2682 should be broken out into a function so that we can also pick up
2683 LWPs from the new interface. */
2684 if (!lp)
2685 {
2686 lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid)));
2687 if (options & __WCLONE)
2688 lp->cloned = 1;
2689
2690 gdb_assert (WIFSTOPPED (status)
2691 && WSTOPSIG (status) == SIGSTOP);
2692 lp->signalled = 1;
2693
2694 if (!in_thread_list (inferior_ptid))
2695 {
2696 inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid),
2697 GET_PID (inferior_ptid));
2698 add_thread (inferior_ptid);
2699 }
2700
2701 add_thread (lp->ptid);
2702 }
2703
2704 /* Save the trap's siginfo in case we need it later. */
2705 if (WIFSTOPPED (status)
2706 && (WSTOPSIG (status) == SIGTRAP || WSTOPSIG (status) == TRAP_IS_SYSCALL))
2707 save_siginfo (lp);
2708
2709 /* Handle GNU/Linux's extended waitstatus for trace events.
2710 It is necessary to check if WSTOPSIG is signaling that
2711 the inferior is entering/exiting a system call. */
2712 if (WIFSTOPPED (status)
2713 && ((WSTOPSIG (status) == TRAP_IS_SYSCALL)
2714 || (WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)))
2715 {
2716 if (debug_linux_nat)
2717 fprintf_unfiltered (gdb_stdlog,
2718 "LLW: Handling extended status 0x%06x\n",
2719 status);
2720 if (linux_handle_extended_wait (lp, status, 0))
2721 return NULL;
2722 }
2723
2724 /* Check if the thread has exited. */
2725 if ((WIFEXITED (status) || WIFSIGNALED (status))
2726 && num_lwps (GET_PID (lp->ptid)) > 1)
2727 {
2728 /* If this is the main thread, we must stop all threads and verify
2729 if they are still alive. This is because in the nptl thread model
2730 on Linux 2.4, there is no signal issued for exiting LWPs
2731 other than the main thread. We only get the main thread exit
2732 signal once all child threads have already exited. If we
2733 stop all the threads and use the stop_wait_callback to check
2734 if they have exited we can determine whether this signal
2735 should be ignored or whether it means the end of the debugged
2736 application, regardless of which threading model is being
2737 used. */
2738 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
2739 {
2740 lp->stopped = 1;
2741 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
2742 stop_and_resume_callback, NULL);
2743 }
2744
2745 if (debug_linux_nat)
2746 fprintf_unfiltered (gdb_stdlog,
2747 "LLW: %s exited.\n",
2748 target_pid_to_str (lp->ptid));
2749
2750 if (num_lwps (GET_PID (lp->ptid)) > 1)
2751 {
2752 /* If there is at least one more LWP, then the exit signal
2753 was not the end of the debugged application and should be
2754 ignored. */
2755 exit_lwp (lp);
2756 return NULL;
2757 }
2758 }
2759
2760 /* Check if the current LWP has previously exited. In the nptl
2761 thread model, LWPs other than the main thread do not issue
2762 signals when they exit so we must check whenever the thread has
2763 stopped. A similar check is made in stop_wait_callback(). */
2764 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
2765 {
2766 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
2767
2768 if (debug_linux_nat)
2769 fprintf_unfiltered (gdb_stdlog,
2770 "LLW: %s exited.\n",
2771 target_pid_to_str (lp->ptid));
2772
2773 exit_lwp (lp);
2774
2775 /* Make sure there is at least one thread running. */
2776 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
2777
2778 /* Discard the event. */
2779 return NULL;
2780 }
2781
2782 /* Make sure we don't report a SIGSTOP that we sent ourselves in
2783 an attempt to stop an LWP. */
2784 if (lp->signalled
2785 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2786 {
2787 if (debug_linux_nat)
2788 fprintf_unfiltered (gdb_stdlog,
2789 "LLW: Delayed SIGSTOP caught for %s.\n",
2790 target_pid_to_str (lp->ptid));
2791
2792 /* This is a delayed SIGSTOP. */
2793 lp->signalled = 0;
2794
2795 registers_changed ();
2796
2797 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2798 lp->step, TARGET_SIGNAL_0);
2799 if (debug_linux_nat)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
2802 lp->step ?
2803 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2804 target_pid_to_str (lp->ptid));
2805
2806 lp->stopped = 0;
2807 gdb_assert (lp->resumed);
2808
2809 /* Discard the event. */
2810 return NULL;
2811 }
2812
2813 /* Make sure we don't report a SIGINT that we have already displayed
2814 for another thread. */
2815 if (lp->ignore_sigint
2816 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2817 {
2818 if (debug_linux_nat)
2819 fprintf_unfiltered (gdb_stdlog,
2820 "LLW: Delayed SIGINT caught for %s.\n",
2821 target_pid_to_str (lp->ptid));
2822
2823 /* This is a delayed SIGINT. */
2824 lp->ignore_sigint = 0;
2825
2826 registers_changed ();
2827 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2828 lp->step, TARGET_SIGNAL_0);
2829 if (debug_linux_nat)
2830 fprintf_unfiltered (gdb_stdlog,
2831 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
2832 lp->step ?
2833 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2834 target_pid_to_str (lp->ptid));
2835
2836 lp->stopped = 0;
2837 gdb_assert (lp->resumed);
2838
2839 /* Discard the event. */
2840 return NULL;
2841 }
2842
2843 /* An interesting event. */
2844 gdb_assert (lp);
2845 return lp;
2846 }
2847
2848 static ptid_t
2849 linux_nat_wait_1 (struct target_ops *ops,
2850 ptid_t ptid, struct target_waitstatus *ourstatus,
2851 int target_options)
2852 {
2853 static sigset_t prev_mask;
2854 struct lwp_info *lp = NULL;
2855 int options = 0;
2856 int status = 0;
2857 pid_t pid;
2858
2859 if (debug_linux_nat_async)
2860 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
2861
2862 /* The first time we get here after starting a new inferior, we may
2863 not have added it to the LWP list yet - this is the earliest
2864 moment at which we know its PID. */
2865 if (ptid_is_pid (inferior_ptid))
2866 {
2867 /* Upgrade the main thread's ptid. */
2868 thread_change_ptid (inferior_ptid,
2869 BUILD_LWP (GET_PID (inferior_ptid),
2870 GET_PID (inferior_ptid)));
2871
2872 lp = add_lwp (inferior_ptid);
2873 lp->resumed = 1;
2874 }
2875
2876 /* Make sure SIGCHLD is blocked. */
2877 block_child_signals (&prev_mask);
2878
2879 if (ptid_equal (ptid, minus_one_ptid))
2880 pid = -1;
2881 else if (ptid_is_pid (ptid))
2882 /* A request to wait for a specific tgid. This is not possible
2883 with waitpid, so instead, we wait for any child, and leave
2884 children we're not interested in right now with a pending
2885 status to report later. */
2886 pid = -1;
2887 else
2888 pid = GET_LWP (ptid);
2889
2890 retry:
2891 lp = NULL;
2892 status = 0;
2893
2894 /* Make sure there is at least one LWP that has been resumed. */
2895 gdb_assert (iterate_over_lwps (ptid, resumed_callback, NULL));
2896
2897 /* First check if there is a LWP with a wait status pending. */
2898 if (pid == -1)
2899 {
2900 /* Any LWP that's been resumed will do. */
2901 lp = iterate_over_lwps (ptid, status_callback, NULL);
2902 if (lp)
2903 {
2904 status = lp->status;
2905 lp->status = 0;
2906
2907 if (debug_linux_nat && status)
2908 fprintf_unfiltered (gdb_stdlog,
2909 "LLW: Using pending wait status %s for %s.\n",
2910 status_to_str (status),
2911 target_pid_to_str (lp->ptid));
2912 }
2913
2914 /* But if we don't find one, we'll have to wait, and check both
2915 cloned and uncloned processes. We start with the cloned
2916 processes. */
2917 options = __WCLONE | WNOHANG;
2918 }
2919 else if (is_lwp (ptid))
2920 {
2921 if (debug_linux_nat)
2922 fprintf_unfiltered (gdb_stdlog,
2923 "LLW: Waiting for specific LWP %s.\n",
2924 target_pid_to_str (ptid));
2925
2926 /* We have a specific LWP to check. */
2927 lp = find_lwp_pid (ptid);
2928 gdb_assert (lp);
2929 status = lp->status;
2930 lp->status = 0;
2931
2932 if (debug_linux_nat && status)
2933 fprintf_unfiltered (gdb_stdlog,
2934 "LLW: Using pending wait status %s for %s.\n",
2935 status_to_str (status),
2936 target_pid_to_str (lp->ptid));
2937
2938 /* If we have to wait, take into account whether PID is a cloned
2939 process or not. And we have to convert it to something that
2940 the layer beneath us can understand. */
2941 options = lp->cloned ? __WCLONE : 0;
2942 pid = GET_LWP (ptid);
2943
2944 /* We check for lp->waitstatus in addition to lp->status,
2945 because we can have pending process exits recorded in
2946 lp->status and W_EXITCODE(0,0) == 0. We should probably have
2947 an additional lp->status_p flag. */
2948 if (status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
2949 lp = NULL;
2950 }
2951
2952 if (lp && lp->signalled)
2953 {
2954 /* A pending SIGSTOP may interfere with the normal stream of
2955 events. In a typical case where interference is a problem,
2956 we have a SIGSTOP signal pending for LWP A while
2957 single-stepping it, encounter an event in LWP B, and take the
2958 pending SIGSTOP while trying to stop LWP A. After processing
2959 the event in LWP B, LWP A is continued, and we'll never see
2960 the SIGTRAP associated with the last time we were
2961 single-stepping LWP A. */
2962
2963 /* Resume the thread. It should halt immediately returning the
2964 pending SIGSTOP. */
2965 registers_changed ();
2966 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2967 lp->step, TARGET_SIGNAL_0);
2968 if (debug_linux_nat)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "LLW: %s %s, 0, 0 (expect SIGSTOP)\n",
2971 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2972 target_pid_to_str (lp->ptid));
2973 lp->stopped = 0;
2974 gdb_assert (lp->resumed);
2975
2976 /* This should catch the pending SIGSTOP. */
2977 stop_wait_callback (lp, NULL);
2978 }
2979
2980 if (!target_can_async_p ())
2981 {
2982 /* Causes SIGINT to be passed on to the attached process. */
2983 set_sigint_trap ();
2984 }
2985
2986 /* Translate generic target_wait options into waitpid options. */
2987 if (target_options & TARGET_WNOHANG)
2988 options |= WNOHANG;
2989
2990 while (lp == NULL)
2991 {
2992 pid_t lwpid;
2993
2994 lwpid = my_waitpid (pid, &status, options);
2995
2996 if (lwpid > 0)
2997 {
2998 gdb_assert (pid == -1 || lwpid == pid);
2999
3000 if (debug_linux_nat)
3001 {
3002 fprintf_unfiltered (gdb_stdlog,
3003 "LLW: waitpid %ld received %s\n",
3004 (long) lwpid, status_to_str (status));
3005 }
3006
3007 lp = linux_nat_filter_event (lwpid, status, options);
3008
3009 if (lp
3010 && ptid_is_pid (ptid)
3011 && ptid_get_pid (lp->ptid) != ptid_get_pid (ptid))
3012 {
3013 if (debug_linux_nat)
3014 fprintf (stderr, "LWP %ld got an event %06x, leaving pending.\n",
3015 ptid_get_lwp (lp->ptid), status);
3016
3017 if (WIFSTOPPED (status))
3018 {
3019 if (WSTOPSIG (status) != SIGSTOP)
3020 {
3021 lp->status = status;
3022
3023 stop_callback (lp, NULL);
3024
3025 /* Resume in order to collect the sigstop. */
3026 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
3027
3028 stop_wait_callback (lp, NULL);
3029 }
3030 else
3031 {
3032 lp->stopped = 1;
3033 lp->signalled = 0;
3034 }
3035 }
3036 else if (WIFEXITED (status) || WIFSIGNALED (status))
3037 {
3038 if (debug_linux_nat)
3039 fprintf (stderr, "Process %ld exited while stopping LWPs\n",
3040 ptid_get_lwp (lp->ptid));
3041
3042 /* This was the last lwp in the process. Since
3043 events are serialized to GDB core, and we can't
3044 report this one right now, but GDB core and the
3045 other target layers will want to be notified
3046 about the exit code/signal, leave the status
3047 pending for the next time we're able to report
3048 it. */
3049 lp->status = status;
3050
3051 /* Prevent trying to stop this thread again. We'll
3052 never try to resume it because it has a pending
3053 status. */
3054 lp->stopped = 1;
3055
3056 /* Dead LWP's aren't expected to reported a pending
3057 sigstop. */
3058 lp->signalled = 0;
3059
3060 /* Store the pending event in the waitstatus as
3061 well, because W_EXITCODE(0,0) == 0. */
3062 store_waitstatus (&lp->waitstatus, status);
3063 }
3064
3065 /* Keep looking. */
3066 lp = NULL;
3067 continue;
3068 }
3069
3070 if (lp)
3071 break;
3072 else
3073 {
3074 if (pid == -1)
3075 {
3076 /* waitpid did return something. Restart over. */
3077 options |= __WCLONE;
3078 }
3079 continue;
3080 }
3081 }
3082
3083 if (pid == -1)
3084 {
3085 /* Alternate between checking cloned and uncloned processes. */
3086 options ^= __WCLONE;
3087
3088 /* And every time we have checked both:
3089 In async mode, return to event loop;
3090 In sync mode, suspend waiting for a SIGCHLD signal. */
3091 if (options & __WCLONE)
3092 {
3093 if (target_options & TARGET_WNOHANG)
3094 {
3095 /* No interesting event. */
3096 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3097
3098 if (debug_linux_nat_async)
3099 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3100
3101 restore_child_signals_mask (&prev_mask);
3102 return minus_one_ptid;
3103 }
3104
3105 sigsuspend (&suspend_mask);
3106 }
3107 }
3108
3109 /* We shouldn't end up here unless we want to try again. */
3110 gdb_assert (lp == NULL);
3111 }
3112
3113 if (!target_can_async_p ())
3114 clear_sigint_trap ();
3115
3116 gdb_assert (lp);
3117
3118 /* Don't report signals that GDB isn't interested in, such as
3119 signals that are neither printed nor stopped upon. Stopping all
3120 threads can be a bit time-consuming so if we want decent
3121 performance with heavily multi-threaded programs, especially when
3122 they're using a high frequency timer, we'd better avoid it if we
3123 can. */
3124
3125 if (WIFSTOPPED (status))
3126 {
3127 int signo = target_signal_from_host (WSTOPSIG (status));
3128 struct inferior *inf;
3129
3130 inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3131 gdb_assert (inf);
3132
3133 /* Defer to common code if we get a signal while
3134 single-stepping, since that may need special care, e.g. to
3135 skip the signal handler, or, if we're gaining control of the
3136 inferior. */
3137 if (!lp->step
3138 && inf->stop_soon == NO_STOP_QUIETLY
3139 && signal_stop_state (signo) == 0
3140 && signal_print_state (signo) == 0
3141 && signal_pass_state (signo) == 1)
3142 {
3143 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3144 here? It is not clear we should. GDB may not expect
3145 other threads to run. On the other hand, not resuming
3146 newly attached threads may cause an unwanted delay in
3147 getting them running. */
3148 registers_changed ();
3149 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3150 lp->step, signo);
3151 if (debug_linux_nat)
3152 fprintf_unfiltered (gdb_stdlog,
3153 "LLW: %s %s, %s (preempt 'handle')\n",
3154 lp->step ?
3155 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3156 target_pid_to_str (lp->ptid),
3157 signo ? strsignal (signo) : "0");
3158 lp->stopped = 0;
3159 goto retry;
3160 }
3161
3162 if (!non_stop)
3163 {
3164 /* Only do the below in all-stop, as we currently use SIGINT
3165 to implement target_stop (see linux_nat_stop) in
3166 non-stop. */
3167 if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0)
3168 {
3169 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3170 forwarded to the entire process group, that is, all LWPs
3171 will receive it - unless they're using CLONE_THREAD to
3172 share signals. Since we only want to report it once, we
3173 mark it as ignored for all LWPs except this one. */
3174 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3175 set_ignore_sigint, NULL);
3176 lp->ignore_sigint = 0;
3177 }
3178 else
3179 maybe_clear_ignore_sigint (lp);
3180 }
3181 }
3182
3183 /* This LWP is stopped now. */
3184 lp->stopped = 1;
3185
3186 if (debug_linux_nat)
3187 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3188 status_to_str (status), target_pid_to_str (lp->ptid));
3189
3190 if (!non_stop)
3191 {
3192 /* Now stop all other LWP's ... */
3193 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3194
3195 /* ... and wait until all of them have reported back that
3196 they're no longer running. */
3197 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3198
3199 /* If we're not waiting for a specific LWP, choose an event LWP
3200 from among those that have had events. Giving equal priority
3201 to all LWPs that have had events helps prevent
3202 starvation. */
3203 if (pid == -1)
3204 select_event_lwp (ptid, &lp, &status);
3205 }
3206
3207 /* Now that we've selected our final event LWP, cancel any
3208 breakpoints in other LWPs that have hit a GDB breakpoint. See
3209 the comment in cancel_breakpoints_callback to find out why. */
3210 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3211
3212 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP)
3213 {
3214 if (debug_linux_nat)
3215 fprintf_unfiltered (gdb_stdlog,
3216 "LLW: trap ptid is %s.\n",
3217 target_pid_to_str (lp->ptid));
3218 }
3219
3220 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3221 {
3222 *ourstatus = lp->waitstatus;
3223 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3224 }
3225 else
3226 store_waitstatus (ourstatus, status);
3227
3228 if (debug_linux_nat_async)
3229 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3230
3231 restore_child_signals_mask (&prev_mask);
3232 return lp->ptid;
3233 }
3234
3235 static ptid_t
3236 linux_nat_wait (struct target_ops *ops,
3237 ptid_t ptid, struct target_waitstatus *ourstatus,
3238 int target_options)
3239 {
3240 ptid_t event_ptid;
3241
3242 if (debug_linux_nat)
3243 fprintf_unfiltered (gdb_stdlog, "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3244
3245 /* Flush the async file first. */
3246 if (target_can_async_p ())
3247 async_file_flush ();
3248
3249 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3250
3251 /* If we requested any event, and something came out, assume there
3252 may be more. If we requested a specific lwp or process, also
3253 assume there may be more. */
3254 if (target_can_async_p ()
3255 && (ourstatus->kind != TARGET_WAITKIND_IGNORE
3256 || !ptid_equal (ptid, minus_one_ptid)))
3257 async_file_mark ();
3258
3259 /* Get ready for the next event. */
3260 if (target_can_async_p ())
3261 target_async (inferior_event_handler, 0);
3262
3263 return event_ptid;
3264 }
3265
3266 static int
3267 kill_callback (struct lwp_info *lp, void *data)
3268 {
3269 errno = 0;
3270 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3271 if (debug_linux_nat)
3272 fprintf_unfiltered (gdb_stdlog,
3273 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3274 target_pid_to_str (lp->ptid),
3275 errno ? safe_strerror (errno) : "OK");
3276
3277 return 0;
3278 }
3279
3280 static int
3281 kill_wait_callback (struct lwp_info *lp, void *data)
3282 {
3283 pid_t pid;
3284
3285 /* We must make sure that there are no pending events (delayed
3286 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3287 program doesn't interfere with any following debugging session. */
3288
3289 /* For cloned processes we must check both with __WCLONE and
3290 without, since the exit status of a cloned process isn't reported
3291 with __WCLONE. */
3292 if (lp->cloned)
3293 {
3294 do
3295 {
3296 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
3297 if (pid != (pid_t) -1)
3298 {
3299 if (debug_linux_nat)
3300 fprintf_unfiltered (gdb_stdlog,
3301 "KWC: wait %s received unknown.\n",
3302 target_pid_to_str (lp->ptid));
3303 /* The Linux kernel sometimes fails to kill a thread
3304 completely after PTRACE_KILL; that goes from the stop
3305 point in do_fork out to the one in
3306 get_signal_to_deliever and waits again. So kill it
3307 again. */
3308 kill_callback (lp, NULL);
3309 }
3310 }
3311 while (pid == GET_LWP (lp->ptid));
3312
3313 gdb_assert (pid == -1 && errno == ECHILD);
3314 }
3315
3316 do
3317 {
3318 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
3319 if (pid != (pid_t) -1)
3320 {
3321 if (debug_linux_nat)
3322 fprintf_unfiltered (gdb_stdlog,
3323 "KWC: wait %s received unk.\n",
3324 target_pid_to_str (lp->ptid));
3325 /* See the call to kill_callback above. */
3326 kill_callback (lp, NULL);
3327 }
3328 }
3329 while (pid == GET_LWP (lp->ptid));
3330
3331 gdb_assert (pid == -1 && errno == ECHILD);
3332 return 0;
3333 }
3334
3335 static void
3336 linux_nat_kill (struct target_ops *ops)
3337 {
3338 struct target_waitstatus last;
3339 ptid_t last_ptid;
3340 int status;
3341
3342 /* If we're stopped while forking and we haven't followed yet,
3343 kill the other task. We need to do this first because the
3344 parent will be sleeping if this is a vfork. */
3345
3346 get_last_target_status (&last_ptid, &last);
3347
3348 if (last.kind == TARGET_WAITKIND_FORKED
3349 || last.kind == TARGET_WAITKIND_VFORKED)
3350 {
3351 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
3352 wait (&status);
3353 }
3354
3355 if (forks_exist_p ())
3356 linux_fork_killall ();
3357 else
3358 {
3359 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3360 /* Stop all threads before killing them, since ptrace requires
3361 that the thread is stopped to sucessfully PTRACE_KILL. */
3362 iterate_over_lwps (ptid, stop_callback, NULL);
3363 /* ... and wait until all of them have reported back that
3364 they're no longer running. */
3365 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3366
3367 /* Kill all LWP's ... */
3368 iterate_over_lwps (ptid, kill_callback, NULL);
3369
3370 /* ... and wait until we've flushed all events. */
3371 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3372 }
3373
3374 target_mourn_inferior ();
3375 }
3376
3377 static void
3378 linux_nat_mourn_inferior (struct target_ops *ops)
3379 {
3380 purge_lwp_list (ptid_get_pid (inferior_ptid));
3381
3382 if (! forks_exist_p ())
3383 /* Normal case, no other forks available. */
3384 linux_ops->to_mourn_inferior (ops);
3385 else
3386 /* Multi-fork case. The current inferior_ptid has exited, but
3387 there are other viable forks to debug. Delete the exiting
3388 one and context-switch to the first available. */
3389 linux_fork_mourn_inferior ();
3390 }
3391
3392 /* Convert a native/host siginfo object, into/from the siginfo in the
3393 layout of the inferiors' architecture. */
3394
3395 static void
3396 siginfo_fixup (struct siginfo *siginfo, gdb_byte *inf_siginfo, int direction)
3397 {
3398 int done = 0;
3399
3400 if (linux_nat_siginfo_fixup != NULL)
3401 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3402
3403 /* If there was no callback, or the callback didn't do anything,
3404 then just do a straight memcpy. */
3405 if (!done)
3406 {
3407 if (direction == 1)
3408 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
3409 else
3410 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
3411 }
3412 }
3413
3414 static LONGEST
3415 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3416 const char *annex, gdb_byte *readbuf,
3417 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3418 {
3419 int pid;
3420 struct siginfo siginfo;
3421 gdb_byte inf_siginfo[sizeof (struct siginfo)];
3422
3423 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3424 gdb_assert (readbuf || writebuf);
3425
3426 pid = GET_LWP (inferior_ptid);
3427 if (pid == 0)
3428 pid = GET_PID (inferior_ptid);
3429
3430 if (offset > sizeof (siginfo))
3431 return -1;
3432
3433 errno = 0;
3434 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3435 if (errno != 0)
3436 return -1;
3437
3438 /* When GDB is built as a 64-bit application, ptrace writes into
3439 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3440 inferior with a 64-bit GDB should look the same as debugging it
3441 with a 32-bit GDB, we need to convert it. GDB core always sees
3442 the converted layout, so any read/write will have to be done
3443 post-conversion. */
3444 siginfo_fixup (&siginfo, inf_siginfo, 0);
3445
3446 if (offset + len > sizeof (siginfo))
3447 len = sizeof (siginfo) - offset;
3448
3449 if (readbuf != NULL)
3450 memcpy (readbuf, inf_siginfo + offset, len);
3451 else
3452 {
3453 memcpy (inf_siginfo + offset, writebuf, len);
3454
3455 /* Convert back to ptrace layout before flushing it out. */
3456 siginfo_fixup (&siginfo, inf_siginfo, 1);
3457
3458 errno = 0;
3459 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3460 if (errno != 0)
3461 return -1;
3462 }
3463
3464 return len;
3465 }
3466
3467 static LONGEST
3468 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3469 const char *annex, gdb_byte *readbuf,
3470 const gdb_byte *writebuf,
3471 ULONGEST offset, LONGEST len)
3472 {
3473 struct cleanup *old_chain;
3474 LONGEST xfer;
3475
3476 if (object == TARGET_OBJECT_SIGNAL_INFO)
3477 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3478 offset, len);
3479
3480 /* The target is connected but no live inferior is selected. Pass
3481 this request down to a lower stratum (e.g., the executable
3482 file). */
3483 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3484 return 0;
3485
3486 old_chain = save_inferior_ptid ();
3487
3488 if (is_lwp (inferior_ptid))
3489 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
3490
3491 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3492 offset, len);
3493
3494 do_cleanups (old_chain);
3495 return xfer;
3496 }
3497
3498 static int
3499 linux_thread_alive (ptid_t ptid)
3500 {
3501 int err;
3502
3503 gdb_assert (is_lwp (ptid));
3504
3505 /* Send signal 0 instead of anything ptrace, because ptracing a
3506 running thread errors out claiming that the thread doesn't
3507 exist. */
3508 err = kill_lwp (GET_LWP (ptid), 0);
3509
3510 if (debug_linux_nat)
3511 fprintf_unfiltered (gdb_stdlog,
3512 "LLTA: KILL(SIG0) %s (%s)\n",
3513 target_pid_to_str (ptid),
3514 err ? safe_strerror (err) : "OK");
3515
3516 if (err != 0)
3517 return 0;
3518
3519 return 1;
3520 }
3521
3522 static int
3523 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3524 {
3525 return linux_thread_alive (ptid);
3526 }
3527
3528 static char *
3529 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3530 {
3531 static char buf[64];
3532
3533 if (is_lwp (ptid)
3534 && (GET_PID (ptid) != GET_LWP (ptid)
3535 || num_lwps (GET_PID (ptid)) > 1))
3536 {
3537 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
3538 return buf;
3539 }
3540
3541 return normal_pid_to_str (ptid);
3542 }
3543
3544 /* Accepts an integer PID; Returns a string representing a file that
3545 can be opened to get the symbols for the child process. */
3546
3547 static char *
3548 linux_child_pid_to_exec_file (int pid)
3549 {
3550 char *name1, *name2;
3551
3552 name1 = xmalloc (MAXPATHLEN);
3553 name2 = xmalloc (MAXPATHLEN);
3554 make_cleanup (xfree, name1);
3555 make_cleanup (xfree, name2);
3556 memset (name2, 0, MAXPATHLEN);
3557
3558 sprintf (name1, "/proc/%d/exe", pid);
3559 if (readlink (name1, name2, MAXPATHLEN) > 0)
3560 return name2;
3561 else
3562 return name1;
3563 }
3564
3565 /* Service function for corefiles and info proc. */
3566
3567 static int
3568 read_mapping (FILE *mapfile,
3569 long long *addr,
3570 long long *endaddr,
3571 char *permissions,
3572 long long *offset,
3573 char *device, long long *inode, char *filename)
3574 {
3575 int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx",
3576 addr, endaddr, permissions, offset, device, inode);
3577
3578 filename[0] = '\0';
3579 if (ret > 0 && ret != EOF)
3580 {
3581 /* Eat everything up to EOL for the filename. This will prevent
3582 weird filenames (such as one with embedded whitespace) from
3583 confusing this code. It also makes this code more robust in
3584 respect to annotations the kernel may add after the filename.
3585
3586 Note the filename is used for informational purposes
3587 only. */
3588 ret += fscanf (mapfile, "%[^\n]\n", filename);
3589 }
3590
3591 return (ret != 0 && ret != EOF);
3592 }
3593
3594 /* Fills the "to_find_memory_regions" target vector. Lists the memory
3595 regions in the inferior for a corefile. */
3596
3597 static int
3598 linux_nat_find_memory_regions (int (*func) (CORE_ADDR,
3599 unsigned long,
3600 int, int, int, void *), void *obfd)
3601 {
3602 int pid = PIDGET (inferior_ptid);
3603 char mapsfilename[MAXPATHLEN];
3604 FILE *mapsfile;
3605 long long addr, endaddr, size, offset, inode;
3606 char permissions[8], device[8], filename[MAXPATHLEN];
3607 int read, write, exec;
3608 int ret;
3609 struct cleanup *cleanup;
3610
3611 /* Compose the filename for the /proc memory map, and open it. */
3612 sprintf (mapsfilename, "/proc/%d/maps", pid);
3613 if ((mapsfile = fopen (mapsfilename, "r")) == NULL)
3614 error (_("Could not open %s."), mapsfilename);
3615 cleanup = make_cleanup_fclose (mapsfile);
3616
3617 if (info_verbose)
3618 fprintf_filtered (gdb_stdout,
3619 "Reading memory regions from %s\n", mapsfilename);
3620
3621 /* Now iterate until end-of-file. */
3622 while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0],
3623 &offset, &device[0], &inode, &filename[0]))
3624 {
3625 size = endaddr - addr;
3626
3627 /* Get the segment's permissions. */
3628 read = (strchr (permissions, 'r') != 0);
3629 write = (strchr (permissions, 'w') != 0);
3630 exec = (strchr (permissions, 'x') != 0);
3631
3632 if (info_verbose)
3633 {
3634 fprintf_filtered (gdb_stdout,
3635 "Save segment, %lld bytes at %s (%c%c%c)",
3636 size, paddress (target_gdbarch, addr),
3637 read ? 'r' : ' ',
3638 write ? 'w' : ' ', exec ? 'x' : ' ');
3639 if (filename[0])
3640 fprintf_filtered (gdb_stdout, " for %s", filename);
3641 fprintf_filtered (gdb_stdout, "\n");
3642 }
3643
3644 /* Invoke the callback function to create the corefile
3645 segment. */
3646 func (addr, size, read, write, exec, obfd);
3647 }
3648 do_cleanups (cleanup);
3649 return 0;
3650 }
3651
3652 static int
3653 find_signalled_thread (struct thread_info *info, void *data)
3654 {
3655 if (info->stop_signal != TARGET_SIGNAL_0
3656 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
3657 return 1;
3658
3659 return 0;
3660 }
3661
3662 static enum target_signal
3663 find_stop_signal (void)
3664 {
3665 struct thread_info *info =
3666 iterate_over_threads (find_signalled_thread, NULL);
3667
3668 if (info)
3669 return info->stop_signal;
3670 else
3671 return TARGET_SIGNAL_0;
3672 }
3673
3674 /* Records the thread's register state for the corefile note
3675 section. */
3676
3677 static char *
3678 linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid,
3679 char *note_data, int *note_size,
3680 enum target_signal stop_signal)
3681 {
3682 gdb_gregset_t gregs;
3683 gdb_fpregset_t fpregs;
3684 unsigned long lwp = ptid_get_lwp (ptid);
3685 struct gdbarch *gdbarch = target_gdbarch;
3686 struct regcache *regcache = get_thread_arch_regcache (ptid, gdbarch);
3687 const struct regset *regset;
3688 int core_regset_p;
3689 struct cleanup *old_chain;
3690 struct core_regset_section *sect_list;
3691 char *gdb_regset;
3692
3693 old_chain = save_inferior_ptid ();
3694 inferior_ptid = ptid;
3695 target_fetch_registers (regcache, -1);
3696 do_cleanups (old_chain);
3697
3698 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
3699 sect_list = gdbarch_core_regset_sections (gdbarch);
3700
3701 if (core_regset_p
3702 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
3703 sizeof (gregs))) != NULL
3704 && regset->collect_regset != NULL)
3705 regset->collect_regset (regset, regcache, -1,
3706 &gregs, sizeof (gregs));
3707 else
3708 fill_gregset (regcache, &gregs, -1);
3709
3710 note_data = (char *) elfcore_write_prstatus (obfd,
3711 note_data,
3712 note_size,
3713 lwp,
3714 stop_signal, &gregs);
3715
3716 /* The loop below uses the new struct core_regset_section, which stores
3717 the supported section names and sizes for the core file. Note that
3718 note PRSTATUS needs to be treated specially. But the other notes are
3719 structurally the same, so they can benefit from the new struct. */
3720 if (core_regset_p && sect_list != NULL)
3721 while (sect_list->sect_name != NULL)
3722 {
3723 /* .reg was already handled above. */
3724 if (strcmp (sect_list->sect_name, ".reg") == 0)
3725 {
3726 sect_list++;
3727 continue;
3728 }
3729 regset = gdbarch_regset_from_core_section (gdbarch,
3730 sect_list->sect_name,
3731 sect_list->size);
3732 gdb_assert (regset && regset->collect_regset);
3733 gdb_regset = xmalloc (sect_list->size);
3734 regset->collect_regset (regset, regcache, -1,
3735 gdb_regset, sect_list->size);
3736 note_data = (char *) elfcore_write_register_note (obfd,
3737 note_data,
3738 note_size,
3739 sect_list->sect_name,
3740 gdb_regset,
3741 sect_list->size);
3742 xfree (gdb_regset);
3743 sect_list++;
3744 }
3745
3746 /* For architectures that does not have the struct core_regset_section
3747 implemented, we use the old method. When all the architectures have
3748 the new support, the code below should be deleted. */
3749 else
3750 {
3751 if (core_regset_p
3752 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
3753 sizeof (fpregs))) != NULL
3754 && regset->collect_regset != NULL)
3755 regset->collect_regset (regset, regcache, -1,
3756 &fpregs, sizeof (fpregs));
3757 else
3758 fill_fpregset (regcache, &fpregs, -1);
3759
3760 note_data = (char *) elfcore_write_prfpreg (obfd,
3761 note_data,
3762 note_size,
3763 &fpregs, sizeof (fpregs));
3764 }
3765
3766 return note_data;
3767 }
3768
3769 struct linux_nat_corefile_thread_data
3770 {
3771 bfd *obfd;
3772 char *note_data;
3773 int *note_size;
3774 int num_notes;
3775 enum target_signal stop_signal;
3776 };
3777
3778 /* Called by gdbthread.c once per thread. Records the thread's
3779 register state for the corefile note section. */
3780
3781 static int
3782 linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data)
3783 {
3784 struct linux_nat_corefile_thread_data *args = data;
3785
3786 args->note_data = linux_nat_do_thread_registers (args->obfd,
3787 ti->ptid,
3788 args->note_data,
3789 args->note_size,
3790 args->stop_signal);
3791 args->num_notes++;
3792
3793 return 0;
3794 }
3795
3796 /* Enumerate spufs IDs for process PID. */
3797
3798 static void
3799 iterate_over_spus (int pid, void (*callback) (void *, int), void *data)
3800 {
3801 char path[128];
3802 DIR *dir;
3803 struct dirent *entry;
3804
3805 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
3806 dir = opendir (path);
3807 if (!dir)
3808 return;
3809
3810 rewinddir (dir);
3811 while ((entry = readdir (dir)) != NULL)
3812 {
3813 struct stat st;
3814 struct statfs stfs;
3815 int fd;
3816
3817 fd = atoi (entry->d_name);
3818 if (!fd)
3819 continue;
3820
3821 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
3822 if (stat (path, &st) != 0)
3823 continue;
3824 if (!S_ISDIR (st.st_mode))
3825 continue;
3826
3827 if (statfs (path, &stfs) != 0)
3828 continue;
3829 if (stfs.f_type != SPUFS_MAGIC)
3830 continue;
3831
3832 callback (data, fd);
3833 }
3834
3835 closedir (dir);
3836 }
3837
3838 /* Generate corefile notes for SPU contexts. */
3839
3840 struct linux_spu_corefile_data
3841 {
3842 bfd *obfd;
3843 char *note_data;
3844 int *note_size;
3845 };
3846
3847 static void
3848 linux_spu_corefile_callback (void *data, int fd)
3849 {
3850 struct linux_spu_corefile_data *args = data;
3851 int i;
3852
3853 static const char *spu_files[] =
3854 {
3855 "object-id",
3856 "mem",
3857 "regs",
3858 "fpcr",
3859 "lslr",
3860 "decr",
3861 "decr_status",
3862 "signal1",
3863 "signal1_type",
3864 "signal2",
3865 "signal2_type",
3866 "event_mask",
3867 "event_status",
3868 "mbox_info",
3869 "ibox_info",
3870 "wbox_info",
3871 "dma_info",
3872 "proxydma_info",
3873 };
3874
3875 for (i = 0; i < sizeof (spu_files) / sizeof (spu_files[0]); i++)
3876 {
3877 char annex[32], note_name[32];
3878 gdb_byte *spu_data;
3879 LONGEST spu_len;
3880
3881 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[i]);
3882 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
3883 annex, &spu_data);
3884 if (spu_len > 0)
3885 {
3886 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
3887 args->note_data = elfcore_write_note (args->obfd, args->note_data,
3888 args->note_size, note_name,
3889 NT_SPU, spu_data, spu_len);
3890 xfree (spu_data);
3891 }
3892 }
3893 }
3894
3895 static char *
3896 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
3897 {
3898 struct linux_spu_corefile_data args;
3899 args.obfd = obfd;
3900 args.note_data = note_data;
3901 args.note_size = note_size;
3902
3903 iterate_over_spus (PIDGET (inferior_ptid),
3904 linux_spu_corefile_callback, &args);
3905
3906 return args.note_data;
3907 }
3908
3909 /* Fills the "to_make_corefile_note" target vector. Builds the note
3910 section for a corefile, and returns it in a malloc buffer. */
3911
3912 static char *
3913 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
3914 {
3915 struct linux_nat_corefile_thread_data thread_args;
3916 struct cleanup *old_chain;
3917 /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */
3918 char fname[16] = { '\0' };
3919 /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */
3920 char psargs[80] = { '\0' };
3921 char *note_data = NULL;
3922 ptid_t current_ptid = inferior_ptid;
3923 ptid_t filter = pid_to_ptid (ptid_get_pid (inferior_ptid));
3924 gdb_byte *auxv;
3925 int auxv_len;
3926
3927 if (get_exec_file (0))
3928 {
3929 strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname));
3930 strncpy (psargs, get_exec_file (0), sizeof (psargs));
3931 if (get_inferior_args ())
3932 {
3933 char *string_end;
3934 char *psargs_end = psargs + sizeof (psargs);
3935
3936 /* linux_elfcore_write_prpsinfo () handles zero unterminated
3937 strings fine. */
3938 string_end = memchr (psargs, 0, sizeof (psargs));
3939 if (string_end != NULL)
3940 {
3941 *string_end++ = ' ';
3942 strncpy (string_end, get_inferior_args (),
3943 psargs_end - string_end);
3944 }
3945 }
3946 note_data = (char *) elfcore_write_prpsinfo (obfd,
3947 note_data,
3948 note_size, fname, psargs);
3949 }
3950
3951 /* Dump information for threads. */
3952 thread_args.obfd = obfd;
3953 thread_args.note_data = note_data;
3954 thread_args.note_size = note_size;
3955 thread_args.num_notes = 0;
3956 thread_args.stop_signal = find_stop_signal ();
3957 iterate_over_lwps (filter, linux_nat_corefile_thread_callback, &thread_args);
3958 gdb_assert (thread_args.num_notes != 0);
3959 note_data = thread_args.note_data;
3960
3961 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
3962 NULL, &auxv);
3963 if (auxv_len > 0)
3964 {
3965 note_data = elfcore_write_note (obfd, note_data, note_size,
3966 "CORE", NT_AUXV, auxv, auxv_len);
3967 xfree (auxv);
3968 }
3969
3970 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
3971
3972 make_cleanup (xfree, note_data);
3973 return note_data;
3974 }
3975
3976 /* Implement the "info proc" command. */
3977
3978 static void
3979 linux_nat_info_proc_cmd (char *args, int from_tty)
3980 {
3981 /* A long is used for pid instead of an int to avoid a loss of precision
3982 compiler warning from the output of strtoul. */
3983 long pid = PIDGET (inferior_ptid);
3984 FILE *procfile;
3985 char **argv = NULL;
3986 char buffer[MAXPATHLEN];
3987 char fname1[MAXPATHLEN], fname2[MAXPATHLEN];
3988 int cmdline_f = 1;
3989 int cwd_f = 1;
3990 int exe_f = 1;
3991 int mappings_f = 0;
3992 int environ_f = 0;
3993 int status_f = 0;
3994 int stat_f = 0;
3995 int all = 0;
3996 struct stat dummy;
3997
3998 if (args)
3999 {
4000 /* Break up 'args' into an argv array. */
4001 argv = gdb_buildargv (args);
4002 make_cleanup_freeargv (argv);
4003 }
4004 while (argv != NULL && *argv != NULL)
4005 {
4006 if (isdigit (argv[0][0]))
4007 {
4008 pid = strtoul (argv[0], NULL, 10);
4009 }
4010 else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0)
4011 {
4012 mappings_f = 1;
4013 }
4014 else if (strcmp (argv[0], "status") == 0)
4015 {
4016 status_f = 1;
4017 }
4018 else if (strcmp (argv[0], "stat") == 0)
4019 {
4020 stat_f = 1;
4021 }
4022 else if (strcmp (argv[0], "cmd") == 0)
4023 {
4024 cmdline_f = 1;
4025 }
4026 else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0)
4027 {
4028 exe_f = 1;
4029 }
4030 else if (strcmp (argv[0], "cwd") == 0)
4031 {
4032 cwd_f = 1;
4033 }
4034 else if (strncmp (argv[0], "all", strlen (argv[0])) == 0)
4035 {
4036 all = 1;
4037 }
4038 else
4039 {
4040 /* [...] (future options here) */
4041 }
4042 argv++;
4043 }
4044 if (pid == 0)
4045 error (_("No current process: you must name one."));
4046
4047 sprintf (fname1, "/proc/%ld", pid);
4048 if (stat (fname1, &dummy) != 0)
4049 error (_("No /proc directory: '%s'"), fname1);
4050
4051 printf_filtered (_("process %ld\n"), pid);
4052 if (cmdline_f || all)
4053 {
4054 sprintf (fname1, "/proc/%ld/cmdline", pid);
4055 if ((procfile = fopen (fname1, "r")) != NULL)
4056 {
4057 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4058 if (fgets (buffer, sizeof (buffer), procfile))
4059 printf_filtered ("cmdline = '%s'\n", buffer);
4060 else
4061 warning (_("unable to read '%s'"), fname1);
4062 do_cleanups (cleanup);
4063 }
4064 else
4065 warning (_("unable to open /proc file '%s'"), fname1);
4066 }
4067 if (cwd_f || all)
4068 {
4069 sprintf (fname1, "/proc/%ld/cwd", pid);
4070 memset (fname2, 0, sizeof (fname2));
4071 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4072 printf_filtered ("cwd = '%s'\n", fname2);
4073 else
4074 warning (_("unable to read link '%s'"), fname1);
4075 }
4076 if (exe_f || all)
4077 {
4078 sprintf (fname1, "/proc/%ld/exe", pid);
4079 memset (fname2, 0, sizeof (fname2));
4080 if (readlink (fname1, fname2, sizeof (fname2)) > 0)
4081 printf_filtered ("exe = '%s'\n", fname2);
4082 else
4083 warning (_("unable to read link '%s'"), fname1);
4084 }
4085 if (mappings_f || all)
4086 {
4087 sprintf (fname1, "/proc/%ld/maps", pid);
4088 if ((procfile = fopen (fname1, "r")) != NULL)
4089 {
4090 long long addr, endaddr, size, offset, inode;
4091 char permissions[8], device[8], filename[MAXPATHLEN];
4092 struct cleanup *cleanup;
4093
4094 cleanup = make_cleanup_fclose (procfile);
4095 printf_filtered (_("Mapped address spaces:\n\n"));
4096 if (gdbarch_addr_bit (target_gdbarch) == 32)
4097 {
4098 printf_filtered ("\t%10s %10s %10s %10s %7s\n",
4099 "Start Addr",
4100 " End Addr",
4101 " Size", " Offset", "objfile");
4102 }
4103 else
4104 {
4105 printf_filtered (" %18s %18s %10s %10s %7s\n",
4106 "Start Addr",
4107 " End Addr",
4108 " Size", " Offset", "objfile");
4109 }
4110
4111 while (read_mapping (procfile, &addr, &endaddr, &permissions[0],
4112 &offset, &device[0], &inode, &filename[0]))
4113 {
4114 size = endaddr - addr;
4115
4116 /* FIXME: carlton/2003-08-27: Maybe the printf_filtered
4117 calls here (and possibly above) should be abstracted
4118 out into their own functions? Andrew suggests using
4119 a generic local_address_string instead to print out
4120 the addresses; that makes sense to me, too. */
4121
4122 if (gdbarch_addr_bit (target_gdbarch) == 32)
4123 {
4124 printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n",
4125 (unsigned long) addr, /* FIXME: pr_addr */
4126 (unsigned long) endaddr,
4127 (int) size,
4128 (unsigned int) offset,
4129 filename[0] ? filename : "");
4130 }
4131 else
4132 {
4133 printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n",
4134 (unsigned long) addr, /* FIXME: pr_addr */
4135 (unsigned long) endaddr,
4136 (int) size,
4137 (unsigned int) offset,
4138 filename[0] ? filename : "");
4139 }
4140 }
4141
4142 do_cleanups (cleanup);
4143 }
4144 else
4145 warning (_("unable to open /proc file '%s'"), fname1);
4146 }
4147 if (status_f || all)
4148 {
4149 sprintf (fname1, "/proc/%ld/status", pid);
4150 if ((procfile = fopen (fname1, "r")) != NULL)
4151 {
4152 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4153 while (fgets (buffer, sizeof (buffer), procfile) != NULL)
4154 puts_filtered (buffer);
4155 do_cleanups (cleanup);
4156 }
4157 else
4158 warning (_("unable to open /proc file '%s'"), fname1);
4159 }
4160 if (stat_f || all)
4161 {
4162 sprintf (fname1, "/proc/%ld/stat", pid);
4163 if ((procfile = fopen (fname1, "r")) != NULL)
4164 {
4165 int itmp;
4166 char ctmp;
4167 long ltmp;
4168 struct cleanup *cleanup = make_cleanup_fclose (procfile);
4169
4170 if (fscanf (procfile, "%d ", &itmp) > 0)
4171 printf_filtered (_("Process: %d\n"), itmp);
4172 if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0)
4173 printf_filtered (_("Exec file: %s\n"), buffer);
4174 if (fscanf (procfile, "%c ", &ctmp) > 0)
4175 printf_filtered (_("State: %c\n"), ctmp);
4176 if (fscanf (procfile, "%d ", &itmp) > 0)
4177 printf_filtered (_("Parent process: %d\n"), itmp);
4178 if (fscanf (procfile, "%d ", &itmp) > 0)
4179 printf_filtered (_("Process group: %d\n"), itmp);
4180 if (fscanf (procfile, "%d ", &itmp) > 0)
4181 printf_filtered (_("Session id: %d\n"), itmp);
4182 if (fscanf (procfile, "%d ", &itmp) > 0)
4183 printf_filtered (_("TTY: %d\n"), itmp);
4184 if (fscanf (procfile, "%d ", &itmp) > 0)
4185 printf_filtered (_("TTY owner process group: %d\n"), itmp);
4186 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4187 printf_filtered (_("Flags: 0x%lx\n"), ltmp);
4188 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4189 printf_filtered (_("Minor faults (no memory page): %lu\n"),
4190 (unsigned long) ltmp);
4191 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4192 printf_filtered (_("Minor faults, children: %lu\n"),
4193 (unsigned long) ltmp);
4194 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4195 printf_filtered (_("Major faults (memory page faults): %lu\n"),
4196 (unsigned long) ltmp);
4197 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4198 printf_filtered (_("Major faults, children: %lu\n"),
4199 (unsigned long) ltmp);
4200 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4201 printf_filtered (_("utime: %ld\n"), ltmp);
4202 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4203 printf_filtered (_("stime: %ld\n"), ltmp);
4204 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4205 printf_filtered (_("utime, children: %ld\n"), ltmp);
4206 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4207 printf_filtered (_("stime, children: %ld\n"), ltmp);
4208 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4209 printf_filtered (_("jiffies remaining in current time slice: %ld\n"),
4210 ltmp);
4211 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4212 printf_filtered (_("'nice' value: %ld\n"), ltmp);
4213 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4214 printf_filtered (_("jiffies until next timeout: %lu\n"),
4215 (unsigned long) ltmp);
4216 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4217 printf_filtered (_("jiffies until next SIGALRM: %lu\n"),
4218 (unsigned long) ltmp);
4219 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4220 printf_filtered (_("start time (jiffies since system boot): %ld\n"),
4221 ltmp);
4222 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4223 printf_filtered (_("Virtual memory size: %lu\n"),
4224 (unsigned long) ltmp);
4225 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4226 printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp);
4227 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4228 printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp);
4229 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4230 printf_filtered (_("Start of text: 0x%lx\n"), ltmp);
4231 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4232 printf_filtered (_("End of text: 0x%lx\n"), ltmp);
4233 if (fscanf (procfile, "%lu ", &ltmp) > 0)
4234 printf_filtered (_("Start of stack: 0x%lx\n"), ltmp);
4235 #if 0 /* Don't know how architecture-dependent the rest is...
4236 Anyway the signal bitmap info is available from "status". */
4237 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4238 printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp);
4239 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4240 printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp);
4241 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4242 printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp);
4243 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4244 printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp);
4245 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4246 printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp);
4247 if (fscanf (procfile, "%ld ", &ltmp) > 0)
4248 printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp);
4249 if (fscanf (procfile, "%lu ", &ltmp) > 0) /* FIXME arch? */
4250 printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp);
4251 #endif
4252 do_cleanups (cleanup);
4253 }
4254 else
4255 warning (_("unable to open /proc file '%s'"), fname1);
4256 }
4257 }
4258
4259 /* Implement the to_xfer_partial interface for memory reads using the /proc
4260 filesystem. Because we can use a single read() call for /proc, this
4261 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4262 but it doesn't support writes. */
4263
4264 static LONGEST
4265 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4266 const char *annex, gdb_byte *readbuf,
4267 const gdb_byte *writebuf,
4268 ULONGEST offset, LONGEST len)
4269 {
4270 LONGEST ret;
4271 int fd;
4272 char filename[64];
4273
4274 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4275 return 0;
4276
4277 /* Don't bother for one word. */
4278 if (len < 3 * sizeof (long))
4279 return 0;
4280
4281 /* We could keep this file open and cache it - possibly one per
4282 thread. That requires some juggling, but is even faster. */
4283 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4284 fd = open (filename, O_RDONLY | O_LARGEFILE);
4285 if (fd == -1)
4286 return 0;
4287
4288 /* If pread64 is available, use it. It's faster if the kernel
4289 supports it (only one syscall), and it's 64-bit safe even on
4290 32-bit platforms (for instance, SPARC debugging a SPARC64
4291 application). */
4292 #ifdef HAVE_PREAD64
4293 if (pread64 (fd, readbuf, len, offset) != len)
4294 #else
4295 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4296 #endif
4297 ret = 0;
4298 else
4299 ret = len;
4300
4301 close (fd);
4302 return ret;
4303 }
4304
4305
4306 /* Enumerate spufs IDs for process PID. */
4307 static LONGEST
4308 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4309 {
4310 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4311 LONGEST pos = 0;
4312 LONGEST written = 0;
4313 char path[128];
4314 DIR *dir;
4315 struct dirent *entry;
4316
4317 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4318 dir = opendir (path);
4319 if (!dir)
4320 return -1;
4321
4322 rewinddir (dir);
4323 while ((entry = readdir (dir)) != NULL)
4324 {
4325 struct stat st;
4326 struct statfs stfs;
4327 int fd;
4328
4329 fd = atoi (entry->d_name);
4330 if (!fd)
4331 continue;
4332
4333 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4334 if (stat (path, &st) != 0)
4335 continue;
4336 if (!S_ISDIR (st.st_mode))
4337 continue;
4338
4339 if (statfs (path, &stfs) != 0)
4340 continue;
4341 if (stfs.f_type != SPUFS_MAGIC)
4342 continue;
4343
4344 if (pos >= offset && pos + 4 <= offset + len)
4345 {
4346 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4347 written += 4;
4348 }
4349 pos += 4;
4350 }
4351
4352 closedir (dir);
4353 return written;
4354 }
4355
4356 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4357 object type, using the /proc file system. */
4358 static LONGEST
4359 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4360 const char *annex, gdb_byte *readbuf,
4361 const gdb_byte *writebuf,
4362 ULONGEST offset, LONGEST len)
4363 {
4364 char buf[128];
4365 int fd = 0;
4366 int ret = -1;
4367 int pid = PIDGET (inferior_ptid);
4368
4369 if (!annex)
4370 {
4371 if (!readbuf)
4372 return -1;
4373 else
4374 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4375 }
4376
4377 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4378 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4379 if (fd <= 0)
4380 return -1;
4381
4382 if (offset != 0
4383 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4384 {
4385 close (fd);
4386 return 0;
4387 }
4388
4389 if (writebuf)
4390 ret = write (fd, writebuf, (size_t) len);
4391 else if (readbuf)
4392 ret = read (fd, readbuf, (size_t) len);
4393
4394 close (fd);
4395 return ret;
4396 }
4397
4398
4399 /* Parse LINE as a signal set and add its set bits to SIGS. */
4400
4401 static void
4402 add_line_to_sigset (const char *line, sigset_t *sigs)
4403 {
4404 int len = strlen (line) - 1;
4405 const char *p;
4406 int signum;
4407
4408 if (line[len] != '\n')
4409 error (_("Could not parse signal set: %s"), line);
4410
4411 p = line;
4412 signum = len * 4;
4413 while (len-- > 0)
4414 {
4415 int digit;
4416
4417 if (*p >= '0' && *p <= '9')
4418 digit = *p - '0';
4419 else if (*p >= 'a' && *p <= 'f')
4420 digit = *p - 'a' + 10;
4421 else
4422 error (_("Could not parse signal set: %s"), line);
4423
4424 signum -= 4;
4425
4426 if (digit & 1)
4427 sigaddset (sigs, signum + 1);
4428 if (digit & 2)
4429 sigaddset (sigs, signum + 2);
4430 if (digit & 4)
4431 sigaddset (sigs, signum + 3);
4432 if (digit & 8)
4433 sigaddset (sigs, signum + 4);
4434
4435 p++;
4436 }
4437 }
4438
4439 /* Find process PID's pending signals from /proc/pid/status and set
4440 SIGS to match. */
4441
4442 void
4443 linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored)
4444 {
4445 FILE *procfile;
4446 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4447 int signum;
4448 struct cleanup *cleanup;
4449
4450 sigemptyset (pending);
4451 sigemptyset (blocked);
4452 sigemptyset (ignored);
4453 sprintf (fname, "/proc/%d/status", pid);
4454 procfile = fopen (fname, "r");
4455 if (procfile == NULL)
4456 error (_("Could not open %s"), fname);
4457 cleanup = make_cleanup_fclose (procfile);
4458
4459 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4460 {
4461 /* Normal queued signals are on the SigPnd line in the status
4462 file. However, 2.6 kernels also have a "shared" pending
4463 queue for delivering signals to a thread group, so check for
4464 a ShdPnd line also.
4465
4466 Unfortunately some Red Hat kernels include the shared pending
4467 queue but not the ShdPnd status field. */
4468
4469 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4470 add_line_to_sigset (buffer + 8, pending);
4471 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4472 add_line_to_sigset (buffer + 8, pending);
4473 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4474 add_line_to_sigset (buffer + 8, blocked);
4475 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4476 add_line_to_sigset (buffer + 8, ignored);
4477 }
4478
4479 do_cleanups (cleanup);
4480 }
4481
4482 static LONGEST
4483 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4484 const char *annex, gdb_byte *readbuf,
4485 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4486 {
4487 /* We make the process list snapshot when the object starts to be
4488 read. */
4489 static const char *buf;
4490 static LONGEST len_avail = -1;
4491 static struct obstack obstack;
4492
4493 DIR *dirp;
4494
4495 gdb_assert (object == TARGET_OBJECT_OSDATA);
4496
4497 if (strcmp (annex, "processes") != 0)
4498 return 0;
4499
4500 gdb_assert (readbuf && !writebuf);
4501
4502 if (offset == 0)
4503 {
4504 if (len_avail != -1 && len_avail != 0)
4505 obstack_free (&obstack, NULL);
4506 len_avail = 0;
4507 buf = NULL;
4508 obstack_init (&obstack);
4509 obstack_grow_str (&obstack, "<osdata type=\"processes\">\n");
4510
4511 dirp = opendir ("/proc");
4512 if (dirp)
4513 {
4514 struct dirent *dp;
4515 while ((dp = readdir (dirp)) != NULL)
4516 {
4517 struct stat statbuf;
4518 char procentry[sizeof ("/proc/4294967295")];
4519
4520 if (!isdigit (dp->d_name[0])
4521 || NAMELEN (dp) > sizeof ("4294967295") - 1)
4522 continue;
4523
4524 sprintf (procentry, "/proc/%s", dp->d_name);
4525 if (stat (procentry, &statbuf) == 0
4526 && S_ISDIR (statbuf.st_mode))
4527 {
4528 char *pathname;
4529 FILE *f;
4530 char cmd[MAXPATHLEN + 1];
4531 struct passwd *entry;
4532
4533 pathname = xstrprintf ("/proc/%s/cmdline", dp->d_name);
4534 entry = getpwuid (statbuf.st_uid);
4535
4536 if ((f = fopen (pathname, "r")) != NULL)
4537 {
4538 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4539 if (len > 0)
4540 {
4541 int i;
4542 for (i = 0; i < len; i++)
4543 if (cmd[i] == '\0')
4544 cmd[i] = ' ';
4545 cmd[len] = '\0';
4546
4547 obstack_xml_printf (
4548 &obstack,
4549 "<item>"
4550 "<column name=\"pid\">%s</column>"
4551 "<column name=\"user\">%s</column>"
4552 "<column name=\"command\">%s</column>"
4553 "</item>",
4554 dp->d_name,
4555 entry ? entry->pw_name : "?",
4556 cmd);
4557 }
4558 fclose (f);
4559 }
4560
4561 xfree (pathname);
4562 }
4563 }
4564
4565 closedir (dirp);
4566 }
4567
4568 obstack_grow_str0 (&obstack, "</osdata>\n");
4569 buf = obstack_finish (&obstack);
4570 len_avail = strlen (buf);
4571 }
4572
4573 if (offset >= len_avail)
4574 {
4575 /* Done. Get rid of the obstack. */
4576 obstack_free (&obstack, NULL);
4577 buf = NULL;
4578 len_avail = 0;
4579 return 0;
4580 }
4581
4582 if (len > len_avail - offset)
4583 len = len_avail - offset;
4584 memcpy (readbuf, buf + offset, len);
4585
4586 return len;
4587 }
4588
4589 static LONGEST
4590 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4591 const char *annex, gdb_byte *readbuf,
4592 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4593 {
4594 LONGEST xfer;
4595
4596 if (object == TARGET_OBJECT_AUXV)
4597 return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf,
4598 offset, len);
4599
4600 if (object == TARGET_OBJECT_OSDATA)
4601 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4602 offset, len);
4603
4604 if (object == TARGET_OBJECT_SPU)
4605 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4606 offset, len);
4607
4608 /* GDB calculates all the addresses in possibly larget width of the address.
4609 Address width needs to be masked before its final use - either by
4610 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4611
4612 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4613
4614 if (object == TARGET_OBJECT_MEMORY)
4615 {
4616 int addr_bit = gdbarch_addr_bit (target_gdbarch);
4617
4618 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4619 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4620 }
4621
4622 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4623 offset, len);
4624 if (xfer != 0)
4625 return xfer;
4626
4627 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4628 offset, len);
4629 }
4630
4631 /* Create a prototype generic GNU/Linux target. The client can override
4632 it with local methods. */
4633
4634 static void
4635 linux_target_install_ops (struct target_ops *t)
4636 {
4637 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4638 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4639 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4640 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4641 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4642 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4643 t->to_post_attach = linux_child_post_attach;
4644 t->to_follow_fork = linux_child_follow_fork;
4645 t->to_find_memory_regions = linux_nat_find_memory_regions;
4646 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4647
4648 super_xfer_partial = t->to_xfer_partial;
4649 t->to_xfer_partial = linux_xfer_partial;
4650 }
4651
4652 struct target_ops *
4653 linux_target (void)
4654 {
4655 struct target_ops *t;
4656
4657 t = inf_ptrace_target ();
4658 linux_target_install_ops (t);
4659
4660 return t;
4661 }
4662
4663 struct target_ops *
4664 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4665 {
4666 struct target_ops *t;
4667
4668 t = inf_ptrace_trad_target (register_u_offset);
4669 linux_target_install_ops (t);
4670
4671 return t;
4672 }
4673
4674 /* target_is_async_p implementation. */
4675
4676 static int
4677 linux_nat_is_async_p (void)
4678 {
4679 /* NOTE: palves 2008-03-21: We're only async when the user requests
4680 it explicitly with the "set target-async" command.
4681 Someday, linux will always be async. */
4682 if (!target_async_permitted)
4683 return 0;
4684
4685 /* See target.h/target_async_mask. */
4686 return linux_nat_async_mask_value;
4687 }
4688
4689 /* target_can_async_p implementation. */
4690
4691 static int
4692 linux_nat_can_async_p (void)
4693 {
4694 /* NOTE: palves 2008-03-21: We're only async when the user requests
4695 it explicitly with the "set target-async" command.
4696 Someday, linux will always be async. */
4697 if (!target_async_permitted)
4698 return 0;
4699
4700 /* See target.h/target_async_mask. */
4701 return linux_nat_async_mask_value;
4702 }
4703
4704 static int
4705 linux_nat_supports_non_stop (void)
4706 {
4707 return 1;
4708 }
4709
4710 /* True if we want to support multi-process. To be removed when GDB
4711 supports multi-exec. */
4712
4713 int linux_multi_process = 1;
4714
4715 static int
4716 linux_nat_supports_multi_process (void)
4717 {
4718 return linux_multi_process;
4719 }
4720
4721 /* target_async_mask implementation. */
4722
4723 static int
4724 linux_nat_async_mask (int new_mask)
4725 {
4726 int curr_mask = linux_nat_async_mask_value;
4727
4728 if (curr_mask != new_mask)
4729 {
4730 if (new_mask == 0)
4731 {
4732 linux_nat_async (NULL, 0);
4733 linux_nat_async_mask_value = new_mask;
4734 }
4735 else
4736 {
4737 linux_nat_async_mask_value = new_mask;
4738
4739 /* If we're going out of async-mask in all-stop, then the
4740 inferior is stopped. The next resume will call
4741 target_async. In non-stop, the target event source
4742 should be always registered in the event loop. Do so
4743 now. */
4744 if (non_stop)
4745 linux_nat_async (inferior_event_handler, 0);
4746 }
4747 }
4748
4749 return curr_mask;
4750 }
4751
4752 static int async_terminal_is_ours = 1;
4753
4754 /* target_terminal_inferior implementation. */
4755
4756 static void
4757 linux_nat_terminal_inferior (void)
4758 {
4759 if (!target_is_async_p ())
4760 {
4761 /* Async mode is disabled. */
4762 terminal_inferior ();
4763 return;
4764 }
4765
4766 terminal_inferior ();
4767
4768 /* Calls to target_terminal_*() are meant to be idempotent. */
4769 if (!async_terminal_is_ours)
4770 return;
4771
4772 delete_file_handler (input_fd);
4773 async_terminal_is_ours = 0;
4774 set_sigint_trap ();
4775 }
4776
4777 /* target_terminal_ours implementation. */
4778
4779 static void
4780 linux_nat_terminal_ours (void)
4781 {
4782 if (!target_is_async_p ())
4783 {
4784 /* Async mode is disabled. */
4785 terminal_ours ();
4786 return;
4787 }
4788
4789 /* GDB should never give the terminal to the inferior if the
4790 inferior is running in the background (run&, continue&, etc.),
4791 but claiming it sure should. */
4792 terminal_ours ();
4793
4794 if (async_terminal_is_ours)
4795 return;
4796
4797 clear_sigint_trap ();
4798 add_file_handler (input_fd, stdin_event_handler, 0);
4799 async_terminal_is_ours = 1;
4800 }
4801
4802 static void (*async_client_callback) (enum inferior_event_type event_type,
4803 void *context);
4804 static void *async_client_context;
4805
4806 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4807 so we notice when any child changes state, and notify the
4808 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4809 above to wait for the arrival of a SIGCHLD. */
4810
4811 static void
4812 sigchld_handler (int signo)
4813 {
4814 int old_errno = errno;
4815
4816 if (debug_linux_nat_async)
4817 fprintf_unfiltered (gdb_stdlog, "sigchld\n");
4818
4819 if (signo == SIGCHLD
4820 && linux_nat_event_pipe[0] != -1)
4821 async_file_mark (); /* Let the event loop know that there are
4822 events to handle. */
4823
4824 errno = old_errno;
4825 }
4826
4827 /* Callback registered with the target events file descriptor. */
4828
4829 static void
4830 handle_target_event (int error, gdb_client_data client_data)
4831 {
4832 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4833 }
4834
4835 /* Create/destroy the target events pipe. Returns previous state. */
4836
4837 static int
4838 linux_async_pipe (int enable)
4839 {
4840 int previous = (linux_nat_event_pipe[0] != -1);
4841
4842 if (previous != enable)
4843 {
4844 sigset_t prev_mask;
4845
4846 block_child_signals (&prev_mask);
4847
4848 if (enable)
4849 {
4850 if (pipe (linux_nat_event_pipe) == -1)
4851 internal_error (__FILE__, __LINE__,
4852 "creating event pipe failed.");
4853
4854 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4855 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4856 }
4857 else
4858 {
4859 close (linux_nat_event_pipe[0]);
4860 close (linux_nat_event_pipe[1]);
4861 linux_nat_event_pipe[0] = -1;
4862 linux_nat_event_pipe[1] = -1;
4863 }
4864
4865 restore_child_signals_mask (&prev_mask);
4866 }
4867
4868 return previous;
4869 }
4870
4871 /* target_async implementation. */
4872
4873 static void
4874 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4875 void *context), void *context)
4876 {
4877 if (linux_nat_async_mask_value == 0 || !target_async_permitted)
4878 internal_error (__FILE__, __LINE__,
4879 "Calling target_async when async is masked");
4880
4881 if (callback != NULL)
4882 {
4883 async_client_callback = callback;
4884 async_client_context = context;
4885 if (!linux_async_pipe (1))
4886 {
4887 add_file_handler (linux_nat_event_pipe[0],
4888 handle_target_event, NULL);
4889 /* There may be pending events to handle. Tell the event loop
4890 to poll them. */
4891 async_file_mark ();
4892 }
4893 }
4894 else
4895 {
4896 async_client_callback = callback;
4897 async_client_context = context;
4898 delete_file_handler (linux_nat_event_pipe[0]);
4899 linux_async_pipe (0);
4900 }
4901 return;
4902 }
4903
4904 /* Stop an LWP, and push a TARGET_SIGNAL_0 stop status if no other
4905 event came out. */
4906
4907 static int
4908 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4909 {
4910 if (!lwp->stopped)
4911 {
4912 int pid, status;
4913 ptid_t ptid = lwp->ptid;
4914
4915 if (debug_linux_nat)
4916 fprintf_unfiltered (gdb_stdlog,
4917 "LNSL: running -> suspending %s\n",
4918 target_pid_to_str (lwp->ptid));
4919
4920
4921 stop_callback (lwp, NULL);
4922 stop_wait_callback (lwp, NULL);
4923
4924 /* If the lwp exits while we try to stop it, there's nothing
4925 else to do. */
4926 lwp = find_lwp_pid (ptid);
4927 if (lwp == NULL)
4928 return 0;
4929
4930 /* If we didn't collect any signal other than SIGSTOP while
4931 stopping the LWP, push a SIGNAL_0 event. In either case, the
4932 event-loop will end up calling target_wait which will collect
4933 these. */
4934 if (lwp->status == 0)
4935 lwp->status = W_STOPCODE (0);
4936 async_file_mark ();
4937 }
4938 else
4939 {
4940 /* Already known to be stopped; do nothing. */
4941
4942 if (debug_linux_nat)
4943 {
4944 if (find_thread_ptid (lwp->ptid)->stop_requested)
4945 fprintf_unfiltered (gdb_stdlog, "\
4946 LNSL: already stopped/stop_requested %s\n",
4947 target_pid_to_str (lwp->ptid));
4948 else
4949 fprintf_unfiltered (gdb_stdlog, "\
4950 LNSL: already stopped/no stop_requested yet %s\n",
4951 target_pid_to_str (lwp->ptid));
4952 }
4953 }
4954 return 0;
4955 }
4956
4957 static void
4958 linux_nat_stop (ptid_t ptid)
4959 {
4960 if (non_stop)
4961 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4962 else
4963 linux_ops->to_stop (ptid);
4964 }
4965
4966 static void
4967 linux_nat_close (int quitting)
4968 {
4969 /* Unregister from the event loop. */
4970 if (target_is_async_p ())
4971 target_async (NULL, 0);
4972
4973 /* Reset the async_masking. */
4974 linux_nat_async_mask_value = 1;
4975
4976 if (linux_ops->to_close)
4977 linux_ops->to_close (quitting);
4978 }
4979
4980 void
4981 linux_nat_add_target (struct target_ops *t)
4982 {
4983 /* Save the provided single-threaded target. We save this in a separate
4984 variable because another target we've inherited from (e.g. inf-ptrace)
4985 may have saved a pointer to T; we want to use it for the final
4986 process stratum target. */
4987 linux_ops_saved = *t;
4988 linux_ops = &linux_ops_saved;
4989
4990 /* Override some methods for multithreading. */
4991 t->to_create_inferior = linux_nat_create_inferior;
4992 t->to_attach = linux_nat_attach;
4993 t->to_detach = linux_nat_detach;
4994 t->to_resume = linux_nat_resume;
4995 t->to_wait = linux_nat_wait;
4996 t->to_xfer_partial = linux_nat_xfer_partial;
4997 t->to_kill = linux_nat_kill;
4998 t->to_mourn_inferior = linux_nat_mourn_inferior;
4999 t->to_thread_alive = linux_nat_thread_alive;
5000 t->to_pid_to_str = linux_nat_pid_to_str;
5001 t->to_has_thread_control = tc_schedlock;
5002
5003 t->to_can_async_p = linux_nat_can_async_p;
5004 t->to_is_async_p = linux_nat_is_async_p;
5005 t->to_supports_non_stop = linux_nat_supports_non_stop;
5006 t->to_async = linux_nat_async;
5007 t->to_async_mask = linux_nat_async_mask;
5008 t->to_terminal_inferior = linux_nat_terminal_inferior;
5009 t->to_terminal_ours = linux_nat_terminal_ours;
5010 t->to_close = linux_nat_close;
5011
5012 /* Methods for non-stop support. */
5013 t->to_stop = linux_nat_stop;
5014
5015 t->to_supports_multi_process = linux_nat_supports_multi_process;
5016
5017 /* We don't change the stratum; this target will sit at
5018 process_stratum and thread_db will set at thread_stratum. This
5019 is a little strange, since this is a multi-threaded-capable
5020 target, but we want to be on the stack below thread_db, and we
5021 also want to be used for single-threaded processes. */
5022
5023 add_target (t);
5024 }
5025
5026 /* Register a method to call whenever a new thread is attached. */
5027 void
5028 linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t))
5029 {
5030 /* Save the pointer. We only support a single registered instance
5031 of the GNU/Linux native target, so we do not need to map this to
5032 T. */
5033 linux_nat_new_thread = new_thread;
5034 }
5035
5036 /* Register a method that converts a siginfo object between the layout
5037 that ptrace returns, and the layout in the architecture of the
5038 inferior. */
5039 void
5040 linux_nat_set_siginfo_fixup (struct target_ops *t,
5041 int (*siginfo_fixup) (struct siginfo *,
5042 gdb_byte *,
5043 int))
5044 {
5045 /* Save the pointer. */
5046 linux_nat_siginfo_fixup = siginfo_fixup;
5047 }
5048
5049 /* Return the saved siginfo associated with PTID. */
5050 struct siginfo *
5051 linux_nat_get_siginfo (ptid_t ptid)
5052 {
5053 struct lwp_info *lp = find_lwp_pid (ptid);
5054
5055 gdb_assert (lp != NULL);
5056
5057 return &lp->siginfo;
5058 }
5059
5060 /* Provide a prototype to silence -Wmissing-prototypes. */
5061 extern initialize_file_ftype _initialize_linux_nat;
5062
5063 void
5064 _initialize_linux_nat (void)
5065 {
5066 sigset_t mask;
5067
5068 add_info ("proc", linux_nat_info_proc_cmd, _("\
5069 Show /proc process information about any running process.\n\
5070 Specify any process id, or use the program being debugged by default.\n\
5071 Specify any of the following keywords for detailed info:\n\
5072 mappings -- list of mapped memory regions.\n\
5073 stat -- list a bunch of random process info.\n\
5074 status -- list a different bunch of random process info.\n\
5075 all -- list all available /proc info."));
5076
5077 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5078 &debug_linux_nat, _("\
5079 Set debugging of GNU/Linux lwp module."), _("\
5080 Show debugging of GNU/Linux lwp module."), _("\
5081 Enables printf debugging output."),
5082 NULL,
5083 show_debug_linux_nat,
5084 &setdebuglist, &showdebuglist);
5085
5086 add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance,
5087 &debug_linux_nat_async, _("\
5088 Set debugging of GNU/Linux async lwp module."), _("\
5089 Show debugging of GNU/Linux async lwp module."), _("\
5090 Enables printf debugging output."),
5091 NULL,
5092 show_debug_linux_nat_async,
5093 &setdebuglist, &showdebuglist);
5094
5095 /* Save this mask as the default. */
5096 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5097
5098 /* Install a SIGCHLD handler. */
5099 sigchld_action.sa_handler = sigchld_handler;
5100 sigemptyset (&sigchld_action.sa_mask);
5101 sigchld_action.sa_flags = SA_RESTART;
5102
5103 /* Make it the default. */
5104 sigaction (SIGCHLD, &sigchld_action, NULL);
5105
5106 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5107 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5108 sigdelset (&suspend_mask, SIGCHLD);
5109
5110 sigemptyset (&blocked_mask);
5111
5112 add_setshow_boolean_cmd ("disable-randomization", class_support,
5113 &disable_randomization, _("\
5114 Set disabling of debuggee's virtual address space randomization."), _("\
5115 Show disabling of debuggee's virtual address space randomization."), _("\
5116 When this mode is on (which is the default), randomization of the virtual\n\
5117 address space is disabled. Standalone programs run with the randomization\n\
5118 enabled by default on some platforms."),
5119 &set_disable_randomization,
5120 &show_disable_randomization,
5121 &setlist, &showlist);
5122 }
5123 \f
5124
5125 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5126 the GNU/Linux Threads library and therefore doesn't really belong
5127 here. */
5128
5129 /* Read variable NAME in the target and return its value if found.
5130 Otherwise return zero. It is assumed that the type of the variable
5131 is `int'. */
5132
5133 static int
5134 get_signo (const char *name)
5135 {
5136 struct minimal_symbol *ms;
5137 int signo;
5138
5139 ms = lookup_minimal_symbol (name, NULL, NULL);
5140 if (ms == NULL)
5141 return 0;
5142
5143 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5144 sizeof (signo)) != 0)
5145 return 0;
5146
5147 return signo;
5148 }
5149
5150 /* Return the set of signals used by the threads library in *SET. */
5151
5152 void
5153 lin_thread_get_thread_signals (sigset_t *set)
5154 {
5155 struct sigaction action;
5156 int restart, cancel;
5157
5158 sigemptyset (&blocked_mask);
5159 sigemptyset (set);
5160
5161 restart = get_signo ("__pthread_sig_restart");
5162 cancel = get_signo ("__pthread_sig_cancel");
5163
5164 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5165 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5166 not provide any way for the debugger to query the signal numbers -
5167 fortunately they don't change! */
5168
5169 if (restart == 0)
5170 restart = __SIGRTMIN;
5171
5172 if (cancel == 0)
5173 cancel = __SIGRTMIN + 1;
5174
5175 sigaddset (set, restart);
5176 sigaddset (set, cancel);
5177
5178 /* The GNU/Linux Threads library makes terminating threads send a
5179 special "cancel" signal instead of SIGCHLD. Make sure we catch
5180 those (to prevent them from terminating GDB itself, which is
5181 likely to be their default action) and treat them the same way as
5182 SIGCHLD. */
5183
5184 action.sa_handler = sigchld_handler;
5185 sigemptyset (&action.sa_mask);
5186 action.sa_flags = SA_RESTART;
5187 sigaction (cancel, &action, NULL);
5188
5189 /* We block the "cancel" signal throughout this code ... */
5190 sigaddset (&blocked_mask, cancel);
5191 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5192
5193 /* ... except during a sigsuspend. */
5194 sigdelset (&suspend_mask, cancel);
5195 }
This page took 0.152891 seconds and 5 git commands to generate.