gdb/
[deliverable/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdb_string.h"
24 #include "gdb_wait.h"
25 #include "gdb_assert.h"
26 #ifdef HAVE_TKILL_SYSCALL
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #endif
30 #include <sys/ptrace.h>
31 #include "linux-nat.h"
32 #include "linux-ptrace.h"
33 #include "linux-procfs.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/param.h> /* for MAXPATHLEN */
43 #include <sys/procfs.h> /* for elf_gregset etc. */
44 #include "elf-bfd.h" /* for elfcore_write_* */
45 #include "gregset.h" /* for gregset */
46 #include "gdbcore.h" /* for get_exec_file */
47 #include <ctype.h> /* for isdigit */
48 #include "gdbthread.h" /* for struct thread_info etc. */
49 #include "gdb_stat.h" /* for struct stat */
50 #include <fcntl.h> /* for O_RDONLY */
51 #include "inf-loop.h"
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include <pwd.h>
55 #include <sys/types.h>
56 #include "gdb_dirent.h"
57 #include "xml-support.h"
58 #include "terminal.h"
59 #include <sys/vfs.h>
60 #include "solib.h"
61 #include "linux-osdata.h"
62 #include "linux-tdep.h"
63 #include "symfile.h"
64 #include "agent.h"
65 #include "tracepoint.h"
66 #include "exceptions.h"
67 #include "linux-ptrace.h"
68 #include "buffer.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 #ifdef HAVE_PERSONALITY
75 # include <sys/personality.h>
76 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
77 # define ADDR_NO_RANDOMIZE 0x0040000
78 # endif
79 #endif /* HAVE_PERSONALITY */
80
81 /* This comment documents high-level logic of this file.
82
83 Waiting for events in sync mode
84 ===============================
85
86 When waiting for an event in a specific thread, we just use waitpid, passing
87 the specific pid, and not passing WNOHANG.
88
89 When waiting for an event in all threads, waitpid is not quite good. Prior to
90 version 2.4, Linux can either wait for event in main thread, or in secondary
91 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
92 miss an event. The solution is to use non-blocking waitpid, together with
93 sigsuspend. First, we use non-blocking waitpid to get an event in the main
94 process, if any. Second, we use non-blocking waitpid with the __WCLONED
95 flag to check for events in cloned processes. If nothing is found, we use
96 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
97 happened to a child process -- and SIGCHLD will be delivered both for events
98 in main debugged process and in cloned processes. As soon as we know there's
99 an event, we get back to calling nonblocking waitpid with and without
100 __WCLONED.
101
102 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
103 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
104 blocked, the signal becomes pending and sigsuspend immediately
105 notices it and returns.
106
107 Waiting for events in async mode
108 ================================
109
110 In async mode, GDB should always be ready to handle both user input
111 and target events, so neither blocking waitpid nor sigsuspend are
112 viable options. Instead, we should asynchronously notify the GDB main
113 event loop whenever there's an unprocessed event from the target. We
114 detect asynchronous target events by handling SIGCHLD signals. To
115 notify the event loop about target events, the self-pipe trick is used
116 --- a pipe is registered as waitable event source in the event loop,
117 the event loop select/poll's on the read end of this pipe (as well on
118 other event sources, e.g., stdin), and the SIGCHLD handler writes a
119 byte to this pipe. This is more portable than relying on
120 pselect/ppoll, since on kernels that lack those syscalls, libc
121 emulates them with select/poll+sigprocmask, and that is racy
122 (a.k.a. plain broken).
123
124 Obviously, if we fail to notify the event loop if there's a target
125 event, it's bad. OTOH, if we notify the event loop when there's no
126 event from the target, linux_nat_wait will detect that there's no real
127 event to report, and return event of type TARGET_WAITKIND_IGNORE.
128 This is mostly harmless, but it will waste time and is better avoided.
129
130 The main design point is that every time GDB is outside linux-nat.c,
131 we have a SIGCHLD handler installed that is called when something
132 happens to the target and notifies the GDB event loop. Whenever GDB
133 core decides to handle the event, and calls into linux-nat.c, we
134 process things as in sync mode, except that the we never block in
135 sigsuspend.
136
137 While processing an event, we may end up momentarily blocked in
138 waitpid calls. Those waitpid calls, while blocking, are guarantied to
139 return quickly. E.g., in all-stop mode, before reporting to the core
140 that an LWP hit a breakpoint, all LWPs are stopped by sending them
141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
142 Note that this is different from blocking indefinitely waiting for the
143 next event --- here, we're already handling an event.
144
145 Use of signals
146 ==============
147
148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
149 signal is not entirely significant; we just need for a signal to be delivered,
150 so that we can intercept it. SIGSTOP's advantage is that it can not be
151 blocked. A disadvantage is that it is not a real-time signal, so it can only
152 be queued once; we do not keep track of other sources of SIGSTOP.
153
154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
155 use them, because they have special behavior when the signal is generated -
156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
157 kills the entire thread group.
158
159 A delivered SIGSTOP would stop the entire thread group, not just the thread we
160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
161 cancel it (by PTRACE_CONT without passing SIGSTOP).
162
163 We could use a real-time signal instead. This would solve those problems; we
164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
166 generates it, and there are races with trying to find a signal that is not
167 blocked. */
168
169 #ifndef O_LARGEFILE
170 #define O_LARGEFILE 0
171 #endif
172
173 /* Unlike other extended result codes, WSTOPSIG (status) on
174 PTRACE_O_TRACESYSGOOD syscall events doesn't return SIGTRAP, but
175 instead SIGTRAP with bit 7 set. */
176 #define SYSCALL_SIGTRAP (SIGTRAP | 0x80)
177
178 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
179 the use of the multi-threaded target. */
180 static struct target_ops *linux_ops;
181 static struct target_ops linux_ops_saved;
182
183 /* The method to call, if any, when a new thread is attached. */
184 static void (*linux_nat_new_thread) (struct lwp_info *);
185
186 /* Hook to call prior to resuming a thread. */
187 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
188
189 /* The method to call, if any, when the siginfo object needs to be
190 converted between the layout returned by ptrace, and the layout in
191 the architecture of the inferior. */
192 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
193 gdb_byte *,
194 int);
195
196 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
197 Called by our to_xfer_partial. */
198 static LONGEST (*super_xfer_partial) (struct target_ops *,
199 enum target_object,
200 const char *, gdb_byte *,
201 const gdb_byte *,
202 ULONGEST, LONGEST);
203
204 static int debug_linux_nat;
205 static void
206 show_debug_linux_nat (struct ui_file *file, int from_tty,
207 struct cmd_list_element *c, const char *value)
208 {
209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
210 value);
211 }
212
213 struct simple_pid_list
214 {
215 int pid;
216 int status;
217 struct simple_pid_list *next;
218 };
219 struct simple_pid_list *stopped_pids;
220
221 /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK
222 can not be used, 1 if it can. */
223
224 static int linux_supports_tracefork_flag = -1;
225
226 /* This variable is a tri-state flag: -1 for unknown, 0 if
227 PTRACE_O_TRACESYSGOOD can not be used, 1 if it can. */
228
229 static int linux_supports_tracesysgood_flag = -1;
230
231 /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have
232 PTRACE_O_TRACEVFORKDONE. */
233
234 static int linux_supports_tracevforkdone_flag = -1;
235
236 /* Stores the current used ptrace() options. */
237 static int current_ptrace_options = 0;
238
239 /* Async mode support. */
240
241 /* The read/write ends of the pipe registered as waitable file in the
242 event loop. */
243 static int linux_nat_event_pipe[2] = { -1, -1 };
244
245 /* Flush the event pipe. */
246
247 static void
248 async_file_flush (void)
249 {
250 int ret;
251 char buf;
252
253 do
254 {
255 ret = read (linux_nat_event_pipe[0], &buf, 1);
256 }
257 while (ret >= 0 || (ret == -1 && errno == EINTR));
258 }
259
260 /* Put something (anything, doesn't matter what, or how much) in event
261 pipe, so that the select/poll in the event-loop realizes we have
262 something to process. */
263
264 static void
265 async_file_mark (void)
266 {
267 int ret;
268
269 /* It doesn't really matter what the pipe contains, as long we end
270 up with something in it. Might as well flush the previous
271 left-overs. */
272 async_file_flush ();
273
274 do
275 {
276 ret = write (linux_nat_event_pipe[1], "+", 1);
277 }
278 while (ret == -1 && errno == EINTR);
279
280 /* Ignore EAGAIN. If the pipe is full, the event loop will already
281 be awakened anyway. */
282 }
283
284 static void linux_nat_async (void (*callback)
285 (enum inferior_event_type event_type,
286 void *context),
287 void *context);
288 static int kill_lwp (int lwpid, int signo);
289
290 static int stop_callback (struct lwp_info *lp, void *data);
291
292 static void block_child_signals (sigset_t *prev_mask);
293 static void restore_child_signals_mask (sigset_t *prev_mask);
294
295 struct lwp_info;
296 static struct lwp_info *add_lwp (ptid_t ptid);
297 static void purge_lwp_list (int pid);
298 static void delete_lwp (ptid_t ptid);
299 static struct lwp_info *find_lwp_pid (ptid_t ptid);
300
301 \f
302 /* Trivial list manipulation functions to keep track of a list of
303 new stopped processes. */
304 static void
305 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
306 {
307 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
308
309 new_pid->pid = pid;
310 new_pid->status = status;
311 new_pid->next = *listp;
312 *listp = new_pid;
313 }
314
315 static int
316 in_pid_list_p (struct simple_pid_list *list, int pid)
317 {
318 struct simple_pid_list *p;
319
320 for (p = list; p != NULL; p = p->next)
321 if (p->pid == pid)
322 return 1;
323 return 0;
324 }
325
326 static int
327 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
328 {
329 struct simple_pid_list **p;
330
331 for (p = listp; *p != NULL; p = &(*p)->next)
332 if ((*p)->pid == pid)
333 {
334 struct simple_pid_list *next = (*p)->next;
335
336 *statusp = (*p)->status;
337 xfree (*p);
338 *p = next;
339 return 1;
340 }
341 return 0;
342 }
343
344 \f
345 /* A helper function for linux_test_for_tracefork, called after fork (). */
346
347 static void
348 linux_tracefork_child (void)
349 {
350 ptrace (PTRACE_TRACEME, 0, 0, 0);
351 kill (getpid (), SIGSTOP);
352 fork ();
353 _exit (0);
354 }
355
356 /* Wrapper function for waitpid which handles EINTR. */
357
358 static int
359 my_waitpid (int pid, int *statusp, int flags)
360 {
361 int ret;
362
363 do
364 {
365 ret = waitpid (pid, statusp, flags);
366 }
367 while (ret == -1 && errno == EINTR);
368
369 return ret;
370 }
371
372 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.
373
374 First, we try to enable fork tracing on ORIGINAL_PID. If this fails,
375 we know that the feature is not available. This may change the tracing
376 options for ORIGINAL_PID, but we'll be setting them shortly anyway.
377
378 However, if it succeeds, we don't know for sure that the feature is
379 available; old versions of PTRACE_SETOPTIONS ignored unknown options. We
380 create a child process, attach to it, use PTRACE_SETOPTIONS to enable
381 fork tracing, and let it fork. If the process exits, we assume that we
382 can't use TRACEFORK; if we get the fork notification, and we can extract
383 the new child's PID, then we assume that we can. */
384
385 static void
386 linux_test_for_tracefork (int original_pid)
387 {
388 int child_pid, ret, status;
389 long second_pid;
390 sigset_t prev_mask;
391
392 /* We don't want those ptrace calls to be interrupted. */
393 block_child_signals (&prev_mask);
394
395 linux_supports_tracefork_flag = 0;
396 linux_supports_tracevforkdone_flag = 0;
397
398 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK);
399 if (ret != 0)
400 {
401 restore_child_signals_mask (&prev_mask);
402 return;
403 }
404
405 child_pid = fork ();
406 if (child_pid == -1)
407 perror_with_name (("fork"));
408
409 if (child_pid == 0)
410 linux_tracefork_child ();
411
412 ret = my_waitpid (child_pid, &status, 0);
413 if (ret == -1)
414 perror_with_name (("waitpid"));
415 else if (ret != child_pid)
416 error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret);
417 if (! WIFSTOPPED (status))
418 error (_("linux_test_for_tracefork: waitpid: unexpected status %d."),
419 status);
420
421 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
422 if (ret != 0)
423 {
424 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
425 if (ret != 0)
426 {
427 warning (_("linux_test_for_tracefork: failed to kill child"));
428 restore_child_signals_mask (&prev_mask);
429 return;
430 }
431
432 ret = my_waitpid (child_pid, &status, 0);
433 if (ret != child_pid)
434 warning (_("linux_test_for_tracefork: failed "
435 "to wait for killed child"));
436 else if (!WIFSIGNALED (status))
437 warning (_("linux_test_for_tracefork: unexpected "
438 "wait status 0x%x from killed child"), status);
439
440 restore_child_signals_mask (&prev_mask);
441 return;
442 }
443
444 /* Check whether PTRACE_O_TRACEVFORKDONE is available. */
445 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
446 PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE);
447 linux_supports_tracevforkdone_flag = (ret == 0);
448
449 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
450 if (ret != 0)
451 warning (_("linux_test_for_tracefork: failed to resume child"));
452
453 ret = my_waitpid (child_pid, &status, 0);
454
455 if (ret == child_pid && WIFSTOPPED (status)
456 && status >> 16 == PTRACE_EVENT_FORK)
457 {
458 second_pid = 0;
459 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
460 if (ret == 0 && second_pid != 0)
461 {
462 int second_status;
463
464 linux_supports_tracefork_flag = 1;
465 my_waitpid (second_pid, &second_status, 0);
466 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
467 if (ret != 0)
468 warning (_("linux_test_for_tracefork: "
469 "failed to kill second child"));
470 my_waitpid (second_pid, &status, 0);
471 }
472 }
473 else
474 warning (_("linux_test_for_tracefork: unexpected result from waitpid "
475 "(%d, status 0x%x)"), ret, status);
476
477 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
478 if (ret != 0)
479 warning (_("linux_test_for_tracefork: failed to kill child"));
480 my_waitpid (child_pid, &status, 0);
481
482 restore_child_signals_mask (&prev_mask);
483 }
484
485 /* Determine if PTRACE_O_TRACESYSGOOD can be used to follow syscalls.
486
487 We try to enable syscall tracing on ORIGINAL_PID. If this fails,
488 we know that the feature is not available. This may change the tracing
489 options for ORIGINAL_PID, but we'll be setting them shortly anyway. */
490
491 static void
492 linux_test_for_tracesysgood (int original_pid)
493 {
494 int ret;
495 sigset_t prev_mask;
496
497 /* We don't want those ptrace calls to be interrupted. */
498 block_child_signals (&prev_mask);
499
500 linux_supports_tracesysgood_flag = 0;
501
502 ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACESYSGOOD);
503 if (ret != 0)
504 goto out;
505
506 linux_supports_tracesysgood_flag = 1;
507 out:
508 restore_child_signals_mask (&prev_mask);
509 }
510
511 /* Determine wether we support PTRACE_O_TRACESYSGOOD option available.
512 This function also sets linux_supports_tracesysgood_flag. */
513
514 static int
515 linux_supports_tracesysgood (int pid)
516 {
517 if (linux_supports_tracesysgood_flag == -1)
518 linux_test_for_tracesysgood (pid);
519 return linux_supports_tracesysgood_flag;
520 }
521
522 /* Return non-zero iff we have tracefork functionality available.
523 This function also sets linux_supports_tracefork_flag. */
524
525 static int
526 linux_supports_tracefork (int pid)
527 {
528 if (linux_supports_tracefork_flag == -1)
529 linux_test_for_tracefork (pid);
530 return linux_supports_tracefork_flag;
531 }
532
533 static int
534 linux_supports_tracevforkdone (int pid)
535 {
536 if (linux_supports_tracefork_flag == -1)
537 linux_test_for_tracefork (pid);
538 return linux_supports_tracevforkdone_flag;
539 }
540
541 static void
542 linux_enable_tracesysgood (ptid_t ptid)
543 {
544 int pid = ptid_get_lwp (ptid);
545
546 if (pid == 0)
547 pid = ptid_get_pid (ptid);
548
549 if (linux_supports_tracesysgood (pid) == 0)
550 return;
551
552 current_ptrace_options |= PTRACE_O_TRACESYSGOOD;
553
554 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
555 }
556
557 \f
558 void
559 linux_enable_event_reporting (ptid_t ptid)
560 {
561 int pid = ptid_get_lwp (ptid);
562
563 if (pid == 0)
564 pid = ptid_get_pid (ptid);
565
566 if (! linux_supports_tracefork (pid))
567 return;
568
569 current_ptrace_options |= PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK
570 | PTRACE_O_TRACEEXEC | PTRACE_O_TRACECLONE;
571
572 if (linux_supports_tracevforkdone (pid))
573 current_ptrace_options |= PTRACE_O_TRACEVFORKDONE;
574
575 /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support
576 read-only process state. */
577
578 ptrace (PTRACE_SETOPTIONS, pid, 0, current_ptrace_options);
579 }
580
581 static void
582 linux_child_post_attach (int pid)
583 {
584 linux_enable_event_reporting (pid_to_ptid (pid));
585 linux_enable_tracesysgood (pid_to_ptid (pid));
586 }
587
588 static void
589 linux_child_post_startup_inferior (ptid_t ptid)
590 {
591 linux_enable_event_reporting (ptid);
592 linux_enable_tracesysgood (ptid);
593 }
594
595 /* Return the number of known LWPs in the tgid given by PID. */
596
597 static int
598 num_lwps (int pid)
599 {
600 int count = 0;
601 struct lwp_info *lp;
602
603 for (lp = lwp_list; lp; lp = lp->next)
604 if (ptid_get_pid (lp->ptid) == pid)
605 count++;
606
607 return count;
608 }
609
610 /* Call delete_lwp with prototype compatible for make_cleanup. */
611
612 static void
613 delete_lwp_cleanup (void *lp_voidp)
614 {
615 struct lwp_info *lp = lp_voidp;
616
617 delete_lwp (lp->ptid);
618 }
619
620 static int
621 linux_child_follow_fork (struct target_ops *ops, int follow_child)
622 {
623 sigset_t prev_mask;
624 int has_vforked;
625 int parent_pid, child_pid;
626
627 block_child_signals (&prev_mask);
628
629 has_vforked = (inferior_thread ()->pending_follow.kind
630 == TARGET_WAITKIND_VFORKED);
631 parent_pid = ptid_get_lwp (inferior_ptid);
632 if (parent_pid == 0)
633 parent_pid = ptid_get_pid (inferior_ptid);
634 child_pid = PIDGET (inferior_thread ()->pending_follow.value.related_pid);
635
636 if (!detach_fork)
637 linux_enable_event_reporting (pid_to_ptid (child_pid));
638
639 if (has_vforked
640 && !non_stop /* Non-stop always resumes both branches. */
641 && (!target_is_async_p () || sync_execution)
642 && !(follow_child || detach_fork || sched_multi))
643 {
644 /* The parent stays blocked inside the vfork syscall until the
645 child execs or exits. If we don't let the child run, then
646 the parent stays blocked. If we're telling the parent to run
647 in the foreground, the user will not be able to ctrl-c to get
648 back the terminal, effectively hanging the debug session. */
649 fprintf_filtered (gdb_stderr, _("\
650 Can not resume the parent process over vfork in the foreground while\n\
651 holding the child stopped. Try \"set detach-on-fork\" or \
652 \"set schedule-multiple\".\n"));
653 /* FIXME output string > 80 columns. */
654 return 1;
655 }
656
657 if (! follow_child)
658 {
659 struct lwp_info *child_lp = NULL;
660
661 /* We're already attached to the parent, by default. */
662
663 /* Detach new forked process? */
664 if (detach_fork)
665 {
666 struct cleanup *old_chain;
667
668 /* Before detaching from the child, remove all breakpoints
669 from it. If we forked, then this has already been taken
670 care of by infrun.c. If we vforked however, any
671 breakpoint inserted in the parent is visible in the
672 child, even those added while stopped in a vfork
673 catchpoint. This will remove the breakpoints from the
674 parent also, but they'll be reinserted below. */
675 if (has_vforked)
676 {
677 /* keep breakpoints list in sync. */
678 remove_breakpoints_pid (GET_PID (inferior_ptid));
679 }
680
681 if (info_verbose || debug_linux_nat)
682 {
683 target_terminal_ours ();
684 fprintf_filtered (gdb_stdlog,
685 "Detaching after fork from "
686 "child process %d.\n",
687 child_pid);
688 }
689
690 old_chain = save_inferior_ptid ();
691 inferior_ptid = ptid_build (child_pid, child_pid, 0);
692
693 child_lp = add_lwp (inferior_ptid);
694 child_lp->stopped = 1;
695 child_lp->last_resume_kind = resume_stop;
696 make_cleanup (delete_lwp_cleanup, child_lp);
697
698 /* CHILD_LP has new PID, therefore linux_nat_new_thread is not called for it.
699 See i386_inferior_data_get for the Linux kernel specifics.
700 Ensure linux_nat_prepare_to_resume will reset the hardware debug
701 registers. It is done by the linux_nat_new_thread call, which is
702 being skipped in add_lwp above for the first lwp of a pid. */
703 gdb_assert (num_lwps (GET_PID (child_lp->ptid)) == 1);
704 if (linux_nat_new_thread != NULL)
705 linux_nat_new_thread (child_lp);
706
707 if (linux_nat_prepare_to_resume != NULL)
708 linux_nat_prepare_to_resume (child_lp);
709 ptrace (PTRACE_DETACH, child_pid, 0, 0);
710
711 do_cleanups (old_chain);
712 }
713 else
714 {
715 struct inferior *parent_inf, *child_inf;
716 struct cleanup *old_chain;
717
718 /* Add process to GDB's tables. */
719 child_inf = add_inferior (child_pid);
720
721 parent_inf = current_inferior ();
722 child_inf->attach_flag = parent_inf->attach_flag;
723 copy_terminal_info (child_inf, parent_inf);
724
725 old_chain = save_inferior_ptid ();
726 save_current_program_space ();
727
728 inferior_ptid = ptid_build (child_pid, child_pid, 0);
729 add_thread (inferior_ptid);
730 child_lp = add_lwp (inferior_ptid);
731 child_lp->stopped = 1;
732 child_lp->last_resume_kind = resume_stop;
733 child_inf->symfile_flags = SYMFILE_NO_READ;
734
735 /* If this is a vfork child, then the address-space is
736 shared with the parent. */
737 if (has_vforked)
738 {
739 child_inf->pspace = parent_inf->pspace;
740 child_inf->aspace = parent_inf->aspace;
741
742 /* The parent will be frozen until the child is done
743 with the shared region. Keep track of the
744 parent. */
745 child_inf->vfork_parent = parent_inf;
746 child_inf->pending_detach = 0;
747 parent_inf->vfork_child = child_inf;
748 parent_inf->pending_detach = 0;
749 }
750 else
751 {
752 child_inf->aspace = new_address_space ();
753 child_inf->pspace = add_program_space (child_inf->aspace);
754 child_inf->removable = 1;
755 set_current_program_space (child_inf->pspace);
756 clone_program_space (child_inf->pspace, parent_inf->pspace);
757
758 /* Let the shared library layer (solib-svr4) learn about
759 this new process, relocate the cloned exec, pull in
760 shared libraries, and install the solib event
761 breakpoint. If a "cloned-VM" event was propagated
762 better throughout the core, this wouldn't be
763 required. */
764 solib_create_inferior_hook (0);
765 }
766
767 /* Let the thread_db layer learn about this new process. */
768 check_for_thread_db ();
769
770 do_cleanups (old_chain);
771 }
772
773 if (has_vforked)
774 {
775 struct lwp_info *parent_lp;
776 struct inferior *parent_inf;
777
778 parent_inf = current_inferior ();
779
780 /* If we detached from the child, then we have to be careful
781 to not insert breakpoints in the parent until the child
782 is done with the shared memory region. However, if we're
783 staying attached to the child, then we can and should
784 insert breakpoints, so that we can debug it. A
785 subsequent child exec or exit is enough to know when does
786 the child stops using the parent's address space. */
787 parent_inf->waiting_for_vfork_done = detach_fork;
788 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
789
790 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
791 gdb_assert (linux_supports_tracefork_flag >= 0);
792
793 if (linux_supports_tracevforkdone (0))
794 {
795 if (debug_linux_nat)
796 fprintf_unfiltered (gdb_stdlog,
797 "LCFF: waiting for VFORK_DONE on %d\n",
798 parent_pid);
799 parent_lp->stopped = 1;
800
801 /* We'll handle the VFORK_DONE event like any other
802 event, in target_wait. */
803 }
804 else
805 {
806 /* We can't insert breakpoints until the child has
807 finished with the shared memory region. We need to
808 wait until that happens. Ideal would be to just
809 call:
810 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
811 - waitpid (parent_pid, &status, __WALL);
812 However, most architectures can't handle a syscall
813 being traced on the way out if it wasn't traced on
814 the way in.
815
816 We might also think to loop, continuing the child
817 until it exits or gets a SIGTRAP. One problem is
818 that the child might call ptrace with PTRACE_TRACEME.
819
820 There's no simple and reliable way to figure out when
821 the vforked child will be done with its copy of the
822 shared memory. We could step it out of the syscall,
823 two instructions, let it go, and then single-step the
824 parent once. When we have hardware single-step, this
825 would work; with software single-step it could still
826 be made to work but we'd have to be able to insert
827 single-step breakpoints in the child, and we'd have
828 to insert -just- the single-step breakpoint in the
829 parent. Very awkward.
830
831 In the end, the best we can do is to make sure it
832 runs for a little while. Hopefully it will be out of
833 range of any breakpoints we reinsert. Usually this
834 is only the single-step breakpoint at vfork's return
835 point. */
836
837 if (debug_linux_nat)
838 fprintf_unfiltered (gdb_stdlog,
839 "LCFF: no VFORK_DONE "
840 "support, sleeping a bit\n");
841
842 usleep (10000);
843
844 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
845 and leave it pending. The next linux_nat_resume call
846 will notice a pending event, and bypasses actually
847 resuming the inferior. */
848 parent_lp->status = 0;
849 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
850 parent_lp->stopped = 1;
851
852 /* If we're in async mode, need to tell the event loop
853 there's something here to process. */
854 if (target_can_async_p ())
855 async_file_mark ();
856 }
857 }
858 }
859 else
860 {
861 struct inferior *parent_inf, *child_inf;
862 struct lwp_info *child_lp;
863 struct program_space *parent_pspace;
864
865 if (info_verbose || debug_linux_nat)
866 {
867 target_terminal_ours ();
868 if (has_vforked)
869 fprintf_filtered (gdb_stdlog,
870 _("Attaching after process %d "
871 "vfork to child process %d.\n"),
872 parent_pid, child_pid);
873 else
874 fprintf_filtered (gdb_stdlog,
875 _("Attaching after process %d "
876 "fork to child process %d.\n"),
877 parent_pid, child_pid);
878 }
879
880 /* Add the new inferior first, so that the target_detach below
881 doesn't unpush the target. */
882
883 child_inf = add_inferior (child_pid);
884
885 parent_inf = current_inferior ();
886 child_inf->attach_flag = parent_inf->attach_flag;
887 copy_terminal_info (child_inf, parent_inf);
888
889 parent_pspace = parent_inf->pspace;
890
891 /* If we're vforking, we want to hold on to the parent until the
892 child exits or execs. At child exec or exit time we can
893 remove the old breakpoints from the parent and detach or
894 resume debugging it. Otherwise, detach the parent now; we'll
895 want to reuse it's program/address spaces, but we can't set
896 them to the child before removing breakpoints from the
897 parent, otherwise, the breakpoints module could decide to
898 remove breakpoints from the wrong process (since they'd be
899 assigned to the same address space). */
900
901 if (has_vforked)
902 {
903 gdb_assert (child_inf->vfork_parent == NULL);
904 gdb_assert (parent_inf->vfork_child == NULL);
905 child_inf->vfork_parent = parent_inf;
906 child_inf->pending_detach = 0;
907 parent_inf->vfork_child = child_inf;
908 parent_inf->pending_detach = detach_fork;
909 parent_inf->waiting_for_vfork_done = 0;
910 }
911 else if (detach_fork)
912 target_detach (NULL, 0);
913
914 /* Note that the detach above makes PARENT_INF dangling. */
915
916 /* Add the child thread to the appropriate lists, and switch to
917 this new thread, before cloning the program space, and
918 informing the solib layer about this new process. */
919
920 inferior_ptid = ptid_build (child_pid, child_pid, 0);
921 add_thread (inferior_ptid);
922 child_lp = add_lwp (inferior_ptid);
923 child_lp->stopped = 1;
924 child_lp->last_resume_kind = resume_stop;
925
926 /* If this is a vfork child, then the address-space is shared
927 with the parent. If we detached from the parent, then we can
928 reuse the parent's program/address spaces. */
929 if (has_vforked || detach_fork)
930 {
931 child_inf->pspace = parent_pspace;
932 child_inf->aspace = child_inf->pspace->aspace;
933 }
934 else
935 {
936 child_inf->aspace = new_address_space ();
937 child_inf->pspace = add_program_space (child_inf->aspace);
938 child_inf->removable = 1;
939 child_inf->symfile_flags = SYMFILE_NO_READ;
940 set_current_program_space (child_inf->pspace);
941 clone_program_space (child_inf->pspace, parent_pspace);
942
943 /* Let the shared library layer (solib-svr4) learn about
944 this new process, relocate the cloned exec, pull in
945 shared libraries, and install the solib event breakpoint.
946 If a "cloned-VM" event was propagated better throughout
947 the core, this wouldn't be required. */
948 solib_create_inferior_hook (0);
949 }
950
951 /* Let the thread_db layer learn about this new process. */
952 check_for_thread_db ();
953 }
954
955 restore_child_signals_mask (&prev_mask);
956 return 0;
957 }
958
959 \f
960 static int
961 linux_child_insert_fork_catchpoint (int pid)
962 {
963 return !linux_supports_tracefork (pid);
964 }
965
966 static int
967 linux_child_remove_fork_catchpoint (int pid)
968 {
969 return 0;
970 }
971
972 static int
973 linux_child_insert_vfork_catchpoint (int pid)
974 {
975 return !linux_supports_tracefork (pid);
976 }
977
978 static int
979 linux_child_remove_vfork_catchpoint (int pid)
980 {
981 return 0;
982 }
983
984 static int
985 linux_child_insert_exec_catchpoint (int pid)
986 {
987 return !linux_supports_tracefork (pid);
988 }
989
990 static int
991 linux_child_remove_exec_catchpoint (int pid)
992 {
993 return 0;
994 }
995
996 static int
997 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
998 int table_size, int *table)
999 {
1000 if (!linux_supports_tracesysgood (pid))
1001 return 1;
1002
1003 /* On GNU/Linux, we ignore the arguments. It means that we only
1004 enable the syscall catchpoints, but do not disable them.
1005
1006 Also, we do not use the `table' information because we do not
1007 filter system calls here. We let GDB do the logic for us. */
1008 return 0;
1009 }
1010
1011 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
1012 are processes sharing the same VM space. A multi-threaded process
1013 is basically a group of such processes. However, such a grouping
1014 is almost entirely a user-space issue; the kernel doesn't enforce
1015 such a grouping at all (this might change in the future). In
1016 general, we'll rely on the threads library (i.e. the GNU/Linux
1017 Threads library) to provide such a grouping.
1018
1019 It is perfectly well possible to write a multi-threaded application
1020 without the assistance of a threads library, by using the clone
1021 system call directly. This module should be able to give some
1022 rudimentary support for debugging such applications if developers
1023 specify the CLONE_PTRACE flag in the clone system call, and are
1024 using the Linux kernel 2.4 or above.
1025
1026 Note that there are some peculiarities in GNU/Linux that affect
1027 this code:
1028
1029 - In general one should specify the __WCLONE flag to waitpid in
1030 order to make it report events for any of the cloned processes
1031 (and leave it out for the initial process). However, if a cloned
1032 process has exited the exit status is only reported if the
1033 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
1034 we cannot use it since GDB must work on older systems too.
1035
1036 - When a traced, cloned process exits and is waited for by the
1037 debugger, the kernel reassigns it to the original parent and
1038 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
1039 library doesn't notice this, which leads to the "zombie problem":
1040 When debugged a multi-threaded process that spawns a lot of
1041 threads will run out of processes, even if the threads exit,
1042 because the "zombies" stay around. */
1043
1044 /* List of known LWPs. */
1045 struct lwp_info *lwp_list;
1046 \f
1047
1048 /* Original signal mask. */
1049 static sigset_t normal_mask;
1050
1051 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
1052 _initialize_linux_nat. */
1053 static sigset_t suspend_mask;
1054
1055 /* Signals to block to make that sigsuspend work. */
1056 static sigset_t blocked_mask;
1057
1058 /* SIGCHLD action. */
1059 struct sigaction sigchld_action;
1060
1061 /* Block child signals (SIGCHLD and linux threads signals), and store
1062 the previous mask in PREV_MASK. */
1063
1064 static void
1065 block_child_signals (sigset_t *prev_mask)
1066 {
1067 /* Make sure SIGCHLD is blocked. */
1068 if (!sigismember (&blocked_mask, SIGCHLD))
1069 sigaddset (&blocked_mask, SIGCHLD);
1070
1071 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
1072 }
1073
1074 /* Restore child signals mask, previously returned by
1075 block_child_signals. */
1076
1077 static void
1078 restore_child_signals_mask (sigset_t *prev_mask)
1079 {
1080 sigprocmask (SIG_SETMASK, prev_mask, NULL);
1081 }
1082
1083 /* Mask of signals to pass directly to the inferior. */
1084 static sigset_t pass_mask;
1085
1086 /* Update signals to pass to the inferior. */
1087 static void
1088 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
1089 {
1090 int signo;
1091
1092 sigemptyset (&pass_mask);
1093
1094 for (signo = 1; signo < NSIG; signo++)
1095 {
1096 int target_signo = gdb_signal_from_host (signo);
1097 if (target_signo < numsigs && pass_signals[target_signo])
1098 sigaddset (&pass_mask, signo);
1099 }
1100 }
1101
1102 \f
1103
1104 /* Prototypes for local functions. */
1105 static int stop_wait_callback (struct lwp_info *lp, void *data);
1106 static int linux_thread_alive (ptid_t ptid);
1107 static char *linux_child_pid_to_exec_file (int pid);
1108
1109 \f
1110 /* Convert wait status STATUS to a string. Used for printing debug
1111 messages only. */
1112
1113 static char *
1114 status_to_str (int status)
1115 {
1116 static char buf[64];
1117
1118 if (WIFSTOPPED (status))
1119 {
1120 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
1121 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
1122 strsignal (SIGTRAP));
1123 else
1124 snprintf (buf, sizeof (buf), "%s (stopped)",
1125 strsignal (WSTOPSIG (status)));
1126 }
1127 else if (WIFSIGNALED (status))
1128 snprintf (buf, sizeof (buf), "%s (terminated)",
1129 strsignal (WTERMSIG (status)));
1130 else
1131 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
1132
1133 return buf;
1134 }
1135
1136 /* Destroy and free LP. */
1137
1138 static void
1139 lwp_free (struct lwp_info *lp)
1140 {
1141 xfree (lp->arch_private);
1142 xfree (lp);
1143 }
1144
1145 /* Remove all LWPs belong to PID from the lwp list. */
1146
1147 static void
1148 purge_lwp_list (int pid)
1149 {
1150 struct lwp_info *lp, *lpprev, *lpnext;
1151
1152 lpprev = NULL;
1153
1154 for (lp = lwp_list; lp; lp = lpnext)
1155 {
1156 lpnext = lp->next;
1157
1158 if (ptid_get_pid (lp->ptid) == pid)
1159 {
1160 if (lp == lwp_list)
1161 lwp_list = lp->next;
1162 else
1163 lpprev->next = lp->next;
1164
1165 lwp_free (lp);
1166 }
1167 else
1168 lpprev = lp;
1169 }
1170 }
1171
1172 /* Add the LWP specified by PID to the list. Return a pointer to the
1173 structure describing the new LWP. The LWP should already be stopped
1174 (with an exception for the very first LWP). */
1175
1176 static struct lwp_info *
1177 add_lwp (ptid_t ptid)
1178 {
1179 struct lwp_info *lp;
1180
1181 gdb_assert (is_lwp (ptid));
1182
1183 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
1184
1185 memset (lp, 0, sizeof (struct lwp_info));
1186
1187 lp->last_resume_kind = resume_continue;
1188 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1189
1190 lp->ptid = ptid;
1191 lp->core = -1;
1192
1193 lp->next = lwp_list;
1194 lwp_list = lp;
1195
1196 /* Let the arch specific bits know about this new thread. Current
1197 clients of this callback take the opportunity to install
1198 watchpoints in the new thread. Don't do this for the first
1199 thread though. If we're spawning a child ("run"), the thread
1200 executes the shell wrapper first, and we shouldn't touch it until
1201 it execs the program we want to debug. For "attach", it'd be
1202 okay to call the callback, but it's not necessary, because
1203 watchpoints can't yet have been inserted into the inferior. */
1204 if (num_lwps (GET_PID (ptid)) > 1 && linux_nat_new_thread != NULL)
1205 linux_nat_new_thread (lp);
1206
1207 return lp;
1208 }
1209
1210 /* Remove the LWP specified by PID from the list. */
1211
1212 static void
1213 delete_lwp (ptid_t ptid)
1214 {
1215 struct lwp_info *lp, *lpprev;
1216
1217 lpprev = NULL;
1218
1219 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
1220 if (ptid_equal (lp->ptid, ptid))
1221 break;
1222
1223 if (!lp)
1224 return;
1225
1226 if (lpprev)
1227 lpprev->next = lp->next;
1228 else
1229 lwp_list = lp->next;
1230
1231 lwp_free (lp);
1232 }
1233
1234 /* Return a pointer to the structure describing the LWP corresponding
1235 to PID. If no corresponding LWP could be found, return NULL. */
1236
1237 static struct lwp_info *
1238 find_lwp_pid (ptid_t ptid)
1239 {
1240 struct lwp_info *lp;
1241 int lwp;
1242
1243 if (is_lwp (ptid))
1244 lwp = GET_LWP (ptid);
1245 else
1246 lwp = GET_PID (ptid);
1247
1248 for (lp = lwp_list; lp; lp = lp->next)
1249 if (lwp == GET_LWP (lp->ptid))
1250 return lp;
1251
1252 return NULL;
1253 }
1254
1255 /* Call CALLBACK with its second argument set to DATA for every LWP in
1256 the list. If CALLBACK returns 1 for a particular LWP, return a
1257 pointer to the structure describing that LWP immediately.
1258 Otherwise return NULL. */
1259
1260 struct lwp_info *
1261 iterate_over_lwps (ptid_t filter,
1262 int (*callback) (struct lwp_info *, void *),
1263 void *data)
1264 {
1265 struct lwp_info *lp, *lpnext;
1266
1267 for (lp = lwp_list; lp; lp = lpnext)
1268 {
1269 lpnext = lp->next;
1270
1271 if (ptid_match (lp->ptid, filter))
1272 {
1273 if ((*callback) (lp, data))
1274 return lp;
1275 }
1276 }
1277
1278 return NULL;
1279 }
1280
1281 /* Iterate like iterate_over_lwps does except when forking-off a child call
1282 CALLBACK with CALLBACK_DATA specifically only for that new child PID. */
1283
1284 void
1285 linux_nat_iterate_watchpoint_lwps
1286 (linux_nat_iterate_watchpoint_lwps_ftype callback, void *callback_data)
1287 {
1288 int inferior_pid = ptid_get_pid (inferior_ptid);
1289 struct inferior *inf = current_inferior ();
1290
1291 if (inf->pid == inferior_pid)
1292 {
1293 /* Iterate all the threads of the current inferior. Without specifying
1294 INFERIOR_PID it would iterate all threads of all inferiors, which is
1295 inappropriate for watchpoints. */
1296
1297 iterate_over_lwps (pid_to_ptid (inferior_pid), callback, callback_data);
1298 }
1299 else
1300 {
1301 /* Detaching a new child PID temporarily present in INFERIOR_PID. */
1302
1303 struct lwp_info *child_lp;
1304 struct cleanup *old_chain;
1305 pid_t child_pid = GET_PID (inferior_ptid);
1306 ptid_t child_ptid = ptid_build (child_pid, child_pid, 0);
1307
1308 gdb_assert (!is_lwp (inferior_ptid));
1309 gdb_assert (find_lwp_pid (child_ptid) == NULL);
1310 child_lp = add_lwp (child_ptid);
1311 child_lp->stopped = 1;
1312 child_lp->last_resume_kind = resume_stop;
1313 old_chain = make_cleanup (delete_lwp_cleanup, child_lp);
1314
1315 callback (child_lp, callback_data);
1316
1317 do_cleanups (old_chain);
1318 }
1319 }
1320
1321 /* Update our internal state when changing from one checkpoint to
1322 another indicated by NEW_PTID. We can only switch single-threaded
1323 applications, so we only create one new LWP, and the previous list
1324 is discarded. */
1325
1326 void
1327 linux_nat_switch_fork (ptid_t new_ptid)
1328 {
1329 struct lwp_info *lp;
1330
1331 purge_lwp_list (GET_PID (inferior_ptid));
1332
1333 lp = add_lwp (new_ptid);
1334 lp->stopped = 1;
1335
1336 /* This changes the thread's ptid while preserving the gdb thread
1337 num. Also changes the inferior pid, while preserving the
1338 inferior num. */
1339 thread_change_ptid (inferior_ptid, new_ptid);
1340
1341 /* We've just told GDB core that the thread changed target id, but,
1342 in fact, it really is a different thread, with different register
1343 contents. */
1344 registers_changed ();
1345 }
1346
1347 /* Handle the exit of a single thread LP. */
1348
1349 static void
1350 exit_lwp (struct lwp_info *lp)
1351 {
1352 struct thread_info *th = find_thread_ptid (lp->ptid);
1353
1354 if (th)
1355 {
1356 if (print_thread_events)
1357 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1358
1359 delete_thread (lp->ptid);
1360 }
1361
1362 delete_lwp (lp->ptid);
1363 }
1364
1365 /* Wait for the LWP specified by LP, which we have just attached to.
1366 Returns a wait status for that LWP, to cache. */
1367
1368 static int
1369 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1370 int *signalled)
1371 {
1372 pid_t new_pid, pid = GET_LWP (ptid);
1373 int status;
1374
1375 if (linux_proc_pid_is_stopped (pid))
1376 {
1377 if (debug_linux_nat)
1378 fprintf_unfiltered (gdb_stdlog,
1379 "LNPAW: Attaching to a stopped process\n");
1380
1381 /* The process is definitely stopped. It is in a job control
1382 stop, unless the kernel predates the TASK_STOPPED /
1383 TASK_TRACED distinction, in which case it might be in a
1384 ptrace stop. Make sure it is in a ptrace stop; from there we
1385 can kill it, signal it, et cetera.
1386
1387 First make sure there is a pending SIGSTOP. Since we are
1388 already attached, the process can not transition from stopped
1389 to running without a PTRACE_CONT; so we know this signal will
1390 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1391 probably already in the queue (unless this kernel is old
1392 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1393 is not an RT signal, it can only be queued once. */
1394 kill_lwp (pid, SIGSTOP);
1395
1396 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1397 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1398 ptrace (PTRACE_CONT, pid, 0, 0);
1399 }
1400
1401 /* Make sure the initial process is stopped. The user-level threads
1402 layer might want to poke around in the inferior, and that won't
1403 work if things haven't stabilized yet. */
1404 new_pid = my_waitpid (pid, &status, 0);
1405 if (new_pid == -1 && errno == ECHILD)
1406 {
1407 if (first)
1408 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1409
1410 /* Try again with __WCLONE to check cloned processes. */
1411 new_pid = my_waitpid (pid, &status, __WCLONE);
1412 *cloned = 1;
1413 }
1414
1415 gdb_assert (pid == new_pid);
1416
1417 if (!WIFSTOPPED (status))
1418 {
1419 /* The pid we tried to attach has apparently just exited. */
1420 if (debug_linux_nat)
1421 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1422 pid, status_to_str (status));
1423 return status;
1424 }
1425
1426 if (WSTOPSIG (status) != SIGSTOP)
1427 {
1428 *signalled = 1;
1429 if (debug_linux_nat)
1430 fprintf_unfiltered (gdb_stdlog,
1431 "LNPAW: Received %s after attaching\n",
1432 status_to_str (status));
1433 }
1434
1435 return status;
1436 }
1437
1438 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1439 the new LWP could not be attached, or 1 if we're already auto
1440 attached to this thread, but haven't processed the
1441 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1442 its existance, without considering it an error. */
1443
1444 int
1445 lin_lwp_attach_lwp (ptid_t ptid)
1446 {
1447 struct lwp_info *lp;
1448 sigset_t prev_mask;
1449 int lwpid;
1450
1451 gdb_assert (is_lwp (ptid));
1452
1453 block_child_signals (&prev_mask);
1454
1455 lp = find_lwp_pid (ptid);
1456 lwpid = GET_LWP (ptid);
1457
1458 /* We assume that we're already attached to any LWP that has an id
1459 equal to the overall process id, and to any LWP that is already
1460 in our list of LWPs. If we're not seeing exit events from threads
1461 and we've had PID wraparound since we last tried to stop all threads,
1462 this assumption might be wrong; fortunately, this is very unlikely
1463 to happen. */
1464 if (lwpid != GET_PID (ptid) && lp == NULL)
1465 {
1466 int status, cloned = 0, signalled = 0;
1467
1468 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1469 {
1470 if (linux_supports_tracefork_flag)
1471 {
1472 /* If we haven't stopped all threads when we get here,
1473 we may have seen a thread listed in thread_db's list,
1474 but not processed the PTRACE_EVENT_CLONE yet. If
1475 that's the case, ignore this new thread, and let
1476 normal event handling discover it later. */
1477 if (in_pid_list_p (stopped_pids, lwpid))
1478 {
1479 /* We've already seen this thread stop, but we
1480 haven't seen the PTRACE_EVENT_CLONE extended
1481 event yet. */
1482 restore_child_signals_mask (&prev_mask);
1483 return 0;
1484 }
1485 else
1486 {
1487 int new_pid;
1488 int status;
1489
1490 /* See if we've got a stop for this new child
1491 pending. If so, we're already attached. */
1492 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1493 if (new_pid == -1 && errno == ECHILD)
1494 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1495 if (new_pid != -1)
1496 {
1497 if (WIFSTOPPED (status))
1498 add_to_pid_list (&stopped_pids, lwpid, status);
1499
1500 restore_child_signals_mask (&prev_mask);
1501 return 1;
1502 }
1503 }
1504 }
1505
1506 /* If we fail to attach to the thread, issue a warning,
1507 but continue. One way this can happen is if thread
1508 creation is interrupted; as of Linux kernel 2.6.19, a
1509 bug may place threads in the thread list and then fail
1510 to create them. */
1511 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1512 safe_strerror (errno));
1513 restore_child_signals_mask (&prev_mask);
1514 return -1;
1515 }
1516
1517 if (debug_linux_nat)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1520 target_pid_to_str (ptid));
1521
1522 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1523 if (!WIFSTOPPED (status))
1524 {
1525 restore_child_signals_mask (&prev_mask);
1526 return 1;
1527 }
1528
1529 lp = add_lwp (ptid);
1530 lp->stopped = 1;
1531 lp->cloned = cloned;
1532 lp->signalled = signalled;
1533 if (WSTOPSIG (status) != SIGSTOP)
1534 {
1535 lp->resumed = 1;
1536 lp->status = status;
1537 }
1538
1539 target_post_attach (GET_LWP (lp->ptid));
1540
1541 if (debug_linux_nat)
1542 {
1543 fprintf_unfiltered (gdb_stdlog,
1544 "LLAL: waitpid %s received %s\n",
1545 target_pid_to_str (ptid),
1546 status_to_str (status));
1547 }
1548 }
1549 else
1550 {
1551 /* We assume that the LWP representing the original process is
1552 already stopped. Mark it as stopped in the data structure
1553 that the GNU/linux ptrace layer uses to keep track of
1554 threads. Note that this won't have already been done since
1555 the main thread will have, we assume, been stopped by an
1556 attach from a different layer. */
1557 if (lp == NULL)
1558 lp = add_lwp (ptid);
1559 lp->stopped = 1;
1560 }
1561
1562 lp->last_resume_kind = resume_stop;
1563 restore_child_signals_mask (&prev_mask);
1564 return 0;
1565 }
1566
1567 static void
1568 linux_nat_create_inferior (struct target_ops *ops,
1569 char *exec_file, char *allargs, char **env,
1570 int from_tty)
1571 {
1572 #ifdef HAVE_PERSONALITY
1573 int personality_orig = 0, personality_set = 0;
1574 #endif /* HAVE_PERSONALITY */
1575
1576 /* The fork_child mechanism is synchronous and calls target_wait, so
1577 we have to mask the async mode. */
1578
1579 #ifdef HAVE_PERSONALITY
1580 if (disable_randomization)
1581 {
1582 errno = 0;
1583 personality_orig = personality (0xffffffff);
1584 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1585 {
1586 personality_set = 1;
1587 personality (personality_orig | ADDR_NO_RANDOMIZE);
1588 }
1589 if (errno != 0 || (personality_set
1590 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1591 warning (_("Error disabling address space randomization: %s"),
1592 safe_strerror (errno));
1593 }
1594 #endif /* HAVE_PERSONALITY */
1595
1596 /* Make sure we report all signals during startup. */
1597 linux_nat_pass_signals (0, NULL);
1598
1599 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1600
1601 #ifdef HAVE_PERSONALITY
1602 if (personality_set)
1603 {
1604 errno = 0;
1605 personality (personality_orig);
1606 if (errno != 0)
1607 warning (_("Error restoring address space randomization: %s"),
1608 safe_strerror (errno));
1609 }
1610 #endif /* HAVE_PERSONALITY */
1611 }
1612
1613 static void
1614 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1615 {
1616 struct lwp_info *lp;
1617 int status;
1618 ptid_t ptid;
1619 volatile struct gdb_exception ex;
1620
1621 /* Make sure we report all signals during attach. */
1622 linux_nat_pass_signals (0, NULL);
1623
1624 TRY_CATCH (ex, RETURN_MASK_ERROR)
1625 {
1626 linux_ops->to_attach (ops, args, from_tty);
1627 }
1628 if (ex.reason < 0)
1629 {
1630 pid_t pid = parse_pid_to_attach (args);
1631 struct buffer buffer;
1632 char *message, *buffer_s;
1633
1634 message = xstrdup (ex.message);
1635 make_cleanup (xfree, message);
1636
1637 buffer_init (&buffer);
1638 linux_ptrace_attach_warnings (pid, &buffer);
1639
1640 buffer_grow_str0 (&buffer, "");
1641 buffer_s = buffer_finish (&buffer);
1642 make_cleanup (xfree, buffer_s);
1643
1644 throw_error (ex.error, "%s%s", buffer_s, message);
1645 }
1646
1647 /* The ptrace base target adds the main thread with (pid,0,0)
1648 format. Decorate it with lwp info. */
1649 ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid));
1650 thread_change_ptid (inferior_ptid, ptid);
1651
1652 /* Add the initial process as the first LWP to the list. */
1653 lp = add_lwp (ptid);
1654
1655 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1656 &lp->signalled);
1657 if (!WIFSTOPPED (status))
1658 {
1659 if (WIFEXITED (status))
1660 {
1661 int exit_code = WEXITSTATUS (status);
1662
1663 target_terminal_ours ();
1664 target_mourn_inferior ();
1665 if (exit_code == 0)
1666 error (_("Unable to attach: program exited normally."));
1667 else
1668 error (_("Unable to attach: program exited with code %d."),
1669 exit_code);
1670 }
1671 else if (WIFSIGNALED (status))
1672 {
1673 enum gdb_signal signo;
1674
1675 target_terminal_ours ();
1676 target_mourn_inferior ();
1677
1678 signo = gdb_signal_from_host (WTERMSIG (status));
1679 error (_("Unable to attach: program terminated with signal "
1680 "%s, %s."),
1681 gdb_signal_to_name (signo),
1682 gdb_signal_to_string (signo));
1683 }
1684
1685 internal_error (__FILE__, __LINE__,
1686 _("unexpected status %d for PID %ld"),
1687 status, (long) GET_LWP (ptid));
1688 }
1689
1690 lp->stopped = 1;
1691
1692 /* Save the wait status to report later. */
1693 lp->resumed = 1;
1694 if (debug_linux_nat)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "LNA: waitpid %ld, saving status %s\n",
1697 (long) GET_PID (lp->ptid), status_to_str (status));
1698
1699 lp->status = status;
1700
1701 if (target_can_async_p ())
1702 target_async (inferior_event_handler, 0);
1703 }
1704
1705 /* Get pending status of LP. */
1706 static int
1707 get_pending_status (struct lwp_info *lp, int *status)
1708 {
1709 enum gdb_signal signo = GDB_SIGNAL_0;
1710
1711 /* If we paused threads momentarily, we may have stored pending
1712 events in lp->status or lp->waitstatus (see stop_wait_callback),
1713 and GDB core hasn't seen any signal for those threads.
1714 Otherwise, the last signal reported to the core is found in the
1715 thread object's stop_signal.
1716
1717 There's a corner case that isn't handled here at present. Only
1718 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1719 stop_signal make sense as a real signal to pass to the inferior.
1720 Some catchpoint related events, like
1721 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1722 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1723 those traps are debug API (ptrace in our case) related and
1724 induced; the inferior wouldn't see them if it wasn't being
1725 traced. Hence, we should never pass them to the inferior, even
1726 when set to pass state. Since this corner case isn't handled by
1727 infrun.c when proceeding with a signal, for consistency, neither
1728 do we handle it here (or elsewhere in the file we check for
1729 signal pass state). Normally SIGTRAP isn't set to pass state, so
1730 this is really a corner case. */
1731
1732 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1733 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1734 else if (lp->status)
1735 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1736 else if (non_stop && !is_executing (lp->ptid))
1737 {
1738 struct thread_info *tp = find_thread_ptid (lp->ptid);
1739
1740 signo = tp->suspend.stop_signal;
1741 }
1742 else if (!non_stop)
1743 {
1744 struct target_waitstatus last;
1745 ptid_t last_ptid;
1746
1747 get_last_target_status (&last_ptid, &last);
1748
1749 if (GET_LWP (lp->ptid) == GET_LWP (last_ptid))
1750 {
1751 struct thread_info *tp = find_thread_ptid (lp->ptid);
1752
1753 signo = tp->suspend.stop_signal;
1754 }
1755 }
1756
1757 *status = 0;
1758
1759 if (signo == GDB_SIGNAL_0)
1760 {
1761 if (debug_linux_nat)
1762 fprintf_unfiltered (gdb_stdlog,
1763 "GPT: lwp %s has no pending signal\n",
1764 target_pid_to_str (lp->ptid));
1765 }
1766 else if (!signal_pass_state (signo))
1767 {
1768 if (debug_linux_nat)
1769 fprintf_unfiltered (gdb_stdlog,
1770 "GPT: lwp %s had signal %s, "
1771 "but it is in no pass state\n",
1772 target_pid_to_str (lp->ptid),
1773 gdb_signal_to_string (signo));
1774 }
1775 else
1776 {
1777 *status = W_STOPCODE (gdb_signal_to_host (signo));
1778
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "GPT: lwp %s has pending signal %s\n",
1782 target_pid_to_str (lp->ptid),
1783 gdb_signal_to_string (signo));
1784 }
1785
1786 return 0;
1787 }
1788
1789 static int
1790 detach_callback (struct lwp_info *lp, void *data)
1791 {
1792 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1793
1794 if (debug_linux_nat && lp->status)
1795 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1796 strsignal (WSTOPSIG (lp->status)),
1797 target_pid_to_str (lp->ptid));
1798
1799 /* If there is a pending SIGSTOP, get rid of it. */
1800 if (lp->signalled)
1801 {
1802 if (debug_linux_nat)
1803 fprintf_unfiltered (gdb_stdlog,
1804 "DC: Sending SIGCONT to %s\n",
1805 target_pid_to_str (lp->ptid));
1806
1807 kill_lwp (GET_LWP (lp->ptid), SIGCONT);
1808 lp->signalled = 0;
1809 }
1810
1811 /* We don't actually detach from the LWP that has an id equal to the
1812 overall process id just yet. */
1813 if (GET_LWP (lp->ptid) != GET_PID (lp->ptid))
1814 {
1815 int status = 0;
1816
1817 /* Pass on any pending signal for this LWP. */
1818 get_pending_status (lp, &status);
1819
1820 if (linux_nat_prepare_to_resume != NULL)
1821 linux_nat_prepare_to_resume (lp);
1822 errno = 0;
1823 if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0,
1824 WSTOPSIG (status)) < 0)
1825 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1826 safe_strerror (errno));
1827
1828 if (debug_linux_nat)
1829 fprintf_unfiltered (gdb_stdlog,
1830 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1831 target_pid_to_str (lp->ptid),
1832 strsignal (WSTOPSIG (status)));
1833
1834 delete_lwp (lp->ptid);
1835 }
1836
1837 return 0;
1838 }
1839
1840 static void
1841 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1842 {
1843 int pid;
1844 int status;
1845 struct lwp_info *main_lwp;
1846
1847 pid = GET_PID (inferior_ptid);
1848
1849 if (target_can_async_p ())
1850 linux_nat_async (NULL, 0);
1851
1852 /* Stop all threads before detaching. ptrace requires that the
1853 thread is stopped to sucessfully detach. */
1854 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1855 /* ... and wait until all of them have reported back that
1856 they're no longer running. */
1857 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1858
1859 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1860
1861 /* Only the initial process should be left right now. */
1862 gdb_assert (num_lwps (GET_PID (inferior_ptid)) == 1);
1863
1864 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1865
1866 /* Pass on any pending signal for the last LWP. */
1867 if ((args == NULL || *args == '\0')
1868 && get_pending_status (main_lwp, &status) != -1
1869 && WIFSTOPPED (status))
1870 {
1871 /* Put the signal number in ARGS so that inf_ptrace_detach will
1872 pass it along with PTRACE_DETACH. */
1873 args = alloca (8);
1874 sprintf (args, "%d", (int) WSTOPSIG (status));
1875 if (debug_linux_nat)
1876 fprintf_unfiltered (gdb_stdlog,
1877 "LND: Sending signal %s to %s\n",
1878 args,
1879 target_pid_to_str (main_lwp->ptid));
1880 }
1881
1882 if (linux_nat_prepare_to_resume != NULL)
1883 linux_nat_prepare_to_resume (main_lwp);
1884 delete_lwp (main_lwp->ptid);
1885
1886 if (forks_exist_p ())
1887 {
1888 /* Multi-fork case. The current inferior_ptid is being detached
1889 from, but there are other viable forks to debug. Detach from
1890 the current fork, and context-switch to the first
1891 available. */
1892 linux_fork_detach (args, from_tty);
1893
1894 if (non_stop && target_can_async_p ())
1895 target_async (inferior_event_handler, 0);
1896 }
1897 else
1898 linux_ops->to_detach (ops, args, from_tty);
1899 }
1900
1901 /* Resume LP. */
1902
1903 static void
1904 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1905 {
1906 if (lp->stopped)
1907 {
1908 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
1909
1910 if (inf->vfork_child != NULL)
1911 {
1912 if (debug_linux_nat)
1913 fprintf_unfiltered (gdb_stdlog,
1914 "RC: Not resuming %s (vfork parent)\n",
1915 target_pid_to_str (lp->ptid));
1916 }
1917 else if (lp->status == 0
1918 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1919 {
1920 if (debug_linux_nat)
1921 fprintf_unfiltered (gdb_stdlog,
1922 "RC: Resuming sibling %s, %s, %s\n",
1923 target_pid_to_str (lp->ptid),
1924 (signo != GDB_SIGNAL_0
1925 ? strsignal (gdb_signal_to_host (signo))
1926 : "0"),
1927 step ? "step" : "resume");
1928
1929 if (linux_nat_prepare_to_resume != NULL)
1930 linux_nat_prepare_to_resume (lp);
1931 linux_ops->to_resume (linux_ops,
1932 pid_to_ptid (GET_LWP (lp->ptid)),
1933 step, signo);
1934 lp->stopped = 0;
1935 lp->step = step;
1936 lp->stopped_by_watchpoint = 0;
1937 }
1938 else
1939 {
1940 if (debug_linux_nat)
1941 fprintf_unfiltered (gdb_stdlog,
1942 "RC: Not resuming sibling %s (has pending)\n",
1943 target_pid_to_str (lp->ptid));
1944 }
1945 }
1946 else
1947 {
1948 if (debug_linux_nat)
1949 fprintf_unfiltered (gdb_stdlog,
1950 "RC: Not resuming sibling %s (not stopped)\n",
1951 target_pid_to_str (lp->ptid));
1952 }
1953 }
1954
1955 /* Resume LWP, with the last stop signal, if it is in pass state. */
1956
1957 static int
1958 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1959 {
1960 enum gdb_signal signo = GDB_SIGNAL_0;
1961
1962 if (lp->stopped)
1963 {
1964 struct thread_info *thread;
1965
1966 thread = find_thread_ptid (lp->ptid);
1967 if (thread != NULL)
1968 {
1969 if (signal_pass_state (thread->suspend.stop_signal))
1970 signo = thread->suspend.stop_signal;
1971 thread->suspend.stop_signal = GDB_SIGNAL_0;
1972 }
1973 }
1974
1975 resume_lwp (lp, 0, signo);
1976 return 0;
1977 }
1978
1979 static int
1980 resume_clear_callback (struct lwp_info *lp, void *data)
1981 {
1982 lp->resumed = 0;
1983 lp->last_resume_kind = resume_stop;
1984 return 0;
1985 }
1986
1987 static int
1988 resume_set_callback (struct lwp_info *lp, void *data)
1989 {
1990 lp->resumed = 1;
1991 lp->last_resume_kind = resume_continue;
1992 return 0;
1993 }
1994
1995 static void
1996 linux_nat_resume (struct target_ops *ops,
1997 ptid_t ptid, int step, enum gdb_signal signo)
1998 {
1999 sigset_t prev_mask;
2000 struct lwp_info *lp;
2001 int resume_many;
2002
2003 if (debug_linux_nat)
2004 fprintf_unfiltered (gdb_stdlog,
2005 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
2006 step ? "step" : "resume",
2007 target_pid_to_str (ptid),
2008 (signo != GDB_SIGNAL_0
2009 ? strsignal (gdb_signal_to_host (signo)) : "0"),
2010 target_pid_to_str (inferior_ptid));
2011
2012 block_child_signals (&prev_mask);
2013
2014 /* A specific PTID means `step only this process id'. */
2015 resume_many = (ptid_equal (minus_one_ptid, ptid)
2016 || ptid_is_pid (ptid));
2017
2018 /* Mark the lwps we're resuming as resumed. */
2019 iterate_over_lwps (ptid, resume_set_callback, NULL);
2020
2021 /* See if it's the current inferior that should be handled
2022 specially. */
2023 if (resume_many)
2024 lp = find_lwp_pid (inferior_ptid);
2025 else
2026 lp = find_lwp_pid (ptid);
2027 gdb_assert (lp != NULL);
2028
2029 /* Remember if we're stepping. */
2030 lp->step = step;
2031 lp->last_resume_kind = step ? resume_step : resume_continue;
2032
2033 /* If we have a pending wait status for this thread, there is no
2034 point in resuming the process. But first make sure that
2035 linux_nat_wait won't preemptively handle the event - we
2036 should never take this short-circuit if we are going to
2037 leave LP running, since we have skipped resuming all the
2038 other threads. This bit of code needs to be synchronized
2039 with linux_nat_wait. */
2040
2041 if (lp->status && WIFSTOPPED (lp->status))
2042 {
2043 if (!lp->step
2044 && WSTOPSIG (lp->status)
2045 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
2046 {
2047 if (debug_linux_nat)
2048 fprintf_unfiltered (gdb_stdlog,
2049 "LLR: Not short circuiting for ignored "
2050 "status 0x%x\n", lp->status);
2051
2052 /* FIXME: What should we do if we are supposed to continue
2053 this thread with a signal? */
2054 gdb_assert (signo == GDB_SIGNAL_0);
2055 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
2056 lp->status = 0;
2057 }
2058 }
2059
2060 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2061 {
2062 /* FIXME: What should we do if we are supposed to continue
2063 this thread with a signal? */
2064 gdb_assert (signo == GDB_SIGNAL_0);
2065
2066 if (debug_linux_nat)
2067 fprintf_unfiltered (gdb_stdlog,
2068 "LLR: Short circuiting for status 0x%x\n",
2069 lp->status);
2070
2071 restore_child_signals_mask (&prev_mask);
2072 if (target_can_async_p ())
2073 {
2074 target_async (inferior_event_handler, 0);
2075 /* Tell the event loop we have something to process. */
2076 async_file_mark ();
2077 }
2078 return;
2079 }
2080
2081 /* Mark LWP as not stopped to prevent it from being continued by
2082 linux_nat_resume_callback. */
2083 lp->stopped = 0;
2084
2085 if (resume_many)
2086 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
2087
2088 /* Convert to something the lower layer understands. */
2089 ptid = pid_to_ptid (GET_LWP (lp->ptid));
2090
2091 if (linux_nat_prepare_to_resume != NULL)
2092 linux_nat_prepare_to_resume (lp);
2093 linux_ops->to_resume (linux_ops, ptid, step, signo);
2094 lp->stopped_by_watchpoint = 0;
2095
2096 if (debug_linux_nat)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "LLR: %s %s, %s (resume event thread)\n",
2099 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2100 target_pid_to_str (ptid),
2101 (signo != GDB_SIGNAL_0
2102 ? strsignal (gdb_signal_to_host (signo)) : "0"));
2103
2104 restore_child_signals_mask (&prev_mask);
2105 if (target_can_async_p ())
2106 target_async (inferior_event_handler, 0);
2107 }
2108
2109 /* Send a signal to an LWP. */
2110
2111 static int
2112 kill_lwp (int lwpid, int signo)
2113 {
2114 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2115 fails, then we are not using nptl threads and we should be using kill. */
2116
2117 #ifdef HAVE_TKILL_SYSCALL
2118 {
2119 static int tkill_failed;
2120
2121 if (!tkill_failed)
2122 {
2123 int ret;
2124
2125 errno = 0;
2126 ret = syscall (__NR_tkill, lwpid, signo);
2127 if (errno != ENOSYS)
2128 return ret;
2129 tkill_failed = 1;
2130 }
2131 }
2132 #endif
2133
2134 return kill (lwpid, signo);
2135 }
2136
2137 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
2138 event, check if the core is interested in it: if not, ignore the
2139 event, and keep waiting; otherwise, we need to toggle the LWP's
2140 syscall entry/exit status, since the ptrace event itself doesn't
2141 indicate it, and report the trap to higher layers. */
2142
2143 static int
2144 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
2145 {
2146 struct target_waitstatus *ourstatus = &lp->waitstatus;
2147 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
2148 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
2149
2150 if (stopping)
2151 {
2152 /* If we're stopping threads, there's a SIGSTOP pending, which
2153 makes it so that the LWP reports an immediate syscall return,
2154 followed by the SIGSTOP. Skip seeing that "return" using
2155 PTRACE_CONT directly, and let stop_wait_callback collect the
2156 SIGSTOP. Later when the thread is resumed, a new syscall
2157 entry event. If we didn't do this (and returned 0), we'd
2158 leave a syscall entry pending, and our caller, by using
2159 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
2160 itself. Later, when the user re-resumes this LWP, we'd see
2161 another syscall entry event and we'd mistake it for a return.
2162
2163 If stop_wait_callback didn't force the SIGSTOP out of the LWP
2164 (leaving immediately with LWP->signalled set, without issuing
2165 a PTRACE_CONT), it would still be problematic to leave this
2166 syscall enter pending, as later when the thread is resumed,
2167 it would then see the same syscall exit mentioned above,
2168 followed by the delayed SIGSTOP, while the syscall didn't
2169 actually get to execute. It seems it would be even more
2170 confusing to the user. */
2171
2172 if (debug_linux_nat)
2173 fprintf_unfiltered (gdb_stdlog,
2174 "LHST: ignoring syscall %d "
2175 "for LWP %ld (stopping threads), "
2176 "resuming with PTRACE_CONT for SIGSTOP\n",
2177 syscall_number,
2178 GET_LWP (lp->ptid));
2179
2180 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2181 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2182 return 1;
2183 }
2184
2185 if (catch_syscall_enabled ())
2186 {
2187 /* Always update the entry/return state, even if this particular
2188 syscall isn't interesting to the core now. In async mode,
2189 the user could install a new catchpoint for this syscall
2190 between syscall enter/return, and we'll need to know to
2191 report a syscall return if that happens. */
2192 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2193 ? TARGET_WAITKIND_SYSCALL_RETURN
2194 : TARGET_WAITKIND_SYSCALL_ENTRY);
2195
2196 if (catching_syscall_number (syscall_number))
2197 {
2198 /* Alright, an event to report. */
2199 ourstatus->kind = lp->syscall_state;
2200 ourstatus->value.syscall_number = syscall_number;
2201
2202 if (debug_linux_nat)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "LHST: stopping for %s of syscall %d"
2205 " for LWP %ld\n",
2206 lp->syscall_state
2207 == TARGET_WAITKIND_SYSCALL_ENTRY
2208 ? "entry" : "return",
2209 syscall_number,
2210 GET_LWP (lp->ptid));
2211 return 0;
2212 }
2213
2214 if (debug_linux_nat)
2215 fprintf_unfiltered (gdb_stdlog,
2216 "LHST: ignoring %s of syscall %d "
2217 "for LWP %ld\n",
2218 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2219 ? "entry" : "return",
2220 syscall_number,
2221 GET_LWP (lp->ptid));
2222 }
2223 else
2224 {
2225 /* If we had been syscall tracing, and hence used PT_SYSCALL
2226 before on this LWP, it could happen that the user removes all
2227 syscall catchpoints before we get to process this event.
2228 There are two noteworthy issues here:
2229
2230 - When stopped at a syscall entry event, resuming with
2231 PT_STEP still resumes executing the syscall and reports a
2232 syscall return.
2233
2234 - Only PT_SYSCALL catches syscall enters. If we last
2235 single-stepped this thread, then this event can't be a
2236 syscall enter. If we last single-stepped this thread, this
2237 has to be a syscall exit.
2238
2239 The points above mean that the next resume, be it PT_STEP or
2240 PT_CONTINUE, can not trigger a syscall trace event. */
2241 if (debug_linux_nat)
2242 fprintf_unfiltered (gdb_stdlog,
2243 "LHST: caught syscall event "
2244 "with no syscall catchpoints."
2245 " %d for LWP %ld, ignoring\n",
2246 syscall_number,
2247 GET_LWP (lp->ptid));
2248 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2249 }
2250
2251 /* The core isn't interested in this event. For efficiency, avoid
2252 stopping all threads only to have the core resume them all again.
2253 Since we're not stopping threads, if we're still syscall tracing
2254 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
2255 subsequent syscall. Simply resume using the inf-ptrace layer,
2256 which knows when to use PT_SYSCALL or PT_CONTINUE. */
2257
2258 /* Note that gdbarch_get_syscall_number may access registers, hence
2259 fill a regcache. */
2260 registers_changed ();
2261 if (linux_nat_prepare_to_resume != NULL)
2262 linux_nat_prepare_to_resume (lp);
2263 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2264 lp->step, GDB_SIGNAL_0);
2265 return 1;
2266 }
2267
2268 /* Handle a GNU/Linux extended wait response. If we see a clone
2269 event, we need to add the new LWP to our list (and not report the
2270 trap to higher layers). This function returns non-zero if the
2271 event should be ignored and we should wait again. If STOPPING is
2272 true, the new LWP remains stopped, otherwise it is continued. */
2273
2274 static int
2275 linux_handle_extended_wait (struct lwp_info *lp, int status,
2276 int stopping)
2277 {
2278 int pid = GET_LWP (lp->ptid);
2279 struct target_waitstatus *ourstatus = &lp->waitstatus;
2280 int event = status >> 16;
2281
2282 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
2283 || event == PTRACE_EVENT_CLONE)
2284 {
2285 unsigned long new_pid;
2286 int ret;
2287
2288 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2289
2290 /* If we haven't already seen the new PID stop, wait for it now. */
2291 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2292 {
2293 /* The new child has a pending SIGSTOP. We can't affect it until it
2294 hits the SIGSTOP, but we're already attached. */
2295 ret = my_waitpid (new_pid, &status,
2296 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2297 if (ret == -1)
2298 perror_with_name (_("waiting for new child"));
2299 else if (ret != new_pid)
2300 internal_error (__FILE__, __LINE__,
2301 _("wait returned unexpected PID %d"), ret);
2302 else if (!WIFSTOPPED (status))
2303 internal_error (__FILE__, __LINE__,
2304 _("wait returned unexpected status 0x%x"), status);
2305 }
2306
2307 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2308
2309 if (event == PTRACE_EVENT_FORK
2310 && linux_fork_checkpointing_p (GET_PID (lp->ptid)))
2311 {
2312 /* Handle checkpointing by linux-fork.c here as a special
2313 case. We don't want the follow-fork-mode or 'catch fork'
2314 to interfere with this. */
2315
2316 /* This won't actually modify the breakpoint list, but will
2317 physically remove the breakpoints from the child. */
2318 detach_breakpoints (new_pid);
2319
2320 /* Retain child fork in ptrace (stopped) state. */
2321 if (!find_fork_pid (new_pid))
2322 add_fork (new_pid);
2323
2324 /* Report as spurious, so that infrun doesn't want to follow
2325 this fork. We're actually doing an infcall in
2326 linux-fork.c. */
2327 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2328 linux_enable_event_reporting (pid_to_ptid (new_pid));
2329
2330 /* Report the stop to the core. */
2331 return 0;
2332 }
2333
2334 if (event == PTRACE_EVENT_FORK)
2335 ourstatus->kind = TARGET_WAITKIND_FORKED;
2336 else if (event == PTRACE_EVENT_VFORK)
2337 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2338 else
2339 {
2340 struct lwp_info *new_lp;
2341
2342 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2343
2344 if (debug_linux_nat)
2345 fprintf_unfiltered (gdb_stdlog,
2346 "LHEW: Got clone event "
2347 "from LWP %d, new child is LWP %ld\n",
2348 pid, new_pid);
2349
2350 new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (lp->ptid)));
2351 new_lp->cloned = 1;
2352 new_lp->stopped = 1;
2353
2354 if (WSTOPSIG (status) != SIGSTOP)
2355 {
2356 /* This can happen if someone starts sending signals to
2357 the new thread before it gets a chance to run, which
2358 have a lower number than SIGSTOP (e.g. SIGUSR1).
2359 This is an unlikely case, and harder to handle for
2360 fork / vfork than for clone, so we do not try - but
2361 we handle it for clone events here. We'll send
2362 the other signal on to the thread below. */
2363
2364 new_lp->signalled = 1;
2365 }
2366 else
2367 {
2368 struct thread_info *tp;
2369
2370 /* When we stop for an event in some other thread, and
2371 pull the thread list just as this thread has cloned,
2372 we'll have seen the new thread in the thread_db list
2373 before handling the CLONE event (glibc's
2374 pthread_create adds the new thread to the thread list
2375 before clone'ing, and has the kernel fill in the
2376 thread's tid on the clone call with
2377 CLONE_PARENT_SETTID). If that happened, and the core
2378 had requested the new thread to stop, we'll have
2379 killed it with SIGSTOP. But since SIGSTOP is not an
2380 RT signal, it can only be queued once. We need to be
2381 careful to not resume the LWP if we wanted it to
2382 stop. In that case, we'll leave the SIGSTOP pending.
2383 It will later be reported as GDB_SIGNAL_0. */
2384 tp = find_thread_ptid (new_lp->ptid);
2385 if (tp != NULL && tp->stop_requested)
2386 new_lp->last_resume_kind = resume_stop;
2387 else
2388 status = 0;
2389 }
2390
2391 if (non_stop)
2392 {
2393 /* Add the new thread to GDB's lists as soon as possible
2394 so that:
2395
2396 1) the frontend doesn't have to wait for a stop to
2397 display them, and,
2398
2399 2) we tag it with the correct running state. */
2400
2401 /* If the thread_db layer is active, let it know about
2402 this new thread, and add it to GDB's list. */
2403 if (!thread_db_attach_lwp (new_lp->ptid))
2404 {
2405 /* We're not using thread_db. Add it to GDB's
2406 list. */
2407 target_post_attach (GET_LWP (new_lp->ptid));
2408 add_thread (new_lp->ptid);
2409 }
2410
2411 if (!stopping)
2412 {
2413 set_running (new_lp->ptid, 1);
2414 set_executing (new_lp->ptid, 1);
2415 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2416 resume_stop. */
2417 new_lp->last_resume_kind = resume_continue;
2418 }
2419 }
2420
2421 if (status != 0)
2422 {
2423 /* We created NEW_LP so it cannot yet contain STATUS. */
2424 gdb_assert (new_lp->status == 0);
2425
2426 /* Save the wait status to report later. */
2427 if (debug_linux_nat)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "LHEW: waitpid of new LWP %ld, "
2430 "saving status %s\n",
2431 (long) GET_LWP (new_lp->ptid),
2432 status_to_str (status));
2433 new_lp->status = status;
2434 }
2435
2436 /* Note the need to use the low target ops to resume, to
2437 handle resuming with PT_SYSCALL if we have syscall
2438 catchpoints. */
2439 if (!stopping)
2440 {
2441 new_lp->resumed = 1;
2442
2443 if (status == 0)
2444 {
2445 gdb_assert (new_lp->last_resume_kind == resume_continue);
2446 if (debug_linux_nat)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "LHEW: resuming new LWP %ld\n",
2449 GET_LWP (new_lp->ptid));
2450 if (linux_nat_prepare_to_resume != NULL)
2451 linux_nat_prepare_to_resume (new_lp);
2452 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2453 0, GDB_SIGNAL_0);
2454 new_lp->stopped = 0;
2455 }
2456 }
2457
2458 if (debug_linux_nat)
2459 fprintf_unfiltered (gdb_stdlog,
2460 "LHEW: resuming parent LWP %d\n", pid);
2461 if (linux_nat_prepare_to_resume != NULL)
2462 linux_nat_prepare_to_resume (lp);
2463 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
2464 0, GDB_SIGNAL_0);
2465
2466 return 1;
2467 }
2468
2469 return 0;
2470 }
2471
2472 if (event == PTRACE_EVENT_EXEC)
2473 {
2474 if (debug_linux_nat)
2475 fprintf_unfiltered (gdb_stdlog,
2476 "LHEW: Got exec event from LWP %ld\n",
2477 GET_LWP (lp->ptid));
2478
2479 ourstatus->kind = TARGET_WAITKIND_EXECD;
2480 ourstatus->value.execd_pathname
2481 = xstrdup (linux_child_pid_to_exec_file (pid));
2482
2483 return 0;
2484 }
2485
2486 if (event == PTRACE_EVENT_VFORK_DONE)
2487 {
2488 if (current_inferior ()->waiting_for_vfork_done)
2489 {
2490 if (debug_linux_nat)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "LHEW: Got expected PTRACE_EVENT_"
2493 "VFORK_DONE from LWP %ld: stopping\n",
2494 GET_LWP (lp->ptid));
2495
2496 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2497 return 0;
2498 }
2499
2500 if (debug_linux_nat)
2501 fprintf_unfiltered (gdb_stdlog,
2502 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2503 "from LWP %ld: resuming\n",
2504 GET_LWP (lp->ptid));
2505 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2506 return 1;
2507 }
2508
2509 internal_error (__FILE__, __LINE__,
2510 _("unknown ptrace event %d"), event);
2511 }
2512
2513 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2514 exited. */
2515
2516 static int
2517 wait_lwp (struct lwp_info *lp)
2518 {
2519 pid_t pid;
2520 int status = 0;
2521 int thread_dead = 0;
2522 sigset_t prev_mask;
2523
2524 gdb_assert (!lp->stopped);
2525 gdb_assert (lp->status == 0);
2526
2527 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2528 block_child_signals (&prev_mask);
2529
2530 for (;;)
2531 {
2532 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2533 was right and we should just call sigsuspend. */
2534
2535 pid = my_waitpid (GET_LWP (lp->ptid), &status, WNOHANG);
2536 if (pid == -1 && errno == ECHILD)
2537 pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE | WNOHANG);
2538 if (pid == -1 && errno == ECHILD)
2539 {
2540 /* The thread has previously exited. We need to delete it
2541 now because, for some vendor 2.4 kernels with NPTL
2542 support backported, there won't be an exit event unless
2543 it is the main thread. 2.6 kernels will report an exit
2544 event for each thread that exits, as expected. */
2545 thread_dead = 1;
2546 if (debug_linux_nat)
2547 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2548 target_pid_to_str (lp->ptid));
2549 }
2550 if (pid != 0)
2551 break;
2552
2553 /* Bugs 10970, 12702.
2554 Thread group leader may have exited in which case we'll lock up in
2555 waitpid if there are other threads, even if they are all zombies too.
2556 Basically, we're not supposed to use waitpid this way.
2557 __WCLONE is not applicable for the leader so we can't use that.
2558 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2559 process; it gets ESRCH both for the zombie and for running processes.
2560
2561 As a workaround, check if we're waiting for the thread group leader and
2562 if it's a zombie, and avoid calling waitpid if it is.
2563
2564 This is racy, what if the tgl becomes a zombie right after we check?
2565 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2566 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2567
2568 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)
2569 && linux_proc_pid_is_zombie (GET_LWP (lp->ptid)))
2570 {
2571 thread_dead = 1;
2572 if (debug_linux_nat)
2573 fprintf_unfiltered (gdb_stdlog,
2574 "WL: Thread group leader %s vanished.\n",
2575 target_pid_to_str (lp->ptid));
2576 break;
2577 }
2578
2579 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2580 get invoked despite our caller had them intentionally blocked by
2581 block_child_signals. This is sensitive only to the loop of
2582 linux_nat_wait_1 and there if we get called my_waitpid gets called
2583 again before it gets to sigsuspend so we can safely let the handlers
2584 get executed here. */
2585
2586 sigsuspend (&suspend_mask);
2587 }
2588
2589 restore_child_signals_mask (&prev_mask);
2590
2591 if (!thread_dead)
2592 {
2593 gdb_assert (pid == GET_LWP (lp->ptid));
2594
2595 if (debug_linux_nat)
2596 {
2597 fprintf_unfiltered (gdb_stdlog,
2598 "WL: waitpid %s received %s\n",
2599 target_pid_to_str (lp->ptid),
2600 status_to_str (status));
2601 }
2602
2603 /* Check if the thread has exited. */
2604 if (WIFEXITED (status) || WIFSIGNALED (status))
2605 {
2606 thread_dead = 1;
2607 if (debug_linux_nat)
2608 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2609 target_pid_to_str (lp->ptid));
2610 }
2611 }
2612
2613 if (thread_dead)
2614 {
2615 exit_lwp (lp);
2616 return 0;
2617 }
2618
2619 gdb_assert (WIFSTOPPED (status));
2620
2621 /* Handle GNU/Linux's syscall SIGTRAPs. */
2622 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2623 {
2624 /* No longer need the sysgood bit. The ptrace event ends up
2625 recorded in lp->waitstatus if we care for it. We can carry
2626 on handling the event like a regular SIGTRAP from here
2627 on. */
2628 status = W_STOPCODE (SIGTRAP);
2629 if (linux_handle_syscall_trap (lp, 1))
2630 return wait_lwp (lp);
2631 }
2632
2633 /* Handle GNU/Linux's extended waitstatus for trace events. */
2634 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2635 {
2636 if (debug_linux_nat)
2637 fprintf_unfiltered (gdb_stdlog,
2638 "WL: Handling extended status 0x%06x\n",
2639 status);
2640 if (linux_handle_extended_wait (lp, status, 1))
2641 return wait_lwp (lp);
2642 }
2643
2644 return status;
2645 }
2646
2647 /* Send a SIGSTOP to LP. */
2648
2649 static int
2650 stop_callback (struct lwp_info *lp, void *data)
2651 {
2652 if (!lp->stopped && !lp->signalled)
2653 {
2654 int ret;
2655
2656 if (debug_linux_nat)
2657 {
2658 fprintf_unfiltered (gdb_stdlog,
2659 "SC: kill %s **<SIGSTOP>**\n",
2660 target_pid_to_str (lp->ptid));
2661 }
2662 errno = 0;
2663 ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP);
2664 if (debug_linux_nat)
2665 {
2666 fprintf_unfiltered (gdb_stdlog,
2667 "SC: lwp kill %d %s\n",
2668 ret,
2669 errno ? safe_strerror (errno) : "ERRNO-OK");
2670 }
2671
2672 lp->signalled = 1;
2673 gdb_assert (lp->status == 0);
2674 }
2675
2676 return 0;
2677 }
2678
2679 /* Request a stop on LWP. */
2680
2681 void
2682 linux_stop_lwp (struct lwp_info *lwp)
2683 {
2684 stop_callback (lwp, NULL);
2685 }
2686
2687 /* Return non-zero if LWP PID has a pending SIGINT. */
2688
2689 static int
2690 linux_nat_has_pending_sigint (int pid)
2691 {
2692 sigset_t pending, blocked, ignored;
2693
2694 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2695
2696 if (sigismember (&pending, SIGINT)
2697 && !sigismember (&ignored, SIGINT))
2698 return 1;
2699
2700 return 0;
2701 }
2702
2703 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2704
2705 static int
2706 set_ignore_sigint (struct lwp_info *lp, void *data)
2707 {
2708 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2709 flag to consume the next one. */
2710 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2711 && WSTOPSIG (lp->status) == SIGINT)
2712 lp->status = 0;
2713 else
2714 lp->ignore_sigint = 1;
2715
2716 return 0;
2717 }
2718
2719 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2720 This function is called after we know the LWP has stopped; if the LWP
2721 stopped before the expected SIGINT was delivered, then it will never have
2722 arrived. Also, if the signal was delivered to a shared queue and consumed
2723 by a different thread, it will never be delivered to this LWP. */
2724
2725 static void
2726 maybe_clear_ignore_sigint (struct lwp_info *lp)
2727 {
2728 if (!lp->ignore_sigint)
2729 return;
2730
2731 if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid)))
2732 {
2733 if (debug_linux_nat)
2734 fprintf_unfiltered (gdb_stdlog,
2735 "MCIS: Clearing bogus flag for %s\n",
2736 target_pid_to_str (lp->ptid));
2737 lp->ignore_sigint = 0;
2738 }
2739 }
2740
2741 /* Fetch the possible triggered data watchpoint info and store it in
2742 LP.
2743
2744 On some archs, like x86, that use debug registers to set
2745 watchpoints, it's possible that the way to know which watched
2746 address trapped, is to check the register that is used to select
2747 which address to watch. Problem is, between setting the watchpoint
2748 and reading back which data address trapped, the user may change
2749 the set of watchpoints, and, as a consequence, GDB changes the
2750 debug registers in the inferior. To avoid reading back a stale
2751 stopped-data-address when that happens, we cache in LP the fact
2752 that a watchpoint trapped, and the corresponding data address, as
2753 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2754 registers meanwhile, we have the cached data we can rely on. */
2755
2756 static void
2757 save_sigtrap (struct lwp_info *lp)
2758 {
2759 struct cleanup *old_chain;
2760
2761 if (linux_ops->to_stopped_by_watchpoint == NULL)
2762 {
2763 lp->stopped_by_watchpoint = 0;
2764 return;
2765 }
2766
2767 old_chain = save_inferior_ptid ();
2768 inferior_ptid = lp->ptid;
2769
2770 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2771
2772 if (lp->stopped_by_watchpoint)
2773 {
2774 if (linux_ops->to_stopped_data_address != NULL)
2775 lp->stopped_data_address_p =
2776 linux_ops->to_stopped_data_address (&current_target,
2777 &lp->stopped_data_address);
2778 else
2779 lp->stopped_data_address_p = 0;
2780 }
2781
2782 do_cleanups (old_chain);
2783 }
2784
2785 /* See save_sigtrap. */
2786
2787 static int
2788 linux_nat_stopped_by_watchpoint (void)
2789 {
2790 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2791
2792 gdb_assert (lp != NULL);
2793
2794 return lp->stopped_by_watchpoint;
2795 }
2796
2797 static int
2798 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2799 {
2800 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2801
2802 gdb_assert (lp != NULL);
2803
2804 *addr_p = lp->stopped_data_address;
2805
2806 return lp->stopped_data_address_p;
2807 }
2808
2809 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2810
2811 static int
2812 sigtrap_is_event (int status)
2813 {
2814 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2815 }
2816
2817 /* SIGTRAP-like events recognizer. */
2818
2819 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2820
2821 /* Check for SIGTRAP-like events in LP. */
2822
2823 static int
2824 linux_nat_lp_status_is_event (struct lwp_info *lp)
2825 {
2826 /* We check for lp->waitstatus in addition to lp->status, because we can
2827 have pending process exits recorded in lp->status
2828 and W_EXITCODE(0,0) == 0. We should probably have an additional
2829 lp->status_p flag. */
2830
2831 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2832 && linux_nat_status_is_event (lp->status));
2833 }
2834
2835 /* Set alternative SIGTRAP-like events recognizer. If
2836 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2837 applied. */
2838
2839 void
2840 linux_nat_set_status_is_event (struct target_ops *t,
2841 int (*status_is_event) (int status))
2842 {
2843 linux_nat_status_is_event = status_is_event;
2844 }
2845
2846 /* Wait until LP is stopped. */
2847
2848 static int
2849 stop_wait_callback (struct lwp_info *lp, void *data)
2850 {
2851 struct inferior *inf = find_inferior_pid (GET_PID (lp->ptid));
2852
2853 /* If this is a vfork parent, bail out, it is not going to report
2854 any SIGSTOP until the vfork is done with. */
2855 if (inf->vfork_child != NULL)
2856 return 0;
2857
2858 if (!lp->stopped)
2859 {
2860 int status;
2861
2862 status = wait_lwp (lp);
2863 if (status == 0)
2864 return 0;
2865
2866 if (lp->ignore_sigint && WIFSTOPPED (status)
2867 && WSTOPSIG (status) == SIGINT)
2868 {
2869 lp->ignore_sigint = 0;
2870
2871 errno = 0;
2872 ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0);
2873 if (debug_linux_nat)
2874 fprintf_unfiltered (gdb_stdlog,
2875 "PTRACE_CONT %s, 0, 0 (%s) "
2876 "(discarding SIGINT)\n",
2877 target_pid_to_str (lp->ptid),
2878 errno ? safe_strerror (errno) : "OK");
2879
2880 return stop_wait_callback (lp, NULL);
2881 }
2882
2883 maybe_clear_ignore_sigint (lp);
2884
2885 if (WSTOPSIG (status) != SIGSTOP)
2886 {
2887 /* The thread was stopped with a signal other than SIGSTOP. */
2888
2889 save_sigtrap (lp);
2890
2891 if (debug_linux_nat)
2892 fprintf_unfiltered (gdb_stdlog,
2893 "SWC: Pending event %s in %s\n",
2894 status_to_str ((int) status),
2895 target_pid_to_str (lp->ptid));
2896
2897 /* Save the sigtrap event. */
2898 lp->status = status;
2899 gdb_assert (!lp->stopped);
2900 gdb_assert (lp->signalled);
2901 lp->stopped = 1;
2902 }
2903 else
2904 {
2905 /* We caught the SIGSTOP that we intended to catch, so
2906 there's no SIGSTOP pending. */
2907
2908 if (debug_linux_nat)
2909 fprintf_unfiltered (gdb_stdlog,
2910 "SWC: Delayed SIGSTOP caught for %s.\n",
2911 target_pid_to_str (lp->ptid));
2912
2913 lp->stopped = 1;
2914
2915 /* Reset SIGNALLED only after the stop_wait_callback call
2916 above as it does gdb_assert on SIGNALLED. */
2917 lp->signalled = 0;
2918 }
2919 }
2920
2921 return 0;
2922 }
2923
2924 /* Return non-zero if LP has a wait status pending. */
2925
2926 static int
2927 status_callback (struct lwp_info *lp, void *data)
2928 {
2929 /* Only report a pending wait status if we pretend that this has
2930 indeed been resumed. */
2931 if (!lp->resumed)
2932 return 0;
2933
2934 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2935 {
2936 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2937 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2938 0', so a clean process exit can not be stored pending in
2939 lp->status, it is indistinguishable from
2940 no-pending-status. */
2941 return 1;
2942 }
2943
2944 if (lp->status != 0)
2945 return 1;
2946
2947 return 0;
2948 }
2949
2950 /* Return non-zero if LP isn't stopped. */
2951
2952 static int
2953 running_callback (struct lwp_info *lp, void *data)
2954 {
2955 return (!lp->stopped
2956 || ((lp->status != 0
2957 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2958 && lp->resumed));
2959 }
2960
2961 /* Count the LWP's that have had events. */
2962
2963 static int
2964 count_events_callback (struct lwp_info *lp, void *data)
2965 {
2966 int *count = data;
2967
2968 gdb_assert (count != NULL);
2969
2970 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2971 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2972 (*count)++;
2973
2974 return 0;
2975 }
2976
2977 /* Select the LWP (if any) that is currently being single-stepped. */
2978
2979 static int
2980 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2981 {
2982 if (lp->last_resume_kind == resume_step
2983 && lp->status != 0)
2984 return 1;
2985 else
2986 return 0;
2987 }
2988
2989 /* Select the Nth LWP that has had a SIGTRAP event. */
2990
2991 static int
2992 select_event_lwp_callback (struct lwp_info *lp, void *data)
2993 {
2994 int *selector = data;
2995
2996 gdb_assert (selector != NULL);
2997
2998 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2999 if (lp->resumed && linux_nat_lp_status_is_event (lp))
3000 if ((*selector)-- == 0)
3001 return 1;
3002
3003 return 0;
3004 }
3005
3006 static int
3007 cancel_breakpoint (struct lwp_info *lp)
3008 {
3009 /* Arrange for a breakpoint to be hit again later. We don't keep
3010 the SIGTRAP status and don't forward the SIGTRAP signal to the
3011 LWP. We will handle the current event, eventually we will resume
3012 this LWP, and this breakpoint will trap again.
3013
3014 If we do not do this, then we run the risk that the user will
3015 delete or disable the breakpoint, but the LWP will have already
3016 tripped on it. */
3017
3018 struct regcache *regcache = get_thread_regcache (lp->ptid);
3019 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3020 CORE_ADDR pc;
3021
3022 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
3023 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3024 {
3025 if (debug_linux_nat)
3026 fprintf_unfiltered (gdb_stdlog,
3027 "CB: Push back breakpoint for %s\n",
3028 target_pid_to_str (lp->ptid));
3029
3030 /* Back up the PC if necessary. */
3031 if (gdbarch_decr_pc_after_break (gdbarch))
3032 regcache_write_pc (regcache, pc);
3033
3034 return 1;
3035 }
3036 return 0;
3037 }
3038
3039 static int
3040 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
3041 {
3042 struct lwp_info *event_lp = data;
3043
3044 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
3045 if (lp == event_lp)
3046 return 0;
3047
3048 /* If a LWP other than the LWP that we're reporting an event for has
3049 hit a GDB breakpoint (as opposed to some random trap signal),
3050 then just arrange for it to hit it again later. We don't keep
3051 the SIGTRAP status and don't forward the SIGTRAP signal to the
3052 LWP. We will handle the current event, eventually we will resume
3053 all LWPs, and this one will get its breakpoint trap again.
3054
3055 If we do not do this, then we run the risk that the user will
3056 delete or disable the breakpoint, but the LWP will have already
3057 tripped on it. */
3058
3059 if (linux_nat_lp_status_is_event (lp)
3060 && cancel_breakpoint (lp))
3061 /* Throw away the SIGTRAP. */
3062 lp->status = 0;
3063
3064 return 0;
3065 }
3066
3067 /* Select one LWP out of those that have events pending. */
3068
3069 static void
3070 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
3071 {
3072 int num_events = 0;
3073 int random_selector;
3074 struct lwp_info *event_lp;
3075
3076 /* Record the wait status for the original LWP. */
3077 (*orig_lp)->status = *status;
3078
3079 /* Give preference to any LWP that is being single-stepped. */
3080 event_lp = iterate_over_lwps (filter,
3081 select_singlestep_lwp_callback, NULL);
3082 if (event_lp != NULL)
3083 {
3084 if (debug_linux_nat)
3085 fprintf_unfiltered (gdb_stdlog,
3086 "SEL: Select single-step %s\n",
3087 target_pid_to_str (event_lp->ptid));
3088 }
3089 else
3090 {
3091 /* No single-stepping LWP. Select one at random, out of those
3092 which have had SIGTRAP events. */
3093
3094 /* First see how many SIGTRAP events we have. */
3095 iterate_over_lwps (filter, count_events_callback, &num_events);
3096
3097 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
3098 random_selector = (int)
3099 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3100
3101 if (debug_linux_nat && num_events > 1)
3102 fprintf_unfiltered (gdb_stdlog,
3103 "SEL: Found %d SIGTRAP events, selecting #%d\n",
3104 num_events, random_selector);
3105
3106 event_lp = iterate_over_lwps (filter,
3107 select_event_lwp_callback,
3108 &random_selector);
3109 }
3110
3111 if (event_lp != NULL)
3112 {
3113 /* Switch the event LWP. */
3114 *orig_lp = event_lp;
3115 *status = event_lp->status;
3116 }
3117
3118 /* Flush the wait status for the event LWP. */
3119 (*orig_lp)->status = 0;
3120 }
3121
3122 /* Return non-zero if LP has been resumed. */
3123
3124 static int
3125 resumed_callback (struct lwp_info *lp, void *data)
3126 {
3127 return lp->resumed;
3128 }
3129
3130 /* Stop an active thread, verify it still exists, then resume it. If
3131 the thread ends up with a pending status, then it is not resumed,
3132 and *DATA (really a pointer to int), is set. */
3133
3134 static int
3135 stop_and_resume_callback (struct lwp_info *lp, void *data)
3136 {
3137 int *new_pending_p = data;
3138
3139 if (!lp->stopped)
3140 {
3141 ptid_t ptid = lp->ptid;
3142
3143 stop_callback (lp, NULL);
3144 stop_wait_callback (lp, NULL);
3145
3146 /* Resume if the lwp still exists, and the core wanted it
3147 running. */
3148 lp = find_lwp_pid (ptid);
3149 if (lp != NULL)
3150 {
3151 if (lp->last_resume_kind == resume_stop
3152 && lp->status == 0)
3153 {
3154 /* The core wanted the LWP to stop. Even if it stopped
3155 cleanly (with SIGSTOP), leave the event pending. */
3156 if (debug_linux_nat)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "SARC: core wanted LWP %ld stopped "
3159 "(leaving SIGSTOP pending)\n",
3160 GET_LWP (lp->ptid));
3161 lp->status = W_STOPCODE (SIGSTOP);
3162 }
3163
3164 if (lp->status == 0)
3165 {
3166 if (debug_linux_nat)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "SARC: re-resuming LWP %ld\n",
3169 GET_LWP (lp->ptid));
3170 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
3171 }
3172 else
3173 {
3174 if (debug_linux_nat)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "SARC: not re-resuming LWP %ld "
3177 "(has pending)\n",
3178 GET_LWP (lp->ptid));
3179 if (new_pending_p)
3180 *new_pending_p = 1;
3181 }
3182 }
3183 }
3184 return 0;
3185 }
3186
3187 /* Check if we should go on and pass this event to common code.
3188 Return the affected lwp if we are, or NULL otherwise. If we stop
3189 all lwps temporarily, we may end up with new pending events in some
3190 other lwp. In that case set *NEW_PENDING_P to true. */
3191
3192 static struct lwp_info *
3193 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
3194 {
3195 struct lwp_info *lp;
3196
3197 *new_pending_p = 0;
3198
3199 lp = find_lwp_pid (pid_to_ptid (lwpid));
3200
3201 /* Check for stop events reported by a process we didn't already
3202 know about - anything not already in our LWP list.
3203
3204 If we're expecting to receive stopped processes after
3205 fork, vfork, and clone events, then we'll just add the
3206 new one to our list and go back to waiting for the event
3207 to be reported - the stopped process might be returned
3208 from waitpid before or after the event is.
3209
3210 But note the case of a non-leader thread exec'ing after the
3211 leader having exited, and gone from our lists. The non-leader
3212 thread changes its tid to the tgid. */
3213
3214 if (WIFSTOPPED (status) && lp == NULL
3215 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
3216 {
3217 /* A multi-thread exec after we had seen the leader exiting. */
3218 if (debug_linux_nat)
3219 fprintf_unfiltered (gdb_stdlog,
3220 "LLW: Re-adding thread group leader LWP %d.\n",
3221 lwpid);
3222
3223 lp = add_lwp (BUILD_LWP (lwpid, lwpid));
3224 lp->stopped = 1;
3225 lp->resumed = 1;
3226 add_thread (lp->ptid);
3227 }
3228
3229 if (WIFSTOPPED (status) && !lp)
3230 {
3231 add_to_pid_list (&stopped_pids, lwpid, status);
3232 return NULL;
3233 }
3234
3235 /* Make sure we don't report an event for the exit of an LWP not in
3236 our list, i.e. not part of the current process. This can happen
3237 if we detach from a program we originally forked and then it
3238 exits. */
3239 if (!WIFSTOPPED (status) && !lp)
3240 return NULL;
3241
3242 /* Handle GNU/Linux's syscall SIGTRAPs. */
3243 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3244 {
3245 /* No longer need the sysgood bit. The ptrace event ends up
3246 recorded in lp->waitstatus if we care for it. We can carry
3247 on handling the event like a regular SIGTRAP from here
3248 on. */
3249 status = W_STOPCODE (SIGTRAP);
3250 if (linux_handle_syscall_trap (lp, 0))
3251 return NULL;
3252 }
3253
3254 /* Handle GNU/Linux's extended waitstatus for trace events. */
3255 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
3256 {
3257 if (debug_linux_nat)
3258 fprintf_unfiltered (gdb_stdlog,
3259 "LLW: Handling extended status 0x%06x\n",
3260 status);
3261 if (linux_handle_extended_wait (lp, status, 0))
3262 return NULL;
3263 }
3264
3265 if (linux_nat_status_is_event (status))
3266 save_sigtrap (lp);
3267
3268 /* Check if the thread has exited. */
3269 if ((WIFEXITED (status) || WIFSIGNALED (status))
3270 && num_lwps (GET_PID (lp->ptid)) > 1)
3271 {
3272 /* If this is the main thread, we must stop all threads and verify
3273 if they are still alive. This is because in the nptl thread model
3274 on Linux 2.4, there is no signal issued for exiting LWPs
3275 other than the main thread. We only get the main thread exit
3276 signal once all child threads have already exited. If we
3277 stop all the threads and use the stop_wait_callback to check
3278 if they have exited we can determine whether this signal
3279 should be ignored or whether it means the end of the debugged
3280 application, regardless of which threading model is being
3281 used. */
3282 if (GET_PID (lp->ptid) == GET_LWP (lp->ptid))
3283 {
3284 lp->stopped = 1;
3285 iterate_over_lwps (pid_to_ptid (GET_PID (lp->ptid)),
3286 stop_and_resume_callback, new_pending_p);
3287 }
3288
3289 if (debug_linux_nat)
3290 fprintf_unfiltered (gdb_stdlog,
3291 "LLW: %s exited.\n",
3292 target_pid_to_str (lp->ptid));
3293
3294 if (num_lwps (GET_PID (lp->ptid)) > 1)
3295 {
3296 /* If there is at least one more LWP, then the exit signal
3297 was not the end of the debugged application and should be
3298 ignored. */
3299 exit_lwp (lp);
3300 return NULL;
3301 }
3302 }
3303
3304 /* Check if the current LWP has previously exited. In the nptl
3305 thread model, LWPs other than the main thread do not issue
3306 signals when they exit so we must check whenever the thread has
3307 stopped. A similar check is made in stop_wait_callback(). */
3308 if (num_lwps (GET_PID (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3309 {
3310 ptid_t ptid = pid_to_ptid (GET_PID (lp->ptid));
3311
3312 if (debug_linux_nat)
3313 fprintf_unfiltered (gdb_stdlog,
3314 "LLW: %s exited.\n",
3315 target_pid_to_str (lp->ptid));
3316
3317 exit_lwp (lp);
3318
3319 /* Make sure there is at least one thread running. */
3320 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3321
3322 /* Discard the event. */
3323 return NULL;
3324 }
3325
3326 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3327 an attempt to stop an LWP. */
3328 if (lp->signalled
3329 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3330 {
3331 if (debug_linux_nat)
3332 fprintf_unfiltered (gdb_stdlog,
3333 "LLW: Delayed SIGSTOP caught for %s.\n",
3334 target_pid_to_str (lp->ptid));
3335
3336 lp->signalled = 0;
3337
3338 if (lp->last_resume_kind != resume_stop)
3339 {
3340 /* This is a delayed SIGSTOP. */
3341
3342 registers_changed ();
3343
3344 if (linux_nat_prepare_to_resume != NULL)
3345 linux_nat_prepare_to_resume (lp);
3346 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3347 lp->step, GDB_SIGNAL_0);
3348 if (debug_linux_nat)
3349 fprintf_unfiltered (gdb_stdlog,
3350 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3351 lp->step ?
3352 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3353 target_pid_to_str (lp->ptid));
3354
3355 lp->stopped = 0;
3356 gdb_assert (lp->resumed);
3357
3358 /* Discard the event. */
3359 return NULL;
3360 }
3361 }
3362
3363 /* Make sure we don't report a SIGINT that we have already displayed
3364 for another thread. */
3365 if (lp->ignore_sigint
3366 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3367 {
3368 if (debug_linux_nat)
3369 fprintf_unfiltered (gdb_stdlog,
3370 "LLW: Delayed SIGINT caught for %s.\n",
3371 target_pid_to_str (lp->ptid));
3372
3373 /* This is a delayed SIGINT. */
3374 lp->ignore_sigint = 0;
3375
3376 registers_changed ();
3377 if (linux_nat_prepare_to_resume != NULL)
3378 linux_nat_prepare_to_resume (lp);
3379 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3380 lp->step, GDB_SIGNAL_0);
3381 if (debug_linux_nat)
3382 fprintf_unfiltered (gdb_stdlog,
3383 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3384 lp->step ?
3385 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3386 target_pid_to_str (lp->ptid));
3387
3388 lp->stopped = 0;
3389 gdb_assert (lp->resumed);
3390
3391 /* Discard the event. */
3392 return NULL;
3393 }
3394
3395 /* An interesting event. */
3396 gdb_assert (lp);
3397 lp->status = status;
3398 return lp;
3399 }
3400
3401 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3402 their exits until all other threads in the group have exited. */
3403
3404 static void
3405 check_zombie_leaders (void)
3406 {
3407 struct inferior *inf;
3408
3409 ALL_INFERIORS (inf)
3410 {
3411 struct lwp_info *leader_lp;
3412
3413 if (inf->pid == 0)
3414 continue;
3415
3416 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3417 if (leader_lp != NULL
3418 /* Check if there are other threads in the group, as we may
3419 have raced with the inferior simply exiting. */
3420 && num_lwps (inf->pid) > 1
3421 && linux_proc_pid_is_zombie (inf->pid))
3422 {
3423 if (debug_linux_nat)
3424 fprintf_unfiltered (gdb_stdlog,
3425 "CZL: Thread group leader %d zombie "
3426 "(it exited, or another thread execd).\n",
3427 inf->pid);
3428
3429 /* A leader zombie can mean one of two things:
3430
3431 - It exited, and there's an exit status pending
3432 available, or only the leader exited (not the whole
3433 program). In the latter case, we can't waitpid the
3434 leader's exit status until all other threads are gone.
3435
3436 - There are 3 or more threads in the group, and a thread
3437 other than the leader exec'd. On an exec, the Linux
3438 kernel destroys all other threads (except the execing
3439 one) in the thread group, and resets the execing thread's
3440 tid to the tgid. No exit notification is sent for the
3441 execing thread -- from the ptracer's perspective, it
3442 appears as though the execing thread just vanishes.
3443 Until we reap all other threads except the leader and the
3444 execing thread, the leader will be zombie, and the
3445 execing thread will be in `D (disc sleep)'. As soon as
3446 all other threads are reaped, the execing thread changes
3447 it's tid to the tgid, and the previous (zombie) leader
3448 vanishes, giving place to the "new" leader. We could try
3449 distinguishing the exit and exec cases, by waiting once
3450 more, and seeing if something comes out, but it doesn't
3451 sound useful. The previous leader _does_ go away, and
3452 we'll re-add the new one once we see the exec event
3453 (which is just the same as what would happen if the
3454 previous leader did exit voluntarily before some other
3455 thread execs). */
3456
3457 if (debug_linux_nat)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "CZL: Thread group leader %d vanished.\n",
3460 inf->pid);
3461 exit_lwp (leader_lp);
3462 }
3463 }
3464 }
3465
3466 static ptid_t
3467 linux_nat_wait_1 (struct target_ops *ops,
3468 ptid_t ptid, struct target_waitstatus *ourstatus,
3469 int target_options)
3470 {
3471 static sigset_t prev_mask;
3472 enum resume_kind last_resume_kind;
3473 struct lwp_info *lp;
3474 int status;
3475
3476 if (debug_linux_nat)
3477 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3478
3479 /* The first time we get here after starting a new inferior, we may
3480 not have added it to the LWP list yet - this is the earliest
3481 moment at which we know its PID. */
3482 if (ptid_is_pid (inferior_ptid))
3483 {
3484 /* Upgrade the main thread's ptid. */
3485 thread_change_ptid (inferior_ptid,
3486 BUILD_LWP (GET_PID (inferior_ptid),
3487 GET_PID (inferior_ptid)));
3488
3489 lp = add_lwp (inferior_ptid);
3490 lp->resumed = 1;
3491 }
3492
3493 /* Make sure SIGCHLD is blocked. */
3494 block_child_signals (&prev_mask);
3495
3496 retry:
3497 lp = NULL;
3498 status = 0;
3499
3500 /* First check if there is a LWP with a wait status pending. */
3501 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3502 {
3503 /* Any LWP in the PTID group that's been resumed will do. */
3504 lp = iterate_over_lwps (ptid, status_callback, NULL);
3505 if (lp)
3506 {
3507 if (debug_linux_nat && lp->status)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "LLW: Using pending wait status %s for %s.\n",
3510 status_to_str (lp->status),
3511 target_pid_to_str (lp->ptid));
3512 }
3513 }
3514 else if (is_lwp (ptid))
3515 {
3516 if (debug_linux_nat)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "LLW: Waiting for specific LWP %s.\n",
3519 target_pid_to_str (ptid));
3520
3521 /* We have a specific LWP to check. */
3522 lp = find_lwp_pid (ptid);
3523 gdb_assert (lp);
3524
3525 if (debug_linux_nat && lp->status)
3526 fprintf_unfiltered (gdb_stdlog,
3527 "LLW: Using pending wait status %s for %s.\n",
3528 status_to_str (lp->status),
3529 target_pid_to_str (lp->ptid));
3530
3531 /* We check for lp->waitstatus in addition to lp->status,
3532 because we can have pending process exits recorded in
3533 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3534 an additional lp->status_p flag. */
3535 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3536 lp = NULL;
3537 }
3538
3539 if (!target_can_async_p ())
3540 {
3541 /* Causes SIGINT to be passed on to the attached process. */
3542 set_sigint_trap ();
3543 }
3544
3545 /* But if we don't find a pending event, we'll have to wait. */
3546
3547 while (lp == NULL)
3548 {
3549 pid_t lwpid;
3550
3551 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3552 quirks:
3553
3554 - If the thread group leader exits while other threads in the
3555 thread group still exist, waitpid(TGID, ...) hangs. That
3556 waitpid won't return an exit status until the other threads
3557 in the group are reapped.
3558
3559 - When a non-leader thread execs, that thread just vanishes
3560 without reporting an exit (so we'd hang if we waited for it
3561 explicitly in that case). The exec event is reported to
3562 the TGID pid. */
3563
3564 errno = 0;
3565 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3566 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3567 lwpid = my_waitpid (-1, &status, WNOHANG);
3568
3569 if (debug_linux_nat)
3570 fprintf_unfiltered (gdb_stdlog,
3571 "LNW: waitpid(-1, ...) returned %d, %s\n",
3572 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3573
3574 if (lwpid > 0)
3575 {
3576 /* If this is true, then we paused LWPs momentarily, and may
3577 now have pending events to handle. */
3578 int new_pending;
3579
3580 if (debug_linux_nat)
3581 {
3582 fprintf_unfiltered (gdb_stdlog,
3583 "LLW: waitpid %ld received %s\n",
3584 (long) lwpid, status_to_str (status));
3585 }
3586
3587 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3588
3589 /* STATUS is now no longer valid, use LP->STATUS instead. */
3590 status = 0;
3591
3592 if (lp && !ptid_match (lp->ptid, ptid))
3593 {
3594 gdb_assert (lp->resumed);
3595
3596 if (debug_linux_nat)
3597 fprintf (stderr,
3598 "LWP %ld got an event %06x, leaving pending.\n",
3599 ptid_get_lwp (lp->ptid), lp->status);
3600
3601 if (WIFSTOPPED (lp->status))
3602 {
3603 if (WSTOPSIG (lp->status) != SIGSTOP)
3604 {
3605 /* Cancel breakpoint hits. The breakpoint may
3606 be removed before we fetch events from this
3607 process to report to the core. It is best
3608 not to assume the moribund breakpoints
3609 heuristic always handles these cases --- it
3610 could be too many events go through to the
3611 core before this one is handled. All-stop
3612 always cancels breakpoint hits in all
3613 threads. */
3614 if (non_stop
3615 && linux_nat_lp_status_is_event (lp)
3616 && cancel_breakpoint (lp))
3617 {
3618 /* Throw away the SIGTRAP. */
3619 lp->status = 0;
3620
3621 if (debug_linux_nat)
3622 fprintf (stderr,
3623 "LLW: LWP %ld hit a breakpoint while"
3624 " waiting for another process;"
3625 " cancelled it\n",
3626 ptid_get_lwp (lp->ptid));
3627 }
3628 lp->stopped = 1;
3629 }
3630 else
3631 {
3632 lp->stopped = 1;
3633 lp->signalled = 0;
3634 }
3635 }
3636 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3637 {
3638 if (debug_linux_nat)
3639 fprintf (stderr,
3640 "Process %ld exited while stopping LWPs\n",
3641 ptid_get_lwp (lp->ptid));
3642
3643 /* This was the last lwp in the process. Since
3644 events are serialized to GDB core, and we can't
3645 report this one right now, but GDB core and the
3646 other target layers will want to be notified
3647 about the exit code/signal, leave the status
3648 pending for the next time we're able to report
3649 it. */
3650
3651 /* Prevent trying to stop this thread again. We'll
3652 never try to resume it because it has a pending
3653 status. */
3654 lp->stopped = 1;
3655
3656 /* Dead LWP's aren't expected to reported a pending
3657 sigstop. */
3658 lp->signalled = 0;
3659
3660 /* Store the pending event in the waitstatus as
3661 well, because W_EXITCODE(0,0) == 0. */
3662 store_waitstatus (&lp->waitstatus, lp->status);
3663 }
3664
3665 /* Keep looking. */
3666 lp = NULL;
3667 }
3668
3669 if (new_pending)
3670 {
3671 /* Some LWP now has a pending event. Go all the way
3672 back to check it. */
3673 goto retry;
3674 }
3675
3676 if (lp)
3677 {
3678 /* We got an event to report to the core. */
3679 break;
3680 }
3681
3682 /* Retry until nothing comes out of waitpid. A single
3683 SIGCHLD can indicate more than one child stopped. */
3684 continue;
3685 }
3686
3687 /* Check for zombie thread group leaders. Those can't be reaped
3688 until all other threads in the thread group are. */
3689 check_zombie_leaders ();
3690
3691 /* If there are no resumed children left, bail. We'd be stuck
3692 forever in the sigsuspend call below otherwise. */
3693 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3694 {
3695 if (debug_linux_nat)
3696 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3697
3698 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3699
3700 if (!target_can_async_p ())
3701 clear_sigint_trap ();
3702
3703 restore_child_signals_mask (&prev_mask);
3704 return minus_one_ptid;
3705 }
3706
3707 /* No interesting event to report to the core. */
3708
3709 if (target_options & TARGET_WNOHANG)
3710 {
3711 if (debug_linux_nat)
3712 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3713
3714 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3715 restore_child_signals_mask (&prev_mask);
3716 return minus_one_ptid;
3717 }
3718
3719 /* We shouldn't end up here unless we want to try again. */
3720 gdb_assert (lp == NULL);
3721
3722 /* Block until we get an event reported with SIGCHLD. */
3723 sigsuspend (&suspend_mask);
3724 }
3725
3726 if (!target_can_async_p ())
3727 clear_sigint_trap ();
3728
3729 gdb_assert (lp);
3730
3731 status = lp->status;
3732 lp->status = 0;
3733
3734 /* Don't report signals that GDB isn't interested in, such as
3735 signals that are neither printed nor stopped upon. Stopping all
3736 threads can be a bit time-consuming so if we want decent
3737 performance with heavily multi-threaded programs, especially when
3738 they're using a high frequency timer, we'd better avoid it if we
3739 can. */
3740
3741 if (WIFSTOPPED (status))
3742 {
3743 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3744
3745 /* When using hardware single-step, we need to report every signal.
3746 Otherwise, signals in pass_mask may be short-circuited. */
3747 if (!lp->step
3748 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3749 {
3750 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3751 here? It is not clear we should. GDB may not expect
3752 other threads to run. On the other hand, not resuming
3753 newly attached threads may cause an unwanted delay in
3754 getting them running. */
3755 registers_changed ();
3756 if (linux_nat_prepare_to_resume != NULL)
3757 linux_nat_prepare_to_resume (lp);
3758 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3759 lp->step, signo);
3760 if (debug_linux_nat)
3761 fprintf_unfiltered (gdb_stdlog,
3762 "LLW: %s %s, %s (preempt 'handle')\n",
3763 lp->step ?
3764 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3765 target_pid_to_str (lp->ptid),
3766 (signo != GDB_SIGNAL_0
3767 ? strsignal (gdb_signal_to_host (signo))
3768 : "0"));
3769 lp->stopped = 0;
3770 goto retry;
3771 }
3772
3773 if (!non_stop)
3774 {
3775 /* Only do the below in all-stop, as we currently use SIGINT
3776 to implement target_stop (see linux_nat_stop) in
3777 non-stop. */
3778 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3779 {
3780 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3781 forwarded to the entire process group, that is, all LWPs
3782 will receive it - unless they're using CLONE_THREAD to
3783 share signals. Since we only want to report it once, we
3784 mark it as ignored for all LWPs except this one. */
3785 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3786 set_ignore_sigint, NULL);
3787 lp->ignore_sigint = 0;
3788 }
3789 else
3790 maybe_clear_ignore_sigint (lp);
3791 }
3792 }
3793
3794 /* This LWP is stopped now. */
3795 lp->stopped = 1;
3796
3797 if (debug_linux_nat)
3798 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3799 status_to_str (status), target_pid_to_str (lp->ptid));
3800
3801 if (!non_stop)
3802 {
3803 /* Now stop all other LWP's ... */
3804 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3805
3806 /* ... and wait until all of them have reported back that
3807 they're no longer running. */
3808 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3809
3810 /* If we're not waiting for a specific LWP, choose an event LWP
3811 from among those that have had events. Giving equal priority
3812 to all LWPs that have had events helps prevent
3813 starvation. */
3814 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3815 select_event_lwp (ptid, &lp, &status);
3816
3817 /* Now that we've selected our final event LWP, cancel any
3818 breakpoints in other LWPs that have hit a GDB breakpoint.
3819 See the comment in cancel_breakpoints_callback to find out
3820 why. */
3821 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3822
3823 /* We'll need this to determine whether to report a SIGSTOP as
3824 TARGET_WAITKIND_0. Need to take a copy because
3825 resume_clear_callback clears it. */
3826 last_resume_kind = lp->last_resume_kind;
3827
3828 /* In all-stop, from the core's perspective, all LWPs are now
3829 stopped until a new resume action is sent over. */
3830 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3831 }
3832 else
3833 {
3834 /* See above. */
3835 last_resume_kind = lp->last_resume_kind;
3836 resume_clear_callback (lp, NULL);
3837 }
3838
3839 if (linux_nat_status_is_event (status))
3840 {
3841 if (debug_linux_nat)
3842 fprintf_unfiltered (gdb_stdlog,
3843 "LLW: trap ptid is %s.\n",
3844 target_pid_to_str (lp->ptid));
3845 }
3846
3847 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3848 {
3849 *ourstatus = lp->waitstatus;
3850 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3851 }
3852 else
3853 store_waitstatus (ourstatus, status);
3854
3855 if (debug_linux_nat)
3856 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3857
3858 restore_child_signals_mask (&prev_mask);
3859
3860 if (last_resume_kind == resume_stop
3861 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3862 && WSTOPSIG (status) == SIGSTOP)
3863 {
3864 /* A thread that has been requested to stop by GDB with
3865 target_stop, and it stopped cleanly, so report as SIG0. The
3866 use of SIGSTOP is an implementation detail. */
3867 ourstatus->value.sig = GDB_SIGNAL_0;
3868 }
3869
3870 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3871 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3872 lp->core = -1;
3873 else
3874 lp->core = linux_common_core_of_thread (lp->ptid);
3875
3876 return lp->ptid;
3877 }
3878
3879 /* Resume LWPs that are currently stopped without any pending status
3880 to report, but are resumed from the core's perspective. */
3881
3882 static int
3883 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3884 {
3885 ptid_t *wait_ptid_p = data;
3886
3887 if (lp->stopped
3888 && lp->resumed
3889 && lp->status == 0
3890 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3891 {
3892 struct regcache *regcache = get_thread_regcache (lp->ptid);
3893 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3894 CORE_ADDR pc = regcache_read_pc (regcache);
3895
3896 gdb_assert (is_executing (lp->ptid));
3897
3898 /* Don't bother if there's a breakpoint at PC that we'd hit
3899 immediately, and we're not waiting for this LWP. */
3900 if (!ptid_match (lp->ptid, *wait_ptid_p))
3901 {
3902 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3903 return 0;
3904 }
3905
3906 if (debug_linux_nat)
3907 fprintf_unfiltered (gdb_stdlog,
3908 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3909 target_pid_to_str (lp->ptid),
3910 paddress (gdbarch, pc),
3911 lp->step);
3912
3913 registers_changed ();
3914 if (linux_nat_prepare_to_resume != NULL)
3915 linux_nat_prepare_to_resume (lp);
3916 linux_ops->to_resume (linux_ops, pid_to_ptid (GET_LWP (lp->ptid)),
3917 lp->step, GDB_SIGNAL_0);
3918 lp->stopped = 0;
3919 lp->stopped_by_watchpoint = 0;
3920 }
3921
3922 return 0;
3923 }
3924
3925 static ptid_t
3926 linux_nat_wait (struct target_ops *ops,
3927 ptid_t ptid, struct target_waitstatus *ourstatus,
3928 int target_options)
3929 {
3930 ptid_t event_ptid;
3931
3932 if (debug_linux_nat)
3933 fprintf_unfiltered (gdb_stdlog,
3934 "linux_nat_wait: [%s]\n", target_pid_to_str (ptid));
3935
3936 /* Flush the async file first. */
3937 if (target_can_async_p ())
3938 async_file_flush ();
3939
3940 /* Resume LWPs that are currently stopped without any pending status
3941 to report, but are resumed from the core's perspective. LWPs get
3942 in this state if we find them stopping at a time we're not
3943 interested in reporting the event (target_wait on a
3944 specific_process, for example, see linux_nat_wait_1), and
3945 meanwhile the event became uninteresting. Don't bother resuming
3946 LWPs we're not going to wait for if they'd stop immediately. */
3947 if (non_stop)
3948 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3949
3950 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3951
3952 /* If we requested any event, and something came out, assume there
3953 may be more. If we requested a specific lwp or process, also
3954 assume there may be more. */
3955 if (target_can_async_p ()
3956 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3957 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3958 || !ptid_equal (ptid, minus_one_ptid)))
3959 async_file_mark ();
3960
3961 /* Get ready for the next event. */
3962 if (target_can_async_p ())
3963 target_async (inferior_event_handler, 0);
3964
3965 return event_ptid;
3966 }
3967
3968 static int
3969 kill_callback (struct lwp_info *lp, void *data)
3970 {
3971 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3972
3973 errno = 0;
3974 kill (GET_LWP (lp->ptid), SIGKILL);
3975 if (debug_linux_nat)
3976 fprintf_unfiltered (gdb_stdlog,
3977 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3978 target_pid_to_str (lp->ptid),
3979 errno ? safe_strerror (errno) : "OK");
3980
3981 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3982
3983 errno = 0;
3984 ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0);
3985 if (debug_linux_nat)
3986 fprintf_unfiltered (gdb_stdlog,
3987 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3988 target_pid_to_str (lp->ptid),
3989 errno ? safe_strerror (errno) : "OK");
3990
3991 return 0;
3992 }
3993
3994 static int
3995 kill_wait_callback (struct lwp_info *lp, void *data)
3996 {
3997 pid_t pid;
3998
3999 /* We must make sure that there are no pending events (delayed
4000 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
4001 program doesn't interfere with any following debugging session. */
4002
4003 /* For cloned processes we must check both with __WCLONE and
4004 without, since the exit status of a cloned process isn't reported
4005 with __WCLONE. */
4006 if (lp->cloned)
4007 {
4008 do
4009 {
4010 pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE);
4011 if (pid != (pid_t) -1)
4012 {
4013 if (debug_linux_nat)
4014 fprintf_unfiltered (gdb_stdlog,
4015 "KWC: wait %s received unknown.\n",
4016 target_pid_to_str (lp->ptid));
4017 /* The Linux kernel sometimes fails to kill a thread
4018 completely after PTRACE_KILL; that goes from the stop
4019 point in do_fork out to the one in
4020 get_signal_to_deliever and waits again. So kill it
4021 again. */
4022 kill_callback (lp, NULL);
4023 }
4024 }
4025 while (pid == GET_LWP (lp->ptid));
4026
4027 gdb_assert (pid == -1 && errno == ECHILD);
4028 }
4029
4030 do
4031 {
4032 pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0);
4033 if (pid != (pid_t) -1)
4034 {
4035 if (debug_linux_nat)
4036 fprintf_unfiltered (gdb_stdlog,
4037 "KWC: wait %s received unk.\n",
4038 target_pid_to_str (lp->ptid));
4039 /* See the call to kill_callback above. */
4040 kill_callback (lp, NULL);
4041 }
4042 }
4043 while (pid == GET_LWP (lp->ptid));
4044
4045 gdb_assert (pid == -1 && errno == ECHILD);
4046 return 0;
4047 }
4048
4049 static void
4050 linux_nat_kill (struct target_ops *ops)
4051 {
4052 struct target_waitstatus last;
4053 ptid_t last_ptid;
4054 int status;
4055
4056 /* If we're stopped while forking and we haven't followed yet,
4057 kill the other task. We need to do this first because the
4058 parent will be sleeping if this is a vfork. */
4059
4060 get_last_target_status (&last_ptid, &last);
4061
4062 if (last.kind == TARGET_WAITKIND_FORKED
4063 || last.kind == TARGET_WAITKIND_VFORKED)
4064 {
4065 ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0);
4066 wait (&status);
4067 }
4068
4069 if (forks_exist_p ())
4070 linux_fork_killall ();
4071 else
4072 {
4073 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
4074
4075 /* Stop all threads before killing them, since ptrace requires
4076 that the thread is stopped to sucessfully PTRACE_KILL. */
4077 iterate_over_lwps (ptid, stop_callback, NULL);
4078 /* ... and wait until all of them have reported back that
4079 they're no longer running. */
4080 iterate_over_lwps (ptid, stop_wait_callback, NULL);
4081
4082 /* Kill all LWP's ... */
4083 iterate_over_lwps (ptid, kill_callback, NULL);
4084
4085 /* ... and wait until we've flushed all events. */
4086 iterate_over_lwps (ptid, kill_wait_callback, NULL);
4087 }
4088
4089 target_mourn_inferior ();
4090 }
4091
4092 static void
4093 linux_nat_mourn_inferior (struct target_ops *ops)
4094 {
4095 purge_lwp_list (ptid_get_pid (inferior_ptid));
4096
4097 if (! forks_exist_p ())
4098 /* Normal case, no other forks available. */
4099 linux_ops->to_mourn_inferior (ops);
4100 else
4101 /* Multi-fork case. The current inferior_ptid has exited, but
4102 there are other viable forks to debug. Delete the exiting
4103 one and context-switch to the first available. */
4104 linux_fork_mourn_inferior ();
4105 }
4106
4107 /* Convert a native/host siginfo object, into/from the siginfo in the
4108 layout of the inferiors' architecture. */
4109
4110 static void
4111 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
4112 {
4113 int done = 0;
4114
4115 if (linux_nat_siginfo_fixup != NULL)
4116 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
4117
4118 /* If there was no callback, or the callback didn't do anything,
4119 then just do a straight memcpy. */
4120 if (!done)
4121 {
4122 if (direction == 1)
4123 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4124 else
4125 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4126 }
4127 }
4128
4129 static LONGEST
4130 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
4131 const char *annex, gdb_byte *readbuf,
4132 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4133 {
4134 int pid;
4135 siginfo_t siginfo;
4136 gdb_byte inf_siginfo[sizeof (siginfo_t)];
4137
4138 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
4139 gdb_assert (readbuf || writebuf);
4140
4141 pid = GET_LWP (inferior_ptid);
4142 if (pid == 0)
4143 pid = GET_PID (inferior_ptid);
4144
4145 if (offset > sizeof (siginfo))
4146 return -1;
4147
4148 errno = 0;
4149 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4150 if (errno != 0)
4151 return -1;
4152
4153 /* When GDB is built as a 64-bit application, ptrace writes into
4154 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4155 inferior with a 64-bit GDB should look the same as debugging it
4156 with a 32-bit GDB, we need to convert it. GDB core always sees
4157 the converted layout, so any read/write will have to be done
4158 post-conversion. */
4159 siginfo_fixup (&siginfo, inf_siginfo, 0);
4160
4161 if (offset + len > sizeof (siginfo))
4162 len = sizeof (siginfo) - offset;
4163
4164 if (readbuf != NULL)
4165 memcpy (readbuf, inf_siginfo + offset, len);
4166 else
4167 {
4168 memcpy (inf_siginfo + offset, writebuf, len);
4169
4170 /* Convert back to ptrace layout before flushing it out. */
4171 siginfo_fixup (&siginfo, inf_siginfo, 1);
4172
4173 errno = 0;
4174 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
4175 if (errno != 0)
4176 return -1;
4177 }
4178
4179 return len;
4180 }
4181
4182 static LONGEST
4183 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
4184 const char *annex, gdb_byte *readbuf,
4185 const gdb_byte *writebuf,
4186 ULONGEST offset, LONGEST len)
4187 {
4188 struct cleanup *old_chain;
4189 LONGEST xfer;
4190
4191 if (object == TARGET_OBJECT_SIGNAL_INFO)
4192 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
4193 offset, len);
4194
4195 /* The target is connected but no live inferior is selected. Pass
4196 this request down to a lower stratum (e.g., the executable
4197 file). */
4198 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
4199 return 0;
4200
4201 old_chain = save_inferior_ptid ();
4202
4203 if (is_lwp (inferior_ptid))
4204 inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid));
4205
4206 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
4207 offset, len);
4208
4209 do_cleanups (old_chain);
4210 return xfer;
4211 }
4212
4213 static int
4214 linux_thread_alive (ptid_t ptid)
4215 {
4216 int err, tmp_errno;
4217
4218 gdb_assert (is_lwp (ptid));
4219
4220 /* Send signal 0 instead of anything ptrace, because ptracing a
4221 running thread errors out claiming that the thread doesn't
4222 exist. */
4223 err = kill_lwp (GET_LWP (ptid), 0);
4224 tmp_errno = errno;
4225 if (debug_linux_nat)
4226 fprintf_unfiltered (gdb_stdlog,
4227 "LLTA: KILL(SIG0) %s (%s)\n",
4228 target_pid_to_str (ptid),
4229 err ? safe_strerror (tmp_errno) : "OK");
4230
4231 if (err != 0)
4232 return 0;
4233
4234 return 1;
4235 }
4236
4237 static int
4238 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
4239 {
4240 return linux_thread_alive (ptid);
4241 }
4242
4243 static char *
4244 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
4245 {
4246 static char buf[64];
4247
4248 if (is_lwp (ptid)
4249 && (GET_PID (ptid) != GET_LWP (ptid)
4250 || num_lwps (GET_PID (ptid)) > 1))
4251 {
4252 snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid));
4253 return buf;
4254 }
4255
4256 return normal_pid_to_str (ptid);
4257 }
4258
4259 static char *
4260 linux_nat_thread_name (struct thread_info *thr)
4261 {
4262 int pid = ptid_get_pid (thr->ptid);
4263 long lwp = ptid_get_lwp (thr->ptid);
4264 #define FORMAT "/proc/%d/task/%ld/comm"
4265 char buf[sizeof (FORMAT) + 30];
4266 FILE *comm_file;
4267 char *result = NULL;
4268
4269 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4270 comm_file = fopen (buf, "r");
4271 if (comm_file)
4272 {
4273 /* Not exported by the kernel, so we define it here. */
4274 #define COMM_LEN 16
4275 static char line[COMM_LEN + 1];
4276
4277 if (fgets (line, sizeof (line), comm_file))
4278 {
4279 char *nl = strchr (line, '\n');
4280
4281 if (nl)
4282 *nl = '\0';
4283 if (*line != '\0')
4284 result = line;
4285 }
4286
4287 fclose (comm_file);
4288 }
4289
4290 #undef COMM_LEN
4291 #undef FORMAT
4292
4293 return result;
4294 }
4295
4296 /* Accepts an integer PID; Returns a string representing a file that
4297 can be opened to get the symbols for the child process. */
4298
4299 static char *
4300 linux_child_pid_to_exec_file (int pid)
4301 {
4302 char *name1, *name2;
4303
4304 name1 = xmalloc (MAXPATHLEN);
4305 name2 = xmalloc (MAXPATHLEN);
4306 make_cleanup (xfree, name1);
4307 make_cleanup (xfree, name2);
4308 memset (name2, 0, MAXPATHLEN);
4309
4310 sprintf (name1, "/proc/%d/exe", pid);
4311 if (readlink (name1, name2, MAXPATHLEN) > 0)
4312 return name2;
4313 else
4314 return name1;
4315 }
4316
4317 /* Records the thread's register state for the corefile note
4318 section. */
4319
4320 static char *
4321 linux_nat_collect_thread_registers (const struct regcache *regcache,
4322 ptid_t ptid, bfd *obfd,
4323 char *note_data, int *note_size,
4324 enum gdb_signal stop_signal)
4325 {
4326 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4327 const struct regset *regset;
4328 int core_regset_p;
4329 gdb_gregset_t gregs;
4330 gdb_fpregset_t fpregs;
4331
4332 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4333
4334 if (core_regset_p
4335 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4336 sizeof (gregs)))
4337 != NULL && regset->collect_regset != NULL)
4338 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4339 else
4340 fill_gregset (regcache, &gregs, -1);
4341
4342 note_data = (char *) elfcore_write_prstatus
4343 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4344 gdb_signal_to_host (stop_signal), &gregs);
4345
4346 if (core_regset_p
4347 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4348 sizeof (fpregs)))
4349 != NULL && regset->collect_regset != NULL)
4350 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4351 else
4352 fill_fpregset (regcache, &fpregs, -1);
4353
4354 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4355 &fpregs, sizeof (fpregs));
4356
4357 return note_data;
4358 }
4359
4360 /* Fills the "to_make_corefile_note" target vector. Builds the note
4361 section for a corefile, and returns it in a malloc buffer. */
4362
4363 static char *
4364 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4365 {
4366 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4367 converted to gdbarch_core_regset_sections, this function can go away. */
4368 return linux_make_corefile_notes (target_gdbarch, obfd, note_size,
4369 linux_nat_collect_thread_registers);
4370 }
4371
4372 /* Implement the to_xfer_partial interface for memory reads using the /proc
4373 filesystem. Because we can use a single read() call for /proc, this
4374 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4375 but it doesn't support writes. */
4376
4377 static LONGEST
4378 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4379 const char *annex, gdb_byte *readbuf,
4380 const gdb_byte *writebuf,
4381 ULONGEST offset, LONGEST len)
4382 {
4383 LONGEST ret;
4384 int fd;
4385 char filename[64];
4386
4387 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4388 return 0;
4389
4390 /* Don't bother for one word. */
4391 if (len < 3 * sizeof (long))
4392 return 0;
4393
4394 /* We could keep this file open and cache it - possibly one per
4395 thread. That requires some juggling, but is even faster. */
4396 sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid));
4397 fd = open (filename, O_RDONLY | O_LARGEFILE);
4398 if (fd == -1)
4399 return 0;
4400
4401 /* If pread64 is available, use it. It's faster if the kernel
4402 supports it (only one syscall), and it's 64-bit safe even on
4403 32-bit platforms (for instance, SPARC debugging a SPARC64
4404 application). */
4405 #ifdef HAVE_PREAD64
4406 if (pread64 (fd, readbuf, len, offset) != len)
4407 #else
4408 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4409 #endif
4410 ret = 0;
4411 else
4412 ret = len;
4413
4414 close (fd);
4415 return ret;
4416 }
4417
4418
4419 /* Enumerate spufs IDs for process PID. */
4420 static LONGEST
4421 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4422 {
4423 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
4424 LONGEST pos = 0;
4425 LONGEST written = 0;
4426 char path[128];
4427 DIR *dir;
4428 struct dirent *entry;
4429
4430 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4431 dir = opendir (path);
4432 if (!dir)
4433 return -1;
4434
4435 rewinddir (dir);
4436 while ((entry = readdir (dir)) != NULL)
4437 {
4438 struct stat st;
4439 struct statfs stfs;
4440 int fd;
4441
4442 fd = atoi (entry->d_name);
4443 if (!fd)
4444 continue;
4445
4446 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4447 if (stat (path, &st) != 0)
4448 continue;
4449 if (!S_ISDIR (st.st_mode))
4450 continue;
4451
4452 if (statfs (path, &stfs) != 0)
4453 continue;
4454 if (stfs.f_type != SPUFS_MAGIC)
4455 continue;
4456
4457 if (pos >= offset && pos + 4 <= offset + len)
4458 {
4459 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4460 written += 4;
4461 }
4462 pos += 4;
4463 }
4464
4465 closedir (dir);
4466 return written;
4467 }
4468
4469 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4470 object type, using the /proc file system. */
4471 static LONGEST
4472 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4473 const char *annex, gdb_byte *readbuf,
4474 const gdb_byte *writebuf,
4475 ULONGEST offset, LONGEST len)
4476 {
4477 char buf[128];
4478 int fd = 0;
4479 int ret = -1;
4480 int pid = PIDGET (inferior_ptid);
4481
4482 if (!annex)
4483 {
4484 if (!readbuf)
4485 return -1;
4486 else
4487 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4488 }
4489
4490 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4491 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4492 if (fd <= 0)
4493 return -1;
4494
4495 if (offset != 0
4496 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4497 {
4498 close (fd);
4499 return 0;
4500 }
4501
4502 if (writebuf)
4503 ret = write (fd, writebuf, (size_t) len);
4504 else if (readbuf)
4505 ret = read (fd, readbuf, (size_t) len);
4506
4507 close (fd);
4508 return ret;
4509 }
4510
4511
4512 /* Parse LINE as a signal set and add its set bits to SIGS. */
4513
4514 static void
4515 add_line_to_sigset (const char *line, sigset_t *sigs)
4516 {
4517 int len = strlen (line) - 1;
4518 const char *p;
4519 int signum;
4520
4521 if (line[len] != '\n')
4522 error (_("Could not parse signal set: %s"), line);
4523
4524 p = line;
4525 signum = len * 4;
4526 while (len-- > 0)
4527 {
4528 int digit;
4529
4530 if (*p >= '0' && *p <= '9')
4531 digit = *p - '0';
4532 else if (*p >= 'a' && *p <= 'f')
4533 digit = *p - 'a' + 10;
4534 else
4535 error (_("Could not parse signal set: %s"), line);
4536
4537 signum -= 4;
4538
4539 if (digit & 1)
4540 sigaddset (sigs, signum + 1);
4541 if (digit & 2)
4542 sigaddset (sigs, signum + 2);
4543 if (digit & 4)
4544 sigaddset (sigs, signum + 3);
4545 if (digit & 8)
4546 sigaddset (sigs, signum + 4);
4547
4548 p++;
4549 }
4550 }
4551
4552 /* Find process PID's pending signals from /proc/pid/status and set
4553 SIGS to match. */
4554
4555 void
4556 linux_proc_pending_signals (int pid, sigset_t *pending,
4557 sigset_t *blocked, sigset_t *ignored)
4558 {
4559 FILE *procfile;
4560 char buffer[MAXPATHLEN], fname[MAXPATHLEN];
4561 struct cleanup *cleanup;
4562
4563 sigemptyset (pending);
4564 sigemptyset (blocked);
4565 sigemptyset (ignored);
4566 sprintf (fname, "/proc/%d/status", pid);
4567 procfile = fopen (fname, "r");
4568 if (procfile == NULL)
4569 error (_("Could not open %s"), fname);
4570 cleanup = make_cleanup_fclose (procfile);
4571
4572 while (fgets (buffer, MAXPATHLEN, procfile) != NULL)
4573 {
4574 /* Normal queued signals are on the SigPnd line in the status
4575 file. However, 2.6 kernels also have a "shared" pending
4576 queue for delivering signals to a thread group, so check for
4577 a ShdPnd line also.
4578
4579 Unfortunately some Red Hat kernels include the shared pending
4580 queue but not the ShdPnd status field. */
4581
4582 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4583 add_line_to_sigset (buffer + 8, pending);
4584 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4585 add_line_to_sigset (buffer + 8, pending);
4586 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4587 add_line_to_sigset (buffer + 8, blocked);
4588 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4589 add_line_to_sigset (buffer + 8, ignored);
4590 }
4591
4592 do_cleanups (cleanup);
4593 }
4594
4595 static LONGEST
4596 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4597 const char *annex, gdb_byte *readbuf,
4598 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4599 {
4600 gdb_assert (object == TARGET_OBJECT_OSDATA);
4601
4602 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4603 }
4604
4605 static LONGEST
4606 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4607 const char *annex, gdb_byte *readbuf,
4608 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4609 {
4610 LONGEST xfer;
4611
4612 if (object == TARGET_OBJECT_AUXV)
4613 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4614 offset, len);
4615
4616 if (object == TARGET_OBJECT_OSDATA)
4617 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4618 offset, len);
4619
4620 if (object == TARGET_OBJECT_SPU)
4621 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4622 offset, len);
4623
4624 /* GDB calculates all the addresses in possibly larget width of the address.
4625 Address width needs to be masked before its final use - either by
4626 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4627
4628 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4629
4630 if (object == TARGET_OBJECT_MEMORY)
4631 {
4632 int addr_bit = gdbarch_addr_bit (target_gdbarch);
4633
4634 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4635 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4636 }
4637
4638 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4639 offset, len);
4640 if (xfer != 0)
4641 return xfer;
4642
4643 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4644 offset, len);
4645 }
4646
4647 static void
4648 cleanup_target_stop (void *arg)
4649 {
4650 ptid_t *ptid = (ptid_t *) arg;
4651
4652 gdb_assert (arg != NULL);
4653
4654 /* Unpause all */
4655 target_resume (*ptid, 0, GDB_SIGNAL_0);
4656 }
4657
4658 static VEC(static_tracepoint_marker_p) *
4659 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4660 {
4661 char s[IPA_CMD_BUF_SIZE];
4662 struct cleanup *old_chain;
4663 int pid = ptid_get_pid (inferior_ptid);
4664 VEC(static_tracepoint_marker_p) *markers = NULL;
4665 struct static_tracepoint_marker *marker = NULL;
4666 char *p = s;
4667 ptid_t ptid = ptid_build (pid, 0, 0);
4668
4669 /* Pause all */
4670 target_stop (ptid);
4671
4672 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4673 s[sizeof ("qTfSTM")] = 0;
4674
4675 agent_run_command (pid, s, strlen (s) + 1);
4676
4677 old_chain = make_cleanup (free_current_marker, &marker);
4678 make_cleanup (cleanup_target_stop, &ptid);
4679
4680 while (*p++ == 'm')
4681 {
4682 if (marker == NULL)
4683 marker = XCNEW (struct static_tracepoint_marker);
4684
4685 do
4686 {
4687 parse_static_tracepoint_marker_definition (p, &p, marker);
4688
4689 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4690 {
4691 VEC_safe_push (static_tracepoint_marker_p,
4692 markers, marker);
4693 marker = NULL;
4694 }
4695 else
4696 {
4697 release_static_tracepoint_marker (marker);
4698 memset (marker, 0, sizeof (*marker));
4699 }
4700 }
4701 while (*p++ == ','); /* comma-separated list */
4702
4703 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4704 s[sizeof ("qTsSTM")] = 0;
4705 agent_run_command (pid, s, strlen (s) + 1);
4706 p = s;
4707 }
4708
4709 do_cleanups (old_chain);
4710
4711 return markers;
4712 }
4713
4714 /* Create a prototype generic GNU/Linux target. The client can override
4715 it with local methods. */
4716
4717 static void
4718 linux_target_install_ops (struct target_ops *t)
4719 {
4720 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4721 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4722 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4723 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4724 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4725 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4726 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4727 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4728 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4729 t->to_post_attach = linux_child_post_attach;
4730 t->to_follow_fork = linux_child_follow_fork;
4731 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4732
4733 super_xfer_partial = t->to_xfer_partial;
4734 t->to_xfer_partial = linux_xfer_partial;
4735
4736 t->to_static_tracepoint_markers_by_strid
4737 = linux_child_static_tracepoint_markers_by_strid;
4738 }
4739
4740 struct target_ops *
4741 linux_target (void)
4742 {
4743 struct target_ops *t;
4744
4745 t = inf_ptrace_target ();
4746 linux_target_install_ops (t);
4747
4748 return t;
4749 }
4750
4751 struct target_ops *
4752 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4753 {
4754 struct target_ops *t;
4755
4756 t = inf_ptrace_trad_target (register_u_offset);
4757 linux_target_install_ops (t);
4758
4759 return t;
4760 }
4761
4762 /* target_is_async_p implementation. */
4763
4764 static int
4765 linux_nat_is_async_p (void)
4766 {
4767 /* NOTE: palves 2008-03-21: We're only async when the user requests
4768 it explicitly with the "set target-async" command.
4769 Someday, linux will always be async. */
4770 return target_async_permitted;
4771 }
4772
4773 /* target_can_async_p implementation. */
4774
4775 static int
4776 linux_nat_can_async_p (void)
4777 {
4778 /* NOTE: palves 2008-03-21: We're only async when the user requests
4779 it explicitly with the "set target-async" command.
4780 Someday, linux will always be async. */
4781 return target_async_permitted;
4782 }
4783
4784 static int
4785 linux_nat_supports_non_stop (void)
4786 {
4787 return 1;
4788 }
4789
4790 /* True if we want to support multi-process. To be removed when GDB
4791 supports multi-exec. */
4792
4793 int linux_multi_process = 1;
4794
4795 static int
4796 linux_nat_supports_multi_process (void)
4797 {
4798 return linux_multi_process;
4799 }
4800
4801 static int
4802 linux_nat_supports_disable_randomization (void)
4803 {
4804 #ifdef HAVE_PERSONALITY
4805 return 1;
4806 #else
4807 return 0;
4808 #endif
4809 }
4810
4811 static int async_terminal_is_ours = 1;
4812
4813 /* target_terminal_inferior implementation. */
4814
4815 static void
4816 linux_nat_terminal_inferior (void)
4817 {
4818 if (!target_is_async_p ())
4819 {
4820 /* Async mode is disabled. */
4821 terminal_inferior ();
4822 return;
4823 }
4824
4825 terminal_inferior ();
4826
4827 /* Calls to target_terminal_*() are meant to be idempotent. */
4828 if (!async_terminal_is_ours)
4829 return;
4830
4831 delete_file_handler (input_fd);
4832 async_terminal_is_ours = 0;
4833 set_sigint_trap ();
4834 }
4835
4836 /* target_terminal_ours implementation. */
4837
4838 static void
4839 linux_nat_terminal_ours (void)
4840 {
4841 if (!target_is_async_p ())
4842 {
4843 /* Async mode is disabled. */
4844 terminal_ours ();
4845 return;
4846 }
4847
4848 /* GDB should never give the terminal to the inferior if the
4849 inferior is running in the background (run&, continue&, etc.),
4850 but claiming it sure should. */
4851 terminal_ours ();
4852
4853 if (async_terminal_is_ours)
4854 return;
4855
4856 clear_sigint_trap ();
4857 add_file_handler (input_fd, stdin_event_handler, 0);
4858 async_terminal_is_ours = 1;
4859 }
4860
4861 static void (*async_client_callback) (enum inferior_event_type event_type,
4862 void *context);
4863 static void *async_client_context;
4864
4865 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4866 so we notice when any child changes state, and notify the
4867 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4868 above to wait for the arrival of a SIGCHLD. */
4869
4870 static void
4871 sigchld_handler (int signo)
4872 {
4873 int old_errno = errno;
4874
4875 if (debug_linux_nat)
4876 ui_file_write_async_safe (gdb_stdlog,
4877 "sigchld\n", sizeof ("sigchld\n") - 1);
4878
4879 if (signo == SIGCHLD
4880 && linux_nat_event_pipe[0] != -1)
4881 async_file_mark (); /* Let the event loop know that there are
4882 events to handle. */
4883
4884 errno = old_errno;
4885 }
4886
4887 /* Callback registered with the target events file descriptor. */
4888
4889 static void
4890 handle_target_event (int error, gdb_client_data client_data)
4891 {
4892 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4893 }
4894
4895 /* Create/destroy the target events pipe. Returns previous state. */
4896
4897 static int
4898 linux_async_pipe (int enable)
4899 {
4900 int previous = (linux_nat_event_pipe[0] != -1);
4901
4902 if (previous != enable)
4903 {
4904 sigset_t prev_mask;
4905
4906 block_child_signals (&prev_mask);
4907
4908 if (enable)
4909 {
4910 if (pipe (linux_nat_event_pipe) == -1)
4911 internal_error (__FILE__, __LINE__,
4912 "creating event pipe failed.");
4913
4914 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4915 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4916 }
4917 else
4918 {
4919 close (linux_nat_event_pipe[0]);
4920 close (linux_nat_event_pipe[1]);
4921 linux_nat_event_pipe[0] = -1;
4922 linux_nat_event_pipe[1] = -1;
4923 }
4924
4925 restore_child_signals_mask (&prev_mask);
4926 }
4927
4928 return previous;
4929 }
4930
4931 /* target_async implementation. */
4932
4933 static void
4934 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4935 void *context), void *context)
4936 {
4937 if (callback != NULL)
4938 {
4939 async_client_callback = callback;
4940 async_client_context = context;
4941 if (!linux_async_pipe (1))
4942 {
4943 add_file_handler (linux_nat_event_pipe[0],
4944 handle_target_event, NULL);
4945 /* There may be pending events to handle. Tell the event loop
4946 to poll them. */
4947 async_file_mark ();
4948 }
4949 }
4950 else
4951 {
4952 async_client_callback = callback;
4953 async_client_context = context;
4954 delete_file_handler (linux_nat_event_pipe[0]);
4955 linux_async_pipe (0);
4956 }
4957 return;
4958 }
4959
4960 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4961 event came out. */
4962
4963 static int
4964 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4965 {
4966 if (!lwp->stopped)
4967 {
4968 ptid_t ptid = lwp->ptid;
4969
4970 if (debug_linux_nat)
4971 fprintf_unfiltered (gdb_stdlog,
4972 "LNSL: running -> suspending %s\n",
4973 target_pid_to_str (lwp->ptid));
4974
4975
4976 if (lwp->last_resume_kind == resume_stop)
4977 {
4978 if (debug_linux_nat)
4979 fprintf_unfiltered (gdb_stdlog,
4980 "linux-nat: already stopping LWP %ld at "
4981 "GDB's request\n",
4982 ptid_get_lwp (lwp->ptid));
4983 return 0;
4984 }
4985
4986 stop_callback (lwp, NULL);
4987 lwp->last_resume_kind = resume_stop;
4988 }
4989 else
4990 {
4991 /* Already known to be stopped; do nothing. */
4992
4993 if (debug_linux_nat)
4994 {
4995 if (find_thread_ptid (lwp->ptid)->stop_requested)
4996 fprintf_unfiltered (gdb_stdlog,
4997 "LNSL: already stopped/stop_requested %s\n",
4998 target_pid_to_str (lwp->ptid));
4999 else
5000 fprintf_unfiltered (gdb_stdlog,
5001 "LNSL: already stopped/no "
5002 "stop_requested yet %s\n",
5003 target_pid_to_str (lwp->ptid));
5004 }
5005 }
5006 return 0;
5007 }
5008
5009 static void
5010 linux_nat_stop (ptid_t ptid)
5011 {
5012 if (non_stop)
5013 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
5014 else
5015 linux_ops->to_stop (ptid);
5016 }
5017
5018 static void
5019 linux_nat_close (int quitting)
5020 {
5021 /* Unregister from the event loop. */
5022 if (linux_nat_is_async_p ())
5023 linux_nat_async (NULL, 0);
5024
5025 if (linux_ops->to_close)
5026 linux_ops->to_close (quitting);
5027 }
5028
5029 /* When requests are passed down from the linux-nat layer to the
5030 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
5031 used. The address space pointer is stored in the inferior object,
5032 but the common code that is passed such ptid can't tell whether
5033 lwpid is a "main" process id or not (it assumes so). We reverse
5034 look up the "main" process id from the lwp here. */
5035
5036 static struct address_space *
5037 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
5038 {
5039 struct lwp_info *lwp;
5040 struct inferior *inf;
5041 int pid;
5042
5043 pid = GET_LWP (ptid);
5044 if (GET_LWP (ptid) == 0)
5045 {
5046 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
5047 tgid. */
5048 lwp = find_lwp_pid (ptid);
5049 pid = GET_PID (lwp->ptid);
5050 }
5051 else
5052 {
5053 /* A (pid,lwpid,0) ptid. */
5054 pid = GET_PID (ptid);
5055 }
5056
5057 inf = find_inferior_pid (pid);
5058 gdb_assert (inf != NULL);
5059 return inf->aspace;
5060 }
5061
5062 /* Return the cached value of the processor core for thread PTID. */
5063
5064 static int
5065 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
5066 {
5067 struct lwp_info *info = find_lwp_pid (ptid);
5068
5069 if (info)
5070 return info->core;
5071 return -1;
5072 }
5073
5074 void
5075 linux_nat_add_target (struct target_ops *t)
5076 {
5077 /* Save the provided single-threaded target. We save this in a separate
5078 variable because another target we've inherited from (e.g. inf-ptrace)
5079 may have saved a pointer to T; we want to use it for the final
5080 process stratum target. */
5081 linux_ops_saved = *t;
5082 linux_ops = &linux_ops_saved;
5083
5084 /* Override some methods for multithreading. */
5085 t->to_create_inferior = linux_nat_create_inferior;
5086 t->to_attach = linux_nat_attach;
5087 t->to_detach = linux_nat_detach;
5088 t->to_resume = linux_nat_resume;
5089 t->to_wait = linux_nat_wait;
5090 t->to_pass_signals = linux_nat_pass_signals;
5091 t->to_xfer_partial = linux_nat_xfer_partial;
5092 t->to_kill = linux_nat_kill;
5093 t->to_mourn_inferior = linux_nat_mourn_inferior;
5094 t->to_thread_alive = linux_nat_thread_alive;
5095 t->to_pid_to_str = linux_nat_pid_to_str;
5096 t->to_thread_name = linux_nat_thread_name;
5097 t->to_has_thread_control = tc_schedlock;
5098 t->to_thread_address_space = linux_nat_thread_address_space;
5099 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
5100 t->to_stopped_data_address = linux_nat_stopped_data_address;
5101
5102 t->to_can_async_p = linux_nat_can_async_p;
5103 t->to_is_async_p = linux_nat_is_async_p;
5104 t->to_supports_non_stop = linux_nat_supports_non_stop;
5105 t->to_async = linux_nat_async;
5106 t->to_terminal_inferior = linux_nat_terminal_inferior;
5107 t->to_terminal_ours = linux_nat_terminal_ours;
5108 t->to_close = linux_nat_close;
5109
5110 /* Methods for non-stop support. */
5111 t->to_stop = linux_nat_stop;
5112
5113 t->to_supports_multi_process = linux_nat_supports_multi_process;
5114
5115 t->to_supports_disable_randomization
5116 = linux_nat_supports_disable_randomization;
5117
5118 t->to_core_of_thread = linux_nat_core_of_thread;
5119
5120 /* We don't change the stratum; this target will sit at
5121 process_stratum and thread_db will set at thread_stratum. This
5122 is a little strange, since this is a multi-threaded-capable
5123 target, but we want to be on the stack below thread_db, and we
5124 also want to be used for single-threaded processes. */
5125
5126 add_target (t);
5127 }
5128
5129 /* Register a method to call whenever a new thread is attached. */
5130 void
5131 linux_nat_set_new_thread (struct target_ops *t,
5132 void (*new_thread) (struct lwp_info *))
5133 {
5134 /* Save the pointer. We only support a single registered instance
5135 of the GNU/Linux native target, so we do not need to map this to
5136 T. */
5137 linux_nat_new_thread = new_thread;
5138 }
5139
5140 /* Register a method that converts a siginfo object between the layout
5141 that ptrace returns, and the layout in the architecture of the
5142 inferior. */
5143 void
5144 linux_nat_set_siginfo_fixup (struct target_ops *t,
5145 int (*siginfo_fixup) (siginfo_t *,
5146 gdb_byte *,
5147 int))
5148 {
5149 /* Save the pointer. */
5150 linux_nat_siginfo_fixup = siginfo_fixup;
5151 }
5152
5153 /* Register a method to call prior to resuming a thread. */
5154
5155 void
5156 linux_nat_set_prepare_to_resume (struct target_ops *t,
5157 void (*prepare_to_resume) (struct lwp_info *))
5158 {
5159 /* Save the pointer. */
5160 linux_nat_prepare_to_resume = prepare_to_resume;
5161 }
5162
5163 /* See linux-nat.h. */
5164
5165 int
5166 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
5167 {
5168 int pid;
5169
5170 pid = GET_LWP (ptid);
5171 if (pid == 0)
5172 pid = GET_PID (ptid);
5173
5174 errno = 0;
5175 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
5176 if (errno != 0)
5177 {
5178 memset (siginfo, 0, sizeof (*siginfo));
5179 return 0;
5180 }
5181 return 1;
5182 }
5183
5184 /* Provide a prototype to silence -Wmissing-prototypes. */
5185 extern initialize_file_ftype _initialize_linux_nat;
5186
5187 void
5188 _initialize_linux_nat (void)
5189 {
5190 add_setshow_zinteger_cmd ("lin-lwp", class_maintenance,
5191 &debug_linux_nat, _("\
5192 Set debugging of GNU/Linux lwp module."), _("\
5193 Show debugging of GNU/Linux lwp module."), _("\
5194 Enables printf debugging output."),
5195 NULL,
5196 show_debug_linux_nat,
5197 &setdebuglist, &showdebuglist);
5198
5199 /* Save this mask as the default. */
5200 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
5201
5202 /* Install a SIGCHLD handler. */
5203 sigchld_action.sa_handler = sigchld_handler;
5204 sigemptyset (&sigchld_action.sa_mask);
5205 sigchld_action.sa_flags = SA_RESTART;
5206
5207 /* Make it the default. */
5208 sigaction (SIGCHLD, &sigchld_action, NULL);
5209
5210 /* Make sure we don't block SIGCHLD during a sigsuspend. */
5211 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5212 sigdelset (&suspend_mask, SIGCHLD);
5213
5214 sigemptyset (&blocked_mask);
5215 }
5216 \f
5217
5218 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5219 the GNU/Linux Threads library and therefore doesn't really belong
5220 here. */
5221
5222 /* Read variable NAME in the target and return its value if found.
5223 Otherwise return zero. It is assumed that the type of the variable
5224 is `int'. */
5225
5226 static int
5227 get_signo (const char *name)
5228 {
5229 struct minimal_symbol *ms;
5230 int signo;
5231
5232 ms = lookup_minimal_symbol (name, NULL, NULL);
5233 if (ms == NULL)
5234 return 0;
5235
5236 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5237 sizeof (signo)) != 0)
5238 return 0;
5239
5240 return signo;
5241 }
5242
5243 /* Return the set of signals used by the threads library in *SET. */
5244
5245 void
5246 lin_thread_get_thread_signals (sigset_t *set)
5247 {
5248 struct sigaction action;
5249 int restart, cancel;
5250
5251 sigemptyset (&blocked_mask);
5252 sigemptyset (set);
5253
5254 restart = get_signo ("__pthread_sig_restart");
5255 cancel = get_signo ("__pthread_sig_cancel");
5256
5257 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5258 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5259 not provide any way for the debugger to query the signal numbers -
5260 fortunately they don't change! */
5261
5262 if (restart == 0)
5263 restart = __SIGRTMIN;
5264
5265 if (cancel == 0)
5266 cancel = __SIGRTMIN + 1;
5267
5268 sigaddset (set, restart);
5269 sigaddset (set, cancel);
5270
5271 /* The GNU/Linux Threads library makes terminating threads send a
5272 special "cancel" signal instead of SIGCHLD. Make sure we catch
5273 those (to prevent them from terminating GDB itself, which is
5274 likely to be their default action) and treat them the same way as
5275 SIGCHLD. */
5276
5277 action.sa_handler = sigchld_handler;
5278 sigemptyset (&action.sa_mask);
5279 action.sa_flags = SA_RESTART;
5280 sigaction (cancel, &action, NULL);
5281
5282 /* We block the "cancel" signal throughout this code ... */
5283 sigaddset (&blocked_mask, cancel);
5284 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5285
5286 /* ... except during a sigsuspend. */
5287 sigdelset (&suspend_mask, cancel);
5288 }
This page took 0.131847 seconds and 5 git commands to generate.