Use a std::vector for ada_exceptions_list
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* This enum represents the signals' numbers on a generic architecture
97 running the Linux kernel. The definition of "generic" comes from
98 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
99 tree, which is the "de facto" implementation of signal numbers to
100 be used by new architecture ports.
101
102 For those architectures which have differences between the generic
103 standard (e.g., Alpha), we define the different signals (and *only*
104 those) in the specific target-dependent file (e.g.,
105 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
106 tdep file for more information.
107
108 ARM deserves a special mention here. On the file
109 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
110 (and ARM-only) signal, which is SIGSWI, with the same number as
111 SIGRTMIN. This signal is used only for a very specific target,
112 called ArthurOS (from RISCOS). Therefore, we do not handle it on
113 the ARM-tdep file, and we can safely use the generic signal handler
114 here for ARM targets.
115
116 As stated above, this enum is derived from
117 <include/uapi/asm-generic/signal.h>, from the Linux kernel
118 tree. */
119
120 enum
121 {
122 LINUX_SIGHUP = 1,
123 LINUX_SIGINT = 2,
124 LINUX_SIGQUIT = 3,
125 LINUX_SIGILL = 4,
126 LINUX_SIGTRAP = 5,
127 LINUX_SIGABRT = 6,
128 LINUX_SIGIOT = 6,
129 LINUX_SIGBUS = 7,
130 LINUX_SIGFPE = 8,
131 LINUX_SIGKILL = 9,
132 LINUX_SIGUSR1 = 10,
133 LINUX_SIGSEGV = 11,
134 LINUX_SIGUSR2 = 12,
135 LINUX_SIGPIPE = 13,
136 LINUX_SIGALRM = 14,
137 LINUX_SIGTERM = 15,
138 LINUX_SIGSTKFLT = 16,
139 LINUX_SIGCHLD = 17,
140 LINUX_SIGCONT = 18,
141 LINUX_SIGSTOP = 19,
142 LINUX_SIGTSTP = 20,
143 LINUX_SIGTTIN = 21,
144 LINUX_SIGTTOU = 22,
145 LINUX_SIGURG = 23,
146 LINUX_SIGXCPU = 24,
147 LINUX_SIGXFSZ = 25,
148 LINUX_SIGVTALRM = 26,
149 LINUX_SIGPROF = 27,
150 LINUX_SIGWINCH = 28,
151 LINUX_SIGIO = 29,
152 LINUX_SIGPOLL = LINUX_SIGIO,
153 LINUX_SIGPWR = 30,
154 LINUX_SIGSYS = 31,
155 LINUX_SIGUNUSED = 31,
156
157 LINUX_SIGRTMIN = 32,
158 LINUX_SIGRTMAX = 64,
159 };
160
161 static struct gdbarch_data *linux_gdbarch_data_handle;
162
163 struct linux_gdbarch_data
164 {
165 struct type *siginfo_type;
166 };
167
168 static void *
169 init_linux_gdbarch_data (struct gdbarch *gdbarch)
170 {
171 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
172 }
173
174 static struct linux_gdbarch_data *
175 get_linux_gdbarch_data (struct gdbarch *gdbarch)
176 {
177 return ((struct linux_gdbarch_data *)
178 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
179 }
180
181 /* Per-inferior data key. */
182 static const struct inferior_data *linux_inferior_data;
183
184 /* Linux-specific cached data. This is used by GDB for caching
185 purposes for each inferior. This helps reduce the overhead of
186 transfering data from a remote target to the local host. */
187 struct linux_info
188 {
189 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
190 if VSYSCALL_RANGE_P is positive. This is cached because getting
191 at this info requires an auxv lookup (which is itself cached),
192 and looking through the inferior's mappings (which change
193 throughout execution and therefore cannot be cached). */
194 struct mem_range vsyscall_range;
195
196 /* Zero if we haven't tried looking up the vsyscall's range before
197 yet. Positive if we tried looking it up, and found it. Negative
198 if we tried looking it up but failed. */
199 int vsyscall_range_p;
200 };
201
202 /* Frees whatever allocated space there is to be freed and sets INF's
203 linux cache data pointer to NULL. */
204
205 static void
206 invalidate_linux_cache_inf (struct inferior *inf)
207 {
208 struct linux_info *info;
209
210 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
211 if (info != NULL)
212 {
213 xfree (info);
214 set_inferior_data (inf, linux_inferior_data, NULL);
215 }
216 }
217
218 /* Handles the cleanup of the linux cache for inferior INF. ARG is
219 ignored. Callback for the inferior_appeared and inferior_exit
220 events. */
221
222 static void
223 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224 {
225 invalidate_linux_cache_inf (inf);
226 }
227
228 /* Fetch the linux cache info for INF. This function always returns a
229 valid INFO pointer. */
230
231 static struct linux_info *
232 get_linux_inferior_data (void)
233 {
234 struct linux_info *info;
235 struct inferior *inf = current_inferior ();
236
237 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
238 if (info == NULL)
239 {
240 info = XCNEW (struct linux_info);
241 set_inferior_data (inf, linux_inferior_data, info);
242 }
243
244 return info;
245 }
246
247 /* See linux-tdep.h. */
248
249 struct type *
250 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
252 {
253 struct linux_gdbarch_data *linux_gdbarch_data;
254 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
270 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
271 0, "short");
272 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273
274 /* sival_t */
275 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
276 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
277 append_composite_type_field (sigval_type, "sival_int", int_type);
278 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279
280 /* __pid_t */
281 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
283 TYPE_TARGET_TYPE (pid_type) = int_type;
284 TYPE_TARGET_STUB (pid_type) = 1;
285
286 /* __uid_t */
287 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
289 TYPE_TARGET_TYPE (uid_type) = uint_type;
290 TYPE_TARGET_STUB (uid_type) = 1;
291
292 /* __clock_t */
293 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
294 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
295 "__clock_t");
296 TYPE_TARGET_TYPE (clock_type) = long_type;
297 TYPE_TARGET_STUB (clock_type) = 1;
298
299 /* _sifields */
300 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
301
302 {
303 const int si_max_size = 128;
304 int si_pad_size;
305 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
306
307 /* _pad */
308 if (gdbarch_ptr_bit (gdbarch) == 64)
309 si_pad_size = (si_max_size / size_of_int) - 4;
310 else
311 si_pad_size = (si_max_size / size_of_int) - 3;
312 append_composite_type_field (sifields_type, "_pad",
313 init_vector_type (int_type, si_pad_size));
314 }
315
316 /* _kill */
317 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
318 append_composite_type_field (type, "si_pid", pid_type);
319 append_composite_type_field (type, "si_uid", uid_type);
320 append_composite_type_field (sifields_type, "_kill", type);
321
322 /* _timer */
323 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
324 append_composite_type_field (type, "si_tid", int_type);
325 append_composite_type_field (type, "si_overrun", int_type);
326 append_composite_type_field (type, "si_sigval", sigval_type);
327 append_composite_type_field (sifields_type, "_timer", type);
328
329 /* _rt */
330 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
331 append_composite_type_field (type, "si_pid", pid_type);
332 append_composite_type_field (type, "si_uid", uid_type);
333 append_composite_type_field (type, "si_sigval", sigval_type);
334 append_composite_type_field (sifields_type, "_rt", type);
335
336 /* _sigchld */
337 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
338 append_composite_type_field (type, "si_pid", pid_type);
339 append_composite_type_field (type, "si_uid", uid_type);
340 append_composite_type_field (type, "si_status", int_type);
341 append_composite_type_field (type, "si_utime", clock_type);
342 append_composite_type_field (type, "si_stime", clock_type);
343 append_composite_type_field (sifields_type, "_sigchld", type);
344
345 /* _sigfault */
346 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
347 append_composite_type_field (type, "si_addr", void_ptr_type);
348
349 /* Additional bound fields for _sigfault in case they were requested. */
350 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
351 {
352 struct type *sigfault_bnd_fields;
353
354 append_composite_type_field (type, "_addr_lsb", short_type);
355 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
356 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
357 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
358 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
359 }
360 append_composite_type_field (sifields_type, "_sigfault", type);
361
362 /* _sigpoll */
363 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
364 append_composite_type_field (type, "si_band", long_type);
365 append_composite_type_field (type, "si_fd", int_type);
366 append_composite_type_field (sifields_type, "_sigpoll", type);
367
368 /* struct siginfo */
369 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
370 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
371 append_composite_type_field (siginfo_type, "si_signo", int_type);
372 append_composite_type_field (siginfo_type, "si_errno", int_type);
373 append_composite_type_field (siginfo_type, "si_code", int_type);
374 append_composite_type_field_aligned (siginfo_type,
375 "_sifields", sifields_type,
376 TYPE_LENGTH (long_type));
377
378 linux_gdbarch_data->siginfo_type = siginfo_type;
379
380 return siginfo_type;
381 }
382
383 /* This function is suitable for architectures that don't
384 extend/override the standard siginfo structure. */
385
386 static struct type *
387 linux_get_siginfo_type (struct gdbarch *gdbarch)
388 {
389 return linux_get_siginfo_type_with_fields (gdbarch, 0);
390 }
391
392 /* Return true if the target is running on uClinux instead of normal
393 Linux kernel. */
394
395 int
396 linux_is_uclinux (void)
397 {
398 CORE_ADDR dummy;
399
400 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
401 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
402 }
403
404 static int
405 linux_has_shared_address_space (struct gdbarch *gdbarch)
406 {
407 return linux_is_uclinux ();
408 }
409
410 /* This is how we want PTIDs from core files to be printed. */
411
412 static const char *
413 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
414 {
415 static char buf[80];
416
417 if (ptid_get_lwp (ptid) != 0)
418 {
419 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
420 return buf;
421 }
422
423 return normal_pid_to_str (ptid);
424 }
425
426 /* Service function for corefiles and info proc. */
427
428 static void
429 read_mapping (const char *line,
430 ULONGEST *addr, ULONGEST *endaddr,
431 const char **permissions, size_t *permissions_len,
432 ULONGEST *offset,
433 const char **device, size_t *device_len,
434 ULONGEST *inode,
435 const char **filename)
436 {
437 const char *p = line;
438
439 *addr = strtoulst (p, &p, 16);
440 if (*p == '-')
441 p++;
442 *endaddr = strtoulst (p, &p, 16);
443
444 p = skip_spaces (p);
445 *permissions = p;
446 while (*p && !isspace (*p))
447 p++;
448 *permissions_len = p - *permissions;
449
450 *offset = strtoulst (p, &p, 16);
451
452 p = skip_spaces (p);
453 *device = p;
454 while (*p && !isspace (*p))
455 p++;
456 *device_len = p - *device;
457
458 *inode = strtoulst (p, &p, 10);
459
460 p = skip_spaces (p);
461 *filename = p;
462 }
463
464 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
465
466 This function was based on the documentation found on
467 <Documentation/filesystems/proc.txt>, on the Linux kernel.
468
469 Linux kernels before commit
470 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
471 field on smaps. */
472
473 static void
474 decode_vmflags (char *p, struct smaps_vmflags *v)
475 {
476 char *saveptr = NULL;
477 const char *s;
478
479 v->initialized_p = 1;
480 p = skip_to_space (p);
481 p = skip_spaces (p);
482
483 for (s = strtok_r (p, " ", &saveptr);
484 s != NULL;
485 s = strtok_r (NULL, " ", &saveptr))
486 {
487 if (strcmp (s, "io") == 0)
488 v->io_page = 1;
489 else if (strcmp (s, "ht") == 0)
490 v->uses_huge_tlb = 1;
491 else if (strcmp (s, "dd") == 0)
492 v->exclude_coredump = 1;
493 else if (strcmp (s, "sh") == 0)
494 v->shared_mapping = 1;
495 }
496 }
497
498 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
499 they're initialized lazily. */
500
501 struct mapping_regexes
502 {
503 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
504 string in the end). We know for sure, based on the Linux kernel
505 code, that memory mappings whose associated filename is
506 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
507 compiled_regex dev_zero
508 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
509 _("Could not compile regex to match /dev/zero filename")};
510
511 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
512 string in the end). These filenames refer to shared memory
513 (shmem), and memory mappings associated with them are
514 MAP_ANONYMOUS as well. */
515 compiled_regex shmem_file
516 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
517 _("Could not compile regex to match shmem filenames")};
518
519 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
520 0' code, which is responsible to decide if it is dealing with a
521 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
522 FILE_DELETED matches, it does not necessarily mean that we are
523 dealing with an anonymous shared mapping. However, there is no
524 easy way to detect this currently, so this is the best
525 approximation we have.
526
527 As a result, GDB will dump readonly pages of deleted executables
528 when using the default value of coredump_filter (0x33), while the
529 Linux kernel will not dump those pages. But we can live with
530 that. */
531 compiled_regex file_deleted
532 {" (deleted)$", REG_NOSUB,
533 _("Could not compile regex to match '<file> (deleted)'")};
534 };
535
536 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
537
538 FILENAME is the name of the file present in the first line of the
539 memory mapping, in the "/proc/PID/smaps" output. For example, if
540 the first line is:
541
542 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
543
544 Then FILENAME will be "/path/to/file". */
545
546 static int
547 mapping_is_anonymous_p (const char *filename)
548 {
549 static gdb::optional<mapping_regexes> regexes;
550 static int init_regex_p = 0;
551
552 if (!init_regex_p)
553 {
554 /* Let's be pessimistic and assume there will be an error while
555 compiling the regex'es. */
556 init_regex_p = -1;
557
558 regexes.emplace ();
559
560 /* If we reached this point, then everything succeeded. */
561 init_regex_p = 1;
562 }
563
564 if (init_regex_p == -1)
565 {
566 const char deleted[] = " (deleted)";
567 size_t del_len = sizeof (deleted) - 1;
568 size_t filename_len = strlen (filename);
569
570 /* There was an error while compiling the regex'es above. In
571 order to try to give some reliable information to the caller,
572 we just try to find the string " (deleted)" in the filename.
573 If we managed to find it, then we assume the mapping is
574 anonymous. */
575 return (filename_len >= del_len
576 && strcmp (filename + filename_len - del_len, deleted) == 0);
577 }
578
579 if (*filename == '\0'
580 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
581 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
582 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
583 return 1;
584
585 return 0;
586 }
587
588 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
589 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
590 greater than 0 if it should.
591
592 In a nutshell, this is the logic that we follow in order to decide
593 if a mapping should be dumped or not.
594
595 - If the mapping is associated to a file whose name ends with
596 " (deleted)", or if the file is "/dev/zero", or if it is
597 "/SYSV%08x" (shared memory), or if there is no file associated
598 with it, or if the AnonHugePages: or the Anonymous: fields in the
599 /proc/PID/smaps have contents, then GDB considers this mapping to
600 be anonymous. Otherwise, GDB considers this mapping to be a
601 file-backed mapping (because there will be a file associated with
602 it).
603
604 It is worth mentioning that, from all those checks described
605 above, the most fragile is the one to see if the file name ends
606 with " (deleted)". This does not necessarily mean that the
607 mapping is anonymous, because the deleted file associated with
608 the mapping may have been a hard link to another file, for
609 example. The Linux kernel checks to see if "i_nlink == 0", but
610 GDB cannot easily (and normally) do this check (iff running as
611 root, it could find the mapping in /proc/PID/map_files/ and
612 determine whether there still are other hard links to the
613 inode/file). Therefore, we made a compromise here, and we assume
614 that if the file name ends with " (deleted)", then the mapping is
615 indeed anonymous. FWIW, this is something the Linux kernel could
616 do better: expose this information in a more direct way.
617
618 - If we see the flag "sh" in the "VmFlags:" field (in
619 /proc/PID/smaps), then certainly the memory mapping is shared
620 (VM_SHARED). If we have access to the VmFlags, and we don't see
621 the "sh" there, then certainly the mapping is private. However,
622 Linux kernels before commit
623 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
624 "VmFlags:" field; in that case, we use another heuristic: if we
625 see 'p' in the permission flags, then we assume that the mapping
626 is private, even though the presence of the 's' flag there would
627 mean VM_MAYSHARE, which means the mapping could still be private.
628 This should work OK enough, however. */
629
630 static int
631 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
632 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
633 const char *filename)
634 {
635 /* Initially, we trust in what we received from our caller. This
636 value may not be very precise (i.e., it was probably gathered
637 from the permission line in the /proc/PID/smaps list, which
638 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
639 what we have until we take a look at the "VmFlags:" field
640 (assuming that the version of the Linux kernel being used
641 supports it, of course). */
642 int private_p = maybe_private_p;
643
644 /* We always dump vDSO and vsyscall mappings, because it's likely that
645 there'll be no file to read the contents from at core load time.
646 The kernel does the same. */
647 if (strcmp ("[vdso]", filename) == 0
648 || strcmp ("[vsyscall]", filename) == 0)
649 return 1;
650
651 if (v->initialized_p)
652 {
653 /* We never dump I/O mappings. */
654 if (v->io_page)
655 return 0;
656
657 /* Check if we should exclude this mapping. */
658 if (v->exclude_coredump)
659 return 0;
660
661 /* Update our notion of whether this mapping is shared or
662 private based on a trustworthy value. */
663 private_p = !v->shared_mapping;
664
665 /* HugeTLB checking. */
666 if (v->uses_huge_tlb)
667 {
668 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
669 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
670 return 1;
671
672 return 0;
673 }
674 }
675
676 if (private_p)
677 {
678 if (mapping_anon_p && mapping_file_p)
679 {
680 /* This is a special situation. It can happen when we see a
681 mapping that is file-backed, but that contains anonymous
682 pages. */
683 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
684 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
685 }
686 else if (mapping_anon_p)
687 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
688 else
689 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
690 }
691 else
692 {
693 if (mapping_anon_p && mapping_file_p)
694 {
695 /* This is a special situation. It can happen when we see a
696 mapping that is file-backed, but that contains anonymous
697 pages. */
698 return ((filterflags & COREFILTER_ANON_SHARED) != 0
699 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
700 }
701 else if (mapping_anon_p)
702 return (filterflags & COREFILTER_ANON_SHARED) != 0;
703 else
704 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
705 }
706 }
707
708 /* Implement the "info proc" command. */
709
710 static void
711 linux_info_proc (struct gdbarch *gdbarch, const char *args,
712 enum info_proc_what what)
713 {
714 /* A long is used for pid instead of an int to avoid a loss of precision
715 compiler warning from the output of strtoul. */
716 long pid;
717 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
718 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
719 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
720 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
721 int status_f = (what == IP_STATUS || what == IP_ALL);
722 int stat_f = (what == IP_STAT || what == IP_ALL);
723 char filename[100];
724 char *data;
725 int target_errno;
726
727 if (args && isdigit (args[0]))
728 {
729 char *tem;
730
731 pid = strtoul (args, &tem, 10);
732 args = tem;
733 }
734 else
735 {
736 if (!target_has_execution)
737 error (_("No current process: you must name one."));
738 if (current_inferior ()->fake_pid_p)
739 error (_("Can't determine the current process's PID: you must name one."));
740
741 pid = current_inferior ()->pid;
742 }
743
744 args = skip_spaces (args);
745 if (args && args[0])
746 error (_("Too many parameters: %s"), args);
747
748 printf_filtered (_("process %ld\n"), pid);
749 if (cmdline_f)
750 {
751 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
752 data = target_fileio_read_stralloc (NULL, filename);
753 if (data)
754 {
755 struct cleanup *cleanup = make_cleanup (xfree, data);
756 printf_filtered ("cmdline = '%s'\n", data);
757 do_cleanups (cleanup);
758 }
759 else
760 warning (_("unable to open /proc file '%s'"), filename);
761 }
762 if (cwd_f)
763 {
764 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
765 data = target_fileio_readlink (NULL, filename, &target_errno);
766 if (data)
767 {
768 struct cleanup *cleanup = make_cleanup (xfree, data);
769 printf_filtered ("cwd = '%s'\n", data);
770 do_cleanups (cleanup);
771 }
772 else
773 warning (_("unable to read link '%s'"), filename);
774 }
775 if (exe_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
778 data = target_fileio_readlink (NULL, filename, &target_errno);
779 if (data)
780 {
781 struct cleanup *cleanup = make_cleanup (xfree, data);
782 printf_filtered ("exe = '%s'\n", data);
783 do_cleanups (cleanup);
784 }
785 else
786 warning (_("unable to read link '%s'"), filename);
787 }
788 if (mappings_f)
789 {
790 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
791 data = target_fileio_read_stralloc (NULL, filename);
792 if (data)
793 {
794 struct cleanup *cleanup = make_cleanup (xfree, data);
795 char *line;
796
797 printf_filtered (_("Mapped address spaces:\n\n"));
798 if (gdbarch_addr_bit (gdbarch) == 32)
799 {
800 printf_filtered ("\t%10s %10s %10s %10s %s\n",
801 "Start Addr",
802 " End Addr",
803 " Size", " Offset", "objfile");
804 }
805 else
806 {
807 printf_filtered (" %18s %18s %10s %10s %s\n",
808 "Start Addr",
809 " End Addr",
810 " Size", " Offset", "objfile");
811 }
812
813 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
814 {
815 ULONGEST addr, endaddr, offset, inode;
816 const char *permissions, *device, *filename;
817 size_t permissions_len, device_len;
818
819 read_mapping (line, &addr, &endaddr,
820 &permissions, &permissions_len,
821 &offset, &device, &device_len,
822 &inode, &filename);
823
824 if (gdbarch_addr_bit (gdbarch) == 32)
825 {
826 printf_filtered ("\t%10s %10s %10s %10s %s\n",
827 paddress (gdbarch, addr),
828 paddress (gdbarch, endaddr),
829 hex_string (endaddr - addr),
830 hex_string (offset),
831 *filename? filename : "");
832 }
833 else
834 {
835 printf_filtered (" %18s %18s %10s %10s %s\n",
836 paddress (gdbarch, addr),
837 paddress (gdbarch, endaddr),
838 hex_string (endaddr - addr),
839 hex_string (offset),
840 *filename? filename : "");
841 }
842 }
843
844 do_cleanups (cleanup);
845 }
846 else
847 warning (_("unable to open /proc file '%s'"), filename);
848 }
849 if (status_f)
850 {
851 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
852 data = target_fileio_read_stralloc (NULL, filename);
853 if (data)
854 {
855 struct cleanup *cleanup = make_cleanup (xfree, data);
856 puts_filtered (data);
857 do_cleanups (cleanup);
858 }
859 else
860 warning (_("unable to open /proc file '%s'"), filename);
861 }
862 if (stat_f)
863 {
864 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
865 data = target_fileio_read_stralloc (NULL, filename);
866 if (data)
867 {
868 struct cleanup *cleanup = make_cleanup (xfree, data);
869 const char *p = data;
870
871 printf_filtered (_("Process: %s\n"),
872 pulongest (strtoulst (p, &p, 10)));
873
874 p = skip_spaces (p);
875 if (*p == '(')
876 {
877 /* ps command also relies on no trailing fields
878 ever contain ')'. */
879 const char *ep = strrchr (p, ')');
880 if (ep != NULL)
881 {
882 printf_filtered ("Exec file: %.*s\n",
883 (int) (ep - p - 1), p + 1);
884 p = ep + 1;
885 }
886 }
887
888 p = skip_spaces (p);
889 if (*p)
890 printf_filtered (_("State: %c\n"), *p++);
891
892 if (*p)
893 printf_filtered (_("Parent process: %s\n"),
894 pulongest (strtoulst (p, &p, 10)));
895 if (*p)
896 printf_filtered (_("Process group: %s\n"),
897 pulongest (strtoulst (p, &p, 10)));
898 if (*p)
899 printf_filtered (_("Session id: %s\n"),
900 pulongest (strtoulst (p, &p, 10)));
901 if (*p)
902 printf_filtered (_("TTY: %s\n"),
903 pulongest (strtoulst (p, &p, 10)));
904 if (*p)
905 printf_filtered (_("TTY owner process group: %s\n"),
906 pulongest (strtoulst (p, &p, 10)));
907
908 if (*p)
909 printf_filtered (_("Flags: %s\n"),
910 hex_string (strtoulst (p, &p, 10)));
911 if (*p)
912 printf_filtered (_("Minor faults (no memory page): %s\n"),
913 pulongest (strtoulst (p, &p, 10)));
914 if (*p)
915 printf_filtered (_("Minor faults, children: %s\n"),
916 pulongest (strtoulst (p, &p, 10)));
917 if (*p)
918 printf_filtered (_("Major faults (memory page faults): %s\n"),
919 pulongest (strtoulst (p, &p, 10)));
920 if (*p)
921 printf_filtered (_("Major faults, children: %s\n"),
922 pulongest (strtoulst (p, &p, 10)));
923 if (*p)
924 printf_filtered (_("utime: %s\n"),
925 pulongest (strtoulst (p, &p, 10)));
926 if (*p)
927 printf_filtered (_("stime: %s\n"),
928 pulongest (strtoulst (p, &p, 10)));
929 if (*p)
930 printf_filtered (_("utime, children: %s\n"),
931 pulongest (strtoulst (p, &p, 10)));
932 if (*p)
933 printf_filtered (_("stime, children: %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("jiffies remaining in current "
937 "time slice: %s\n"),
938 pulongest (strtoulst (p, &p, 10)));
939 if (*p)
940 printf_filtered (_("'nice' value: %s\n"),
941 pulongest (strtoulst (p, &p, 10)));
942 if (*p)
943 printf_filtered (_("jiffies until next timeout: %s\n"),
944 pulongest (strtoulst (p, &p, 10)));
945 if (*p)
946 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
947 pulongest (strtoulst (p, &p, 10)));
948 if (*p)
949 printf_filtered (_("start time (jiffies since "
950 "system boot): %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("Virtual memory size: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
955 if (*p)
956 printf_filtered (_("Resident set size: %s\n"),
957 pulongest (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("rlim: %s\n"),
960 pulongest (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("Start of text: %s\n"),
963 hex_string (strtoulst (p, &p, 10)));
964 if (*p)
965 printf_filtered (_("End of text: %s\n"),
966 hex_string (strtoulst (p, &p, 10)));
967 if (*p)
968 printf_filtered (_("Start of stack: %s\n"),
969 hex_string (strtoulst (p, &p, 10)));
970 #if 0 /* Don't know how architecture-dependent the rest is...
971 Anyway the signal bitmap info is available from "status". */
972 if (*p)
973 printf_filtered (_("Kernel stack pointer: %s\n"),
974 hex_string (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("Kernel instr pointer: %s\n"),
977 hex_string (strtoulst (p, &p, 10)));
978 if (*p)
979 printf_filtered (_("Pending signals bitmap: %s\n"),
980 hex_string (strtoulst (p, &p, 10)));
981 if (*p)
982 printf_filtered (_("Blocked signals bitmap: %s\n"),
983 hex_string (strtoulst (p, &p, 10)));
984 if (*p)
985 printf_filtered (_("Ignored signals bitmap: %s\n"),
986 hex_string (strtoulst (p, &p, 10)));
987 if (*p)
988 printf_filtered (_("Catched signals bitmap: %s\n"),
989 hex_string (strtoulst (p, &p, 10)));
990 if (*p)
991 printf_filtered (_("wchan (system call): %s\n"),
992 hex_string (strtoulst (p, &p, 10)));
993 #endif
994 do_cleanups (cleanup);
995 }
996 else
997 warning (_("unable to open /proc file '%s'"), filename);
998 }
999 }
1000
1001 /* Implement "info proc mappings" for a corefile. */
1002
1003 static void
1004 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1005 {
1006 asection *section;
1007 ULONGEST count, page_size;
1008 unsigned char *descdata, *filenames, *descend, *contents;
1009 size_t note_size;
1010 unsigned int addr_size_bits, addr_size;
1011 struct cleanup *cleanup;
1012 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1013 /* We assume this for reading 64-bit core files. */
1014 gdb_static_assert (sizeof (ULONGEST) >= 8);
1015
1016 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1017 if (section == NULL)
1018 {
1019 warning (_("unable to find mappings in core file"));
1020 return;
1021 }
1022
1023 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1024 addr_size = addr_size_bits / 8;
1025 note_size = bfd_get_section_size (section);
1026
1027 if (note_size < 2 * addr_size)
1028 error (_("malformed core note - too short for header"));
1029
1030 contents = (unsigned char *) xmalloc (note_size);
1031 cleanup = make_cleanup (xfree, contents);
1032 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1033 error (_("could not get core note contents"));
1034
1035 descdata = contents;
1036 descend = descdata + note_size;
1037
1038 if (descdata[note_size - 1] != '\0')
1039 error (_("malformed note - does not end with \\0"));
1040
1041 count = bfd_get (addr_size_bits, core_bfd, descdata);
1042 descdata += addr_size;
1043
1044 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1045 descdata += addr_size;
1046
1047 if (note_size < 2 * addr_size + count * 3 * addr_size)
1048 error (_("malformed note - too short for supplied file count"));
1049
1050 printf_filtered (_("Mapped address spaces:\n\n"));
1051 if (gdbarch_addr_bit (gdbarch) == 32)
1052 {
1053 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1054 "Start Addr",
1055 " End Addr",
1056 " Size", " Offset", "objfile");
1057 }
1058 else
1059 {
1060 printf_filtered (" %18s %18s %10s %10s %s\n",
1061 "Start Addr",
1062 " End Addr",
1063 " Size", " Offset", "objfile");
1064 }
1065
1066 filenames = descdata + count * 3 * addr_size;
1067 while (--count > 0)
1068 {
1069 ULONGEST start, end, file_ofs;
1070
1071 if (filenames == descend)
1072 error (_("malformed note - filenames end too early"));
1073
1074 start = bfd_get (addr_size_bits, core_bfd, descdata);
1075 descdata += addr_size;
1076 end = bfd_get (addr_size_bits, core_bfd, descdata);
1077 descdata += addr_size;
1078 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1079 descdata += addr_size;
1080
1081 file_ofs *= page_size;
1082
1083 if (gdbarch_addr_bit (gdbarch) == 32)
1084 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1085 paddress (gdbarch, start),
1086 paddress (gdbarch, end),
1087 hex_string (end - start),
1088 hex_string (file_ofs),
1089 filenames);
1090 else
1091 printf_filtered (" %18s %18s %10s %10s %s\n",
1092 paddress (gdbarch, start),
1093 paddress (gdbarch, end),
1094 hex_string (end - start),
1095 hex_string (file_ofs),
1096 filenames);
1097
1098 filenames += 1 + strlen ((char *) filenames);
1099 }
1100
1101 do_cleanups (cleanup);
1102 }
1103
1104 /* Implement "info proc" for a corefile. */
1105
1106 static void
1107 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1108 enum info_proc_what what)
1109 {
1110 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1111 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1112
1113 if (exe_f)
1114 {
1115 const char *exe;
1116
1117 exe = bfd_core_file_failing_command (core_bfd);
1118 if (exe != NULL)
1119 printf_filtered ("exe = '%s'\n", exe);
1120 else
1121 warning (_("unable to find command name in core file"));
1122 }
1123
1124 if (mappings_f)
1125 linux_core_info_proc_mappings (gdbarch, args);
1126
1127 if (!exe_f && !mappings_f)
1128 error (_("unable to handle request"));
1129 }
1130
1131 /* Read siginfo data from the core, if possible. Returns -1 on
1132 failure. Otherwise, returns the number of bytes read. READBUF,
1133 OFFSET, and LEN are all as specified by the to_xfer_partial
1134 interface. */
1135
1136 static LONGEST
1137 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1138 ULONGEST offset, ULONGEST len)
1139 {
1140 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1141 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1142 if (section == NULL)
1143 return -1;
1144
1145 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1146 return -1;
1147
1148 return len;
1149 }
1150
1151 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1152 ULONGEST offset, ULONGEST inode,
1153 int read, int write,
1154 int exec, int modified,
1155 const char *filename,
1156 void *data);
1157
1158 /* List memory regions in the inferior for a corefile. */
1159
1160 static int
1161 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1162 linux_find_memory_region_ftype *func,
1163 void *obfd)
1164 {
1165 char mapsfilename[100];
1166 char coredumpfilter_name[100];
1167 char *data, *coredumpfilterdata;
1168 pid_t pid;
1169 /* Default dump behavior of coredump_filter (0x33), according to
1170 Documentation/filesystems/proc.txt from the Linux kernel
1171 tree. */
1172 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1173 | COREFILTER_ANON_SHARED
1174 | COREFILTER_ELF_HEADERS
1175 | COREFILTER_HUGETLB_PRIVATE);
1176
1177 /* We need to know the real target PID to access /proc. */
1178 if (current_inferior ()->fake_pid_p)
1179 return 1;
1180
1181 pid = current_inferior ()->pid;
1182
1183 if (use_coredump_filter)
1184 {
1185 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1186 "/proc/%d/coredump_filter", pid);
1187 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1188 coredumpfilter_name);
1189 if (coredumpfilterdata != NULL)
1190 {
1191 unsigned int flags;
1192
1193 sscanf (coredumpfilterdata, "%x", &flags);
1194 filterflags = (enum filter_flag) flags;
1195 xfree (coredumpfilterdata);
1196 }
1197 }
1198
1199 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1200 data = target_fileio_read_stralloc (NULL, mapsfilename);
1201 if (data == NULL)
1202 {
1203 /* Older Linux kernels did not support /proc/PID/smaps. */
1204 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1205 data = target_fileio_read_stralloc (NULL, mapsfilename);
1206 }
1207
1208 if (data != NULL)
1209 {
1210 struct cleanup *cleanup = make_cleanup (xfree, data);
1211 char *line, *t;
1212
1213 line = strtok_r (data, "\n", &t);
1214 while (line != NULL)
1215 {
1216 ULONGEST addr, endaddr, offset, inode;
1217 const char *permissions, *device, *filename;
1218 struct smaps_vmflags v;
1219 size_t permissions_len, device_len;
1220 int read, write, exec, priv;
1221 int has_anonymous = 0;
1222 int should_dump_p = 0;
1223 int mapping_anon_p;
1224 int mapping_file_p;
1225
1226 memset (&v, 0, sizeof (v));
1227 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1228 &offset, &device, &device_len, &inode, &filename);
1229 mapping_anon_p = mapping_is_anonymous_p (filename);
1230 /* If the mapping is not anonymous, then we can consider it
1231 to be file-backed. These two states (anonymous or
1232 file-backed) seem to be exclusive, but they can actually
1233 coexist. For example, if a file-backed mapping has
1234 "Anonymous:" pages (see more below), then the Linux
1235 kernel will dump this mapping when the user specified
1236 that she only wants anonymous mappings in the corefile
1237 (*even* when she explicitly disabled the dumping of
1238 file-backed mappings). */
1239 mapping_file_p = !mapping_anon_p;
1240
1241 /* Decode permissions. */
1242 read = (memchr (permissions, 'r', permissions_len) != 0);
1243 write = (memchr (permissions, 'w', permissions_len) != 0);
1244 exec = (memchr (permissions, 'x', permissions_len) != 0);
1245 /* 'private' here actually means VM_MAYSHARE, and not
1246 VM_SHARED. In order to know if a mapping is really
1247 private or not, we must check the flag "sh" in the
1248 VmFlags field. This is done by decode_vmflags. However,
1249 if we are using a Linux kernel released before the commit
1250 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1251 not have the VmFlags there. In this case, there is
1252 really no way to know if we are dealing with VM_SHARED,
1253 so we just assume that VM_MAYSHARE is enough. */
1254 priv = memchr (permissions, 'p', permissions_len) != 0;
1255
1256 /* Try to detect if region should be dumped by parsing smaps
1257 counters. */
1258 for (line = strtok_r (NULL, "\n", &t);
1259 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1260 line = strtok_r (NULL, "\n", &t))
1261 {
1262 char keyword[64 + 1];
1263
1264 if (sscanf (line, "%64s", keyword) != 1)
1265 {
1266 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1267 break;
1268 }
1269
1270 if (strcmp (keyword, "Anonymous:") == 0)
1271 {
1272 /* Older Linux kernels did not support the
1273 "Anonymous:" counter. Check it here. */
1274 has_anonymous = 1;
1275 }
1276 else if (strcmp (keyword, "VmFlags:") == 0)
1277 decode_vmflags (line, &v);
1278
1279 if (strcmp (keyword, "AnonHugePages:") == 0
1280 || strcmp (keyword, "Anonymous:") == 0)
1281 {
1282 unsigned long number;
1283
1284 if (sscanf (line, "%*s%lu", &number) != 1)
1285 {
1286 warning (_("Error parsing {s,}maps file '%s' number"),
1287 mapsfilename);
1288 break;
1289 }
1290 if (number > 0)
1291 {
1292 /* Even if we are dealing with a file-backed
1293 mapping, if it contains anonymous pages we
1294 consider it to be *also* an anonymous
1295 mapping, because this is what the Linux
1296 kernel does:
1297
1298 // Dump segments that have been written to.
1299 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1300 goto whole;
1301
1302 Note that if the mapping is already marked as
1303 file-backed (i.e., mapping_file_p is
1304 non-zero), then this is a special case, and
1305 this mapping will be dumped either when the
1306 user wants to dump file-backed *or* anonymous
1307 mappings. */
1308 mapping_anon_p = 1;
1309 }
1310 }
1311 }
1312
1313 if (has_anonymous)
1314 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1315 mapping_anon_p, mapping_file_p,
1316 filename);
1317 else
1318 {
1319 /* Older Linux kernels did not support the "Anonymous:" counter.
1320 If it is missing, we can't be sure - dump all the pages. */
1321 should_dump_p = 1;
1322 }
1323
1324 /* Invoke the callback function to create the corefile segment. */
1325 if (should_dump_p)
1326 func (addr, endaddr - addr, offset, inode,
1327 read, write, exec, 1, /* MODIFIED is true because we
1328 want to dump the mapping. */
1329 filename, obfd);
1330 }
1331
1332 do_cleanups (cleanup);
1333 return 0;
1334 }
1335
1336 return 1;
1337 }
1338
1339 /* A structure for passing information through
1340 linux_find_memory_regions_full. */
1341
1342 struct linux_find_memory_regions_data
1343 {
1344 /* The original callback. */
1345
1346 find_memory_region_ftype func;
1347
1348 /* The original datum. */
1349
1350 void *obfd;
1351 };
1352
1353 /* A callback for linux_find_memory_regions that converts between the
1354 "full"-style callback and find_memory_region_ftype. */
1355
1356 static int
1357 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1358 ULONGEST offset, ULONGEST inode,
1359 int read, int write, int exec, int modified,
1360 const char *filename, void *arg)
1361 {
1362 struct linux_find_memory_regions_data *data
1363 = (struct linux_find_memory_regions_data *) arg;
1364
1365 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1366 }
1367
1368 /* A variant of linux_find_memory_regions_full that is suitable as the
1369 gdbarch find_memory_regions method. */
1370
1371 static int
1372 linux_find_memory_regions (struct gdbarch *gdbarch,
1373 find_memory_region_ftype func, void *obfd)
1374 {
1375 struct linux_find_memory_regions_data data;
1376
1377 data.func = func;
1378 data.obfd = obfd;
1379
1380 return linux_find_memory_regions_full (gdbarch,
1381 linux_find_memory_regions_thunk,
1382 &data);
1383 }
1384
1385 /* Determine which signal stopped execution. */
1386
1387 static int
1388 find_signalled_thread (struct thread_info *info, void *data)
1389 {
1390 if (info->suspend.stop_signal != GDB_SIGNAL_0
1391 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1392 return 1;
1393
1394 return 0;
1395 }
1396
1397 /* Generate corefile notes for SPU contexts. */
1398
1399 static char *
1400 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1401 {
1402 static const char *spu_files[] =
1403 {
1404 "object-id",
1405 "mem",
1406 "regs",
1407 "fpcr",
1408 "lslr",
1409 "decr",
1410 "decr_status",
1411 "signal1",
1412 "signal1_type",
1413 "signal2",
1414 "signal2_type",
1415 "event_mask",
1416 "event_status",
1417 "mbox_info",
1418 "ibox_info",
1419 "wbox_info",
1420 "dma_info",
1421 "proxydma_info",
1422 };
1423
1424 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1425 gdb_byte *spu_ids;
1426 LONGEST i, j, size;
1427
1428 /* Determine list of SPU ids. */
1429 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1430 NULL, &spu_ids);
1431
1432 /* Generate corefile notes for each SPU file. */
1433 for (i = 0; i < size; i += 4)
1434 {
1435 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1436
1437 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1438 {
1439 char annex[32], note_name[32];
1440 gdb_byte *spu_data;
1441 LONGEST spu_len;
1442
1443 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1444 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1445 annex, &spu_data);
1446 if (spu_len > 0)
1447 {
1448 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1449 note_data = elfcore_write_note (obfd, note_data, note_size,
1450 note_name, NT_SPU,
1451 spu_data, spu_len);
1452 xfree (spu_data);
1453
1454 if (!note_data)
1455 {
1456 xfree (spu_ids);
1457 return NULL;
1458 }
1459 }
1460 }
1461 }
1462
1463 if (size > 0)
1464 xfree (spu_ids);
1465
1466 return note_data;
1467 }
1468
1469 /* This is used to pass information from
1470 linux_make_mappings_corefile_notes through
1471 linux_find_memory_regions_full. */
1472
1473 struct linux_make_mappings_data
1474 {
1475 /* Number of files mapped. */
1476 ULONGEST file_count;
1477
1478 /* The obstack for the main part of the data. */
1479 struct obstack *data_obstack;
1480
1481 /* The filename obstack. */
1482 struct obstack *filename_obstack;
1483
1484 /* The architecture's "long" type. */
1485 struct type *long_type;
1486 };
1487
1488 static linux_find_memory_region_ftype linux_make_mappings_callback;
1489
1490 /* A callback for linux_find_memory_regions_full that updates the
1491 mappings data for linux_make_mappings_corefile_notes. */
1492
1493 static int
1494 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1495 ULONGEST offset, ULONGEST inode,
1496 int read, int write, int exec, int modified,
1497 const char *filename, void *data)
1498 {
1499 struct linux_make_mappings_data *map_data
1500 = (struct linux_make_mappings_data *) data;
1501 gdb_byte buf[sizeof (ULONGEST)];
1502
1503 if (*filename == '\0' || inode == 0)
1504 return 0;
1505
1506 ++map_data->file_count;
1507
1508 pack_long (buf, map_data->long_type, vaddr);
1509 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1510 pack_long (buf, map_data->long_type, vaddr + size);
1511 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1512 pack_long (buf, map_data->long_type, offset);
1513 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1514
1515 obstack_grow_str0 (map_data->filename_obstack, filename);
1516
1517 return 0;
1518 }
1519
1520 /* Write the file mapping data to the core file, if possible. OBFD is
1521 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1522 is a pointer to the note size. Returns the new NOTE_DATA and
1523 updates NOTE_SIZE. */
1524
1525 static char *
1526 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1527 char *note_data, int *note_size)
1528 {
1529 struct cleanup *cleanup;
1530 struct linux_make_mappings_data mapping_data;
1531 struct type *long_type
1532 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1533 gdb_byte buf[sizeof (ULONGEST)];
1534
1535 auto_obstack data_obstack, filename_obstack;
1536
1537 mapping_data.file_count = 0;
1538 mapping_data.data_obstack = &data_obstack;
1539 mapping_data.filename_obstack = &filename_obstack;
1540 mapping_data.long_type = long_type;
1541
1542 /* Reserve space for the count. */
1543 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1544 /* We always write the page size as 1 since we have no good way to
1545 determine the correct value. */
1546 pack_long (buf, long_type, 1);
1547 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1548
1549 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1550 &mapping_data);
1551
1552 if (mapping_data.file_count != 0)
1553 {
1554 /* Write the count to the obstack. */
1555 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1556 long_type, mapping_data.file_count);
1557
1558 /* Copy the filenames to the data obstack. */
1559 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1560 obstack_object_size (&filename_obstack));
1561
1562 note_data = elfcore_write_note (obfd, note_data, note_size,
1563 "CORE", NT_FILE,
1564 obstack_base (&data_obstack),
1565 obstack_object_size (&data_obstack));
1566 }
1567
1568 return note_data;
1569 }
1570
1571 /* Structure for passing information from
1572 linux_collect_thread_registers via an iterator to
1573 linux_collect_regset_section_cb. */
1574
1575 struct linux_collect_regset_section_cb_data
1576 {
1577 struct gdbarch *gdbarch;
1578 const struct regcache *regcache;
1579 bfd *obfd;
1580 char *note_data;
1581 int *note_size;
1582 unsigned long lwp;
1583 enum gdb_signal stop_signal;
1584 int abort_iteration;
1585 };
1586
1587 /* Callback for iterate_over_regset_sections that records a single
1588 regset in the corefile note section. */
1589
1590 static void
1591 linux_collect_regset_section_cb (const char *sect_name, int size,
1592 const struct regset *regset,
1593 const char *human_name, void *cb_data)
1594 {
1595 char *buf;
1596 struct linux_collect_regset_section_cb_data *data
1597 = (struct linux_collect_regset_section_cb_data *) cb_data;
1598
1599 if (data->abort_iteration)
1600 return;
1601
1602 gdb_assert (regset && regset->collect_regset);
1603
1604 buf = (char *) xmalloc (size);
1605 regset->collect_regset (regset, data->regcache, -1, buf, size);
1606
1607 /* PRSTATUS still needs to be treated specially. */
1608 if (strcmp (sect_name, ".reg") == 0)
1609 data->note_data = (char *) elfcore_write_prstatus
1610 (data->obfd, data->note_data, data->note_size, data->lwp,
1611 gdb_signal_to_host (data->stop_signal), buf);
1612 else
1613 data->note_data = (char *) elfcore_write_register_note
1614 (data->obfd, data->note_data, data->note_size,
1615 sect_name, buf, size);
1616 xfree (buf);
1617
1618 if (data->note_data == NULL)
1619 data->abort_iteration = 1;
1620 }
1621
1622 /* Records the thread's register state for the corefile note
1623 section. */
1624
1625 static char *
1626 linux_collect_thread_registers (const struct regcache *regcache,
1627 ptid_t ptid, bfd *obfd,
1628 char *note_data, int *note_size,
1629 enum gdb_signal stop_signal)
1630 {
1631 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1632 struct linux_collect_regset_section_cb_data data;
1633
1634 data.gdbarch = gdbarch;
1635 data.regcache = regcache;
1636 data.obfd = obfd;
1637 data.note_data = note_data;
1638 data.note_size = note_size;
1639 data.stop_signal = stop_signal;
1640 data.abort_iteration = 0;
1641
1642 /* For remote targets the LWP may not be available, so use the TID. */
1643 data.lwp = ptid_get_lwp (ptid);
1644 if (!data.lwp)
1645 data.lwp = ptid_get_tid (ptid);
1646
1647 gdbarch_iterate_over_regset_sections (gdbarch,
1648 linux_collect_regset_section_cb,
1649 &data, regcache);
1650 return data.note_data;
1651 }
1652
1653 /* Fetch the siginfo data for the specified thread, if it exists. If
1654 there is no data, or we could not read it, return NULL. Otherwise,
1655 return a newly malloc'd buffer holding the data and fill in *SIZE
1656 with the size of the data. The caller is responsible for freeing
1657 the data. */
1658
1659 static gdb_byte *
1660 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch,
1661 LONGEST *size)
1662 {
1663 struct type *siginfo_type;
1664 gdb_byte *buf;
1665 LONGEST bytes_read;
1666 struct cleanup *cleanups;
1667
1668 if (!gdbarch_get_siginfo_type_p (gdbarch))
1669 return NULL;
1670
1671 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1672 inferior_ptid = thread->ptid;
1673
1674 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1675
1676 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
1677 cleanups = make_cleanup (xfree, buf);
1678
1679 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1680 buf, 0, TYPE_LENGTH (siginfo_type));
1681 if (bytes_read == TYPE_LENGTH (siginfo_type))
1682 {
1683 discard_cleanups (cleanups);
1684 *size = bytes_read;
1685 }
1686 else
1687 {
1688 do_cleanups (cleanups);
1689 buf = NULL;
1690 }
1691
1692 return buf;
1693 }
1694
1695 struct linux_corefile_thread_data
1696 {
1697 struct gdbarch *gdbarch;
1698 bfd *obfd;
1699 char *note_data;
1700 int *note_size;
1701 enum gdb_signal stop_signal;
1702 };
1703
1704 /* Records the thread's register state for the corefile note
1705 section. */
1706
1707 static void
1708 linux_corefile_thread (struct thread_info *info,
1709 struct linux_corefile_thread_data *args)
1710 {
1711 struct cleanup *old_chain;
1712 struct regcache *regcache;
1713 gdb_byte *siginfo_data;
1714 LONGEST siginfo_size = 0;
1715
1716 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1717
1718 target_fetch_registers (regcache, -1);
1719 siginfo_data = linux_get_siginfo_data (info, args->gdbarch, &siginfo_size);
1720
1721 old_chain = make_cleanup (xfree, siginfo_data);
1722
1723 args->note_data = linux_collect_thread_registers
1724 (regcache, info->ptid, args->obfd, args->note_data,
1725 args->note_size, args->stop_signal);
1726
1727 /* Don't return anything if we got no register information above,
1728 such a core file is useless. */
1729 if (args->note_data != NULL)
1730 if (siginfo_data != NULL)
1731 args->note_data = elfcore_write_note (args->obfd,
1732 args->note_data,
1733 args->note_size,
1734 "CORE", NT_SIGINFO,
1735 siginfo_data, siginfo_size);
1736
1737 do_cleanups (old_chain);
1738 }
1739
1740 /* Fill the PRPSINFO structure with information about the process being
1741 debugged. Returns 1 in case of success, 0 for failures. Please note that
1742 even if the structure cannot be entirely filled (e.g., GDB was unable to
1743 gather information about the process UID/GID), this function will still
1744 return 1 since some information was already recorded. It will only return
1745 0 iff nothing can be gathered. */
1746
1747 static int
1748 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1749 {
1750 /* The filename which we will use to obtain some info about the process.
1751 We will basically use this to store the `/proc/PID/FILENAME' file. */
1752 char filename[100];
1753 /* The full name of the program which generated the corefile. */
1754 char *fname;
1755 /* The basename of the executable. */
1756 const char *basename;
1757 /* The arguments of the program. */
1758 char *psargs;
1759 char *infargs;
1760 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1761 char *proc_stat, *proc_status;
1762 /* Temporary buffer. */
1763 char *tmpstr;
1764 /* The valid states of a process, according to the Linux kernel. */
1765 const char valid_states[] = "RSDTZW";
1766 /* The program state. */
1767 const char *prog_state;
1768 /* The state of the process. */
1769 char pr_sname;
1770 /* The PID of the program which generated the corefile. */
1771 pid_t pid;
1772 /* Process flags. */
1773 unsigned int pr_flag;
1774 /* Process nice value. */
1775 long pr_nice;
1776 /* The number of fields read by `sscanf'. */
1777 int n_fields = 0;
1778 /* Cleanups. */
1779 struct cleanup *c;
1780
1781 gdb_assert (p != NULL);
1782
1783 /* Obtaining PID and filename. */
1784 pid = ptid_get_pid (inferior_ptid);
1785 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1786 fname = target_fileio_read_stralloc (NULL, filename);
1787
1788 if (fname == NULL || *fname == '\0')
1789 {
1790 /* No program name was read, so we won't be able to retrieve more
1791 information about the process. */
1792 xfree (fname);
1793 return 0;
1794 }
1795
1796 c = make_cleanup (xfree, fname);
1797 memset (p, 0, sizeof (*p));
1798
1799 /* Defining the PID. */
1800 p->pr_pid = pid;
1801
1802 /* Copying the program name. Only the basename matters. */
1803 basename = lbasename (fname);
1804 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1805 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1806
1807 infargs = get_inferior_args ();
1808
1809 psargs = xstrdup (fname);
1810 if (infargs != NULL)
1811 psargs = reconcat (psargs, psargs, " ", infargs, (char *) NULL);
1812
1813 make_cleanup (xfree, psargs);
1814
1815 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1816 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1817
1818 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1819 proc_stat = target_fileio_read_stralloc (NULL, filename);
1820 make_cleanup (xfree, proc_stat);
1821
1822 if (proc_stat == NULL || *proc_stat == '\0')
1823 {
1824 /* Despite being unable to read more information about the
1825 process, we return 1 here because at least we have its
1826 command line, PID and arguments. */
1827 do_cleanups (c);
1828 return 1;
1829 }
1830
1831 /* Ok, we have the stats. It's time to do a little parsing of the
1832 contents of the buffer, so that we end up reading what we want.
1833
1834 The following parsing mechanism is strongly based on the
1835 information generated by the `fs/proc/array.c' file, present in
1836 the Linux kernel tree. More details about how the information is
1837 displayed can be obtained by seeing the manpage of proc(5),
1838 specifically under the entry of `/proc/[pid]/stat'. */
1839
1840 /* Getting rid of the PID, since we already have it. */
1841 while (isdigit (*proc_stat))
1842 ++proc_stat;
1843
1844 proc_stat = skip_spaces (proc_stat);
1845
1846 /* ps command also relies on no trailing fields ever contain ')'. */
1847 proc_stat = strrchr (proc_stat, ')');
1848 if (proc_stat == NULL)
1849 {
1850 do_cleanups (c);
1851 return 1;
1852 }
1853 proc_stat++;
1854
1855 proc_stat = skip_spaces (proc_stat);
1856
1857 n_fields = sscanf (proc_stat,
1858 "%c" /* Process state. */
1859 "%d%d%d" /* Parent PID, group ID, session ID. */
1860 "%*d%*d" /* tty_nr, tpgid (not used). */
1861 "%u" /* Flags. */
1862 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1863 cmajflt (not used). */
1864 "%*s%*s%*s%*s" /* utime, stime, cutime,
1865 cstime (not used). */
1866 "%*s" /* Priority (not used). */
1867 "%ld", /* Nice. */
1868 &pr_sname,
1869 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1870 &pr_flag,
1871 &pr_nice);
1872
1873 if (n_fields != 6)
1874 {
1875 /* Again, we couldn't read the complementary information about
1876 the process state. However, we already have minimal
1877 information, so we just return 1 here. */
1878 do_cleanups (c);
1879 return 1;
1880 }
1881
1882 /* Filling the structure fields. */
1883 prog_state = strchr (valid_states, pr_sname);
1884 if (prog_state != NULL)
1885 p->pr_state = prog_state - valid_states;
1886 else
1887 {
1888 /* Zero means "Running". */
1889 p->pr_state = 0;
1890 }
1891
1892 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1893 p->pr_zomb = p->pr_sname == 'Z';
1894 p->pr_nice = pr_nice;
1895 p->pr_flag = pr_flag;
1896
1897 /* Finally, obtaining the UID and GID. For that, we read and parse the
1898 contents of the `/proc/PID/status' file. */
1899 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1900 proc_status = target_fileio_read_stralloc (NULL, filename);
1901 make_cleanup (xfree, proc_status);
1902
1903 if (proc_status == NULL || *proc_status == '\0')
1904 {
1905 /* Returning 1 since we already have a bunch of information. */
1906 do_cleanups (c);
1907 return 1;
1908 }
1909
1910 /* Extracting the UID. */
1911 tmpstr = strstr (proc_status, "Uid:");
1912 if (tmpstr != NULL)
1913 {
1914 /* Advancing the pointer to the beginning of the UID. */
1915 tmpstr += sizeof ("Uid:");
1916 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1917 ++tmpstr;
1918
1919 if (isdigit (*tmpstr))
1920 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1921 }
1922
1923 /* Extracting the GID. */
1924 tmpstr = strstr (proc_status, "Gid:");
1925 if (tmpstr != NULL)
1926 {
1927 /* Advancing the pointer to the beginning of the GID. */
1928 tmpstr += sizeof ("Gid:");
1929 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1930 ++tmpstr;
1931
1932 if (isdigit (*tmpstr))
1933 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1934 }
1935
1936 do_cleanups (c);
1937
1938 return 1;
1939 }
1940
1941 /* Build the note section for a corefile, and return it in a malloc
1942 buffer. */
1943
1944 static char *
1945 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1946 {
1947 struct linux_corefile_thread_data thread_args;
1948 struct elf_internal_linux_prpsinfo prpsinfo;
1949 char *note_data = NULL;
1950 gdb_byte *auxv;
1951 int auxv_len;
1952 struct thread_info *curr_thr, *signalled_thr, *thr;
1953
1954 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1955 return NULL;
1956
1957 if (linux_fill_prpsinfo (&prpsinfo))
1958 {
1959 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1960 {
1961 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1962 note_data, note_size,
1963 &prpsinfo);
1964 }
1965 else
1966 {
1967 if (gdbarch_ptr_bit (gdbarch) == 64)
1968 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1969 note_data, note_size,
1970 &prpsinfo);
1971 else
1972 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1973 note_data, note_size,
1974 &prpsinfo);
1975 }
1976 }
1977
1978 /* Thread register information. */
1979 TRY
1980 {
1981 update_thread_list ();
1982 }
1983 CATCH (e, RETURN_MASK_ERROR)
1984 {
1985 exception_print (gdb_stderr, e);
1986 }
1987 END_CATCH
1988
1989 /* Like the kernel, prefer dumping the signalled thread first.
1990 "First thread" is what tools use to infer the signalled thread.
1991 In case there's more than one signalled thread, prefer the
1992 current thread, if it is signalled. */
1993 curr_thr = inferior_thread ();
1994 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1995 signalled_thr = curr_thr;
1996 else
1997 {
1998 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1999 if (signalled_thr == NULL)
2000 signalled_thr = curr_thr;
2001 }
2002
2003 thread_args.gdbarch = gdbarch;
2004 thread_args.obfd = obfd;
2005 thread_args.note_data = note_data;
2006 thread_args.note_size = note_size;
2007 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
2008
2009 linux_corefile_thread (signalled_thr, &thread_args);
2010 ALL_NON_EXITED_THREADS (thr)
2011 {
2012 if (thr == signalled_thr)
2013 continue;
2014 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
2015 continue;
2016
2017 linux_corefile_thread (thr, &thread_args);
2018 }
2019
2020 note_data = thread_args.note_data;
2021 if (!note_data)
2022 return NULL;
2023
2024 /* Auxillary vector. */
2025 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
2026 NULL, &auxv);
2027 if (auxv_len > 0)
2028 {
2029 note_data = elfcore_write_note (obfd, note_data, note_size,
2030 "CORE", NT_AUXV, auxv, auxv_len);
2031 xfree (auxv);
2032
2033 if (!note_data)
2034 return NULL;
2035 }
2036
2037 /* SPU information. */
2038 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2039 if (!note_data)
2040 return NULL;
2041
2042 /* File mappings. */
2043 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2044 note_data, note_size);
2045
2046 return note_data;
2047 }
2048
2049 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2050 gdbarch.h. This function is not static because it is exported to
2051 other -tdep files. */
2052
2053 enum gdb_signal
2054 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2055 {
2056 switch (signal)
2057 {
2058 case 0:
2059 return GDB_SIGNAL_0;
2060
2061 case LINUX_SIGHUP:
2062 return GDB_SIGNAL_HUP;
2063
2064 case LINUX_SIGINT:
2065 return GDB_SIGNAL_INT;
2066
2067 case LINUX_SIGQUIT:
2068 return GDB_SIGNAL_QUIT;
2069
2070 case LINUX_SIGILL:
2071 return GDB_SIGNAL_ILL;
2072
2073 case LINUX_SIGTRAP:
2074 return GDB_SIGNAL_TRAP;
2075
2076 case LINUX_SIGABRT:
2077 return GDB_SIGNAL_ABRT;
2078
2079 case LINUX_SIGBUS:
2080 return GDB_SIGNAL_BUS;
2081
2082 case LINUX_SIGFPE:
2083 return GDB_SIGNAL_FPE;
2084
2085 case LINUX_SIGKILL:
2086 return GDB_SIGNAL_KILL;
2087
2088 case LINUX_SIGUSR1:
2089 return GDB_SIGNAL_USR1;
2090
2091 case LINUX_SIGSEGV:
2092 return GDB_SIGNAL_SEGV;
2093
2094 case LINUX_SIGUSR2:
2095 return GDB_SIGNAL_USR2;
2096
2097 case LINUX_SIGPIPE:
2098 return GDB_SIGNAL_PIPE;
2099
2100 case LINUX_SIGALRM:
2101 return GDB_SIGNAL_ALRM;
2102
2103 case LINUX_SIGTERM:
2104 return GDB_SIGNAL_TERM;
2105
2106 case LINUX_SIGCHLD:
2107 return GDB_SIGNAL_CHLD;
2108
2109 case LINUX_SIGCONT:
2110 return GDB_SIGNAL_CONT;
2111
2112 case LINUX_SIGSTOP:
2113 return GDB_SIGNAL_STOP;
2114
2115 case LINUX_SIGTSTP:
2116 return GDB_SIGNAL_TSTP;
2117
2118 case LINUX_SIGTTIN:
2119 return GDB_SIGNAL_TTIN;
2120
2121 case LINUX_SIGTTOU:
2122 return GDB_SIGNAL_TTOU;
2123
2124 case LINUX_SIGURG:
2125 return GDB_SIGNAL_URG;
2126
2127 case LINUX_SIGXCPU:
2128 return GDB_SIGNAL_XCPU;
2129
2130 case LINUX_SIGXFSZ:
2131 return GDB_SIGNAL_XFSZ;
2132
2133 case LINUX_SIGVTALRM:
2134 return GDB_SIGNAL_VTALRM;
2135
2136 case LINUX_SIGPROF:
2137 return GDB_SIGNAL_PROF;
2138
2139 case LINUX_SIGWINCH:
2140 return GDB_SIGNAL_WINCH;
2141
2142 /* No way to differentiate between SIGIO and SIGPOLL.
2143 Therefore, we just handle the first one. */
2144 case LINUX_SIGIO:
2145 return GDB_SIGNAL_IO;
2146
2147 case LINUX_SIGPWR:
2148 return GDB_SIGNAL_PWR;
2149
2150 case LINUX_SIGSYS:
2151 return GDB_SIGNAL_SYS;
2152
2153 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2154 therefore we have to handle them here. */
2155 case LINUX_SIGRTMIN:
2156 return GDB_SIGNAL_REALTIME_32;
2157
2158 case LINUX_SIGRTMAX:
2159 return GDB_SIGNAL_REALTIME_64;
2160 }
2161
2162 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2163 {
2164 int offset = signal - LINUX_SIGRTMIN + 1;
2165
2166 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2167 }
2168
2169 return GDB_SIGNAL_UNKNOWN;
2170 }
2171
2172 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2173 gdbarch.h. This function is not static because it is exported to
2174 other -tdep files. */
2175
2176 int
2177 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2178 enum gdb_signal signal)
2179 {
2180 switch (signal)
2181 {
2182 case GDB_SIGNAL_0:
2183 return 0;
2184
2185 case GDB_SIGNAL_HUP:
2186 return LINUX_SIGHUP;
2187
2188 case GDB_SIGNAL_INT:
2189 return LINUX_SIGINT;
2190
2191 case GDB_SIGNAL_QUIT:
2192 return LINUX_SIGQUIT;
2193
2194 case GDB_SIGNAL_ILL:
2195 return LINUX_SIGILL;
2196
2197 case GDB_SIGNAL_TRAP:
2198 return LINUX_SIGTRAP;
2199
2200 case GDB_SIGNAL_ABRT:
2201 return LINUX_SIGABRT;
2202
2203 case GDB_SIGNAL_FPE:
2204 return LINUX_SIGFPE;
2205
2206 case GDB_SIGNAL_KILL:
2207 return LINUX_SIGKILL;
2208
2209 case GDB_SIGNAL_BUS:
2210 return LINUX_SIGBUS;
2211
2212 case GDB_SIGNAL_SEGV:
2213 return LINUX_SIGSEGV;
2214
2215 case GDB_SIGNAL_SYS:
2216 return LINUX_SIGSYS;
2217
2218 case GDB_SIGNAL_PIPE:
2219 return LINUX_SIGPIPE;
2220
2221 case GDB_SIGNAL_ALRM:
2222 return LINUX_SIGALRM;
2223
2224 case GDB_SIGNAL_TERM:
2225 return LINUX_SIGTERM;
2226
2227 case GDB_SIGNAL_URG:
2228 return LINUX_SIGURG;
2229
2230 case GDB_SIGNAL_STOP:
2231 return LINUX_SIGSTOP;
2232
2233 case GDB_SIGNAL_TSTP:
2234 return LINUX_SIGTSTP;
2235
2236 case GDB_SIGNAL_CONT:
2237 return LINUX_SIGCONT;
2238
2239 case GDB_SIGNAL_CHLD:
2240 return LINUX_SIGCHLD;
2241
2242 case GDB_SIGNAL_TTIN:
2243 return LINUX_SIGTTIN;
2244
2245 case GDB_SIGNAL_TTOU:
2246 return LINUX_SIGTTOU;
2247
2248 case GDB_SIGNAL_IO:
2249 return LINUX_SIGIO;
2250
2251 case GDB_SIGNAL_XCPU:
2252 return LINUX_SIGXCPU;
2253
2254 case GDB_SIGNAL_XFSZ:
2255 return LINUX_SIGXFSZ;
2256
2257 case GDB_SIGNAL_VTALRM:
2258 return LINUX_SIGVTALRM;
2259
2260 case GDB_SIGNAL_PROF:
2261 return LINUX_SIGPROF;
2262
2263 case GDB_SIGNAL_WINCH:
2264 return LINUX_SIGWINCH;
2265
2266 case GDB_SIGNAL_USR1:
2267 return LINUX_SIGUSR1;
2268
2269 case GDB_SIGNAL_USR2:
2270 return LINUX_SIGUSR2;
2271
2272 case GDB_SIGNAL_PWR:
2273 return LINUX_SIGPWR;
2274
2275 case GDB_SIGNAL_POLL:
2276 return LINUX_SIGPOLL;
2277
2278 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2279 therefore we have to handle it here. */
2280 case GDB_SIGNAL_REALTIME_32:
2281 return LINUX_SIGRTMIN;
2282
2283 /* Same comment applies to _64. */
2284 case GDB_SIGNAL_REALTIME_64:
2285 return LINUX_SIGRTMAX;
2286 }
2287
2288 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2289 if (signal >= GDB_SIGNAL_REALTIME_33
2290 && signal <= GDB_SIGNAL_REALTIME_63)
2291 {
2292 int offset = signal - GDB_SIGNAL_REALTIME_33;
2293
2294 return LINUX_SIGRTMIN + 1 + offset;
2295 }
2296
2297 return -1;
2298 }
2299
2300 /* Helper for linux_vsyscall_range that does the real work of finding
2301 the vsyscall's address range. */
2302
2303 static int
2304 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2305 {
2306 char filename[100];
2307 long pid;
2308 char *data;
2309
2310 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2311 return 0;
2312
2313 /* It doesn't make sense to access the host's /proc when debugging a
2314 core file. Instead, look for the PT_LOAD segment that matches
2315 the vDSO. */
2316 if (!target_has_execution)
2317 {
2318 Elf_Internal_Phdr *phdrs;
2319 long phdrs_size;
2320 int num_phdrs, i;
2321
2322 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2323 if (phdrs_size == -1)
2324 return 0;
2325
2326 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2327 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2328 if (num_phdrs == -1)
2329 return 0;
2330
2331 for (i = 0; i < num_phdrs; i++)
2332 if (phdrs[i].p_type == PT_LOAD
2333 && phdrs[i].p_vaddr == range->start)
2334 {
2335 range->length = phdrs[i].p_memsz;
2336 return 1;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* We need to know the real target PID to access /proc. */
2343 if (current_inferior ()->fake_pid_p)
2344 return 0;
2345
2346 pid = current_inferior ()->pid;
2347
2348 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2349 reading /proc/PID/maps (2). The later identifies thread stacks
2350 in the output, which requires scanning every thread in the thread
2351 group to check whether a VMA is actually a thread's stack. With
2352 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2353 a few thousand threads, (1) takes a few miliseconds, while (2)
2354 takes several seconds. Also note that "smaps", what we read for
2355 determining core dump mappings, is even slower than "maps". */
2356 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2357 data = target_fileio_read_stralloc (NULL, filename);
2358 if (data != NULL)
2359 {
2360 struct cleanup *cleanup = make_cleanup (xfree, data);
2361 char *line;
2362 char *saveptr = NULL;
2363
2364 for (line = strtok_r (data, "\n", &saveptr);
2365 line != NULL;
2366 line = strtok_r (NULL, "\n", &saveptr))
2367 {
2368 ULONGEST addr, endaddr;
2369 const char *p = line;
2370
2371 addr = strtoulst (p, &p, 16);
2372 if (addr == range->start)
2373 {
2374 if (*p == '-')
2375 p++;
2376 endaddr = strtoulst (p, &p, 16);
2377 range->length = endaddr - addr;
2378 do_cleanups (cleanup);
2379 return 1;
2380 }
2381 }
2382
2383 do_cleanups (cleanup);
2384 }
2385 else
2386 warning (_("unable to open /proc file '%s'"), filename);
2387
2388 return 0;
2389 }
2390
2391 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2392 caching, and defers the real work to linux_vsyscall_range_raw. */
2393
2394 static int
2395 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2396 {
2397 struct linux_info *info = get_linux_inferior_data ();
2398
2399 if (info->vsyscall_range_p == 0)
2400 {
2401 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2402 info->vsyscall_range_p = 1;
2403 else
2404 info->vsyscall_range_p = -1;
2405 }
2406
2407 if (info->vsyscall_range_p < 0)
2408 return 0;
2409
2410 *range = info->vsyscall_range;
2411 return 1;
2412 }
2413
2414 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2415 definitions would be dependent on compilation host. */
2416 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2417 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2418
2419 /* See gdbarch.sh 'infcall_mmap'. */
2420
2421 static CORE_ADDR
2422 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2423 {
2424 struct objfile *objf;
2425 /* Do there still exist any Linux systems without "mmap64"?
2426 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2427 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2428 struct value *addr_val;
2429 struct gdbarch *gdbarch = get_objfile_arch (objf);
2430 CORE_ADDR retval;
2431 enum
2432 {
2433 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2434 };
2435 struct value *arg[ARG_LAST];
2436
2437 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2438 0);
2439 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2440 arg[ARG_LENGTH] = value_from_ulongest
2441 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2442 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2443 | GDB_MMAP_PROT_EXEC))
2444 == 0);
2445 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2446 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2447 GDB_MMAP_MAP_PRIVATE
2448 | GDB_MMAP_MAP_ANONYMOUS);
2449 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2450 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2451 0);
2452 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
2453 retval = value_as_address (addr_val);
2454 if (retval == (CORE_ADDR) -1)
2455 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2456 pulongest (size));
2457 return retval;
2458 }
2459
2460 /* See gdbarch.sh 'infcall_munmap'. */
2461
2462 static void
2463 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2464 {
2465 struct objfile *objf;
2466 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2467 struct value *retval_val;
2468 struct gdbarch *gdbarch = get_objfile_arch (objf);
2469 LONGEST retval;
2470 enum
2471 {
2472 ARG_ADDR, ARG_LENGTH, ARG_LAST
2473 };
2474 struct value *arg[ARG_LAST];
2475
2476 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2477 addr);
2478 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2479 arg[ARG_LENGTH] = value_from_ulongest
2480 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2481 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
2482 retval = value_as_long (retval_val);
2483 if (retval != 0)
2484 warning (_("Failed inferior munmap call at %s for %s bytes, "
2485 "errno is changed."),
2486 hex_string (addr), pulongest (size));
2487 }
2488
2489 /* See linux-tdep.h. */
2490
2491 CORE_ADDR
2492 linux_displaced_step_location (struct gdbarch *gdbarch)
2493 {
2494 CORE_ADDR addr;
2495 int bp_len;
2496
2497 /* Determine entry point from target auxiliary vector. This avoids
2498 the need for symbols. Also, when debugging a stand-alone SPU
2499 executable, entry_point_address () will point to an SPU
2500 local-store address and is thus not usable as displaced stepping
2501 location. The auxiliary vector gets us the PowerPC-side entry
2502 point address instead. */
2503 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2504 throw_error (NOT_SUPPORTED_ERROR,
2505 _("Cannot find AT_ENTRY auxiliary vector entry."));
2506
2507 /* Make certain that the address points at real code, and not a
2508 function descriptor. */
2509 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2510 &current_target);
2511
2512 /* Inferior calls also use the entry point as a breakpoint location.
2513 We don't want displaced stepping to interfere with those
2514 breakpoints, so leave space. */
2515 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2516 addr += bp_len * 2;
2517
2518 return addr;
2519 }
2520
2521 /* Display whether the gcore command is using the
2522 /proc/PID/coredump_filter file. */
2523
2524 static void
2525 show_use_coredump_filter (struct ui_file *file, int from_tty,
2526 struct cmd_list_element *c, const char *value)
2527 {
2528 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2529 " corefiles is %s.\n"), value);
2530 }
2531
2532 /* To be called from the various GDB_OSABI_LINUX handlers for the
2533 various GNU/Linux architectures and machine types. */
2534
2535 void
2536 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2537 {
2538 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2539 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2540 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2541 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2542 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2543 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2544 set_gdbarch_has_shared_address_space (gdbarch,
2545 linux_has_shared_address_space);
2546 set_gdbarch_gdb_signal_from_target (gdbarch,
2547 linux_gdb_signal_from_target);
2548 set_gdbarch_gdb_signal_to_target (gdbarch,
2549 linux_gdb_signal_to_target);
2550 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2551 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2552 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2553 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2554 }
2555
2556 void
2557 _initialize_linux_tdep (void)
2558 {
2559 linux_gdbarch_data_handle =
2560 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2561
2562 /* Set a cache per-inferior. */
2563 linux_inferior_data
2564 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2565 /* Observers used to invalidate the cache when needed. */
2566 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2567 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2568
2569 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2570 &use_coredump_filter, _("\
2571 Set whether gcore should consider /proc/PID/coredump_filter."),
2572 _("\
2573 Show whether gcore should consider /proc/PID/coredump_filter."),
2574 _("\
2575 Use this command to set whether gcore should consider the contents\n\
2576 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2577 about this file, refer to the manpage of core(5)."),
2578 NULL, show_use_coredump_filter,
2579 &setlist, &showlist);
2580 }
This page took 0.111118 seconds and 4 git commands to generate.