982599e397262101bc3082724ee696f9b7e56ab7
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40
41 #include <ctype.h>
42
43 /* This enum represents the values that the user can choose when
44 informing the Linux kernel about which memory mappings will be
45 dumped in a corefile. They are described in the file
46 Documentation/filesystems/proc.txt, inside the Linux kernel
47 tree. */
48
49 enum filterflags
50 {
51 COREFILTER_ANON_PRIVATE = 1 << 0,
52 COREFILTER_ANON_SHARED = 1 << 1,
53 COREFILTER_MAPPED_PRIVATE = 1 << 2,
54 COREFILTER_MAPPED_SHARED = 1 << 3,
55 COREFILTER_ELF_HEADERS = 1 << 4,
56 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
57 COREFILTER_HUGETLB_SHARED = 1 << 6,
58 };
59
60 /* This struct is used to map flags found in the "VmFlags:" field (in
61 the /proc/<PID>/smaps file). */
62
63 struct smaps_vmflags
64 {
65 /* Zero if this structure has not been initialized yet. It
66 probably means that the Linux kernel being used does not emit
67 the "VmFlags:" field on "/proc/PID/smaps". */
68
69 unsigned int initialized_p : 1;
70
71 /* Memory mapped I/O area (VM_IO, "io"). */
72
73 unsigned int io_page : 1;
74
75 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
76
77 unsigned int uses_huge_tlb : 1;
78
79 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
80
81 unsigned int exclude_coredump : 1;
82
83 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
84
85 unsigned int shared_mapping : 1;
86 };
87
88 /* Whether to take the /proc/PID/coredump_filter into account when
89 generating a corefile. */
90
91 static int use_coredump_filter = 1;
92
93 /* This enum represents the signals' numbers on a generic architecture
94 running the Linux kernel. The definition of "generic" comes from
95 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
96 tree, which is the "de facto" implementation of signal numbers to
97 be used by new architecture ports.
98
99 For those architectures which have differences between the generic
100 standard (e.g., Alpha), we define the different signals (and *only*
101 those) in the specific target-dependent file (e.g.,
102 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
103 tdep file for more information.
104
105 ARM deserves a special mention here. On the file
106 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
107 (and ARM-only) signal, which is SIGSWI, with the same number as
108 SIGRTMIN. This signal is used only for a very specific target,
109 called ArthurOS (from RISCOS). Therefore, we do not handle it on
110 the ARM-tdep file, and we can safely use the generic signal handler
111 here for ARM targets.
112
113 As stated above, this enum is derived from
114 <include/uapi/asm-generic/signal.h>, from the Linux kernel
115 tree. */
116
117 enum
118 {
119 LINUX_SIGHUP = 1,
120 LINUX_SIGINT = 2,
121 LINUX_SIGQUIT = 3,
122 LINUX_SIGILL = 4,
123 LINUX_SIGTRAP = 5,
124 LINUX_SIGABRT = 6,
125 LINUX_SIGIOT = 6,
126 LINUX_SIGBUS = 7,
127 LINUX_SIGFPE = 8,
128 LINUX_SIGKILL = 9,
129 LINUX_SIGUSR1 = 10,
130 LINUX_SIGSEGV = 11,
131 LINUX_SIGUSR2 = 12,
132 LINUX_SIGPIPE = 13,
133 LINUX_SIGALRM = 14,
134 LINUX_SIGTERM = 15,
135 LINUX_SIGSTKFLT = 16,
136 LINUX_SIGCHLD = 17,
137 LINUX_SIGCONT = 18,
138 LINUX_SIGSTOP = 19,
139 LINUX_SIGTSTP = 20,
140 LINUX_SIGTTIN = 21,
141 LINUX_SIGTTOU = 22,
142 LINUX_SIGURG = 23,
143 LINUX_SIGXCPU = 24,
144 LINUX_SIGXFSZ = 25,
145 LINUX_SIGVTALRM = 26,
146 LINUX_SIGPROF = 27,
147 LINUX_SIGWINCH = 28,
148 LINUX_SIGIO = 29,
149 LINUX_SIGPOLL = LINUX_SIGIO,
150 LINUX_SIGPWR = 30,
151 LINUX_SIGSYS = 31,
152 LINUX_SIGUNUSED = 31,
153
154 LINUX_SIGRTMIN = 32,
155 LINUX_SIGRTMAX = 64,
156 };
157
158 static struct gdbarch_data *linux_gdbarch_data_handle;
159
160 struct linux_gdbarch_data
161 {
162 struct type *siginfo_type;
163 };
164
165 static void *
166 init_linux_gdbarch_data (struct gdbarch *gdbarch)
167 {
168 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
169 }
170
171 static struct linux_gdbarch_data *
172 get_linux_gdbarch_data (struct gdbarch *gdbarch)
173 {
174 return gdbarch_data (gdbarch, linux_gdbarch_data_handle);
175 }
176
177 /* Per-inferior data key. */
178 static const struct inferior_data *linux_inferior_data;
179
180 /* Linux-specific cached data. This is used by GDB for caching
181 purposes for each inferior. This helps reduce the overhead of
182 transfering data from a remote target to the local host. */
183 struct linux_info
184 {
185 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
186 if VSYSCALL_RANGE_P is positive. This is cached because getting
187 at this info requires an auxv lookup (which is itself cached),
188 and looking through the inferior's mappings (which change
189 throughout execution and therefore cannot be cached). */
190 struct mem_range vsyscall_range;
191
192 /* Zero if we haven't tried looking up the vsyscall's range before
193 yet. Positive if we tried looking it up, and found it. Negative
194 if we tried looking it up but failed. */
195 int vsyscall_range_p;
196 };
197
198 /* Frees whatever allocated space there is to be freed and sets INF's
199 linux cache data pointer to NULL. */
200
201 static void
202 invalidate_linux_cache_inf (struct inferior *inf)
203 {
204 struct linux_info *info;
205
206 info = inferior_data (inf, linux_inferior_data);
207 if (info != NULL)
208 {
209 xfree (info);
210 set_inferior_data (inf, linux_inferior_data, NULL);
211 }
212 }
213
214 /* Handles the cleanup of the linux cache for inferior INF. ARG is
215 ignored. Callback for the inferior_appeared and inferior_exit
216 events. */
217
218 static void
219 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
220 {
221 invalidate_linux_cache_inf (inf);
222 }
223
224 /* Fetch the linux cache info for INF. This function always returns a
225 valid INFO pointer. */
226
227 static struct linux_info *
228 get_linux_inferior_data (void)
229 {
230 struct linux_info *info;
231 struct inferior *inf = current_inferior ();
232
233 info = inferior_data (inf, linux_inferior_data);
234 if (info == NULL)
235 {
236 info = XCNEW (struct linux_info);
237 set_inferior_data (inf, linux_inferior_data, info);
238 }
239
240 return info;
241 }
242
243 /* This function is suitable for architectures that don't
244 extend/override the standard siginfo structure. */
245
246 static struct type *
247 linux_get_siginfo_type (struct gdbarch *gdbarch)
248 {
249 struct linux_gdbarch_data *linux_gdbarch_data;
250 struct type *int_type, *uint_type, *long_type, *void_ptr_type;
251 struct type *uid_type, *pid_type;
252 struct type *sigval_type, *clock_type;
253 struct type *siginfo_type, *sifields_type;
254 struct type *type;
255
256 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
257 if (linux_gdbarch_data->siginfo_type != NULL)
258 return linux_gdbarch_data->siginfo_type;
259
260 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
261 0, "int");
262 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
263 1, "unsigned int");
264 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
265 0, "long");
266 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
267
268 /* sival_t */
269 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
270 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
271 append_composite_type_field (sigval_type, "sival_int", int_type);
272 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
273
274 /* __pid_t */
275 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
276 TYPE_LENGTH (int_type), "__pid_t");
277 TYPE_TARGET_TYPE (pid_type) = int_type;
278 TYPE_TARGET_STUB (pid_type) = 1;
279
280 /* __uid_t */
281 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (uint_type), "__uid_t");
283 TYPE_TARGET_TYPE (uid_type) = uint_type;
284 TYPE_TARGET_STUB (uid_type) = 1;
285
286 /* __clock_t */
287 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (long_type), "__clock_t");
289 TYPE_TARGET_TYPE (clock_type) = long_type;
290 TYPE_TARGET_STUB (clock_type) = 1;
291
292 /* _sifields */
293 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
294
295 {
296 const int si_max_size = 128;
297 int si_pad_size;
298 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
299
300 /* _pad */
301 if (gdbarch_ptr_bit (gdbarch) == 64)
302 si_pad_size = (si_max_size / size_of_int) - 4;
303 else
304 si_pad_size = (si_max_size / size_of_int) - 3;
305 append_composite_type_field (sifields_type, "_pad",
306 init_vector_type (int_type, si_pad_size));
307 }
308
309 /* _kill */
310 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
311 append_composite_type_field (type, "si_pid", pid_type);
312 append_composite_type_field (type, "si_uid", uid_type);
313 append_composite_type_field (sifields_type, "_kill", type);
314
315 /* _timer */
316 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
317 append_composite_type_field (type, "si_tid", int_type);
318 append_composite_type_field (type, "si_overrun", int_type);
319 append_composite_type_field (type, "si_sigval", sigval_type);
320 append_composite_type_field (sifields_type, "_timer", type);
321
322 /* _rt */
323 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
324 append_composite_type_field (type, "si_pid", pid_type);
325 append_composite_type_field (type, "si_uid", uid_type);
326 append_composite_type_field (type, "si_sigval", sigval_type);
327 append_composite_type_field (sifields_type, "_rt", type);
328
329 /* _sigchld */
330 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
331 append_composite_type_field (type, "si_pid", pid_type);
332 append_composite_type_field (type, "si_uid", uid_type);
333 append_composite_type_field (type, "si_status", int_type);
334 append_composite_type_field (type, "si_utime", clock_type);
335 append_composite_type_field (type, "si_stime", clock_type);
336 append_composite_type_field (sifields_type, "_sigchld", type);
337
338 /* _sigfault */
339 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
340 append_composite_type_field (type, "si_addr", void_ptr_type);
341 append_composite_type_field (sifields_type, "_sigfault", type);
342
343 /* _sigpoll */
344 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
345 append_composite_type_field (type, "si_band", long_type);
346 append_composite_type_field (type, "si_fd", int_type);
347 append_composite_type_field (sifields_type, "_sigpoll", type);
348
349 /* struct siginfo */
350 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
351 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
352 append_composite_type_field (siginfo_type, "si_signo", int_type);
353 append_composite_type_field (siginfo_type, "si_errno", int_type);
354 append_composite_type_field (siginfo_type, "si_code", int_type);
355 append_composite_type_field_aligned (siginfo_type,
356 "_sifields", sifields_type,
357 TYPE_LENGTH (long_type));
358
359 linux_gdbarch_data->siginfo_type = siginfo_type;
360
361 return siginfo_type;
362 }
363
364 /* Return true if the target is running on uClinux instead of normal
365 Linux kernel. */
366
367 int
368 linux_is_uclinux (void)
369 {
370 CORE_ADDR dummy;
371
372 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
373 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
374 }
375
376 static int
377 linux_has_shared_address_space (struct gdbarch *gdbarch)
378 {
379 return linux_is_uclinux ();
380 }
381
382 /* This is how we want PTIDs from core files to be printed. */
383
384 static char *
385 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
386 {
387 static char buf[80];
388
389 if (ptid_get_lwp (ptid) != 0)
390 {
391 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
392 return buf;
393 }
394
395 return normal_pid_to_str (ptid);
396 }
397
398 /* Service function for corefiles and info proc. */
399
400 static void
401 read_mapping (const char *line,
402 ULONGEST *addr, ULONGEST *endaddr,
403 const char **permissions, size_t *permissions_len,
404 ULONGEST *offset,
405 const char **device, size_t *device_len,
406 ULONGEST *inode,
407 const char **filename)
408 {
409 const char *p = line;
410
411 *addr = strtoulst (p, &p, 16);
412 if (*p == '-')
413 p++;
414 *endaddr = strtoulst (p, &p, 16);
415
416 p = skip_spaces_const (p);
417 *permissions = p;
418 while (*p && !isspace (*p))
419 p++;
420 *permissions_len = p - *permissions;
421
422 *offset = strtoulst (p, &p, 16);
423
424 p = skip_spaces_const (p);
425 *device = p;
426 while (*p && !isspace (*p))
427 p++;
428 *device_len = p - *device;
429
430 *inode = strtoulst (p, &p, 10);
431
432 p = skip_spaces_const (p);
433 *filename = p;
434 }
435
436 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
437
438 This function was based on the documentation found on
439 <Documentation/filesystems/proc.txt>, on the Linux kernel.
440
441 Linux kernels before commit
442 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
443 field on smaps. */
444
445 static void
446 decode_vmflags (char *p, struct smaps_vmflags *v)
447 {
448 char *saveptr = NULL;
449 const char *s;
450
451 v->initialized_p = 1;
452 p = skip_to_space (p);
453 p = skip_spaces (p);
454
455 for (s = strtok_r (p, " ", &saveptr);
456 s != NULL;
457 s = strtok_r (NULL, " ", &saveptr))
458 {
459 if (strcmp (s, "io") == 0)
460 v->io_page = 1;
461 else if (strcmp (s, "ht") == 0)
462 v->uses_huge_tlb = 1;
463 else if (strcmp (s, "dd") == 0)
464 v->exclude_coredump = 1;
465 else if (strcmp (s, "sh") == 0)
466 v->shared_mapping = 1;
467 }
468 }
469
470 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
471
472 FILENAME is the name of the file present in the first line of the
473 memory mapping, in the "/proc/PID/smaps" output. For example, if
474 the first line is:
475
476 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
477
478 Then FILENAME will be "/path/to/file". */
479
480 static int
481 mapping_is_anonymous_p (const char *filename)
482 {
483 static regex_t dev_zero_regex, shmem_file_regex, file_deleted_regex;
484 static int init_regex_p = 0;
485
486 if (!init_regex_p)
487 {
488 struct cleanup *c = make_cleanup (null_cleanup, NULL);
489
490 /* Let's be pessimistic and assume there will be an error while
491 compiling the regex'es. */
492 init_regex_p = -1;
493
494 /* DEV_ZERO_REGEX matches "/dev/zero" filenames (with or
495 without the "(deleted)" string in the end). We know for
496 sure, based on the Linux kernel code, that memory mappings
497 whose associated filename is "/dev/zero" are guaranteed to be
498 MAP_ANONYMOUS. */
499 compile_rx_or_error (&dev_zero_regex, "^/dev/zero\\( (deleted)\\)\\?$",
500 _("Could not compile regex to match /dev/zero "
501 "filename"));
502 /* SHMEM_FILE_REGEX matches "/SYSV%08x" filenames (with or
503 without the "(deleted)" string in the end). These filenames
504 refer to shared memory (shmem), and memory mappings
505 associated with them are MAP_ANONYMOUS as well. */
506 compile_rx_or_error (&shmem_file_regex,
507 "^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$",
508 _("Could not compile regex to match shmem "
509 "filenames"));
510 /* FILE_DELETED_REGEX is a heuristic we use to try to mimic the
511 Linux kernel's 'n_link == 0' code, which is responsible to
512 decide if it is dealing with a 'MAP_SHARED | MAP_ANONYMOUS'
513 mapping. In other words, if FILE_DELETED_REGEX matches, it
514 does not necessarily mean that we are dealing with an
515 anonymous shared mapping. However, there is no easy way to
516 detect this currently, so this is the best approximation we
517 have.
518
519 As a result, GDB will dump readonly pages of deleted
520 executables when using the default value of coredump_filter
521 (0x33), while the Linux kernel will not dump those pages.
522 But we can live with that. */
523 compile_rx_or_error (&file_deleted_regex, " (deleted)$",
524 _("Could not compile regex to match "
525 "'<file> (deleted)'"));
526 /* We will never release these regexes, so just discard the
527 cleanups. */
528 discard_cleanups (c);
529
530 /* If we reached this point, then everything succeeded. */
531 init_regex_p = 1;
532 }
533
534 if (init_regex_p == -1)
535 {
536 const char deleted[] = " (deleted)";
537 size_t del_len = sizeof (deleted) - 1;
538 size_t filename_len = strlen (filename);
539
540 /* There was an error while compiling the regex'es above. In
541 order to try to give some reliable information to the caller,
542 we just try to find the string " (deleted)" in the filename.
543 If we managed to find it, then we assume the mapping is
544 anonymous. */
545 return (filename_len >= del_len
546 && strcmp (filename + filename_len - del_len, deleted) == 0);
547 }
548
549 if (*filename == '\0'
550 || regexec (&dev_zero_regex, filename, 0, NULL, 0) == 0
551 || regexec (&shmem_file_regex, filename, 0, NULL, 0) == 0
552 || regexec (&file_deleted_regex, filename, 0, NULL, 0) == 0)
553 return 1;
554
555 return 0;
556 }
557
558 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
559 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
560 greater than 0 if it should.
561
562 In a nutshell, this is the logic that we follow in order to decide
563 if a mapping should be dumped or not.
564
565 - If the mapping is associated to a file whose name ends with
566 " (deleted)", or if the file is "/dev/zero", or if it is
567 "/SYSV%08x" (shared memory), or if there is no file associated
568 with it, or if the AnonHugePages: or the Anonymous: fields in the
569 /proc/PID/smaps have contents, then GDB considers this mapping to
570 be anonymous. Otherwise, GDB considers this mapping to be a
571 file-backed mapping (because there will be a file associated with
572 it).
573
574 It is worth mentioning that, from all those checks described
575 above, the most fragile is the one to see if the file name ends
576 with " (deleted)". This does not necessarily mean that the
577 mapping is anonymous, because the deleted file associated with
578 the mapping may have been a hard link to another file, for
579 example. The Linux kernel checks to see if "i_nlink == 0", but
580 GDB cannot easily (and normally) do this check (iff running as
581 root, it could find the mapping in /proc/PID/map_files/ and
582 determine whether there still are other hard links to the
583 inode/file). Therefore, we made a compromise here, and we assume
584 that if the file name ends with " (deleted)", then the mapping is
585 indeed anonymous. FWIW, this is something the Linux kernel could
586 do better: expose this information in a more direct way.
587
588 - If we see the flag "sh" in the "VmFlags:" field (in
589 /proc/PID/smaps), then certainly the memory mapping is shared
590 (VM_SHARED). If we have access to the VmFlags, and we don't see
591 the "sh" there, then certainly the mapping is private. However,
592 Linux kernels before commit
593 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
594 "VmFlags:" field; in that case, we use another heuristic: if we
595 see 'p' in the permission flags, then we assume that the mapping
596 is private, even though the presence of the 's' flag there would
597 mean VM_MAYSHARE, which means the mapping could still be private.
598 This should work OK enough, however. */
599
600 static int
601 dump_mapping_p (enum filterflags filterflags, const struct smaps_vmflags *v,
602 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
603 const char *filename)
604 {
605 /* Initially, we trust in what we received from our caller. This
606 value may not be very precise (i.e., it was probably gathered
607 from the permission line in the /proc/PID/smaps list, which
608 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
609 what we have until we take a look at the "VmFlags:" field
610 (assuming that the version of the Linux kernel being used
611 supports it, of course). */
612 int private_p = maybe_private_p;
613
614 /* We always dump vDSO and vsyscall mappings, because it's likely that
615 there'll be no file to read the contents from at core load time.
616 The kernel does the same. */
617 if (strcmp ("[vdso]", filename) == 0
618 || strcmp ("[vsyscall]", filename) == 0)
619 return 1;
620
621 if (v->initialized_p)
622 {
623 /* We never dump I/O mappings. */
624 if (v->io_page)
625 return 0;
626
627 /* Check if we should exclude this mapping. */
628 if (v->exclude_coredump)
629 return 0;
630
631 /* Update our notion of whether this mapping is shared or
632 private based on a trustworthy value. */
633 private_p = !v->shared_mapping;
634
635 /* HugeTLB checking. */
636 if (v->uses_huge_tlb)
637 {
638 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
639 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
640 return 1;
641
642 return 0;
643 }
644 }
645
646 if (private_p)
647 {
648 if (mapping_anon_p && mapping_file_p)
649 {
650 /* This is a special situation. It can happen when we see a
651 mapping that is file-backed, but that contains anonymous
652 pages. */
653 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
654 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
655 }
656 else if (mapping_anon_p)
657 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
658 else
659 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
660 }
661 else
662 {
663 if (mapping_anon_p && mapping_file_p)
664 {
665 /* This is a special situation. It can happen when we see a
666 mapping that is file-backed, but that contains anonymous
667 pages. */
668 return ((filterflags & COREFILTER_ANON_SHARED) != 0
669 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
670 }
671 else if (mapping_anon_p)
672 return (filterflags & COREFILTER_ANON_SHARED) != 0;
673 else
674 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
675 }
676 }
677
678 /* Implement the "info proc" command. */
679
680 static void
681 linux_info_proc (struct gdbarch *gdbarch, const char *args,
682 enum info_proc_what what)
683 {
684 /* A long is used for pid instead of an int to avoid a loss of precision
685 compiler warning from the output of strtoul. */
686 long pid;
687 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
688 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
689 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
690 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
691 int status_f = (what == IP_STATUS || what == IP_ALL);
692 int stat_f = (what == IP_STAT || what == IP_ALL);
693 char filename[100];
694 char *data;
695 int target_errno;
696
697 if (args && isdigit (args[0]))
698 {
699 char *tem;
700
701 pid = strtoul (args, &tem, 10);
702 args = tem;
703 }
704 else
705 {
706 if (!target_has_execution)
707 error (_("No current process: you must name one."));
708 if (current_inferior ()->fake_pid_p)
709 error (_("Can't determine the current process's PID: you must name one."));
710
711 pid = current_inferior ()->pid;
712 }
713
714 args = skip_spaces_const (args);
715 if (args && args[0])
716 error (_("Too many parameters: %s"), args);
717
718 printf_filtered (_("process %ld\n"), pid);
719 if (cmdline_f)
720 {
721 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
722 data = target_fileio_read_stralloc (NULL, filename);
723 if (data)
724 {
725 struct cleanup *cleanup = make_cleanup (xfree, data);
726 printf_filtered ("cmdline = '%s'\n", data);
727 do_cleanups (cleanup);
728 }
729 else
730 warning (_("unable to open /proc file '%s'"), filename);
731 }
732 if (cwd_f)
733 {
734 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
735 data = target_fileio_readlink (NULL, filename, &target_errno);
736 if (data)
737 {
738 struct cleanup *cleanup = make_cleanup (xfree, data);
739 printf_filtered ("cwd = '%s'\n", data);
740 do_cleanups (cleanup);
741 }
742 else
743 warning (_("unable to read link '%s'"), filename);
744 }
745 if (exe_f)
746 {
747 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
748 data = target_fileio_readlink (NULL, filename, &target_errno);
749 if (data)
750 {
751 struct cleanup *cleanup = make_cleanup (xfree, data);
752 printf_filtered ("exe = '%s'\n", data);
753 do_cleanups (cleanup);
754 }
755 else
756 warning (_("unable to read link '%s'"), filename);
757 }
758 if (mappings_f)
759 {
760 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
761 data = target_fileio_read_stralloc (NULL, filename);
762 if (data)
763 {
764 struct cleanup *cleanup = make_cleanup (xfree, data);
765 char *line;
766
767 printf_filtered (_("Mapped address spaces:\n\n"));
768 if (gdbarch_addr_bit (gdbarch) == 32)
769 {
770 printf_filtered ("\t%10s %10s %10s %10s %s\n",
771 "Start Addr",
772 " End Addr",
773 " Size", " Offset", "objfile");
774 }
775 else
776 {
777 printf_filtered (" %18s %18s %10s %10s %s\n",
778 "Start Addr",
779 " End Addr",
780 " Size", " Offset", "objfile");
781 }
782
783 for (line = strtok (data, "\n"); line; line = strtok (NULL, "\n"))
784 {
785 ULONGEST addr, endaddr, offset, inode;
786 const char *permissions, *device, *filename;
787 size_t permissions_len, device_len;
788
789 read_mapping (line, &addr, &endaddr,
790 &permissions, &permissions_len,
791 &offset, &device, &device_len,
792 &inode, &filename);
793
794 if (gdbarch_addr_bit (gdbarch) == 32)
795 {
796 printf_filtered ("\t%10s %10s %10s %10s %s\n",
797 paddress (gdbarch, addr),
798 paddress (gdbarch, endaddr),
799 hex_string (endaddr - addr),
800 hex_string (offset),
801 *filename? filename : "");
802 }
803 else
804 {
805 printf_filtered (" %18s %18s %10s %10s %s\n",
806 paddress (gdbarch, addr),
807 paddress (gdbarch, endaddr),
808 hex_string (endaddr - addr),
809 hex_string (offset),
810 *filename? filename : "");
811 }
812 }
813
814 do_cleanups (cleanup);
815 }
816 else
817 warning (_("unable to open /proc file '%s'"), filename);
818 }
819 if (status_f)
820 {
821 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
822 data = target_fileio_read_stralloc (NULL, filename);
823 if (data)
824 {
825 struct cleanup *cleanup = make_cleanup (xfree, data);
826 puts_filtered (data);
827 do_cleanups (cleanup);
828 }
829 else
830 warning (_("unable to open /proc file '%s'"), filename);
831 }
832 if (stat_f)
833 {
834 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
835 data = target_fileio_read_stralloc (NULL, filename);
836 if (data)
837 {
838 struct cleanup *cleanup = make_cleanup (xfree, data);
839 const char *p = data;
840
841 printf_filtered (_("Process: %s\n"),
842 pulongest (strtoulst (p, &p, 10)));
843
844 p = skip_spaces_const (p);
845 if (*p == '(')
846 {
847 /* ps command also relies on no trailing fields
848 ever contain ')'. */
849 const char *ep = strrchr (p, ')');
850 if (ep != NULL)
851 {
852 printf_filtered ("Exec file: %.*s\n",
853 (int) (ep - p - 1), p + 1);
854 p = ep + 1;
855 }
856 }
857
858 p = skip_spaces_const (p);
859 if (*p)
860 printf_filtered (_("State: %c\n"), *p++);
861
862 if (*p)
863 printf_filtered (_("Parent process: %s\n"),
864 pulongest (strtoulst (p, &p, 10)));
865 if (*p)
866 printf_filtered (_("Process group: %s\n"),
867 pulongest (strtoulst (p, &p, 10)));
868 if (*p)
869 printf_filtered (_("Session id: %s\n"),
870 pulongest (strtoulst (p, &p, 10)));
871 if (*p)
872 printf_filtered (_("TTY: %s\n"),
873 pulongest (strtoulst (p, &p, 10)));
874 if (*p)
875 printf_filtered (_("TTY owner process group: %s\n"),
876 pulongest (strtoulst (p, &p, 10)));
877
878 if (*p)
879 printf_filtered (_("Flags: %s\n"),
880 hex_string (strtoulst (p, &p, 10)));
881 if (*p)
882 printf_filtered (_("Minor faults (no memory page): %s\n"),
883 pulongest (strtoulst (p, &p, 10)));
884 if (*p)
885 printf_filtered (_("Minor faults, children: %s\n"),
886 pulongest (strtoulst (p, &p, 10)));
887 if (*p)
888 printf_filtered (_("Major faults (memory page faults): %s\n"),
889 pulongest (strtoulst (p, &p, 10)));
890 if (*p)
891 printf_filtered (_("Major faults, children: %s\n"),
892 pulongest (strtoulst (p, &p, 10)));
893 if (*p)
894 printf_filtered (_("utime: %s\n"),
895 pulongest (strtoulst (p, &p, 10)));
896 if (*p)
897 printf_filtered (_("stime: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899 if (*p)
900 printf_filtered (_("utime, children: %s\n"),
901 pulongest (strtoulst (p, &p, 10)));
902 if (*p)
903 printf_filtered (_("stime, children: %s\n"),
904 pulongest (strtoulst (p, &p, 10)));
905 if (*p)
906 printf_filtered (_("jiffies remaining in current "
907 "time slice: %s\n"),
908 pulongest (strtoulst (p, &p, 10)));
909 if (*p)
910 printf_filtered (_("'nice' value: %s\n"),
911 pulongest (strtoulst (p, &p, 10)));
912 if (*p)
913 printf_filtered (_("jiffies until next timeout: %s\n"),
914 pulongest (strtoulst (p, &p, 10)));
915 if (*p)
916 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
917 pulongest (strtoulst (p, &p, 10)));
918 if (*p)
919 printf_filtered (_("start time (jiffies since "
920 "system boot): %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("Virtual memory size: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("Resident set size: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("rlim: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("Start of text: %s\n"),
933 hex_string (strtoulst (p, &p, 10)));
934 if (*p)
935 printf_filtered (_("End of text: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
937 if (*p)
938 printf_filtered (_("Start of stack: %s\n"),
939 hex_string (strtoulst (p, &p, 10)));
940 #if 0 /* Don't know how architecture-dependent the rest is...
941 Anyway the signal bitmap info is available from "status". */
942 if (*p)
943 printf_filtered (_("Kernel stack pointer: %s\n"),
944 hex_string (strtoulst (p, &p, 10)));
945 if (*p)
946 printf_filtered (_("Kernel instr pointer: %s\n"),
947 hex_string (strtoulst (p, &p, 10)));
948 if (*p)
949 printf_filtered (_("Pending signals bitmap: %s\n"),
950 hex_string (strtoulst (p, &p, 10)));
951 if (*p)
952 printf_filtered (_("Blocked signals bitmap: %s\n"),
953 hex_string (strtoulst (p, &p, 10)));
954 if (*p)
955 printf_filtered (_("Ignored signals bitmap: %s\n"),
956 hex_string (strtoulst (p, &p, 10)));
957 if (*p)
958 printf_filtered (_("Catched signals bitmap: %s\n"),
959 hex_string (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("wchan (system call): %s\n"),
962 hex_string (strtoulst (p, &p, 10)));
963 #endif
964 do_cleanups (cleanup);
965 }
966 else
967 warning (_("unable to open /proc file '%s'"), filename);
968 }
969 }
970
971 /* Implement "info proc mappings" for a corefile. */
972
973 static void
974 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
975 {
976 asection *section;
977 ULONGEST count, page_size;
978 unsigned char *descdata, *filenames, *descend, *contents;
979 size_t note_size;
980 unsigned int addr_size_bits, addr_size;
981 struct cleanup *cleanup;
982 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
983 /* We assume this for reading 64-bit core files. */
984 gdb_static_assert (sizeof (ULONGEST) >= 8);
985
986 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
987 if (section == NULL)
988 {
989 warning (_("unable to find mappings in core file"));
990 return;
991 }
992
993 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
994 addr_size = addr_size_bits / 8;
995 note_size = bfd_get_section_size (section);
996
997 if (note_size < 2 * addr_size)
998 error (_("malformed core note - too short for header"));
999
1000 contents = xmalloc (note_size);
1001 cleanup = make_cleanup (xfree, contents);
1002 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1003 error (_("could not get core note contents"));
1004
1005 descdata = contents;
1006 descend = descdata + note_size;
1007
1008 if (descdata[note_size - 1] != '\0')
1009 error (_("malformed note - does not end with \\0"));
1010
1011 count = bfd_get (addr_size_bits, core_bfd, descdata);
1012 descdata += addr_size;
1013
1014 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1015 descdata += addr_size;
1016
1017 if (note_size < 2 * addr_size + count * 3 * addr_size)
1018 error (_("malformed note - too short for supplied file count"));
1019
1020 printf_filtered (_("Mapped address spaces:\n\n"));
1021 if (gdbarch_addr_bit (gdbarch) == 32)
1022 {
1023 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1024 "Start Addr",
1025 " End Addr",
1026 " Size", " Offset", "objfile");
1027 }
1028 else
1029 {
1030 printf_filtered (" %18s %18s %10s %10s %s\n",
1031 "Start Addr",
1032 " End Addr",
1033 " Size", " Offset", "objfile");
1034 }
1035
1036 filenames = descdata + count * 3 * addr_size;
1037 while (--count > 0)
1038 {
1039 ULONGEST start, end, file_ofs;
1040
1041 if (filenames == descend)
1042 error (_("malformed note - filenames end too early"));
1043
1044 start = bfd_get (addr_size_bits, core_bfd, descdata);
1045 descdata += addr_size;
1046 end = bfd_get (addr_size_bits, core_bfd, descdata);
1047 descdata += addr_size;
1048 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1049 descdata += addr_size;
1050
1051 file_ofs *= page_size;
1052
1053 if (gdbarch_addr_bit (gdbarch) == 32)
1054 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1055 paddress (gdbarch, start),
1056 paddress (gdbarch, end),
1057 hex_string (end - start),
1058 hex_string (file_ofs),
1059 filenames);
1060 else
1061 printf_filtered (" %18s %18s %10s %10s %s\n",
1062 paddress (gdbarch, start),
1063 paddress (gdbarch, end),
1064 hex_string (end - start),
1065 hex_string (file_ofs),
1066 filenames);
1067
1068 filenames += 1 + strlen ((char *) filenames);
1069 }
1070
1071 do_cleanups (cleanup);
1072 }
1073
1074 /* Implement "info proc" for a corefile. */
1075
1076 static void
1077 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1078 enum info_proc_what what)
1079 {
1080 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1081 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1082
1083 if (exe_f)
1084 {
1085 const char *exe;
1086
1087 exe = bfd_core_file_failing_command (core_bfd);
1088 if (exe != NULL)
1089 printf_filtered ("exe = '%s'\n", exe);
1090 else
1091 warning (_("unable to find command name in core file"));
1092 }
1093
1094 if (mappings_f)
1095 linux_core_info_proc_mappings (gdbarch, args);
1096
1097 if (!exe_f && !mappings_f)
1098 error (_("unable to handle request"));
1099 }
1100
1101 /* Callback function for linux_find_memory_regions_full. If it returns
1102 non-zero linux_find_memory_regions_full returns immediately with that
1103 value. */
1104
1105 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1106 ULONGEST offset, ULONGEST inode,
1107 int read, int write,
1108 int exec, int modified,
1109 const char *filename,
1110 void *data);
1111
1112 /* List memory regions in the inferior PID matched to FILTERFLAGS for
1113 a corefile. Call FUNC with FUNC_DATA for each such region. Return
1114 immediately with the value returned by FUNC if it is non-zero.
1115 *MEMORY_TO_FREE_PTR should be registered to be freed automatically if
1116 called FUNC throws an exception. MEMORY_TO_FREE_PTR can be also
1117 passed as NULL if it is not used. Return -1 if error occurs, 0 if
1118 all memory regions have been processed or return the value from FUNC
1119 if FUNC returns non-zero. */
1120
1121 static int
1122 linux_find_memory_regions_full (pid_t pid, enum filterflags filterflags,
1123 linux_find_memory_region_ftype *func,
1124 void *func_data)
1125 {
1126 char mapsfilename[100];
1127 char *data;
1128
1129 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1130 data = target_fileio_read_stralloc (NULL, mapsfilename);
1131 if (data == NULL)
1132 {
1133 /* Older Linux kernels did not support /proc/PID/smaps. */
1134 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1135 data = target_fileio_read_stralloc (NULL, mapsfilename);
1136 }
1137
1138 if (data != NULL)
1139 {
1140 struct cleanup *cleanup = make_cleanup (xfree, data);
1141 char *line, *t;
1142 int retval = 0;
1143
1144 line = strtok_r (data, "\n", &t);
1145 while (line != NULL)
1146 {
1147 ULONGEST addr, endaddr, offset, inode;
1148 const char *permissions, *device, *filename;
1149 struct smaps_vmflags v;
1150 size_t permissions_len, device_len;
1151 int read, write, exec, priv;
1152 int has_anonymous = 0;
1153 int should_dump_p = 0;
1154 int mapping_anon_p;
1155 int mapping_file_p;
1156
1157 memset (&v, 0, sizeof (v));
1158 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1159 &offset, &device, &device_len, &inode, &filename);
1160 mapping_anon_p = mapping_is_anonymous_p (filename);
1161 /* If the mapping is not anonymous, then we can consider it
1162 to be file-backed. These two states (anonymous or
1163 file-backed) seem to be exclusive, but they can actually
1164 coexist. For example, if a file-backed mapping has
1165 "Anonymous:" pages (see more below), then the Linux
1166 kernel will dump this mapping when the user specified
1167 that she only wants anonymous mappings in the corefile
1168 (*even* when she explicitly disabled the dumping of
1169 file-backed mappings). */
1170 mapping_file_p = !mapping_anon_p;
1171
1172 /* Decode permissions. */
1173 read = (memchr (permissions, 'r', permissions_len) != 0);
1174 write = (memchr (permissions, 'w', permissions_len) != 0);
1175 exec = (memchr (permissions, 'x', permissions_len) != 0);
1176 /* 'private' here actually means VM_MAYSHARE, and not
1177 VM_SHARED. In order to know if a mapping is really
1178 private or not, we must check the flag "sh" in the
1179 VmFlags field. This is done by decode_vmflags. However,
1180 if we are using a Linux kernel released before the commit
1181 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1182 not have the VmFlags there. In this case, there is
1183 really no way to know if we are dealing with VM_SHARED,
1184 so we just assume that VM_MAYSHARE is enough. */
1185 priv = memchr (permissions, 'p', permissions_len) != 0;
1186
1187 /* Try to detect if region should be dumped by parsing smaps
1188 counters. */
1189 for (line = strtok_r (NULL, "\n", &t);
1190 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1191 line = strtok_r (NULL, "\n", &t))
1192 {
1193 char keyword[64 + 1];
1194
1195 if (sscanf (line, "%64s", keyword) != 1)
1196 {
1197 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1198 break;
1199 }
1200
1201 if (strcmp (keyword, "Anonymous:") == 0)
1202 {
1203 /* Older Linux kernels did not support the
1204 "Anonymous:" counter. Check it here. */
1205 has_anonymous = 1;
1206 }
1207 else if (strcmp (keyword, "VmFlags:") == 0)
1208 decode_vmflags (line, &v);
1209
1210 if (strcmp (keyword, "AnonHugePages:") == 0
1211 || strcmp (keyword, "Anonymous:") == 0)
1212 {
1213 unsigned long number;
1214
1215 if (sscanf (line, "%*s%lu", &number) != 1)
1216 {
1217 warning (_("Error parsing {s,}maps file '%s' number"),
1218 mapsfilename);
1219 break;
1220 }
1221 if (number > 0)
1222 {
1223 /* Even if we are dealing with a file-backed
1224 mapping, if it contains anonymous pages we
1225 consider it to be *also* an anonymous
1226 mapping, because this is what the Linux
1227 kernel does:
1228
1229 // Dump segments that have been written to.
1230 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1231 goto whole;
1232
1233 Note that if the mapping is already marked as
1234 file-backed (i.e., mapping_file_p is
1235 non-zero), then this is a special case, and
1236 this mapping will be dumped either when the
1237 user wants to dump file-backed *or* anonymous
1238 mappings. */
1239 mapping_anon_p = 1;
1240 }
1241 }
1242 }
1243
1244 if (has_anonymous)
1245 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1246 mapping_anon_p, mapping_file_p,
1247 filename);
1248 else
1249 {
1250 /* Older Linux kernels did not support the "Anonymous:" counter.
1251 If it is missing, we can't be sure - dump all the pages. */
1252 should_dump_p = 1;
1253 }
1254
1255 /* Invoke the callback function to create the corefile segment. */
1256 if (should_dump_p)
1257 retval = func (addr, endaddr - addr, offset, inode,
1258 read, write, exec,
1259 1, /* MODIFIED is true because we want to dump the
1260 mapping. */
1261 filename, func_data);
1262 if (retval != 0)
1263 break;
1264 }
1265
1266 do_cleanups (cleanup);
1267 return retval;
1268 }
1269
1270 return -1;
1271 }
1272
1273 /* A structure for passing information through
1274 linux_find_memory_regions_full. */
1275
1276 struct linux_find_memory_regions_data
1277 {
1278 /* The original callback. */
1279
1280 find_memory_region_ftype func;
1281
1282 /* The original datum. */
1283
1284 void *data;
1285 };
1286
1287 /* A callback for linux_find_memory_regions that converts between the
1288 "full"-style callback and find_memory_region_ftype. */
1289
1290 static int
1291 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1292 ULONGEST offset, ULONGEST inode,
1293 int read, int write, int exec, int modified,
1294 const char *filename, void *arg)
1295 {
1296 struct linux_find_memory_regions_data *data = arg;
1297
1298 return data->func (vaddr, size, read, write, exec, modified, data->data);
1299 }
1300
1301 /* Wrapper of linux_find_memory_regions_full handling FAKE_PID_P in GDB. */
1302
1303 static int
1304 linux_find_memory_regions_gdb (struct gdbarch *gdbarch,
1305 linux_find_memory_region_ftype *func,
1306 void *func_data)
1307 {
1308 pid_t pid;
1309 /* Default dump behavior of coredump_filter (0x33), according to
1310 Documentation/filesystems/proc.txt from the Linux kernel
1311 tree. */
1312 enum filterflags filterflags = (COREFILTER_ANON_PRIVATE
1313 | COREFILTER_ANON_SHARED
1314 | COREFILTER_ELF_HEADERS
1315 | COREFILTER_HUGETLB_PRIVATE);
1316
1317 /* We need to know the real target PID so
1318 linux_find_memory_regions_full can access /proc. */
1319 if (current_inferior ()->fake_pid_p)
1320 return -1;
1321
1322 pid = current_inferior ()->pid;
1323
1324 if (use_coredump_filter)
1325 {
1326 char coredumpfilter_name[100], *coredumpfilterdata;
1327
1328 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1329 "/proc/%d/coredump_filter", pid);
1330 coredumpfilterdata = target_fileio_read_stralloc (NULL,
1331 coredumpfilter_name);
1332 if (coredumpfilterdata != NULL)
1333 {
1334 sscanf (coredumpfilterdata, "%x", &filterflags);
1335 xfree (coredumpfilterdata);
1336 }
1337 }
1338
1339 return linux_find_memory_regions_full (pid, filterflags, func, func_data);
1340 }
1341
1342 /* A variant of linux_find_memory_regions_full that is suitable as the
1343 gdbarch find_memory_regions method. */
1344
1345 static int
1346 linux_find_memory_regions (struct gdbarch *gdbarch,
1347 find_memory_region_ftype func, void *func_data)
1348 {
1349 struct linux_find_memory_regions_data data;
1350
1351 data.func = func;
1352 data.data = func_data;
1353
1354 return linux_find_memory_regions_gdb (gdbarch,
1355 linux_find_memory_regions_thunk, &data);
1356 }
1357
1358 /* Determine which signal stopped execution. */
1359
1360 static int
1361 find_signalled_thread (struct thread_info *info, void *data)
1362 {
1363 if (info->suspend.stop_signal != GDB_SIGNAL_0
1364 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1365 return 1;
1366
1367 return 0;
1368 }
1369
1370 static enum gdb_signal
1371 find_stop_signal (void)
1372 {
1373 struct thread_info *info =
1374 iterate_over_threads (find_signalled_thread, NULL);
1375
1376 if (info)
1377 return info->suspend.stop_signal;
1378 else
1379 return GDB_SIGNAL_0;
1380 }
1381
1382 /* Generate corefile notes for SPU contexts. */
1383
1384 static char *
1385 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1386 {
1387 static const char *spu_files[] =
1388 {
1389 "object-id",
1390 "mem",
1391 "regs",
1392 "fpcr",
1393 "lslr",
1394 "decr",
1395 "decr_status",
1396 "signal1",
1397 "signal1_type",
1398 "signal2",
1399 "signal2_type",
1400 "event_mask",
1401 "event_status",
1402 "mbox_info",
1403 "ibox_info",
1404 "wbox_info",
1405 "dma_info",
1406 "proxydma_info",
1407 };
1408
1409 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1410 gdb_byte *spu_ids;
1411 LONGEST i, j, size;
1412
1413 /* Determine list of SPU ids. */
1414 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1415 NULL, &spu_ids);
1416
1417 /* Generate corefile notes for each SPU file. */
1418 for (i = 0; i < size; i += 4)
1419 {
1420 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1421
1422 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1423 {
1424 char annex[32], note_name[32];
1425 gdb_byte *spu_data;
1426 LONGEST spu_len;
1427
1428 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1429 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1430 annex, &spu_data);
1431 if (spu_len > 0)
1432 {
1433 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1434 note_data = elfcore_write_note (obfd, note_data, note_size,
1435 note_name, NT_SPU,
1436 spu_data, spu_len);
1437 xfree (spu_data);
1438
1439 if (!note_data)
1440 {
1441 xfree (spu_ids);
1442 return NULL;
1443 }
1444 }
1445 }
1446 }
1447
1448 if (size > 0)
1449 xfree (spu_ids);
1450
1451 return note_data;
1452 }
1453
1454 /* This is used to pass information from
1455 linux_make_mappings_corefile_notes through
1456 linux_find_memory_regions_full. */
1457
1458 struct linux_make_mappings_data
1459 {
1460 /* Number of files mapped. */
1461 ULONGEST file_count;
1462
1463 /* The obstack for the main part of the data. */
1464 struct obstack *data_obstack;
1465
1466 /* The filename obstack. */
1467 struct obstack *filename_obstack;
1468
1469 /* The architecture's "long" type. */
1470 struct type *long_type;
1471 };
1472
1473 static linux_find_memory_region_ftype linux_make_mappings_callback;
1474
1475 /* A callback for linux_find_memory_regions_full that updates the
1476 mappings data for linux_make_mappings_corefile_notes. */
1477
1478 static int
1479 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1480 ULONGEST offset, ULONGEST inode,
1481 int read, int write, int exec, int modified,
1482 const char *filename, void *data)
1483 {
1484 struct linux_make_mappings_data *map_data = data;
1485 gdb_byte buf[sizeof (ULONGEST)];
1486
1487 if (*filename == '\0' || inode == 0)
1488 return 0;
1489
1490 ++map_data->file_count;
1491
1492 pack_long (buf, map_data->long_type, vaddr);
1493 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1494 pack_long (buf, map_data->long_type, vaddr + size);
1495 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1496 pack_long (buf, map_data->long_type, offset);
1497 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1498
1499 obstack_grow_str0 (map_data->filename_obstack, filename);
1500
1501 return 0;
1502 }
1503
1504 /* Write the file mapping data to the core file, if possible. OBFD is
1505 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1506 is a pointer to the note size. Returns the new NOTE_DATA and
1507 updates NOTE_SIZE. */
1508
1509 static char *
1510 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1511 char *note_data, int *note_size)
1512 {
1513 struct cleanup *cleanup;
1514 struct obstack data_obstack, filename_obstack;
1515 struct linux_make_mappings_data mapping_data;
1516 struct type *long_type
1517 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1518 gdb_byte buf[sizeof (ULONGEST)];
1519
1520 obstack_init (&data_obstack);
1521 cleanup = make_cleanup_obstack_free (&data_obstack);
1522 obstack_init (&filename_obstack);
1523 make_cleanup_obstack_free (&filename_obstack);
1524
1525 mapping_data.file_count = 0;
1526 mapping_data.data_obstack = &data_obstack;
1527 mapping_data.filename_obstack = &filename_obstack;
1528 mapping_data.long_type = long_type;
1529
1530 /* Reserve space for the count. */
1531 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1532 /* We always write the page size as 1 since we have no good way to
1533 determine the correct value. */
1534 pack_long (buf, long_type, 1);
1535 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1536
1537 linux_find_memory_regions_gdb (gdbarch, linux_make_mappings_callback,
1538 &mapping_data);
1539
1540 if (mapping_data.file_count != 0)
1541 {
1542 /* Write the count to the obstack. */
1543 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1544 long_type, mapping_data.file_count);
1545
1546 /* Copy the filenames to the data obstack. */
1547 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1548 obstack_object_size (&filename_obstack));
1549
1550 note_data = elfcore_write_note (obfd, note_data, note_size,
1551 "CORE", NT_FILE,
1552 obstack_base (&data_obstack),
1553 obstack_object_size (&data_obstack));
1554 }
1555
1556 do_cleanups (cleanup);
1557 return note_data;
1558 }
1559
1560 /* Structure for passing information from
1561 linux_collect_thread_registers via an iterator to
1562 linux_collect_regset_section_cb. */
1563
1564 struct linux_collect_regset_section_cb_data
1565 {
1566 struct gdbarch *gdbarch;
1567 const struct regcache *regcache;
1568 bfd *obfd;
1569 char *note_data;
1570 int *note_size;
1571 unsigned long lwp;
1572 enum gdb_signal stop_signal;
1573 int abort_iteration;
1574 };
1575
1576 /* Callback for iterate_over_regset_sections that records a single
1577 regset in the corefile note section. */
1578
1579 static void
1580 linux_collect_regset_section_cb (const char *sect_name, int size,
1581 const struct regset *regset,
1582 const char *human_name, void *cb_data)
1583 {
1584 char *buf;
1585 struct linux_collect_regset_section_cb_data *data = cb_data;
1586
1587 if (data->abort_iteration)
1588 return;
1589
1590 gdb_assert (regset && regset->collect_regset);
1591
1592 buf = xmalloc (size);
1593 regset->collect_regset (regset, data->regcache, -1, buf, size);
1594
1595 /* PRSTATUS still needs to be treated specially. */
1596 if (strcmp (sect_name, ".reg") == 0)
1597 data->note_data = (char *) elfcore_write_prstatus
1598 (data->obfd, data->note_data, data->note_size, data->lwp,
1599 gdb_signal_to_host (data->stop_signal), buf);
1600 else
1601 data->note_data = (char *) elfcore_write_register_note
1602 (data->obfd, data->note_data, data->note_size,
1603 sect_name, buf, size);
1604 xfree (buf);
1605
1606 if (data->note_data == NULL)
1607 data->abort_iteration = 1;
1608 }
1609
1610 /* Records the thread's register state for the corefile note
1611 section. */
1612
1613 static char *
1614 linux_collect_thread_registers (const struct regcache *regcache,
1615 ptid_t ptid, bfd *obfd,
1616 char *note_data, int *note_size,
1617 enum gdb_signal stop_signal)
1618 {
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 struct linux_collect_regset_section_cb_data data;
1621
1622 data.gdbarch = gdbarch;
1623 data.regcache = regcache;
1624 data.obfd = obfd;
1625 data.note_data = note_data;
1626 data.note_size = note_size;
1627 data.stop_signal = stop_signal;
1628 data.abort_iteration = 0;
1629
1630 /* For remote targets the LWP may not be available, so use the TID. */
1631 data.lwp = ptid_get_lwp (ptid);
1632 if (!data.lwp)
1633 data.lwp = ptid_get_tid (ptid);
1634
1635 gdbarch_iterate_over_regset_sections (gdbarch,
1636 linux_collect_regset_section_cb,
1637 &data, regcache);
1638 return data.note_data;
1639 }
1640
1641 /* Fetch the siginfo data for the current thread, if it exists. If
1642 there is no data, or we could not read it, return NULL. Otherwise,
1643 return a newly malloc'd buffer holding the data and fill in *SIZE
1644 with the size of the data. The caller is responsible for freeing
1645 the data. */
1646
1647 static gdb_byte *
1648 linux_get_siginfo_data (struct gdbarch *gdbarch, LONGEST *size)
1649 {
1650 struct type *siginfo_type;
1651 gdb_byte *buf;
1652 LONGEST bytes_read;
1653 struct cleanup *cleanups;
1654
1655 if (!gdbarch_get_siginfo_type_p (gdbarch))
1656 return NULL;
1657
1658 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1659
1660 buf = xmalloc (TYPE_LENGTH (siginfo_type));
1661 cleanups = make_cleanup (xfree, buf);
1662
1663 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1664 buf, 0, TYPE_LENGTH (siginfo_type));
1665 if (bytes_read == TYPE_LENGTH (siginfo_type))
1666 {
1667 discard_cleanups (cleanups);
1668 *size = bytes_read;
1669 }
1670 else
1671 {
1672 do_cleanups (cleanups);
1673 buf = NULL;
1674 }
1675
1676 return buf;
1677 }
1678
1679 struct linux_corefile_thread_data
1680 {
1681 struct gdbarch *gdbarch;
1682 int pid;
1683 bfd *obfd;
1684 char *note_data;
1685 int *note_size;
1686 enum gdb_signal stop_signal;
1687 };
1688
1689 /* Called by gdbthread.c once per thread. Records the thread's
1690 register state for the corefile note section. */
1691
1692 static int
1693 linux_corefile_thread_callback (struct thread_info *info, void *data)
1694 {
1695 struct linux_corefile_thread_data *args = data;
1696
1697 /* It can be current thread
1698 which cannot be removed by update_thread_list. */
1699 if (info->state == THREAD_EXITED)
1700 return 0;
1701
1702 if (ptid_get_pid (info->ptid) == args->pid)
1703 {
1704 struct cleanup *old_chain;
1705 struct regcache *regcache;
1706 gdb_byte *siginfo_data;
1707 LONGEST siginfo_size = 0;
1708
1709 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1710
1711 old_chain = save_inferior_ptid ();
1712 inferior_ptid = info->ptid;
1713 target_fetch_registers (regcache, -1);
1714 siginfo_data = linux_get_siginfo_data (args->gdbarch, &siginfo_size);
1715 do_cleanups (old_chain);
1716
1717 old_chain = make_cleanup (xfree, siginfo_data);
1718
1719 args->note_data = linux_collect_thread_registers
1720 (regcache, info->ptid, args->obfd, args->note_data,
1721 args->note_size, args->stop_signal);
1722
1723 /* Don't return anything if we got no register information above,
1724 such a core file is useless. */
1725 if (args->note_data != NULL)
1726 if (siginfo_data != NULL)
1727 args->note_data = elfcore_write_note (args->obfd,
1728 args->note_data,
1729 args->note_size,
1730 "CORE", NT_SIGINFO,
1731 siginfo_data, siginfo_size);
1732
1733 do_cleanups (old_chain);
1734 }
1735
1736 return !args->note_data;
1737 }
1738
1739 /* Fill the PRPSINFO structure with information about the process being
1740 debugged. Returns 1 in case of success, 0 for failures. Please note that
1741 even if the structure cannot be entirely filled (e.g., GDB was unable to
1742 gather information about the process UID/GID), this function will still
1743 return 1 since some information was already recorded. It will only return
1744 0 iff nothing can be gathered. */
1745
1746 static int
1747 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1748 {
1749 /* The filename which we will use to obtain some info about the process.
1750 We will basically use this to store the `/proc/PID/FILENAME' file. */
1751 char filename[100];
1752 /* The full name of the program which generated the corefile. */
1753 char *fname;
1754 /* The basename of the executable. */
1755 const char *basename;
1756 /* The arguments of the program. */
1757 char *psargs;
1758 char *infargs;
1759 /* The contents of `/proc/PID/stat' and `/proc/PID/status' files. */
1760 char *proc_stat, *proc_status;
1761 /* Temporary buffer. */
1762 char *tmpstr;
1763 /* The valid states of a process, according to the Linux kernel. */
1764 const char valid_states[] = "RSDTZW";
1765 /* The program state. */
1766 const char *prog_state;
1767 /* The state of the process. */
1768 char pr_sname;
1769 /* The PID of the program which generated the corefile. */
1770 pid_t pid;
1771 /* Process flags. */
1772 unsigned int pr_flag;
1773 /* Process nice value. */
1774 long pr_nice;
1775 /* The number of fields read by `sscanf'. */
1776 int n_fields = 0;
1777 /* Cleanups. */
1778 struct cleanup *c;
1779 int i;
1780
1781 gdb_assert (p != NULL);
1782
1783 /* Obtaining PID and filename. */
1784 pid = ptid_get_pid (inferior_ptid);
1785 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1786 fname = target_fileio_read_stralloc (NULL, filename);
1787
1788 if (fname == NULL || *fname == '\0')
1789 {
1790 /* No program name was read, so we won't be able to retrieve more
1791 information about the process. */
1792 xfree (fname);
1793 return 0;
1794 }
1795
1796 c = make_cleanup (xfree, fname);
1797 memset (p, 0, sizeof (*p));
1798
1799 /* Defining the PID. */
1800 p->pr_pid = pid;
1801
1802 /* Copying the program name. Only the basename matters. */
1803 basename = lbasename (fname);
1804 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1805 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1806
1807 infargs = get_inferior_args ();
1808
1809 psargs = xstrdup (fname);
1810 if (infargs != NULL)
1811 psargs = reconcat (psargs, psargs, " ", infargs, NULL);
1812
1813 make_cleanup (xfree, psargs);
1814
1815 strncpy (p->pr_psargs, psargs, sizeof (p->pr_psargs));
1816 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1817
1818 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1819 proc_stat = target_fileio_read_stralloc (NULL, filename);
1820 make_cleanup (xfree, proc_stat);
1821
1822 if (proc_stat == NULL || *proc_stat == '\0')
1823 {
1824 /* Despite being unable to read more information about the
1825 process, we return 1 here because at least we have its
1826 command line, PID and arguments. */
1827 do_cleanups (c);
1828 return 1;
1829 }
1830
1831 /* Ok, we have the stats. It's time to do a little parsing of the
1832 contents of the buffer, so that we end up reading what we want.
1833
1834 The following parsing mechanism is strongly based on the
1835 information generated by the `fs/proc/array.c' file, present in
1836 the Linux kernel tree. More details about how the information is
1837 displayed can be obtained by seeing the manpage of proc(5),
1838 specifically under the entry of `/proc/[pid]/stat'. */
1839
1840 /* Getting rid of the PID, since we already have it. */
1841 while (isdigit (*proc_stat))
1842 ++proc_stat;
1843
1844 proc_stat = skip_spaces (proc_stat);
1845
1846 /* ps command also relies on no trailing fields ever contain ')'. */
1847 proc_stat = strrchr (proc_stat, ')');
1848 if (proc_stat == NULL)
1849 {
1850 do_cleanups (c);
1851 return 1;
1852 }
1853 proc_stat++;
1854
1855 proc_stat = skip_spaces (proc_stat);
1856
1857 n_fields = sscanf (proc_stat,
1858 "%c" /* Process state. */
1859 "%d%d%d" /* Parent PID, group ID, session ID. */
1860 "%*d%*d" /* tty_nr, tpgid (not used). */
1861 "%u" /* Flags. */
1862 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1863 cmajflt (not used). */
1864 "%*s%*s%*s%*s" /* utime, stime, cutime,
1865 cstime (not used). */
1866 "%*s" /* Priority (not used). */
1867 "%ld", /* Nice. */
1868 &pr_sname,
1869 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1870 &pr_flag,
1871 &pr_nice);
1872
1873 if (n_fields != 6)
1874 {
1875 /* Again, we couldn't read the complementary information about
1876 the process state. However, we already have minimal
1877 information, so we just return 1 here. */
1878 do_cleanups (c);
1879 return 1;
1880 }
1881
1882 /* Filling the structure fields. */
1883 prog_state = strchr (valid_states, pr_sname);
1884 if (prog_state != NULL)
1885 p->pr_state = prog_state - valid_states;
1886 else
1887 {
1888 /* Zero means "Running". */
1889 p->pr_state = 0;
1890 }
1891
1892 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1893 p->pr_zomb = p->pr_sname == 'Z';
1894 p->pr_nice = pr_nice;
1895 p->pr_flag = pr_flag;
1896
1897 /* Finally, obtaining the UID and GID. For that, we read and parse the
1898 contents of the `/proc/PID/status' file. */
1899 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1900 proc_status = target_fileio_read_stralloc (NULL, filename);
1901 make_cleanup (xfree, proc_status);
1902
1903 if (proc_status == NULL || *proc_status == '\0')
1904 {
1905 /* Returning 1 since we already have a bunch of information. */
1906 do_cleanups (c);
1907 return 1;
1908 }
1909
1910 /* Extracting the UID. */
1911 tmpstr = strstr (proc_status, "Uid:");
1912 if (tmpstr != NULL)
1913 {
1914 /* Advancing the pointer to the beginning of the UID. */
1915 tmpstr += sizeof ("Uid:");
1916 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1917 ++tmpstr;
1918
1919 if (isdigit (*tmpstr))
1920 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1921 }
1922
1923 /* Extracting the GID. */
1924 tmpstr = strstr (proc_status, "Gid:");
1925 if (tmpstr != NULL)
1926 {
1927 /* Advancing the pointer to the beginning of the GID. */
1928 tmpstr += sizeof ("Gid:");
1929 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1930 ++tmpstr;
1931
1932 if (isdigit (*tmpstr))
1933 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1934 }
1935
1936 do_cleanups (c);
1937
1938 return 1;
1939 }
1940
1941 /* Build the note section for a corefile, and return it in a malloc
1942 buffer. */
1943
1944 static char *
1945 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1946 {
1947 struct linux_corefile_thread_data thread_args;
1948 struct elf_internal_linux_prpsinfo prpsinfo;
1949 char *note_data = NULL;
1950 gdb_byte *auxv;
1951 int auxv_len;
1952
1953 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1954 return NULL;
1955
1956 if (linux_fill_prpsinfo (&prpsinfo))
1957 {
1958 if (gdbarch_elfcore_write_linux_prpsinfo_p (gdbarch))
1959 {
1960 note_data = gdbarch_elfcore_write_linux_prpsinfo (gdbarch, obfd,
1961 note_data, note_size,
1962 &prpsinfo);
1963 }
1964 else
1965 {
1966 if (gdbarch_ptr_bit (gdbarch) == 64)
1967 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1968 note_data, note_size,
1969 &prpsinfo);
1970 else
1971 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1972 note_data, note_size,
1973 &prpsinfo);
1974 }
1975 }
1976
1977 /* Thread register information. */
1978 TRY
1979 {
1980 update_thread_list ();
1981 }
1982 CATCH (e, RETURN_MASK_ERROR)
1983 {
1984 exception_print (gdb_stderr, e);
1985 }
1986 END_CATCH
1987
1988 thread_args.gdbarch = gdbarch;
1989 thread_args.pid = ptid_get_pid (inferior_ptid);
1990 thread_args.obfd = obfd;
1991 thread_args.note_data = note_data;
1992 thread_args.note_size = note_size;
1993 thread_args.stop_signal = find_stop_signal ();
1994 iterate_over_threads (linux_corefile_thread_callback, &thread_args);
1995 note_data = thread_args.note_data;
1996 if (!note_data)
1997 return NULL;
1998
1999 /* Auxillary vector. */
2000 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
2001 NULL, &auxv);
2002 if (auxv_len > 0)
2003 {
2004 note_data = elfcore_write_note (obfd, note_data, note_size,
2005 "CORE", NT_AUXV, auxv, auxv_len);
2006 xfree (auxv);
2007
2008 if (!note_data)
2009 return NULL;
2010 }
2011
2012 /* SPU information. */
2013 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2014 if (!note_data)
2015 return NULL;
2016
2017 /* File mappings. */
2018 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2019 note_data, note_size);
2020
2021 return note_data;
2022 }
2023
2024 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2025 gdbarch.h. This function is not static because it is exported to
2026 other -tdep files. */
2027
2028 enum gdb_signal
2029 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2030 {
2031 switch (signal)
2032 {
2033 case 0:
2034 return GDB_SIGNAL_0;
2035
2036 case LINUX_SIGHUP:
2037 return GDB_SIGNAL_HUP;
2038
2039 case LINUX_SIGINT:
2040 return GDB_SIGNAL_INT;
2041
2042 case LINUX_SIGQUIT:
2043 return GDB_SIGNAL_QUIT;
2044
2045 case LINUX_SIGILL:
2046 return GDB_SIGNAL_ILL;
2047
2048 case LINUX_SIGTRAP:
2049 return GDB_SIGNAL_TRAP;
2050
2051 case LINUX_SIGABRT:
2052 return GDB_SIGNAL_ABRT;
2053
2054 case LINUX_SIGBUS:
2055 return GDB_SIGNAL_BUS;
2056
2057 case LINUX_SIGFPE:
2058 return GDB_SIGNAL_FPE;
2059
2060 case LINUX_SIGKILL:
2061 return GDB_SIGNAL_KILL;
2062
2063 case LINUX_SIGUSR1:
2064 return GDB_SIGNAL_USR1;
2065
2066 case LINUX_SIGSEGV:
2067 return GDB_SIGNAL_SEGV;
2068
2069 case LINUX_SIGUSR2:
2070 return GDB_SIGNAL_USR2;
2071
2072 case LINUX_SIGPIPE:
2073 return GDB_SIGNAL_PIPE;
2074
2075 case LINUX_SIGALRM:
2076 return GDB_SIGNAL_ALRM;
2077
2078 case LINUX_SIGTERM:
2079 return GDB_SIGNAL_TERM;
2080
2081 case LINUX_SIGCHLD:
2082 return GDB_SIGNAL_CHLD;
2083
2084 case LINUX_SIGCONT:
2085 return GDB_SIGNAL_CONT;
2086
2087 case LINUX_SIGSTOP:
2088 return GDB_SIGNAL_STOP;
2089
2090 case LINUX_SIGTSTP:
2091 return GDB_SIGNAL_TSTP;
2092
2093 case LINUX_SIGTTIN:
2094 return GDB_SIGNAL_TTIN;
2095
2096 case LINUX_SIGTTOU:
2097 return GDB_SIGNAL_TTOU;
2098
2099 case LINUX_SIGURG:
2100 return GDB_SIGNAL_URG;
2101
2102 case LINUX_SIGXCPU:
2103 return GDB_SIGNAL_XCPU;
2104
2105 case LINUX_SIGXFSZ:
2106 return GDB_SIGNAL_XFSZ;
2107
2108 case LINUX_SIGVTALRM:
2109 return GDB_SIGNAL_VTALRM;
2110
2111 case LINUX_SIGPROF:
2112 return GDB_SIGNAL_PROF;
2113
2114 case LINUX_SIGWINCH:
2115 return GDB_SIGNAL_WINCH;
2116
2117 /* No way to differentiate between SIGIO and SIGPOLL.
2118 Therefore, we just handle the first one. */
2119 case LINUX_SIGIO:
2120 return GDB_SIGNAL_IO;
2121
2122 case LINUX_SIGPWR:
2123 return GDB_SIGNAL_PWR;
2124
2125 case LINUX_SIGSYS:
2126 return GDB_SIGNAL_SYS;
2127
2128 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2129 therefore we have to handle them here. */
2130 case LINUX_SIGRTMIN:
2131 return GDB_SIGNAL_REALTIME_32;
2132
2133 case LINUX_SIGRTMAX:
2134 return GDB_SIGNAL_REALTIME_64;
2135 }
2136
2137 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2138 {
2139 int offset = signal - LINUX_SIGRTMIN + 1;
2140
2141 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2142 }
2143
2144 return GDB_SIGNAL_UNKNOWN;
2145 }
2146
2147 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2148 gdbarch.h. This function is not static because it is exported to
2149 other -tdep files. */
2150
2151 int
2152 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2153 enum gdb_signal signal)
2154 {
2155 switch (signal)
2156 {
2157 case GDB_SIGNAL_0:
2158 return 0;
2159
2160 case GDB_SIGNAL_HUP:
2161 return LINUX_SIGHUP;
2162
2163 case GDB_SIGNAL_INT:
2164 return LINUX_SIGINT;
2165
2166 case GDB_SIGNAL_QUIT:
2167 return LINUX_SIGQUIT;
2168
2169 case GDB_SIGNAL_ILL:
2170 return LINUX_SIGILL;
2171
2172 case GDB_SIGNAL_TRAP:
2173 return LINUX_SIGTRAP;
2174
2175 case GDB_SIGNAL_ABRT:
2176 return LINUX_SIGABRT;
2177
2178 case GDB_SIGNAL_FPE:
2179 return LINUX_SIGFPE;
2180
2181 case GDB_SIGNAL_KILL:
2182 return LINUX_SIGKILL;
2183
2184 case GDB_SIGNAL_BUS:
2185 return LINUX_SIGBUS;
2186
2187 case GDB_SIGNAL_SEGV:
2188 return LINUX_SIGSEGV;
2189
2190 case GDB_SIGNAL_SYS:
2191 return LINUX_SIGSYS;
2192
2193 case GDB_SIGNAL_PIPE:
2194 return LINUX_SIGPIPE;
2195
2196 case GDB_SIGNAL_ALRM:
2197 return LINUX_SIGALRM;
2198
2199 case GDB_SIGNAL_TERM:
2200 return LINUX_SIGTERM;
2201
2202 case GDB_SIGNAL_URG:
2203 return LINUX_SIGURG;
2204
2205 case GDB_SIGNAL_STOP:
2206 return LINUX_SIGSTOP;
2207
2208 case GDB_SIGNAL_TSTP:
2209 return LINUX_SIGTSTP;
2210
2211 case GDB_SIGNAL_CONT:
2212 return LINUX_SIGCONT;
2213
2214 case GDB_SIGNAL_CHLD:
2215 return LINUX_SIGCHLD;
2216
2217 case GDB_SIGNAL_TTIN:
2218 return LINUX_SIGTTIN;
2219
2220 case GDB_SIGNAL_TTOU:
2221 return LINUX_SIGTTOU;
2222
2223 case GDB_SIGNAL_IO:
2224 return LINUX_SIGIO;
2225
2226 case GDB_SIGNAL_XCPU:
2227 return LINUX_SIGXCPU;
2228
2229 case GDB_SIGNAL_XFSZ:
2230 return LINUX_SIGXFSZ;
2231
2232 case GDB_SIGNAL_VTALRM:
2233 return LINUX_SIGVTALRM;
2234
2235 case GDB_SIGNAL_PROF:
2236 return LINUX_SIGPROF;
2237
2238 case GDB_SIGNAL_WINCH:
2239 return LINUX_SIGWINCH;
2240
2241 case GDB_SIGNAL_USR1:
2242 return LINUX_SIGUSR1;
2243
2244 case GDB_SIGNAL_USR2:
2245 return LINUX_SIGUSR2;
2246
2247 case GDB_SIGNAL_PWR:
2248 return LINUX_SIGPWR;
2249
2250 case GDB_SIGNAL_POLL:
2251 return LINUX_SIGPOLL;
2252
2253 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2254 therefore we have to handle it here. */
2255 case GDB_SIGNAL_REALTIME_32:
2256 return LINUX_SIGRTMIN;
2257
2258 /* Same comment applies to _64. */
2259 case GDB_SIGNAL_REALTIME_64:
2260 return LINUX_SIGRTMAX;
2261 }
2262
2263 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2264 if (signal >= GDB_SIGNAL_REALTIME_33
2265 && signal <= GDB_SIGNAL_REALTIME_63)
2266 {
2267 int offset = signal - GDB_SIGNAL_REALTIME_33;
2268
2269 return LINUX_SIGRTMIN + 1 + offset;
2270 }
2271
2272 return -1;
2273 }
2274
2275 /* Rummage through mappings to find a mapping's size. */
2276
2277 static int
2278 find_mapping_size (CORE_ADDR vaddr, unsigned long size,
2279 int read, int write, int exec, int modified,
2280 void *data)
2281 {
2282 struct mem_range *range = data;
2283
2284 if (vaddr == range->start)
2285 {
2286 range->length = size;
2287 return 1;
2288 }
2289 return 0;
2290 }
2291
2292 /* Helper for linux_vsyscall_range that does the real work of finding
2293 the vsyscall's address range. */
2294
2295 static int
2296 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2297 {
2298 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2299 return 0;
2300
2301 /* This is installed by linux_init_abi below, so should always be
2302 available. */
2303 gdb_assert (gdbarch_find_memory_regions_p (target_gdbarch ()));
2304
2305 range->length = 0;
2306 gdbarch_find_memory_regions (gdbarch, find_mapping_size, range);
2307 return 1;
2308 }
2309
2310 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2311 caching, and defers the real work to linux_vsyscall_range_raw. */
2312
2313 static int
2314 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2315 {
2316 struct linux_info *info = get_linux_inferior_data ();
2317
2318 if (info->vsyscall_range_p == 0)
2319 {
2320 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2321 info->vsyscall_range_p = 1;
2322 else
2323 info->vsyscall_range_p = -1;
2324 }
2325
2326 if (info->vsyscall_range_p < 0)
2327 return 0;
2328
2329 *range = info->vsyscall_range;
2330 return 1;
2331 }
2332
2333 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2334 definitions would be dependent on compilation host. */
2335 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2336 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2337
2338 /* See gdbarch.sh 'infcall_mmap'. */
2339
2340 static CORE_ADDR
2341 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2342 {
2343 struct objfile *objf;
2344 /* Do there still exist any Linux systems without "mmap64"?
2345 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2346 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2347 struct value *addr_val;
2348 struct gdbarch *gdbarch = get_objfile_arch (objf);
2349 CORE_ADDR retval;
2350 enum
2351 {
2352 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2353 };
2354 struct value *arg[ARG_LAST];
2355
2356 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2357 0);
2358 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2359 arg[ARG_LENGTH] = value_from_ulongest
2360 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2361 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2362 | GDB_MMAP_PROT_EXEC))
2363 == 0);
2364 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2365 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2366 GDB_MMAP_MAP_PRIVATE
2367 | GDB_MMAP_MAP_ANONYMOUS);
2368 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2369 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2370 0);
2371 addr_val = call_function_by_hand (mmap_val, ARG_LAST, arg);
2372 retval = value_as_address (addr_val);
2373 if (retval == (CORE_ADDR) -1)
2374 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2375 pulongest (size));
2376 return retval;
2377 }
2378
2379 /* See gdbarch.sh 'infcall_munmap'. */
2380
2381 static void
2382 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2383 {
2384 struct objfile *objf;
2385 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2386 struct value *retval_val;
2387 struct gdbarch *gdbarch = get_objfile_arch (objf);
2388 LONGEST retval;
2389 enum
2390 {
2391 ARG_ADDR, ARG_LENGTH, ARG_LAST
2392 };
2393 struct value *arg[ARG_LAST];
2394
2395 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2396 addr);
2397 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2398 arg[ARG_LENGTH] = value_from_ulongest
2399 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2400 retval_val = call_function_by_hand (munmap_val, ARG_LAST, arg);
2401 retval = value_as_long (retval_val);
2402 if (retval != 0)
2403 warning (_("Failed inferior munmap call at %s for %s bytes, "
2404 "errno is changed."),
2405 hex_string (addr), pulongest (size));
2406 }
2407
2408 /* See linux-tdep.h. */
2409
2410 CORE_ADDR
2411 linux_displaced_step_location (struct gdbarch *gdbarch)
2412 {
2413 CORE_ADDR addr;
2414 int bp_len;
2415
2416 /* Determine entry point from target auxiliary vector. This avoids
2417 the need for symbols. Also, when debugging a stand-alone SPU
2418 executable, entry_point_address () will point to an SPU
2419 local-store address and is thus not usable as displaced stepping
2420 location. The auxiliary vector gets us the PowerPC-side entry
2421 point address instead. */
2422 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2423 error (_("Cannot find AT_ENTRY auxiliary vector entry."));
2424
2425 /* Make certain that the address points at real code, and not a
2426 function descriptor. */
2427 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2428 &current_target);
2429
2430 /* Inferior calls also use the entry point as a breakpoint location.
2431 We don't want displaced stepping to interfere with those
2432 breakpoints, so leave space. */
2433 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2434 addr += bp_len * 2;
2435
2436 return addr;
2437 }
2438
2439 /* Display whether the gcore command is using the
2440 /proc/PID/coredump_filter file. */
2441
2442 static void
2443 show_use_coredump_filter (struct ui_file *file, int from_tty,
2444 struct cmd_list_element *c, const char *value)
2445 {
2446 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2447 " corefiles is %s.\n"), value);
2448 }
2449
2450 /* To be called from the various GDB_OSABI_LINUX handlers for the
2451 various GNU/Linux architectures and machine types. */
2452
2453 void
2454 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2455 {
2456 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2457 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2458 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2459 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2460 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2461 set_gdbarch_has_shared_address_space (gdbarch,
2462 linux_has_shared_address_space);
2463 set_gdbarch_gdb_signal_from_target (gdbarch,
2464 linux_gdb_signal_from_target);
2465 set_gdbarch_gdb_signal_to_target (gdbarch,
2466 linux_gdb_signal_to_target);
2467 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2468 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2469 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2470 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2471 }
2472
2473 /* Provide a prototype to silence -Wmissing-prototypes. */
2474 extern initialize_file_ftype _initialize_linux_tdep;
2475
2476 void
2477 _initialize_linux_tdep (void)
2478 {
2479 linux_gdbarch_data_handle =
2480 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2481
2482 /* Set a cache per-inferior. */
2483 linux_inferior_data
2484 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2485 /* Observers used to invalidate the cache when needed. */
2486 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2487 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2488
2489 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2490 &use_coredump_filter, _("\
2491 Set whether gcore should consider /proc/PID/coredump_filter."),
2492 _("\
2493 Show whether gcore should consider /proc/PID/coredump_filter."),
2494 _("\
2495 Use this command to set whether gcore should consider the contents\n\
2496 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2497 about this file, refer to the manpage of core(5)."),
2498 NULL, show_use_coredump_filter,
2499 &setlist, &showlist);
2500 }
This page took 0.08187 seconds and 4 git commands to generate.