Use NT_FILE note section for reading core target memory
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static bool use_coredump_filter = true;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static bool dump_excluded_mappings = false;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189 struct linux_info
190 {
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
202 };
203
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 linux_inferior_data.clear (inf);
214 }
215
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219 static struct linux_info *
220 get_linux_inferior_data (void)
221 {
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
225 info = linux_inferior_data.get (inf);
226 if (info == NULL)
227 info = linux_inferior_data.emplace (inf);
228
229 return info;
230 }
231
232 /* See linux-tdep.h. */
233
234 struct type *
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
237 {
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 sigval_type->set_name (xstrdup ("sigval_t"));
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 TYPE_TARGET_STUB (pid_type) = 1;
270
271 /* __uid_t */
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 TYPE_TARGET_STUB (uid_type) = 1;
276
277 /* __clock_t */
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 TYPE_TARGET_STUB (clock_type) = 1;
283
284 /* _sifields */
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 siginfo_type->set_name (xstrdup ("siginfo"));
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
365 return siginfo_type;
366 }
367
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371 static struct type *
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
373 {
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375 }
376
377 /* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380 int
381 linux_is_uclinux (void)
382 {
383 CORE_ADDR dummy;
384
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
387 }
388
389 static int
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
391 {
392 return linux_is_uclinux ();
393 }
394
395 /* This is how we want PTIDs from core files to be printed. */
396
397 static std::string
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399 {
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
402
403 return normal_pid_to_str (ptid);
404 }
405
406 /* Service function for corefiles and info proc. */
407
408 static void
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416 {
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
424 p = skip_spaces (p);
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
432 p = skip_spaces (p);
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
440 p = skip_spaces (p);
441 *filename = p;
442 }
443
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453 static void
454 decode_vmflags (char *p, struct smaps_vmflags *v)
455 {
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476 }
477
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481 struct mapping_regexes
482 {
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514 };
515
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526 static int
527 mapping_is_anonymous_p (const char *filename)
528 {
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
538 regexes.emplace ();
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
563 return 1;
564
565 return 0;
566 }
567
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
614
615 static int
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
619 {
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
628 int dump_p;
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
671 }
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
674 else
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
686 }
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
689 else
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 }
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Useful define specifying the size of the ELF magical
705 header. */
706 #ifndef SELFMAG
707 #define SELFMAG 4
708 #endif
709
710 /* Let's check if we have an ELF header. */
711 gdb_byte h[SELFMAG];
712 if (target_read_memory (addr, h, SELFMAG) == 0)
713 {
714 /* The EI_MAG* and ELFMAG* constants come from
715 <elf/common.h>. */
716 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
717 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
718 {
719 /* This mapping contains an ELF header, so we
720 should dump it. */
721 dump_p = 1;
722 }
723 }
724 }
725
726 return dump_p;
727 }
728
729 /* Implement the "info proc" command. */
730
731 static void
732 linux_info_proc (struct gdbarch *gdbarch, const char *args,
733 enum info_proc_what what)
734 {
735 /* A long is used for pid instead of an int to avoid a loss of precision
736 compiler warning from the output of strtoul. */
737 long pid;
738 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
739 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
740 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
741 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
742 int status_f = (what == IP_STATUS || what == IP_ALL);
743 int stat_f = (what == IP_STAT || what == IP_ALL);
744 char filename[100];
745 int target_errno;
746
747 if (args && isdigit (args[0]))
748 {
749 char *tem;
750
751 pid = strtoul (args, &tem, 10);
752 args = tem;
753 }
754 else
755 {
756 if (!target_has_execution)
757 error (_("No current process: you must name one."));
758 if (current_inferior ()->fake_pid_p)
759 error (_("Can't determine the current process's PID: you must name one."));
760
761 pid = current_inferior ()->pid;
762 }
763
764 args = skip_spaces (args);
765 if (args && args[0])
766 error (_("Too many parameters: %s"), args);
767
768 printf_filtered (_("process %ld\n"), pid);
769 if (cmdline_f)
770 {
771 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
772 gdb_byte *buffer;
773 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
774
775 if (len > 0)
776 {
777 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
778 ssize_t pos;
779
780 for (pos = 0; pos < len - 1; pos++)
781 {
782 if (buffer[pos] == '\0')
783 buffer[pos] = ' ';
784 }
785 buffer[len - 1] = '\0';
786 printf_filtered ("cmdline = '%s'\n", buffer);
787 }
788 else
789 warning (_("unable to open /proc file '%s'"), filename);
790 }
791 if (cwd_f)
792 {
793 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
794 gdb::optional<std::string> contents
795 = target_fileio_readlink (NULL, filename, &target_errno);
796 if (contents.has_value ())
797 printf_filtered ("cwd = '%s'\n", contents->c_str ());
798 else
799 warning (_("unable to read link '%s'"), filename);
800 }
801 if (exe_f)
802 {
803 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
804 gdb::optional<std::string> contents
805 = target_fileio_readlink (NULL, filename, &target_errno);
806 if (contents.has_value ())
807 printf_filtered ("exe = '%s'\n", contents->c_str ());
808 else
809 warning (_("unable to read link '%s'"), filename);
810 }
811 if (mappings_f)
812 {
813 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
814 gdb::unique_xmalloc_ptr<char> map
815 = target_fileio_read_stralloc (NULL, filename);
816 if (map != NULL)
817 {
818 char *line;
819
820 printf_filtered (_("Mapped address spaces:\n\n"));
821 if (gdbarch_addr_bit (gdbarch) == 32)
822 {
823 printf_filtered ("\t%10s %10s %10s %10s %s\n",
824 "Start Addr",
825 " End Addr",
826 " Size", " Offset", "objfile");
827 }
828 else
829 {
830 printf_filtered (" %18s %18s %10s %10s %s\n",
831 "Start Addr",
832 " End Addr",
833 " Size", " Offset", "objfile");
834 }
835
836 char *saveptr;
837 for (line = strtok_r (map.get (), "\n", &saveptr);
838 line;
839 line = strtok_r (NULL, "\n", &saveptr))
840 {
841 ULONGEST addr, endaddr, offset, inode;
842 const char *permissions, *device, *mapping_filename;
843 size_t permissions_len, device_len;
844
845 read_mapping (line, &addr, &endaddr,
846 &permissions, &permissions_len,
847 &offset, &device, &device_len,
848 &inode, &mapping_filename);
849
850 if (gdbarch_addr_bit (gdbarch) == 32)
851 {
852 printf_filtered ("\t%10s %10s %10s %10s %s\n",
853 paddress (gdbarch, addr),
854 paddress (gdbarch, endaddr),
855 hex_string (endaddr - addr),
856 hex_string (offset),
857 *mapping_filename ? mapping_filename : "");
858 }
859 else
860 {
861 printf_filtered (" %18s %18s %10s %10s %s\n",
862 paddress (gdbarch, addr),
863 paddress (gdbarch, endaddr),
864 hex_string (endaddr - addr),
865 hex_string (offset),
866 *mapping_filename ? mapping_filename : "");
867 }
868 }
869 }
870 else
871 warning (_("unable to open /proc file '%s'"), filename);
872 }
873 if (status_f)
874 {
875 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
876 gdb::unique_xmalloc_ptr<char> status
877 = target_fileio_read_stralloc (NULL, filename);
878 if (status)
879 puts_filtered (status.get ());
880 else
881 warning (_("unable to open /proc file '%s'"), filename);
882 }
883 if (stat_f)
884 {
885 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
886 gdb::unique_xmalloc_ptr<char> statstr
887 = target_fileio_read_stralloc (NULL, filename);
888 if (statstr)
889 {
890 const char *p = statstr.get ();
891
892 printf_filtered (_("Process: %s\n"),
893 pulongest (strtoulst (p, &p, 10)));
894
895 p = skip_spaces (p);
896 if (*p == '(')
897 {
898 /* ps command also relies on no trailing fields
899 ever contain ')'. */
900 const char *ep = strrchr (p, ')');
901 if (ep != NULL)
902 {
903 printf_filtered ("Exec file: %.*s\n",
904 (int) (ep - p - 1), p + 1);
905 p = ep + 1;
906 }
907 }
908
909 p = skip_spaces (p);
910 if (*p)
911 printf_filtered (_("State: %c\n"), *p++);
912
913 if (*p)
914 printf_filtered (_("Parent process: %s\n"),
915 pulongest (strtoulst (p, &p, 10)));
916 if (*p)
917 printf_filtered (_("Process group: %s\n"),
918 pulongest (strtoulst (p, &p, 10)));
919 if (*p)
920 printf_filtered (_("Session id: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("TTY: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("TTY owner process group: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928
929 if (*p)
930 printf_filtered (_("Flags: %s\n"),
931 hex_string (strtoulst (p, &p, 10)));
932 if (*p)
933 printf_filtered (_("Minor faults (no memory page): %s\n"),
934 pulongest (strtoulst (p, &p, 10)));
935 if (*p)
936 printf_filtered (_("Minor faults, children: %s\n"),
937 pulongest (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Major faults (memory page faults): %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("Major faults, children: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("utime: %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("stime: %s\n"),
949 pulongest (strtoulst (p, &p, 10)));
950 if (*p)
951 printf_filtered (_("utime, children: %s\n"),
952 pulongest (strtoulst (p, &p, 10)));
953 if (*p)
954 printf_filtered (_("stime, children: %s\n"),
955 pulongest (strtoulst (p, &p, 10)));
956 if (*p)
957 printf_filtered (_("jiffies remaining in current "
958 "time slice: %s\n"),
959 pulongest (strtoulst (p, &p, 10)));
960 if (*p)
961 printf_filtered (_("'nice' value: %s\n"),
962 pulongest (strtoulst (p, &p, 10)));
963 if (*p)
964 printf_filtered (_("jiffies until next timeout: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("start time (jiffies since "
971 "system boot): %s\n"),
972 pulongest (strtoulst (p, &p, 10)));
973 if (*p)
974 printf_filtered (_("Virtual memory size: %s\n"),
975 pulongest (strtoulst (p, &p, 10)));
976 if (*p)
977 printf_filtered (_("Resident set size: %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("rlim: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("Start of text: %s\n"),
984 hex_string (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("End of text: %s\n"),
987 hex_string (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("Start of stack: %s\n"),
990 hex_string (strtoulst (p, &p, 10)));
991 #if 0 /* Don't know how architecture-dependent the rest is...
992 Anyway the signal bitmap info is available from "status". */
993 if (*p)
994 printf_filtered (_("Kernel stack pointer: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996 if (*p)
997 printf_filtered (_("Kernel instr pointer: %s\n"),
998 hex_string (strtoulst (p, &p, 10)));
999 if (*p)
1000 printf_filtered (_("Pending signals bitmap: %s\n"),
1001 hex_string (strtoulst (p, &p, 10)));
1002 if (*p)
1003 printf_filtered (_("Blocked signals bitmap: %s\n"),
1004 hex_string (strtoulst (p, &p, 10)));
1005 if (*p)
1006 printf_filtered (_("Ignored signals bitmap: %s\n"),
1007 hex_string (strtoulst (p, &p, 10)));
1008 if (*p)
1009 printf_filtered (_("Catched signals bitmap: %s\n"),
1010 hex_string (strtoulst (p, &p, 10)));
1011 if (*p)
1012 printf_filtered (_("wchan (system call): %s\n"),
1013 hex_string (strtoulst (p, &p, 10)));
1014 #endif
1015 }
1016 else
1017 warning (_("unable to open /proc file '%s'"), filename);
1018 }
1019 }
1020
1021 /* Implementation of `gdbarch_read_core_file_mappings', as defined in
1022 gdbarch.h.
1023
1024 This function reads the NT_FILE note (which BFD turns into the
1025 section ".note.linuxcore.file"). The format of this note / section
1026 is described as follows in the Linux kernel sources in
1027 fs/binfmt_elf.c:
1028
1029 long count -- how many files are mapped
1030 long page_size -- units for file_ofs
1031 array of [COUNT] elements of
1032 long start
1033 long end
1034 long file_ofs
1035 followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1036
1037 CBFD is the BFD of the core file.
1038
1039 PRE_LOOP_CB is the callback function to invoke prior to starting
1040 the loop which processes individual entries. This callback will
1041 only be executed after the note has been examined in enough
1042 detail to verify that it's not malformed in some way.
1043
1044 LOOP_CB is the callback function that will be executed once
1045 for each mapping. */
1046
1047 static void
1048 linux_read_core_file_mappings (struct gdbarch *gdbarch,
1049 struct bfd *cbfd,
1050 gdb::function_view<void (ULONGEST count)>
1051 pre_loop_cb,
1052 gdb::function_view<void (int num,
1053 ULONGEST start,
1054 ULONGEST end,
1055 ULONGEST file_ofs,
1056 const char *filename,
1057 const void *other)>
1058 loop_cb)
1059 {
1060 /* Ensure that ULONGEST is big enough for reading 64-bit core files. */
1061 gdb_static_assert (sizeof (ULONGEST) >= 8);
1062
1063 /* It's not required that the NT_FILE note exists, so return silently
1064 if it's not found. Beyond this point though, we'll complain
1065 if problems are found. */
1066 asection *section = bfd_get_section_by_name (cbfd, ".note.linuxcore.file");
1067 if (section == nullptr)
1068 return;
1069
1070 unsigned int addr_size_bits = gdbarch_addr_bit (gdbarch);
1071 unsigned int addr_size = addr_size_bits / 8;
1072 size_t note_size = bfd_section_size (section);
1073
1074 if (note_size < 2 * addr_size)
1075 {
1076 warning (_("malformed core note - too short for header"));
1077 return;
1078 }
1079
1080 gdb::def_vector<gdb_byte> contents (note_size);
1081 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1082 0, note_size))
1083 {
1084 warning (_("could not get core note contents"));
1085 return;
1086 }
1087
1088 gdb_byte *descdata = contents.data ();
1089 char *descend = (char *) descdata + note_size;
1090
1091 if (descdata[note_size - 1] != '\0')
1092 {
1093 warning (_("malformed note - does not end with \\0"));
1094 return;
1095 }
1096
1097 ULONGEST count = bfd_get (addr_size_bits, core_bfd, descdata);
1098 descdata += addr_size;
1099
1100 ULONGEST page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1101 descdata += addr_size;
1102
1103 if (note_size < 2 * addr_size + count * 3 * addr_size)
1104 {
1105 warning (_("malformed note - too short for supplied file count"));
1106 return;
1107 }
1108
1109 char *filenames = (char *) descdata + count * 3 * addr_size;
1110
1111 /* Make sure that the correct number of filenames exist. Complain
1112 if there aren't enough or are too many. */
1113 char *f = filenames;
1114 for (int i = 0; i < count; i++)
1115 {
1116 if (f >= descend)
1117 {
1118 warning (_("malformed note - filename area is too small"));
1119 return;
1120 }
1121 f += strnlen (f, descend - f) + 1;
1122 }
1123 /* Complain, but don't return early if the filename area is too big. */
1124 if (f != descend)
1125 warning (_("malformed note - filename area is too big"));
1126
1127 pre_loop_cb (count);
1128
1129 for (int i = 0; i < count; i++)
1130 {
1131 ULONGEST start = bfd_get (addr_size_bits, core_bfd, descdata);
1132 descdata += addr_size;
1133 ULONGEST end = bfd_get (addr_size_bits, core_bfd, descdata);
1134 descdata += addr_size;
1135 ULONGEST file_ofs
1136 = bfd_get (addr_size_bits, core_bfd, descdata) * page_size;
1137 descdata += addr_size;
1138 char * filename = filenames;
1139 filenames += strlen ((char *) filenames) + 1;
1140
1141 loop_cb (i, start, end, file_ofs, filename, nullptr);
1142 }
1143 }
1144
1145 /* Implement "info proc mappings" for a corefile. */
1146
1147 static void
1148 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1149 {
1150 linux_read_core_file_mappings (gdbarch, core_bfd,
1151 [=] (ULONGEST count)
1152 {
1153 printf_filtered (_("Mapped address spaces:\n\n"));
1154 if (gdbarch_addr_bit (gdbarch) == 32)
1155 {
1156 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1157 "Start Addr",
1158 " End Addr",
1159 " Size", " Offset", "objfile");
1160 }
1161 else
1162 {
1163 printf_filtered (" %18s %18s %10s %10s %s\n",
1164 "Start Addr",
1165 " End Addr",
1166 " Size", " Offset", "objfile");
1167 }
1168 },
1169 [=] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
1170 const char *filename, const void *other)
1171 {
1172 if (gdbarch_addr_bit (gdbarch) == 32)
1173 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1174 paddress (gdbarch, start),
1175 paddress (gdbarch, end),
1176 hex_string (end - start),
1177 hex_string (file_ofs),
1178 filename);
1179 else
1180 printf_filtered (" %18s %18s %10s %10s %s\n",
1181 paddress (gdbarch, start),
1182 paddress (gdbarch, end),
1183 hex_string (end - start),
1184 hex_string (file_ofs),
1185 filename);
1186 });
1187 }
1188
1189 /* Implement "info proc" for a corefile. */
1190
1191 static void
1192 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1193 enum info_proc_what what)
1194 {
1195 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1196 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1197
1198 if (exe_f)
1199 {
1200 const char *exe;
1201
1202 exe = bfd_core_file_failing_command (core_bfd);
1203 if (exe != NULL)
1204 printf_filtered ("exe = '%s'\n", exe);
1205 else
1206 warning (_("unable to find command name in core file"));
1207 }
1208
1209 if (mappings_f)
1210 linux_core_info_proc_mappings (gdbarch, args);
1211
1212 if (!exe_f && !mappings_f)
1213 error (_("unable to handle request"));
1214 }
1215
1216 /* Read siginfo data from the core, if possible. Returns -1 on
1217 failure. Otherwise, returns the number of bytes read. READBUF,
1218 OFFSET, and LEN are all as specified by the to_xfer_partial
1219 interface. */
1220
1221 static LONGEST
1222 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1223 ULONGEST offset, ULONGEST len)
1224 {
1225 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1226 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1227 if (section == NULL)
1228 return -1;
1229
1230 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1231 return -1;
1232
1233 return len;
1234 }
1235
1236 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1237 ULONGEST offset, ULONGEST inode,
1238 int read, int write,
1239 int exec, int modified,
1240 const char *filename,
1241 void *data);
1242
1243 /* List memory regions in the inferior for a corefile. */
1244
1245 static int
1246 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1247 linux_find_memory_region_ftype *func,
1248 void *obfd)
1249 {
1250 char mapsfilename[100];
1251 char coredumpfilter_name[100];
1252 pid_t pid;
1253 /* Default dump behavior of coredump_filter (0x33), according to
1254 Documentation/filesystems/proc.txt from the Linux kernel
1255 tree. */
1256 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1257 | COREFILTER_ANON_SHARED
1258 | COREFILTER_ELF_HEADERS
1259 | COREFILTER_HUGETLB_PRIVATE);
1260
1261 /* We need to know the real target PID to access /proc. */
1262 if (current_inferior ()->fake_pid_p)
1263 return 1;
1264
1265 pid = current_inferior ()->pid;
1266
1267 if (use_coredump_filter)
1268 {
1269 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1270 "/proc/%d/coredump_filter", pid);
1271 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1272 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1273 if (coredumpfilterdata != NULL)
1274 {
1275 unsigned int flags;
1276
1277 sscanf (coredumpfilterdata.get (), "%x", &flags);
1278 filterflags = (enum filter_flag) flags;
1279 }
1280 }
1281
1282 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1283 gdb::unique_xmalloc_ptr<char> data
1284 = target_fileio_read_stralloc (NULL, mapsfilename);
1285 if (data == NULL)
1286 {
1287 /* Older Linux kernels did not support /proc/PID/smaps. */
1288 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1289 data = target_fileio_read_stralloc (NULL, mapsfilename);
1290 }
1291
1292 if (data != NULL)
1293 {
1294 char *line, *t;
1295
1296 line = strtok_r (data.get (), "\n", &t);
1297 while (line != NULL)
1298 {
1299 ULONGEST addr, endaddr, offset, inode;
1300 const char *permissions, *device, *filename;
1301 struct smaps_vmflags v;
1302 size_t permissions_len, device_len;
1303 int read, write, exec, priv;
1304 int has_anonymous = 0;
1305 int should_dump_p = 0;
1306 int mapping_anon_p;
1307 int mapping_file_p;
1308
1309 memset (&v, 0, sizeof (v));
1310 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1311 &offset, &device, &device_len, &inode, &filename);
1312 mapping_anon_p = mapping_is_anonymous_p (filename);
1313 /* If the mapping is not anonymous, then we can consider it
1314 to be file-backed. These two states (anonymous or
1315 file-backed) seem to be exclusive, but they can actually
1316 coexist. For example, if a file-backed mapping has
1317 "Anonymous:" pages (see more below), then the Linux
1318 kernel will dump this mapping when the user specified
1319 that she only wants anonymous mappings in the corefile
1320 (*even* when she explicitly disabled the dumping of
1321 file-backed mappings). */
1322 mapping_file_p = !mapping_anon_p;
1323
1324 /* Decode permissions. */
1325 read = (memchr (permissions, 'r', permissions_len) != 0);
1326 write = (memchr (permissions, 'w', permissions_len) != 0);
1327 exec = (memchr (permissions, 'x', permissions_len) != 0);
1328 /* 'private' here actually means VM_MAYSHARE, and not
1329 VM_SHARED. In order to know if a mapping is really
1330 private or not, we must check the flag "sh" in the
1331 VmFlags field. This is done by decode_vmflags. However,
1332 if we are using a Linux kernel released before the commit
1333 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1334 not have the VmFlags there. In this case, there is
1335 really no way to know if we are dealing with VM_SHARED,
1336 so we just assume that VM_MAYSHARE is enough. */
1337 priv = memchr (permissions, 'p', permissions_len) != 0;
1338
1339 /* Try to detect if region should be dumped by parsing smaps
1340 counters. */
1341 for (line = strtok_r (NULL, "\n", &t);
1342 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1343 line = strtok_r (NULL, "\n", &t))
1344 {
1345 char keyword[64 + 1];
1346
1347 if (sscanf (line, "%64s", keyword) != 1)
1348 {
1349 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1350 break;
1351 }
1352
1353 if (strcmp (keyword, "Anonymous:") == 0)
1354 {
1355 /* Older Linux kernels did not support the
1356 "Anonymous:" counter. Check it here. */
1357 has_anonymous = 1;
1358 }
1359 else if (strcmp (keyword, "VmFlags:") == 0)
1360 decode_vmflags (line, &v);
1361
1362 if (strcmp (keyword, "AnonHugePages:") == 0
1363 || strcmp (keyword, "Anonymous:") == 0)
1364 {
1365 unsigned long number;
1366
1367 if (sscanf (line, "%*s%lu", &number) != 1)
1368 {
1369 warning (_("Error parsing {s,}maps file '%s' number"),
1370 mapsfilename);
1371 break;
1372 }
1373 if (number > 0)
1374 {
1375 /* Even if we are dealing with a file-backed
1376 mapping, if it contains anonymous pages we
1377 consider it to be *also* an anonymous
1378 mapping, because this is what the Linux
1379 kernel does:
1380
1381 // Dump segments that have been written to.
1382 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1383 goto whole;
1384
1385 Note that if the mapping is already marked as
1386 file-backed (i.e., mapping_file_p is
1387 non-zero), then this is a special case, and
1388 this mapping will be dumped either when the
1389 user wants to dump file-backed *or* anonymous
1390 mappings. */
1391 mapping_anon_p = 1;
1392 }
1393 }
1394 }
1395
1396 if (has_anonymous)
1397 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1398 mapping_anon_p, mapping_file_p,
1399 filename, addr, offset);
1400 else
1401 {
1402 /* Older Linux kernels did not support the "Anonymous:" counter.
1403 If it is missing, we can't be sure - dump all the pages. */
1404 should_dump_p = 1;
1405 }
1406
1407 /* Invoke the callback function to create the corefile segment. */
1408 if (should_dump_p)
1409 func (addr, endaddr - addr, offset, inode,
1410 read, write, exec, 1, /* MODIFIED is true because we
1411 want to dump the mapping. */
1412 filename, obfd);
1413 }
1414
1415 return 0;
1416 }
1417
1418 return 1;
1419 }
1420
1421 /* A structure for passing information through
1422 linux_find_memory_regions_full. */
1423
1424 struct linux_find_memory_regions_data
1425 {
1426 /* The original callback. */
1427
1428 find_memory_region_ftype func;
1429
1430 /* The original datum. */
1431
1432 void *obfd;
1433 };
1434
1435 /* A callback for linux_find_memory_regions that converts between the
1436 "full"-style callback and find_memory_region_ftype. */
1437
1438 static int
1439 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1440 ULONGEST offset, ULONGEST inode,
1441 int read, int write, int exec, int modified,
1442 const char *filename, void *arg)
1443 {
1444 struct linux_find_memory_regions_data *data
1445 = (struct linux_find_memory_regions_data *) arg;
1446
1447 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1448 }
1449
1450 /* A variant of linux_find_memory_regions_full that is suitable as the
1451 gdbarch find_memory_regions method. */
1452
1453 static int
1454 linux_find_memory_regions (struct gdbarch *gdbarch,
1455 find_memory_region_ftype func, void *obfd)
1456 {
1457 struct linux_find_memory_regions_data data;
1458
1459 data.func = func;
1460 data.obfd = obfd;
1461
1462 return linux_find_memory_regions_full (gdbarch,
1463 linux_find_memory_regions_thunk,
1464 &data);
1465 }
1466
1467 /* This is used to pass information from
1468 linux_make_mappings_corefile_notes through
1469 linux_find_memory_regions_full. */
1470
1471 struct linux_make_mappings_data
1472 {
1473 /* Number of files mapped. */
1474 ULONGEST file_count;
1475
1476 /* The obstack for the main part of the data. */
1477 struct obstack *data_obstack;
1478
1479 /* The filename obstack. */
1480 struct obstack *filename_obstack;
1481
1482 /* The architecture's "long" type. */
1483 struct type *long_type;
1484 };
1485
1486 static linux_find_memory_region_ftype linux_make_mappings_callback;
1487
1488 /* A callback for linux_find_memory_regions_full that updates the
1489 mappings data for linux_make_mappings_corefile_notes. */
1490
1491 static int
1492 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1493 ULONGEST offset, ULONGEST inode,
1494 int read, int write, int exec, int modified,
1495 const char *filename, void *data)
1496 {
1497 struct linux_make_mappings_data *map_data
1498 = (struct linux_make_mappings_data *) data;
1499 gdb_byte buf[sizeof (ULONGEST)];
1500
1501 if (*filename == '\0' || inode == 0)
1502 return 0;
1503
1504 ++map_data->file_count;
1505
1506 pack_long (buf, map_data->long_type, vaddr);
1507 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1508 pack_long (buf, map_data->long_type, vaddr + size);
1509 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1510 pack_long (buf, map_data->long_type, offset);
1511 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1512
1513 obstack_grow_str0 (map_data->filename_obstack, filename);
1514
1515 return 0;
1516 }
1517
1518 /* Write the file mapping data to the core file, if possible. OBFD is
1519 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1520 is a pointer to the note size. Returns the new NOTE_DATA and
1521 updates NOTE_SIZE. */
1522
1523 static char *
1524 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1525 char *note_data, int *note_size)
1526 {
1527 struct linux_make_mappings_data mapping_data;
1528 struct type *long_type
1529 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1530 gdb_byte buf[sizeof (ULONGEST)];
1531
1532 auto_obstack data_obstack, filename_obstack;
1533
1534 mapping_data.file_count = 0;
1535 mapping_data.data_obstack = &data_obstack;
1536 mapping_data.filename_obstack = &filename_obstack;
1537 mapping_data.long_type = long_type;
1538
1539 /* Reserve space for the count. */
1540 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1541 /* We always write the page size as 1 since we have no good way to
1542 determine the correct value. */
1543 pack_long (buf, long_type, 1);
1544 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1545
1546 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1547 &mapping_data);
1548
1549 if (mapping_data.file_count != 0)
1550 {
1551 /* Write the count to the obstack. */
1552 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1553 long_type, mapping_data.file_count);
1554
1555 /* Copy the filenames to the data obstack. */
1556 int size = obstack_object_size (&filename_obstack);
1557 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1558 size);
1559
1560 note_data = elfcore_write_note (obfd, note_data, note_size,
1561 "CORE", NT_FILE,
1562 obstack_base (&data_obstack),
1563 obstack_object_size (&data_obstack));
1564 }
1565
1566 return note_data;
1567 }
1568
1569 /* Structure for passing information from
1570 linux_collect_thread_registers via an iterator to
1571 linux_collect_regset_section_cb. */
1572
1573 struct linux_collect_regset_section_cb_data
1574 {
1575 struct gdbarch *gdbarch;
1576 const struct regcache *regcache;
1577 bfd *obfd;
1578 char *note_data;
1579 int *note_size;
1580 unsigned long lwp;
1581 enum gdb_signal stop_signal;
1582 int abort_iteration;
1583 };
1584
1585 /* Callback for iterate_over_regset_sections that records a single
1586 regset in the corefile note section. */
1587
1588 static void
1589 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1590 int collect_size, const struct regset *regset,
1591 const char *human_name, void *cb_data)
1592 {
1593 struct linux_collect_regset_section_cb_data *data
1594 = (struct linux_collect_regset_section_cb_data *) cb_data;
1595 bool variable_size_section = (regset != NULL
1596 && regset->flags & REGSET_VARIABLE_SIZE);
1597
1598 if (!variable_size_section)
1599 gdb_assert (supply_size == collect_size);
1600
1601 if (data->abort_iteration)
1602 return;
1603
1604 gdb_assert (regset && regset->collect_regset);
1605
1606 /* This is intentionally zero-initialized by using std::vector, so
1607 that any padding bytes in the core file will show as 0. */
1608 std::vector<gdb_byte> buf (collect_size);
1609
1610 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1611 collect_size);
1612
1613 /* PRSTATUS still needs to be treated specially. */
1614 if (strcmp (sect_name, ".reg") == 0)
1615 data->note_data = (char *) elfcore_write_prstatus
1616 (data->obfd, data->note_data, data->note_size, data->lwp,
1617 gdb_signal_to_host (data->stop_signal), buf.data ());
1618 else
1619 data->note_data = (char *) elfcore_write_register_note
1620 (data->obfd, data->note_data, data->note_size,
1621 sect_name, buf.data (), collect_size);
1622
1623 if (data->note_data == NULL)
1624 data->abort_iteration = 1;
1625 }
1626
1627 /* Records the thread's register state for the corefile note
1628 section. */
1629
1630 static char *
1631 linux_collect_thread_registers (const struct regcache *regcache,
1632 ptid_t ptid, bfd *obfd,
1633 char *note_data, int *note_size,
1634 enum gdb_signal stop_signal)
1635 {
1636 struct gdbarch *gdbarch = regcache->arch ();
1637 struct linux_collect_regset_section_cb_data data;
1638
1639 data.gdbarch = gdbarch;
1640 data.regcache = regcache;
1641 data.obfd = obfd;
1642 data.note_data = note_data;
1643 data.note_size = note_size;
1644 data.stop_signal = stop_signal;
1645 data.abort_iteration = 0;
1646
1647 /* For remote targets the LWP may not be available, so use the TID. */
1648 data.lwp = ptid.lwp ();
1649 if (!data.lwp)
1650 data.lwp = ptid.tid ();
1651
1652 gdbarch_iterate_over_regset_sections (gdbarch,
1653 linux_collect_regset_section_cb,
1654 &data, regcache);
1655 return data.note_data;
1656 }
1657
1658 /* Fetch the siginfo data for the specified thread, if it exists. If
1659 there is no data, or we could not read it, return an empty
1660 buffer. */
1661
1662 static gdb::byte_vector
1663 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1664 {
1665 struct type *siginfo_type;
1666 LONGEST bytes_read;
1667
1668 if (!gdbarch_get_siginfo_type_p (gdbarch))
1669 return gdb::byte_vector ();
1670
1671 scoped_restore_current_thread save_current_thread;
1672 switch_to_thread (thread);
1673
1674 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1675
1676 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1677
1678 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1679 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1680 if (bytes_read != TYPE_LENGTH (siginfo_type))
1681 buf.clear ();
1682
1683 return buf;
1684 }
1685
1686 struct linux_corefile_thread_data
1687 {
1688 struct gdbarch *gdbarch;
1689 bfd *obfd;
1690 char *note_data;
1691 int *note_size;
1692 enum gdb_signal stop_signal;
1693 };
1694
1695 /* Records the thread's register state for the corefile note
1696 section. */
1697
1698 static void
1699 linux_corefile_thread (struct thread_info *info,
1700 struct linux_corefile_thread_data *args)
1701 {
1702 struct regcache *regcache;
1703
1704 regcache = get_thread_arch_regcache (info->inf->process_target (),
1705 info->ptid, args->gdbarch);
1706
1707 target_fetch_registers (regcache, -1);
1708 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1709
1710 args->note_data = linux_collect_thread_registers
1711 (regcache, info->ptid, args->obfd, args->note_data,
1712 args->note_size, args->stop_signal);
1713
1714 /* Don't return anything if we got no register information above,
1715 such a core file is useless. */
1716 if (args->note_data != NULL)
1717 if (!siginfo_data.empty ())
1718 args->note_data = elfcore_write_note (args->obfd,
1719 args->note_data,
1720 args->note_size,
1721 "CORE", NT_SIGINFO,
1722 siginfo_data.data (),
1723 siginfo_data.size ());
1724 }
1725
1726 /* Fill the PRPSINFO structure with information about the process being
1727 debugged. Returns 1 in case of success, 0 for failures. Please note that
1728 even if the structure cannot be entirely filled (e.g., GDB was unable to
1729 gather information about the process UID/GID), this function will still
1730 return 1 since some information was already recorded. It will only return
1731 0 iff nothing can be gathered. */
1732
1733 static int
1734 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1735 {
1736 /* The filename which we will use to obtain some info about the process.
1737 We will basically use this to store the `/proc/PID/FILENAME' file. */
1738 char filename[100];
1739 /* The basename of the executable. */
1740 const char *basename;
1741 const char *infargs;
1742 /* Temporary buffer. */
1743 char *tmpstr;
1744 /* The valid states of a process, according to the Linux kernel. */
1745 const char valid_states[] = "RSDTZW";
1746 /* The program state. */
1747 const char *prog_state;
1748 /* The state of the process. */
1749 char pr_sname;
1750 /* The PID of the program which generated the corefile. */
1751 pid_t pid;
1752 /* Process flags. */
1753 unsigned int pr_flag;
1754 /* Process nice value. */
1755 long pr_nice;
1756 /* The number of fields read by `sscanf'. */
1757 int n_fields = 0;
1758
1759 gdb_assert (p != NULL);
1760
1761 /* Obtaining PID and filename. */
1762 pid = inferior_ptid.pid ();
1763 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1764 /* The full name of the program which generated the corefile. */
1765 gdb::unique_xmalloc_ptr<char> fname
1766 = target_fileio_read_stralloc (NULL, filename);
1767
1768 if (fname == NULL || fname.get ()[0] == '\0')
1769 {
1770 /* No program name was read, so we won't be able to retrieve more
1771 information about the process. */
1772 return 0;
1773 }
1774
1775 memset (p, 0, sizeof (*p));
1776
1777 /* Defining the PID. */
1778 p->pr_pid = pid;
1779
1780 /* Copying the program name. Only the basename matters. */
1781 basename = lbasename (fname.get ());
1782 strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1);
1783 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1784
1785 infargs = get_inferior_args ();
1786
1787 /* The arguments of the program. */
1788 std::string psargs = fname.get ();
1789 if (infargs != NULL)
1790 psargs = psargs + " " + infargs;
1791
1792 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1);
1793 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1794
1795 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1796 /* The contents of `/proc/PID/stat'. */
1797 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1798 = target_fileio_read_stralloc (NULL, filename);
1799 char *proc_stat = proc_stat_contents.get ();
1800
1801 if (proc_stat == NULL || *proc_stat == '\0')
1802 {
1803 /* Despite being unable to read more information about the
1804 process, we return 1 here because at least we have its
1805 command line, PID and arguments. */
1806 return 1;
1807 }
1808
1809 /* Ok, we have the stats. It's time to do a little parsing of the
1810 contents of the buffer, so that we end up reading what we want.
1811
1812 The following parsing mechanism is strongly based on the
1813 information generated by the `fs/proc/array.c' file, present in
1814 the Linux kernel tree. More details about how the information is
1815 displayed can be obtained by seeing the manpage of proc(5),
1816 specifically under the entry of `/proc/[pid]/stat'. */
1817
1818 /* Getting rid of the PID, since we already have it. */
1819 while (isdigit (*proc_stat))
1820 ++proc_stat;
1821
1822 proc_stat = skip_spaces (proc_stat);
1823
1824 /* ps command also relies on no trailing fields ever contain ')'. */
1825 proc_stat = strrchr (proc_stat, ')');
1826 if (proc_stat == NULL)
1827 return 1;
1828 proc_stat++;
1829
1830 proc_stat = skip_spaces (proc_stat);
1831
1832 n_fields = sscanf (proc_stat,
1833 "%c" /* Process state. */
1834 "%d%d%d" /* Parent PID, group ID, session ID. */
1835 "%*d%*d" /* tty_nr, tpgid (not used). */
1836 "%u" /* Flags. */
1837 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1838 cmajflt (not used). */
1839 "%*s%*s%*s%*s" /* utime, stime, cutime,
1840 cstime (not used). */
1841 "%*s" /* Priority (not used). */
1842 "%ld", /* Nice. */
1843 &pr_sname,
1844 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1845 &pr_flag,
1846 &pr_nice);
1847
1848 if (n_fields != 6)
1849 {
1850 /* Again, we couldn't read the complementary information about
1851 the process state. However, we already have minimal
1852 information, so we just return 1 here. */
1853 return 1;
1854 }
1855
1856 /* Filling the structure fields. */
1857 prog_state = strchr (valid_states, pr_sname);
1858 if (prog_state != NULL)
1859 p->pr_state = prog_state - valid_states;
1860 else
1861 {
1862 /* Zero means "Running". */
1863 p->pr_state = 0;
1864 }
1865
1866 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1867 p->pr_zomb = p->pr_sname == 'Z';
1868 p->pr_nice = pr_nice;
1869 p->pr_flag = pr_flag;
1870
1871 /* Finally, obtaining the UID and GID. For that, we read and parse the
1872 contents of the `/proc/PID/status' file. */
1873 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1874 /* The contents of `/proc/PID/status'. */
1875 gdb::unique_xmalloc_ptr<char> proc_status_contents
1876 = target_fileio_read_stralloc (NULL, filename);
1877 char *proc_status = proc_status_contents.get ();
1878
1879 if (proc_status == NULL || *proc_status == '\0')
1880 {
1881 /* Returning 1 since we already have a bunch of information. */
1882 return 1;
1883 }
1884
1885 /* Extracting the UID. */
1886 tmpstr = strstr (proc_status, "Uid:");
1887 if (tmpstr != NULL)
1888 {
1889 /* Advancing the pointer to the beginning of the UID. */
1890 tmpstr += sizeof ("Uid:");
1891 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1892 ++tmpstr;
1893
1894 if (isdigit (*tmpstr))
1895 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1896 }
1897
1898 /* Extracting the GID. */
1899 tmpstr = strstr (proc_status, "Gid:");
1900 if (tmpstr != NULL)
1901 {
1902 /* Advancing the pointer to the beginning of the GID. */
1903 tmpstr += sizeof ("Gid:");
1904 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1905 ++tmpstr;
1906
1907 if (isdigit (*tmpstr))
1908 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1909 }
1910
1911 return 1;
1912 }
1913
1914 /* Find the signalled thread. In case there's more than one signalled
1915 thread, prefer the current thread, if it is signalled. If no
1916 thread was signalled, default to the current thread, unless it has
1917 exited, in which case return NULL. */
1918
1919 static thread_info *
1920 find_signalled_thread ()
1921 {
1922 thread_info *curr_thr = inferior_thread ();
1923 if (curr_thr->state != THREAD_EXITED
1924 && curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1925 return curr_thr;
1926
1927 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1928 if (thr->suspend.stop_signal != GDB_SIGNAL_0)
1929 return thr;
1930
1931 /* Default to the current thread, unless it has exited. */
1932 if (curr_thr->state != THREAD_EXITED)
1933 return curr_thr;
1934
1935 return nullptr;
1936 }
1937
1938 /* Build the note section for a corefile, and return it in a malloc
1939 buffer. */
1940
1941 static char *
1942 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1943 {
1944 struct linux_corefile_thread_data thread_args;
1945 struct elf_internal_linux_prpsinfo prpsinfo;
1946 char *note_data = NULL;
1947
1948 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1949 return NULL;
1950
1951 if (linux_fill_prpsinfo (&prpsinfo))
1952 {
1953 if (gdbarch_ptr_bit (gdbarch) == 64)
1954 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1955 note_data, note_size,
1956 &prpsinfo);
1957 else
1958 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1959 note_data, note_size,
1960 &prpsinfo);
1961 }
1962
1963 /* Thread register information. */
1964 try
1965 {
1966 update_thread_list ();
1967 }
1968 catch (const gdb_exception_error &e)
1969 {
1970 exception_print (gdb_stderr, e);
1971 }
1972
1973 /* Like the kernel, prefer dumping the signalled thread first.
1974 "First thread" is what tools use to infer the signalled
1975 thread. */
1976 thread_info *signalled_thr = find_signalled_thread ();
1977
1978 thread_args.gdbarch = gdbarch;
1979 thread_args.obfd = obfd;
1980 thread_args.note_data = note_data;
1981 thread_args.note_size = note_size;
1982 if (signalled_thr != nullptr)
1983 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1984 else
1985 thread_args.stop_signal = GDB_SIGNAL_0;
1986
1987 if (signalled_thr != nullptr)
1988 linux_corefile_thread (signalled_thr, &thread_args);
1989 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1990 {
1991 if (thr == signalled_thr)
1992 continue;
1993
1994 linux_corefile_thread (thr, &thread_args);
1995 }
1996
1997 note_data = thread_args.note_data;
1998 if (!note_data)
1999 return NULL;
2000
2001 /* Auxillary vector. */
2002 gdb::optional<gdb::byte_vector> auxv =
2003 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
2004 if (auxv && !auxv->empty ())
2005 {
2006 note_data = elfcore_write_note (obfd, note_data, note_size,
2007 "CORE", NT_AUXV, auxv->data (),
2008 auxv->size ());
2009
2010 if (!note_data)
2011 return NULL;
2012 }
2013
2014 /* File mappings. */
2015 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2016 note_data, note_size);
2017
2018 return note_data;
2019 }
2020
2021 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2022 gdbarch.h. This function is not static because it is exported to
2023 other -tdep files. */
2024
2025 enum gdb_signal
2026 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2027 {
2028 switch (signal)
2029 {
2030 case 0:
2031 return GDB_SIGNAL_0;
2032
2033 case LINUX_SIGHUP:
2034 return GDB_SIGNAL_HUP;
2035
2036 case LINUX_SIGINT:
2037 return GDB_SIGNAL_INT;
2038
2039 case LINUX_SIGQUIT:
2040 return GDB_SIGNAL_QUIT;
2041
2042 case LINUX_SIGILL:
2043 return GDB_SIGNAL_ILL;
2044
2045 case LINUX_SIGTRAP:
2046 return GDB_SIGNAL_TRAP;
2047
2048 case LINUX_SIGABRT:
2049 return GDB_SIGNAL_ABRT;
2050
2051 case LINUX_SIGBUS:
2052 return GDB_SIGNAL_BUS;
2053
2054 case LINUX_SIGFPE:
2055 return GDB_SIGNAL_FPE;
2056
2057 case LINUX_SIGKILL:
2058 return GDB_SIGNAL_KILL;
2059
2060 case LINUX_SIGUSR1:
2061 return GDB_SIGNAL_USR1;
2062
2063 case LINUX_SIGSEGV:
2064 return GDB_SIGNAL_SEGV;
2065
2066 case LINUX_SIGUSR2:
2067 return GDB_SIGNAL_USR2;
2068
2069 case LINUX_SIGPIPE:
2070 return GDB_SIGNAL_PIPE;
2071
2072 case LINUX_SIGALRM:
2073 return GDB_SIGNAL_ALRM;
2074
2075 case LINUX_SIGTERM:
2076 return GDB_SIGNAL_TERM;
2077
2078 case LINUX_SIGCHLD:
2079 return GDB_SIGNAL_CHLD;
2080
2081 case LINUX_SIGCONT:
2082 return GDB_SIGNAL_CONT;
2083
2084 case LINUX_SIGSTOP:
2085 return GDB_SIGNAL_STOP;
2086
2087 case LINUX_SIGTSTP:
2088 return GDB_SIGNAL_TSTP;
2089
2090 case LINUX_SIGTTIN:
2091 return GDB_SIGNAL_TTIN;
2092
2093 case LINUX_SIGTTOU:
2094 return GDB_SIGNAL_TTOU;
2095
2096 case LINUX_SIGURG:
2097 return GDB_SIGNAL_URG;
2098
2099 case LINUX_SIGXCPU:
2100 return GDB_SIGNAL_XCPU;
2101
2102 case LINUX_SIGXFSZ:
2103 return GDB_SIGNAL_XFSZ;
2104
2105 case LINUX_SIGVTALRM:
2106 return GDB_SIGNAL_VTALRM;
2107
2108 case LINUX_SIGPROF:
2109 return GDB_SIGNAL_PROF;
2110
2111 case LINUX_SIGWINCH:
2112 return GDB_SIGNAL_WINCH;
2113
2114 /* No way to differentiate between SIGIO and SIGPOLL.
2115 Therefore, we just handle the first one. */
2116 case LINUX_SIGIO:
2117 return GDB_SIGNAL_IO;
2118
2119 case LINUX_SIGPWR:
2120 return GDB_SIGNAL_PWR;
2121
2122 case LINUX_SIGSYS:
2123 return GDB_SIGNAL_SYS;
2124
2125 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2126 therefore we have to handle them here. */
2127 case LINUX_SIGRTMIN:
2128 return GDB_SIGNAL_REALTIME_32;
2129
2130 case LINUX_SIGRTMAX:
2131 return GDB_SIGNAL_REALTIME_64;
2132 }
2133
2134 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2135 {
2136 int offset = signal - LINUX_SIGRTMIN + 1;
2137
2138 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2139 }
2140
2141 return GDB_SIGNAL_UNKNOWN;
2142 }
2143
2144 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2145 gdbarch.h. This function is not static because it is exported to
2146 other -tdep files. */
2147
2148 int
2149 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2150 enum gdb_signal signal)
2151 {
2152 switch (signal)
2153 {
2154 case GDB_SIGNAL_0:
2155 return 0;
2156
2157 case GDB_SIGNAL_HUP:
2158 return LINUX_SIGHUP;
2159
2160 case GDB_SIGNAL_INT:
2161 return LINUX_SIGINT;
2162
2163 case GDB_SIGNAL_QUIT:
2164 return LINUX_SIGQUIT;
2165
2166 case GDB_SIGNAL_ILL:
2167 return LINUX_SIGILL;
2168
2169 case GDB_SIGNAL_TRAP:
2170 return LINUX_SIGTRAP;
2171
2172 case GDB_SIGNAL_ABRT:
2173 return LINUX_SIGABRT;
2174
2175 case GDB_SIGNAL_FPE:
2176 return LINUX_SIGFPE;
2177
2178 case GDB_SIGNAL_KILL:
2179 return LINUX_SIGKILL;
2180
2181 case GDB_SIGNAL_BUS:
2182 return LINUX_SIGBUS;
2183
2184 case GDB_SIGNAL_SEGV:
2185 return LINUX_SIGSEGV;
2186
2187 case GDB_SIGNAL_SYS:
2188 return LINUX_SIGSYS;
2189
2190 case GDB_SIGNAL_PIPE:
2191 return LINUX_SIGPIPE;
2192
2193 case GDB_SIGNAL_ALRM:
2194 return LINUX_SIGALRM;
2195
2196 case GDB_SIGNAL_TERM:
2197 return LINUX_SIGTERM;
2198
2199 case GDB_SIGNAL_URG:
2200 return LINUX_SIGURG;
2201
2202 case GDB_SIGNAL_STOP:
2203 return LINUX_SIGSTOP;
2204
2205 case GDB_SIGNAL_TSTP:
2206 return LINUX_SIGTSTP;
2207
2208 case GDB_SIGNAL_CONT:
2209 return LINUX_SIGCONT;
2210
2211 case GDB_SIGNAL_CHLD:
2212 return LINUX_SIGCHLD;
2213
2214 case GDB_SIGNAL_TTIN:
2215 return LINUX_SIGTTIN;
2216
2217 case GDB_SIGNAL_TTOU:
2218 return LINUX_SIGTTOU;
2219
2220 case GDB_SIGNAL_IO:
2221 return LINUX_SIGIO;
2222
2223 case GDB_SIGNAL_XCPU:
2224 return LINUX_SIGXCPU;
2225
2226 case GDB_SIGNAL_XFSZ:
2227 return LINUX_SIGXFSZ;
2228
2229 case GDB_SIGNAL_VTALRM:
2230 return LINUX_SIGVTALRM;
2231
2232 case GDB_SIGNAL_PROF:
2233 return LINUX_SIGPROF;
2234
2235 case GDB_SIGNAL_WINCH:
2236 return LINUX_SIGWINCH;
2237
2238 case GDB_SIGNAL_USR1:
2239 return LINUX_SIGUSR1;
2240
2241 case GDB_SIGNAL_USR2:
2242 return LINUX_SIGUSR2;
2243
2244 case GDB_SIGNAL_PWR:
2245 return LINUX_SIGPWR;
2246
2247 case GDB_SIGNAL_POLL:
2248 return LINUX_SIGPOLL;
2249
2250 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2251 therefore we have to handle it here. */
2252 case GDB_SIGNAL_REALTIME_32:
2253 return LINUX_SIGRTMIN;
2254
2255 /* Same comment applies to _64. */
2256 case GDB_SIGNAL_REALTIME_64:
2257 return LINUX_SIGRTMAX;
2258 }
2259
2260 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2261 if (signal >= GDB_SIGNAL_REALTIME_33
2262 && signal <= GDB_SIGNAL_REALTIME_63)
2263 {
2264 int offset = signal - GDB_SIGNAL_REALTIME_33;
2265
2266 return LINUX_SIGRTMIN + 1 + offset;
2267 }
2268
2269 return -1;
2270 }
2271
2272 /* Helper for linux_vsyscall_range that does the real work of finding
2273 the vsyscall's address range. */
2274
2275 static int
2276 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2277 {
2278 char filename[100];
2279 long pid;
2280
2281 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2282 return 0;
2283
2284 /* It doesn't make sense to access the host's /proc when debugging a
2285 core file. Instead, look for the PT_LOAD segment that matches
2286 the vDSO. */
2287 if (!target_has_execution)
2288 {
2289 long phdrs_size;
2290 int num_phdrs, i;
2291
2292 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2293 if (phdrs_size == -1)
2294 return 0;
2295
2296 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2297 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2298 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2299 if (num_phdrs == -1)
2300 return 0;
2301
2302 for (i = 0; i < num_phdrs; i++)
2303 if (phdrs.get ()[i].p_type == PT_LOAD
2304 && phdrs.get ()[i].p_vaddr == range->start)
2305 {
2306 range->length = phdrs.get ()[i].p_memsz;
2307 return 1;
2308 }
2309
2310 return 0;
2311 }
2312
2313 /* We need to know the real target PID to access /proc. */
2314 if (current_inferior ()->fake_pid_p)
2315 return 0;
2316
2317 pid = current_inferior ()->pid;
2318
2319 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2320 reading /proc/PID/maps (2). The later identifies thread stacks
2321 in the output, which requires scanning every thread in the thread
2322 group to check whether a VMA is actually a thread's stack. With
2323 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2324 a few thousand threads, (1) takes a few miliseconds, while (2)
2325 takes several seconds. Also note that "smaps", what we read for
2326 determining core dump mappings, is even slower than "maps". */
2327 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2328 gdb::unique_xmalloc_ptr<char> data
2329 = target_fileio_read_stralloc (NULL, filename);
2330 if (data != NULL)
2331 {
2332 char *line;
2333 char *saveptr = NULL;
2334
2335 for (line = strtok_r (data.get (), "\n", &saveptr);
2336 line != NULL;
2337 line = strtok_r (NULL, "\n", &saveptr))
2338 {
2339 ULONGEST addr, endaddr;
2340 const char *p = line;
2341
2342 addr = strtoulst (p, &p, 16);
2343 if (addr == range->start)
2344 {
2345 if (*p == '-')
2346 p++;
2347 endaddr = strtoulst (p, &p, 16);
2348 range->length = endaddr - addr;
2349 return 1;
2350 }
2351 }
2352 }
2353 else
2354 warning (_("unable to open /proc file '%s'"), filename);
2355
2356 return 0;
2357 }
2358
2359 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2360 caching, and defers the real work to linux_vsyscall_range_raw. */
2361
2362 static int
2363 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2364 {
2365 struct linux_info *info = get_linux_inferior_data ();
2366
2367 if (info->vsyscall_range_p == 0)
2368 {
2369 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2370 info->vsyscall_range_p = 1;
2371 else
2372 info->vsyscall_range_p = -1;
2373 }
2374
2375 if (info->vsyscall_range_p < 0)
2376 return 0;
2377
2378 *range = info->vsyscall_range;
2379 return 1;
2380 }
2381
2382 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2383 definitions would be dependent on compilation host. */
2384 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2385 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2386
2387 /* See gdbarch.sh 'infcall_mmap'. */
2388
2389 static CORE_ADDR
2390 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2391 {
2392 struct objfile *objf;
2393 /* Do there still exist any Linux systems without "mmap64"?
2394 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2395 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2396 struct value *addr_val;
2397 struct gdbarch *gdbarch = objf->arch ();
2398 CORE_ADDR retval;
2399 enum
2400 {
2401 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2402 };
2403 struct value *arg[ARG_LAST];
2404
2405 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2406 0);
2407 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2408 arg[ARG_LENGTH] = value_from_ulongest
2409 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2410 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2411 | GDB_MMAP_PROT_EXEC))
2412 == 0);
2413 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2414 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2415 GDB_MMAP_MAP_PRIVATE
2416 | GDB_MMAP_MAP_ANONYMOUS);
2417 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2418 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2419 0);
2420 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2421 retval = value_as_address (addr_val);
2422 if (retval == (CORE_ADDR) -1)
2423 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2424 pulongest (size));
2425 return retval;
2426 }
2427
2428 /* See gdbarch.sh 'infcall_munmap'. */
2429
2430 static void
2431 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2432 {
2433 struct objfile *objf;
2434 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2435 struct value *retval_val;
2436 struct gdbarch *gdbarch = objf->arch ();
2437 LONGEST retval;
2438 enum
2439 {
2440 ARG_ADDR, ARG_LENGTH, ARG_LAST
2441 };
2442 struct value *arg[ARG_LAST];
2443
2444 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2445 addr);
2446 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2447 arg[ARG_LENGTH] = value_from_ulongest
2448 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2449 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2450 retval = value_as_long (retval_val);
2451 if (retval != 0)
2452 warning (_("Failed inferior munmap call at %s for %s bytes, "
2453 "errno is changed."),
2454 hex_string (addr), pulongest (size));
2455 }
2456
2457 /* See linux-tdep.h. */
2458
2459 CORE_ADDR
2460 linux_displaced_step_location (struct gdbarch *gdbarch)
2461 {
2462 CORE_ADDR addr;
2463 int bp_len;
2464
2465 /* Determine entry point from target auxiliary vector. This avoids
2466 the need for symbols. Also, when debugging a stand-alone SPU
2467 executable, entry_point_address () will point to an SPU
2468 local-store address and is thus not usable as displaced stepping
2469 location. The auxiliary vector gets us the PowerPC-side entry
2470 point address instead. */
2471 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2472 throw_error (NOT_SUPPORTED_ERROR,
2473 _("Cannot find AT_ENTRY auxiliary vector entry."));
2474
2475 /* Make certain that the address points at real code, and not a
2476 function descriptor. */
2477 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2478 current_top_target ());
2479
2480 /* Inferior calls also use the entry point as a breakpoint location.
2481 We don't want displaced stepping to interfere with those
2482 breakpoints, so leave space. */
2483 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2484 addr += bp_len * 2;
2485
2486 return addr;
2487 }
2488
2489 /* See linux-tdep.h. */
2490
2491 CORE_ADDR
2492 linux_get_hwcap (struct target_ops *target)
2493 {
2494 CORE_ADDR field;
2495 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2496 return 0;
2497 return field;
2498 }
2499
2500 /* See linux-tdep.h. */
2501
2502 CORE_ADDR
2503 linux_get_hwcap2 (struct target_ops *target)
2504 {
2505 CORE_ADDR field;
2506 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2507 return 0;
2508 return field;
2509 }
2510
2511 /* Display whether the gcore command is using the
2512 /proc/PID/coredump_filter file. */
2513
2514 static void
2515 show_use_coredump_filter (struct ui_file *file, int from_tty,
2516 struct cmd_list_element *c, const char *value)
2517 {
2518 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2519 " corefiles is %s.\n"), value);
2520 }
2521
2522 /* Display whether the gcore command is dumping mappings marked with
2523 the VM_DONTDUMP flag. */
2524
2525 static void
2526 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2527 struct cmd_list_element *c, const char *value)
2528 {
2529 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2530 " flag is %s.\n"), value);
2531 }
2532
2533 /* To be called from the various GDB_OSABI_LINUX handlers for the
2534 various GNU/Linux architectures and machine types. */
2535
2536 void
2537 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2538 {
2539 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2540 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2541 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2542 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2543 set_gdbarch_read_core_file_mappings (gdbarch, linux_read_core_file_mappings);
2544 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2545 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2546 set_gdbarch_has_shared_address_space (gdbarch,
2547 linux_has_shared_address_space);
2548 set_gdbarch_gdb_signal_from_target (gdbarch,
2549 linux_gdb_signal_from_target);
2550 set_gdbarch_gdb_signal_to_target (gdbarch,
2551 linux_gdb_signal_to_target);
2552 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2553 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2554 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2555 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2556 }
2557
2558 void _initialize_linux_tdep ();
2559 void
2560 _initialize_linux_tdep ()
2561 {
2562 linux_gdbarch_data_handle =
2563 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2564
2565 /* Observers used to invalidate the cache when needed. */
2566 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2567 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2568
2569 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2570 &use_coredump_filter, _("\
2571 Set whether gcore should consider /proc/PID/coredump_filter."),
2572 _("\
2573 Show whether gcore should consider /proc/PID/coredump_filter."),
2574 _("\
2575 Use this command to set whether gcore should consider the contents\n\
2576 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2577 about this file, refer to the manpage of core(5)."),
2578 NULL, show_use_coredump_filter,
2579 &setlist, &showlist);
2580
2581 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2582 &dump_excluded_mappings, _("\
2583 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2584 _("\
2585 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2586 _("\
2587 Use this command to set whether gcore should dump mappings marked with the\n\
2588 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2589 more information about this file, refer to the manpage of proc(5) and core(5)."),
2590 NULL, show_dump_excluded_mappings,
2591 &setlist, &showlist);
2592 }
This page took 0.120817 seconds and 5 git commands to generate.