Extend "x" and "print" commands to support memory tagging
[deliverable/binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39 #include <algorithm>
40
41 /* Macros to extract fields from an instruction. */
42 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
43 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
44 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
45 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
46 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
47
48 struct gdbarch_tdep
49 {
50 /* gdbarch target dependent data here. Currently unused for LM32. */
51 };
52
53 struct lm32_frame_cache
54 {
55 /* The frame's base. Used when constructing a frame ID. */
56 CORE_ADDR base;
57 CORE_ADDR pc;
58 /* Size of frame. */
59 int size;
60 /* Table indicating the location of each and every register. */
61 trad_frame_saved_reg *saved_regs;
62 };
63
64 /* Add the available register groups. */
65
66 static void
67 lm32_add_reggroups (struct gdbarch *gdbarch)
68 {
69 reggroup_add (gdbarch, general_reggroup);
70 reggroup_add (gdbarch, all_reggroup);
71 reggroup_add (gdbarch, system_reggroup);
72 }
73
74 /* Return whether a given register is in a given group. */
75
76 static int
77 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
78 struct reggroup *group)
79 {
80 if (group == general_reggroup)
81 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
82 || (regnum == SIM_LM32_PC_REGNUM);
83 else if (group == system_reggroup)
84 return ((regnum >= SIM_LM32_BA_REGNUM) && (regnum <= SIM_LM32_EA_REGNUM))
85 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
86 return default_register_reggroup_p (gdbarch, regnum, group);
87 }
88
89 /* Return a name that corresponds to the given register number. */
90
91 static const char *
92 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
93 {
94 static const char *register_names[] = {
95 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
96 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
97 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
98 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
99 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
100 };
101
102 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
103 return NULL;
104 else
105 return register_names[reg_nr];
106 }
107
108 /* Return type of register. */
109
110 static struct type *
111 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
112 {
113 return builtin_type (gdbarch)->builtin_int32;
114 }
115
116 /* Return non-zero if a register can't be written. */
117
118 static int
119 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
120 {
121 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
122 }
123
124 /* Analyze a function's prologue. */
125
126 static CORE_ADDR
127 lm32_analyze_prologue (struct gdbarch *gdbarch,
128 CORE_ADDR pc, CORE_ADDR limit,
129 struct lm32_frame_cache *info)
130 {
131 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
132 unsigned long instruction;
133
134 /* Keep reading though instructions, until we come across an instruction
135 that isn't likely to be part of the prologue. */
136 info->size = 0;
137 for (; pc < limit; pc += 4)
138 {
139
140 /* Read an instruction. */
141 instruction = read_memory_integer (pc, 4, byte_order);
142
143 if ((LM32_OPCODE (instruction) == OP_SW)
144 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
145 {
146 /* Any stack displaced store is likely part of the prologue.
147 Record that the register is being saved, and the offset
148 into the stack. */
149 info->saved_regs[LM32_REG1 (instruction)].set_addr (LM32_IMM16 (instruction));
150 }
151 else if ((LM32_OPCODE (instruction) == OP_ADDI)
152 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
153 {
154 /* An add to the SP is likely to be part of the prologue.
155 Adjust stack size by whatever the instruction adds to the sp. */
156 info->size -= LM32_IMM16 (instruction);
157 }
158 else if ( /* add fp,fp,sp */
159 ((LM32_OPCODE (instruction) == OP_ADD)
160 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
161 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
162 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
163 /* mv fp,imm */
164 || ((LM32_OPCODE (instruction) == OP_ADDI)
165 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
166 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
167 {
168 /* Likely to be in the prologue for functions that require
169 a frame pointer. */
170 }
171 else
172 {
173 /* Any other instruction is likely not to be part of the
174 prologue. */
175 break;
176 }
177 }
178
179 return pc;
180 }
181
182 /* Return PC of first non prologue instruction, for the function at the
183 specified address. */
184
185 static CORE_ADDR
186 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
187 {
188 CORE_ADDR func_addr, limit_pc;
189 struct lm32_frame_cache frame_info;
190 trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
191
192 /* See if we can determine the end of the prologue via the symbol table.
193 If so, then return either PC, or the PC after the prologue, whichever
194 is greater. */
195 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
196 {
197 CORE_ADDR post_prologue_pc
198 = skip_prologue_using_sal (gdbarch, func_addr);
199 if (post_prologue_pc != 0)
200 return std::max (pc, post_prologue_pc);
201 }
202
203 /* Can't determine prologue from the symbol table, need to examine
204 instructions. */
205
206 /* Find an upper limit on the function prologue using the debug
207 information. If the debug information could not be used to provide
208 that bound, then use an arbitrary large number as the upper bound. */
209 limit_pc = skip_prologue_using_sal (gdbarch, pc);
210 if (limit_pc == 0)
211 limit_pc = pc + 100; /* Magic. */
212
213 frame_info.saved_regs = saved_regs;
214 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
215 }
216
217 /* Create a breakpoint instruction. */
218 constexpr gdb_byte lm32_break_insn[4] = { OP_RAISE << 2, 0, 0, 2 };
219
220 typedef BP_MANIPULATION (lm32_break_insn) lm32_breakpoint;
221
222
223 /* Setup registers and stack for faking a call to a function in the
224 inferior. */
225
226 static CORE_ADDR
227 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
228 struct regcache *regcache, CORE_ADDR bp_addr,
229 int nargs, struct value **args, CORE_ADDR sp,
230 function_call_return_method return_method,
231 CORE_ADDR struct_addr)
232 {
233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
234 int first_arg_reg = SIM_LM32_R1_REGNUM;
235 int num_arg_regs = 8;
236 int i;
237
238 /* Set the return address. */
239 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
240
241 /* If we're returning a large struct, a pointer to the address to
242 store it at is passed as a first hidden parameter. */
243 if (return_method == return_method_struct)
244 {
245 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
246 first_arg_reg++;
247 num_arg_regs--;
248 sp -= 4;
249 }
250
251 /* Setup parameters. */
252 for (i = 0; i < nargs; i++)
253 {
254 struct value *arg = args[i];
255 struct type *arg_type = check_typedef (value_type (arg));
256 gdb_byte *contents;
257 ULONGEST val;
258
259 /* Promote small integer types to int. */
260 switch (arg_type->code ())
261 {
262 case TYPE_CODE_INT:
263 case TYPE_CODE_BOOL:
264 case TYPE_CODE_CHAR:
265 case TYPE_CODE_RANGE:
266 case TYPE_CODE_ENUM:
267 if (TYPE_LENGTH (arg_type) < 4)
268 {
269 arg_type = builtin_type (gdbarch)->builtin_int32;
270 arg = value_cast (arg_type, arg);
271 }
272 break;
273 }
274
275 /* FIXME: Handle structures. */
276
277 contents = (gdb_byte *) value_contents (arg);
278 val = extract_unsigned_integer (contents, TYPE_LENGTH (arg_type),
279 byte_order);
280
281 /* First num_arg_regs parameters are passed by registers,
282 and the rest are passed on the stack. */
283 if (i < num_arg_regs)
284 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
285 else
286 {
287 write_memory_unsigned_integer (sp, TYPE_LENGTH (arg_type), byte_order,
288 val);
289 sp -= 4;
290 }
291 }
292
293 /* Update stack pointer. */
294 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
295
296 /* Return adjusted stack pointer. */
297 return sp;
298 }
299
300 /* Extract return value after calling a function in the inferior. */
301
302 static void
303 lm32_extract_return_value (struct type *type, struct regcache *regcache,
304 gdb_byte *valbuf)
305 {
306 struct gdbarch *gdbarch = regcache->arch ();
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 ULONGEST l;
309 CORE_ADDR return_buffer;
310
311 if (type->code () != TYPE_CODE_STRUCT
312 && type->code () != TYPE_CODE_UNION
313 && type->code () != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
314 {
315 /* Return value is returned in a single register. */
316 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
317 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
318 }
319 else if ((type->code () == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
320 {
321 /* 64-bit values are returned in a register pair. */
322 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
323 memcpy (valbuf, &l, 4);
324 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
325 memcpy (valbuf + 4, &l, 4);
326 }
327 else
328 {
329 /* Aggregate types greater than a single register are returned
330 in memory. FIXME: Unless they are only 2 regs?. */
331 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
332 return_buffer = l;
333 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
334 }
335 }
336
337 /* Write into appropriate registers a function return value of type
338 TYPE, given in virtual format. */
339 static void
340 lm32_store_return_value (struct type *type, struct regcache *regcache,
341 const gdb_byte *valbuf)
342 {
343 struct gdbarch *gdbarch = regcache->arch ();
344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
345 ULONGEST val;
346 int len = TYPE_LENGTH (type);
347
348 if (len <= 4)
349 {
350 val = extract_unsigned_integer (valbuf, len, byte_order);
351 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
352 }
353 else if (len <= 8)
354 {
355 val = extract_unsigned_integer (valbuf, 4, byte_order);
356 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
357 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
358 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
359 }
360 else
361 error (_("lm32_store_return_value: type length too large."));
362 }
363
364 /* Determine whether a functions return value is in a register or memory. */
365 static enum return_value_convention
366 lm32_return_value (struct gdbarch *gdbarch, struct value *function,
367 struct type *valtype, struct regcache *regcache,
368 gdb_byte *readbuf, const gdb_byte *writebuf)
369 {
370 enum type_code code = valtype->code ();
371
372 if (code == TYPE_CODE_STRUCT
373 || code == TYPE_CODE_UNION
374 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
375 return RETURN_VALUE_STRUCT_CONVENTION;
376
377 if (readbuf)
378 lm32_extract_return_value (valtype, regcache, readbuf);
379 if (writebuf)
380 lm32_store_return_value (valtype, regcache, writebuf);
381
382 return RETURN_VALUE_REGISTER_CONVENTION;
383 }
384
385 /* Put here the code to store, into fi->saved_regs, the addresses of
386 the saved registers of frame described by FRAME_INFO. This
387 includes special registers such as pc and fp saved in special ways
388 in the stack frame. sp is even more special: the address we return
389 for it IS the sp for the next frame. */
390
391 static struct lm32_frame_cache *
392 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
393 {
394 CORE_ADDR current_pc;
395 ULONGEST prev_sp;
396 ULONGEST this_base;
397 struct lm32_frame_cache *info;
398 int i;
399
400 if ((*this_prologue_cache))
401 return (struct lm32_frame_cache *) (*this_prologue_cache);
402
403 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
404 (*this_prologue_cache) = info;
405 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
406
407 info->pc = get_frame_func (this_frame);
408 current_pc = get_frame_pc (this_frame);
409 lm32_analyze_prologue (get_frame_arch (this_frame),
410 info->pc, current_pc, info);
411
412 /* Compute the frame's base, and the previous frame's SP. */
413 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
414 prev_sp = this_base + info->size;
415 info->base = this_base;
416
417 /* Convert callee save offsets into addresses. */
418 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
419 {
420 if (info->saved_regs[i].is_addr ())
421 info->saved_regs[i].set_addr (this_base + info->saved_regs[i].addr ());
422 }
423
424 /* The call instruction moves the caller's PC in the callee's RA register.
425 Since this is an unwind, do the reverse. Copy the location of RA register
426 into PC (the address / regnum) so that a request for PC will be
427 converted into a request for the RA register. */
428 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
429
430 /* The previous frame's SP needed to be computed. Save the computed
431 value. */
432 info->saved_regs[SIM_LM32_SP_REGNUM].set_value (prev_sp);
433
434 return info;
435 }
436
437 static void
438 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
439 struct frame_id *this_id)
440 {
441 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
442
443 /* This marks the outermost frame. */
444 if (cache->base == 0)
445 return;
446
447 (*this_id) = frame_id_build (cache->base, cache->pc);
448 }
449
450 static struct value *
451 lm32_frame_prev_register (struct frame_info *this_frame,
452 void **this_prologue_cache, int regnum)
453 {
454 struct lm32_frame_cache *info;
455
456 info = lm32_frame_cache (this_frame, this_prologue_cache);
457 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
458 }
459
460 static const struct frame_unwind lm32_frame_unwind = {
461 NORMAL_FRAME,
462 default_frame_unwind_stop_reason,
463 lm32_frame_this_id,
464 lm32_frame_prev_register,
465 NULL,
466 default_frame_sniffer
467 };
468
469 static CORE_ADDR
470 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
471 {
472 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
473
474 return info->base;
475 }
476
477 static const struct frame_base lm32_frame_base = {
478 &lm32_frame_unwind,
479 lm32_frame_base_address,
480 lm32_frame_base_address,
481 lm32_frame_base_address
482 };
483
484 static CORE_ADDR
485 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
486 {
487 /* Align to the size of an instruction (so that they can safely be
488 pushed onto the stack. */
489 return sp & ~3;
490 }
491
492 static struct gdbarch *
493 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
494 {
495 struct gdbarch *gdbarch;
496 struct gdbarch_tdep *tdep;
497
498 /* If there is already a candidate, use it. */
499 arches = gdbarch_list_lookup_by_info (arches, &info);
500 if (arches != NULL)
501 return arches->gdbarch;
502
503 /* None found, create a new architecture from the information provided. */
504 tdep = XCNEW (struct gdbarch_tdep);
505 gdbarch = gdbarch_alloc (&info, tdep);
506
507 /* Type sizes. */
508 set_gdbarch_short_bit (gdbarch, 16);
509 set_gdbarch_int_bit (gdbarch, 32);
510 set_gdbarch_long_bit (gdbarch, 32);
511 set_gdbarch_long_long_bit (gdbarch, 64);
512 set_gdbarch_float_bit (gdbarch, 32);
513 set_gdbarch_double_bit (gdbarch, 64);
514 set_gdbarch_long_double_bit (gdbarch, 64);
515 set_gdbarch_ptr_bit (gdbarch, 32);
516
517 /* Register info. */
518 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
519 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
520 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
521 set_gdbarch_register_name (gdbarch, lm32_register_name);
522 set_gdbarch_register_type (gdbarch, lm32_register_type);
523 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
524
525 /* Frame info. */
526 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
527 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
528 set_gdbarch_decr_pc_after_break (gdbarch, 0);
529 set_gdbarch_frame_args_skip (gdbarch, 0);
530
531 /* Frame unwinding. */
532 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
533 frame_base_set_default (gdbarch, &lm32_frame_base);
534 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
535
536 /* Breakpoints. */
537 set_gdbarch_breakpoint_kind_from_pc (gdbarch, lm32_breakpoint::kind_from_pc);
538 set_gdbarch_sw_breakpoint_from_kind (gdbarch, lm32_breakpoint::bp_from_kind);
539 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
540
541 /* Calling functions in the inferior. */
542 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
543 set_gdbarch_return_value (gdbarch, lm32_return_value);
544
545 lm32_add_reggroups (gdbarch);
546 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
547
548 return gdbarch;
549 }
550
551 void _initialize_lm32_tdep ();
552 void
553 _initialize_lm32_tdep ()
554 {
555 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
556 }
This page took 0.040368 seconds and 4 git commands to generate.