sparc-tdep.c (sparc_frame_find_save_regs): Use REGISTER_RAW_SIZE instead of 4.
[deliverable/binutils-gdb.git] / gdb / lynx-nat.c
1 /* Native-dependent code for LynxOS.
2 Copyright 1993, 1994 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "target.h"
24
25 #include <sys/ptrace.h>
26 #include <sys/wait.h>
27 #include <sys/fpp.h>
28
29 static unsigned long registers_addr PARAMS ((int pid));
30
31 #define X(ENTRY)(offsetof(struct econtext, ENTRY))
32
33 #ifdef I386
34 /* Mappings from tm-i386v.h */
35
36 static int regmap[] =
37 {
38 X(eax),
39 X(ecx),
40 X(edx),
41 X(ebx),
42 X(esp), /* sp */
43 X(ebp), /* fp */
44 X(esi),
45 X(edi),
46 X(eip), /* pc */
47 X(flags), /* ps */
48 X(cs),
49 X(ss),
50 X(ds),
51 X(es),
52 X(ecode), /* Lynx doesn't give us either fs or gs, so */
53 X(fault), /* we just substitute these two in the hopes
54 that they are useful. */
55 };
56 #endif
57
58 #ifdef M68K
59 /* Mappings from tm-m68k.h */
60
61 static int regmap[] =
62 {
63 X(regs[0]), /* d0 */
64 X(regs[1]), /* d1 */
65 X(regs[2]), /* d2 */
66 X(regs[3]), /* d3 */
67 X(regs[4]), /* d4 */
68 X(regs[5]), /* d5 */
69 X(regs[6]), /* d6 */
70 X(regs[7]), /* d7 */
71 X(regs[8]), /* a0 */
72 X(regs[9]), /* a1 */
73 X(regs[10]), /* a2 */
74 X(regs[11]), /* a3 */
75 X(regs[12]), /* a4 */
76 X(regs[13]), /* a5 */
77 X(regs[14]), /* fp */
78 offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
79 X(status), /* ps */
80 X(pc),
81
82 X(fregs[0*3]), /* fp0 */
83 X(fregs[1*3]), /* fp1 */
84 X(fregs[2*3]), /* fp2 */
85 X(fregs[3*3]), /* fp3 */
86 X(fregs[4*3]), /* fp4 */
87 X(fregs[5*3]), /* fp5 */
88 X(fregs[6*3]), /* fp6 */
89 X(fregs[7*3]), /* fp7 */
90
91 X(fcregs[0]), /* fpcontrol */
92 X(fcregs[1]), /* fpstatus */
93 X(fcregs[2]), /* fpiaddr */
94 X(ssw), /* fpcode */
95 X(fault), /* fpflags */
96 };
97 #endif
98
99 #ifdef rs6000
100
101 static int regmap[] =
102 {
103 X(iregs[0]), /* r0 */
104 X(iregs[1]),
105 X(iregs[2]),
106 X(iregs[3]),
107 X(iregs[4]),
108 X(iregs[5]),
109 X(iregs[6]),
110 X(iregs[7]),
111 X(iregs[8]),
112 X(iregs[9]),
113 X(iregs[10]),
114 X(iregs[11]),
115 X(iregs[12]),
116 X(iregs[13]),
117 X(iregs[14]),
118 X(iregs[15]),
119 X(iregs[16]),
120 X(iregs[17]),
121 X(iregs[18]),
122 X(iregs[19]),
123 X(iregs[20]),
124 X(iregs[21]),
125 X(iregs[22]),
126 X(iregs[23]),
127 X(iregs[24]),
128 X(iregs[25]),
129 X(iregs[26]),
130 X(iregs[27]),
131 X(iregs[28]),
132 X(iregs[29]),
133 X(iregs[30]),
134 X(iregs[31]),
135
136 X(fregs[0]), /* f0 */
137 X(fregs[1]),
138 X(fregs[2]),
139 X(fregs[3]),
140 X(fregs[4]),
141 X(fregs[5]),
142 X(fregs[6]),
143 X(fregs[7]),
144 X(fregs[8]),
145 X(fregs[9]),
146 X(fregs[10]),
147 X(fregs[11]),
148 X(fregs[12]),
149 X(fregs[13]),
150 X(fregs[14]),
151 X(fregs[15]),
152 X(fregs[16]),
153 X(fregs[17]),
154 X(fregs[18]),
155 X(fregs[19]),
156 X(fregs[20]),
157 X(fregs[21]),
158 X(fregs[22]),
159 X(fregs[23]),
160 X(fregs[24]),
161 X(fregs[25]),
162 X(fregs[26]),
163 X(fregs[27]),
164 X(fregs[28]),
165 X(fregs[29]),
166 X(fregs[30]),
167 X(fregs[31]),
168
169 X(srr0), /* IAR (PC) */
170 X(srr1), /* MSR (PS) */
171 X(cr), /* CR */
172 X(lr), /* LR */
173 X(ctr), /* CTR */
174 X(xer), /* XER */
175 X(mq) /* MQ */
176 };
177
178 #endif /* rs6000 */
179
180 #ifdef SPARC
181
182 /* This routine handles some oddball cases for Sparc registers and LynxOS.
183 In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
184 It also handles knows where to find the I & L regs on the stack. */
185
186 void
187 fetch_inferior_registers (regno)
188 int regno;
189 {
190 int whatregs = 0;
191
192 #define WHATREGS_FLOAT 1
193 #define WHATREGS_GEN 2
194 #define WHATREGS_STACK 4
195
196 if (regno == -1)
197 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
198 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
199 whatregs = WHATREGS_STACK;
200 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
201 whatregs = WHATREGS_FLOAT;
202 else
203 whatregs = WHATREGS_GEN;
204
205 if (whatregs & WHATREGS_GEN)
206 {
207 struct econtext ec; /* general regs */
208 char buf[MAX_REGISTER_RAW_SIZE];
209 int retval;
210 int i;
211
212 errno = 0;
213 retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
214 0);
215 if (errno)
216 perror_with_name ("ptrace(PTRACE_GETREGS)");
217
218 memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
219 supply_register (G0_REGNUM, buf);
220 supply_register (TBR_REGNUM, (char *)&ec.tbr);
221
222 memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
223 4 * REGISTER_RAW_SIZE (G1_REGNUM));
224 for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
225 register_valid[i] = 1;
226
227 supply_register (PS_REGNUM, (char *)&ec.psr);
228 supply_register (Y_REGNUM, (char *)&ec.y);
229 supply_register (PC_REGNUM, (char *)&ec.pc);
230 supply_register (NPC_REGNUM, (char *)&ec.npc);
231 supply_register (WIM_REGNUM, (char *)&ec.wim);
232
233 memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
234 8 * REGISTER_RAW_SIZE (O0_REGNUM));
235 for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
236 register_valid[i] = 1;
237 }
238
239 if (whatregs & WHATREGS_STACK)
240 {
241 CORE_ADDR sp;
242 int i;
243
244 sp = read_register (SP_REGNUM);
245
246 target_xfer_memory (sp + FRAME_SAVED_I0,
247 &registers[REGISTER_BYTE(I0_REGNUM)],
248 8 * REGISTER_RAW_SIZE (I0_REGNUM), 0);
249 for (i = I0_REGNUM; i <= I7_REGNUM; i++)
250 register_valid[i] = 1;
251
252 target_xfer_memory (sp + FRAME_SAVED_L0,
253 &registers[REGISTER_BYTE(L0_REGNUM)],
254 8 * REGISTER_RAW_SIZE (L0_REGNUM), 0);
255 for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
256 register_valid[i] = 1;
257 }
258
259 if (whatregs & WHATREGS_FLOAT)
260 {
261 struct fcontext fc; /* fp regs */
262 int retval;
263 int i;
264
265 errno = 0;
266 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
267 0);
268 if (errno)
269 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
270
271 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
272 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
273 for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
274 register_valid[i] = 1;
275
276 supply_register (FPS_REGNUM, (char *)&fc.fsr);
277 }
278 }
279
280 /* This routine handles storing of the I & L regs for the Sparc. The trick
281 here is that they actually live on the stack. The really tricky part is
282 that when changing the stack pointer, the I & L regs must be written to
283 where the new SP points, otherwise the regs will be incorrect when the
284 process is started up again. We assume that the I & L regs are valid at
285 this point. */
286
287 void
288 store_inferior_registers (regno)
289 int regno;
290 {
291 int whatregs = 0;
292
293 if (regno == -1)
294 whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
295 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
296 whatregs = WHATREGS_STACK;
297 else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
298 whatregs = WHATREGS_FLOAT;
299 else if (regno == SP_REGNUM)
300 whatregs = WHATREGS_STACK | WHATREGS_GEN;
301 else
302 whatregs = WHATREGS_GEN;
303
304 if (whatregs & WHATREGS_GEN)
305 {
306 struct econtext ec; /* general regs */
307 int retval;
308
309 ec.tbr = read_register (TBR_REGNUM);
310 memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
311 4 * REGISTER_RAW_SIZE (G1_REGNUM));
312
313 ec.psr = read_register (PS_REGNUM);
314 ec.y = read_register (Y_REGNUM);
315 ec.pc = read_register (PC_REGNUM);
316 ec.npc = read_register (NPC_REGNUM);
317 ec.wim = read_register (WIM_REGNUM);
318
319 memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
320 8 * REGISTER_RAW_SIZE (O0_REGNUM));
321
322 errno = 0;
323 retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
324 0);
325 if (errno)
326 perror_with_name ("ptrace(PTRACE_SETREGS)");
327 }
328
329 if (whatregs & WHATREGS_STACK)
330 {
331 int regoffset;
332 CORE_ADDR sp;
333
334 sp = read_register (SP_REGNUM);
335
336 if (regno == -1 || regno == SP_REGNUM)
337 {
338 if (!register_valid[L0_REGNUM+5])
339 abort();
340 target_xfer_memory (sp + FRAME_SAVED_I0,
341 &registers[REGISTER_BYTE (I0_REGNUM)],
342 8 * REGISTER_RAW_SIZE (I0_REGNUM), 1);
343
344 target_xfer_memory (sp + FRAME_SAVED_L0,
345 &registers[REGISTER_BYTE (L0_REGNUM)],
346 8 * REGISTER_RAW_SIZE (L0_REGNUM), 1);
347 }
348 else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
349 {
350 if (!register_valid[regno])
351 abort();
352 if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
353 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
354 + FRAME_SAVED_L0;
355 else
356 regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
357 + FRAME_SAVED_I0;
358 target_xfer_memory (sp + regoffset, &registers[REGISTER_BYTE (regno)],
359 REGISTER_RAW_SIZE (regno), 1);
360 }
361 }
362
363 if (whatregs & WHATREGS_FLOAT)
364 {
365 struct fcontext fc; /* fp regs */
366 int retval;
367
368 /* We read fcontext first so that we can get good values for fq_t... */
369 errno = 0;
370 retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
371 0);
372 if (errno)
373 perror_with_name ("ptrace(PTRACE_GETFPREGS)");
374
375 memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
376 32 * REGISTER_RAW_SIZE (FP0_REGNUM));
377
378 fc.fsr = read_register (FPS_REGNUM);
379
380 errno = 0;
381 retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
382 0);
383 if (errno)
384 perror_with_name ("ptrace(PTRACE_SETFPREGS)");
385 }
386 }
387 #endif /* SPARC */
388
389 #if defined (I386) || defined (M68K) || defined (rs6000)
390
391 /* Return the offset relative to the start of the per-thread data to the
392 saved context block. */
393
394 static unsigned long
395 registers_addr(pid)
396 int pid;
397 {
398 CORE_ADDR stblock;
399 int ecpoff = offsetof(st_t, ecp);
400 CORE_ADDR ecp;
401
402 errno = 0;
403 stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE)0,
404 0);
405 if (errno)
406 perror_with_name ("ptrace(PTRACE_THREADUSER)");
407
408 ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE)ecpoff,
409 0);
410 if (errno)
411 perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");
412
413 return ecp - stblock;
414 }
415
416 /* Fetch one or more registers from the inferior. REGNO == -1 to get
417 them all. We actually fetch more than requested, when convenient,
418 marking them as valid so we won't fetch them again. */
419
420 void
421 fetch_inferior_registers (regno)
422 int regno;
423 {
424 int reglo, reghi;
425 int i;
426 unsigned long ecp;
427
428 if (regno == -1)
429 {
430 reglo = 0;
431 reghi = NUM_REGS - 1;
432 }
433 else
434 reglo = reghi = regno;
435
436 ecp = registers_addr (inferior_pid);
437
438 for (regno = reglo; regno <= reghi; regno++)
439 {
440 char buf[MAX_REGISTER_RAW_SIZE];
441 int ptrace_fun = PTRACE_PEEKTHREAD;
442
443 #ifdef M68K
444 ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
445 #endif
446
447 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
448 {
449 unsigned int reg;
450
451 errno = 0;
452 reg = ptrace (ptrace_fun, inferior_pid,
453 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
454 if (errno)
455 perror_with_name ("ptrace(PTRACE_PEEKUSP)");
456
457 *(int *)&buf[i] = reg;
458 }
459 supply_register (regno, buf);
460 }
461 }
462
463 /* Store our register values back into the inferior.
464 If REGNO is -1, do this for all registers.
465 Otherwise, REGNO specifies which register (so we can save time). */
466
467 void
468 store_inferior_registers (regno)
469 int regno;
470 {
471 int reglo, reghi;
472 int i;
473 unsigned long ecp;
474
475 if (regno == -1)
476 {
477 reglo = 0;
478 reghi = NUM_REGS - 1;
479 }
480 else
481 reglo = reghi = regno;
482
483 ecp = registers_addr (inferior_pid);
484
485 for (regno = reglo; regno <= reghi; regno++)
486 {
487 int ptrace_fun = PTRACE_POKEUSER;
488
489 if (CANNOT_STORE_REGISTER (regno))
490 continue;
491
492 #ifdef M68K
493 ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
494 #endif
495
496 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
497 {
498 unsigned int reg;
499
500 reg = *(unsigned int *)&registers[REGISTER_BYTE (regno) + i];
501
502 errno = 0;
503 ptrace (ptrace_fun, inferior_pid,
504 (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
505 if (errno)
506 perror_with_name ("ptrace(PTRACE_POKEUSP)");
507 }
508 }
509 }
510 #endif /* defined (I386) || defined (M68K) || defined (rs6000) */
511
512 /* Wait for child to do something. Return pid of child, or -1 in case
513 of error; store status through argument pointer OURSTATUS. */
514
515 int
516 child_wait (pid, ourstatus)
517 int pid;
518 struct target_waitstatus *ourstatus;
519 {
520 int save_errno;
521 int thread;
522 int status;
523
524 while (1)
525 {
526 int sig;
527
528 if (attach_flag)
529 set_sigint_trap(); /* Causes SIGINT to be passed on to the
530 attached process. */
531 pid = wait (&status);
532 #ifdef SPARC
533 /* Swap halves of status so that the rest of GDB can understand it */
534 status = (status << 16) | ((unsigned)status >> 16);
535 #endif
536
537 save_errno = errno;
538
539 if (attach_flag)
540 clear_sigint_trap();
541
542 if (pid == -1)
543 {
544 if (save_errno == EINTR)
545 continue;
546 fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
547 safe_strerror (save_errno));
548 /* Claim it exited with unknown signal. */
549 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
550 ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
551 return -1;
552 }
553
554 if (pid != PIDGET (inferior_pid)) /* Some other process?!? */
555 continue;
556
557 /* thread = WIFTID (status);*/
558 thread = status >> 16;
559
560 /* Initial thread value can only be acquired via wait, so we have to
561 resort to this hack. */
562
563 if (TIDGET (inferior_pid) == 0)
564 {
565 inferior_pid = BUILDPID (inferior_pid, thread);
566 add_thread (inferior_pid);
567 }
568
569 pid = BUILDPID (pid, thread);
570
571 store_waitstatus (ourstatus, status);
572
573 return pid;
574 }
575 }
576
577 /* Convert a Lynx process ID to a string. Returns the string in a static
578 buffer. */
579
580 char *
581 lynx_pid_to_str (pid)
582 int pid;
583 {
584 static char buf[40];
585
586 sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));
587
588 return buf;
589 }
590
591 /* Extract the register values out of the core file and store
592 them where `read_register' will find them.
593
594 CORE_REG_SECT points to the register values themselves, read into memory.
595 CORE_REG_SIZE is the size of that area.
596 WHICH says which set of registers we are handling (0 = int, 2 = float
597 on machines where they are discontiguous).
598 REG_ADDR is the offset from u.u_ar0 to the register values relative to
599 core_reg_sect. This is used with old-fashioned core files to
600 locate the registers in a large upage-plus-stack ".reg" section.
601 Original upage address X is at location core_reg_sect+x+reg_addr.
602 */
603
604 void
605 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
606 char *core_reg_sect;
607 unsigned core_reg_size;
608 int which;
609 unsigned reg_addr;
610 {
611 struct st_entry s;
612 unsigned int regno;
613
614 for (regno = 0; regno < NUM_REGS; regno++)
615 supply_register (regno, core_reg_sect + offsetof (st_t, ec)
616 + regmap[regno]);
617
618 #ifdef SPARC
619 /* Fetching this register causes all of the I & L regs to be read from the
620 stack and validated. */
621
622 fetch_inferior_registers (I0_REGNUM);
623 #endif
624 }
This page took 0.042025 seconds and 4 git commands to generate.