testsuite: Fix false FAIL in gdb.cp/casts.exp
[deliverable/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "elf-bfd.h"
22 #include "elf/m32c.h"
23 #include "gdb/sim-m32c.h"
24 #include "dis-asm.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "frame-unwind.h"
30 #include "dwarf2-frame.h"
31 #include "dwarf2expr.h"
32 #include "symtab.h"
33 #include "gdbcore.h"
34 #include "value.h"
35 #include "reggroups.h"
36 #include "prologue-value.h"
37 #include "target.h"
38 #include "objfiles.h"
39
40 \f
41 /* The m32c tdep structure. */
42
43 static struct reggroup *m32c_dma_reggroup;
44
45 struct m32c_reg;
46
47 /* The type of a function that moves the value of REG between CACHE or
48 BUF --- in either direction. */
49 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
50 struct regcache *cache,
51 const gdb_byte *buf);
52
53 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
54 struct regcache *cache,
55 gdb_byte *buf);
56
57 struct m32c_reg
58 {
59 /* The name of this register. */
60 const char *name;
61
62 /* Its type. */
63 struct type *type;
64
65 /* The architecture this register belongs to. */
66 struct gdbarch *arch;
67
68 /* Its GDB register number. */
69 int num;
70
71 /* Its sim register number. */
72 int sim_num;
73
74 /* Its DWARF register number, or -1 if it doesn't have one. */
75 int dwarf_num;
76
77 /* Register group memberships. */
78 unsigned int general_p : 1;
79 unsigned int dma_p : 1;
80 unsigned int system_p : 1;
81 unsigned int save_restore_p : 1;
82
83 /* Functions to read its value from a regcache, and write its value
84 to a regcache. */
85 m32c_read_reg_t *read;
86 m32c_write_reg_t *write;
87
88 /* Data for READ and WRITE functions. The exact meaning depends on
89 the specific functions selected; see the comments for those
90 functions. */
91 struct m32c_reg *rx, *ry;
92 int n;
93 };
94
95
96 /* An overestimate of the number of raw and pseudoregisters we will
97 have. The exact answer depends on the variant of the architecture
98 at hand, but we can use this to declare statically allocated
99 arrays, and bump it up when needed. */
100 #define M32C_MAX_NUM_REGS (75)
101
102 /* The largest assigned DWARF register number. */
103 #define M32C_MAX_DWARF_REGNUM (40)
104
105
106 struct gdbarch_tdep
107 {
108 /* All the registers for this variant, indexed by GDB register
109 number, and the number of registers present. */
110 struct m32c_reg regs[M32C_MAX_NUM_REGS];
111
112 /* The number of valid registers. */
113 int num_regs;
114
115 /* Interesting registers. These are pointers into REGS. */
116 struct m32c_reg *pc, *flg;
117 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
118 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
119 struct m32c_reg *sb, *fb, *sp;
120
121 /* A table indexed by DWARF register numbers, pointing into
122 REGS. */
123 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
124
125 /* Types for this architecture. We can't use the builtin_type_foo
126 types, because they're not initialized when building a gdbarch
127 structure. */
128 struct type *voyd, *ptr_voyd, *func_voyd;
129 struct type *uint8, *uint16;
130 struct type *int8, *int16, *int32, *int64;
131
132 /* The types for data address and code address registers. */
133 struct type *data_addr_reg_type, *code_addr_reg_type;
134
135 /* The number of bytes a return address pushed by a 'jsr' instruction
136 occupies on the stack. */
137 int ret_addr_bytes;
138
139 /* The number of bytes an address register occupies on the stack
140 when saved by an 'enter' or 'pushm' instruction. */
141 int push_addr_bytes;
142 };
143
144 \f
145 /* Types. */
146
147 static void
148 make_types (struct gdbarch *arch)
149 {
150 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
151 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
152 int data_addr_reg_bits, code_addr_reg_bits;
153 char type_name[50];
154
155 #if 0
156 /* This is used to clip CORE_ADDR values, so this value is
157 appropriate both on the m32c, where pointers are 32 bits long,
158 and on the m16c, where pointers are sixteen bits long, but there
159 may be code above the 64k boundary. */
160 set_gdbarch_addr_bit (arch, 24);
161 #else
162 /* GCC uses 32 bits for addrs in the dwarf info, even though
163 only 16/24 bits are used. Setting addr_bit to 24 causes
164 errors in reading the dwarf addresses. */
165 set_gdbarch_addr_bit (arch, 32);
166 #endif
167
168 set_gdbarch_int_bit (arch, 16);
169 switch (mach)
170 {
171 case bfd_mach_m16c:
172 data_addr_reg_bits = 16;
173 code_addr_reg_bits = 24;
174 set_gdbarch_ptr_bit (arch, 16);
175 tdep->ret_addr_bytes = 3;
176 tdep->push_addr_bytes = 2;
177 break;
178
179 case bfd_mach_m32c:
180 data_addr_reg_bits = 24;
181 code_addr_reg_bits = 24;
182 set_gdbarch_ptr_bit (arch, 32);
183 tdep->ret_addr_bytes = 4;
184 tdep->push_addr_bytes = 4;
185 break;
186
187 default:
188 gdb_assert_not_reached ("unexpected mach");
189 }
190
191 /* The builtin_type_mumble variables are sometimes uninitialized when
192 this is called, so we avoid using them. */
193 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
194 tdep->ptr_voyd
195 = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
196 tdep->func_voyd = lookup_function_type (tdep->voyd);
197
198 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
199 gdbarch_bfd_arch_info (arch)->printable_name);
200 tdep->data_addr_reg_type
201 = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);
202
203 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
204 gdbarch_bfd_arch_info (arch)->printable_name);
205 tdep->code_addr_reg_type
206 = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);
207
208 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
209 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
210 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
211 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
212 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
213 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
214 }
215
216
217 \f
218 /* Register set. */
219
220 static const char *
221 m32c_register_name (struct gdbarch *gdbarch, int num)
222 {
223 return gdbarch_tdep (gdbarch)->regs[num].name;
224 }
225
226
227 static struct type *
228 m32c_register_type (struct gdbarch *arch, int reg_nr)
229 {
230 return gdbarch_tdep (arch)->regs[reg_nr].type;
231 }
232
233
234 static int
235 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
236 {
237 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
238 }
239
240
241 static int
242 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
246 && tdep->dwarf_regs[reg_nr])
247 return tdep->dwarf_regs[reg_nr]->num;
248 else
249 /* The DWARF CFI code expects to see -1 for invalid register
250 numbers. */
251 return -1;
252 }
253
254
255 static int
256 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
257 struct reggroup *group)
258 {
259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
260 struct m32c_reg *reg = &tdep->regs[regnum];
261
262 /* The anonymous raw registers aren't in any groups. */
263 if (! reg->name)
264 return 0;
265
266 if (group == all_reggroup)
267 return 1;
268
269 if (group == general_reggroup
270 && reg->general_p)
271 return 1;
272
273 if (group == m32c_dma_reggroup
274 && reg->dma_p)
275 return 1;
276
277 if (group == system_reggroup
278 && reg->system_p)
279 return 1;
280
281 /* Since the m32c DWARF register numbers refer to cooked registers, not
282 raw registers, and frame_pop depends on the save and restore groups
283 containing registers the DWARF CFI will actually mention, our save
284 and restore groups are cooked registers, not raw registers. (This is
285 why we can't use the default reggroup function.) */
286 if ((group == save_reggroup
287 || group == restore_reggroup)
288 && reg->save_restore_p)
289 return 1;
290
291 return 0;
292 }
293
294
295 /* Register move functions. We declare them here using
296 m32c_{read,write}_reg_t to check the types. */
297 static m32c_read_reg_t m32c_raw_read;
298 static m32c_read_reg_t m32c_banked_read;
299 static m32c_read_reg_t m32c_sb_read;
300 static m32c_read_reg_t m32c_part_read;
301 static m32c_read_reg_t m32c_cat_read;
302 static m32c_read_reg_t m32c_r3r2r1r0_read;
303
304 static m32c_write_reg_t m32c_raw_write;
305 static m32c_write_reg_t m32c_banked_write;
306 static m32c_write_reg_t m32c_sb_write;
307 static m32c_write_reg_t m32c_part_write;
308 static m32c_write_reg_t m32c_cat_write;
309 static m32c_write_reg_t m32c_r3r2r1r0_write;
310
311 /* Copy the value of the raw register REG from CACHE to BUF. */
312 static enum register_status
313 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
314 {
315 return regcache_raw_read (cache, reg->num, buf);
316 }
317
318
319 /* Copy the value of the raw register REG from BUF to CACHE. */
320 static enum register_status
321 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
322 const gdb_byte *buf)
323 {
324 regcache_raw_write (cache, reg->num, buf);
325
326 return REG_VALID;
327 }
328
329
330 /* Return the value of the 'flg' register in CACHE. */
331 static int
332 m32c_read_flg (struct regcache *cache)
333 {
334 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
335 ULONGEST flg;
336 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
337 return flg & 0xffff;
338 }
339
340
341 /* Evaluate the real register number of a banked register. */
342 static struct m32c_reg *
343 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
344 {
345 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
346 }
347
348
349 /* Move the value of a banked register from CACHE to BUF.
350 If the value of the 'flg' register in CACHE has any of the bits
351 masked in REG->n set, then read REG->ry. Otherwise, read
352 REG->rx. */
353 static enum register_status
354 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
355 {
356 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
357 return regcache_raw_read (cache, bank_reg->num, buf);
358 }
359
360
361 /* Move the value of a banked register from BUF to CACHE.
362 If the value of the 'flg' register in CACHE has any of the bits
363 masked in REG->n set, then write REG->ry. Otherwise, write
364 REG->rx. */
365 static enum register_status
366 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
367 const gdb_byte *buf)
368 {
369 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
370 regcache_raw_write (cache, bank_reg->num, buf);
371
372 return REG_VALID;
373 }
374
375
376 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
377 banked register; on bfd_mach_m16c, it's not. */
378 static enum register_status
379 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
380 {
381 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
382 return m32c_raw_read (reg->rx, cache, buf);
383 else
384 return m32c_banked_read (reg, cache, buf);
385 }
386
387
388 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
389 banked register; on bfd_mach_m16c, it's not. */
390 static enum register_status
391 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
392 {
393 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
394 m32c_raw_write (reg->rx, cache, buf);
395 else
396 m32c_banked_write (reg, cache, buf);
397
398 return REG_VALID;
399 }
400
401
402 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
403 and *LEN_P to the offset and length, in bytes, of the part REG
404 occupies in its underlying register. The offset is from the
405 lower-addressed end, regardless of the architecture's endianness.
406 (The M32C family is always little-endian, but let's keep those
407 assumptions out of here.) */
408 static void
409 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
410 {
411 /* The length of the containing register, of which REG is one part. */
412 int containing_len = TYPE_LENGTH (reg->rx->type);
413
414 /* The length of one "element" in our imaginary array. */
415 int elt_len = TYPE_LENGTH (reg->type);
416
417 /* The offset of REG's "element" from the least significant end of
418 the containing register. */
419 int elt_offset = reg->n * elt_len;
420
421 /* If we extend off the end, trim the length of the element. */
422 if (elt_offset + elt_len > containing_len)
423 {
424 elt_len = containing_len - elt_offset;
425 /* We shouldn't be declaring partial registers that go off the
426 end of their containing registers. */
427 gdb_assert (elt_len > 0);
428 }
429
430 /* Flip the offset around if we're big-endian. */
431 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
432 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
433
434 *offset_p = elt_offset;
435 *len_p = elt_len;
436 }
437
438
439 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
440 to BUF. Treating the value of the register REG->rx as an array of
441 REG->type values, where higher indices refer to more significant
442 bits, read the value of the REG->n'th element. */
443 static enum register_status
444 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
445 {
446 int offset, len;
447
448 memset (buf, 0, TYPE_LENGTH (reg->type));
449 m32c_find_part (reg, &offset, &len);
450 return regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
451 }
452
453
454 /* Move the value of a banked register from BUF to CACHE.
455 Treating the value of the register REG->rx as an array of REG->type
456 values, where higher indices refer to more significant bits, write
457 the value of the REG->n'th element. */
458 static enum register_status
459 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
460 const gdb_byte *buf)
461 {
462 int offset, len;
463
464 m32c_find_part (reg, &offset, &len);
465 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
466
467 return REG_VALID;
468 }
469
470
471 /* Move the value of REG from CACHE to BUF. REG's value is the
472 concatenation of the values of the registers REG->rx and REG->ry,
473 with REG->rx contributing the more significant bits. */
474 static enum register_status
475 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
476 {
477 int high_bytes = TYPE_LENGTH (reg->rx->type);
478 int low_bytes = TYPE_LENGTH (reg->ry->type);
479 enum register_status status;
480
481 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
482
483 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
484 {
485 status = regcache_cooked_read (cache, reg->rx->num, buf);
486 if (status == REG_VALID)
487 status = regcache_cooked_read (cache, reg->ry->num, buf + high_bytes);
488 }
489 else
490 {
491 status = regcache_cooked_read (cache, reg->rx->num, buf + low_bytes);
492 if (status == REG_VALID)
493 status = regcache_cooked_read (cache, reg->ry->num, buf);
494 }
495
496 return status;
497 }
498
499
500 /* Move the value of REG from CACHE to BUF. REG's value is the
501 concatenation of the values of the registers REG->rx and REG->ry,
502 with REG->rx contributing the more significant bits. */
503 static enum register_status
504 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
505 const gdb_byte *buf)
506 {
507 int high_bytes = TYPE_LENGTH (reg->rx->type);
508 int low_bytes = TYPE_LENGTH (reg->ry->type);
509
510 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
511
512 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
513 {
514 regcache_cooked_write (cache, reg->rx->num, buf);
515 regcache_cooked_write (cache, reg->ry->num, buf + high_bytes);
516 }
517 else
518 {
519 regcache_cooked_write (cache, reg->rx->num, buf + low_bytes);
520 regcache_cooked_write (cache, reg->ry->num, buf);
521 }
522
523 return REG_VALID;
524 }
525
526
527 /* Copy the value of the raw register REG from CACHE to BUF. REG is
528 the concatenation (from most significant to least) of r3, r2, r1,
529 and r0. */
530 static enum register_status
531 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, gdb_byte *buf)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
534 int len = TYPE_LENGTH (tdep->r0->type);
535 enum register_status status;
536
537 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
538 {
539 status = regcache_cooked_read (cache, tdep->r0->num, buf + len * 3);
540 if (status == REG_VALID)
541 status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 2);
542 if (status == REG_VALID)
543 status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 1);
544 if (status == REG_VALID)
545 status = regcache_cooked_read (cache, tdep->r3->num, buf);
546 }
547 else
548 {
549 status = regcache_cooked_read (cache, tdep->r0->num, buf);
550 if (status == REG_VALID)
551 status = regcache_cooked_read (cache, tdep->r1->num, buf + len * 1);
552 if (status == REG_VALID)
553 status = regcache_cooked_read (cache, tdep->r2->num, buf + len * 2);
554 if (status == REG_VALID)
555 status = regcache_cooked_read (cache, tdep->r3->num, buf + len * 3);
556 }
557
558 return status;
559 }
560
561
562 /* Copy the value of the raw register REG from BUF to CACHE. REG is
563 the concatenation (from most significant to least) of r3, r2, r1,
564 and r0. */
565 static enum register_status
566 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
567 const gdb_byte *buf)
568 {
569 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
570 int len = TYPE_LENGTH (tdep->r0->type);
571
572 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
573 {
574 regcache_cooked_write (cache, tdep->r0->num, buf + len * 3);
575 regcache_cooked_write (cache, tdep->r1->num, buf + len * 2);
576 regcache_cooked_write (cache, tdep->r2->num, buf + len * 1);
577 regcache_cooked_write (cache, tdep->r3->num, buf);
578 }
579 else
580 {
581 regcache_cooked_write (cache, tdep->r0->num, buf);
582 regcache_cooked_write (cache, tdep->r1->num, buf + len * 1);
583 regcache_cooked_write (cache, tdep->r2->num, buf + len * 2);
584 regcache_cooked_write (cache, tdep->r3->num, buf + len * 3);
585 }
586
587 return REG_VALID;
588 }
589
590
591 static enum register_status
592 m32c_pseudo_register_read (struct gdbarch *arch,
593 struct regcache *cache,
594 int cookednum,
595 gdb_byte *buf)
596 {
597 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
598 struct m32c_reg *reg;
599
600 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
601 gdb_assert (arch == get_regcache_arch (cache));
602 gdb_assert (arch == tdep->regs[cookednum].arch);
603 reg = &tdep->regs[cookednum];
604
605 return reg->read (reg, cache, buf);
606 }
607
608
609 static void
610 m32c_pseudo_register_write (struct gdbarch *arch,
611 struct regcache *cache,
612 int cookednum,
613 const gdb_byte *buf)
614 {
615 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
616 struct m32c_reg *reg;
617
618 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
619 gdb_assert (arch == get_regcache_arch (cache));
620 gdb_assert (arch == tdep->regs[cookednum].arch);
621 reg = &tdep->regs[cookednum];
622
623 reg->write (reg, cache, buf);
624 }
625
626
627 /* Add a register with the given fields to the end of ARCH's table.
628 Return a pointer to the newly added register. */
629 static struct m32c_reg *
630 add_reg (struct gdbarch *arch,
631 const char *name,
632 struct type *type,
633 int sim_num,
634 m32c_read_reg_t *read,
635 m32c_write_reg_t *write,
636 struct m32c_reg *rx,
637 struct m32c_reg *ry,
638 int n)
639 {
640 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
641 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
642
643 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
644
645 r->name = name;
646 r->type = type;
647 r->arch = arch;
648 r->num = tdep->num_regs;
649 r->sim_num = sim_num;
650 r->dwarf_num = -1;
651 r->general_p = 0;
652 r->dma_p = 0;
653 r->system_p = 0;
654 r->save_restore_p = 0;
655 r->read = read;
656 r->write = write;
657 r->rx = rx;
658 r->ry = ry;
659 r->n = n;
660
661 tdep->num_regs++;
662
663 return r;
664 }
665
666
667 /* Record NUM as REG's DWARF register number. */
668 static void
669 set_dwarf_regnum (struct m32c_reg *reg, int num)
670 {
671 gdb_assert (num < M32C_MAX_NUM_REGS);
672
673 /* Update the reg->DWARF mapping. Only count the first number
674 assigned to this register. */
675 if (reg->dwarf_num == -1)
676 reg->dwarf_num = num;
677
678 /* Update the DWARF->reg mapping. */
679 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
680 }
681
682
683 /* Mark REG as a general-purpose register, and return it. */
684 static struct m32c_reg *
685 mark_general (struct m32c_reg *reg)
686 {
687 reg->general_p = 1;
688 return reg;
689 }
690
691
692 /* Mark REG as a DMA register, and return it. */
693 static struct m32c_reg *
694 mark_dma (struct m32c_reg *reg)
695 {
696 reg->dma_p = 1;
697 return reg;
698 }
699
700
701 /* Mark REG as a SYSTEM register, and return it. */
702 static struct m32c_reg *
703 mark_system (struct m32c_reg *reg)
704 {
705 reg->system_p = 1;
706 return reg;
707 }
708
709
710 /* Mark REG as a save-restore register, and return it. */
711 static struct m32c_reg *
712 mark_save_restore (struct m32c_reg *reg)
713 {
714 reg->save_restore_p = 1;
715 return reg;
716 }
717
718
719 #define FLAGBIT_B 0x0010
720 #define FLAGBIT_U 0x0080
721
722 /* Handy macros for declaring registers. These all evaluate to
723 pointers to the register declared. Macros that define two
724 registers evaluate to a pointer to the first. */
725
726 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
727 #define R(name, type, sim_num) \
728 (add_reg (arch, (name), (type), (sim_num), \
729 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
730
731 /* The simulator register number for a raw register named NAME. */
732 #define SIM(name) (m32c_sim_reg_ ## name)
733
734 /* A raw unsigned 16-bit data register named NAME.
735 NAME should be an identifier, not a string. */
736 #define R16U(name) \
737 (R(#name, tdep->uint16, SIM (name)))
738
739 /* A raw data address register named NAME.
740 NAME should be an identifier, not a string. */
741 #define RA(name) \
742 (R(#name, tdep->data_addr_reg_type, SIM (name)))
743
744 /* A raw code address register named NAME. NAME should
745 be an identifier, not a string. */
746 #define RC(name) \
747 (R(#name, tdep->code_addr_reg_type, SIM (name)))
748
749 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
750 NAME should be an identifier, not a string. */
751 #define RP(name, type) \
752 (R(#name "0", (type), SIM (name ## 0)), \
753 R(#name "1", (type), SIM (name ## 1)) - 1)
754
755 /* A raw banked general-purpose data register named NAME.
756 NAME should be an identifier, not a string. */
757 #define RBD(name) \
758 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
759 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
760
761 /* A raw banked data address register named NAME.
762 NAME should be an identifier, not a string. */
763 #define RBA(name) \
764 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
765 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
766
767 /* A cooked register named NAME referring to a raw banked register
768 from the bank selected by the current value of FLG. RAW_PAIR
769 should be a pointer to the first register in the banked pair.
770 NAME must be an identifier, not a string. */
771 #define CB(name, raw_pair) \
772 (add_reg (arch, #name, (raw_pair)->type, 0, \
773 m32c_banked_read, m32c_banked_write, \
774 (raw_pair), (raw_pair + 1), FLAGBIT_B))
775
776 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
777 access the top and bottom halves of the register pointed to by
778 NAME. NAME should be an identifier. */
779 #define CHL(name, type) \
780 (add_reg (arch, #name "h", (type), 0, \
781 m32c_part_read, m32c_part_write, name, NULL, 1), \
782 add_reg (arch, #name "l", (type), 0, \
783 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
784
785 /* A register constructed by concatenating the two registers HIGH and
786 LOW, whose name is HIGHLOW and whose type is TYPE. */
787 #define CCAT(high, low, type) \
788 (add_reg (arch, #high #low, (type), 0, \
789 m32c_cat_read, m32c_cat_write, (high), (low), 0))
790
791 /* Abbreviations for marking register group membership. */
792 #define G(reg) (mark_general (reg))
793 #define S(reg) (mark_system (reg))
794 #define DMA(reg) (mark_dma (reg))
795
796
797 /* Construct the register set for ARCH. */
798 static void
799 make_regs (struct gdbarch *arch)
800 {
801 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
802 int mach = gdbarch_bfd_arch_info (arch)->mach;
803 int num_raw_regs;
804 int num_cooked_regs;
805
806 struct m32c_reg *r0;
807 struct m32c_reg *r1;
808 struct m32c_reg *r2;
809 struct m32c_reg *r3;
810 struct m32c_reg *a0;
811 struct m32c_reg *a1;
812 struct m32c_reg *fb;
813 struct m32c_reg *sb;
814 struct m32c_reg *sp;
815 struct m32c_reg *r0hl;
816 struct m32c_reg *r1hl;
817 struct m32c_reg *r2r0;
818 struct m32c_reg *r3r1;
819 struct m32c_reg *r3r1r2r0;
820 struct m32c_reg *r3r2r1r0;
821 struct m32c_reg *a1a0;
822
823 struct m32c_reg *raw_r0_pair = RBD (r0);
824 struct m32c_reg *raw_r1_pair = RBD (r1);
825 struct m32c_reg *raw_r2_pair = RBD (r2);
826 struct m32c_reg *raw_r3_pair = RBD (r3);
827 struct m32c_reg *raw_a0_pair = RBA (a0);
828 struct m32c_reg *raw_a1_pair = RBA (a1);
829 struct m32c_reg *raw_fb_pair = RBA (fb);
830
831 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
832 We always declare both raw registers, and deal with the distinction
833 in the pseudoregister. */
834 struct m32c_reg *raw_sb_pair = RBA (sb);
835
836 struct m32c_reg *usp = S (RA (usp));
837 struct m32c_reg *isp = S (RA (isp));
838 struct m32c_reg *intb = S (RC (intb));
839 struct m32c_reg *pc = G (RC (pc));
840 struct m32c_reg *flg = G (R16U (flg));
841
842 if (mach == bfd_mach_m32c)
843 {
844 struct m32c_reg *svf = S (R16U (svf));
845 struct m32c_reg *svp = S (RC (svp));
846 struct m32c_reg *vct = S (RC (vct));
847
848 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
849 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
850 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
851 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
852 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
853 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
854 }
855
856 num_raw_regs = tdep->num_regs;
857
858 r0 = G (CB (r0, raw_r0_pair));
859 r1 = G (CB (r1, raw_r1_pair));
860 r2 = G (CB (r2, raw_r2_pair));
861 r3 = G (CB (r3, raw_r3_pair));
862 a0 = G (CB (a0, raw_a0_pair));
863 a1 = G (CB (a1, raw_a1_pair));
864 fb = G (CB (fb, raw_fb_pair));
865
866 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
867 Specify custom read/write functions that do the right thing. */
868 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
869 m32c_sb_read, m32c_sb_write,
870 raw_sb_pair, raw_sb_pair + 1, 0));
871
872 /* The current sp is either usp or isp, depending on the value of
873 the FLG register's U bit. */
874 sp = G (add_reg (arch, "sp", usp->type, 0,
875 m32c_banked_read, m32c_banked_write,
876 isp, usp, FLAGBIT_U));
877
878 r0hl = CHL (r0, tdep->int8);
879 r1hl = CHL (r1, tdep->int8);
880 CHL (r2, tdep->int8);
881 CHL (r3, tdep->int8);
882 CHL (intb, tdep->int16);
883
884 r2r0 = CCAT (r2, r0, tdep->int32);
885 r3r1 = CCAT (r3, r1, tdep->int32);
886 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
887
888 r3r2r1r0
889 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
890 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
891
892 if (mach == bfd_mach_m16c)
893 a1a0 = CCAT (a1, a0, tdep->int32);
894 else
895 a1a0 = NULL;
896
897 num_cooked_regs = tdep->num_regs - num_raw_regs;
898
899 tdep->pc = pc;
900 tdep->flg = flg;
901 tdep->r0 = r0;
902 tdep->r1 = r1;
903 tdep->r2 = r2;
904 tdep->r3 = r3;
905 tdep->r2r0 = r2r0;
906 tdep->r3r2r1r0 = r3r2r1r0;
907 tdep->r3r1r2r0 = r3r1r2r0;
908 tdep->a0 = a0;
909 tdep->a1 = a1;
910 tdep->sb = sb;
911 tdep->fb = fb;
912 tdep->sp = sp;
913
914 /* Set up the DWARF register table. */
915 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
916 set_dwarf_regnum (r0hl + 1, 0x01);
917 set_dwarf_regnum (r0hl + 0, 0x02);
918 set_dwarf_regnum (r1hl + 1, 0x03);
919 set_dwarf_regnum (r1hl + 0, 0x04);
920 set_dwarf_regnum (r0, 0x05);
921 set_dwarf_regnum (r1, 0x06);
922 set_dwarf_regnum (r2, 0x07);
923 set_dwarf_regnum (r3, 0x08);
924 set_dwarf_regnum (a0, 0x09);
925 set_dwarf_regnum (a1, 0x0a);
926 set_dwarf_regnum (fb, 0x0b);
927 set_dwarf_regnum (sp, 0x0c);
928 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
929 set_dwarf_regnum (sb, 0x13);
930 set_dwarf_regnum (r2r0, 0x15);
931 set_dwarf_regnum (r3r1, 0x16);
932 if (a1a0)
933 set_dwarf_regnum (a1a0, 0x17);
934
935 /* Enumerate the save/restore register group.
936
937 The regcache_save and regcache_restore functions apply their read
938 function to each register in this group.
939
940 Since frame_pop supplies frame_unwind_register as its read
941 function, the registers meaningful to the Dwarf unwinder need to
942 be in this group.
943
944 On the other hand, when we make inferior calls, save_inferior_status
945 and restore_inferior_status use them to preserve the current register
946 values across the inferior call. For this, you'd kind of like to
947 preserve all the raw registers, to protect the interrupted code from
948 any sort of bank switching the callee might have done. But we handle
949 those cases so badly anyway --- for example, it matters whether we
950 restore FLG before or after we restore the general-purpose registers,
951 but there's no way to express that --- that it isn't worth worrying
952 about.
953
954 We omit control registers like inthl: if you call a function that
955 changes those, it's probably because you wanted that change to be
956 visible to the interrupted code. */
957 mark_save_restore (r0);
958 mark_save_restore (r1);
959 mark_save_restore (r2);
960 mark_save_restore (r3);
961 mark_save_restore (a0);
962 mark_save_restore (a1);
963 mark_save_restore (sb);
964 mark_save_restore (fb);
965 mark_save_restore (sp);
966 mark_save_restore (pc);
967 mark_save_restore (flg);
968
969 set_gdbarch_num_regs (arch, num_raw_regs);
970 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
971 set_gdbarch_pc_regnum (arch, pc->num);
972 set_gdbarch_sp_regnum (arch, sp->num);
973 set_gdbarch_register_name (arch, m32c_register_name);
974 set_gdbarch_register_type (arch, m32c_register_type);
975 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
976 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
977 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
978 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
979 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
980 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
981
982 reggroup_add (arch, general_reggroup);
983 reggroup_add (arch, all_reggroup);
984 reggroup_add (arch, save_reggroup);
985 reggroup_add (arch, restore_reggroup);
986 reggroup_add (arch, system_reggroup);
987 reggroup_add (arch, m32c_dma_reggroup);
988 }
989
990
991 \f
992 /* Breakpoints. */
993
994 static const unsigned char *
995 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
996 {
997 static unsigned char break_insn[] = { 0x00 }; /* brk */
998
999 *len = sizeof (break_insn);
1000 return break_insn;
1001 }
1002
1003
1004 \f
1005 /* Prologue analysis. */
1006
1007 enum m32c_prologue_kind
1008 {
1009 /* This function uses a frame pointer. */
1010 prologue_with_frame_ptr,
1011
1012 /* This function has no frame pointer. */
1013 prologue_sans_frame_ptr,
1014
1015 /* This function sets up the stack, so its frame is the first
1016 frame on the stack. */
1017 prologue_first_frame
1018 };
1019
1020 struct m32c_prologue
1021 {
1022 /* For consistency with the DWARF 2 .debug_frame info generated by
1023 GCC, a frame's CFA is the address immediately after the saved
1024 return address. */
1025
1026 /* The architecture for which we generated this prologue info. */
1027 struct gdbarch *arch;
1028
1029 enum m32c_prologue_kind kind;
1030
1031 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1032 CFA to where the frame pointer points. This is always zero or
1033 negative. */
1034 LONGEST frame_ptr_offset;
1035
1036 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1037 the stack pointer --- always zero or negative.
1038
1039 Calling this a "size" is a bit misleading, but given that the
1040 stack grows downwards, using offsets for everything keeps one
1041 from going completely sign-crazy: you never change anything's
1042 sign for an ADD instruction; always change the second operand's
1043 sign for a SUB instruction; and everything takes care of
1044 itself.
1045
1046 Functions that use alloca don't have a constant frame size. But
1047 they always have frame pointers, so we must use that to find the
1048 CFA (and perhaps to unwind the stack pointer). */
1049 LONGEST frame_size;
1050
1051 /* The address of the first instruction at which the frame has been
1052 set up and the arguments are where the debug info says they are
1053 --- as best as we can tell. */
1054 CORE_ADDR prologue_end;
1055
1056 /* reg_offset[R] is the offset from the CFA at which register R is
1057 saved, or 1 if register R has not been saved. (Real values are
1058 always zero or negative.) */
1059 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1060 };
1061
1062
1063 /* The longest I've seen, anyway. */
1064 #define M32C_MAX_INSN_LEN (9)
1065
1066 /* Processor state, for the prologue analyzer. */
1067 struct m32c_pv_state
1068 {
1069 struct gdbarch *arch;
1070 pv_t r0, r1, r2, r3;
1071 pv_t a0, a1;
1072 pv_t sb, fb, sp;
1073 pv_t pc;
1074 struct pv_area *stack;
1075
1076 /* Bytes from the current PC, the address they were read from,
1077 and the address of the next unconsumed byte. */
1078 gdb_byte insn[M32C_MAX_INSN_LEN];
1079 CORE_ADDR scan_pc, next_addr;
1080 };
1081
1082
1083 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1084 all went well, or non-zero if simulating the action would trash our
1085 state. */
1086 static int
1087 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1088 {
1089 if (pv_area_store_would_trash (state->stack, state->sp))
1090 return 1;
1091
1092 state->sp = pv_add_constant (state->sp, -size);
1093 pv_area_store (state->stack, state->sp, size, value);
1094
1095 return 0;
1096 }
1097
1098
1099 enum srcdest_kind
1100 {
1101 srcdest_reg,
1102 srcdest_partial_reg,
1103 srcdest_mem
1104 };
1105
1106 /* A source or destination location for an m16c or m32c
1107 instruction. */
1108 struct srcdest
1109 {
1110 /* If srcdest_reg, the location is a register pointed to by REG.
1111 If srcdest_partial_reg, the location is part of a register pointed
1112 to by REG. We don't try to handle this too well.
1113 If srcdest_mem, the location is memory whose address is ADDR. */
1114 enum srcdest_kind kind;
1115 pv_t *reg, addr;
1116 };
1117
1118
1119 /* Return the SIZE-byte value at LOC in STATE. */
1120 static pv_t
1121 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1122 {
1123 if (loc.kind == srcdest_mem)
1124 return pv_area_fetch (state->stack, loc.addr, size);
1125 else if (loc.kind == srcdest_partial_reg)
1126 return pv_unknown ();
1127 else
1128 return *loc.reg;
1129 }
1130
1131
1132 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1133 all went well, or non-zero if simulating the store would trash our
1134 state. */
1135 static int
1136 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1137 pv_t value, int size)
1138 {
1139 if (loc.kind == srcdest_mem)
1140 {
1141 if (pv_area_store_would_trash (state->stack, loc.addr))
1142 return 1;
1143 pv_area_store (state->stack, loc.addr, size, value);
1144 }
1145 else if (loc.kind == srcdest_partial_reg)
1146 *loc.reg = pv_unknown ();
1147 else
1148 *loc.reg = value;
1149
1150 return 0;
1151 }
1152
1153
1154 static int
1155 m32c_sign_ext (int v, int bits)
1156 {
1157 int mask = 1 << (bits - 1);
1158 return (v ^ mask) - mask;
1159 }
1160
1161 static unsigned int
1162 m32c_next_byte (struct m32c_pv_state *st)
1163 {
1164 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1165 return st->insn[st->next_addr++ - st->scan_pc];
1166 }
1167
1168 static int
1169 m32c_udisp8 (struct m32c_pv_state *st)
1170 {
1171 return m32c_next_byte (st);
1172 }
1173
1174
1175 static int
1176 m32c_sdisp8 (struct m32c_pv_state *st)
1177 {
1178 return m32c_sign_ext (m32c_next_byte (st), 8);
1179 }
1180
1181
1182 static int
1183 m32c_udisp16 (struct m32c_pv_state *st)
1184 {
1185 int low = m32c_next_byte (st);
1186 int high = m32c_next_byte (st);
1187
1188 return low + (high << 8);
1189 }
1190
1191
1192 static int
1193 m32c_sdisp16 (struct m32c_pv_state *st)
1194 {
1195 int low = m32c_next_byte (st);
1196 int high = m32c_next_byte (st);
1197
1198 return m32c_sign_ext (low + (high << 8), 16);
1199 }
1200
1201
1202 static int
1203 m32c_udisp24 (struct m32c_pv_state *st)
1204 {
1205 int low = m32c_next_byte (st);
1206 int mid = m32c_next_byte (st);
1207 int high = m32c_next_byte (st);
1208
1209 return low + (mid << 8) + (high << 16);
1210 }
1211
1212
1213 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1214 static int
1215 m32c_get_src23 (unsigned char *i)
1216 {
1217 return (((i[0] & 0x70) >> 2)
1218 | ((i[1] & 0x30) >> 4));
1219 }
1220
1221
1222 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1223 static int
1224 m32c_get_dest23 (unsigned char *i)
1225 {
1226 return (((i[0] & 0x0e) << 1)
1227 | ((i[1] & 0xc0) >> 6));
1228 }
1229
1230
1231 static struct srcdest
1232 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1233 int code, int size)
1234 {
1235 struct srcdest sd;
1236
1237 if (code < 6)
1238 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1239 else
1240 sd.kind = srcdest_mem;
1241
1242 sd.addr = pv_unknown ();
1243 sd.reg = 0;
1244
1245 switch (code)
1246 {
1247 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1248 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1249 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1250 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1251
1252 case 0x4: sd.reg = &st->a0; break;
1253 case 0x5: sd.reg = &st->a1; break;
1254
1255 case 0x6: sd.addr = st->a0; break;
1256 case 0x7: sd.addr = st->a1; break;
1257
1258 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1259 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1260 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1261 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1262
1263 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1264 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1265 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1266 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1267
1268 default:
1269 gdb_assert_not_reached ("unexpected srcdest4");
1270 }
1271
1272 return sd;
1273 }
1274
1275
1276 static struct srcdest
1277 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1278 {
1279 struct srcdest sd;
1280
1281 sd.addr = pv_unknown ();
1282 sd.reg = 0;
1283
1284 switch (code)
1285 {
1286 case 0x12:
1287 case 0x13:
1288 case 0x10:
1289 case 0x11:
1290 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1291 break;
1292
1293 case 0x02:
1294 case 0x03:
1295 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1296 break;
1297
1298 default:
1299 sd.kind = srcdest_mem;
1300 break;
1301
1302 }
1303
1304 switch (code)
1305 {
1306 case 0x12: sd.reg = &st->r0; break;
1307 case 0x13: sd.reg = &st->r1; break;
1308 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1309 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1310 case 0x02: sd.reg = &st->a0; break;
1311 case 0x03: sd.reg = &st->a1; break;
1312
1313 case 0x00: sd.addr = st->a0; break;
1314 case 0x01: sd.addr = st->a1; break;
1315 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1316 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1317 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1318 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1319 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1320 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1321 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1322 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1323 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1324 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1325 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1326 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1327 default:
1328 gdb_assert_not_reached ("unexpected sd23");
1329 }
1330
1331 if (ind)
1332 {
1333 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1334 sd.kind = srcdest_mem;
1335 }
1336
1337 return sd;
1338 }
1339
1340
1341 /* The r16c and r32c machines have instructions with similar
1342 semantics, but completely different machine language encodings. So
1343 we break out the semantics into their own functions, and leave
1344 machine-specific decoding in m32c_analyze_prologue.
1345
1346 The following functions all expect their arguments already decoded,
1347 and they all return zero if analysis should continue past this
1348 instruction, or non-zero if analysis should stop. */
1349
1350
1351 /* Simulate an 'enter SIZE' instruction in STATE. */
1352 static int
1353 m32c_pv_enter (struct m32c_pv_state *state, int size)
1354 {
1355 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1356
1357 /* If simulating this store would require us to forget
1358 everything we know about the stack frame in the name of
1359 accuracy, it would be better to just quit now. */
1360 if (pv_area_store_would_trash (state->stack, state->sp))
1361 return 1;
1362
1363 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1364 return 1;
1365 state->fb = state->sp;
1366 state->sp = pv_add_constant (state->sp, -size);
1367
1368 return 0;
1369 }
1370
1371
1372 static int
1373 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1374 int bit, int src, int size)
1375 {
1376 if (bit & src)
1377 {
1378 if (m32c_pv_push (state, reg, size))
1379 return 1;
1380 }
1381
1382 return 0;
1383 }
1384
1385
1386 /* Simulate a 'pushm SRC' instruction in STATE. */
1387 static int
1388 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1389 {
1390 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1391
1392 /* The bits in SRC indicating which registers to save are:
1393 r0 r1 r2 r3 a0 a1 sb fb */
1394 return
1395 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1396 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1397 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1398 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1399 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1400 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1401 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1402 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1403 }
1404
1405 /* Return non-zero if VALUE is the first incoming argument register. */
1406
1407 static int
1408 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1409 {
1410 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1411 return (value.kind == pvk_register
1412 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1413 ? (value.reg == tdep->r1->num)
1414 : (value.reg == tdep->r0->num))
1415 && value.k == 0);
1416 }
1417
1418 /* Return non-zero if VALUE is an incoming argument register. */
1419
1420 static int
1421 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1422 {
1423 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1424 return (value.kind == pvk_register
1425 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1426 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1427 : (value.reg == tdep->r0->num))
1428 && value.k == 0);
1429 }
1430
1431 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1432 argument register to its stack slot in STATE. Such instructions
1433 should be included in the prologue, if possible.
1434
1435 The store is a spill if:
1436 - the value being stored is the original value of an argument register;
1437 - the value has not already been stored somewhere in STACK; and
1438 - LOC is a stack slot (e.g., a memory location whose address is
1439 relative to the original value of the SP). */
1440
1441 static int
1442 m32c_is_arg_spill (struct m32c_pv_state *st,
1443 struct srcdest loc,
1444 pv_t value)
1445 {
1446 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1447
1448 return (m32c_is_arg_reg (st, value)
1449 && loc.kind == srcdest_mem
1450 && pv_is_register (loc.addr, tdep->sp->num)
1451 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1452 }
1453
1454 /* Return non-zero if a store of VALUE to LOC is probably
1455 copying the struct return address into an address register
1456 for immediate use. This is basically a "spill" into the
1457 address register, instead of onto the stack.
1458
1459 The prerequisites are:
1460 - value being stored is original value of the FIRST arg register;
1461 - value has not already been stored on stack; and
1462 - LOC is an address register (a0 or a1). */
1463
1464 static int
1465 m32c_is_struct_return (struct m32c_pv_state *st,
1466 struct srcdest loc,
1467 pv_t value)
1468 {
1469 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1470
1471 return (m32c_is_1st_arg_reg (st, value)
1472 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1473 && loc.kind == srcdest_reg
1474 && (pv_is_register (*loc.reg, tdep->a0->num)
1475 || pv_is_register (*loc.reg, tdep->a1->num)));
1476 }
1477
1478 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1479 was a register save:
1480 - all the named registers should have their original values, and
1481 - the stack pointer should be at a constant offset from the
1482 original stack pointer. */
1483 static int
1484 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1485 {
1486 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1487 /* The bits in SRC indicating which registers to save are:
1488 r0 r1 r2 r3 a0 a1 sb fb */
1489 return
1490 (pv_is_register (st->sp, tdep->sp->num)
1491 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1492 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1493 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1494 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1495 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1496 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1497 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1498 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1499 }
1500
1501
1502 /* Function for finding saved registers in a 'struct pv_area'; we pass
1503 this to pv_area_scan.
1504
1505 If VALUE is a saved register, ADDR says it was saved at a constant
1506 offset from the frame base, and SIZE indicates that the whole
1507 register was saved, record its offset in RESULT_UNTYPED. */
1508 static void
1509 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1510 {
1511 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1512 struct gdbarch *arch = prologue->arch;
1513 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1514
1515 /* Is this the unchanged value of some register being saved on the
1516 stack? */
1517 if (value.kind == pvk_register
1518 && value.k == 0
1519 && pv_is_register (addr, tdep->sp->num))
1520 {
1521 /* Some registers require special handling: they're saved as a
1522 larger value than the register itself. */
1523 CORE_ADDR saved_size = register_size (arch, value.reg);
1524
1525 if (value.reg == tdep->pc->num)
1526 saved_size = tdep->ret_addr_bytes;
1527 else if (register_type (arch, value.reg)
1528 == tdep->data_addr_reg_type)
1529 saved_size = tdep->push_addr_bytes;
1530
1531 if (size == saved_size)
1532 {
1533 /* Find which end of the saved value corresponds to our
1534 register. */
1535 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1536 prologue->reg_offset[value.reg]
1537 = (addr.k + saved_size - register_size (arch, value.reg));
1538 else
1539 prologue->reg_offset[value.reg] = addr.k;
1540 }
1541 }
1542 }
1543
1544
1545 /* Analyze the function prologue for ARCH at START, going no further
1546 than LIMIT, and place a description of what we found in
1547 PROLOGUE. */
1548 static void
1549 m32c_analyze_prologue (struct gdbarch *arch,
1550 CORE_ADDR start, CORE_ADDR limit,
1551 struct m32c_prologue *prologue)
1552 {
1553 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1554 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1555 CORE_ADDR after_last_frame_related_insn;
1556 struct cleanup *back_to;
1557 struct m32c_pv_state st;
1558
1559 st.arch = arch;
1560 st.r0 = pv_register (tdep->r0->num, 0);
1561 st.r1 = pv_register (tdep->r1->num, 0);
1562 st.r2 = pv_register (tdep->r2->num, 0);
1563 st.r3 = pv_register (tdep->r3->num, 0);
1564 st.a0 = pv_register (tdep->a0->num, 0);
1565 st.a1 = pv_register (tdep->a1->num, 0);
1566 st.sb = pv_register (tdep->sb->num, 0);
1567 st.fb = pv_register (tdep->fb->num, 0);
1568 st.sp = pv_register (tdep->sp->num, 0);
1569 st.pc = pv_register (tdep->pc->num, 0);
1570 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1571 back_to = make_cleanup_free_pv_area (st.stack);
1572
1573 /* Record that the call instruction has saved the return address on
1574 the stack. */
1575 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1576
1577 memset (prologue, 0, sizeof (*prologue));
1578 prologue->arch = arch;
1579 {
1580 int i;
1581 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1582 prologue->reg_offset[i] = 1;
1583 }
1584
1585 st.scan_pc = after_last_frame_related_insn = start;
1586
1587 while (st.scan_pc < limit)
1588 {
1589 pv_t pre_insn_fb = st.fb;
1590 pv_t pre_insn_sp = st.sp;
1591
1592 /* In theory we could get in trouble by trying to read ahead
1593 here, when we only know we're expecting one byte. In
1594 practice I doubt anyone will care, and it makes the rest of
1595 the code easier. */
1596 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1597 /* If we can't fetch the instruction from memory, stop here
1598 and hope for the best. */
1599 break;
1600 st.next_addr = st.scan_pc;
1601
1602 /* The assembly instructions are written as they appear in the
1603 section of the processor manuals that describe the
1604 instruction encodings.
1605
1606 When a single assembly language instruction has several
1607 different machine-language encodings, the manual
1608 distinguishes them by a number in parens, before the
1609 mnemonic. Those numbers are included, as well.
1610
1611 The srcdest decoding instructions have the same names as the
1612 analogous functions in the simulator. */
1613 if (mach == bfd_mach_m16c)
1614 {
1615 /* (1) ENTER #imm8 */
1616 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1617 {
1618 if (m32c_pv_enter (&st, st.insn[2]))
1619 break;
1620 st.next_addr += 3;
1621 }
1622 /* (1) PUSHM src */
1623 else if (st.insn[0] == 0xec)
1624 {
1625 int src = st.insn[1];
1626 if (m32c_pv_pushm (&st, src))
1627 break;
1628 st.next_addr += 2;
1629
1630 if (m32c_pushm_is_reg_save (&st, src))
1631 after_last_frame_related_insn = st.next_addr;
1632 }
1633
1634 /* (6) MOV.size:G src, dest */
1635 else if ((st.insn[0] & 0xfe) == 0x72)
1636 {
1637 int size = (st.insn[0] & 0x01) ? 2 : 1;
1638 struct srcdest src;
1639 struct srcdest dest;
1640 pv_t src_value;
1641 st.next_addr += 2;
1642
1643 src
1644 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1645 dest
1646 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1647 src_value = m32c_srcdest_fetch (&st, src, size);
1648
1649 if (m32c_is_arg_spill (&st, dest, src_value))
1650 after_last_frame_related_insn = st.next_addr;
1651 else if (m32c_is_struct_return (&st, dest, src_value))
1652 after_last_frame_related_insn = st.next_addr;
1653
1654 if (m32c_srcdest_store (&st, dest, src_value, size))
1655 break;
1656 }
1657
1658 /* (1) LDC #IMM16, sp */
1659 else if (st.insn[0] == 0xeb
1660 && st.insn[1] == 0x50)
1661 {
1662 st.next_addr += 2;
1663 st.sp = pv_constant (m32c_udisp16 (&st));
1664 }
1665
1666 else
1667 /* We've hit some instruction we don't know how to simulate.
1668 Strictly speaking, we should set every value we're
1669 tracking to "unknown". But we'll be optimistic, assume
1670 that we have enough information already, and stop
1671 analysis here. */
1672 break;
1673 }
1674 else
1675 {
1676 int src_indirect = 0;
1677 int dest_indirect = 0;
1678 int i = 0;
1679
1680 gdb_assert (mach == bfd_mach_m32c);
1681
1682 /* Check for prefix bytes indicating indirect addressing. */
1683 if (st.insn[0] == 0x41)
1684 {
1685 src_indirect = 1;
1686 i++;
1687 }
1688 else if (st.insn[0] == 0x09)
1689 {
1690 dest_indirect = 1;
1691 i++;
1692 }
1693 else if (st.insn[0] == 0x49)
1694 {
1695 src_indirect = dest_indirect = 1;
1696 i++;
1697 }
1698
1699 /* (1) ENTER #imm8 */
1700 if (st.insn[i] == 0xec)
1701 {
1702 if (m32c_pv_enter (&st, st.insn[i + 1]))
1703 break;
1704 st.next_addr += 2;
1705 }
1706
1707 /* (1) PUSHM src */
1708 else if (st.insn[i] == 0x8f)
1709 {
1710 int src = st.insn[i + 1];
1711 if (m32c_pv_pushm (&st, src))
1712 break;
1713 st.next_addr += 2;
1714
1715 if (m32c_pushm_is_reg_save (&st, src))
1716 after_last_frame_related_insn = st.next_addr;
1717 }
1718
1719 /* (7) MOV.size:G src, dest */
1720 else if ((st.insn[i] & 0x80) == 0x80
1721 && (st.insn[i + 1] & 0x0f) == 0x0b
1722 && m32c_get_src23 (&st.insn[i]) < 20
1723 && m32c_get_dest23 (&st.insn[i]) < 20)
1724 {
1725 struct srcdest src;
1726 struct srcdest dest;
1727 pv_t src_value;
1728 int bw = st.insn[i] & 0x01;
1729 int size = bw ? 2 : 1;
1730 st.next_addr += 2;
1731
1732 src
1733 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1734 size, src_indirect);
1735 dest
1736 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1737 size, dest_indirect);
1738 src_value = m32c_srcdest_fetch (&st, src, size);
1739
1740 if (m32c_is_arg_spill (&st, dest, src_value))
1741 after_last_frame_related_insn = st.next_addr;
1742
1743 if (m32c_srcdest_store (&st, dest, src_value, size))
1744 break;
1745 }
1746 /* (2) LDC #IMM24, sp */
1747 else if (st.insn[i] == 0xd5
1748 && st.insn[i + 1] == 0x29)
1749 {
1750 st.next_addr += 2;
1751 st.sp = pv_constant (m32c_udisp24 (&st));
1752 }
1753 else
1754 /* We've hit some instruction we don't know how to simulate.
1755 Strictly speaking, we should set every value we're
1756 tracking to "unknown". But we'll be optimistic, assume
1757 that we have enough information already, and stop
1758 analysis here. */
1759 break;
1760 }
1761
1762 /* If this instruction changed the FB or decreased the SP (i.e.,
1763 allocated more stack space), then this may be a good place to
1764 declare the prologue finished. However, there are some
1765 exceptions:
1766
1767 - If the instruction just changed the FB back to its original
1768 value, then that's probably a restore instruction. The
1769 prologue should definitely end before that.
1770
1771 - If the instruction increased the value of the SP (that is,
1772 shrunk the frame), then it's probably part of a frame
1773 teardown sequence, and the prologue should end before
1774 that. */
1775
1776 if (! pv_is_identical (st.fb, pre_insn_fb))
1777 {
1778 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1779 after_last_frame_related_insn = st.next_addr;
1780 }
1781 else if (! pv_is_identical (st.sp, pre_insn_sp))
1782 {
1783 /* The comparison of the constants looks odd, there, because
1784 .k is unsigned. All it really means is that the SP is
1785 lower than it was before the instruction. */
1786 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1787 && pv_is_register (st.sp, tdep->sp->num)
1788 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1789 after_last_frame_related_insn = st.next_addr;
1790 }
1791
1792 st.scan_pc = st.next_addr;
1793 }
1794
1795 /* Did we load a constant value into the stack pointer? */
1796 if (pv_is_constant (st.sp))
1797 prologue->kind = prologue_first_frame;
1798
1799 /* Alternatively, did we initialize the frame pointer? Remember
1800 that the CFA is the address after the return address. */
1801 if (pv_is_register (st.fb, tdep->sp->num))
1802 {
1803 prologue->kind = prologue_with_frame_ptr;
1804 prologue->frame_ptr_offset = st.fb.k;
1805 }
1806
1807 /* Is the frame size a known constant? Remember that frame_size is
1808 actually the offset from the CFA to the SP (i.e., a negative
1809 value). */
1810 else if (pv_is_register (st.sp, tdep->sp->num))
1811 {
1812 prologue->kind = prologue_sans_frame_ptr;
1813 prologue->frame_size = st.sp.k;
1814 }
1815
1816 /* We haven't been able to make sense of this function's frame. Treat
1817 it as the first frame. */
1818 else
1819 prologue->kind = prologue_first_frame;
1820
1821 /* Record where all the registers were saved. */
1822 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1823
1824 prologue->prologue_end = after_last_frame_related_insn;
1825
1826 do_cleanups (back_to);
1827 }
1828
1829
1830 static CORE_ADDR
1831 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1832 {
1833 const char *name;
1834 CORE_ADDR func_addr, func_end, sal_end;
1835 struct m32c_prologue p;
1836
1837 /* Try to find the extent of the function that contains IP. */
1838 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1839 return ip;
1840
1841 /* Find end by prologue analysis. */
1842 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1843 /* Find end by line info. */
1844 sal_end = skip_prologue_using_sal (gdbarch, ip);
1845 /* Return whichever is lower. */
1846 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1847 return sal_end;
1848 else
1849 return p.prologue_end;
1850 }
1851
1852
1853 \f
1854 /* Stack unwinding. */
1855
1856 static struct m32c_prologue *
1857 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1858 void **this_prologue_cache)
1859 {
1860 if (! *this_prologue_cache)
1861 {
1862 CORE_ADDR func_start = get_frame_func (this_frame);
1863 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1864
1865 /* If we couldn't find any function containing the PC, then
1866 just initialize the prologue cache, but don't do anything. */
1867 if (! func_start)
1868 stop_addr = func_start;
1869
1870 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1871 m32c_analyze_prologue (get_frame_arch (this_frame),
1872 func_start, stop_addr,
1873 (struct m32c_prologue *) *this_prologue_cache);
1874 }
1875
1876 return (struct m32c_prologue *) *this_prologue_cache;
1877 }
1878
1879
1880 static CORE_ADDR
1881 m32c_frame_base (struct frame_info *this_frame,
1882 void **this_prologue_cache)
1883 {
1884 struct m32c_prologue *p
1885 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1886 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1887
1888 /* In functions that use alloca, the distance between the stack
1889 pointer and the frame base varies dynamically, so we can't use
1890 the SP plus static information like prologue analysis to find the
1891 frame base. However, such functions must have a frame pointer,
1892 to be able to restore the SP on exit. So whenever we do have a
1893 frame pointer, use that to find the base. */
1894 switch (p->kind)
1895 {
1896 case prologue_with_frame_ptr:
1897 {
1898 CORE_ADDR fb
1899 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1900 return fb - p->frame_ptr_offset;
1901 }
1902
1903 case prologue_sans_frame_ptr:
1904 {
1905 CORE_ADDR sp
1906 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1907 return sp - p->frame_size;
1908 }
1909
1910 case prologue_first_frame:
1911 return 0;
1912
1913 default:
1914 gdb_assert_not_reached ("unexpected prologue kind");
1915 }
1916 }
1917
1918
1919 static void
1920 m32c_this_id (struct frame_info *this_frame,
1921 void **this_prologue_cache,
1922 struct frame_id *this_id)
1923 {
1924 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1925
1926 if (base)
1927 *this_id = frame_id_build (base, get_frame_func (this_frame));
1928 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1929 }
1930
1931
1932 static struct value *
1933 m32c_prev_register (struct frame_info *this_frame,
1934 void **this_prologue_cache, int regnum)
1935 {
1936 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1937 struct m32c_prologue *p
1938 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1939 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1940
1941 if (regnum == tdep->sp->num)
1942 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1943
1944 /* If prologue analysis says we saved this register somewhere,
1945 return a description of the stack slot holding it. */
1946 if (p->reg_offset[regnum] != 1)
1947 return frame_unwind_got_memory (this_frame, regnum,
1948 frame_base + p->reg_offset[regnum]);
1949
1950 /* Otherwise, presume we haven't changed the value of this
1951 register, and get it from the next frame. */
1952 return frame_unwind_got_register (this_frame, regnum, regnum);
1953 }
1954
1955
1956 static const struct frame_unwind m32c_unwind = {
1957 NORMAL_FRAME,
1958 default_frame_unwind_stop_reason,
1959 m32c_this_id,
1960 m32c_prev_register,
1961 NULL,
1962 default_frame_sniffer
1963 };
1964
1965
1966 static CORE_ADDR
1967 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1968 {
1969 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1970 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1971 }
1972
1973
1974 static CORE_ADDR
1975 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1976 {
1977 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1978 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1979 }
1980
1981 \f
1982 /* Inferior calls. */
1983
1984 /* The calling conventions, according to GCC:
1985
1986 r8c, m16c
1987 ---------
1988 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1989 HImode), (2) is named, and (3) is an integer or pointer type (no
1990 structs, floats, etc). Otherwise, it's passed on the stack.
1991
1992 Second arg may be passed in r2, same restrictions (but not QImode),
1993 even if the first arg is passed on the stack.
1994
1995 Third and further args are passed on the stack. No padding is
1996 used, stack "alignment" is 8 bits.
1997
1998 m32cm, m32c
1999 -----------
2000
2001 First arg may be passed in r0l or r0, same restrictions as above.
2002
2003 Second and further args are passed on the stack. Padding is used
2004 after QImode parameters (i.e. lower-addressed byte is the value,
2005 higher-addressed byte is the padding), stack "alignment" is 16
2006 bits. */
2007
2008
2009 /* Return true if TYPE is a type that can be passed in registers. (We
2010 ignore the size, and pay attention only to the type code;
2011 acceptable sizes depends on which register is being considered to
2012 hold it.) */
2013 static int
2014 m32c_reg_arg_type (struct type *type)
2015 {
2016 enum type_code code = TYPE_CODE (type);
2017
2018 return (code == TYPE_CODE_INT
2019 || code == TYPE_CODE_ENUM
2020 || code == TYPE_CODE_PTR
2021 || code == TYPE_CODE_REF
2022 || code == TYPE_CODE_BOOL
2023 || code == TYPE_CODE_CHAR);
2024 }
2025
2026
2027 static CORE_ADDR
2028 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2029 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2030 struct value **args, CORE_ADDR sp, int struct_return,
2031 CORE_ADDR struct_addr)
2032 {
2033 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2034 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2035 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2036 CORE_ADDR cfa;
2037 int i;
2038
2039 /* The number of arguments given in this function's prototype, or
2040 zero if it has a non-prototyped function type. The m32c ABI
2041 passes arguments mentioned in the prototype differently from
2042 those in the ellipsis of a varargs function, or from those passed
2043 to a non-prototyped function. */
2044 int num_prototyped_args = 0;
2045
2046 {
2047 struct type *func_type = value_type (function);
2048
2049 /* Dereference function pointer types. */
2050 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2051 func_type = TYPE_TARGET_TYPE (func_type);
2052
2053 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2054 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2055
2056 #if 0
2057 /* The ABI description in gcc/config/m32c/m32c.abi says that
2058 we need to handle prototyped and non-prototyped functions
2059 separately, but the code in GCC doesn't actually do so. */
2060 if (TYPE_PROTOTYPED (func_type))
2061 #endif
2062 num_prototyped_args = TYPE_NFIELDS (func_type);
2063 }
2064
2065 /* First, if the function returns an aggregate by value, push a
2066 pointer to a buffer for it. This doesn't affect the way
2067 subsequent arguments are allocated to registers. */
2068 if (struct_return)
2069 {
2070 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2071 sp -= ptr_len;
2072 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2073 }
2074
2075 /* Push the arguments. */
2076 for (i = nargs - 1; i >= 0; i--)
2077 {
2078 struct value *arg = args[i];
2079 const gdb_byte *arg_bits = value_contents (arg);
2080 struct type *arg_type = value_type (arg);
2081 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2082
2083 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2084 if (i == 0
2085 && arg_size <= 2
2086 && i < num_prototyped_args
2087 && m32c_reg_arg_type (arg_type))
2088 {
2089 /* Extract and re-store as an integer as a terse way to make
2090 sure it ends up in the least significant end of r1. (GDB
2091 should avoid assuming endianness, even on uni-endian
2092 processors.) */
2093 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2094 byte_order);
2095 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2096 regcache_cooked_write_unsigned (regcache, reg->num, u);
2097 }
2098
2099 /* Can it go in r2? */
2100 else if (mach == bfd_mach_m16c
2101 && i == 1
2102 && arg_size == 2
2103 && i < num_prototyped_args
2104 && m32c_reg_arg_type (arg_type))
2105 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2106
2107 /* Everything else goes on the stack. */
2108 else
2109 {
2110 sp -= arg_size;
2111
2112 /* Align the stack. */
2113 if (mach == bfd_mach_m32c)
2114 sp &= ~1;
2115
2116 write_memory (sp, arg_bits, arg_size);
2117 }
2118 }
2119
2120 /* This is the CFA we use to identify the dummy frame. */
2121 cfa = sp;
2122
2123 /* Push the return address. */
2124 sp -= tdep->ret_addr_bytes;
2125 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2126 bp_addr);
2127
2128 /* Update the stack pointer. */
2129 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2130
2131 /* We need to borrow an odd trick from the i386 target here.
2132
2133 The value we return from this function gets used as the stack
2134 address (the CFA) for the dummy frame's ID. The obvious thing is
2135 to return the new TOS. However, that points at the return
2136 address, saved on the stack, which is inconsistent with the CFA's
2137 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2138 .debug_frame info uses the address immediately after the saved
2139 return address. So you end up with a dummy frame whose CFA
2140 points at the return address, but the frame for the function
2141 being called has a CFA pointing after the return address: the
2142 younger CFA is *greater than* the older CFA. The sanity checks
2143 in frame.c don't like that.
2144
2145 So we try to be consistent with the CFA's used by DWARF 2.
2146 Having a dummy frame and a real frame with the *same* CFA is
2147 tolerable. */
2148 return cfa;
2149 }
2150
2151
2152 static struct frame_id
2153 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2154 {
2155 /* This needs to return a frame ID whose PC is the return address
2156 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2157 m32c_push_dummy_call returned.
2158
2159 m32c_unwind_sp gives us the CFA, which is the value the SP had
2160 before the return address was pushed. */
2161 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2162 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2163 return frame_id_build (sp, get_frame_pc (this_frame));
2164 }
2165
2166
2167 \f
2168 /* Return values. */
2169
2170 /* Return value conventions, according to GCC:
2171
2172 r8c, m16c
2173 ---------
2174
2175 QImode in r0l
2176 HImode in r0
2177 SImode in r2r0
2178 near pointer in r0
2179 far pointer in r2r0
2180
2181 Aggregate values (regardless of size) are returned by pushing a
2182 pointer to a temporary area on the stack after the args are pushed.
2183 The function fills in this area with the value. Note that this
2184 pointer on the stack does not affect how register arguments, if any,
2185 are configured.
2186
2187 m32cm, m32c
2188 -----------
2189 Same. */
2190
2191 /* Return non-zero if values of type TYPE are returned by storing them
2192 in a buffer whose address is passed on the stack, ahead of the
2193 other arguments. */
2194 static int
2195 m32c_return_by_passed_buf (struct type *type)
2196 {
2197 enum type_code code = TYPE_CODE (type);
2198
2199 return (code == TYPE_CODE_STRUCT
2200 || code == TYPE_CODE_UNION);
2201 }
2202
2203 static enum return_value_convention
2204 m32c_return_value (struct gdbarch *gdbarch,
2205 struct value *function,
2206 struct type *valtype,
2207 struct regcache *regcache,
2208 gdb_byte *readbuf,
2209 const gdb_byte *writebuf)
2210 {
2211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2212 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2213 enum return_value_convention conv;
2214 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2215
2216 if (m32c_return_by_passed_buf (valtype))
2217 conv = RETURN_VALUE_STRUCT_CONVENTION;
2218 else
2219 conv = RETURN_VALUE_REGISTER_CONVENTION;
2220
2221 if (readbuf)
2222 {
2223 /* We should never be called to find values being returned by
2224 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2225 unless we made the call ourselves. */
2226 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2227
2228 gdb_assert (valtype_len <= 8);
2229
2230 /* Anything that fits in r0 is returned there. */
2231 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2232 {
2233 ULONGEST u;
2234 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2235 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2236 }
2237 else
2238 {
2239 /* Everything else is passed in mem0, using as many bytes as
2240 needed. This is not what the Renesas tools do, but it's
2241 what GCC does at the moment. */
2242 struct bound_minimal_symbol mem0
2243 = lookup_minimal_symbol ("mem0", NULL, NULL);
2244
2245 if (! mem0.minsym)
2246 error (_("The return value is stored in memory at 'mem0', "
2247 "but GDB cannot find\n"
2248 "its address."));
2249 read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2250 }
2251 }
2252
2253 if (writebuf)
2254 {
2255 /* We should never be called to store values to be returned
2256 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2257 finding the buffer, unless we made the call ourselves. */
2258 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2259
2260 gdb_assert (valtype_len <= 8);
2261
2262 /* Anything that fits in r0 is returned there. */
2263 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2264 {
2265 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2266 byte_order);
2267 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2268 }
2269 else
2270 {
2271 /* Everything else is passed in mem0, using as many bytes as
2272 needed. This is not what the Renesas tools do, but it's
2273 what GCC does at the moment. */
2274 struct bound_minimal_symbol mem0
2275 = lookup_minimal_symbol ("mem0", NULL, NULL);
2276
2277 if (! mem0.minsym)
2278 error (_("The return value is stored in memory at 'mem0', "
2279 "but GDB cannot find\n"
2280 " its address."));
2281 write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
2282 }
2283 }
2284
2285 return conv;
2286 }
2287
2288
2289 \f
2290 /* Trampolines. */
2291
2292 /* The m16c and m32c use a trampoline function for indirect function
2293 calls. An indirect call looks like this:
2294
2295 ... push arguments ...
2296 ... push target function address ...
2297 jsr.a m32c_jsri16
2298
2299 The code for m32c_jsri16 looks like this:
2300
2301 m32c_jsri16:
2302
2303 # Save return address.
2304 pop.w m32c_jsri_ret
2305 pop.b m32c_jsri_ret+2
2306
2307 # Store target function address.
2308 pop.w m32c_jsri_addr
2309
2310 # Re-push return address.
2311 push.b m32c_jsri_ret+2
2312 push.w m32c_jsri_ret
2313
2314 # Call the target function.
2315 jmpi.a m32c_jsri_addr
2316
2317 Without further information, GDB will treat calls to m32c_jsri16
2318 like calls to any other function. Since m32c_jsri16 doesn't have
2319 debugging information, that normally means that GDB sets a step-
2320 resume breakpoint and lets the program continue --- which is not
2321 what the user wanted. (Giving the trampoline debugging info
2322 doesn't help: the user expects the program to stop in the function
2323 their program is calling, not in some trampoline code they've never
2324 seen before.)
2325
2326 The gdbarch_skip_trampoline_code method tells GDB how to step
2327 through such trampoline functions transparently to the user. When
2328 given the address of a trampoline function's first instruction,
2329 gdbarch_skip_trampoline_code should return the address of the first
2330 instruction of the function really being called. If GDB decides it
2331 wants to step into that function, it will set a breakpoint there
2332 and silently continue to it.
2333
2334 We recognize the trampoline by name, and extract the target address
2335 directly from the stack. This isn't great, but recognizing by its
2336 code sequence seems more fragile. */
2337
2338 static CORE_ADDR
2339 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2340 {
2341 struct gdbarch *gdbarch = get_frame_arch (frame);
2342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2343 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2344
2345 /* It would be nicer to simply look up the addresses of known
2346 trampolines once, and then compare stop_pc with them. However,
2347 we'd need to ensure that that cached address got invalidated when
2348 someone loaded a new executable, and I'm not quite sure of the
2349 best way to do that. find_pc_partial_function does do some
2350 caching, so we'll see how this goes. */
2351 const char *name;
2352 CORE_ADDR start, end;
2353
2354 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2355 {
2356 /* Are we stopped at the beginning of the trampoline function? */
2357 if (strcmp (name, "m32c_jsri16") == 0
2358 && stop_pc == start)
2359 {
2360 /* Get the stack pointer. The return address is at the top,
2361 and the target function's address is just below that. We
2362 know it's a two-byte address, since the trampoline is
2363 m32c_jsri*16*. */
2364 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2365 CORE_ADDR target
2366 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2367 2, byte_order);
2368
2369 /* What we have now is the address of a jump instruction.
2370 What we need is the destination of that jump.
2371 The opcode is 1 byte, and the destination is the next 3 bytes. */
2372
2373 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2374 return target;
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381
2382 /* Address/pointer conversions. */
2383
2384 /* On the m16c, there is a 24-bit address space, but only a very few
2385 instructions can generate addresses larger than 0xffff: jumps,
2386 jumps to subroutines, and the lde/std (load/store extended)
2387 instructions.
2388
2389 Since GCC can only support one size of pointer, we can't have
2390 distinct 'near' and 'far' pointer types; we have to pick one size
2391 for everything. If we wanted to use 24-bit pointers, then GCC
2392 would have to use lde and ste for all memory references, which
2393 would be terrible for performance and code size. So the GNU
2394 toolchain uses 16-bit pointers for everything, and gives up the
2395 ability to have pointers point outside the first 64k of memory.
2396
2397 However, as a special hack, we let the linker place functions at
2398 addresses above 0xffff, as long as it also places a trampoline in
2399 the low 64k for every function whose address is taken. Each
2400 trampoline consists of a single jmp.a instruction that jumps to the
2401 function's real entry point. Pointers to functions can be 16 bits
2402 long, even though the functions themselves are at higher addresses:
2403 the pointers refer to the trampolines, not the functions.
2404
2405 This complicates things for GDB, however: given the address of a
2406 function (from debug info or linker symbols, say) which could be
2407 anywhere in the 24-bit address space, how can we find an
2408 appropriate 16-bit value to use as a pointer to it?
2409
2410 If the linker has not generated a trampoline for the function,
2411 we're out of luck. Well, I guess we could malloc some space and
2412 write a jmp.a instruction to it, but I'm not going to get into that
2413 at the moment.
2414
2415 If the linker has generated a trampoline for the function, then it
2416 also emitted a symbol for the trampoline: if the function's linker
2417 symbol is named NAME, then the function's trampoline's linker
2418 symbol is named NAME.plt.
2419
2420 So, given a code address:
2421 - We try to find a linker symbol at that address.
2422 - If we find such a symbol named NAME, we look for a linker symbol
2423 named NAME.plt.
2424 - If we find such a symbol, we assume it is a trampoline, and use
2425 its address as the pointer value.
2426
2427 And, given a function pointer:
2428 - We try to find a linker symbol at that address named NAME.plt.
2429 - If we find such a symbol, we look for a linker symbol named NAME.
2430 - If we find that, we provide that as the function's address.
2431 - If any of the above steps fail, we return the original address
2432 unchanged; it might really be a function in the low 64k.
2433
2434 See? You *knew* there was a reason you wanted to be a computer
2435 programmer! :) */
2436
2437 static void
2438 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2439 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2440 {
2441 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2442 enum type_code target_code;
2443 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2444 TYPE_CODE (type) == TYPE_CODE_REF);
2445
2446 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2447
2448 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2449 {
2450 const char *func_name;
2451 char *tramp_name;
2452 struct bound_minimal_symbol tramp_msym;
2453
2454 /* Try to find a linker symbol at this address. */
2455 struct bound_minimal_symbol func_msym
2456 = lookup_minimal_symbol_by_pc (addr);
2457
2458 if (! func_msym.minsym)
2459 error (_("Cannot convert code address %s to function pointer:\n"
2460 "couldn't find a symbol at that address, to find trampoline."),
2461 paddress (gdbarch, addr));
2462
2463 func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
2464 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2465 strcpy (tramp_name, func_name);
2466 strcat (tramp_name, ".plt");
2467
2468 /* Try to find a linker symbol for the trampoline. */
2469 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2470
2471 /* We've either got another copy of the name now, or don't need
2472 the name any more. */
2473 xfree (tramp_name);
2474
2475 if (! tramp_msym.minsym)
2476 {
2477 CORE_ADDR ptrval;
2478
2479 /* No PLT entry found. Mask off the upper bits of the address
2480 to make a pointer. As noted in the warning to the user
2481 below, this value might be useful if converted back into
2482 an address by GDB, but will otherwise, almost certainly,
2483 be garbage.
2484
2485 Using this masked result does seem to be useful
2486 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2487 PASSes. These results appear to be correct as well.
2488
2489 We print a warning here so that the user can make a
2490 determination about whether the result is useful or not. */
2491 ptrval = addr & 0xffff;
2492
2493 warning (_("Cannot convert code address %s to function pointer:\n"
2494 "couldn't find trampoline named '%s.plt'.\n"
2495 "Returning pointer value %s instead; this may produce\n"
2496 "a useful result if converted back into an address by GDB,\n"
2497 "but will most likely not be useful otherwise.\n"),
2498 paddress (gdbarch, addr), func_name,
2499 paddress (gdbarch, ptrval));
2500
2501 addr = ptrval;
2502
2503 }
2504 else
2505 {
2506 /* The trampoline's address is our pointer. */
2507 addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
2508 }
2509 }
2510
2511 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
2512 }
2513
2514
2515 static CORE_ADDR
2516 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2517 struct type *type, const gdb_byte *buf)
2518 {
2519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2520 CORE_ADDR ptr;
2521 enum type_code target_code;
2522
2523 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2524 TYPE_CODE (type) == TYPE_CODE_REF);
2525
2526 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
2527
2528 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2529
2530 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2531 {
2532 /* See if there is a minimal symbol at that address whose name is
2533 "NAME.plt". */
2534 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2535
2536 if (ptr_msym.minsym)
2537 {
2538 const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
2539 int len = strlen (ptr_msym_name);
2540
2541 if (len > 4
2542 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2543 {
2544 struct bound_minimal_symbol func_msym;
2545 /* We have a .plt symbol; try to find the symbol for the
2546 corresponding function.
2547
2548 Since the trampoline contains a jump instruction, we
2549 could also just extract the jump's target address. I
2550 don't see much advantage one way or the other. */
2551 char *func_name = (char *) xmalloc (len - 4 + 1);
2552 memcpy (func_name, ptr_msym_name, len - 4);
2553 func_name[len - 4] = '\0';
2554 func_msym
2555 = lookup_minimal_symbol (func_name, NULL, NULL);
2556
2557 /* If we do have such a symbol, return its value as the
2558 function's true address. */
2559 if (func_msym.minsym)
2560 ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
2561 }
2562 }
2563 else
2564 {
2565 int aspace;
2566
2567 for (aspace = 1; aspace <= 15; aspace++)
2568 {
2569 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2570
2571 if (ptr_msym.minsym)
2572 ptr |= aspace << 16;
2573 }
2574 }
2575 }
2576
2577 return ptr;
2578 }
2579
2580 static void
2581 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2582 int *frame_regnum,
2583 LONGEST *frame_offset)
2584 {
2585 const char *name;
2586 CORE_ADDR func_addr, func_end;
2587 struct m32c_prologue p;
2588
2589 struct regcache *regcache = get_current_regcache ();
2590 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2591
2592 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2593 internal_error (__FILE__, __LINE__,
2594 _("No virtual frame pointer available"));
2595
2596 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2597 switch (p.kind)
2598 {
2599 case prologue_with_frame_ptr:
2600 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2601 *frame_offset = p.frame_ptr_offset;
2602 break;
2603 case prologue_sans_frame_ptr:
2604 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2605 *frame_offset = p.frame_size;
2606 break;
2607 default:
2608 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2609 *frame_offset = 0;
2610 break;
2611 }
2612 /* Sanity check */
2613 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2614 internal_error (__FILE__, __LINE__,
2615 _("No virtual frame pointer available"));
2616 }
2617
2618 \f
2619 /* Initialization. */
2620
2621 static struct gdbarch *
2622 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2623 {
2624 struct gdbarch *arch;
2625 struct gdbarch_tdep *tdep;
2626 unsigned long mach = info.bfd_arch_info->mach;
2627
2628 /* Find a candidate among the list of architectures we've created
2629 already. */
2630 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2631 arches != NULL;
2632 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2633 return arches->gdbarch;
2634
2635 tdep = XCNEW (struct gdbarch_tdep);
2636 arch = gdbarch_alloc (&info, tdep);
2637
2638 /* Essential types. */
2639 make_types (arch);
2640
2641 /* Address/pointer conversions. */
2642 if (mach == bfd_mach_m16c)
2643 {
2644 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2645 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2646 }
2647
2648 /* Register set. */
2649 make_regs (arch);
2650
2651 /* Disassembly. */
2652 set_gdbarch_print_insn (arch, print_insn_m32c);
2653
2654 /* Breakpoints. */
2655 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2656
2657 /* Prologue analysis and unwinding. */
2658 set_gdbarch_inner_than (arch, core_addr_lessthan);
2659 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2660 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2661 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2662 #if 0
2663 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2664 They may be in the dwarf2 cfi code in GDB, or they may be in
2665 the debug info emitted by the upstream toolchain. I don't
2666 know which, but I do know that the prologue analyzer works better.
2667 MVS 04/13/06 */
2668 dwarf2_append_sniffers (arch);
2669 #endif
2670 frame_unwind_append_unwinder (arch, &m32c_unwind);
2671
2672 /* Inferior calls. */
2673 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2674 set_gdbarch_return_value (arch, m32c_return_value);
2675 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2676
2677 /* Trampolines. */
2678 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2679
2680 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2681
2682 /* m32c function boundary addresses are not necessarily even.
2683 Therefore, the `vbit', which indicates a pointer to a virtual
2684 member function, is stored in the delta field, rather than as
2685 the low bit of a function pointer address.
2686
2687 In order to verify this, see the definition of
2688 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2689 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2690 set_gdbarch_vbit_in_delta (arch, 1);
2691
2692 return arch;
2693 }
2694
2695 /* Provide a prototype to silence -Wmissing-prototypes. */
2696 extern initialize_file_ftype _initialize_m32c_tdep;
2697
2698 void
2699 _initialize_m32c_tdep (void)
2700 {
2701 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2702
2703 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2704 }
This page took 0.125426 seconds and 4 git commands to generate.