3d8dfecec285f3d17835ba4f22e4a03a884f20dc
[deliverable/binutils-gdb.git] / gdb / m32r-tdep.c
1 /* Target-dependent code for Renesas M32R, for GDB.
2
3 Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcmd.h"
30 #include "gdbcore.h"
31 #include "gdb_string.h"
32 #include "value.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "language.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "trad-frame.h"
40 #include "dis-asm.h"
41
42 #include "gdb_assert.h"
43
44 #include "m32r-tdep.h"
45
46 /* Local functions */
47
48 extern void _initialize_m32r_tdep (void);
49
50 static CORE_ADDR
51 m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
52 {
53 /* Align to the size of an instruction (so that they can safely be
54 pushed onto the stack. */
55 return sp & ~3;
56 }
57
58
59 /* BREAKPOINT */
60 #define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00}
61 #define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70}
62 #define M32R_BE_BREAKPOINT16 {0x10, 0xf1}
63 #define M32R_LE_BREAKPOINT16 {0xf1, 0x10}
64
65 static int
66 m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
67 {
68 int val;
69 unsigned char *bp;
70 int bplen;
71
72 bplen = (addr & 3) ? 2 : 4;
73
74 /* Save the memory contents. */
75 val = target_read_memory (addr, contents_cache, bplen);
76 if (val != 0)
77 return val; /* return error */
78
79 /* Determine appropriate breakpoint contents and size for this address. */
80 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
81 {
82 if (((addr & 3) == 0)
83 && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
84 {
85 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
86 bp = insn;
87 bplen = sizeof (insn);
88 }
89 else
90 {
91 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
92 bp = insn;
93 bplen = sizeof (insn);
94 }
95 }
96 else
97 { /* little-endian */
98 if (((addr & 3) == 0)
99 && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
100 {
101 static unsigned char insn[] = M32R_LE_BREAKPOINT32;
102 bp = insn;
103 bplen = sizeof (insn);
104 }
105 else
106 {
107 static unsigned char insn[] = M32R_LE_BREAKPOINT16;
108 bp = insn;
109 bplen = sizeof (insn);
110 }
111 }
112
113 /* Write the breakpoint. */
114 val = target_write_memory (addr, (char *) bp, bplen);
115 return val;
116 }
117
118 static int
119 m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
120 {
121 int val;
122 int bplen;
123
124 /* Determine appropriate breakpoint contents and size for this address. */
125 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
126 {
127 if (((addr & 3) == 0)
128 && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80)))
129 {
130 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
131 bplen = sizeof (insn);
132 }
133 else
134 {
135 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
136 bplen = sizeof (insn);
137 }
138 }
139 else
140 {
141 /* little-endian */
142 if (((addr & 3) == 0)
143 && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80)))
144 {
145 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
146 bplen = sizeof (insn);
147 }
148 else
149 {
150 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
151 bplen = sizeof (insn);
152 }
153 }
154
155 /* Write contents. */
156 val = target_write_memory (addr, contents_cache, bplen);
157 return val;
158 }
159
160 static const unsigned char *
161 m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
162 {
163 unsigned char *bp;
164
165 /* Determine appropriate breakpoint. */
166 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
167 {
168 if ((*pcptr & 3) == 0)
169 {
170 static unsigned char insn[] = M32R_BE_BREAKPOINT32;
171 bp = insn;
172 *lenptr = sizeof (insn);
173 }
174 else
175 {
176 static unsigned char insn[] = M32R_BE_BREAKPOINT16;
177 bp = insn;
178 *lenptr = sizeof (insn);
179 }
180 }
181 else
182 {
183 if ((*pcptr & 3) == 0)
184 {
185 static unsigned char insn[] = M32R_LE_BREAKPOINT32;
186 bp = insn;
187 *lenptr = sizeof (insn);
188 }
189 else
190 {
191 static unsigned char insn[] = M32R_LE_BREAKPOINT16;
192 bp = insn;
193 *lenptr = sizeof (insn);
194 }
195 }
196
197 return bp;
198 }
199
200
201 char *m32r_register_names[] = {
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp",
204 "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch",
205 "evb"
206 };
207
208 static const char *
209 m32r_register_name (int reg_nr)
210 {
211 if (reg_nr < 0)
212 return NULL;
213 if (reg_nr >= M32R_NUM_REGS)
214 return NULL;
215 return m32r_register_names[reg_nr];
216 }
217
218
219 /* Return the GDB type object for the "standard" data type
220 of data in register N. */
221
222 static struct type *
223 m32r_register_type (struct gdbarch *gdbarch, int reg_nr)
224 {
225 if (reg_nr == M32R_PC_REGNUM)
226 return builtin_type_void_func_ptr;
227 else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM)
228 return builtin_type_void_data_ptr;
229 else
230 return builtin_type_int32;
231 }
232
233
234 /* Write into appropriate registers a function return value
235 of type TYPE, given in virtual format.
236
237 Things always get returned in RET1_REGNUM, RET2_REGNUM. */
238
239 static void
240 m32r_store_return_value (struct type *type, struct regcache *regcache,
241 const void *valbuf)
242 {
243 CORE_ADDR regval;
244 int len = TYPE_LENGTH (type);
245
246 regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len);
247 regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval);
248
249 if (len > 4)
250 {
251 regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4);
252 regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval);
253 }
254 }
255
256 /* This is required by skip_prologue. The results of decoding a prologue
257 should be cached because this thrashing is getting nuts. */
258
259 static void
260 decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit,
261 CORE_ADDR *pl_endptr)
262 {
263 unsigned long framesize;
264 int insn;
265 int op1;
266 int maybe_one_more = 0;
267 CORE_ADDR after_prologue = 0;
268 CORE_ADDR after_stack_adjust = 0;
269 CORE_ADDR current_pc;
270
271 framesize = 0;
272 after_prologue = 0;
273
274 for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
275 {
276 insn = read_memory_unsigned_integer (current_pc, 2);
277
278 /* If this is a 32 bit instruction, we dont want to examine its
279 immediate data as though it were an instruction */
280 if (current_pc & 0x02)
281 {
282 /* Clear the parallel execution bit from 16 bit instruction */
283 if (maybe_one_more)
284 {
285 /* The last instruction was a branch, usually terminates
286 the series, but if this is a parallel instruction,
287 it may be a stack framing instruction */
288 if (!(insn & 0x8000))
289 {
290 /* nope, we are really done */
291 break;
292 }
293 }
294 /* decode this instruction further */
295 insn &= 0x7fff;
296 }
297 else
298 {
299 if (maybe_one_more)
300 break; /* This isnt the one more */
301 if (insn & 0x8000)
302 {
303 if (current_pc == scan_limit)
304 scan_limit += 2; /* extend the search */
305 current_pc += 2; /* skip the immediate data */
306 if (insn == 0x8faf) /* add3 sp, sp, xxxx */
307 /* add 16 bit sign-extended offset */
308 {
309 framesize +=
310 -((short) read_memory_unsigned_integer (current_pc, 2));
311 }
312 else
313 {
314 if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
315 && read_memory_unsigned_integer (current_pc + 2,
316 2) == 0x0f24)
317 /* subtract 24 bit sign-extended negative-offset */
318 {
319 insn = read_memory_unsigned_integer (current_pc - 2, 4);
320 if (insn & 0x00800000) /* sign extend */
321 insn |= 0xff000000; /* negative */
322 else
323 insn &= 0x00ffffff; /* positive */
324 framesize += insn;
325 }
326 }
327 after_prologue = current_pc;
328 continue;
329 }
330 }
331 op1 = insn & 0xf000; /* isolate just the first nibble */
332
333 if ((insn & 0xf0ff) == 0x207f)
334 { /* st reg, @-sp */
335 int regno;
336 framesize += 4;
337 regno = ((insn >> 8) & 0xf);
338 after_prologue = 0;
339 continue;
340 }
341 if ((insn >> 8) == 0x4f) /* addi sp, xx */
342 /* add 8 bit sign-extended offset */
343 {
344 int stack_adjust = (char) (insn & 0xff);
345
346 /* there are probably two of these stack adjustments:
347 1) A negative one in the prologue, and
348 2) A positive one in the epilogue.
349 We are only interested in the first one. */
350
351 if (stack_adjust < 0)
352 {
353 framesize -= stack_adjust;
354 after_prologue = 0;
355 /* A frameless function may have no "mv fp, sp".
356 In that case, this is the end of the prologue. */
357 after_stack_adjust = current_pc + 2;
358 }
359 continue;
360 }
361 if (insn == 0x1d8f)
362 { /* mv fp, sp */
363 after_prologue = current_pc + 2;
364 break; /* end of stack adjustments */
365 }
366 /* Nop looks like a branch, continue explicitly */
367 if (insn == 0x7000)
368 {
369 after_prologue = current_pc + 2;
370 continue; /* nop occurs between pushes */
371 }
372 /* End of prolog if any of these are branch instructions */
373 if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000))
374 {
375 after_prologue = current_pc;
376 maybe_one_more = 1;
377 continue;
378 }
379 /* Some of the branch instructions are mixed with other types */
380 if (op1 == 0x1000)
381 {
382 int subop = insn & 0x0ff0;
383 if ((subop == 0x0ec0) || (subop == 0x0fc0))
384 {
385 after_prologue = current_pc;
386 maybe_one_more = 1;
387 continue; /* jmp , jl */
388 }
389 }
390 }
391
392 if (current_pc >= scan_limit)
393 {
394 if (pl_endptr)
395 {
396 if (after_stack_adjust != 0)
397 /* We did not find a "mv fp,sp", but we DID find
398 a stack_adjust. Is it safe to use that as the
399 end of the prologue? I just don't know. */
400 {
401 *pl_endptr = after_stack_adjust;
402 }
403 else
404 /* We reached the end of the loop without finding the end
405 of the prologue. No way to win -- we should report failure.
406 The way we do that is to return the original start_pc.
407 GDB will set a breakpoint at the start of the function (etc.) */
408 *pl_endptr = start_pc;
409 }
410 return;
411 }
412 if (after_prologue == 0)
413 after_prologue = current_pc;
414
415 if (pl_endptr)
416 *pl_endptr = after_prologue;
417 } /* decode_prologue */
418
419 /* Function: skip_prologue
420 Find end of function prologue */
421
422 #define DEFAULT_SEARCH_LIMIT 44
423
424 CORE_ADDR
425 m32r_skip_prologue (CORE_ADDR pc)
426 {
427 CORE_ADDR func_addr, func_end;
428 struct symtab_and_line sal;
429
430 /* See what the symbol table says */
431
432 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
433 {
434 sal = find_pc_line (func_addr, 0);
435
436 if (sal.line != 0 && sal.end <= func_end)
437 {
438 func_end = sal.end;
439 }
440 else
441 /* Either there's no line info, or the line after the prologue is after
442 the end of the function. In this case, there probably isn't a
443 prologue. */
444 {
445 func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
446 }
447 }
448 else
449 func_end = pc + DEFAULT_SEARCH_LIMIT;
450 decode_prologue (pc, func_end, &sal.end);
451 return sal.end;
452 }
453
454
455 struct m32r_unwind_cache
456 {
457 /* The previous frame's inner most stack address. Used as this
458 frame ID's stack_addr. */
459 CORE_ADDR prev_sp;
460 /* The frame's base, optionally used by the high-level debug info. */
461 CORE_ADDR base;
462 int size;
463 /* How far the SP and r13 (FP) have been offset from the start of
464 the stack frame (as defined by the previous frame's stack
465 pointer). */
466 LONGEST sp_offset;
467 LONGEST r13_offset;
468 int uses_frame;
469 /* Table indicating the location of each and every register. */
470 struct trad_frame_saved_reg *saved_regs;
471 };
472
473 /* Put here the code to store, into fi->saved_regs, the addresses of
474 the saved registers of frame described by FRAME_INFO. This
475 includes special registers such as pc and fp saved in special ways
476 in the stack frame. sp is even more special: the address we return
477 for it IS the sp for the next frame. */
478
479 static struct m32r_unwind_cache *
480 m32r_frame_unwind_cache (struct frame_info *next_frame,
481 void **this_prologue_cache)
482 {
483 CORE_ADDR pc;
484 ULONGEST prev_sp;
485 ULONGEST this_base;
486 unsigned long op;
487 int i;
488 struct m32r_unwind_cache *info;
489
490 if ((*this_prologue_cache))
491 return (*this_prologue_cache);
492
493 info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache);
494 (*this_prologue_cache) = info;
495 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
496
497 info->size = 0;
498 info->sp_offset = 0;
499
500 info->uses_frame = 0;
501 for (pc = frame_func_unwind (next_frame);
502 pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2)
503 {
504 if ((pc & 2) == 0)
505 {
506 op = get_frame_memory_unsigned (next_frame, pc, 4);
507 if ((op & 0x80000000) == 0x80000000)
508 {
509 /* 32-bit instruction */
510 if ((op & 0xffff0000) == 0x8faf0000)
511 {
512 /* add3 sp,sp,xxxx */
513 short n = op & 0xffff;
514 info->sp_offset += n;
515 }
516 else if (((op >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */
517 && get_frame_memory_unsigned (next_frame, pc + 4,
518 2) == 0x0f24)
519 {
520 unsigned long n = op & 0xffffff;
521 info->sp_offset += n;
522 pc += 2;
523 }
524 else
525 break;
526
527 pc += 2;
528 continue;
529 }
530 }
531
532 /* 16-bit instructions */
533 op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff;
534 if ((op & 0xf0ff) == 0x207f)
535 {
536 /* st rn, @-sp */
537 int regno = ((op >> 8) & 0xf);
538 info->sp_offset -= 4;
539 info->saved_regs[regno].addr = info->sp_offset;
540 }
541 else if ((op & 0xff00) == 0x4f00)
542 {
543 /* addi sp, xx */
544 int n = (char) (op & 0xff);
545 info->sp_offset += n;
546 }
547 else if (op == 0x1d8f)
548 {
549 /* mv fp, sp */
550 info->uses_frame = 1;
551 info->r13_offset = info->sp_offset;
552 }
553 else if (op == 0x7000)
554 /* nop */
555 continue;
556 else
557 break;
558 }
559
560 info->size = -info->sp_offset;
561
562 /* Compute the previous frame's stack pointer (which is also the
563 frame's ID's stack address), and this frame's base pointer. */
564 if (info->uses_frame)
565 {
566 /* The SP was moved to the FP. This indicates that a new frame
567 was created. Get THIS frame's FP value by unwinding it from
568 the next frame. */
569 this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM);
570 /* The FP points at the last saved register. Adjust the FP back
571 to before the first saved register giving the SP. */
572 prev_sp = this_base + info->size;
573 }
574 else
575 {
576 /* Assume that the FP is this frame's SP but with that pushed
577 stack space added back. */
578 this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
579 prev_sp = this_base + info->size;
580 }
581
582 /* Convert that SP/BASE into real addresses. */
583 info->prev_sp = prev_sp;
584 info->base = this_base;
585
586 /* Adjust all the saved registers so that they contain addresses and
587 not offsets. */
588 for (i = 0; i < NUM_REGS - 1; i++)
589 if (trad_frame_addr_p (info->saved_regs, i))
590 info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr);
591
592 /* The call instruction moves the caller's PC in the callee's LR.
593 Since this is an unwind, do the reverse. Copy the location of LR
594 into PC (the address / regnum) so that a request for PC will be
595 converted into a request for the LR. */
596 info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM];
597
598 /* The previous frame's SP needed to be computed. Save the computed
599 value. */
600 trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp);
601
602 return info;
603 }
604
605 static CORE_ADDR
606 m32r_read_pc (ptid_t ptid)
607 {
608 ptid_t save_ptid;
609 ULONGEST pc;
610
611 save_ptid = inferior_ptid;
612 inferior_ptid = ptid;
613 regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc);
614 inferior_ptid = save_ptid;
615 return pc;
616 }
617
618 static void
619 m32r_write_pc (CORE_ADDR val, ptid_t ptid)
620 {
621 ptid_t save_ptid;
622
623 save_ptid = inferior_ptid;
624 inferior_ptid = ptid;
625 write_register (M32R_PC_REGNUM, val);
626 inferior_ptid = save_ptid;
627 }
628
629 static CORE_ADDR
630 m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
631 {
632 return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM);
633 }
634
635
636 static CORE_ADDR
637 m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
639 struct value **args, CORE_ADDR sp, int struct_return,
640 CORE_ADDR struct_addr)
641 {
642 int stack_offset, stack_alloc;
643 int argreg = ARG1_REGNUM;
644 int argnum;
645 struct type *type;
646 enum type_code typecode;
647 CORE_ADDR regval;
648 char *val;
649 char valbuf[MAX_REGISTER_SIZE];
650 int len;
651 int odd_sized_struct;
652
653 /* first force sp to a 4-byte alignment */
654 sp = sp & ~3;
655
656 /* Set the return address. For the m32r, the return breakpoint is
657 always at BP_ADDR. */
658 regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr);
659
660 /* If STRUCT_RETURN is true, then the struct return address (in
661 STRUCT_ADDR) will consume the first argument-passing register.
662 Both adjust the register count and store that value. */
663 if (struct_return)
664 {
665 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
666 argreg++;
667 }
668
669 /* Now make sure there's space on the stack */
670 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
671 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
672 sp -= stack_alloc; /* make room on stack for args */
673
674 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
675 {
676 type = VALUE_TYPE (args[argnum]);
677 typecode = TYPE_CODE (type);
678 len = TYPE_LENGTH (type);
679
680 memset (valbuf, 0, sizeof (valbuf));
681
682 /* Passes structures that do not fit in 2 registers by reference. */
683 if (len > 8
684 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
685 {
686 store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum]));
687 typecode = TYPE_CODE_PTR;
688 len = 4;
689 val = valbuf;
690 }
691 else if (len < 4)
692 {
693 /* value gets right-justified in the register or stack word */
694 memcpy (valbuf + (register_size (gdbarch, argreg) - len),
695 (char *) VALUE_CONTENTS (args[argnum]), len);
696 val = valbuf;
697 }
698 else
699 val = (char *) VALUE_CONTENTS (args[argnum]);
700
701 while (len > 0)
702 {
703 if (argreg > ARGN_REGNUM)
704 {
705 /* must go on the stack */
706 write_memory (sp + stack_offset, val, 4);
707 stack_offset += 4;
708 }
709 else if (argreg <= ARGN_REGNUM)
710 {
711 /* there's room in a register */
712 regval =
713 extract_unsigned_integer (val,
714 register_size (gdbarch, argreg));
715 regcache_cooked_write_unsigned (regcache, argreg++, regval);
716 }
717
718 /* Store the value 4 bytes at a time. This means that things
719 larger than 4 bytes may go partly in registers and partly
720 on the stack. */
721 len -= register_size (gdbarch, argreg);
722 val += register_size (gdbarch, argreg);
723 }
724 }
725
726 /* Finally, update the SP register. */
727 regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp);
728
729 return sp;
730 }
731
732
733 /* Given a return value in `regbuf' with a type `valtype',
734 extract and copy its value into `valbuf'. */
735
736 static void
737 m32r_extract_return_value (struct type *type, struct regcache *regcache,
738 void *dst)
739 {
740 bfd_byte *valbuf = dst;
741 int len = TYPE_LENGTH (type);
742 ULONGEST tmp;
743
744 /* By using store_unsigned_integer we avoid having to do
745 anything special for small big-endian values. */
746 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp);
747 store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp);
748
749 /* Ignore return values more than 8 bytes in size because the m32r
750 returns anything more than 8 bytes in the stack. */
751 if (len > 4)
752 {
753 regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp);
754 store_unsigned_integer (valbuf + len - 4, 4, tmp);
755 }
756 }
757
758 enum return_value_convention
759 m32r_return_value (struct gdbarch *gdbarch, struct type *valtype,
760 struct regcache *regcache, void *readbuf,
761 const void *writebuf)
762 {
763 if (TYPE_LENGTH (valtype) > 8)
764 return RETURN_VALUE_STRUCT_CONVENTION;
765 else
766 {
767 if (readbuf != NULL)
768 m32r_extract_return_value (valtype, regcache, readbuf);
769 if (writebuf != NULL)
770 m32r_store_return_value (valtype, regcache, writebuf);
771 return RETURN_VALUE_REGISTER_CONVENTION;
772 }
773 }
774
775
776
777 static CORE_ADDR
778 m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
779 {
780 return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM);
781 }
782
783 /* Given a GDB frame, determine the address of the calling function's
784 frame. This will be used to create a new GDB frame struct. */
785
786 static void
787 m32r_frame_this_id (struct frame_info *next_frame,
788 void **this_prologue_cache, struct frame_id *this_id)
789 {
790 struct m32r_unwind_cache *info
791 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
792 CORE_ADDR base;
793 CORE_ADDR func;
794 struct minimal_symbol *msym_stack;
795 struct frame_id id;
796
797 /* The FUNC is easy. */
798 func = frame_func_unwind (next_frame);
799
800 /* Check if the stack is empty. */
801 msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL);
802 if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack))
803 return;
804
805 /* Hopefully the prologue analysis either correctly determined the
806 frame's base (which is the SP from the previous frame), or set
807 that base to "NULL". */
808 base = info->prev_sp;
809 if (base == 0)
810 return;
811
812 id = frame_id_build (base, func);
813 (*this_id) = id;
814 }
815
816 static void
817 m32r_frame_prev_register (struct frame_info *next_frame,
818 void **this_prologue_cache,
819 int regnum, int *optimizedp,
820 enum lval_type *lvalp, CORE_ADDR *addrp,
821 int *realnump, void *bufferp)
822 {
823 struct m32r_unwind_cache *info
824 = m32r_frame_unwind_cache (next_frame, this_prologue_cache);
825 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
826 optimizedp, lvalp, addrp, realnump, bufferp);
827 }
828
829 static const struct frame_unwind m32r_frame_unwind = {
830 NORMAL_FRAME,
831 m32r_frame_this_id,
832 m32r_frame_prev_register
833 };
834
835 static const struct frame_unwind *
836 m32r_frame_sniffer (struct frame_info *next_frame)
837 {
838 return &m32r_frame_unwind;
839 }
840
841 static CORE_ADDR
842 m32r_frame_base_address (struct frame_info *next_frame, void **this_cache)
843 {
844 struct m32r_unwind_cache *info
845 = m32r_frame_unwind_cache (next_frame, this_cache);
846 return info->base;
847 }
848
849 static const struct frame_base m32r_frame_base = {
850 &m32r_frame_unwind,
851 m32r_frame_base_address,
852 m32r_frame_base_address,
853 m32r_frame_base_address
854 };
855
856 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
857 dummy frame. The frame ID's base needs to match the TOS value
858 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
859 breakpoint. */
860
861 static struct frame_id
862 m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
863 {
864 return frame_id_build (m32r_unwind_sp (gdbarch, next_frame),
865 frame_pc_unwind (next_frame));
866 }
867
868
869 static gdbarch_init_ftype m32r_gdbarch_init;
870
871 static struct gdbarch *
872 m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
873 {
874 struct gdbarch *gdbarch;
875 struct gdbarch_tdep *tdep;
876
877 /* If there is already a candidate, use it. */
878 arches = gdbarch_list_lookup_by_info (arches, &info);
879 if (arches != NULL)
880 return arches->gdbarch;
881
882 /* Allocate space for the new architecture. */
883 tdep = XMALLOC (struct gdbarch_tdep);
884 gdbarch = gdbarch_alloc (&info, tdep);
885
886 set_gdbarch_read_pc (gdbarch, m32r_read_pc);
887 set_gdbarch_write_pc (gdbarch, m32r_write_pc);
888 set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp);
889
890 set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS);
891 set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM);
892 set_gdbarch_register_name (gdbarch, m32r_register_name);
893 set_gdbarch_register_type (gdbarch, m32r_register_type);
894
895 set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call);
896 set_gdbarch_return_value (gdbarch, m32r_return_value);
897
898 set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue);
899 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
900 set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc);
901 set_gdbarch_memory_insert_breakpoint (gdbarch,
902 m32r_memory_insert_breakpoint);
903 set_gdbarch_memory_remove_breakpoint (gdbarch,
904 m32r_memory_remove_breakpoint);
905
906 set_gdbarch_frame_align (gdbarch, m32r_frame_align);
907
908 frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer);
909 frame_base_set_default (gdbarch, &m32r_frame_base);
910
911 /* Methods for saving / extracting a dummy frame's ID. The ID's
912 stack address must match the SP value returned by
913 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
914 set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id);
915
916 /* Return the unwound PC value. */
917 set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc);
918
919 set_gdbarch_print_insn (gdbarch, print_insn_m32r);
920
921 return gdbarch;
922 }
923
924 void
925 _initialize_m32r_tdep (void)
926 {
927 register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init);
928 }
This page took 0.05266 seconds and 4 git commands to generate.