2007-06-13 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5
6 Contributed by Stephane Carrez, stcarrez@nerim.fr
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "frame-unwind.h"
29 #include "frame-base.h"
30 #include "dwarf2-frame.h"
31 #include "trad-frame.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "gdb_string.h"
37 #include "value.h"
38 #include "inferior.h"
39 #include "dis-asm.h"
40 #include "symfile.h"
41 #include "objfiles.h"
42 #include "arch-utils.h"
43 #include "regcache.h"
44 #include "reggroups.h"
45
46 #include "target.h"
47 #include "opcode/m68hc11.h"
48 #include "elf/m68hc11.h"
49 #include "elf-bfd.h"
50
51 /* Macros for setting and testing a bit in a minimal symbol.
52 For 68HC11/68HC12 we have two flags that tell which return
53 type the function is using. This is used for prologue and frame
54 analysis to compute correct stack frame layout.
55
56 The MSB of the minimal symbol's "info" field is used for this purpose.
57
58 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
59 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
60 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
61 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
62
63 #define MSYMBOL_SET_RTC(msym) \
64 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
65 | 0x80000000)
66
67 #define MSYMBOL_SET_RTI(msym) \
68 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
69 | 0x40000000)
70
71 #define MSYMBOL_IS_RTC(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
73
74 #define MSYMBOL_IS_RTI(msym) \
75 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
76
77 enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81 };
82
83
84 /* Register numbers of various important registers. */
85
86 #define HARD_X_REGNUM 0
87 #define HARD_D_REGNUM 1
88 #define HARD_Y_REGNUM 2
89 #define HARD_SP_REGNUM 3
90 #define HARD_PC_REGNUM 4
91
92 #define HARD_A_REGNUM 5
93 #define HARD_B_REGNUM 6
94 #define HARD_CCR_REGNUM 7
95
96 /* 68HC12 page number register.
97 Note: to keep a compatibility with gcc register naming, we must
98 not have to rename FP and other soft registers. The page register
99 is a real hard register and must therefore be counted by gdbarch_num_regs.
100 For this it has the same number as Z register (which is not used). */
101 #define HARD_PAGE_REGNUM 8
102 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
103
104 /* Z is replaced by X or Y by gcc during machine reorg.
105 ??? There is no way to get it and even know whether
106 it's in X or Y or in ZS. */
107 #define SOFT_Z_REGNUM 8
108
109 /* Soft registers. These registers are special. There are treated
110 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
111 They are physically located in memory. */
112 #define SOFT_FP_REGNUM 9
113 #define SOFT_TMP_REGNUM 10
114 #define SOFT_ZS_REGNUM 11
115 #define SOFT_XY_REGNUM 12
116 #define SOFT_UNUSED_REGNUM 13
117 #define SOFT_D1_REGNUM 14
118 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
119 #define M68HC11_MAX_SOFT_REGS 32
120
121 #define M68HC11_NUM_REGS (8)
122 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
123 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
124
125 #define M68HC11_REG_SIZE (2)
126
127 #define M68HC12_NUM_REGS (9)
128 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
129 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
130
131 struct insn_sequence;
132 struct gdbarch_tdep
133 {
134 /* Stack pointer correction value. For 68hc11, the stack pointer points
135 to the next push location. An offset of 1 must be applied to obtain
136 the address where the last value is saved. For 68hc12, the stack
137 pointer points to the last value pushed. No offset is necessary. */
138 int stack_correction;
139
140 /* Description of instructions in the prologue. */
141 struct insn_sequence *prologue;
142
143 /* True if the page memory bank register is available
144 and must be used. */
145 int use_page_register;
146
147 /* ELF flags for ABI. */
148 int elf_flags;
149 };
150
151 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
152 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
153 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
154
155 struct m68hc11_unwind_cache
156 {
157 /* The previous frame's inner most stack address. Used as this
158 frame ID's stack_addr. */
159 CORE_ADDR prev_sp;
160 /* The frame's base, optionally used by the high-level debug info. */
161 CORE_ADDR base;
162 CORE_ADDR pc;
163 int size;
164 int prologue_type;
165 CORE_ADDR return_pc;
166 CORE_ADDR sp_offset;
167 int frameless;
168 enum insn_return_kind return_kind;
169
170 /* Table indicating the location of each and every register. */
171 struct trad_frame_saved_reg *saved_regs;
172 };
173
174 /* Table of registers for 68HC11. This includes the hard registers
175 and the soft registers used by GCC. */
176 static char *
177 m68hc11_register_names[] =
178 {
179 "x", "d", "y", "sp", "pc", "a", "b",
180 "ccr", "page", "frame","tmp", "zs", "xy", 0,
181 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
182 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
183 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
184 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
185 "d29", "d30", "d31", "d32"
186 };
187
188 struct m68hc11_soft_reg
189 {
190 const char *name;
191 CORE_ADDR addr;
192 };
193
194 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
195
196 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
197
198 static int soft_min_addr;
199 static int soft_max_addr;
200 static int soft_reg_initialized = 0;
201
202 /* Look in the symbol table for the address of a pseudo register
203 in memory. If we don't find it, pretend the register is not used
204 and not available. */
205 static void
206 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
207 {
208 struct minimal_symbol *msymbol;
209
210 msymbol = lookup_minimal_symbol (name, NULL, NULL);
211 if (msymbol)
212 {
213 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
214 reg->name = xstrdup (name);
215
216 /* Keep track of the address range for soft registers. */
217 if (reg->addr < (CORE_ADDR) soft_min_addr)
218 soft_min_addr = reg->addr;
219 if (reg->addr > (CORE_ADDR) soft_max_addr)
220 soft_max_addr = reg->addr;
221 }
222 else
223 {
224 reg->name = 0;
225 reg->addr = 0;
226 }
227 }
228
229 /* Initialize the table of soft register addresses according
230 to the symbol table. */
231 static void
232 m68hc11_initialize_register_info (void)
233 {
234 int i;
235
236 if (soft_reg_initialized)
237 return;
238
239 soft_min_addr = INT_MAX;
240 soft_max_addr = 0;
241 for (i = 0; i < M68HC11_ALL_REGS; i++)
242 {
243 soft_regs[i].name = 0;
244 }
245
246 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
247 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
248 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
249 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
250 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
251
252 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
253 {
254 char buf[10];
255
256 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
257 m68hc11_get_register_info (&soft_regs[i], buf);
258 }
259
260 if (soft_regs[SOFT_FP_REGNUM].name == 0)
261 warning (_("No frame soft register found in the symbol table.\n"
262 "Stack backtrace will not work."));
263 soft_reg_initialized = 1;
264 }
265
266 /* Given an address in memory, return the soft register number if
267 that address corresponds to a soft register. Returns -1 if not. */
268 static int
269 m68hc11_which_soft_register (CORE_ADDR addr)
270 {
271 int i;
272
273 if (addr < soft_min_addr || addr > soft_max_addr)
274 return -1;
275
276 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
277 {
278 if (soft_regs[i].name && soft_regs[i].addr == addr)
279 return i;
280 }
281 return -1;
282 }
283
284 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
285 pseudo registers. They are located in memory. Translate the register
286 fetch into a memory read. */
287 static void
288 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
289 struct regcache *regcache,
290 int regno, gdb_byte *buf)
291 {
292 /* The PC is a pseudo reg only for 68HC12 with the memory bank
293 addressing mode. */
294 if (regno == M68HC12_HARD_PC_REGNUM)
295 {
296 ULONGEST pc;
297 const int regsize = TYPE_LENGTH (builtin_type_uint32);
298
299 regcache_cooked_read_unsigned (regcache, HARD_PC_REGNUM, &pc);
300 if (pc >= 0x8000 && pc < 0xc000)
301 {
302 ULONGEST page;
303
304 regcache_cooked_read_unsigned (regcache, HARD_PAGE_REGNUM, &page);
305 pc -= 0x8000;
306 pc += (page << 14);
307 pc += 0x1000000;
308 }
309 store_unsigned_integer (buf, regsize, pc);
310 return;
311 }
312
313 m68hc11_initialize_register_info ();
314
315 /* Fetch a soft register: translate into a memory read. */
316 if (soft_regs[regno].name)
317 {
318 target_read_memory (soft_regs[regno].addr, buf, 2);
319 }
320 else
321 {
322 memset (buf, 0, 2);
323 }
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 /* The PC is a pseudo reg only for 68HC12 with the memory bank
334 addressing mode. */
335 if (regno == M68HC12_HARD_PC_REGNUM)
336 {
337 const int regsize = TYPE_LENGTH (builtin_type_uint32);
338 char *tmp = alloca (regsize);
339 CORE_ADDR pc;
340
341 memcpy (tmp, buf, regsize);
342 pc = extract_unsigned_integer (tmp, regsize);
343 if (pc >= 0x1000000)
344 {
345 pc -= 0x1000000;
346 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
347 (pc >> 14) & 0x0ff);
348 pc &= 0x03fff;
349 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
350 pc + 0x8000);
351 }
352 else
353 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
354 return;
355 }
356
357 m68hc11_initialize_register_info ();
358
359 /* Store a soft register: translate into a memory write. */
360 if (soft_regs[regno].name)
361 {
362 const int regsize = 2;
363 char *tmp = alloca (regsize);
364 memcpy (tmp, buf, regsize);
365 target_write_memory (soft_regs[regno].addr, tmp, regsize);
366 }
367 }
368
369 static const char *
370 m68hc11_register_name (int reg_nr)
371 {
372 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
373 return "pc";
374 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
375 return "ppc";
376
377 if (reg_nr < 0)
378 return NULL;
379 if (reg_nr >= M68HC11_ALL_REGS)
380 return NULL;
381
382 m68hc11_initialize_register_info ();
383
384 /* If we don't know the address of a soft register, pretend it
385 does not exist. */
386 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
387 return NULL;
388 return m68hc11_register_names[reg_nr];
389 }
390
391 static const unsigned char *
392 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
393 {
394 static unsigned char breakpoint[] = {0x0};
395
396 *lenptr = sizeof (breakpoint);
397 return breakpoint;
398 }
399
400 \f
401 /* 68HC11 & 68HC12 prologue analysis.
402
403 */
404 #define MAX_CODES 12
405
406 /* 68HC11 opcodes. */
407 #undef M6811_OP_PAGE2
408 #define M6811_OP_PAGE2 (0x18)
409 #define M6811_OP_LDX (0xde)
410 #define M6811_OP_LDX_EXT (0xfe)
411 #define M6811_OP_PSHX (0x3c)
412 #define M6811_OP_STS (0x9f)
413 #define M6811_OP_STS_EXT (0xbf)
414 #define M6811_OP_TSX (0x30)
415 #define M6811_OP_XGDX (0x8f)
416 #define M6811_OP_ADDD (0xc3)
417 #define M6811_OP_TXS (0x35)
418 #define M6811_OP_DES (0x34)
419
420 /* 68HC12 opcodes. */
421 #define M6812_OP_PAGE2 (0x18)
422 #define M6812_OP_MOVW (0x01)
423 #define M6812_PB_PSHW (0xae)
424 #define M6812_OP_STS (0x5f)
425 #define M6812_OP_STS_EXT (0x7f)
426 #define M6812_OP_LEAS (0x1b)
427 #define M6812_OP_PSHX (0x34)
428 #define M6812_OP_PSHY (0x35)
429
430 /* Operand extraction. */
431 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
432 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
433 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
434 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
435
436 /* Identification of the sequence. */
437 enum m6811_seq_type
438 {
439 P_LAST = 0,
440 P_SAVE_REG, /* Save a register on the stack. */
441 P_SET_FRAME, /* Setup the frame pointer. */
442 P_LOCAL_1, /* Allocate 1 byte for locals. */
443 P_LOCAL_2, /* Allocate 2 bytes for locals. */
444 P_LOCAL_N /* Allocate N bytes for locals. */
445 };
446
447 struct insn_sequence {
448 enum m6811_seq_type type;
449 unsigned length;
450 unsigned short code[MAX_CODES];
451 };
452
453 /* Sequence of instructions in the 68HC11 function prologue. */
454 static struct insn_sequence m6811_prologue[] = {
455 /* Sequences to save a soft-register. */
456 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
457 M6811_OP_PSHX } },
458 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
459 M6811_OP_PAGE2, M6811_OP_PSHX } },
460 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
461 M6811_OP_PSHX } },
462 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
463 M6811_OP_PAGE2, M6811_OP_PSHX } },
464
465 /* Sequences to allocate local variables. */
466 { P_LOCAL_N, 7, { M6811_OP_TSX,
467 M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_XGDX,
470 M6811_OP_TXS } },
471 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
472 M6811_OP_PAGE2, M6811_OP_XGDX,
473 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
474 M6811_OP_PAGE2, M6811_OP_XGDX,
475 M6811_OP_PAGE2, M6811_OP_TXS } },
476 { P_LOCAL_1, 1, { M6811_OP_DES } },
477 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
478 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
479
480 /* Initialize the frame pointer. */
481 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
482 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
483 { P_LAST, 0, { 0 } }
484 };
485
486
487 /* Sequence of instructions in the 68HC12 function prologue. */
488 static struct insn_sequence m6812_prologue[] = {
489 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
490 OP_IMM_HIGH, OP_IMM_LOW } },
491 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
492 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
493 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
494 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
495 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
496 { P_LAST, 0 }
497 };
498
499
500 /* Analyze the sequence of instructions starting at the given address.
501 Returns a pointer to the sequence when it is recognized and
502 the optional value (constant/address) associated with it. */
503 static struct insn_sequence *
504 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR pc,
505 CORE_ADDR *val)
506 {
507 unsigned char buffer[MAX_CODES];
508 unsigned bufsize;
509 unsigned j;
510 CORE_ADDR cur_val;
511 short v = 0;
512
513 bufsize = 0;
514 for (; seq->type != P_LAST; seq++)
515 {
516 cur_val = 0;
517 for (j = 0; j < seq->length; j++)
518 {
519 if (bufsize < j + 1)
520 {
521 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
522 1);
523 bufsize++;
524 }
525 /* Continue while we match the opcode. */
526 if (seq->code[j] == buffer[j])
527 continue;
528
529 if ((seq->code[j] & 0xf00) == 0)
530 break;
531
532 /* Extract a sequence parameter (address or constant). */
533 switch (seq->code[j])
534 {
535 case OP_DIRECT:
536 cur_val = (CORE_ADDR) buffer[j];
537 break;
538
539 case OP_IMM_HIGH:
540 cur_val = cur_val & 0x0ff;
541 cur_val |= (buffer[j] << 8);
542 break;
543
544 case OP_IMM_LOW:
545 cur_val &= 0x0ff00;
546 cur_val |= buffer[j];
547 break;
548
549 case OP_PBYTE:
550 if ((buffer[j] & 0xE0) == 0x80)
551 {
552 v = buffer[j] & 0x1f;
553 if (v & 0x10)
554 v |= 0xfff0;
555 }
556 else if ((buffer[j] & 0xfe) == 0xf0)
557 {
558 v = read_memory_unsigned_integer (pc + j + 1, 1);
559 if (buffer[j] & 1)
560 v |= 0xff00;
561 }
562 else if (buffer[j] == 0xf2)
563 {
564 v = read_memory_unsigned_integer (pc + j + 1, 2);
565 }
566 cur_val = v;
567 break;
568 }
569 }
570
571 /* We have a full match. */
572 if (j == seq->length)
573 {
574 *val = cur_val;
575 return seq;
576 }
577 }
578 return 0;
579 }
580
581 /* Return the instruction that the function at the PC is using. */
582 static enum insn_return_kind
583 m68hc11_get_return_insn (CORE_ADDR pc)
584 {
585 struct minimal_symbol *sym;
586
587 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
588 function is stored by elfread.c in the high bit of the info field.
589 Use this to decide which instruction the function uses to return. */
590 sym = lookup_minimal_symbol_by_pc (pc);
591 if (sym == 0)
592 return RETURN_RTS;
593
594 if (MSYMBOL_IS_RTC (sym))
595 return RETURN_RTC;
596 else if (MSYMBOL_IS_RTI (sym))
597 return RETURN_RTI;
598 else
599 return RETURN_RTS;
600 }
601
602 /* Analyze the function prologue to find some information
603 about the function:
604 - the PC of the first line (for m68hc11_skip_prologue)
605 - the offset of the previous frame saved address (from current frame)
606 - the soft registers which are pushed. */
607 static CORE_ADDR
608 m68hc11_scan_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
609 struct m68hc11_unwind_cache *info)
610 {
611 LONGEST save_addr;
612 CORE_ADDR func_end;
613 int size;
614 int found_frame_point;
615 int saved_reg;
616 int done = 0;
617 struct insn_sequence *seq_table;
618
619 info->size = 0;
620 info->sp_offset = 0;
621 if (pc >= current_pc)
622 return current_pc;
623
624 size = 0;
625
626 m68hc11_initialize_register_info ();
627 if (pc == 0)
628 {
629 info->size = 0;
630 return pc;
631 }
632
633 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
634
635 /* The 68hc11 stack is as follows:
636
637
638 | |
639 +-----------+
640 | |
641 | args |
642 | |
643 +-----------+
644 | PC-return |
645 +-----------+
646 | Old frame |
647 +-----------+
648 | |
649 | Locals |
650 | |
651 +-----------+ <--- current frame
652 | |
653
654 With most processors (like 68K) the previous frame can be computed
655 easily because it is always at a fixed offset (see link/unlink).
656 That is, locals are accessed with negative offsets, arguments are
657 accessed with positive ones. Since 68hc11 only supports offsets
658 in the range [0..255], the frame is defined at the bottom of
659 locals (see picture).
660
661 The purpose of the analysis made here is to find out the size
662 of locals in this function. An alternative to this is to use
663 DWARF2 info. This would be better but I don't know how to
664 access dwarf2 debug from this function.
665
666 Walk from the function entry point to the point where we save
667 the frame. While walking instructions, compute the size of bytes
668 which are pushed. This gives us the index to access the previous
669 frame.
670
671 We limit the search to 128 bytes so that the algorithm is bounded
672 in case of random and wrong code. We also stop and abort if
673 we find an instruction which is not supposed to appear in the
674 prologue (as generated by gcc 2.95, 2.96).
675 */
676 func_end = pc + 128;
677 found_frame_point = 0;
678 info->size = 0;
679 save_addr = 0;
680 while (!done && pc + 2 < func_end)
681 {
682 struct insn_sequence *seq;
683 CORE_ADDR val;
684
685 seq = m68hc11_analyze_instruction (seq_table, pc, &val);
686 if (seq == 0)
687 break;
688
689 /* If we are within the instruction group, we can't advance the
690 pc nor the stack offset. Otherwise the caller's stack computed
691 from the current stack can be wrong. */
692 if (pc + seq->length > current_pc)
693 break;
694
695 pc = pc + seq->length;
696 if (seq->type == P_SAVE_REG)
697 {
698 if (found_frame_point)
699 {
700 saved_reg = m68hc11_which_soft_register (val);
701 if (saved_reg < 0)
702 break;
703
704 save_addr -= 2;
705 if (info->saved_regs)
706 info->saved_regs[saved_reg].addr = save_addr;
707 }
708 else
709 {
710 size += 2;
711 }
712 }
713 else if (seq->type == P_SET_FRAME)
714 {
715 found_frame_point = 1;
716 info->size = size;
717 }
718 else if (seq->type == P_LOCAL_1)
719 {
720 size += 1;
721 }
722 else if (seq->type == P_LOCAL_2)
723 {
724 size += 2;
725 }
726 else if (seq->type == P_LOCAL_N)
727 {
728 /* Stack pointer is decremented for the allocation. */
729 if (val & 0x8000)
730 size -= (int) (val) | 0xffff0000;
731 else
732 size -= val;
733 }
734 }
735 if (found_frame_point == 0)
736 info->sp_offset = size;
737 else
738 info->sp_offset = -1;
739 return pc;
740 }
741
742 static CORE_ADDR
743 m68hc11_skip_prologue (CORE_ADDR pc)
744 {
745 CORE_ADDR func_addr, func_end;
746 struct symtab_and_line sal;
747 struct m68hc11_unwind_cache tmp_cache = { 0 };
748
749 /* If we have line debugging information, then the end of the
750 prologue should be the first assembly instruction of the
751 first source line. */
752 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
753 {
754 sal = find_pc_line (func_addr, 0);
755 if (sal.end && sal.end < func_end)
756 return sal.end;
757 }
758
759 pc = m68hc11_scan_prologue (pc, (CORE_ADDR) -1, &tmp_cache);
760 return pc;
761 }
762
763 static CORE_ADDR
764 m68hc11_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
765 {
766 ULONGEST pc;
767
768 frame_unwind_unsigned_register (next_frame, gdbarch_pc_regnum (gdbarch),
769 &pc);
770 return pc;
771 }
772
773 /* Put here the code to store, into fi->saved_regs, the addresses of
774 the saved registers of frame described by FRAME_INFO. This
775 includes special registers such as pc and fp saved in special ways
776 in the stack frame. sp is even more special: the address we return
777 for it IS the sp for the next frame. */
778
779 struct m68hc11_unwind_cache *
780 m68hc11_frame_unwind_cache (struct frame_info *next_frame,
781 void **this_prologue_cache)
782 {
783 ULONGEST prev_sp;
784 ULONGEST this_base;
785 struct m68hc11_unwind_cache *info;
786 CORE_ADDR current_pc;
787 int i;
788
789 if ((*this_prologue_cache))
790 return (*this_prologue_cache);
791
792 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
793 (*this_prologue_cache) = info;
794 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
795
796 info->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
797
798 info->size = 0;
799 info->return_kind = m68hc11_get_return_insn (info->pc);
800
801 /* The SP was moved to the FP. This indicates that a new frame
802 was created. Get THIS frame's FP value by unwinding it from
803 the next frame. */
804 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &this_base);
805 if (this_base == 0)
806 {
807 info->base = 0;
808 return info;
809 }
810
811 current_pc = frame_pc_unwind (next_frame);
812 if (info->pc != 0)
813 m68hc11_scan_prologue (info->pc, current_pc, info);
814
815 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
816
817 if (info->sp_offset != (CORE_ADDR) -1)
818 {
819 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
820 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &this_base);
821 prev_sp = this_base + info->sp_offset + 2;
822 this_base += STACK_CORRECTION;
823 }
824 else
825 {
826 /* The FP points at the last saved register. Adjust the FP back
827 to before the first saved register giving the SP. */
828 prev_sp = this_base + info->size + 2;
829
830 this_base += STACK_CORRECTION;
831 if (soft_regs[SOFT_FP_REGNUM].name)
832 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
833 }
834
835 if (info->return_kind == RETURN_RTC)
836 {
837 prev_sp += 1;
838 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
839 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
840 }
841 else if (info->return_kind == RETURN_RTI)
842 {
843 prev_sp += 7;
844 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
845 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
846 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
847 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
848 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
849 }
850
851 /* Add 1 here to adjust for the post-decrement nature of the push
852 instruction.*/
853 info->prev_sp = prev_sp;
854
855 info->base = this_base;
856
857 /* Adjust all the saved registers so that they contain addresses and not
858 offsets. */
859 for (i = 0;
860 i < gdbarch_num_regs (current_gdbarch)
861 + gdbarch_num_pseudo_regs (current_gdbarch) - 1;
862 i++)
863 if (trad_frame_addr_p (info->saved_regs, i))
864 {
865 info->saved_regs[i].addr += this_base;
866 }
867
868 /* The previous frame's SP needed to be computed. Save the computed
869 value. */
870 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
871
872 return info;
873 }
874
875 /* Given a GDB frame, determine the address of the calling function's
876 frame. This will be used to create a new GDB frame struct. */
877
878 static void
879 m68hc11_frame_this_id (struct frame_info *next_frame,
880 void **this_prologue_cache,
881 struct frame_id *this_id)
882 {
883 struct m68hc11_unwind_cache *info
884 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
885 CORE_ADDR base;
886 CORE_ADDR func;
887 struct frame_id id;
888
889 /* The FUNC is easy. */
890 func = frame_func_unwind (next_frame, NORMAL_FRAME);
891
892 /* Hopefully the prologue analysis either correctly determined the
893 frame's base (which is the SP from the previous frame), or set
894 that base to "NULL". */
895 base = info->prev_sp;
896 if (base == 0)
897 return;
898
899 id = frame_id_build (base, func);
900 (*this_id) = id;
901 }
902
903 static void
904 m68hc11_frame_prev_register (struct frame_info *next_frame,
905 void **this_prologue_cache,
906 int regnum, int *optimizedp,
907 enum lval_type *lvalp, CORE_ADDR *addrp,
908 int *realnump, gdb_byte *bufferp)
909 {
910 struct m68hc11_unwind_cache *info
911 = m68hc11_frame_unwind_cache (next_frame, this_prologue_cache);
912
913 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
914 optimizedp, lvalp, addrp, realnump, bufferp);
915
916 if (regnum == HARD_PC_REGNUM)
917 {
918 /* Take into account the 68HC12 specific call (PC + page). */
919 if (info->return_kind == RETURN_RTC
920 && *addrp >= 0x08000 && *addrp < 0x0c000
921 && USE_PAGE_REGISTER)
922 {
923 int page_optimized;
924
925 CORE_ADDR page;
926
927 trad_frame_get_prev_register (next_frame, info->saved_regs,
928 HARD_PAGE_REGNUM, &page_optimized,
929 0, &page, 0, 0);
930 *addrp -= 0x08000;
931 *addrp += ((page & 0x0ff) << 14);
932 *addrp += 0x1000000;
933 }
934 }
935 }
936
937 static const struct frame_unwind m68hc11_frame_unwind = {
938 NORMAL_FRAME,
939 m68hc11_frame_this_id,
940 m68hc11_frame_prev_register
941 };
942
943 const struct frame_unwind *
944 m68hc11_frame_sniffer (struct frame_info *next_frame)
945 {
946 return &m68hc11_frame_unwind;
947 }
948
949 static CORE_ADDR
950 m68hc11_frame_base_address (struct frame_info *next_frame, void **this_cache)
951 {
952 struct m68hc11_unwind_cache *info
953 = m68hc11_frame_unwind_cache (next_frame, this_cache);
954
955 return info->base;
956 }
957
958 static CORE_ADDR
959 m68hc11_frame_args_address (struct frame_info *next_frame, void **this_cache)
960 {
961 CORE_ADDR addr;
962 struct m68hc11_unwind_cache *info
963 = m68hc11_frame_unwind_cache (next_frame, this_cache);
964
965 addr = info->base + info->size;
966 if (info->return_kind == RETURN_RTC)
967 addr += 1;
968 else if (info->return_kind == RETURN_RTI)
969 addr += 7;
970
971 return addr;
972 }
973
974 static const struct frame_base m68hc11_frame_base = {
975 &m68hc11_frame_unwind,
976 m68hc11_frame_base_address,
977 m68hc11_frame_base_address,
978 m68hc11_frame_args_address
979 };
980
981 static CORE_ADDR
982 m68hc11_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
983 {
984 ULONGEST sp;
985 frame_unwind_unsigned_register (next_frame, HARD_SP_REGNUM, &sp);
986 return sp;
987 }
988
989 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
990 dummy frame. The frame ID's base needs to match the TOS value
991 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
992 breakpoint. */
993
994 static struct frame_id
995 m68hc11_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
996 {
997 ULONGEST tos;
998 CORE_ADDR pc = frame_pc_unwind (next_frame);
999
1000 frame_unwind_unsigned_register (next_frame, SOFT_FP_REGNUM, &tos);
1001 tos += 2;
1002 return frame_id_build (tos, pc);
1003 }
1004
1005 \f
1006 /* Get and print the register from the given frame. */
1007 static void
1008 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
1009 struct frame_info *frame, int regno)
1010 {
1011 LONGEST rval;
1012
1013 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
1014 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
1015 rval = get_frame_register_unsigned (frame, regno);
1016 else
1017 rval = get_frame_register_signed (frame, regno);
1018
1019 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
1020 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
1021 {
1022 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1023 if (regno != HARD_CCR_REGNUM)
1024 print_longest (file, 'd', 1, rval);
1025 }
1026 else
1027 {
1028 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1029 {
1030 ULONGEST page;
1031
1032 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1033 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1034 (unsigned) rval);
1035 }
1036 else
1037 {
1038 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1039 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1040 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1041 print_longest (file, 'd', 1, rval);
1042 }
1043 }
1044
1045 if (regno == HARD_CCR_REGNUM)
1046 {
1047 /* CCR register */
1048 int C, Z, N, V;
1049 unsigned char l = rval & 0xff;
1050
1051 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1052 l & M6811_S_BIT ? 'S' : '-',
1053 l & M6811_X_BIT ? 'X' : '-',
1054 l & M6811_H_BIT ? 'H' : '-',
1055 l & M6811_I_BIT ? 'I' : '-',
1056 l & M6811_N_BIT ? 'N' : '-',
1057 l & M6811_Z_BIT ? 'Z' : '-',
1058 l & M6811_V_BIT ? 'V' : '-',
1059 l & M6811_C_BIT ? 'C' : '-');
1060 N = (l & M6811_N_BIT) != 0;
1061 Z = (l & M6811_Z_BIT) != 0;
1062 V = (l & M6811_V_BIT) != 0;
1063 C = (l & M6811_C_BIT) != 0;
1064
1065 /* Print flags following the h8300 */
1066 if ((C | Z) == 0)
1067 fprintf_filtered (file, "u> ");
1068 else if ((C | Z) == 1)
1069 fprintf_filtered (file, "u<= ");
1070 else if (C == 0)
1071 fprintf_filtered (file, "u< ");
1072
1073 if (Z == 0)
1074 fprintf_filtered (file, "!= ");
1075 else
1076 fprintf_filtered (file, "== ");
1077
1078 if ((N ^ V) == 0)
1079 fprintf_filtered (file, ">= ");
1080 else
1081 fprintf_filtered (file, "< ");
1082
1083 if ((Z | (N ^ V)) == 0)
1084 fprintf_filtered (file, "> ");
1085 else
1086 fprintf_filtered (file, "<= ");
1087 }
1088 }
1089
1090 /* Same as 'info reg' but prints the registers in a different way. */
1091 static void
1092 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1093 struct frame_info *frame, int regno, int cpregs)
1094 {
1095 if (regno >= 0)
1096 {
1097 const char *name = gdbarch_register_name (gdbarch, regno);
1098
1099 if (!name || !*name)
1100 return;
1101
1102 fprintf_filtered (file, "%-10s ", name);
1103 m68hc11_print_register (gdbarch, file, frame, regno);
1104 fprintf_filtered (file, "\n");
1105 }
1106 else
1107 {
1108 int i, nr;
1109
1110 fprintf_filtered (file, "PC=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1112
1113 fprintf_filtered (file, " SP=");
1114 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1115
1116 fprintf_filtered (file, " FP=");
1117 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1118
1119 fprintf_filtered (file, "\nCCR=");
1120 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1121
1122 fprintf_filtered (file, "\nD=");
1123 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1124
1125 fprintf_filtered (file, " X=");
1126 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1127
1128 fprintf_filtered (file, " Y=");
1129 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1130
1131 if (gdbarch_tdep (gdbarch)->use_page_register)
1132 {
1133 fprintf_filtered (file, "\nPage=");
1134 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1135 }
1136 fprintf_filtered (file, "\n");
1137
1138 nr = 0;
1139 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1140 {
1141 /* Skip registers which are not defined in the symbol table. */
1142 if (soft_regs[i].name == 0)
1143 continue;
1144
1145 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1146 m68hc11_print_register (gdbarch, file, frame, i);
1147 nr++;
1148 if ((nr % 8) == 7)
1149 fprintf_filtered (file, "\n");
1150 else
1151 fprintf_filtered (file, " ");
1152 }
1153 if (nr && (nr % 8) != 7)
1154 fprintf_filtered (file, "\n");
1155 }
1156 }
1157
1158 static CORE_ADDR
1159 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1160 struct regcache *regcache, CORE_ADDR bp_addr,
1161 int nargs, struct value **args, CORE_ADDR sp,
1162 int struct_return, CORE_ADDR struct_addr)
1163 {
1164 int argnum;
1165 int first_stack_argnum;
1166 struct type *type;
1167 char *val;
1168 int len;
1169 char buf[2];
1170
1171 first_stack_argnum = 0;
1172 if (struct_return)
1173 {
1174 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1175 }
1176 else if (nargs > 0)
1177 {
1178 type = value_type (args[0]);
1179 len = TYPE_LENGTH (type);
1180
1181 /* First argument is passed in D and X registers. */
1182 if (len <= 4)
1183 {
1184 ULONGEST v;
1185
1186 v = extract_unsigned_integer (value_contents (args[0]), len);
1187 first_stack_argnum = 1;
1188
1189 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1190 if (len > 2)
1191 {
1192 v >>= 16;
1193 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1194 }
1195 }
1196 }
1197
1198 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1199 {
1200 type = value_type (args[argnum]);
1201 len = TYPE_LENGTH (type);
1202
1203 if (len & 1)
1204 {
1205 static char zero = 0;
1206
1207 sp--;
1208 write_memory (sp, &zero, 1);
1209 }
1210 val = (char*) value_contents (args[argnum]);
1211 sp -= len;
1212 write_memory (sp, val, len);
1213 }
1214
1215 /* Store return address. */
1216 sp -= 2;
1217 store_unsigned_integer (buf, 2, bp_addr);
1218 write_memory (sp, buf, 2);
1219
1220 /* Finally, update the stack pointer... */
1221 sp -= STACK_CORRECTION;
1222 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1223
1224 /* ...and fake a frame pointer. */
1225 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1226
1227 /* DWARF2/GCC uses the stack address *before* the function call as a
1228 frame's CFA. */
1229 return sp + 2;
1230 }
1231
1232
1233 /* Return the GDB type object for the "standard" data type
1234 of data in register N. */
1235
1236 static struct type *
1237 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1238 {
1239 switch (reg_nr)
1240 {
1241 case HARD_PAGE_REGNUM:
1242 case HARD_A_REGNUM:
1243 case HARD_B_REGNUM:
1244 case HARD_CCR_REGNUM:
1245 return builtin_type_uint8;
1246
1247 case M68HC12_HARD_PC_REGNUM:
1248 return builtin_type_uint32;
1249
1250 default:
1251 return builtin_type_uint16;
1252 }
1253 }
1254
1255 static void
1256 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1257 const void *valbuf)
1258 {
1259 int len;
1260
1261 len = TYPE_LENGTH (type);
1262
1263 /* First argument is passed in D and X registers. */
1264 if (len <= 2)
1265 regcache_raw_write_part (regcache, HARD_D_REGNUM, 2 - len, len, valbuf);
1266 else if (len <= 4)
1267 {
1268 regcache_raw_write_part (regcache, HARD_X_REGNUM, 4 - len,
1269 len - 2, valbuf);
1270 regcache_raw_write (regcache, HARD_D_REGNUM, (char*) valbuf + (len - 2));
1271 }
1272 else
1273 error (_("return of value > 4 is not supported."));
1274 }
1275
1276
1277 /* Given a return value in `regcache' with a type `type',
1278 extract and copy its value into `valbuf'. */
1279
1280 static void
1281 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1282 void *valbuf)
1283 {
1284 int len = TYPE_LENGTH (type);
1285 char buf[M68HC11_REG_SIZE];
1286
1287 regcache_raw_read (regcache, HARD_D_REGNUM, buf);
1288 switch (len)
1289 {
1290 case 1:
1291 memcpy (valbuf, buf + 1, 1);
1292 break;
1293
1294 case 2:
1295 memcpy (valbuf, buf, 2);
1296 break;
1297
1298 case 3:
1299 memcpy ((char*) valbuf + 1, buf, 2);
1300 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1301 memcpy (valbuf, buf + 1, 1);
1302 break;
1303
1304 case 4:
1305 memcpy ((char*) valbuf + 2, buf, 2);
1306 regcache_raw_read (regcache, HARD_X_REGNUM, buf);
1307 memcpy (valbuf, buf, 2);
1308 break;
1309
1310 default:
1311 error (_("bad size for return value"));
1312 }
1313 }
1314
1315 enum return_value_convention
1316 m68hc11_return_value (struct gdbarch *gdbarch, struct type *valtype,
1317 struct regcache *regcache, gdb_byte *readbuf,
1318 const gdb_byte *writebuf)
1319 {
1320 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1321 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1322 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1323 || TYPE_LENGTH (valtype) > 4)
1324 return RETURN_VALUE_STRUCT_CONVENTION;
1325 else
1326 {
1327 if (readbuf != NULL)
1328 m68hc11_extract_return_value (valtype, regcache, readbuf);
1329 if (writebuf != NULL)
1330 m68hc11_store_return_value (valtype, regcache, writebuf);
1331 return RETURN_VALUE_REGISTER_CONVENTION;
1332 }
1333 }
1334
1335 /* Test whether the ELF symbol corresponds to a function using rtc or
1336 rti to return. */
1337
1338 static void
1339 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1340 {
1341 unsigned char flags;
1342
1343 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1344 if (flags & STO_M68HC12_FAR)
1345 MSYMBOL_SET_RTC (msym);
1346 if (flags & STO_M68HC12_INTERRUPT)
1347 MSYMBOL_SET_RTI (msym);
1348 }
1349
1350 static int
1351 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1352 {
1353 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_m68hc11)
1354 return print_insn_m68hc11 (memaddr, info);
1355 else
1356 return print_insn_m68hc12 (memaddr, info);
1357 }
1358
1359 \f
1360
1361 /* 68HC11/68HC12 register groups.
1362 Identify real hard registers and soft registers used by gcc. */
1363
1364 static struct reggroup *m68hc11_soft_reggroup;
1365 static struct reggroup *m68hc11_hard_reggroup;
1366
1367 static void
1368 m68hc11_init_reggroups (void)
1369 {
1370 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1371 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1372 }
1373
1374 static void
1375 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1376 {
1377 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1378 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1379 reggroup_add (gdbarch, general_reggroup);
1380 reggroup_add (gdbarch, float_reggroup);
1381 reggroup_add (gdbarch, all_reggroup);
1382 reggroup_add (gdbarch, save_reggroup);
1383 reggroup_add (gdbarch, restore_reggroup);
1384 reggroup_add (gdbarch, vector_reggroup);
1385 reggroup_add (gdbarch, system_reggroup);
1386 }
1387
1388 static int
1389 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1390 struct reggroup *group)
1391 {
1392 /* We must save the real hard register as well as gcc
1393 soft registers including the frame pointer. */
1394 if (group == save_reggroup || group == restore_reggroup)
1395 {
1396 return (regnum <= gdbarch_num_regs (gdbarch)
1397 || ((regnum == SOFT_FP_REGNUM
1398 || regnum == SOFT_TMP_REGNUM
1399 || regnum == SOFT_ZS_REGNUM
1400 || regnum == SOFT_XY_REGNUM)
1401 && m68hc11_register_name (regnum)));
1402 }
1403
1404 /* Group to identify gcc soft registers (d1..dN). */
1405 if (group == m68hc11_soft_reggroup)
1406 {
1407 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1408 }
1409
1410 if (group == m68hc11_hard_reggroup)
1411 {
1412 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1413 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1414 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1415 }
1416 return default_register_reggroup_p (gdbarch, regnum, group);
1417 }
1418
1419 static struct gdbarch *
1420 m68hc11_gdbarch_init (struct gdbarch_info info,
1421 struct gdbarch_list *arches)
1422 {
1423 struct gdbarch *gdbarch;
1424 struct gdbarch_tdep *tdep;
1425 int elf_flags;
1426
1427 soft_reg_initialized = 0;
1428
1429 /* Extract the elf_flags if available. */
1430 if (info.abfd != NULL
1431 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1432 elf_flags = elf_elfheader (info.abfd)->e_flags;
1433 else
1434 elf_flags = 0;
1435
1436 /* try to find a pre-existing architecture */
1437 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1438 arches != NULL;
1439 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1440 {
1441 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1442 continue;
1443
1444 return arches->gdbarch;
1445 }
1446
1447 /* Need a new architecture. Fill in a target specific vector. */
1448 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1449 gdbarch = gdbarch_alloc (&info, tdep);
1450 tdep->elf_flags = elf_flags;
1451
1452 switch (info.bfd_arch_info->arch)
1453 {
1454 case bfd_arch_m68hc11:
1455 tdep->stack_correction = 1;
1456 tdep->use_page_register = 0;
1457 tdep->prologue = m6811_prologue;
1458 set_gdbarch_addr_bit (gdbarch, 16);
1459 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1460 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1461 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1462 break;
1463
1464 case bfd_arch_m68hc12:
1465 tdep->stack_correction = 0;
1466 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1467 tdep->prologue = m6812_prologue;
1468 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1469 set_gdbarch_num_pseudo_regs (gdbarch,
1470 elf_flags & E_M68HC12_BANKS
1471 ? M68HC12_NUM_PSEUDO_REGS
1472 : M68HC11_NUM_PSEUDO_REGS);
1473 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1474 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1475 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1476 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1477 break;
1478
1479 default:
1480 break;
1481 }
1482
1483 /* Initially set everything according to the ABI.
1484 Use 16-bit integers since it will be the case for most
1485 programs. The size of these types should normally be set
1486 according to the dwarf2 debug information. */
1487 set_gdbarch_short_bit (gdbarch, 16);
1488 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1489 set_gdbarch_float_bit (gdbarch, 32);
1490 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1491 set_gdbarch_long_double_bit (gdbarch, 64);
1492 set_gdbarch_long_bit (gdbarch, 32);
1493 set_gdbarch_ptr_bit (gdbarch, 16);
1494 set_gdbarch_long_long_bit (gdbarch, 64);
1495
1496 /* Characters are unsigned. */
1497 set_gdbarch_char_signed (gdbarch, 0);
1498
1499 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1500 set_gdbarch_unwind_sp (gdbarch, m68hc11_unwind_sp);
1501
1502 /* Set register info. */
1503 set_gdbarch_fp0_regnum (gdbarch, -1);
1504
1505 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1506
1507 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1508 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1509 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1510 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1511 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1512
1513 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1514
1515 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1516 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1517 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1518 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1519 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1520
1521 m68hc11_add_reggroups (gdbarch);
1522 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1523 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1524
1525 /* Hook in the DWARF CFI frame unwinder. */
1526 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1527
1528 frame_unwind_append_sniffer (gdbarch, m68hc11_frame_sniffer);
1529 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1530
1531 /* Methods for saving / extracting a dummy frame's ID. The ID's
1532 stack address must match the SP value returned by
1533 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1534 set_gdbarch_unwind_dummy_id (gdbarch, m68hc11_unwind_dummy_id);
1535
1536 /* Return the unwound PC value. */
1537 set_gdbarch_unwind_pc (gdbarch, m68hc11_unwind_pc);
1538
1539 /* Minsymbol frobbing. */
1540 set_gdbarch_elf_make_msymbol_special (gdbarch,
1541 m68hc11_elf_make_msymbol_special);
1542
1543 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1544
1545 return gdbarch;
1546 }
1547
1548 extern initialize_file_ftype _initialize_m68hc11_tdep; /* -Wmissing-prototypes */
1549
1550 void
1551 _initialize_m68hc11_tdep (void)
1552 {
1553 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1554 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1555 m68hc11_init_reggroups ();
1556 }
1557
This page took 0.062907 seconds and 4 git commands to generate.