* i386nbsd-nat.c (i386nbsd_supply_pcb): Cast to 'gdb_byte *' in
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "floatformat.h"
29 #include "symtab.h"
30 #include "gdbcore.h"
31 #include "value.h"
32 #include "gdb_string.h"
33 #include "gdb_assert.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "dis-asm.h"
39
40 #include "m68k-tdep.h"
41 \f
42
43 #define P_LINKL_FP 0x480e
44 #define P_LINKW_FP 0x4e56
45 #define P_PEA_FP 0x4856
46 #define P_MOVEAL_SP_FP 0x2c4f
47 #define P_ADDAW_SP 0xdefc
48 #define P_ADDAL_SP 0xdffc
49 #define P_SUBQW_SP 0x514f
50 #define P_SUBQL_SP 0x518f
51 #define P_LEA_SP_SP 0x4fef
52 #define P_LEA_PC_A5 0x4bfb0170
53 #define P_FMOVEMX_SP 0xf227
54 #define P_MOVEL_SP 0x2f00
55 #define P_MOVEML_SP 0x48e7
56
57
58 #define REGISTER_BYTES_FP (16*4 + 8 + 8*12 + 3*4)
59 #define REGISTER_BYTES_NOFP (16*4 + 8)
60
61 /* Offset from SP to first arg on stack at first instruction of a function */
62 #define SP_ARG0 (1 * 4)
63
64 #if !defined (BPT_VECTOR)
65 #define BPT_VECTOR 0xf
66 #endif
67
68 static const gdb_byte *
69 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
70 {
71 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
72 *lenptr = sizeof (break_insn);
73 return break_insn;
74 }
75
76
77 static int
78 m68k_register_bytes_ok (long numbytes)
79 {
80 return ((numbytes == REGISTER_BYTES_FP)
81 || (numbytes == REGISTER_BYTES_NOFP));
82 }
83
84 /* Return the GDB type object for the "standard" data type of data in
85 register N. This should be int for D0-D7, SR, FPCONTROL and
86 FPSTATUS, long double for FP0-FP7, and void pointer for all others
87 (A0-A7, PC, FPIADDR). Note, for registers which contain
88 addresses return pointer to void, not pointer to char, because we
89 don't want to attempt to print the string after printing the
90 address. */
91
92 static struct type *
93 m68k_register_type (struct gdbarch *gdbarch, int regnum)
94 {
95 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
96 return builtin_type_m68881_ext;
97
98 if (regnum == M68K_FPI_REGNUM || regnum == PC_REGNUM)
99 return builtin_type_void_func_ptr;
100
101 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM
102 || regnum == PS_REGNUM)
103 return builtin_type_int32;
104
105 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
106 return builtin_type_void_data_ptr;
107
108 return builtin_type_int32;
109 }
110
111 /* Function: m68k_register_name
112 Returns the name of the standard m68k register regnum. */
113
114 static const char *
115 m68k_register_name (int regnum)
116 {
117 static char *register_names[] = {
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
122 "fpcontrol", "fpstatus", "fpiaddr", "fpcode", "fpflags"
123 };
124
125 if (regnum < 0 ||
126 regnum >= sizeof (register_names) / sizeof (register_names[0]))
127 internal_error (__FILE__, __LINE__,
128 _("m68k_register_name: illegal register number %d"), regnum);
129 else
130 return register_names[regnum];
131 }
132 \f
133 /* Return nonzero if a value of type TYPE stored in register REGNUM
134 needs any special handling. */
135
136 static int
137 m68k_convert_register_p (int regnum, struct type *type)
138 {
139 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
140 }
141
142 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
143 return its contents in TO. */
144
145 static void
146 m68k_register_to_value (struct frame_info *frame, int regnum,
147 struct type *type, gdb_byte *to)
148 {
149 gdb_byte from[M68K_MAX_REGISTER_SIZE];
150
151 /* We only support floating-point values. */
152 if (TYPE_CODE (type) != TYPE_CODE_FLT)
153 {
154 warning (_("Cannot convert floating-point register value "
155 "to non-floating-point type."));
156 return;
157 }
158
159 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
160 the extended floating-point format used by the FPU. */
161 get_frame_register (frame, regnum, from);
162 convert_typed_floating (from, builtin_type_m68881_ext, to, type);
163 }
164
165 /* Write the contents FROM of a value of type TYPE into register
166 REGNUM in frame FRAME. */
167
168 static void
169 m68k_value_to_register (struct frame_info *frame, int regnum,
170 struct type *type, const gdb_byte *from)
171 {
172 gdb_byte to[M68K_MAX_REGISTER_SIZE];
173
174 /* We only support floating-point values. */
175 if (TYPE_CODE (type) != TYPE_CODE_FLT)
176 {
177 warning (_("Cannot convert non-floating-point type "
178 "to floating-point register value."));
179 return;
180 }
181
182 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
183 to the extended floating-point format used by the FPU. */
184 convert_typed_floating (from, type, to, builtin_type_m68881_ext);
185 put_frame_register (frame, regnum, to);
186 }
187
188 \f
189 /* There is a fair number of calling conventions that are in somewhat
190 wide use. The 68000/08/10 don't support an FPU, not even as a
191 coprocessor. All function return values are stored in %d0/%d1.
192 Structures are returned in a static buffer, a pointer to which is
193 returned in %d0. This means that functions returning a structure
194 are not re-entrant. To avoid this problem some systems use a
195 convention where the caller passes a pointer to a buffer in %a1
196 where the return values is to be stored. This convention is the
197 default, and is implemented in the function m68k_return_value.
198
199 The 68020/030/040/060 do support an FPU, either as a coprocessor
200 (68881/2) or built-in (68040/68060). That's why System V release 4
201 (SVR4) instroduces a new calling convention specified by the SVR4
202 psABI. Integer values are returned in %d0/%d1, pointer return
203 values in %a0 and floating values in %fp0. When calling functions
204 returning a structure the caller should pass a pointer to a buffer
205 for the return value in %a0. This convention is implemented in the
206 function m68k_svr4_return_value, and by appropriately setting the
207 struct_value_regnum member of `struct gdbarch_tdep'.
208
209 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
210 for passing the structure return value buffer.
211
212 GCC can also generate code where small structures are returned in
213 %d0/%d1 instead of in memory by using -freg-struct-return. This is
214 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
215 embedded systems. This convention is implemented by setting the
216 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
217
218 /* Read a function return value of TYPE from REGCACHE, and copy that
219 into VALBUF. */
220
221 static void
222 m68k_extract_return_value (struct type *type, struct regcache *regcache,
223 gdb_byte *valbuf)
224 {
225 int len = TYPE_LENGTH (type);
226 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
227
228 if (len <= 4)
229 {
230 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
231 memcpy (valbuf, buf + (4 - len), len);
232 }
233 else if (len <= 8)
234 {
235 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
236 memcpy (valbuf, buf + (8 - len), len - 4);
237 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
238 }
239 else
240 internal_error (__FILE__, __LINE__,
241 _("Cannot extract return value of %d bytes long."), len);
242 }
243
244 static void
245 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
246 gdb_byte *valbuf)
247 {
248 int len = TYPE_LENGTH (type);
249 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
250
251 if (TYPE_CODE (type) == TYPE_CODE_FLT)
252 {
253 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
254 convert_typed_floating (buf, builtin_type_m68881_ext, valbuf, type);
255 }
256 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
257 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
258 else
259 m68k_extract_return_value (type, regcache, valbuf);
260 }
261
262 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
263
264 static void
265 m68k_store_return_value (struct type *type, struct regcache *regcache,
266 const gdb_byte *valbuf)
267 {
268 int len = TYPE_LENGTH (type);
269
270 if (len <= 4)
271 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
272 else if (len <= 8)
273 {
274 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
275 len - 4, valbuf);
276 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
277 }
278 else
279 internal_error (__FILE__, __LINE__,
280 _("Cannot store return value of %d bytes long."), len);
281 }
282
283 static void
284 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
285 const gdb_byte *valbuf)
286 {
287 int len = TYPE_LENGTH (type);
288
289 if (TYPE_CODE (type) == TYPE_CODE_FLT)
290 {
291 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
292 convert_typed_floating (valbuf, type, buf, builtin_type_m68881_ext);
293 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
294 }
295 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
296 {
297 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
298 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
299 }
300 else
301 m68k_store_return_value (type, regcache, valbuf);
302 }
303
304 /* Return non-zero if TYPE, which is assumed to be a structure or
305 union type, should be returned in registers for architecture
306 GDBARCH. */
307
308 static int
309 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
310 {
311 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
312 enum type_code code = TYPE_CODE (type);
313 int len = TYPE_LENGTH (type);
314
315 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
316
317 if (tdep->struct_return == pcc_struct_return)
318 return 0;
319
320 return (len == 1 || len == 2 || len == 4 || len == 8);
321 }
322
323 /* Determine, for architecture GDBARCH, how a return value of TYPE
324 should be returned. If it is supposed to be returned in registers,
325 and READBUF is non-zero, read the appropriate value from REGCACHE,
326 and copy it into READBUF. If WRITEBUF is non-zero, write the value
327 from WRITEBUF into REGCACHE. */
328
329 static enum return_value_convention
330 m68k_return_value (struct gdbarch *gdbarch, struct type *type,
331 struct regcache *regcache, gdb_byte *readbuf,
332 const gdb_byte *writebuf)
333 {
334 enum type_code code = TYPE_CODE (type);
335
336 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
337 && !m68k_reg_struct_return_p (gdbarch, type))
338 return RETURN_VALUE_STRUCT_CONVENTION;
339
340 /* GCC returns a `long double' in memory. */
341 if (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12)
342 return RETURN_VALUE_STRUCT_CONVENTION;
343
344 if (readbuf)
345 m68k_extract_return_value (type, regcache, readbuf);
346 if (writebuf)
347 m68k_store_return_value (type, regcache, writebuf);
348
349 return RETURN_VALUE_REGISTER_CONVENTION;
350 }
351
352 static enum return_value_convention
353 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
354 struct regcache *regcache, gdb_byte *readbuf,
355 const gdb_byte *writebuf)
356 {
357 enum type_code code = TYPE_CODE (type);
358
359 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
360 && !m68k_reg_struct_return_p (gdbarch, type))
361 {
362 /* The System V ABI says that:
363
364 "A function returning a structure or union also sets %a0 to
365 the value it finds in %a0. Thus when the caller receives
366 control again, the address of the returned object resides in
367 register %a0."
368
369 So the ABI guarantees that we can always find the return
370 value just after the function has returned. */
371
372 if (readbuf)
373 {
374 ULONGEST addr;
375
376 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
377 read_memory (addr, readbuf, TYPE_LENGTH (type));
378 }
379
380 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
381 }
382
383 /* This special case is for structures consisting of a single
384 `float' or `double' member. These structures are returned in
385 %fp0. For these structures, we call ourselves recursively,
386 changing TYPE into the type of the first member of the structure.
387 Since that should work for all structures that have only one
388 member, we don't bother to check the member's type here. */
389 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
390 {
391 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
392 return m68k_svr4_return_value (gdbarch, type, regcache,
393 readbuf, writebuf);
394 }
395
396 if (readbuf)
397 m68k_svr4_extract_return_value (type, regcache, readbuf);
398 if (writebuf)
399 m68k_svr4_store_return_value (type, regcache, writebuf);
400
401 return RETURN_VALUE_REGISTER_CONVENTION;
402 }
403 \f
404
405 static CORE_ADDR
406 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
407 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
408 struct value **args, CORE_ADDR sp, int struct_return,
409 CORE_ADDR struct_addr)
410 {
411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
412 gdb_byte buf[4];
413 int i;
414
415 /* Push arguments in reverse order. */
416 for (i = nargs - 1; i >= 0; i--)
417 {
418 struct type *value_type = value_enclosing_type (args[i]);
419 int len = TYPE_LENGTH (value_type);
420 int container_len = (len + 3) & ~3;
421 int offset;
422
423 /* Non-scalars bigger than 4 bytes are left aligned, others are
424 right aligned. */
425 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
426 || TYPE_CODE (value_type) == TYPE_CODE_UNION
427 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
428 && len > 4)
429 offset = 0;
430 else
431 offset = container_len - len;
432 sp -= container_len;
433 write_memory (sp + offset, value_contents_all (args[i]), len);
434 }
435
436 /* Store struct value address. */
437 if (struct_return)
438 {
439 store_unsigned_integer (buf, 4, struct_addr);
440 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
441 }
442
443 /* Store return address. */
444 sp -= 4;
445 store_unsigned_integer (buf, 4, bp_addr);
446 write_memory (sp, buf, 4);
447
448 /* Finally, update the stack pointer... */
449 store_unsigned_integer (buf, 4, sp);
450 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
451
452 /* ...and fake a frame pointer. */
453 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
454
455 /* DWARF2/GCC uses the stack address *before* the function call as a
456 frame's CFA. */
457 return sp + 8;
458 }
459 \f
460 struct m68k_frame_cache
461 {
462 /* Base address. */
463 CORE_ADDR base;
464 CORE_ADDR sp_offset;
465 CORE_ADDR pc;
466
467 /* Saved registers. */
468 CORE_ADDR saved_regs[M68K_NUM_REGS];
469 CORE_ADDR saved_sp;
470
471 /* Stack space reserved for local variables. */
472 long locals;
473 };
474
475 /* Allocate and initialize a frame cache. */
476
477 static struct m68k_frame_cache *
478 m68k_alloc_frame_cache (void)
479 {
480 struct m68k_frame_cache *cache;
481 int i;
482
483 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
484
485 /* Base address. */
486 cache->base = 0;
487 cache->sp_offset = -4;
488 cache->pc = 0;
489
490 /* Saved registers. We initialize these to -1 since zero is a valid
491 offset (that's where %fp is supposed to be stored). */
492 for (i = 0; i < M68K_NUM_REGS; i++)
493 cache->saved_regs[i] = -1;
494
495 /* Frameless until proven otherwise. */
496 cache->locals = -1;
497
498 return cache;
499 }
500
501 /* Check whether PC points at a code that sets up a new stack frame.
502 If so, it updates CACHE and returns the address of the first
503 instruction after the sequence that sets removes the "hidden"
504 argument from the stack or CURRENT_PC, whichever is smaller.
505 Otherwise, return PC. */
506
507 static CORE_ADDR
508 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
509 struct m68k_frame_cache *cache)
510 {
511 int op;
512
513 if (pc >= current_pc)
514 return current_pc;
515
516 op = read_memory_unsigned_integer (pc, 2);
517
518 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
519 {
520 cache->saved_regs[M68K_FP_REGNUM] = 0;
521 cache->sp_offset += 4;
522 if (op == P_LINKW_FP)
523 {
524 /* link.w %fp, #-N */
525 /* link.w %fp, #0; adda.l #-N, %sp */
526 cache->locals = -read_memory_integer (pc + 2, 2);
527
528 if (pc + 4 < current_pc && cache->locals == 0)
529 {
530 op = read_memory_unsigned_integer (pc + 4, 2);
531 if (op == P_ADDAL_SP)
532 {
533 cache->locals = read_memory_integer (pc + 6, 4);
534 return pc + 10;
535 }
536 }
537
538 return pc + 4;
539 }
540 else if (op == P_LINKL_FP)
541 {
542 /* link.l %fp, #-N */
543 cache->locals = -read_memory_integer (pc + 2, 4);
544 return pc + 6;
545 }
546 else
547 {
548 /* pea (%fp); movea.l %sp, %fp */
549 cache->locals = 0;
550
551 if (pc + 2 < current_pc)
552 {
553 op = read_memory_unsigned_integer (pc + 2, 2);
554
555 if (op == P_MOVEAL_SP_FP)
556 {
557 /* move.l %sp, %fp */
558 return pc + 4;
559 }
560 }
561
562 return pc + 2;
563 }
564 }
565 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
566 {
567 /* subq.[wl] #N,%sp */
568 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
569 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
570 if (pc + 2 < current_pc)
571 {
572 op = read_memory_unsigned_integer (pc + 2, 2);
573 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
574 {
575 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
576 return pc + 4;
577 }
578 }
579 return pc + 2;
580 }
581 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
582 {
583 /* adda.w #-N,%sp */
584 /* lea (-N,%sp),%sp */
585 cache->locals = -read_memory_integer (pc + 2, 2);
586 return pc + 4;
587 }
588 else if (op == P_ADDAL_SP)
589 {
590 /* adda.l #-N,%sp */
591 cache->locals = -read_memory_integer (pc + 2, 4);
592 return pc + 6;
593 }
594
595 return pc;
596 }
597
598 /* Check whether PC points at code that saves registers on the stack.
599 If so, it updates CACHE and returns the address of the first
600 instruction after the register saves or CURRENT_PC, whichever is
601 smaller. Otherwise, return PC. */
602
603 static CORE_ADDR
604 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
605 struct m68k_frame_cache *cache)
606 {
607 if (cache->locals >= 0)
608 {
609 CORE_ADDR offset;
610 int op;
611 int i, mask, regno;
612
613 offset = -4 - cache->locals;
614 while (pc < current_pc)
615 {
616 op = read_memory_unsigned_integer (pc, 2);
617 if (op == P_FMOVEMX_SP)
618 {
619 /* fmovem.x REGS,-(%sp) */
620 op = read_memory_unsigned_integer (pc + 2, 2);
621 if ((op & 0xff00) == 0xe000)
622 {
623 mask = op & 0xff;
624 for (i = 0; i < 16; i++, mask >>= 1)
625 {
626 if (mask & 1)
627 {
628 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
629 offset -= 12;
630 }
631 }
632 pc += 4;
633 }
634 else
635 break;
636 }
637 else if ((op & 0170677) == P_MOVEL_SP)
638 {
639 /* move.l %R,-(%sp) */
640 regno = ((op & 07000) >> 9) | ((op & 0100) >> 3);
641 cache->saved_regs[regno] = offset;
642 offset -= 4;
643 pc += 2;
644 }
645 else if (op == P_MOVEML_SP)
646 {
647 /* movem.l REGS,-(%sp) */
648 mask = read_memory_unsigned_integer (pc + 2, 2);
649 for (i = 0; i < 16; i++, mask >>= 1)
650 {
651 if (mask & 1)
652 {
653 cache->saved_regs[15 - i] = offset;
654 offset -= 4;
655 }
656 }
657 pc += 4;
658 }
659 else
660 break;
661 }
662 }
663
664 return pc;
665 }
666
667
668 /* Do a full analysis of the prologue at PC and update CACHE
669 accordingly. Bail out early if CURRENT_PC is reached. Return the
670 address where the analysis stopped.
671
672 We handle all cases that can be generated by gcc.
673
674 For allocating a stack frame:
675
676 link.w %a6,#-N
677 link.l %a6,#-N
678 pea (%fp); move.l %sp,%fp
679 link.w %a6,#0; add.l #-N,%sp
680 subq.l #N,%sp
681 subq.w #N,%sp
682 subq.w #8,%sp; subq.w #N-8,%sp
683 add.w #-N,%sp
684 lea (-N,%sp),%sp
685 add.l #-N,%sp
686
687 For saving registers:
688
689 fmovem.x REGS,-(%sp)
690 move.l R1,-(%sp)
691 move.l R1,-(%sp); move.l R2,-(%sp)
692 movem.l REGS,-(%sp)
693
694 For setting up the PIC register:
695
696 lea (%pc,N),%a5
697
698 */
699
700 static CORE_ADDR
701 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
702 struct m68k_frame_cache *cache)
703 {
704 unsigned int op;
705
706 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
707 pc = m68k_analyze_register_saves (pc, current_pc, cache);
708 if (pc >= current_pc)
709 return current_pc;
710
711 /* Check for GOT setup. */
712 op = read_memory_unsigned_integer (pc, 4);
713 if (op == P_LEA_PC_A5)
714 {
715 /* lea (%pc,N),%a5 */
716 return pc + 6;
717 }
718
719 return pc;
720 }
721
722 /* Return PC of first real instruction. */
723
724 static CORE_ADDR
725 m68k_skip_prologue (CORE_ADDR start_pc)
726 {
727 struct m68k_frame_cache cache;
728 CORE_ADDR pc;
729 int op;
730
731 cache.locals = -1;
732 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
733 if (cache.locals < 0)
734 return start_pc;
735 return pc;
736 }
737
738 static CORE_ADDR
739 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
740 {
741 gdb_byte buf[8];
742
743 frame_unwind_register (next_frame, PC_REGNUM, buf);
744 return extract_typed_address (buf, builtin_type_void_func_ptr);
745 }
746 \f
747 /* Normal frames. */
748
749 static struct m68k_frame_cache *
750 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
751 {
752 struct m68k_frame_cache *cache;
753 gdb_byte buf[4];
754 int i;
755
756 if (*this_cache)
757 return *this_cache;
758
759 cache = m68k_alloc_frame_cache ();
760 *this_cache = cache;
761
762 /* In principle, for normal frames, %fp holds the frame pointer,
763 which holds the base address for the current stack frame.
764 However, for functions that don't need it, the frame pointer is
765 optional. For these "frameless" functions the frame pointer is
766 actually the frame pointer of the calling frame. Signal
767 trampolines are just a special case of a "frameless" function.
768 They (usually) share their frame pointer with the frame that was
769 in progress when the signal occurred. */
770
771 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
772 cache->base = extract_unsigned_integer (buf, 4);
773 if (cache->base == 0)
774 return cache;
775
776 /* For normal frames, %pc is stored at 4(%fp). */
777 cache->saved_regs[M68K_PC_REGNUM] = 4;
778
779 cache->pc = frame_func_unwind (next_frame);
780 if (cache->pc != 0)
781 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
782
783 if (cache->locals < 0)
784 {
785 /* We didn't find a valid frame, which means that CACHE->base
786 currently holds the frame pointer for our calling frame. If
787 we're at the start of a function, or somewhere half-way its
788 prologue, the function's frame probably hasn't been fully
789 setup yet. Try to reconstruct the base address for the stack
790 frame by looking at the stack pointer. For truly "frameless"
791 functions this might work too. */
792
793 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
794 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
795 }
796
797 /* Now that we have the base address for the stack frame we can
798 calculate the value of %sp in the calling frame. */
799 cache->saved_sp = cache->base + 8;
800
801 /* Adjust all the saved registers such that they contain addresses
802 instead of offsets. */
803 for (i = 0; i < M68K_NUM_REGS; i++)
804 if (cache->saved_regs[i] != -1)
805 cache->saved_regs[i] += cache->base;
806
807 return cache;
808 }
809
810 static void
811 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
812 struct frame_id *this_id)
813 {
814 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
815
816 /* This marks the outermost frame. */
817 if (cache->base == 0)
818 return;
819
820 /* See the end of m68k_push_dummy_call. */
821 *this_id = frame_id_build (cache->base + 8, cache->pc);
822 }
823
824 static void
825 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
826 int regnum, int *optimizedp,
827 enum lval_type *lvalp, CORE_ADDR *addrp,
828 int *realnump, gdb_byte *valuep)
829 {
830 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
831
832 gdb_assert (regnum >= 0);
833
834 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
835 {
836 *optimizedp = 0;
837 *lvalp = not_lval;
838 *addrp = 0;
839 *realnump = -1;
840 if (valuep)
841 {
842 /* Store the value. */
843 store_unsigned_integer (valuep, 4, cache->saved_sp);
844 }
845 return;
846 }
847
848 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
849 {
850 *optimizedp = 0;
851 *lvalp = lval_memory;
852 *addrp = cache->saved_regs[regnum];
853 *realnump = -1;
854 if (valuep)
855 {
856 /* Read the value in from memory. */
857 read_memory (*addrp, valuep,
858 register_size (current_gdbarch, regnum));
859 }
860 return;
861 }
862
863 *optimizedp = 0;
864 *lvalp = lval_register;
865 *addrp = 0;
866 *realnump = regnum;
867 if (valuep)
868 frame_unwind_register (next_frame, (*realnump), valuep);
869 }
870
871 static const struct frame_unwind m68k_frame_unwind =
872 {
873 NORMAL_FRAME,
874 m68k_frame_this_id,
875 m68k_frame_prev_register
876 };
877
878 static const struct frame_unwind *
879 m68k_frame_sniffer (struct frame_info *next_frame)
880 {
881 return &m68k_frame_unwind;
882 }
883 \f
884 static CORE_ADDR
885 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
886 {
887 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
888
889 return cache->base;
890 }
891
892 static const struct frame_base m68k_frame_base =
893 {
894 &m68k_frame_unwind,
895 m68k_frame_base_address,
896 m68k_frame_base_address,
897 m68k_frame_base_address
898 };
899
900 static struct frame_id
901 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
902 {
903 gdb_byte buf[4];
904 CORE_ADDR fp;
905
906 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
907 fp = extract_unsigned_integer (buf, 4);
908
909 /* See the end of m68k_push_dummy_call. */
910 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
911 }
912 \f
913 #ifdef USE_PROC_FS /* Target dependent support for /proc */
914
915 #include <sys/procfs.h>
916
917 /* Prototypes for supply_gregset etc. */
918 #include "gregset.h"
919
920 /* The /proc interface divides the target machine's register set up into
921 two different sets, the general register set (gregset) and the floating
922 point register set (fpregset). For each set, there is an ioctl to get
923 the current register set and another ioctl to set the current values.
924
925 The actual structure passed through the ioctl interface is, of course,
926 naturally machine dependent, and is different for each set of registers.
927 For the m68k for example, the general register set is typically defined
928 by:
929
930 typedef int gregset_t[18];
931
932 #define R_D0 0
933 ...
934 #define R_PS 17
935
936 and the floating point set by:
937
938 typedef struct fpregset {
939 int f_pcr;
940 int f_psr;
941 int f_fpiaddr;
942 int f_fpregs[8][3]; (8 regs, 96 bits each)
943 } fpregset_t;
944
945 These routines provide the packing and unpacking of gregset_t and
946 fpregset_t formatted data.
947
948 */
949
950 /* Atari SVR4 has R_SR but not R_PS */
951
952 #if !defined (R_PS) && defined (R_SR)
953 #define R_PS R_SR
954 #endif
955
956 /* Given a pointer to a general register set in /proc format (gregset_t *),
957 unpack the register contents and supply them as gdb's idea of the current
958 register values. */
959
960 void
961 supply_gregset (gregset_t *gregsetp)
962 {
963 int regi;
964 greg_t *regp = (greg_t *) gregsetp;
965
966 for (regi = 0; regi < R_PC; regi++)
967 {
968 regcache_raw_supply (current_regcache, regi, (char *) (regp + regi));
969 }
970 regcache_raw_supply (current_regcache, PS_REGNUM, (char *) (regp + R_PS));
971 regcache_raw_supply (current_regcache, PC_REGNUM, (char *) (regp + R_PC));
972 }
973
974 void
975 fill_gregset (gregset_t *gregsetp, int regno)
976 {
977 int regi;
978 greg_t *regp = (greg_t *) gregsetp;
979
980 for (regi = 0; regi < R_PC; regi++)
981 {
982 if (regno == -1 || regno == regi)
983 regcache_raw_collect (current_regcache, regi, regp + regi);
984 }
985 if (regno == -1 || regno == PS_REGNUM)
986 regcache_raw_collect (current_regcache, PS_REGNUM, regp + R_PS);
987 if (regno == -1 || regno == PC_REGNUM)
988 regcache_raw_collect (current_regcache, PC_REGNUM, regp + R_PC);
989 }
990
991 #if defined (FP0_REGNUM)
992
993 /* Given a pointer to a floating point register set in /proc format
994 (fpregset_t *), unpack the register contents and supply them as gdb's
995 idea of the current floating point register values. */
996
997 void
998 supply_fpregset (fpregset_t *fpregsetp)
999 {
1000 int regi;
1001 char *from;
1002
1003 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1004 {
1005 from = (char *) &(fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1006 regcache_raw_supply (current_regcache, regi, from);
1007 }
1008 regcache_raw_supply (current_regcache, M68K_FPC_REGNUM,
1009 (char *) &(fpregsetp->f_pcr));
1010 regcache_raw_supply (current_regcache, M68K_FPS_REGNUM,
1011 (char *) &(fpregsetp->f_psr));
1012 regcache_raw_supply (current_regcache, M68K_FPI_REGNUM,
1013 (char *) &(fpregsetp->f_fpiaddr));
1014 }
1015
1016 /* Given a pointer to a floating point register set in /proc format
1017 (fpregset_t *), update the register specified by REGNO from gdb's idea
1018 of the current floating point register set. If REGNO is -1, update
1019 them all. */
1020
1021 void
1022 fill_fpregset (fpregset_t *fpregsetp, int regno)
1023 {
1024 int regi;
1025
1026 for (regi = FP0_REGNUM; regi < M68K_FPC_REGNUM; regi++)
1027 {
1028 if (regno == -1 || regno == regi)
1029 regcache_raw_collect (current_regcache, regi,
1030 &fpregsetp->f_fpregs[regi - FP0_REGNUM][0]);
1031 }
1032 if (regno == -1 || regno == M68K_FPC_REGNUM)
1033 regcache_raw_collect (current_regcache, M68K_FPC_REGNUM,
1034 &fpregsetp->f_pcr);
1035 if (regno == -1 || regno == M68K_FPS_REGNUM)
1036 regcache_raw_collect (current_regcache, M68K_FPS_REGNUM,
1037 &fpregsetp->f_psr);
1038 if (regno == -1 || regno == M68K_FPI_REGNUM)
1039 regcache_raw_collect (current_regcache, M68K_FPI_REGNUM,
1040 &fpregsetp->f_fpiaddr);
1041 }
1042
1043 #endif /* defined (FP0_REGNUM) */
1044
1045 #endif /* USE_PROC_FS */
1046
1047 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1048 We expect the first arg to be a pointer to the jmp_buf structure from which
1049 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1050 This routine returns true on success. */
1051
1052 static int
1053 m68k_get_longjmp_target (CORE_ADDR *pc)
1054 {
1055 gdb_byte *buf;
1056 CORE_ADDR sp, jb_addr;
1057 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1058
1059 if (tdep->jb_pc < 0)
1060 {
1061 internal_error (__FILE__, __LINE__,
1062 _("m68k_get_longjmp_target: not implemented"));
1063 return 0;
1064 }
1065
1066 buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
1067 sp = read_register (SP_REGNUM);
1068
1069 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1070 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
1071 return 0;
1072
1073 jb_addr = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1074
1075 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1076 TARGET_PTR_BIT / TARGET_CHAR_BIT))
1077 return 0;
1078
1079 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
1080 return 1;
1081 }
1082 \f
1083
1084 /* System V Release 4 (SVR4). */
1085
1086 void
1087 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1088 {
1089 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1090
1091 /* SVR4 uses a different calling convention. */
1092 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1093
1094 /* SVR4 uses %a0 instead of %a1. */
1095 tdep->struct_value_regnum = M68K_A0_REGNUM;
1096 }
1097 \f
1098
1099 /* Function: m68k_gdbarch_init
1100 Initializer function for the m68k gdbarch vector.
1101 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1102
1103 static struct gdbarch *
1104 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1105 {
1106 struct gdbarch_tdep *tdep = NULL;
1107 struct gdbarch *gdbarch;
1108
1109 /* find a candidate among the list of pre-declared architectures. */
1110 arches = gdbarch_list_lookup_by_info (arches, &info);
1111 if (arches != NULL)
1112 return (arches->gdbarch);
1113
1114 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1115 gdbarch = gdbarch_alloc (&info, tdep);
1116
1117 set_gdbarch_long_double_format (gdbarch, &floatformat_m68881_ext);
1118 set_gdbarch_long_double_bit (gdbarch, 96);
1119
1120 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1121 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1122
1123 /* Stack grows down. */
1124 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1125
1126 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1127 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1128
1129 set_gdbarch_frame_args_skip (gdbarch, 8);
1130
1131 set_gdbarch_register_type (gdbarch, m68k_register_type);
1132 set_gdbarch_register_name (gdbarch, m68k_register_name);
1133 set_gdbarch_num_regs (gdbarch, 29);
1134 set_gdbarch_register_bytes_ok (gdbarch, m68k_register_bytes_ok);
1135 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1136 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1137 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1138 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1139 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1140 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1141 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1142
1143 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1144 set_gdbarch_return_value (gdbarch, m68k_return_value);
1145
1146 /* Disassembler. */
1147 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1148
1149 #if defined JB_PC && defined JB_ELEMENT_SIZE
1150 tdep->jb_pc = JB_PC;
1151 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1152 #else
1153 tdep->jb_pc = -1;
1154 #endif
1155 tdep->struct_value_regnum = M68K_A1_REGNUM;
1156 tdep->struct_return = reg_struct_return;
1157
1158 /* Frame unwinder. */
1159 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1160 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1161
1162 /* Hook in the DWARF CFI frame unwinder. */
1163 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1164
1165 frame_base_set_default (gdbarch, &m68k_frame_base);
1166
1167 /* Hook in ABI-specific overrides, if they have been registered. */
1168 gdbarch_init_osabi (info, gdbarch);
1169
1170 /* Now we have tuned the configuration, set a few final things,
1171 based on what the OS ABI has told us. */
1172
1173 if (tdep->jb_pc >= 0)
1174 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1175
1176 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1177
1178 return gdbarch;
1179 }
1180
1181
1182 static void
1183 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1184 {
1185 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1186
1187 if (tdep == NULL)
1188 return;
1189 }
1190
1191 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1192
1193 void
1194 _initialize_m68k_tdep (void)
1195 {
1196 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1197 }
This page took 0.056774 seconds and 4 git commands to generate.