convert_doublest_to_floatformat: handle off-range values.
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-1996, 1999-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "inferior.h"
32 #include "regcache.h"
33 #include "arch-utils.h"
34 #include "osabi.h"
35 #include "dis-asm.h"
36 #include "target-descriptions.h"
37
38 #include "m68k-tdep.h"
39 \f
40
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
54
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
57
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
61
62 static const gdb_byte *
63 m68k_local_breakpoint_from_pc (struct gdbarch *gdbarch,
64 CORE_ADDR *pcptr, int *lenptr)
65 {
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69 }
70 \f
71
72 /* Construct types for ISA-specific registers. */
73 static struct type *
74 m68k_ps_type (struct gdbarch *gdbarch)
75 {
76 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
77
78 if (!tdep->m68k_ps_type)
79 {
80 struct type *type;
81
82 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 4);
83 append_flags_type_flag (type, 0, "C");
84 append_flags_type_flag (type, 1, "V");
85 append_flags_type_flag (type, 2, "Z");
86 append_flags_type_flag (type, 3, "N");
87 append_flags_type_flag (type, 4, "X");
88 append_flags_type_flag (type, 8, "I0");
89 append_flags_type_flag (type, 9, "I1");
90 append_flags_type_flag (type, 10, "I2");
91 append_flags_type_flag (type, 12, "M");
92 append_flags_type_flag (type, 13, "S");
93 append_flags_type_flag (type, 14, "T0");
94 append_flags_type_flag (type, 15, "T1");
95
96 tdep->m68k_ps_type = type;
97 }
98
99 return tdep->m68k_ps_type;
100 }
101
102 static struct type *
103 m68881_ext_type (struct gdbarch *gdbarch)
104 {
105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
106
107 if (!tdep->m68881_ext_type)
108 tdep->m68881_ext_type
109 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
110 floatformats_m68881_ext);
111
112 return tdep->m68881_ext_type;
113 }
114
115 /* Return the GDB type object for the "standard" data type of data in
116 register N. This should be int for D0-D7, SR, FPCONTROL and
117 FPSTATUS, long double for FP0-FP7, and void pointer for all others
118 (A0-A7, PC, FPIADDR). Note, for registers which contain
119 addresses return pointer to void, not pointer to char, because we
120 don't want to attempt to print the string after printing the
121 address. */
122
123 static struct type *
124 m68k_register_type (struct gdbarch *gdbarch, int regnum)
125 {
126 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
127
128 if (tdep->fpregs_present)
129 {
130 if (regnum >= gdbarch_fp0_regnum (gdbarch)
131 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
132 {
133 if (tdep->flavour == m68k_coldfire_flavour)
134 return builtin_type (gdbarch)->builtin_double;
135 else
136 return m68881_ext_type (gdbarch);
137 }
138
139 if (regnum == M68K_FPI_REGNUM)
140 return builtin_type (gdbarch)->builtin_func_ptr;
141
142 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
143 return builtin_type (gdbarch)->builtin_int32;
144 }
145 else
146 {
147 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
148 return builtin_type (gdbarch)->builtin_int0;
149 }
150
151 if (regnum == gdbarch_pc_regnum (gdbarch))
152 return builtin_type (gdbarch)->builtin_func_ptr;
153
154 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
155 return builtin_type (gdbarch)->builtin_data_ptr;
156
157 if (regnum == M68K_PS_REGNUM)
158 return m68k_ps_type (gdbarch);
159
160 return builtin_type (gdbarch)->builtin_int32;
161 }
162
163 static const char *m68k_register_names[] = {
164 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
165 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
166 "ps", "pc",
167 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
168 "fpcontrol", "fpstatus", "fpiaddr"
169 };
170
171 /* Function: m68k_register_name
172 Returns the name of the standard m68k register regnum. */
173
174 static const char *
175 m68k_register_name (struct gdbarch *gdbarch, int regnum)
176 {
177 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
178 internal_error (__FILE__, __LINE__,
179 _("m68k_register_name: illegal register number %d"),
180 regnum);
181 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
182 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
183 return "";
184 else
185 return m68k_register_names[regnum];
186 }
187 \f
188 /* Return nonzero if a value of type TYPE stored in register REGNUM
189 needs any special handling. */
190
191 static int
192 m68k_convert_register_p (struct gdbarch *gdbarch,
193 int regnum, struct type *type)
194 {
195 if (!gdbarch_tdep (gdbarch)->fpregs_present)
196 return 0;
197 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
198 && type != register_type (gdbarch, M68K_FP0_REGNUM));
199 }
200
201 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
202 return its contents in TO. */
203
204 static int
205 m68k_register_to_value (struct frame_info *frame, int regnum,
206 struct type *type, gdb_byte *to,
207 int *optimizedp, int *unavailablep)
208 {
209 gdb_byte from[M68K_MAX_REGISTER_SIZE];
210 struct type *fpreg_type = register_type (get_frame_arch (frame),
211 M68K_FP0_REGNUM);
212
213 /* We only support floating-point values. */
214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
215 {
216 warning (_("Cannot convert floating-point register value "
217 "to non-floating-point type."));
218 *optimizedp = *unavailablep = 0;
219 return 0;
220 }
221
222 /* Convert to TYPE. */
223
224 /* Convert to TYPE. */
225 if (!get_frame_register_bytes (frame, regnum, 0, TYPE_LENGTH (type),
226 from, optimizedp, unavailablep))
227 return 0;
228
229 convert_typed_floating (from, fpreg_type, to, type);
230 *optimizedp = *unavailablep = 0;
231 return 1;
232 }
233
234 /* Write the contents FROM of a value of type TYPE into register
235 REGNUM in frame FRAME. */
236
237 static void
238 m68k_value_to_register (struct frame_info *frame, int regnum,
239 struct type *type, const gdb_byte *from)
240 {
241 gdb_byte to[M68K_MAX_REGISTER_SIZE];
242 struct type *fpreg_type = register_type (get_frame_arch (frame),
243 M68K_FP0_REGNUM);
244
245 /* We only support floating-point values. */
246 if (TYPE_CODE (type) != TYPE_CODE_FLT)
247 {
248 warning (_("Cannot convert non-floating-point type "
249 "to floating-point register value."));
250 return;
251 }
252
253 /* Convert from TYPE. */
254 convert_typed_floating (from, type, to, fpreg_type);
255 put_frame_register (frame, regnum, to);
256 }
257
258 \f
259 /* There is a fair number of calling conventions that are in somewhat
260 wide use. The 68000/08/10 don't support an FPU, not even as a
261 coprocessor. All function return values are stored in %d0/%d1.
262 Structures are returned in a static buffer, a pointer to which is
263 returned in %d0. This means that functions returning a structure
264 are not re-entrant. To avoid this problem some systems use a
265 convention where the caller passes a pointer to a buffer in %a1
266 where the return values is to be stored. This convention is the
267 default, and is implemented in the function m68k_return_value.
268
269 The 68020/030/040/060 do support an FPU, either as a coprocessor
270 (68881/2) or built-in (68040/68060). That's why System V release 4
271 (SVR4) instroduces a new calling convention specified by the SVR4
272 psABI. Integer values are returned in %d0/%d1, pointer return
273 values in %a0 and floating values in %fp0. When calling functions
274 returning a structure the caller should pass a pointer to a buffer
275 for the return value in %a0. This convention is implemented in the
276 function m68k_svr4_return_value, and by appropriately setting the
277 struct_value_regnum member of `struct gdbarch_tdep'.
278
279 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
280 for passing the structure return value buffer.
281
282 GCC can also generate code where small structures are returned in
283 %d0/%d1 instead of in memory by using -freg-struct-return. This is
284 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
285 embedded systems. This convention is implemented by setting the
286 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
287
288 /* Read a function return value of TYPE from REGCACHE, and copy that
289 into VALBUF. */
290
291 static void
292 m68k_extract_return_value (struct type *type, struct regcache *regcache,
293 gdb_byte *valbuf)
294 {
295 int len = TYPE_LENGTH (type);
296 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
297
298 if (len <= 4)
299 {
300 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
301 memcpy (valbuf, buf + (4 - len), len);
302 }
303 else if (len <= 8)
304 {
305 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
306 memcpy (valbuf, buf + (8 - len), len - 4);
307 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
308 }
309 else
310 internal_error (__FILE__, __LINE__,
311 _("Cannot extract return value of %d bytes long."), len);
312 }
313
314 static void
315 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
316 gdb_byte *valbuf)
317 {
318 int len = TYPE_LENGTH (type);
319 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
320 struct gdbarch *gdbarch = get_regcache_arch (regcache);
321 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
322
323 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
324 {
325 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
326 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
327 convert_typed_floating (buf, fpreg_type, valbuf, type);
328 }
329 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
330 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
331 else
332 m68k_extract_return_value (type, regcache, valbuf);
333 }
334
335 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
336
337 static void
338 m68k_store_return_value (struct type *type, struct regcache *regcache,
339 const gdb_byte *valbuf)
340 {
341 int len = TYPE_LENGTH (type);
342
343 if (len <= 4)
344 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
345 else if (len <= 8)
346 {
347 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
348 len - 4, valbuf);
349 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
350 }
351 else
352 internal_error (__FILE__, __LINE__,
353 _("Cannot store return value of %d bytes long."), len);
354 }
355
356 static void
357 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
358 const gdb_byte *valbuf)
359 {
360 int len = TYPE_LENGTH (type);
361 struct gdbarch *gdbarch = get_regcache_arch (regcache);
362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
363
364 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
365 {
366 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
367 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
368 convert_typed_floating (valbuf, type, buf, fpreg_type);
369 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
370 }
371 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
372 {
373 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
374 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
375 }
376 else
377 m68k_store_return_value (type, regcache, valbuf);
378 }
379
380 /* Return non-zero if TYPE, which is assumed to be a structure, union or
381 complex type, should be returned in registers for architecture
382 GDBARCH. */
383
384 static int
385 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
386 {
387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
388 enum type_code code = TYPE_CODE (type);
389 int len = TYPE_LENGTH (type);
390
391 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
392 || code == TYPE_CODE_COMPLEX);
393
394 if (tdep->struct_return == pcc_struct_return)
395 return 0;
396
397 return (len == 1 || len == 2 || len == 4 || len == 8);
398 }
399
400 /* Determine, for architecture GDBARCH, how a return value of TYPE
401 should be returned. If it is supposed to be returned in registers,
402 and READBUF is non-zero, read the appropriate value from REGCACHE,
403 and copy it into READBUF. If WRITEBUF is non-zero, write the value
404 from WRITEBUF into REGCACHE. */
405
406 static enum return_value_convention
407 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
408 struct type *type, struct regcache *regcache,
409 gdb_byte *readbuf, const gdb_byte *writebuf)
410 {
411 enum type_code code = TYPE_CODE (type);
412
413 /* GCC returns a `long double' in memory too. */
414 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
415 || code == TYPE_CODE_COMPLEX)
416 && !m68k_reg_struct_return_p (gdbarch, type))
417 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
418 {
419 /* The default on m68k is to return structures in static memory.
420 Consequently a function must return the address where we can
421 find the return value. */
422
423 if (readbuf)
424 {
425 ULONGEST addr;
426
427 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
428 read_memory (addr, readbuf, TYPE_LENGTH (type));
429 }
430
431 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
432 }
433
434 if (readbuf)
435 m68k_extract_return_value (type, regcache, readbuf);
436 if (writebuf)
437 m68k_store_return_value (type, regcache, writebuf);
438
439 return RETURN_VALUE_REGISTER_CONVENTION;
440 }
441
442 static enum return_value_convention
443 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
444 struct type *type, struct regcache *regcache,
445 gdb_byte *readbuf, const gdb_byte *writebuf)
446 {
447 enum type_code code = TYPE_CODE (type);
448
449 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
450 || code == TYPE_CODE_COMPLEX)
451 && !m68k_reg_struct_return_p (gdbarch, type))
452 {
453 /* The System V ABI says that:
454
455 "A function returning a structure or union also sets %a0 to
456 the value it finds in %a0. Thus when the caller receives
457 control again, the address of the returned object resides in
458 register %a0."
459
460 So the ABI guarantees that we can always find the return
461 value just after the function has returned. */
462
463 if (readbuf)
464 {
465 ULONGEST addr;
466
467 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
468 read_memory (addr, readbuf, TYPE_LENGTH (type));
469 }
470
471 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
472 }
473
474 /* This special case is for structures consisting of a single
475 `float' or `double' member. These structures are returned in
476 %fp0. For these structures, we call ourselves recursively,
477 changing TYPE into the type of the first member of the structure.
478 Since that should work for all structures that have only one
479 member, we don't bother to check the member's type here. */
480 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
481 {
482 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
483 return m68k_svr4_return_value (gdbarch, function, type, regcache,
484 readbuf, writebuf);
485 }
486
487 if (readbuf)
488 m68k_svr4_extract_return_value (type, regcache, readbuf);
489 if (writebuf)
490 m68k_svr4_store_return_value (type, regcache, writebuf);
491
492 return RETURN_VALUE_REGISTER_CONVENTION;
493 }
494 \f
495
496 /* Always align the frame to a 4-byte boundary. This is required on
497 coldfire and harmless on the rest. */
498
499 static CORE_ADDR
500 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
501 {
502 /* Align the stack to four bytes. */
503 return sp & ~3;
504 }
505
506 static CORE_ADDR
507 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
508 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
509 struct value **args, CORE_ADDR sp, int struct_return,
510 CORE_ADDR struct_addr)
511 {
512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
514 gdb_byte buf[4];
515 int i;
516
517 /* Push arguments in reverse order. */
518 for (i = nargs - 1; i >= 0; i--)
519 {
520 struct type *value_type = value_enclosing_type (args[i]);
521 int len = TYPE_LENGTH (value_type);
522 int container_len = (len + 3) & ~3;
523 int offset;
524
525 /* Non-scalars bigger than 4 bytes are left aligned, others are
526 right aligned. */
527 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
528 || TYPE_CODE (value_type) == TYPE_CODE_UNION
529 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
530 && len > 4)
531 offset = 0;
532 else
533 offset = container_len - len;
534 sp -= container_len;
535 write_memory (sp + offset, value_contents_all (args[i]), len);
536 }
537
538 /* Store struct value address. */
539 if (struct_return)
540 {
541 store_unsigned_integer (buf, 4, byte_order, struct_addr);
542 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
543 }
544
545 /* Store return address. */
546 sp -= 4;
547 store_unsigned_integer (buf, 4, byte_order, bp_addr);
548 write_memory (sp, buf, 4);
549
550 /* Finally, update the stack pointer... */
551 store_unsigned_integer (buf, 4, byte_order, sp);
552 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
553
554 /* ...and fake a frame pointer. */
555 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
556
557 /* DWARF2/GCC uses the stack address *before* the function call as a
558 frame's CFA. */
559 return sp + 8;
560 }
561
562 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
563
564 static int
565 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
566 {
567 if (num < 8)
568 /* d0..7 */
569 return (num - 0) + M68K_D0_REGNUM;
570 else if (num < 16)
571 /* a0..7 */
572 return (num - 8) + M68K_A0_REGNUM;
573 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
574 /* fp0..7 */
575 return (num - 16) + M68K_FP0_REGNUM;
576 else if (num == 25)
577 /* pc */
578 return M68K_PC_REGNUM;
579 else
580 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
581 }
582
583 \f
584 struct m68k_frame_cache
585 {
586 /* Base address. */
587 CORE_ADDR base;
588 CORE_ADDR sp_offset;
589 CORE_ADDR pc;
590
591 /* Saved registers. */
592 CORE_ADDR saved_regs[M68K_NUM_REGS];
593 CORE_ADDR saved_sp;
594
595 /* Stack space reserved for local variables. */
596 long locals;
597 };
598
599 /* Allocate and initialize a frame cache. */
600
601 static struct m68k_frame_cache *
602 m68k_alloc_frame_cache (void)
603 {
604 struct m68k_frame_cache *cache;
605 int i;
606
607 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
608
609 /* Base address. */
610 cache->base = 0;
611 cache->sp_offset = -4;
612 cache->pc = 0;
613
614 /* Saved registers. We initialize these to -1 since zero is a valid
615 offset (that's where %fp is supposed to be stored). */
616 for (i = 0; i < M68K_NUM_REGS; i++)
617 cache->saved_regs[i] = -1;
618
619 /* Frameless until proven otherwise. */
620 cache->locals = -1;
621
622 return cache;
623 }
624
625 /* Check whether PC points at a code that sets up a new stack frame.
626 If so, it updates CACHE and returns the address of the first
627 instruction after the sequence that sets removes the "hidden"
628 argument from the stack or CURRENT_PC, whichever is smaller.
629 Otherwise, return PC. */
630
631 static CORE_ADDR
632 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
633 CORE_ADDR pc, CORE_ADDR current_pc,
634 struct m68k_frame_cache *cache)
635 {
636 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
637 int op;
638
639 if (pc >= current_pc)
640 return current_pc;
641
642 op = read_memory_unsigned_integer (pc, 2, byte_order);
643
644 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
645 {
646 cache->saved_regs[M68K_FP_REGNUM] = 0;
647 cache->sp_offset += 4;
648 if (op == P_LINKW_FP)
649 {
650 /* link.w %fp, #-N */
651 /* link.w %fp, #0; adda.l #-N, %sp */
652 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
653
654 if (pc + 4 < current_pc && cache->locals == 0)
655 {
656 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
657 if (op == P_ADDAL_SP)
658 {
659 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
660 return pc + 10;
661 }
662 }
663
664 return pc + 4;
665 }
666 else if (op == P_LINKL_FP)
667 {
668 /* link.l %fp, #-N */
669 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
670 return pc + 6;
671 }
672 else
673 {
674 /* pea (%fp); movea.l %sp, %fp */
675 cache->locals = 0;
676
677 if (pc + 2 < current_pc)
678 {
679 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
680
681 if (op == P_MOVEAL_SP_FP)
682 {
683 /* move.l %sp, %fp */
684 return pc + 4;
685 }
686 }
687
688 return pc + 2;
689 }
690 }
691 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
692 {
693 /* subq.[wl] #N,%sp */
694 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
695 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
696 if (pc + 2 < current_pc)
697 {
698 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
699 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
700 {
701 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
702 return pc + 4;
703 }
704 }
705 return pc + 2;
706 }
707 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
708 {
709 /* adda.w #-N,%sp */
710 /* lea (-N,%sp),%sp */
711 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
712 return pc + 4;
713 }
714 else if (op == P_ADDAL_SP)
715 {
716 /* adda.l #-N,%sp */
717 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
718 return pc + 6;
719 }
720
721 return pc;
722 }
723
724 /* Check whether PC points at code that saves registers on the stack.
725 If so, it updates CACHE and returns the address of the first
726 instruction after the register saves or CURRENT_PC, whichever is
727 smaller. Otherwise, return PC. */
728
729 static CORE_ADDR
730 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
731 CORE_ADDR current_pc,
732 struct m68k_frame_cache *cache)
733 {
734 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
735
736 if (cache->locals >= 0)
737 {
738 CORE_ADDR offset;
739 int op;
740 int i, mask, regno;
741
742 offset = -4 - cache->locals;
743 while (pc < current_pc)
744 {
745 op = read_memory_unsigned_integer (pc, 2, byte_order);
746 if (op == P_FMOVEMX_SP
747 && gdbarch_tdep (gdbarch)->fpregs_present)
748 {
749 /* fmovem.x REGS,-(%sp) */
750 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
751 if ((op & 0xff00) == 0xe000)
752 {
753 mask = op & 0xff;
754 for (i = 0; i < 16; i++, mask >>= 1)
755 {
756 if (mask & 1)
757 {
758 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
759 offset -= 12;
760 }
761 }
762 pc += 4;
763 }
764 else
765 break;
766 }
767 else if ((op & 0177760) == P_MOVEL_SP)
768 {
769 /* move.l %R,-(%sp) */
770 regno = op & 017;
771 cache->saved_regs[regno] = offset;
772 offset -= 4;
773 pc += 2;
774 }
775 else if (op == P_MOVEML_SP)
776 {
777 /* movem.l REGS,-(%sp) */
778 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
779 for (i = 0; i < 16; i++, mask >>= 1)
780 {
781 if (mask & 1)
782 {
783 cache->saved_regs[15 - i] = offset;
784 offset -= 4;
785 }
786 }
787 pc += 4;
788 }
789 else
790 break;
791 }
792 }
793
794 return pc;
795 }
796
797
798 /* Do a full analysis of the prologue at PC and update CACHE
799 accordingly. Bail out early if CURRENT_PC is reached. Return the
800 address where the analysis stopped.
801
802 We handle all cases that can be generated by gcc.
803
804 For allocating a stack frame:
805
806 link.w %a6,#-N
807 link.l %a6,#-N
808 pea (%fp); move.l %sp,%fp
809 link.w %a6,#0; add.l #-N,%sp
810 subq.l #N,%sp
811 subq.w #N,%sp
812 subq.w #8,%sp; subq.w #N-8,%sp
813 add.w #-N,%sp
814 lea (-N,%sp),%sp
815 add.l #-N,%sp
816
817 For saving registers:
818
819 fmovem.x REGS,-(%sp)
820 move.l R1,-(%sp)
821 move.l R1,-(%sp); move.l R2,-(%sp)
822 movem.l REGS,-(%sp)
823
824 For setting up the PIC register:
825
826 lea (%pc,N),%a5
827
828 */
829
830 static CORE_ADDR
831 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
832 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
833 {
834 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
835 unsigned int op;
836
837 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
838 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
839 if (pc >= current_pc)
840 return current_pc;
841
842 /* Check for GOT setup. */
843 op = read_memory_unsigned_integer (pc, 4, byte_order);
844 if (op == P_LEA_PC_A5)
845 {
846 /* lea (%pc,N),%a5 */
847 return pc + 8;
848 }
849
850 return pc;
851 }
852
853 /* Return PC of first real instruction. */
854
855 static CORE_ADDR
856 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
857 {
858 struct m68k_frame_cache cache;
859 CORE_ADDR pc;
860
861 cache.locals = -1;
862 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
863 if (cache.locals < 0)
864 return start_pc;
865 return pc;
866 }
867
868 static CORE_ADDR
869 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
870 {
871 gdb_byte buf[8];
872
873 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
874 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
875 }
876 \f
877 /* Normal frames. */
878
879 static struct m68k_frame_cache *
880 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
881 {
882 struct gdbarch *gdbarch = get_frame_arch (this_frame);
883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
884 struct m68k_frame_cache *cache;
885 gdb_byte buf[4];
886 int i;
887
888 if (*this_cache)
889 return *this_cache;
890
891 cache = m68k_alloc_frame_cache ();
892 *this_cache = cache;
893
894 /* In principle, for normal frames, %fp holds the frame pointer,
895 which holds the base address for the current stack frame.
896 However, for functions that don't need it, the frame pointer is
897 optional. For these "frameless" functions the frame pointer is
898 actually the frame pointer of the calling frame. Signal
899 trampolines are just a special case of a "frameless" function.
900 They (usually) share their frame pointer with the frame that was
901 in progress when the signal occurred. */
902
903 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
904 cache->base = extract_unsigned_integer (buf, 4, byte_order);
905 if (cache->base == 0)
906 return cache;
907
908 /* For normal frames, %pc is stored at 4(%fp). */
909 cache->saved_regs[M68K_PC_REGNUM] = 4;
910
911 cache->pc = get_frame_func (this_frame);
912 if (cache->pc != 0)
913 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
914 get_frame_pc (this_frame), cache);
915
916 if (cache->locals < 0)
917 {
918 /* We didn't find a valid frame, which means that CACHE->base
919 currently holds the frame pointer for our calling frame. If
920 we're at the start of a function, or somewhere half-way its
921 prologue, the function's frame probably hasn't been fully
922 setup yet. Try to reconstruct the base address for the stack
923 frame by looking at the stack pointer. For truly "frameless"
924 functions this might work too. */
925
926 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
927 cache->base = extract_unsigned_integer (buf, 4, byte_order)
928 + cache->sp_offset;
929 }
930
931 /* Now that we have the base address for the stack frame we can
932 calculate the value of %sp in the calling frame. */
933 cache->saved_sp = cache->base + 8;
934
935 /* Adjust all the saved registers such that they contain addresses
936 instead of offsets. */
937 for (i = 0; i < M68K_NUM_REGS; i++)
938 if (cache->saved_regs[i] != -1)
939 cache->saved_regs[i] += cache->base;
940
941 return cache;
942 }
943
944 static void
945 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
946 struct frame_id *this_id)
947 {
948 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
949
950 /* This marks the outermost frame. */
951 if (cache->base == 0)
952 return;
953
954 /* See the end of m68k_push_dummy_call. */
955 *this_id = frame_id_build (cache->base + 8, cache->pc);
956 }
957
958 static struct value *
959 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
960 int regnum)
961 {
962 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
963
964 gdb_assert (regnum >= 0);
965
966 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
967 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
968
969 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
970 return frame_unwind_got_memory (this_frame, regnum,
971 cache->saved_regs[regnum]);
972
973 return frame_unwind_got_register (this_frame, regnum, regnum);
974 }
975
976 static const struct frame_unwind m68k_frame_unwind =
977 {
978 NORMAL_FRAME,
979 default_frame_unwind_stop_reason,
980 m68k_frame_this_id,
981 m68k_frame_prev_register,
982 NULL,
983 default_frame_sniffer
984 };
985 \f
986 static CORE_ADDR
987 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
988 {
989 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
990
991 return cache->base;
992 }
993
994 static const struct frame_base m68k_frame_base =
995 {
996 &m68k_frame_unwind,
997 m68k_frame_base_address,
998 m68k_frame_base_address,
999 m68k_frame_base_address
1000 };
1001
1002 static struct frame_id
1003 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1004 {
1005 CORE_ADDR fp;
1006
1007 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
1008
1009 /* See the end of m68k_push_dummy_call. */
1010 return frame_id_build (fp + 8, get_frame_pc (this_frame));
1011 }
1012 \f
1013
1014 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1015 We expect the first arg to be a pointer to the jmp_buf structure from which
1016 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1017 This routine returns true on success. */
1018
1019 static int
1020 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1021 {
1022 gdb_byte *buf;
1023 CORE_ADDR sp, jb_addr;
1024 struct gdbarch *gdbarch = get_frame_arch (frame);
1025 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1027
1028 if (tdep->jb_pc < 0)
1029 {
1030 internal_error (__FILE__, __LINE__,
1031 _("m68k_get_longjmp_target: not implemented"));
1032 return 0;
1033 }
1034
1035 buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1036 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1037
1038 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1039 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1040 return 0;
1041
1042 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1043 / TARGET_CHAR_BIT, byte_order);
1044
1045 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1046 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1047 byte_order)
1048 return 0;
1049
1050 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1051 / TARGET_CHAR_BIT, byte_order);
1052 return 1;
1053 }
1054 \f
1055
1056 /* This is the implementation of gdbarch method
1057 return_in_first_hidden_param_p. */
1058
1059 static int
1060 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1061 struct type *type)
1062 {
1063 return 0;
1064 }
1065
1066 /* System V Release 4 (SVR4). */
1067
1068 void
1069 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1070 {
1071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1072
1073 /* SVR4 uses a different calling convention. */
1074 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1075
1076 /* SVR4 uses %a0 instead of %a1. */
1077 tdep->struct_value_regnum = M68K_A0_REGNUM;
1078 }
1079 \f
1080
1081 /* Function: m68k_gdbarch_init
1082 Initializer function for the m68k gdbarch vector.
1083 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1084
1085 static struct gdbarch *
1086 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1087 {
1088 struct gdbarch_tdep *tdep = NULL;
1089 struct gdbarch *gdbarch;
1090 struct gdbarch_list *best_arch;
1091 struct tdesc_arch_data *tdesc_data = NULL;
1092 int i;
1093 enum m68k_flavour flavour = m68k_no_flavour;
1094 int has_fp = 1;
1095 const struct floatformat **long_double_format = floatformats_m68881_ext;
1096
1097 /* Check any target description for validity. */
1098 if (tdesc_has_registers (info.target_desc))
1099 {
1100 const struct tdesc_feature *feature;
1101 int valid_p;
1102
1103 feature = tdesc_find_feature (info.target_desc,
1104 "org.gnu.gdb.m68k.core");
1105 if (feature != NULL)
1106 /* Do nothing. */
1107 ;
1108
1109 if (feature == NULL)
1110 {
1111 feature = tdesc_find_feature (info.target_desc,
1112 "org.gnu.gdb.coldfire.core");
1113 if (feature != NULL)
1114 flavour = m68k_coldfire_flavour;
1115 }
1116
1117 if (feature == NULL)
1118 {
1119 feature = tdesc_find_feature (info.target_desc,
1120 "org.gnu.gdb.fido.core");
1121 if (feature != NULL)
1122 flavour = m68k_fido_flavour;
1123 }
1124
1125 if (feature == NULL)
1126 return NULL;
1127
1128 tdesc_data = tdesc_data_alloc ();
1129
1130 valid_p = 1;
1131 for (i = 0; i <= M68K_PC_REGNUM; i++)
1132 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1133 m68k_register_names[i]);
1134
1135 if (!valid_p)
1136 {
1137 tdesc_data_cleanup (tdesc_data);
1138 return NULL;
1139 }
1140
1141 feature = tdesc_find_feature (info.target_desc,
1142 "org.gnu.gdb.coldfire.fp");
1143 if (feature != NULL)
1144 {
1145 valid_p = 1;
1146 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1147 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1148 m68k_register_names[i]);
1149 if (!valid_p)
1150 {
1151 tdesc_data_cleanup (tdesc_data);
1152 return NULL;
1153 }
1154 }
1155 else
1156 has_fp = 0;
1157 }
1158
1159 /* The mechanism for returning floating values from function
1160 and the type of long double depend on whether we're
1161 on ColdFire or standard m68k. */
1162
1163 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1164 {
1165 const bfd_arch_info_type *coldfire_arch =
1166 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1167
1168 if (coldfire_arch
1169 && ((*info.bfd_arch_info->compatible)
1170 (info.bfd_arch_info, coldfire_arch)))
1171 flavour = m68k_coldfire_flavour;
1172 }
1173
1174 /* If there is already a candidate, use it. */
1175 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1176 best_arch != NULL;
1177 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1178 {
1179 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1180 continue;
1181
1182 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1183 continue;
1184
1185 break;
1186 }
1187
1188 if (best_arch != NULL)
1189 {
1190 if (tdesc_data != NULL)
1191 tdesc_data_cleanup (tdesc_data);
1192 return best_arch->gdbarch;
1193 }
1194
1195 tdep = xzalloc (sizeof (struct gdbarch_tdep));
1196 gdbarch = gdbarch_alloc (&info, tdep);
1197 tdep->fpregs_present = has_fp;
1198 tdep->flavour = flavour;
1199
1200 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1201 long_double_format = floatformats_ieee_double;
1202 set_gdbarch_long_double_format (gdbarch, long_double_format);
1203 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1204
1205 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1206 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1207
1208 /* Stack grows down. */
1209 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1210 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1211
1212 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1213 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1214 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1215
1216 set_gdbarch_frame_args_skip (gdbarch, 8);
1217 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1218
1219 set_gdbarch_register_type (gdbarch, m68k_register_type);
1220 set_gdbarch_register_name (gdbarch, m68k_register_name);
1221 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1222 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1223 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1224 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1225 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1226 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1227 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1228
1229 if (has_fp)
1230 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1231
1232 /* Try to figure out if the arch uses floating registers to return
1233 floating point values from functions. */
1234 if (has_fp)
1235 {
1236 /* On ColdFire, floating point values are returned in D0. */
1237 if (flavour == m68k_coldfire_flavour)
1238 tdep->float_return = 0;
1239 else
1240 tdep->float_return = 1;
1241 }
1242 else
1243 {
1244 /* No floating registers, so can't use them for returning values. */
1245 tdep->float_return = 0;
1246 }
1247
1248 /* Function call & return. */
1249 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1250 set_gdbarch_return_value (gdbarch, m68k_return_value);
1251 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1252 m68k_return_in_first_hidden_param_p);
1253
1254
1255 /* Disassembler. */
1256 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1257
1258 #if defined JB_PC && defined JB_ELEMENT_SIZE
1259 tdep->jb_pc = JB_PC;
1260 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1261 #else
1262 tdep->jb_pc = -1;
1263 #endif
1264 tdep->struct_value_regnum = M68K_A1_REGNUM;
1265 tdep->struct_return = reg_struct_return;
1266
1267 /* Frame unwinder. */
1268 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1269 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1270
1271 /* Hook in the DWARF CFI frame unwinder. */
1272 dwarf2_append_unwinders (gdbarch);
1273
1274 frame_base_set_default (gdbarch, &m68k_frame_base);
1275
1276 /* Hook in ABI-specific overrides, if they have been registered. */
1277 gdbarch_init_osabi (info, gdbarch);
1278
1279 /* Now we have tuned the configuration, set a few final things,
1280 based on what the OS ABI has told us. */
1281
1282 if (tdep->jb_pc >= 0)
1283 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1284
1285 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1286
1287 if (tdesc_data)
1288 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1289
1290 return gdbarch;
1291 }
1292
1293
1294 static void
1295 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1296 {
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1298
1299 if (tdep == NULL)
1300 return;
1301 }
1302
1303 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1304
1305 void
1306 _initialize_m68k_tdep (void)
1307 {
1308 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1309 }
This page took 0.057561 seconds and 4 git commands to generate.