gdb/x86: Fix write out of mxcsr register for xsave targets
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "dwarf2-frame.h"
22 #include "frame.h"
23 #include "frame-base.h"
24 #include "frame-unwind.h"
25 #include "gdbtypes.h"
26 #include "symtab.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "arch-utils.h"
32 #include "osabi.h"
33 #include "dis-asm.h"
34 #include "target-descriptions.h"
35 #include "floatformat.h"
36 #include "target-float.h"
37
38 #include "m68k-tdep.h"
39 \f
40
41 #define P_LINKL_FP 0x480e
42 #define P_LINKW_FP 0x4e56
43 #define P_PEA_FP 0x4856
44 #define P_MOVEAL_SP_FP 0x2c4f
45 #define P_ADDAW_SP 0xdefc
46 #define P_ADDAL_SP 0xdffc
47 #define P_SUBQW_SP 0x514f
48 #define P_SUBQL_SP 0x518f
49 #define P_LEA_SP_SP 0x4fef
50 #define P_LEA_PC_A5 0x4bfb0170
51 #define P_FMOVEMX_SP 0xf227
52 #define P_MOVEL_SP 0x2f00
53 #define P_MOVEML_SP 0x48e7
54
55 /* Offset from SP to first arg on stack at first instruction of a function. */
56 #define SP_ARG0 (1 * 4)
57
58 #if !defined (BPT_VECTOR)
59 #define BPT_VECTOR 0xf
60 #endif
61
62 constexpr gdb_byte m68k_break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
63
64 typedef BP_MANIPULATION (m68k_break_insn) m68k_breakpoint;
65 \f
66
67 /* Construct types for ISA-specific registers. */
68 static struct type *
69 m68k_ps_type (struct gdbarch *gdbarch)
70 {
71 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
72
73 if (!tdep->m68k_ps_type)
74 {
75 struct type *type;
76
77 type = arch_flags_type (gdbarch, "builtin_type_m68k_ps", 32);
78 append_flags_type_flag (type, 0, "C");
79 append_flags_type_flag (type, 1, "V");
80 append_flags_type_flag (type, 2, "Z");
81 append_flags_type_flag (type, 3, "N");
82 append_flags_type_flag (type, 4, "X");
83 append_flags_type_flag (type, 8, "I0");
84 append_flags_type_flag (type, 9, "I1");
85 append_flags_type_flag (type, 10, "I2");
86 append_flags_type_flag (type, 12, "M");
87 append_flags_type_flag (type, 13, "S");
88 append_flags_type_flag (type, 14, "T0");
89 append_flags_type_flag (type, 15, "T1");
90
91 tdep->m68k_ps_type = type;
92 }
93
94 return tdep->m68k_ps_type;
95 }
96
97 static struct type *
98 m68881_ext_type (struct gdbarch *gdbarch)
99 {
100 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
101
102 if (!tdep->m68881_ext_type)
103 tdep->m68881_ext_type
104 = arch_float_type (gdbarch, -1, "builtin_type_m68881_ext",
105 floatformats_m68881_ext);
106
107 return tdep->m68881_ext_type;
108 }
109
110 /* Return the GDB type object for the "standard" data type of data in
111 register N. This should be int for D0-D7, SR, FPCONTROL and
112 FPSTATUS, long double for FP0-FP7, and void pointer for all others
113 (A0-A7, PC, FPIADDR). Note, for registers which contain
114 addresses return pointer to void, not pointer to char, because we
115 don't want to attempt to print the string after printing the
116 address. */
117
118 static struct type *
119 m68k_register_type (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122
123 if (tdep->fpregs_present)
124 {
125 if (regnum >= gdbarch_fp0_regnum (gdbarch)
126 && regnum <= gdbarch_fp0_regnum (gdbarch) + 7)
127 {
128 if (tdep->flavour == m68k_coldfire_flavour)
129 return builtin_type (gdbarch)->builtin_double;
130 else
131 return m68881_ext_type (gdbarch);
132 }
133
134 if (regnum == M68K_FPI_REGNUM)
135 return builtin_type (gdbarch)->builtin_func_ptr;
136
137 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
138 return builtin_type (gdbarch)->builtin_int32;
139 }
140 else
141 {
142 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
143 return builtin_type (gdbarch)->builtin_int0;
144 }
145
146 if (regnum == gdbarch_pc_regnum (gdbarch))
147 return builtin_type (gdbarch)->builtin_func_ptr;
148
149 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
150 return builtin_type (gdbarch)->builtin_data_ptr;
151
152 if (regnum == M68K_PS_REGNUM)
153 return m68k_ps_type (gdbarch);
154
155 return builtin_type (gdbarch)->builtin_int32;
156 }
157
158 static const char *m68k_register_names[] = {
159 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
160 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
161 "ps", "pc",
162 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
163 "fpcontrol", "fpstatus", "fpiaddr"
164 };
165
166 /* Function: m68k_register_name
167 Returns the name of the standard m68k register regnum. */
168
169 static const char *
170 m68k_register_name (struct gdbarch *gdbarch, int regnum)
171 {
172 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
173 internal_error (__FILE__, __LINE__,
174 _("m68k_register_name: illegal register number %d"),
175 regnum);
176 else if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM
177 && gdbarch_tdep (gdbarch)->fpregs_present == 0)
178 return "";
179 else
180 return m68k_register_names[regnum];
181 }
182 \f
183 /* Return nonzero if a value of type TYPE stored in register REGNUM
184 needs any special handling. */
185
186 static int
187 m68k_convert_register_p (struct gdbarch *gdbarch,
188 int regnum, struct type *type)
189 {
190 if (!gdbarch_tdep (gdbarch)->fpregs_present)
191 return 0;
192 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7
193 /* We only support floating-point values. */
194 && TYPE_CODE (type) == TYPE_CODE_FLT
195 && type != register_type (gdbarch, M68K_FP0_REGNUM));
196 }
197
198 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
199 return its contents in TO. */
200
201 static int
202 m68k_register_to_value (struct frame_info *frame, int regnum,
203 struct type *type, gdb_byte *to,
204 int *optimizedp, int *unavailablep)
205 {
206 struct gdbarch *gdbarch = get_frame_arch (frame);
207 gdb_byte from[M68K_MAX_REGISTER_SIZE];
208 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
209
210 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
211
212 /* Convert to TYPE. */
213 if (!get_frame_register_bytes (frame, regnum, 0,
214 register_size (gdbarch, regnum),
215 from, optimizedp, unavailablep))
216 return 0;
217
218 target_float_convert (from, fpreg_type, to, type);
219 *optimizedp = *unavailablep = 0;
220 return 1;
221 }
222
223 /* Write the contents FROM of a value of type TYPE into register
224 REGNUM in frame FRAME. */
225
226 static void
227 m68k_value_to_register (struct frame_info *frame, int regnum,
228 struct type *type, const gdb_byte *from)
229 {
230 gdb_byte to[M68K_MAX_REGISTER_SIZE];
231 struct type *fpreg_type = register_type (get_frame_arch (frame),
232 M68K_FP0_REGNUM);
233
234 /* We only support floating-point values. */
235 if (TYPE_CODE (type) != TYPE_CODE_FLT)
236 {
237 warning (_("Cannot convert non-floating-point type "
238 "to floating-point register value."));
239 return;
240 }
241
242 /* Convert from TYPE. */
243 target_float_convert (from, type, to, fpreg_type);
244 put_frame_register (frame, regnum, to);
245 }
246
247 \f
248 /* There is a fair number of calling conventions that are in somewhat
249 wide use. The 68000/08/10 don't support an FPU, not even as a
250 coprocessor. All function return values are stored in %d0/%d1.
251 Structures are returned in a static buffer, a pointer to which is
252 returned in %d0. This means that functions returning a structure
253 are not re-entrant. To avoid this problem some systems use a
254 convention where the caller passes a pointer to a buffer in %a1
255 where the return values is to be stored. This convention is the
256 default, and is implemented in the function m68k_return_value.
257
258 The 68020/030/040/060 do support an FPU, either as a coprocessor
259 (68881/2) or built-in (68040/68060). That's why System V release 4
260 (SVR4) instroduces a new calling convention specified by the SVR4
261 psABI. Integer values are returned in %d0/%d1, pointer return
262 values in %a0 and floating values in %fp0. When calling functions
263 returning a structure the caller should pass a pointer to a buffer
264 for the return value in %a0. This convention is implemented in the
265 function m68k_svr4_return_value, and by appropriately setting the
266 struct_value_regnum member of `struct gdbarch_tdep'.
267
268 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
269 for passing the structure return value buffer.
270
271 GCC can also generate code where small structures are returned in
272 %d0/%d1 instead of in memory by using -freg-struct-return. This is
273 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
274 embedded systems. This convention is implemented by setting the
275 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
276
277 /* Read a function return value of TYPE from REGCACHE, and copy that
278 into VALBUF. */
279
280 static void
281 m68k_extract_return_value (struct type *type, struct regcache *regcache,
282 gdb_byte *valbuf)
283 {
284 int len = TYPE_LENGTH (type);
285 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
286
287 if (len <= 4)
288 {
289 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
290 memcpy (valbuf, buf + (4 - len), len);
291 }
292 else if (len <= 8)
293 {
294 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
295 memcpy (valbuf, buf + (8 - len), len - 4);
296 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
297 }
298 else
299 internal_error (__FILE__, __LINE__,
300 _("Cannot extract return value of %d bytes long."), len);
301 }
302
303 static void
304 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
305 gdb_byte *valbuf)
306 {
307 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
308 struct gdbarch *gdbarch = regcache->arch ();
309 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
310
311 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
312 {
313 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
314 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
315 target_float_convert (buf, fpreg_type, valbuf, type);
316 }
317 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
318 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
319 else
320 m68k_extract_return_value (type, regcache, valbuf);
321 }
322
323 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
324
325 static void
326 m68k_store_return_value (struct type *type, struct regcache *regcache,
327 const gdb_byte *valbuf)
328 {
329 int len = TYPE_LENGTH (type);
330
331 if (len <= 4)
332 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
333 else if (len <= 8)
334 {
335 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
336 len - 4, valbuf);
337 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
338 }
339 else
340 internal_error (__FILE__, __LINE__,
341 _("Cannot store return value of %d bytes long."), len);
342 }
343
344 static void
345 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
346 const gdb_byte *valbuf)
347 {
348 struct gdbarch *gdbarch = regcache->arch ();
349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
350
351 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
352 {
353 struct type *fpreg_type = register_type (gdbarch, M68K_FP0_REGNUM);
354 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
355 target_float_convert (valbuf, type, buf, fpreg_type);
356 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
357 }
358 else if (TYPE_CODE (type) == TYPE_CODE_PTR && TYPE_LENGTH (type) == 4)
359 {
360 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
361 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
362 }
363 else
364 m68k_store_return_value (type, regcache, valbuf);
365 }
366
367 /* Return non-zero if TYPE, which is assumed to be a structure, union or
368 complex type, should be returned in registers for architecture
369 GDBARCH. */
370
371 static int
372 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
373 {
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375 enum type_code code = TYPE_CODE (type);
376 int len = TYPE_LENGTH (type);
377
378 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
379 || code == TYPE_CODE_COMPLEX);
380
381 if (tdep->struct_return == pcc_struct_return)
382 return 0;
383
384 return (len == 1 || len == 2 || len == 4 || len == 8);
385 }
386
387 /* Determine, for architecture GDBARCH, how a return value of TYPE
388 should be returned. If it is supposed to be returned in registers,
389 and READBUF is non-zero, read the appropriate value from REGCACHE,
390 and copy it into READBUF. If WRITEBUF is non-zero, write the value
391 from WRITEBUF into REGCACHE. */
392
393 static enum return_value_convention
394 m68k_return_value (struct gdbarch *gdbarch, struct value *function,
395 struct type *type, struct regcache *regcache,
396 gdb_byte *readbuf, const gdb_byte *writebuf)
397 {
398 enum type_code code = TYPE_CODE (type);
399
400 /* GCC returns a `long double' in memory too. */
401 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
402 || code == TYPE_CODE_COMPLEX)
403 && !m68k_reg_struct_return_p (gdbarch, type))
404 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
405 {
406 /* The default on m68k is to return structures in static memory.
407 Consequently a function must return the address where we can
408 find the return value. */
409
410 if (readbuf)
411 {
412 ULONGEST addr;
413
414 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
415 read_memory (addr, readbuf, TYPE_LENGTH (type));
416 }
417
418 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
419 }
420
421 if (readbuf)
422 m68k_extract_return_value (type, regcache, readbuf);
423 if (writebuf)
424 m68k_store_return_value (type, regcache, writebuf);
425
426 return RETURN_VALUE_REGISTER_CONVENTION;
427 }
428
429 static enum return_value_convention
430 m68k_svr4_return_value (struct gdbarch *gdbarch, struct value *function,
431 struct type *type, struct regcache *regcache,
432 gdb_byte *readbuf, const gdb_byte *writebuf)
433 {
434 enum type_code code = TYPE_CODE (type);
435
436 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
437 || code == TYPE_CODE_COMPLEX)
438 && !m68k_reg_struct_return_p (gdbarch, type))
439 {
440 /* The System V ABI says that:
441
442 "A function returning a structure or union also sets %a0 to
443 the value it finds in %a0. Thus when the caller receives
444 control again, the address of the returned object resides in
445 register %a0."
446
447 So the ABI guarantees that we can always find the return
448 value just after the function has returned. */
449
450 if (readbuf)
451 {
452 ULONGEST addr;
453
454 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
455 read_memory (addr, readbuf, TYPE_LENGTH (type));
456 }
457
458 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
459 }
460
461 /* This special case is for structures consisting of a single
462 `float' or `double' member. These structures are returned in
463 %fp0. For these structures, we call ourselves recursively,
464 changing TYPE into the type of the first member of the structure.
465 Since that should work for all structures that have only one
466 member, we don't bother to check the member's type here. */
467 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
468 {
469 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
470 return m68k_svr4_return_value (gdbarch, function, type, regcache,
471 readbuf, writebuf);
472 }
473
474 if (readbuf)
475 m68k_svr4_extract_return_value (type, regcache, readbuf);
476 if (writebuf)
477 m68k_svr4_store_return_value (type, regcache, writebuf);
478
479 return RETURN_VALUE_REGISTER_CONVENTION;
480 }
481 \f
482
483 /* Always align the frame to a 4-byte boundary. This is required on
484 coldfire and harmless on the rest. */
485
486 static CORE_ADDR
487 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
488 {
489 /* Align the stack to four bytes. */
490 return sp & ~3;
491 }
492
493 static CORE_ADDR
494 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
495 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
496 struct value **args, CORE_ADDR sp, int struct_return,
497 CORE_ADDR struct_addr)
498 {
499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
500 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
501 gdb_byte buf[4];
502 int i;
503
504 /* Push arguments in reverse order. */
505 for (i = nargs - 1; i >= 0; i--)
506 {
507 struct type *value_type = value_enclosing_type (args[i]);
508 int len = TYPE_LENGTH (value_type);
509 int container_len = (len + 3) & ~3;
510 int offset;
511
512 /* Non-scalars bigger than 4 bytes are left aligned, others are
513 right aligned. */
514 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
515 || TYPE_CODE (value_type) == TYPE_CODE_UNION
516 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
517 && len > 4)
518 offset = 0;
519 else
520 offset = container_len - len;
521 sp -= container_len;
522 write_memory (sp + offset, value_contents_all (args[i]), len);
523 }
524
525 /* Store struct value address. */
526 if (struct_return)
527 {
528 store_unsigned_integer (buf, 4, byte_order, struct_addr);
529 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
530 }
531
532 /* Store return address. */
533 sp -= 4;
534 store_unsigned_integer (buf, 4, byte_order, bp_addr);
535 write_memory (sp, buf, 4);
536
537 /* Finally, update the stack pointer... */
538 store_unsigned_integer (buf, 4, byte_order, sp);
539 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
540
541 /* ...and fake a frame pointer. */
542 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
543
544 /* DWARF2/GCC uses the stack address *before* the function call as a
545 frame's CFA. */
546 return sp + 8;
547 }
548
549 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
550
551 static int
552 m68k_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int num)
553 {
554 if (num < 8)
555 /* d0..7 */
556 return (num - 0) + M68K_D0_REGNUM;
557 else if (num < 16)
558 /* a0..7 */
559 return (num - 8) + M68K_A0_REGNUM;
560 else if (num < 24 && gdbarch_tdep (gdbarch)->fpregs_present)
561 /* fp0..7 */
562 return (num - 16) + M68K_FP0_REGNUM;
563 else if (num == 25)
564 /* pc */
565 return M68K_PC_REGNUM;
566 else
567 return -1;
568 }
569
570 \f
571 struct m68k_frame_cache
572 {
573 /* Base address. */
574 CORE_ADDR base;
575 CORE_ADDR sp_offset;
576 CORE_ADDR pc;
577
578 /* Saved registers. */
579 CORE_ADDR saved_regs[M68K_NUM_REGS];
580 CORE_ADDR saved_sp;
581
582 /* Stack space reserved for local variables. */
583 long locals;
584 };
585
586 /* Allocate and initialize a frame cache. */
587
588 static struct m68k_frame_cache *
589 m68k_alloc_frame_cache (void)
590 {
591 struct m68k_frame_cache *cache;
592 int i;
593
594 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
595
596 /* Base address. */
597 cache->base = 0;
598 cache->sp_offset = -4;
599 cache->pc = 0;
600
601 /* Saved registers. We initialize these to -1 since zero is a valid
602 offset (that's where %fp is supposed to be stored). */
603 for (i = 0; i < M68K_NUM_REGS; i++)
604 cache->saved_regs[i] = -1;
605
606 /* Frameless until proven otherwise. */
607 cache->locals = -1;
608
609 return cache;
610 }
611
612 /* Check whether PC points at a code that sets up a new stack frame.
613 If so, it updates CACHE and returns the address of the first
614 instruction after the sequence that sets removes the "hidden"
615 argument from the stack or CURRENT_PC, whichever is smaller.
616 Otherwise, return PC. */
617
618 static CORE_ADDR
619 m68k_analyze_frame_setup (struct gdbarch *gdbarch,
620 CORE_ADDR pc, CORE_ADDR current_pc,
621 struct m68k_frame_cache *cache)
622 {
623 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
624 int op;
625
626 if (pc >= current_pc)
627 return current_pc;
628
629 op = read_memory_unsigned_integer (pc, 2, byte_order);
630
631 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
632 {
633 cache->saved_regs[M68K_FP_REGNUM] = 0;
634 cache->sp_offset += 4;
635 if (op == P_LINKW_FP)
636 {
637 /* link.w %fp, #-N */
638 /* link.w %fp, #0; adda.l #-N, %sp */
639 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
640
641 if (pc + 4 < current_pc && cache->locals == 0)
642 {
643 op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
644 if (op == P_ADDAL_SP)
645 {
646 cache->locals = read_memory_integer (pc + 6, 4, byte_order);
647 return pc + 10;
648 }
649 }
650
651 return pc + 4;
652 }
653 else if (op == P_LINKL_FP)
654 {
655 /* link.l %fp, #-N */
656 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
657 return pc + 6;
658 }
659 else
660 {
661 /* pea (%fp); movea.l %sp, %fp */
662 cache->locals = 0;
663
664 if (pc + 2 < current_pc)
665 {
666 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
667
668 if (op == P_MOVEAL_SP_FP)
669 {
670 /* move.l %sp, %fp */
671 return pc + 4;
672 }
673 }
674
675 return pc + 2;
676 }
677 }
678 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
679 {
680 /* subq.[wl] #N,%sp */
681 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
682 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
683 if (pc + 2 < current_pc)
684 {
685 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
686 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
687 {
688 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
689 return pc + 4;
690 }
691 }
692 return pc + 2;
693 }
694 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
695 {
696 /* adda.w #-N,%sp */
697 /* lea (-N,%sp),%sp */
698 cache->locals = -read_memory_integer (pc + 2, 2, byte_order);
699 return pc + 4;
700 }
701 else if (op == P_ADDAL_SP)
702 {
703 /* adda.l #-N,%sp */
704 cache->locals = -read_memory_integer (pc + 2, 4, byte_order);
705 return pc + 6;
706 }
707
708 return pc;
709 }
710
711 /* Check whether PC points at code that saves registers on the stack.
712 If so, it updates CACHE and returns the address of the first
713 instruction after the register saves or CURRENT_PC, whichever is
714 smaller. Otherwise, return PC. */
715
716 static CORE_ADDR
717 m68k_analyze_register_saves (struct gdbarch *gdbarch, CORE_ADDR pc,
718 CORE_ADDR current_pc,
719 struct m68k_frame_cache *cache)
720 {
721 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
722
723 if (cache->locals >= 0)
724 {
725 CORE_ADDR offset;
726 int op;
727 int i, mask, regno;
728
729 offset = -4 - cache->locals;
730 while (pc < current_pc)
731 {
732 op = read_memory_unsigned_integer (pc, 2, byte_order);
733 if (op == P_FMOVEMX_SP
734 && gdbarch_tdep (gdbarch)->fpregs_present)
735 {
736 /* fmovem.x REGS,-(%sp) */
737 op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
738 if ((op & 0xff00) == 0xe000)
739 {
740 mask = op & 0xff;
741 for (i = 0; i < 16; i++, mask >>= 1)
742 {
743 if (mask & 1)
744 {
745 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
746 offset -= 12;
747 }
748 }
749 pc += 4;
750 }
751 else
752 break;
753 }
754 else if ((op & 0177760) == P_MOVEL_SP)
755 {
756 /* move.l %R,-(%sp) */
757 regno = op & 017;
758 cache->saved_regs[regno] = offset;
759 offset -= 4;
760 pc += 2;
761 }
762 else if (op == P_MOVEML_SP)
763 {
764 /* movem.l REGS,-(%sp) */
765 mask = read_memory_unsigned_integer (pc + 2, 2, byte_order);
766 for (i = 0; i < 16; i++, mask >>= 1)
767 {
768 if (mask & 1)
769 {
770 cache->saved_regs[15 - i] = offset;
771 offset -= 4;
772 }
773 }
774 pc += 4;
775 }
776 else
777 break;
778 }
779 }
780
781 return pc;
782 }
783
784
785 /* Do a full analysis of the prologue at PC and update CACHE
786 accordingly. Bail out early if CURRENT_PC is reached. Return the
787 address where the analysis stopped.
788
789 We handle all cases that can be generated by gcc.
790
791 For allocating a stack frame:
792
793 link.w %a6,#-N
794 link.l %a6,#-N
795 pea (%fp); move.l %sp,%fp
796 link.w %a6,#0; add.l #-N,%sp
797 subq.l #N,%sp
798 subq.w #N,%sp
799 subq.w #8,%sp; subq.w #N-8,%sp
800 add.w #-N,%sp
801 lea (-N,%sp),%sp
802 add.l #-N,%sp
803
804 For saving registers:
805
806 fmovem.x REGS,-(%sp)
807 move.l R1,-(%sp)
808 move.l R1,-(%sp); move.l R2,-(%sp)
809 movem.l REGS,-(%sp)
810
811 For setting up the PIC register:
812
813 lea (%pc,N),%a5
814
815 */
816
817 static CORE_ADDR
818 m68k_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
819 CORE_ADDR current_pc, struct m68k_frame_cache *cache)
820 {
821 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
822 unsigned int op;
823
824 pc = m68k_analyze_frame_setup (gdbarch, pc, current_pc, cache);
825 pc = m68k_analyze_register_saves (gdbarch, pc, current_pc, cache);
826 if (pc >= current_pc)
827 return current_pc;
828
829 /* Check for GOT setup. */
830 op = read_memory_unsigned_integer (pc, 4, byte_order);
831 if (op == P_LEA_PC_A5)
832 {
833 /* lea (%pc,N),%a5 */
834 return pc + 8;
835 }
836
837 return pc;
838 }
839
840 /* Return PC of first real instruction. */
841
842 static CORE_ADDR
843 m68k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
844 {
845 struct m68k_frame_cache cache;
846 CORE_ADDR pc;
847
848 cache.locals = -1;
849 pc = m68k_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache);
850 if (cache.locals < 0)
851 return start_pc;
852 return pc;
853 }
854
855 static CORE_ADDR
856 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
857 {
858 gdb_byte buf[8];
859
860 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
861 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
862 }
863 \f
864 /* Normal frames. */
865
866 static struct m68k_frame_cache *
867 m68k_frame_cache (struct frame_info *this_frame, void **this_cache)
868 {
869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 struct m68k_frame_cache *cache;
872 gdb_byte buf[4];
873 int i;
874
875 if (*this_cache)
876 return (struct m68k_frame_cache *) *this_cache;
877
878 cache = m68k_alloc_frame_cache ();
879 *this_cache = cache;
880
881 /* In principle, for normal frames, %fp holds the frame pointer,
882 which holds the base address for the current stack frame.
883 However, for functions that don't need it, the frame pointer is
884 optional. For these "frameless" functions the frame pointer is
885 actually the frame pointer of the calling frame. Signal
886 trampolines are just a special case of a "frameless" function.
887 They (usually) share their frame pointer with the frame that was
888 in progress when the signal occurred. */
889
890 get_frame_register (this_frame, M68K_FP_REGNUM, buf);
891 cache->base = extract_unsigned_integer (buf, 4, byte_order);
892 if (cache->base == 0)
893 return cache;
894
895 /* For normal frames, %pc is stored at 4(%fp). */
896 cache->saved_regs[M68K_PC_REGNUM] = 4;
897
898 cache->pc = get_frame_func (this_frame);
899 if (cache->pc != 0)
900 m68k_analyze_prologue (get_frame_arch (this_frame), cache->pc,
901 get_frame_pc (this_frame), cache);
902
903 if (cache->locals < 0)
904 {
905 /* We didn't find a valid frame, which means that CACHE->base
906 currently holds the frame pointer for our calling frame. If
907 we're at the start of a function, or somewhere half-way its
908 prologue, the function's frame probably hasn't been fully
909 setup yet. Try to reconstruct the base address for the stack
910 frame by looking at the stack pointer. For truly "frameless"
911 functions this might work too. */
912
913 get_frame_register (this_frame, M68K_SP_REGNUM, buf);
914 cache->base = extract_unsigned_integer (buf, 4, byte_order)
915 + cache->sp_offset;
916 }
917
918 /* Now that we have the base address for the stack frame we can
919 calculate the value of %sp in the calling frame. */
920 cache->saved_sp = cache->base + 8;
921
922 /* Adjust all the saved registers such that they contain addresses
923 instead of offsets. */
924 for (i = 0; i < M68K_NUM_REGS; i++)
925 if (cache->saved_regs[i] != -1)
926 cache->saved_regs[i] += cache->base;
927
928 return cache;
929 }
930
931 static void
932 m68k_frame_this_id (struct frame_info *this_frame, void **this_cache,
933 struct frame_id *this_id)
934 {
935 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
936
937 /* This marks the outermost frame. */
938 if (cache->base == 0)
939 return;
940
941 /* See the end of m68k_push_dummy_call. */
942 *this_id = frame_id_build (cache->base + 8, cache->pc);
943 }
944
945 static struct value *
946 m68k_frame_prev_register (struct frame_info *this_frame, void **this_cache,
947 int regnum)
948 {
949 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
950
951 gdb_assert (regnum >= 0);
952
953 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
954 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
955
956 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
957 return frame_unwind_got_memory (this_frame, regnum,
958 cache->saved_regs[regnum]);
959
960 return frame_unwind_got_register (this_frame, regnum, regnum);
961 }
962
963 static const struct frame_unwind m68k_frame_unwind =
964 {
965 NORMAL_FRAME,
966 default_frame_unwind_stop_reason,
967 m68k_frame_this_id,
968 m68k_frame_prev_register,
969 NULL,
970 default_frame_sniffer
971 };
972 \f
973 static CORE_ADDR
974 m68k_frame_base_address (struct frame_info *this_frame, void **this_cache)
975 {
976 struct m68k_frame_cache *cache = m68k_frame_cache (this_frame, this_cache);
977
978 return cache->base;
979 }
980
981 static const struct frame_base m68k_frame_base =
982 {
983 &m68k_frame_unwind,
984 m68k_frame_base_address,
985 m68k_frame_base_address,
986 m68k_frame_base_address
987 };
988
989 static struct frame_id
990 m68k_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
991 {
992 CORE_ADDR fp;
993
994 fp = get_frame_register_unsigned (this_frame, M68K_FP_REGNUM);
995
996 /* See the end of m68k_push_dummy_call. */
997 return frame_id_build (fp + 8, get_frame_pc (this_frame));
998 }
999 \f
1000
1001 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1002 We expect the first arg to be a pointer to the jmp_buf structure from which
1003 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1004 This routine returns true on success. */
1005
1006 static int
1007 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1008 {
1009 gdb_byte *buf;
1010 CORE_ADDR sp, jb_addr;
1011 struct gdbarch *gdbarch = get_frame_arch (frame);
1012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1013 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1014
1015 if (tdep->jb_pc < 0)
1016 {
1017 internal_error (__FILE__, __LINE__,
1018 _("m68k_get_longjmp_target: not implemented"));
1019 return 0;
1020 }
1021
1022 buf = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
1023 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (gdbarch));
1024
1025 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
1026 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
1027 return 0;
1028
1029 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1030 / TARGET_CHAR_BIT, byte_order);
1031
1032 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1033 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT),
1034 byte_order)
1035 return 0;
1036
1037 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (gdbarch)
1038 / TARGET_CHAR_BIT, byte_order);
1039 return 1;
1040 }
1041 \f
1042
1043 /* This is the implementation of gdbarch method
1044 return_in_first_hidden_param_p. */
1045
1046 static int
1047 m68k_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1048 struct type *type)
1049 {
1050 return 0;
1051 }
1052
1053 /* System V Release 4 (SVR4). */
1054
1055 void
1056 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1057 {
1058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1059
1060 /* SVR4 uses a different calling convention. */
1061 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1062
1063 /* SVR4 uses %a0 instead of %a1. */
1064 tdep->struct_value_regnum = M68K_A0_REGNUM;
1065 }
1066 \f
1067
1068 /* Function: m68k_gdbarch_init
1069 Initializer function for the m68k gdbarch vector.
1070 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1071
1072 static struct gdbarch *
1073 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1074 {
1075 struct gdbarch_tdep *tdep = NULL;
1076 struct gdbarch *gdbarch;
1077 struct gdbarch_list *best_arch;
1078 struct tdesc_arch_data *tdesc_data = NULL;
1079 int i;
1080 enum m68k_flavour flavour = m68k_no_flavour;
1081 int has_fp = 1;
1082 const struct floatformat **long_double_format = floatformats_m68881_ext;
1083
1084 /* Check any target description for validity. */
1085 if (tdesc_has_registers (info.target_desc))
1086 {
1087 const struct tdesc_feature *feature;
1088 int valid_p;
1089
1090 feature = tdesc_find_feature (info.target_desc,
1091 "org.gnu.gdb.m68k.core");
1092
1093 if (feature == NULL)
1094 {
1095 feature = tdesc_find_feature (info.target_desc,
1096 "org.gnu.gdb.coldfire.core");
1097 if (feature != NULL)
1098 flavour = m68k_coldfire_flavour;
1099 }
1100
1101 if (feature == NULL)
1102 {
1103 feature = tdesc_find_feature (info.target_desc,
1104 "org.gnu.gdb.fido.core");
1105 if (feature != NULL)
1106 flavour = m68k_fido_flavour;
1107 }
1108
1109 if (feature == NULL)
1110 return NULL;
1111
1112 tdesc_data = tdesc_data_alloc ();
1113
1114 valid_p = 1;
1115 for (i = 0; i <= M68K_PC_REGNUM; i++)
1116 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1117 m68k_register_names[i]);
1118
1119 if (!valid_p)
1120 {
1121 tdesc_data_cleanup (tdesc_data);
1122 return NULL;
1123 }
1124
1125 feature = tdesc_find_feature (info.target_desc,
1126 "org.gnu.gdb.coldfire.fp");
1127 if (feature != NULL)
1128 {
1129 valid_p = 1;
1130 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1131 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1132 m68k_register_names[i]);
1133 if (!valid_p)
1134 {
1135 tdesc_data_cleanup (tdesc_data);
1136 return NULL;
1137 }
1138 }
1139 else
1140 has_fp = 0;
1141 }
1142
1143 /* The mechanism for returning floating values from function
1144 and the type of long double depend on whether we're
1145 on ColdFire or standard m68k. */
1146
1147 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1148 {
1149 const bfd_arch_info_type *coldfire_arch =
1150 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1151
1152 if (coldfire_arch
1153 && ((*info.bfd_arch_info->compatible)
1154 (info.bfd_arch_info, coldfire_arch)))
1155 flavour = m68k_coldfire_flavour;
1156 }
1157
1158 /* If there is already a candidate, use it. */
1159 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1160 best_arch != NULL;
1161 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1162 {
1163 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1164 continue;
1165
1166 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1167 continue;
1168
1169 break;
1170 }
1171
1172 if (best_arch != NULL)
1173 {
1174 if (tdesc_data != NULL)
1175 tdesc_data_cleanup (tdesc_data);
1176 return best_arch->gdbarch;
1177 }
1178
1179 tdep = XCNEW (struct gdbarch_tdep);
1180 gdbarch = gdbarch_alloc (&info, tdep);
1181 tdep->fpregs_present = has_fp;
1182 tdep->flavour = flavour;
1183
1184 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1185 long_double_format = floatformats_ieee_double;
1186 set_gdbarch_long_double_format (gdbarch, long_double_format);
1187 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1188
1189 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1190 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m68k_breakpoint::kind_from_pc);
1191 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m68k_breakpoint::bp_from_kind);
1192
1193 /* Stack grows down. */
1194 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1195 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1196
1197 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1198 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1199 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1200
1201 set_gdbarch_frame_args_skip (gdbarch, 8);
1202 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1203
1204 set_gdbarch_register_type (gdbarch, m68k_register_type);
1205 set_gdbarch_register_name (gdbarch, m68k_register_name);
1206 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1207 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1208 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1209 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1210 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1211 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1212 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1213
1214 if (has_fp)
1215 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1216
1217 /* Try to figure out if the arch uses floating registers to return
1218 floating point values from functions. */
1219 if (has_fp)
1220 {
1221 /* On ColdFire, floating point values are returned in D0. */
1222 if (flavour == m68k_coldfire_flavour)
1223 tdep->float_return = 0;
1224 else
1225 tdep->float_return = 1;
1226 }
1227 else
1228 {
1229 /* No floating registers, so can't use them for returning values. */
1230 tdep->float_return = 0;
1231 }
1232
1233 /* Function call & return. */
1234 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1235 set_gdbarch_return_value (gdbarch, m68k_return_value);
1236 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1237 m68k_return_in_first_hidden_param_p);
1238
1239 #if defined JB_PC && defined JB_ELEMENT_SIZE
1240 tdep->jb_pc = JB_PC;
1241 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1242 #else
1243 tdep->jb_pc = -1;
1244 #endif
1245 tdep->struct_value_regnum = M68K_A1_REGNUM;
1246 tdep->struct_return = reg_struct_return;
1247
1248 /* Frame unwinder. */
1249 set_gdbarch_dummy_id (gdbarch, m68k_dummy_id);
1250 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1251
1252 /* Hook in the DWARF CFI frame unwinder. */
1253 dwarf2_append_unwinders (gdbarch);
1254
1255 frame_base_set_default (gdbarch, &m68k_frame_base);
1256
1257 /* Hook in ABI-specific overrides, if they have been registered. */
1258 gdbarch_init_osabi (info, gdbarch);
1259
1260 /* Now we have tuned the configuration, set a few final things,
1261 based on what the OS ABI has told us. */
1262
1263 if (tdep->jb_pc >= 0)
1264 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1265
1266 frame_unwind_append_unwinder (gdbarch, &m68k_frame_unwind);
1267
1268 if (tdesc_data)
1269 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
1270
1271 return gdbarch;
1272 }
1273
1274
1275 static void
1276 m68k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1277 {
1278 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1279
1280 if (tdep == NULL)
1281 return;
1282 }
1283
1284 void
1285 _initialize_m68k_tdep (void)
1286 {
1287 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1288 }
This page took 0.059038 seconds and 4 git commands to generate.