2007-09-12 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "dwarf2-frame.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbtypes.h"
27 #include "symtab.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "gdb_string.h"
31 #include "gdb_assert.h"
32 #include "inferior.h"
33 #include "regcache.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "dis-asm.h"
37 #include "target-descriptions.h"
38
39 #include "m68k-tdep.h"
40 \f
41
42 #define P_LINKL_FP 0x480e
43 #define P_LINKW_FP 0x4e56
44 #define P_PEA_FP 0x4856
45 #define P_MOVEAL_SP_FP 0x2c4f
46 #define P_ADDAW_SP 0xdefc
47 #define P_ADDAL_SP 0xdffc
48 #define P_SUBQW_SP 0x514f
49 #define P_SUBQL_SP 0x518f
50 #define P_LEA_SP_SP 0x4fef
51 #define P_LEA_PC_A5 0x4bfb0170
52 #define P_FMOVEMX_SP 0xf227
53 #define P_MOVEL_SP 0x2f00
54 #define P_MOVEML_SP 0x48e7
55
56 /* Offset from SP to first arg on stack at first instruction of a function */
57 #define SP_ARG0 (1 * 4)
58
59 #if !defined (BPT_VECTOR)
60 #define BPT_VECTOR 0xf
61 #endif
62
63 static const gdb_byte *
64 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
65 {
66 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
67 *lenptr = sizeof (break_insn);
68 return break_insn;
69 }
70 \f
71
72 /* Type for %ps. */
73 struct type *m68k_ps_type;
74
75 /* Construct types for ISA-specific registers. */
76 static void
77 m68k_init_types (void)
78 {
79 struct type *type;
80
81 type = init_flags_type ("builtin_type_m68k_ps", 4);
82 append_flags_type_flag (type, 0, "C");
83 append_flags_type_flag (type, 1, "V");
84 append_flags_type_flag (type, 2, "Z");
85 append_flags_type_flag (type, 3, "N");
86 append_flags_type_flag (type, 4, "X");
87 append_flags_type_flag (type, 8, "I0");
88 append_flags_type_flag (type, 9, "I1");
89 append_flags_type_flag (type, 10, "I2");
90 append_flags_type_flag (type, 12, "M");
91 append_flags_type_flag (type, 13, "S");
92 append_flags_type_flag (type, 14, "T0");
93 append_flags_type_flag (type, 15, "T1");
94 m68k_ps_type = type;
95 }
96
97 /* Return the GDB type object for the "standard" data type of data in
98 register N. This should be int for D0-D7, SR, FPCONTROL and
99 FPSTATUS, long double for FP0-FP7, and void pointer for all others
100 (A0-A7, PC, FPIADDR). Note, for registers which contain
101 addresses return pointer to void, not pointer to char, because we
102 don't want to attempt to print the string after printing the
103 address. */
104
105 static struct type *
106 m68k_register_type (struct gdbarch *gdbarch, int regnum)
107 {
108 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
109
110 if (tdep->fpregs_present)
111 {
112 if (regnum >= gdbarch_fp0_regnum (current_gdbarch)
113 && regnum <= gdbarch_fp0_regnum (current_gdbarch) + 7)
114 {
115 if (tdep->flavour == m68k_coldfire_flavour)
116 return builtin_type (gdbarch)->builtin_double;
117 else
118 return builtin_type_m68881_ext;
119 }
120
121 if (regnum == M68K_FPI_REGNUM)
122 return builtin_type_void_func_ptr;
123
124 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
125 return builtin_type_int32;
126 }
127 else
128 {
129 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
130 return builtin_type_int0;
131 }
132
133 if (regnum == gdbarch_pc_regnum (current_gdbarch))
134 return builtin_type_void_func_ptr;
135
136 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
137 return builtin_type_void_data_ptr;
138
139 if (regnum == M68K_PS_REGNUM)
140 return m68k_ps_type;
141
142 return builtin_type_int32;
143 }
144
145 static const char *m68k_register_names[] = {
146 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
147 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
148 "ps", "pc",
149 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
150 "fpcontrol", "fpstatus", "fpiaddr"
151 };
152
153 /* Function: m68k_register_name
154 Returns the name of the standard m68k register regnum. */
155
156 static const char *
157 m68k_register_name (int regnum)
158 {
159 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
160 internal_error (__FILE__, __LINE__,
161 _("m68k_register_name: illegal register number %d"), regnum);
162 else
163 return m68k_register_names[regnum];
164 }
165 \f
166 /* Return nonzero if a value of type TYPE stored in register REGNUM
167 needs any special handling. */
168
169 static int
170 m68k_convert_register_p (int regnum, struct type *type)
171 {
172 if (!gdbarch_tdep (current_gdbarch)->fpregs_present)
173 return 0;
174 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
175 }
176
177 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
178 return its contents in TO. */
179
180 static void
181 m68k_register_to_value (struct frame_info *frame, int regnum,
182 struct type *type, gdb_byte *to)
183 {
184 gdb_byte from[M68K_MAX_REGISTER_SIZE];
185 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
186
187 /* We only support floating-point values. */
188 if (TYPE_CODE (type) != TYPE_CODE_FLT)
189 {
190 warning (_("Cannot convert floating-point register value "
191 "to non-floating-point type."));
192 return;
193 }
194
195 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
196 the extended floating-point format used by the FPU. */
197 get_frame_register (frame, regnum, from);
198 convert_typed_floating (from, fpreg_type, to, type);
199 }
200
201 /* Write the contents FROM of a value of type TYPE into register
202 REGNUM in frame FRAME. */
203
204 static void
205 m68k_value_to_register (struct frame_info *frame, int regnum,
206 struct type *type, const gdb_byte *from)
207 {
208 gdb_byte to[M68K_MAX_REGISTER_SIZE];
209 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
210
211 /* We only support floating-point values. */
212 if (TYPE_CODE (type) != TYPE_CODE_FLT)
213 {
214 warning (_("Cannot convert non-floating-point type "
215 "to floating-point register value."));
216 return;
217 }
218
219 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
220 to the extended floating-point format used by the FPU. */
221 convert_typed_floating (from, type, to, fpreg_type);
222 put_frame_register (frame, regnum, to);
223 }
224
225 \f
226 /* There is a fair number of calling conventions that are in somewhat
227 wide use. The 68000/08/10 don't support an FPU, not even as a
228 coprocessor. All function return values are stored in %d0/%d1.
229 Structures are returned in a static buffer, a pointer to which is
230 returned in %d0. This means that functions returning a structure
231 are not re-entrant. To avoid this problem some systems use a
232 convention where the caller passes a pointer to a buffer in %a1
233 where the return values is to be stored. This convention is the
234 default, and is implemented in the function m68k_return_value.
235
236 The 68020/030/040/060 do support an FPU, either as a coprocessor
237 (68881/2) or built-in (68040/68060). That's why System V release 4
238 (SVR4) instroduces a new calling convention specified by the SVR4
239 psABI. Integer values are returned in %d0/%d1, pointer return
240 values in %a0 and floating values in %fp0. When calling functions
241 returning a structure the caller should pass a pointer to a buffer
242 for the return value in %a0. This convention is implemented in the
243 function m68k_svr4_return_value, and by appropriately setting the
244 struct_value_regnum member of `struct gdbarch_tdep'.
245
246 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
247 for passing the structure return value buffer.
248
249 GCC can also generate code where small structures are returned in
250 %d0/%d1 instead of in memory by using -freg-struct-return. This is
251 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
252 embedded systems. This convention is implemented by setting the
253 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
254
255 /* Read a function return value of TYPE from REGCACHE, and copy that
256 into VALBUF. */
257
258 static void
259 m68k_extract_return_value (struct type *type, struct regcache *regcache,
260 gdb_byte *valbuf)
261 {
262 int len = TYPE_LENGTH (type);
263 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
264
265 if (len <= 4)
266 {
267 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
268 memcpy (valbuf, buf + (4 - len), len);
269 }
270 else if (len <= 8)
271 {
272 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
273 memcpy (valbuf, buf + (8 - len), len - 4);
274 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
275 }
276 else
277 internal_error (__FILE__, __LINE__,
278 _("Cannot extract return value of %d bytes long."), len);
279 }
280
281 static void
282 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
283 gdb_byte *valbuf)
284 {
285 int len = TYPE_LENGTH (type);
286 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
287 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
288
289 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
290 {
291 struct type *fpreg_type = register_type
292 (current_gdbarch, M68K_FP0_REGNUM);
293 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
294 convert_typed_floating (buf, fpreg_type, valbuf, type);
295 }
296 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
297 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
298 else
299 m68k_extract_return_value (type, regcache, valbuf);
300 }
301
302 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
303
304 static void
305 m68k_store_return_value (struct type *type, struct regcache *regcache,
306 const gdb_byte *valbuf)
307 {
308 int len = TYPE_LENGTH (type);
309
310 if (len <= 4)
311 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
312 else if (len <= 8)
313 {
314 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
315 len - 4, valbuf);
316 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
317 }
318 else
319 internal_error (__FILE__, __LINE__,
320 _("Cannot store return value of %d bytes long."), len);
321 }
322
323 static void
324 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
325 const gdb_byte *valbuf)
326 {
327 int len = TYPE_LENGTH (type);
328 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
329
330 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
331 {
332 struct type *fpreg_type = register_type
333 (current_gdbarch, M68K_FP0_REGNUM);
334 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
335 convert_typed_floating (valbuf, type, buf, fpreg_type);
336 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
337 }
338 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
339 {
340 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
341 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
342 }
343 else
344 m68k_store_return_value (type, regcache, valbuf);
345 }
346
347 /* Return non-zero if TYPE, which is assumed to be a structure or
348 union type, should be returned in registers for architecture
349 GDBARCH. */
350
351 static int
352 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
353 {
354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
355 enum type_code code = TYPE_CODE (type);
356 int len = TYPE_LENGTH (type);
357
358 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
359
360 if (tdep->struct_return == pcc_struct_return)
361 return 0;
362
363 return (len == 1 || len == 2 || len == 4 || len == 8);
364 }
365
366 /* Determine, for architecture GDBARCH, how a return value of TYPE
367 should be returned. If it is supposed to be returned in registers,
368 and READBUF is non-zero, read the appropriate value from REGCACHE,
369 and copy it into READBUF. If WRITEBUF is non-zero, write the value
370 from WRITEBUF into REGCACHE. */
371
372 static enum return_value_convention
373 m68k_return_value (struct gdbarch *gdbarch, struct type *type,
374 struct regcache *regcache, gdb_byte *readbuf,
375 const gdb_byte *writebuf)
376 {
377 enum type_code code = TYPE_CODE (type);
378
379 /* GCC returns a `long double' in memory too. */
380 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
381 && !m68k_reg_struct_return_p (gdbarch, type))
382 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
383 {
384 /* The default on m68k is to return structures in static memory.
385 Consequently a function must return the address where we can
386 find the return value. */
387
388 if (readbuf)
389 {
390 ULONGEST addr;
391
392 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
393 read_memory (addr, readbuf, TYPE_LENGTH (type));
394 }
395
396 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
397 }
398
399 if (readbuf)
400 m68k_extract_return_value (type, regcache, readbuf);
401 if (writebuf)
402 m68k_store_return_value (type, regcache, writebuf);
403
404 return RETURN_VALUE_REGISTER_CONVENTION;
405 }
406
407 static enum return_value_convention
408 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
409 struct regcache *regcache, gdb_byte *readbuf,
410 const gdb_byte *writebuf)
411 {
412 enum type_code code = TYPE_CODE (type);
413
414 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
415 && !m68k_reg_struct_return_p (gdbarch, type))
416 {
417 /* The System V ABI says that:
418
419 "A function returning a structure or union also sets %a0 to
420 the value it finds in %a0. Thus when the caller receives
421 control again, the address of the returned object resides in
422 register %a0."
423
424 So the ABI guarantees that we can always find the return
425 value just after the function has returned. */
426
427 if (readbuf)
428 {
429 ULONGEST addr;
430
431 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
432 read_memory (addr, readbuf, TYPE_LENGTH (type));
433 }
434
435 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
436 }
437
438 /* This special case is for structures consisting of a single
439 `float' or `double' member. These structures are returned in
440 %fp0. For these structures, we call ourselves recursively,
441 changing TYPE into the type of the first member of the structure.
442 Since that should work for all structures that have only one
443 member, we don't bother to check the member's type here. */
444 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
445 {
446 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
447 return m68k_svr4_return_value (gdbarch, type, regcache,
448 readbuf, writebuf);
449 }
450
451 if (readbuf)
452 m68k_svr4_extract_return_value (type, regcache, readbuf);
453 if (writebuf)
454 m68k_svr4_store_return_value (type, regcache, writebuf);
455
456 return RETURN_VALUE_REGISTER_CONVENTION;
457 }
458 \f
459
460 /* Always align the frame to a 4-byte boundary. This is required on
461 coldfire and harmless on the rest. */
462
463 static CORE_ADDR
464 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
465 {
466 /* Align the stack to four bytes. */
467 return sp & ~3;
468 }
469
470 static CORE_ADDR
471 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
472 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
473 struct value **args, CORE_ADDR sp, int struct_return,
474 CORE_ADDR struct_addr)
475 {
476 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
477 gdb_byte buf[4];
478 int i;
479
480 /* Push arguments in reverse order. */
481 for (i = nargs - 1; i >= 0; i--)
482 {
483 struct type *value_type = value_enclosing_type (args[i]);
484 int len = TYPE_LENGTH (value_type);
485 int container_len = (len + 3) & ~3;
486 int offset;
487
488 /* Non-scalars bigger than 4 bytes are left aligned, others are
489 right aligned. */
490 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
491 || TYPE_CODE (value_type) == TYPE_CODE_UNION
492 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
493 && len > 4)
494 offset = 0;
495 else
496 offset = container_len - len;
497 sp -= container_len;
498 write_memory (sp + offset, value_contents_all (args[i]), len);
499 }
500
501 /* Store struct value address. */
502 if (struct_return)
503 {
504 store_unsigned_integer (buf, 4, struct_addr);
505 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
506 }
507
508 /* Store return address. */
509 sp -= 4;
510 store_unsigned_integer (buf, 4, bp_addr);
511 write_memory (sp, buf, 4);
512
513 /* Finally, update the stack pointer... */
514 store_unsigned_integer (buf, 4, sp);
515 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
516
517 /* ...and fake a frame pointer. */
518 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
519
520 /* DWARF2/GCC uses the stack address *before* the function call as a
521 frame's CFA. */
522 return sp + 8;
523 }
524
525 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
526
527 static int
528 m68k_dwarf_reg_to_regnum (int num)
529 {
530 if (num < 8)
531 /* d0..7 */
532 return (num - 0) + M68K_D0_REGNUM;
533 else if (num < 16)
534 /* a0..7 */
535 return (num - 8) + M68K_A0_REGNUM;
536 else if (num < 24 && gdbarch_tdep (current_gdbarch)->fpregs_present)
537 /* fp0..7 */
538 return (num - 16) + M68K_FP0_REGNUM;
539 else if (num == 25)
540 /* pc */
541 return M68K_PC_REGNUM;
542 else
543 return gdbarch_num_regs (current_gdbarch)
544 + gdbarch_num_pseudo_regs (current_gdbarch);
545 }
546
547 \f
548 struct m68k_frame_cache
549 {
550 /* Base address. */
551 CORE_ADDR base;
552 CORE_ADDR sp_offset;
553 CORE_ADDR pc;
554
555 /* Saved registers. */
556 CORE_ADDR saved_regs[M68K_NUM_REGS];
557 CORE_ADDR saved_sp;
558
559 /* Stack space reserved for local variables. */
560 long locals;
561 };
562
563 /* Allocate and initialize a frame cache. */
564
565 static struct m68k_frame_cache *
566 m68k_alloc_frame_cache (void)
567 {
568 struct m68k_frame_cache *cache;
569 int i;
570
571 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
572
573 /* Base address. */
574 cache->base = 0;
575 cache->sp_offset = -4;
576 cache->pc = 0;
577
578 /* Saved registers. We initialize these to -1 since zero is a valid
579 offset (that's where %fp is supposed to be stored). */
580 for (i = 0; i < M68K_NUM_REGS; i++)
581 cache->saved_regs[i] = -1;
582
583 /* Frameless until proven otherwise. */
584 cache->locals = -1;
585
586 return cache;
587 }
588
589 /* Check whether PC points at a code that sets up a new stack frame.
590 If so, it updates CACHE and returns the address of the first
591 instruction after the sequence that sets removes the "hidden"
592 argument from the stack or CURRENT_PC, whichever is smaller.
593 Otherwise, return PC. */
594
595 static CORE_ADDR
596 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
597 struct m68k_frame_cache *cache)
598 {
599 int op;
600
601 if (pc >= current_pc)
602 return current_pc;
603
604 op = read_memory_unsigned_integer (pc, 2);
605
606 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
607 {
608 cache->saved_regs[M68K_FP_REGNUM] = 0;
609 cache->sp_offset += 4;
610 if (op == P_LINKW_FP)
611 {
612 /* link.w %fp, #-N */
613 /* link.w %fp, #0; adda.l #-N, %sp */
614 cache->locals = -read_memory_integer (pc + 2, 2);
615
616 if (pc + 4 < current_pc && cache->locals == 0)
617 {
618 op = read_memory_unsigned_integer (pc + 4, 2);
619 if (op == P_ADDAL_SP)
620 {
621 cache->locals = read_memory_integer (pc + 6, 4);
622 return pc + 10;
623 }
624 }
625
626 return pc + 4;
627 }
628 else if (op == P_LINKL_FP)
629 {
630 /* link.l %fp, #-N */
631 cache->locals = -read_memory_integer (pc + 2, 4);
632 return pc + 6;
633 }
634 else
635 {
636 /* pea (%fp); movea.l %sp, %fp */
637 cache->locals = 0;
638
639 if (pc + 2 < current_pc)
640 {
641 op = read_memory_unsigned_integer (pc + 2, 2);
642
643 if (op == P_MOVEAL_SP_FP)
644 {
645 /* move.l %sp, %fp */
646 return pc + 4;
647 }
648 }
649
650 return pc + 2;
651 }
652 }
653 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
654 {
655 /* subq.[wl] #N,%sp */
656 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
657 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
658 if (pc + 2 < current_pc)
659 {
660 op = read_memory_unsigned_integer (pc + 2, 2);
661 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
662 {
663 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
664 return pc + 4;
665 }
666 }
667 return pc + 2;
668 }
669 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
670 {
671 /* adda.w #-N,%sp */
672 /* lea (-N,%sp),%sp */
673 cache->locals = -read_memory_integer (pc + 2, 2);
674 return pc + 4;
675 }
676 else if (op == P_ADDAL_SP)
677 {
678 /* adda.l #-N,%sp */
679 cache->locals = -read_memory_integer (pc + 2, 4);
680 return pc + 6;
681 }
682
683 return pc;
684 }
685
686 /* Check whether PC points at code that saves registers on the stack.
687 If so, it updates CACHE and returns the address of the first
688 instruction after the register saves or CURRENT_PC, whichever is
689 smaller. Otherwise, return PC. */
690
691 static CORE_ADDR
692 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
693 struct m68k_frame_cache *cache)
694 {
695 if (cache->locals >= 0)
696 {
697 CORE_ADDR offset;
698 int op;
699 int i, mask, regno;
700
701 offset = -4 - cache->locals;
702 while (pc < current_pc)
703 {
704 op = read_memory_unsigned_integer (pc, 2);
705 if (op == P_FMOVEMX_SP
706 && gdbarch_tdep (current_gdbarch)->fpregs_present)
707 {
708 /* fmovem.x REGS,-(%sp) */
709 op = read_memory_unsigned_integer (pc + 2, 2);
710 if ((op & 0xff00) == 0xe000)
711 {
712 mask = op & 0xff;
713 for (i = 0; i < 16; i++, mask >>= 1)
714 {
715 if (mask & 1)
716 {
717 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
718 offset -= 12;
719 }
720 }
721 pc += 4;
722 }
723 else
724 break;
725 }
726 else if ((op & 0177760) == P_MOVEL_SP)
727 {
728 /* move.l %R,-(%sp) */
729 regno = op & 017;
730 cache->saved_regs[regno] = offset;
731 offset -= 4;
732 pc += 2;
733 }
734 else if (op == P_MOVEML_SP)
735 {
736 /* movem.l REGS,-(%sp) */
737 mask = read_memory_unsigned_integer (pc + 2, 2);
738 for (i = 0; i < 16; i++, mask >>= 1)
739 {
740 if (mask & 1)
741 {
742 cache->saved_regs[15 - i] = offset;
743 offset -= 4;
744 }
745 }
746 pc += 4;
747 }
748 else
749 break;
750 }
751 }
752
753 return pc;
754 }
755
756
757 /* Do a full analysis of the prologue at PC and update CACHE
758 accordingly. Bail out early if CURRENT_PC is reached. Return the
759 address where the analysis stopped.
760
761 We handle all cases that can be generated by gcc.
762
763 For allocating a stack frame:
764
765 link.w %a6,#-N
766 link.l %a6,#-N
767 pea (%fp); move.l %sp,%fp
768 link.w %a6,#0; add.l #-N,%sp
769 subq.l #N,%sp
770 subq.w #N,%sp
771 subq.w #8,%sp; subq.w #N-8,%sp
772 add.w #-N,%sp
773 lea (-N,%sp),%sp
774 add.l #-N,%sp
775
776 For saving registers:
777
778 fmovem.x REGS,-(%sp)
779 move.l R1,-(%sp)
780 move.l R1,-(%sp); move.l R2,-(%sp)
781 movem.l REGS,-(%sp)
782
783 For setting up the PIC register:
784
785 lea (%pc,N),%a5
786
787 */
788
789 static CORE_ADDR
790 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
791 struct m68k_frame_cache *cache)
792 {
793 unsigned int op;
794
795 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
796 pc = m68k_analyze_register_saves (pc, current_pc, cache);
797 if (pc >= current_pc)
798 return current_pc;
799
800 /* Check for GOT setup. */
801 op = read_memory_unsigned_integer (pc, 4);
802 if (op == P_LEA_PC_A5)
803 {
804 /* lea (%pc,N),%a5 */
805 return pc + 6;
806 }
807
808 return pc;
809 }
810
811 /* Return PC of first real instruction. */
812
813 static CORE_ADDR
814 m68k_skip_prologue (CORE_ADDR start_pc)
815 {
816 struct m68k_frame_cache cache;
817 CORE_ADDR pc;
818 int op;
819
820 cache.locals = -1;
821 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
822 if (cache.locals < 0)
823 return start_pc;
824 return pc;
825 }
826
827 static CORE_ADDR
828 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
829 {
830 gdb_byte buf[8];
831
832 frame_unwind_register (next_frame, gdbarch_pc_regnum (current_gdbarch), buf);
833 return extract_typed_address (buf, builtin_type_void_func_ptr);
834 }
835 \f
836 /* Normal frames. */
837
838 static struct m68k_frame_cache *
839 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
840 {
841 struct m68k_frame_cache *cache;
842 gdb_byte buf[4];
843 int i;
844
845 if (*this_cache)
846 return *this_cache;
847
848 cache = m68k_alloc_frame_cache ();
849 *this_cache = cache;
850
851 /* In principle, for normal frames, %fp holds the frame pointer,
852 which holds the base address for the current stack frame.
853 However, for functions that don't need it, the frame pointer is
854 optional. For these "frameless" functions the frame pointer is
855 actually the frame pointer of the calling frame. Signal
856 trampolines are just a special case of a "frameless" function.
857 They (usually) share their frame pointer with the frame that was
858 in progress when the signal occurred. */
859
860 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
861 cache->base = extract_unsigned_integer (buf, 4);
862 if (cache->base == 0)
863 return cache;
864
865 /* For normal frames, %pc is stored at 4(%fp). */
866 cache->saved_regs[M68K_PC_REGNUM] = 4;
867
868 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
869 if (cache->pc != 0)
870 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
871
872 if (cache->locals < 0)
873 {
874 /* We didn't find a valid frame, which means that CACHE->base
875 currently holds the frame pointer for our calling frame. If
876 we're at the start of a function, or somewhere half-way its
877 prologue, the function's frame probably hasn't been fully
878 setup yet. Try to reconstruct the base address for the stack
879 frame by looking at the stack pointer. For truly "frameless"
880 functions this might work too. */
881
882 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
883 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
884 }
885
886 /* Now that we have the base address for the stack frame we can
887 calculate the value of %sp in the calling frame. */
888 cache->saved_sp = cache->base + 8;
889
890 /* Adjust all the saved registers such that they contain addresses
891 instead of offsets. */
892 for (i = 0; i < M68K_NUM_REGS; i++)
893 if (cache->saved_regs[i] != -1)
894 cache->saved_regs[i] += cache->base;
895
896 return cache;
897 }
898
899 static void
900 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
901 struct frame_id *this_id)
902 {
903 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
904
905 /* This marks the outermost frame. */
906 if (cache->base == 0)
907 return;
908
909 /* See the end of m68k_push_dummy_call. */
910 *this_id = frame_id_build (cache->base + 8, cache->pc);
911 }
912
913 static void
914 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
915 int regnum, int *optimizedp,
916 enum lval_type *lvalp, CORE_ADDR *addrp,
917 int *realnump, gdb_byte *valuep)
918 {
919 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
920
921 gdb_assert (regnum >= 0);
922
923 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
924 {
925 *optimizedp = 0;
926 *lvalp = not_lval;
927 *addrp = 0;
928 *realnump = -1;
929 if (valuep)
930 {
931 /* Store the value. */
932 store_unsigned_integer (valuep, 4, cache->saved_sp);
933 }
934 return;
935 }
936
937 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
938 {
939 *optimizedp = 0;
940 *lvalp = lval_memory;
941 *addrp = cache->saved_regs[regnum];
942 *realnump = -1;
943 if (valuep)
944 {
945 /* Read the value in from memory. */
946 read_memory (*addrp, valuep,
947 register_size (current_gdbarch, regnum));
948 }
949 return;
950 }
951
952 *optimizedp = 0;
953 *lvalp = lval_register;
954 *addrp = 0;
955 *realnump = regnum;
956 if (valuep)
957 frame_unwind_register (next_frame, (*realnump), valuep);
958 }
959
960 static const struct frame_unwind m68k_frame_unwind =
961 {
962 NORMAL_FRAME,
963 m68k_frame_this_id,
964 m68k_frame_prev_register
965 };
966
967 static const struct frame_unwind *
968 m68k_frame_sniffer (struct frame_info *next_frame)
969 {
970 return &m68k_frame_unwind;
971 }
972 \f
973 static CORE_ADDR
974 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
975 {
976 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
977
978 return cache->base;
979 }
980
981 static const struct frame_base m68k_frame_base =
982 {
983 &m68k_frame_unwind,
984 m68k_frame_base_address,
985 m68k_frame_base_address,
986 m68k_frame_base_address
987 };
988
989 static struct frame_id
990 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
991 {
992 gdb_byte buf[4];
993 CORE_ADDR fp;
994
995 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
996 fp = extract_unsigned_integer (buf, 4);
997
998 /* See the end of m68k_push_dummy_call. */
999 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1000 }
1001 \f
1002
1003 /* Figure out where the longjmp will land. Slurp the args out of the stack.
1004 We expect the first arg to be a pointer to the jmp_buf structure from which
1005 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
1006 This routine returns true on success. */
1007
1008 static int
1009 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1010 {
1011 gdb_byte *buf;
1012 CORE_ADDR sp, jb_addr;
1013 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
1014
1015 if (tdep->jb_pc < 0)
1016 {
1017 internal_error (__FILE__, __LINE__,
1018 _("m68k_get_longjmp_target: not implemented"));
1019 return 0;
1020 }
1021
1022 buf = alloca (gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT);
1023 sp = get_frame_register_unsigned (frame, gdbarch_sp_regnum (current_gdbarch));
1024
1025 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
1026 buf,
1027 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
1028 return 0;
1029
1030 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1031 / TARGET_CHAR_BIT);
1032
1033 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1034 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
1035 return 0;
1036
1037 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1038 / TARGET_CHAR_BIT);
1039 return 1;
1040 }
1041 \f
1042
1043 /* System V Release 4 (SVR4). */
1044
1045 void
1046 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1047 {
1048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1049
1050 /* SVR4 uses a different calling convention. */
1051 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1052
1053 /* SVR4 uses %a0 instead of %a1. */
1054 tdep->struct_value_regnum = M68K_A0_REGNUM;
1055 }
1056 \f
1057
1058 /* Function: m68k_gdbarch_init
1059 Initializer function for the m68k gdbarch vector.
1060 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1061
1062 static struct gdbarch *
1063 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1064 {
1065 struct gdbarch_tdep *tdep = NULL;
1066 struct gdbarch *gdbarch;
1067 struct gdbarch_list *best_arch;
1068 struct tdesc_arch_data *tdesc_data = NULL;
1069 int i;
1070 enum m68k_flavour flavour = m68k_no_flavour;
1071 int has_fp = 1;
1072 const struct floatformat **long_double_format = floatformats_m68881_ext;
1073
1074 /* Check any target description for validity. */
1075 if (tdesc_has_registers (info.target_desc))
1076 {
1077 const struct tdesc_feature *feature;
1078 int valid_p;
1079
1080 feature = tdesc_find_feature (info.target_desc,
1081 "org.gnu.gdb.m68k.core");
1082 if (feature != NULL)
1083 /* Do nothing. */
1084 ;
1085
1086 if (feature == NULL)
1087 {
1088 feature = tdesc_find_feature (info.target_desc,
1089 "org.gnu.gdb.coldfire.core");
1090 if (feature != NULL)
1091 flavour = m68k_coldfire_flavour;
1092 }
1093
1094 if (feature == NULL)
1095 {
1096 feature = tdesc_find_feature (info.target_desc,
1097 "org.gnu.gdb.fido.core");
1098 if (feature != NULL)
1099 flavour = m68k_fido_flavour;
1100 }
1101
1102 if (feature == NULL)
1103 return NULL;
1104
1105 tdesc_data = tdesc_data_alloc ();
1106
1107 valid_p = 1;
1108 for (i = 0; i <= M68K_PC_REGNUM; i++)
1109 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1110 m68k_register_names[i]);
1111
1112 if (!valid_p)
1113 {
1114 tdesc_data_cleanup (tdesc_data);
1115 return NULL;
1116 }
1117
1118 feature = tdesc_find_feature (info.target_desc,
1119 "org.gnu.gdb.coldfire.fp");
1120 if (feature != NULL)
1121 {
1122 valid_p = 1;
1123 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1124 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1125 m68k_register_names[i]);
1126 if (!valid_p)
1127 {
1128 tdesc_data_cleanup (tdesc_data);
1129 return NULL;
1130 }
1131 }
1132 else
1133 has_fp = 0;
1134 }
1135
1136 /* The mechanism for returning floating values from function
1137 and the type of long double depend on whether we're
1138 on ColdFire or standard m68k. */
1139
1140 if (info.bfd_arch_info && info.bfd_arch_info->mach != 0)
1141 {
1142 const bfd_arch_info_type *coldfire_arch =
1143 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1144
1145 if (coldfire_arch
1146 && ((*info.bfd_arch_info->compatible)
1147 (info.bfd_arch_info, coldfire_arch)))
1148 flavour = m68k_coldfire_flavour;
1149 }
1150
1151 /* If there is already a candidate, use it. */
1152 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1153 best_arch != NULL;
1154 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1155 {
1156 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1157 continue;
1158
1159 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1160 continue;
1161
1162 break;
1163 }
1164
1165 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1166 gdbarch = gdbarch_alloc (&info, tdep);
1167 tdep->fpregs_present = has_fp;
1168 tdep->flavour = flavour;
1169
1170 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1171 long_double_format = floatformats_ieee_double;
1172 set_gdbarch_long_double_format (gdbarch, long_double_format);
1173 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1174
1175 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1176 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1177
1178 /* Stack grows down. */
1179 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1180 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1181
1182 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1183 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1184 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1185
1186 set_gdbarch_frame_args_skip (gdbarch, 8);
1187 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1188 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1189
1190 set_gdbarch_register_type (gdbarch, m68k_register_type);
1191 set_gdbarch_register_name (gdbarch, m68k_register_name);
1192 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1193 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1194 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1195 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1196 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1197 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1198 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1199 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1200
1201 if (has_fp)
1202 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1203
1204 /* Try to figure out if the arch uses floating registers to return
1205 floating point values from functions. */
1206 if (has_fp)
1207 {
1208 /* On ColdFire, floating point values are returned in D0. */
1209 if (flavour == m68k_coldfire_flavour)
1210 tdep->float_return = 0;
1211 else
1212 tdep->float_return = 1;
1213 }
1214 else
1215 {
1216 /* No floating registers, so can't use them for returning values. */
1217 tdep->float_return = 0;
1218 }
1219
1220 /* Function call & return */
1221 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1222 set_gdbarch_return_value (gdbarch, m68k_return_value);
1223
1224
1225 /* Disassembler. */
1226 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1227
1228 #if defined JB_PC && defined JB_ELEMENT_SIZE
1229 tdep->jb_pc = JB_PC;
1230 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1231 #else
1232 tdep->jb_pc = -1;
1233 #endif
1234 tdep->struct_value_regnum = M68K_A1_REGNUM;
1235 tdep->struct_return = reg_struct_return;
1236
1237 /* Frame unwinder. */
1238 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1239 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1240
1241 /* Hook in the DWARF CFI frame unwinder. */
1242 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1243
1244 frame_base_set_default (gdbarch, &m68k_frame_base);
1245
1246 /* Hook in ABI-specific overrides, if they have been registered. */
1247 gdbarch_init_osabi (info, gdbarch);
1248
1249 /* Now we have tuned the configuration, set a few final things,
1250 based on what the OS ABI has told us. */
1251
1252 if (tdep->jb_pc >= 0)
1253 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1254
1255 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1256
1257 if (tdesc_data)
1258 tdesc_use_registers (gdbarch, tdesc_data);
1259
1260 return gdbarch;
1261 }
1262
1263
1264 static void
1265 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1266 {
1267 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1268
1269 if (tdep == NULL)
1270 return;
1271 }
1272
1273 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1274
1275 void
1276 _initialize_m68k_tdep (void)
1277 {
1278 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1279
1280 /* Initialize the m68k-specific register types. */
1281 m68k_init_types ();
1282 }
This page took 0.054612 seconds and 4 git commands to generate.