Remove make_cleanup_restore_current_ui
[deliverable/binutils-gdb.git] / gdb / m88k-tdep.c
1 /* Target-dependent code for the Motorola 88000 series.
2
3 Copyright (C) 2004-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "dis-asm.h"
23 #include "frame.h"
24 #include "frame-base.h"
25 #include "frame-unwind.h"
26 #include "gdbcore.h"
27 #include "gdbtypes.h"
28 #include "regcache.h"
29 #include "regset.h"
30 #include "symtab.h"
31 #include "trad-frame.h"
32 #include "value.h"
33 #include <algorithm>
34
35 #include "m88k-tdep.h"
36
37 /* Fetch the instruction at PC. */
38
39 static unsigned long
40 m88k_fetch_instruction (CORE_ADDR pc, enum bfd_endian byte_order)
41 {
42 return read_memory_unsigned_integer (pc, 4, byte_order);
43 }
44
45 /* Register information. */
46
47 /* Return the name of register REGNUM. */
48
49 static const char *
50 m88k_register_name (struct gdbarch *gdbarch, int regnum)
51 {
52 static char *register_names[] =
53 {
54 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
55 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
56 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
57 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
58 "epsr", "fpsr", "fpcr", "sxip", "snip", "sfip"
59 };
60
61 if (regnum >= 0 && regnum < ARRAY_SIZE (register_names))
62 return register_names[regnum];
63
64 return NULL;
65 }
66
67 /* Return the GDB type object for the "standard" data type of data in
68 register REGNUM. */
69
70 static struct type *
71 m88k_register_type (struct gdbarch *gdbarch, int regnum)
72 {
73 /* SXIP, SNIP, SFIP and R1 contain code addresses. */
74 if ((regnum >= M88K_SXIP_REGNUM && regnum <= M88K_SFIP_REGNUM)
75 || regnum == M88K_R1_REGNUM)
76 return builtin_type (gdbarch)->builtin_func_ptr;
77
78 /* R30 and R31 typically contains data addresses. */
79 if (regnum == M88K_R30_REGNUM || regnum == M88K_R31_REGNUM)
80 return builtin_type (gdbarch)->builtin_data_ptr;
81
82 return builtin_type (gdbarch)->builtin_int32;
83 }
84 \f
85
86 static CORE_ADDR
87 m88k_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
88 {
89 /* All instructures are 4-byte aligned. The lower 2 bits of SXIP,
90 SNIP and SFIP are used for special purposes: bit 0 is the
91 exception bit and bit 1 is the valid bit. */
92 return addr & ~0x3;
93 }
94
95 /* Use the program counter to determine the contents and size of a
96 breakpoint instruction. Return a pointer to a string of bytes that
97 encode a breakpoint instruction, store the length of the string in
98 *LEN and optionally adjust *PC to point to the correct memory
99 location for inserting the breakpoint. */
100
101 static const gdb_byte *
102 m88k_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
103 {
104 /* tb 0,r0,511 */
105 static gdb_byte break_insn[] = { 0xf0, 0x00, 0xd1, 0xff };
106
107 *len = sizeof (break_insn);
108 return break_insn;
109 }
110
111 static CORE_ADDR
112 m88k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
113 {
114 CORE_ADDR pc;
115
116 pc = frame_unwind_register_unsigned (next_frame, M88K_SXIP_REGNUM);
117 return m88k_addr_bits_remove (gdbarch, pc);
118 }
119
120 static void
121 m88k_write_pc (struct regcache *regcache, CORE_ADDR pc)
122 {
123 /* According to the MC88100 RISC Microprocessor User's Manual,
124 section 6.4.3.1.2:
125
126 "... can be made to return to a particular instruction by placing
127 a valid instruction address in the SNIP and the next sequential
128 instruction address in the SFIP (with V bits set and E bits
129 clear). The rte resumes execution at the instruction pointed to
130 by the SNIP, then the SFIP."
131
132 The E bit is the least significant bit (bit 0). The V (valid)
133 bit is bit 1. This is why we logical or 2 into the values we are
134 writing below. It turns out that SXIP plays no role when
135 returning from an exception so nothing special has to be done
136 with it. We could even (presumably) give it a totally bogus
137 value. */
138
139 regcache_cooked_write_unsigned (regcache, M88K_SXIP_REGNUM, pc);
140 regcache_cooked_write_unsigned (regcache, M88K_SNIP_REGNUM, pc | 2);
141 regcache_cooked_write_unsigned (regcache, M88K_SFIP_REGNUM, (pc + 4) | 2);
142 }
143 \f
144
145 /* The functions on this page are intended to be used to classify
146 function arguments. */
147
148 /* Check whether TYPE is "Integral or Pointer". */
149
150 static int
151 m88k_integral_or_pointer_p (const struct type *type)
152 {
153 switch (TYPE_CODE (type))
154 {
155 case TYPE_CODE_INT:
156 case TYPE_CODE_BOOL:
157 case TYPE_CODE_CHAR:
158 case TYPE_CODE_ENUM:
159 case TYPE_CODE_RANGE:
160 {
161 /* We have byte, half-word, word and extended-word/doubleword
162 integral types. */
163 int len = TYPE_LENGTH (type);
164 return (len == 1 || len == 2 || len == 4 || len == 8);
165 }
166 return 1;
167 case TYPE_CODE_PTR:
168 case TYPE_CODE_REF:
169 {
170 /* Allow only 32-bit pointers. */
171 return (TYPE_LENGTH (type) == 4);
172 }
173 return 1;
174 default:
175 break;
176 }
177
178 return 0;
179 }
180
181 /* Check whether TYPE is "Floating". */
182
183 static int
184 m88k_floating_p (const struct type *type)
185 {
186 switch (TYPE_CODE (type))
187 {
188 case TYPE_CODE_FLT:
189 {
190 int len = TYPE_LENGTH (type);
191 return (len == 4 || len == 8);
192 }
193 default:
194 break;
195 }
196
197 return 0;
198 }
199
200 /* Check whether TYPE is "Structure or Union". */
201
202 static int
203 m88k_structure_or_union_p (const struct type *type)
204 {
205 switch (TYPE_CODE (type))
206 {
207 case TYPE_CODE_STRUCT:
208 case TYPE_CODE_UNION:
209 return 1;
210 default:
211 break;
212 }
213
214 return 0;
215 }
216
217 /* Check whether TYPE has 8-byte alignment. */
218
219 static int
220 m88k_8_byte_align_p (struct type *type)
221 {
222 if (m88k_structure_or_union_p (type))
223 {
224 int i;
225
226 for (i = 0; i < TYPE_NFIELDS (type); i++)
227 {
228 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
229
230 if (m88k_8_byte_align_p (subtype))
231 return 1;
232 }
233 }
234
235 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
236 return (TYPE_LENGTH (type) == 8);
237
238 return 0;
239 }
240
241 /* Check whether TYPE can be passed in a register. */
242
243 static int
244 m88k_in_register_p (struct type *type)
245 {
246 if (m88k_integral_or_pointer_p (type) || m88k_floating_p (type))
247 return 1;
248
249 if (m88k_structure_or_union_p (type) && TYPE_LENGTH (type) == 4)
250 return 1;
251
252 return 0;
253 }
254
255 static CORE_ADDR
256 m88k_store_arguments (struct regcache *regcache, int nargs,
257 struct value **args, CORE_ADDR sp)
258 {
259 struct gdbarch *gdbarch = get_regcache_arch (regcache);
260 int num_register_words = 0;
261 int num_stack_words = 0;
262 int i;
263
264 for (i = 0; i < nargs; i++)
265 {
266 struct type *type = value_type (args[i]);
267 int len = TYPE_LENGTH (type);
268
269 if (m88k_integral_or_pointer_p (type) && len < 4)
270 {
271 args[i] = value_cast (builtin_type (gdbarch)->builtin_int32,
272 args[i]);
273 type = value_type (args[i]);
274 len = TYPE_LENGTH (type);
275 }
276
277 if (m88k_in_register_p (type))
278 {
279 int num_words = 0;
280
281 if (num_register_words % 2 == 1 && m88k_8_byte_align_p (type))
282 num_words++;
283
284 num_words += ((len + 3) / 4);
285 if (num_register_words + num_words <= 8)
286 {
287 num_register_words += num_words;
288 continue;
289 }
290
291 /* We've run out of available registers. Pass the argument
292 on the stack. */
293 }
294
295 if (num_stack_words % 2 == 1 && m88k_8_byte_align_p (type))
296 num_stack_words++;
297
298 num_stack_words += ((len + 3) / 4);
299 }
300
301 /* Allocate stack space. */
302 sp = align_down (sp - 32 - num_stack_words * 4, 16);
303 num_stack_words = num_register_words = 0;
304
305 for (i = 0; i < nargs; i++)
306 {
307 const bfd_byte *valbuf = value_contents (args[i]);
308 struct type *type = value_type (args[i]);
309 int len = TYPE_LENGTH (type);
310 int stack_word = num_stack_words;
311
312 if (m88k_in_register_p (type))
313 {
314 int register_word = num_register_words;
315
316 if (register_word % 2 == 1 && m88k_8_byte_align_p (type))
317 register_word++;
318
319 gdb_assert (len == 4 || len == 8);
320
321 if (register_word + len / 8 < 8)
322 {
323 int regnum = M88K_R2_REGNUM + register_word;
324
325 regcache_raw_write (regcache, regnum, valbuf);
326 if (len > 4)
327 regcache_raw_write (regcache, regnum + 1, valbuf + 4);
328
329 num_register_words = (register_word + len / 4);
330 continue;
331 }
332 }
333
334 if (stack_word % 2 == -1 && m88k_8_byte_align_p (type))
335 stack_word++;
336
337 write_memory (sp + stack_word * 4, valbuf, len);
338 num_stack_words = (stack_word + (len + 3) / 4);
339 }
340
341 return sp;
342 }
343
344 static CORE_ADDR
345 m88k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
346 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
347 struct value **args, CORE_ADDR sp, int struct_return,
348 CORE_ADDR struct_addr)
349 {
350 /* Set up the function arguments. */
351 sp = m88k_store_arguments (regcache, nargs, args, sp);
352 gdb_assert (sp % 16 == 0);
353
354 /* Store return value address. */
355 if (struct_return)
356 regcache_raw_write_unsigned (regcache, M88K_R12_REGNUM, struct_addr);
357
358 /* Store the stack pointer and return address in the appropriate
359 registers. */
360 regcache_raw_write_unsigned (regcache, M88K_R31_REGNUM, sp);
361 regcache_raw_write_unsigned (regcache, M88K_R1_REGNUM, bp_addr);
362
363 /* Return the stack pointer. */
364 return sp;
365 }
366
367 static struct frame_id
368 m88k_dummy_id (struct gdbarch *arch, struct frame_info *this_frame)
369 {
370 CORE_ADDR sp;
371
372 sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
373 return frame_id_build (sp, get_frame_pc (this_frame));
374 }
375 \f
376
377 /* Determine, for architecture GDBARCH, how a return value of TYPE
378 should be returned. If it is supposed to be returned in registers,
379 and READBUF is non-zero, read the appropriate value from REGCACHE,
380 and copy it into READBUF. If WRITEBUF is non-zero, write the value
381 from WRITEBUF into REGCACHE. */
382
383 static enum return_value_convention
384 m88k_return_value (struct gdbarch *gdbarch, struct value *function,
385 struct type *type, struct regcache *regcache,
386 gdb_byte *readbuf, const gdb_byte *writebuf)
387 {
388 int len = TYPE_LENGTH (type);
389 gdb_byte buf[8];
390
391 if (!m88k_integral_or_pointer_p (type) && !m88k_floating_p (type))
392 return RETURN_VALUE_STRUCT_CONVENTION;
393
394 if (readbuf)
395 {
396 /* Read the contents of R2 and (if necessary) R3. */
397 regcache_cooked_read (regcache, M88K_R2_REGNUM, buf);
398 if (len > 4)
399 {
400 regcache_cooked_read (regcache, M88K_R3_REGNUM, buf + 4);
401 gdb_assert (len == 8);
402 memcpy (readbuf, buf, len);
403 }
404 else
405 {
406 /* Just stripping off any unused bytes should preserve the
407 signed-ness just fine. */
408 memcpy (readbuf, buf + 4 - len, len);
409 }
410 }
411
412 if (writebuf)
413 {
414 /* Read the contents to R2 and (if necessary) R3. */
415 if (len > 4)
416 {
417 gdb_assert (len == 8);
418 memcpy (buf, writebuf, 8);
419 regcache_cooked_write (regcache, M88K_R3_REGNUM, buf + 4);
420 }
421 else
422 {
423 /* ??? Do we need to do any sign-extension here? */
424 memcpy (buf + 4 - len, writebuf, len);
425 }
426 regcache_cooked_write (regcache, M88K_R2_REGNUM, buf);
427 }
428
429 return RETURN_VALUE_REGISTER_CONVENTION;
430 }
431 \f
432 /* Default frame unwinder. */
433
434 struct m88k_frame_cache
435 {
436 /* Base address. */
437 CORE_ADDR base;
438 CORE_ADDR pc;
439
440 int sp_offset;
441 int fp_offset;
442
443 /* Table of saved registers. */
444 struct trad_frame_saved_reg *saved_regs;
445 };
446
447 /* Prologue analysis. */
448
449 /* Macros for extracting fields from instructions. */
450
451 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
452 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
453 #define SUBU_OFFSET(x) ((unsigned)(x & 0xFFFF))
454 #define ST_OFFSET(x) ((unsigned)((x) & 0xFFFF))
455 #define ST_SRC(x) EXTRACT_FIELD ((x), 21, 5)
456 #define ADDU_OFFSET(x) ((unsigned)(x & 0xFFFF))
457
458 /* Possible actions to be taken by the prologue analyzer for the
459 instructions it encounters. */
460
461 enum m88k_prologue_insn_action
462 {
463 M88K_PIA_SKIP, /* Ignore. */
464 M88K_PIA_NOTE_ST, /* Note register store. */
465 M88K_PIA_NOTE_STD, /* Note register pair store. */
466 M88K_PIA_NOTE_SP_ADJUSTMENT, /* Note stack pointer adjustment. */
467 M88K_PIA_NOTE_FP_ASSIGNMENT, /* Note frame pointer assignment. */
468 M88K_PIA_NOTE_BRANCH, /* Note branch. */
469 M88K_PIA_NOTE_PROLOGUE_END /* Note end of prologue. */
470 };
471
472 /* Table of instructions that may comprise a function prologue. */
473
474 struct m88k_prologue_insn
475 {
476 unsigned long insn;
477 unsigned long mask;
478 enum m88k_prologue_insn_action action;
479 };
480
481 struct m88k_prologue_insn m88k_prologue_insn_table[] =
482 {
483 /* Various register move instructions. */
484 { 0x58000000, 0xf800ffff, M88K_PIA_SKIP }, /* or/or.u with immed of 0 */
485 { 0xf4005800, 0xfc1fffe0, M88K_PIA_SKIP }, /* or rd,r0,rs */
486 { 0xf4005800, 0xfc00ffff, M88K_PIA_SKIP }, /* or rd,rs,r0 */
487
488 /* Various other instructions. */
489 { 0x58000000, 0xf8000000, M88K_PIA_SKIP }, /* or/or.u */
490
491 /* Stack pointer setup: "subu sp,sp,n" where n is a multiple of 8. */
492 { 0x67ff0000, 0xffff0007, M88K_PIA_NOTE_SP_ADJUSTMENT },
493
494 /* Frame pointer assignment: "addu r30,r31,n". */
495 { 0x63df0000, 0xffff0000, M88K_PIA_NOTE_FP_ASSIGNMENT },
496
497 /* Store to stack instructions; either "st rx,sp,n" or "st.d rx,sp,n". */
498 { 0x241f0000, 0xfc1f0000, M88K_PIA_NOTE_ST }, /* st rx,sp,n */
499 { 0x201f0000, 0xfc1f0000, M88K_PIA_NOTE_STD }, /* st.d rs,sp,n */
500
501 /* Instructions needed for setting up r25 for pic code. */
502 { 0x5f200000, 0xffff0000, M88K_PIA_SKIP }, /* or.u r25,r0,offset_high */
503 { 0xcc000002, 0xffffffff, M88K_PIA_SKIP }, /* bsr.n Lab */
504 { 0x5b390000, 0xffff0000, M88K_PIA_SKIP }, /* or r25,r25,offset_low */
505 { 0xf7396001, 0xffffffff, M88K_PIA_SKIP }, /* Lab: addu r25,r25,r1 */
506
507 /* Various branch or jump instructions which have a delay slot --
508 these do not form part of the prologue, but the instruction in
509 the delay slot might be a store instruction which should be
510 noted. */
511 { 0xc4000000, 0xe4000000, M88K_PIA_NOTE_BRANCH },
512 /* br.n, bsr.n, bb0.n, or bb1.n */
513 { 0xec000000, 0xfc000000, M88K_PIA_NOTE_BRANCH }, /* bcnd.n */
514 { 0xf400c400, 0xfffff7e0, M88K_PIA_NOTE_BRANCH }, /* jmp.n or jsr.n */
515
516 /* Catch all. Ends prologue analysis. */
517 { 0x00000000, 0x00000000, M88K_PIA_NOTE_PROLOGUE_END }
518 };
519
520 /* Do a full analysis of the function prologue at PC and update CACHE
521 accordingly. Bail out early if LIMIT is reached. Return the
522 address where the analysis stopped. If LIMIT points beyond the
523 function prologue, the return address should be the end of the
524 prologue. */
525
526 static CORE_ADDR
527 m88k_analyze_prologue (struct gdbarch *gdbarch,
528 CORE_ADDR pc, CORE_ADDR limit,
529 struct m88k_frame_cache *cache)
530 {
531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
532 CORE_ADDR end = limit;
533
534 /* Provide a dummy cache if necessary. */
535 if (cache == NULL)
536 {
537 cache = XALLOCA (struct m88k_frame_cache);
538 cache->saved_regs =
539 XALLOCAVEC (struct trad_frame_saved_reg, M88K_R31_REGNUM + 1);
540
541 /* We only initialize the members we care about. */
542 cache->saved_regs[M88K_R1_REGNUM].addr = -1;
543 cache->fp_offset = -1;
544 }
545
546 while (pc < limit)
547 {
548 struct m88k_prologue_insn *pi = m88k_prologue_insn_table;
549 unsigned long insn = m88k_fetch_instruction (pc, byte_order);
550
551 while ((insn & pi->mask) != pi->insn)
552 pi++;
553
554 switch (pi->action)
555 {
556 case M88K_PIA_SKIP:
557 /* If we have a frame pointer, and R1 has been saved,
558 consider this instruction as not being part of the
559 prologue. */
560 if (cache->fp_offset != -1
561 && cache->saved_regs[M88K_R1_REGNUM].addr != -1)
562 return std::min (pc, end);
563 break;
564
565 case M88K_PIA_NOTE_ST:
566 case M88K_PIA_NOTE_STD:
567 /* If no frame has been allocated, the stores aren't part of
568 the prologue. */
569 if (cache->sp_offset == 0)
570 return std::min (pc, end);
571
572 /* Record location of saved registers. */
573 {
574 int regnum = ST_SRC (insn) + M88K_R0_REGNUM;
575 ULONGEST offset = ST_OFFSET (insn);
576
577 cache->saved_regs[regnum].addr = offset;
578 if (pi->action == M88K_PIA_NOTE_STD && regnum < M88K_R31_REGNUM)
579 cache->saved_regs[regnum + 1].addr = offset + 4;
580 }
581 break;
582
583 case M88K_PIA_NOTE_SP_ADJUSTMENT:
584 /* A second stack pointer adjustment isn't part of the
585 prologue. */
586 if (cache->sp_offset != 0)
587 return std::min (pc, end);
588
589 /* Store stack pointer adjustment. */
590 cache->sp_offset = -SUBU_OFFSET (insn);
591 break;
592
593 case M88K_PIA_NOTE_FP_ASSIGNMENT:
594 /* A second frame pointer assignment isn't part of the
595 prologue. */
596 if (cache->fp_offset != -1)
597 return std::min (pc, end);
598
599 /* Record frame pointer assignment. */
600 cache->fp_offset = ADDU_OFFSET (insn);
601 break;
602
603 case M88K_PIA_NOTE_BRANCH:
604 /* The branch instruction isn't part of the prologue, but
605 the instruction in the delay slot might be. Limit the
606 prologue analysis to the delay slot and record the branch
607 instruction as the end of the prologue. */
608 limit = std::min (limit, pc + 2 * M88K_INSN_SIZE);
609 end = pc;
610 break;
611
612 case M88K_PIA_NOTE_PROLOGUE_END:
613 return std::min (pc, end);
614 }
615
616 pc += M88K_INSN_SIZE;
617 }
618
619 return end;
620 }
621
622 /* An upper limit to the size of the prologue. */
623 const int m88k_max_prologue_size = 128 * M88K_INSN_SIZE;
624
625 /* Return the address of first real instruction of the function
626 starting at PC. */
627
628 static CORE_ADDR
629 m88k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
630 {
631 struct symtab_and_line sal;
632 CORE_ADDR func_start, func_end;
633
634 /* This is the preferred method, find the end of the prologue by
635 using the debugging information. */
636 if (find_pc_partial_function (pc, NULL, &func_start, &func_end))
637 {
638 sal = find_pc_line (func_start, 0);
639
640 if (sal.end < func_end && pc <= sal.end)
641 return sal.end;
642 }
643
644 return m88k_analyze_prologue (gdbarch, pc, pc + m88k_max_prologue_size,
645 NULL);
646 }
647
648 static struct m88k_frame_cache *
649 m88k_frame_cache (struct frame_info *this_frame, void **this_cache)
650 {
651 struct gdbarch *gdbarch = get_frame_arch (this_frame);
652 struct m88k_frame_cache *cache;
653 CORE_ADDR frame_sp;
654
655 if (*this_cache)
656 return (struct m88k_frame_cache *) *this_cache;
657
658 cache = FRAME_OBSTACK_ZALLOC (struct m88k_frame_cache);
659 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
660 cache->fp_offset = -1;
661
662 cache->pc = get_frame_func (this_frame);
663 if (cache->pc != 0)
664 m88k_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
665 cache);
666
667 /* Calculate the stack pointer used in the prologue. */
668 if (cache->fp_offset != -1)
669 {
670 CORE_ADDR fp;
671
672 fp = get_frame_register_unsigned (this_frame, M88K_R30_REGNUM);
673 frame_sp = fp - cache->fp_offset;
674 }
675 else
676 {
677 /* If we know where the return address is saved, we can take a
678 solid guess at what the frame pointer should be. */
679 if (cache->saved_regs[M88K_R1_REGNUM].addr != -1)
680 cache->fp_offset = cache->saved_regs[M88K_R1_REGNUM].addr - 4;
681 frame_sp = get_frame_register_unsigned (this_frame, M88K_R31_REGNUM);
682 }
683
684 /* Now that we know the stack pointer, adjust the location of the
685 saved registers. */
686 {
687 int regnum;
688
689 for (regnum = M88K_R0_REGNUM; regnum < M88K_R31_REGNUM; regnum ++)
690 if (cache->saved_regs[regnum].addr != -1)
691 cache->saved_regs[regnum].addr += frame_sp;
692 }
693
694 /* Calculate the frame's base. */
695 cache->base = frame_sp - cache->sp_offset;
696 trad_frame_set_value (cache->saved_regs, M88K_R31_REGNUM, cache->base);
697
698 /* Identify SXIP with the return address in R1. */
699 cache->saved_regs[M88K_SXIP_REGNUM] = cache->saved_regs[M88K_R1_REGNUM];
700
701 *this_cache = cache;
702 return cache;
703 }
704
705 static void
706 m88k_frame_this_id (struct frame_info *this_frame, void **this_cache,
707 struct frame_id *this_id)
708 {
709 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
710
711 /* This marks the outermost frame. */
712 if (cache->base == 0)
713 return;
714
715 (*this_id) = frame_id_build (cache->base, cache->pc);
716 }
717
718 static struct value *
719 m88k_frame_prev_register (struct frame_info *this_frame,
720 void **this_cache, int regnum)
721 {
722 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
723
724 if (regnum == M88K_SNIP_REGNUM || regnum == M88K_SFIP_REGNUM)
725 {
726 struct value *value;
727 CORE_ADDR pc;
728
729 value = trad_frame_get_prev_register (this_frame, cache->saved_regs,
730 M88K_SXIP_REGNUM);
731 pc = value_as_long (value);
732 release_value (value);
733 value_free (value);
734
735 if (regnum == M88K_SFIP_REGNUM)
736 pc += 4;
737
738 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
739 }
740
741 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
742 }
743
744 static const struct frame_unwind m88k_frame_unwind =
745 {
746 NORMAL_FRAME,
747 default_frame_unwind_stop_reason,
748 m88k_frame_this_id,
749 m88k_frame_prev_register,
750 NULL,
751 default_frame_sniffer
752 };
753 \f
754
755 static CORE_ADDR
756 m88k_frame_base_address (struct frame_info *this_frame, void **this_cache)
757 {
758 struct m88k_frame_cache *cache = m88k_frame_cache (this_frame, this_cache);
759
760 if (cache->fp_offset != -1)
761 return cache->base + cache->sp_offset + cache->fp_offset;
762
763 return 0;
764 }
765
766 static const struct frame_base m88k_frame_base =
767 {
768 &m88k_frame_unwind,
769 m88k_frame_base_address,
770 m88k_frame_base_address,
771 m88k_frame_base_address
772 };
773 \f
774
775 /* Core file support. */
776
777 /* Supply register REGNUM from the buffer specified by GREGS and LEN
778 in the general-purpose register set REGSET to register cache
779 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
780
781 static void
782 m88k_supply_gregset (const struct regset *regset,
783 struct regcache *regcache,
784 int regnum, const void *gregs, size_t len)
785 {
786 const gdb_byte *regs = (const gdb_byte *) gregs;
787 int i;
788
789 for (i = 0; i < M88K_NUM_REGS; i++)
790 {
791 if (regnum == i || regnum == -1)
792 regcache_raw_supply (regcache, i, regs + i * 4);
793 }
794 }
795
796 /* Motorola 88000 register set. */
797
798 static const struct regset m88k_gregset =
799 {
800 NULL,
801 m88k_supply_gregset
802 };
803
804 /* Iterate over supported core file register note sections. */
805
806 static void
807 m88k_iterate_over_regset_sections (struct gdbarch *gdbarch,
808 iterate_over_regset_sections_cb *cb,
809 void *cb_data,
810 const struct regcache *regcache)
811 {
812 cb (".reg", M88K_NUM_REGS * 4, &m88k_gregset, NULL, cb_data);
813 }
814 \f
815
816 static struct gdbarch *
817 m88k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
818 {
819 struct gdbarch *gdbarch;
820
821 /* If there is already a candidate, use it. */
822 arches = gdbarch_list_lookup_by_info (arches, &info);
823 if (arches != NULL)
824 return arches->gdbarch;
825
826 /* Allocate space for the new architecture. */
827 gdbarch = gdbarch_alloc (&info, NULL);
828
829 /* There is no real `long double'. */
830 set_gdbarch_long_double_bit (gdbarch, 64);
831 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
832
833 set_gdbarch_num_regs (gdbarch, M88K_NUM_REGS);
834 set_gdbarch_register_name (gdbarch, m88k_register_name);
835 set_gdbarch_register_type (gdbarch, m88k_register_type);
836
837 /* Register numbers of various important registers. */
838 set_gdbarch_sp_regnum (gdbarch, M88K_R31_REGNUM);
839 set_gdbarch_pc_regnum (gdbarch, M88K_SXIP_REGNUM);
840
841 /* Core file support. */
842 set_gdbarch_iterate_over_regset_sections
843 (gdbarch, m88k_iterate_over_regset_sections);
844
845 set_gdbarch_print_insn (gdbarch, print_insn_m88k);
846
847 set_gdbarch_skip_prologue (gdbarch, m88k_skip_prologue);
848
849 /* Stack grows downward. */
850 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
851
852 /* Call dummy code. */
853 set_gdbarch_push_dummy_call (gdbarch, m88k_push_dummy_call);
854 set_gdbarch_dummy_id (gdbarch, m88k_dummy_id);
855
856 /* Return value info. */
857 set_gdbarch_return_value (gdbarch, m88k_return_value);
858
859 set_gdbarch_addr_bits_remove (gdbarch, m88k_addr_bits_remove);
860 set_gdbarch_breakpoint_from_pc (gdbarch, m88k_breakpoint_from_pc);
861 set_gdbarch_unwind_pc (gdbarch, m88k_unwind_pc);
862 set_gdbarch_write_pc (gdbarch, m88k_write_pc);
863
864 frame_base_set_default (gdbarch, &m88k_frame_base);
865 frame_unwind_append_unwinder (gdbarch, &m88k_frame_unwind);
866
867 return gdbarch;
868 }
869 \f
870
871 /* Provide a prototype to silence -Wmissing-prototypes. */
872 void _initialize_m88k_tdep (void);
873
874 void
875 _initialize_m88k_tdep (void)
876 {
877 gdbarch_register (bfd_arch_m88k, m88k_gdbarch_init, NULL);
878 }
This page took 0.049051 seconds and 4 git commands to generate.