1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 Contributed by Red Hat, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
27 #include "frame-unwind.h"
28 #include "frame-base.h"
33 #include "gdb_string.h"
40 #include "arch-utils.h"
43 #include "floatformat.h"
44 #include "sim-regno.h"
46 #include "trad-frame.h"
47 #include "reggroups.h"
50 #include "prologue-value.h"
51 #include "opcode/cgen-bitset.h"
54 #include "gdb_assert.h"
56 /* Get the user's customized MeP coprocessor register names from
58 #include "opcodes/mep-desc.h"
59 #include "opcodes/mep-opc.h"
62 /* The gdbarch_tdep structure. */
64 /* A quick recap for GDB hackers not familiar with the whole Toshiba
65 Media Processor story:
67 The MeP media engine is a configureable processor: users can design
68 their own coprocessors, implement custom instructions, adjust cache
69 sizes, select optional standard facilities like add-and-saturate
70 instructions, and so on. Then, they can build custom versions of
71 the GNU toolchain to support their customized chips. The
72 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
73 tree, and a config file pointing to various files provided by the
74 user describing their customizations, and edits the source tree to
75 produce a compiler that can generate their custom instructions, an
76 assembler that can assemble them and recognize their custom
77 register names, and so on.
79 Furthermore, the user can actually specify several of these custom
80 configurations, called 'me_modules', and get a toolchain which can
81 produce code for any of them, given a compiler/assembler switch;
82 you say something like 'gcc -mconfig=mm_max' to generate code for
83 the me_module named 'mm_max'.
85 GDB, in particular, needs to:
87 - use the coprocessor control register names provided by the user
88 in their hardware description, in expressions, 'info register'
89 output, and disassembly,
91 - know the number, names, and types of the coprocessor's
92 general-purpose registers, adjust the 'info all-registers' output
93 accordingly, and print error messages if the user refers to one
96 - allow access to the control bus space only when the configuration
97 actually has a control bus, and recognize which regions of the
98 control bus space are actually populated,
100 - disassemble using the user's provided mnemonics for their custom
103 - recognize whether the $hi and $lo registers are present, and
104 allow access to them only when they are actually there.
106 There are three sources of information about what sort of me_module
107 we're actually dealing with:
109 - A MeP executable file indicates which me_module it was compiled
110 for, and libopcodes has tables describing each module. So, given
111 an executable file, we can find out about the processor it was
114 - There are SID command-line options to select a particular
115 me_module, overriding the one specified in the ELF file. SID
116 provides GDB with a fake read-only register, 'module', which
117 indicates which me_module GDB is communicating with an instance
120 - There are SID command-line options to enable or disable certain
121 optional processor features, overriding the defaults for the
122 selected me_module. The MeP $OPT register indicates which
123 options are present on the current processor. */
128 /* A CGEN cpu descriptor for this BFD architecture and machine.
130 Note: this is *not* customized for any particular me_module; the
131 MeP libopcodes machinery actually puts off module-specific
132 customization until the last minute. So this contains
133 information about all supported me_modules. */
134 CGEN_CPU_DESC cpu_desc
;
136 /* The me_module index from the ELF file we used to select this
137 architecture, or CONFIG_NONE if there was none.
139 Note that we should prefer to use the me_module number available
140 via the 'module' register, whenever we're actually talking to a
143 In the absence of live information, we'd like to get the
144 me_module number from the ELF file. But which ELF file: the
145 executable file, the core file, ... ? The answer is, "the last
146 ELF file we used to set the current architecture". Thus, we
147 create a separate instance of the gdbarch structure for each
148 me_module value mep_gdbarch_init sees, and store the me_module
149 value from the ELF file here. */
150 CONFIG_ATTR me_module
;
155 /* Getting me_module information from the CGEN tables. */
158 /* Find an entry in the DESC's hardware table whose name begins with
159 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
160 intersect with GENERIC_ISA_MASK. If there is no matching entry,
162 static const CGEN_HW_ENTRY
*
163 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc
,
165 CGEN_BITSET
*copro_isa_mask
,
166 CGEN_BITSET
*generic_isa_mask
)
168 int prefix_len
= strlen (prefix
);
171 for (i
= 0; i
< desc
->hw_table
.num_entries
; i
++)
173 const CGEN_HW_ENTRY
*hw
= desc
->hw_table
.entries
[i
];
174 if (strncmp (prefix
, hw
->name
, prefix_len
) == 0)
176 CGEN_BITSET
*hw_isa_mask
178 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw
)));
180 if (cgen_bitset_intersect_p (hw_isa_mask
, copro_isa_mask
)
181 && ! cgen_bitset_intersect_p (hw_isa_mask
, generic_isa_mask
))
190 /* Find an entry in DESC's hardware table whose type is TYPE. Return
191 zero if there is none. */
192 static const CGEN_HW_ENTRY
*
193 find_hw_entry_by_type (CGEN_CPU_DESC desc
, CGEN_HW_TYPE type
)
197 for (i
= 0; i
< desc
->hw_table
.num_entries
; i
++)
199 const CGEN_HW_ENTRY
*hw
= desc
->hw_table
.entries
[i
];
201 if (hw
->type
== type
)
209 /* Return the CGEN hardware table entry for the coprocessor register
210 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
211 no such register set, return zero. If ME_MODULE is the generic
212 me_module CONFIG_NONE, return the table entry for the register set
213 whose hardware type is GENERIC_TYPE. */
214 static const CGEN_HW_ENTRY
*
215 me_module_register_set (CONFIG_ATTR me_module
,
217 CGEN_HW_TYPE generic_type
)
219 /* This is kind of tricky, because the hardware table is constructed
220 in a way that isn't very helpful. Perhaps we can fix that, but
221 here's how it works at the moment:
223 The configuration map, `mep_config_map', is indexed by me_module
224 number, and indicates which coprocessor and core ISAs that
225 me_module supports. The 'core_isa' mask includes all the core
226 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
227 The entry for the generic me_module, CONFIG_NONE, has an empty
228 'cop_isa', and its 'core_isa' selects only the standard MeP
231 The CGEN CPU descriptor's hardware table, desc->hw_table, has
232 entries for all the register sets, for all me_modules. Each
233 entry has a mask indicating which ISAs use that register set.
234 So, if an me_module supports some coprocessor ISA, we can find
235 applicable register sets by scanning the hardware table for
236 register sets whose masks include (at least some of) those ISAs.
238 Each hardware table entry also has a name, whose prefix says
239 whether it's a general-purpose ("h-cr") or control ("h-ccr")
240 coprocessor register set. It might be nicer to have an attribute
241 indicating what sort of register set it was, that we could use
242 instead of pattern-matching on the name.
244 When there is no hardware table entry whose mask includes a
245 particular coprocessor ISA and whose name starts with a given
246 prefix, then that means that that coprocessor doesn't have any
247 registers of that type. In such cases, this function must return
250 Coprocessor register sets' masks may or may not include the core
251 ISA for the me_module they belong to. Those generated by a2cgen
252 do, but the sample me_module included in the unconfigured tree,
255 There are generic coprocessor register sets, intended only for
256 use with the generic me_module. Unfortunately, their masks
257 include *all* ISAs --- even those for coprocessors that don't
258 have such register sets. This makes detecting the case where a
259 coprocessor lacks a particular register set more complicated.
261 So, here's the approach we take:
263 - For CONFIG_NONE, we return the generic coprocessor register set.
265 - For any other me_module, we search for a register set whose
266 mask contains any of the me_module's coprocessor ISAs,
267 specifically excluding the generic coprocessor register sets. */
269 CGEN_CPU_DESC desc
= gdbarch_tdep (current_gdbarch
)->cpu_desc
;
270 const CGEN_HW_ENTRY
*hw
;
272 if (me_module
== CONFIG_NONE
)
273 hw
= find_hw_entry_by_type (desc
, generic_type
);
276 CGEN_BITSET
*cop
= &mep_config_map
[me_module
].cop_isa
;
277 CGEN_BITSET
*core
= &mep_config_map
[me_module
].core_isa
;
278 CGEN_BITSET
*generic
= &mep_config_map
[CONFIG_NONE
].core_isa
;
279 CGEN_BITSET
*cop_and_core
;
281 /* The coprocessor ISAs include the ISA for the specific core which
282 has that coprocessor. */
283 cop_and_core
= cgen_bitset_copy (cop
);
284 cgen_bitset_union (cop
, core
, cop_and_core
);
285 hw
= find_hw_entry_by_prefix_and_isa (desc
, prefix
, cop_and_core
, generic
);
292 /* Given a hardware table entry HW representing a register set, return
293 a pointer to the keyword table with all the register names. If HW
294 is NULL, return NULL, to propage the "no such register set" info
296 static CGEN_KEYWORD
*
297 register_set_keyword_table (const CGEN_HW_ENTRY
*hw
)
302 /* Check that HW is actually a keyword table. */
303 gdb_assert (hw
->asm_type
== CGEN_ASM_KEYWORD
);
305 /* The 'asm_data' field of a register set's hardware table entry
306 refers to a keyword table. */
307 return (CGEN_KEYWORD
*) hw
->asm_data
;
311 /* Given a keyword table KEYWORD and a register number REGNUM, return
312 the name of the register, or "" if KEYWORD contains no register
313 whose number is REGNUM. */
315 register_name_from_keyword (CGEN_KEYWORD
*keyword_table
, int regnum
)
317 const CGEN_KEYWORD_ENTRY
*entry
318 = cgen_keyword_lookup_value (keyword_table
, regnum
);
322 char *name
= entry
->name
;
324 /* The CGEN keyword entries for register names include the
325 leading $, which appears in MeP assembly as well as in GDB.
326 But we don't want to return that; GDB core code adds that
338 /* Masks for option bits in the OPT special-purpose register. */
340 MEP_OPT_DIV
= 1 << 25, /* 32-bit divide instruction option */
341 MEP_OPT_MUL
= 1 << 24, /* 32-bit multiply instruction option */
342 MEP_OPT_BIT
= 1 << 23, /* bit manipulation instruction option */
343 MEP_OPT_SAT
= 1 << 22, /* saturation instruction option */
344 MEP_OPT_CLP
= 1 << 21, /* clip instruction option */
345 MEP_OPT_MIN
= 1 << 20, /* min/max instruction option */
346 MEP_OPT_AVE
= 1 << 19, /* average instruction option */
347 MEP_OPT_ABS
= 1 << 18, /* absolute difference instruction option */
348 MEP_OPT_LDZ
= 1 << 16, /* leading zero instruction option */
349 MEP_OPT_VL64
= 1 << 6, /* 64-bit VLIW operation mode option */
350 MEP_OPT_VL32
= 1 << 5, /* 32-bit VLIW operation mode option */
351 MEP_OPT_COP
= 1 << 4, /* coprocessor option */
352 MEP_OPT_DSP
= 1 << 2, /* DSP option */
353 MEP_OPT_UCI
= 1 << 1, /* UCI option */
354 MEP_OPT_DBG
= 1 << 0, /* DBG function option */
358 /* Given the option_mask value for a particular entry in
359 mep_config_map, produce the value the processor's OPT register
360 would use to represent the same set of options. */
362 opt_from_option_mask (unsigned int option_mask
)
364 /* A table mapping OPT register bits onto CGEN config map option
367 unsigned int opt_bit
, option_mask_bit
;
369 { MEP_OPT_DIV
, 1 << CGEN_INSN_OPTIONAL_DIV_INSN
},
370 { MEP_OPT_MUL
, 1 << CGEN_INSN_OPTIONAL_MUL_INSN
},
371 { MEP_OPT_DIV
, 1 << CGEN_INSN_OPTIONAL_DIV_INSN
},
372 { MEP_OPT_DBG
, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN
},
373 { MEP_OPT_LDZ
, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN
},
374 { MEP_OPT_ABS
, 1 << CGEN_INSN_OPTIONAL_ABS_INSN
},
375 { MEP_OPT_AVE
, 1 << CGEN_INSN_OPTIONAL_AVE_INSN
},
376 { MEP_OPT_MIN
, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN
},
377 { MEP_OPT_CLP
, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN
},
378 { MEP_OPT_SAT
, 1 << CGEN_INSN_OPTIONAL_SAT_INSN
},
379 { MEP_OPT_UCI
, 1 << CGEN_INSN_OPTIONAL_UCI_INSN
},
380 { MEP_OPT_DSP
, 1 << CGEN_INSN_OPTIONAL_DSP_INSN
},
381 { MEP_OPT_COP
, 1 << CGEN_INSN_OPTIONAL_CP_INSN
},
385 unsigned int opt
= 0;
387 for (i
= 0; i
< (sizeof (bits
) / sizeof (bits
[0])); i
++)
388 if (option_mask
& bits
[i
].option_mask_bit
)
389 opt
|= bits
[i
].opt_bit
;
395 /* Return the value the $OPT register would use to represent the set
396 of options for ME_MODULE. */
398 me_module_opt (CONFIG_ATTR me_module
)
400 return opt_from_option_mask (mep_config_map
[me_module
].option_mask
);
404 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
405 This is either 32 or 64. */
407 me_module_cop_data_bus_width (CONFIG_ATTR me_module
)
409 if (mep_config_map
[me_module
].option_mask
410 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN
))
417 /* Return true if ME_MODULE is big-endian, false otherwise. */
419 me_module_big_endian (CONFIG_ATTR me_module
)
421 return mep_config_map
[me_module
].big_endian
;
425 /* Return the name of ME_MODULE, or NULL if it has no name. */
427 me_module_name (CONFIG_ATTR me_module
)
429 /* The default me_module has "" as its name, but it's easier for our
430 callers to test for NULL. */
431 if (! mep_config_map
[me_module
].name
432 || mep_config_map
[me_module
].name
[0] == '\0')
435 return mep_config_map
[me_module
].name
;
441 /* The MeP spec defines the following registers:
442 16 general purpose registers (r0-r15)
443 32 control/special registers (csr0-csr31)
444 32 coprocessor general-purpose registers (c0 -- c31)
445 64 coprocessor control registers (ccr0 -- ccr63)
447 For the raw registers, we assign numbers here explicitly, instead
448 of letting the enum assign them for us; the numbers are a matter of
449 external protocol, and shouldn't shift around as things are edited.
451 We access the control/special registers via pseudoregisters, to
452 enforce read-only portions that some registers have.
454 We access the coprocessor general purpose and control registers via
455 pseudoregisters, to make sure they appear in the proper order in
456 the 'info all-registers' command (which uses the register number
457 ordering), and also to allow them to be renamed and resized
458 depending on the me_module in use.
460 The MeP allows coprocessor general-purpose registers to be either
461 32 or 64 bits long, depending on the configuration. Since we don't
462 want the format of the 'g' packet to vary from one core to another,
463 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
464 types of registers to change (see the implementation of
465 register_type), so we have four banks of pseudoregisters for the
466 coprocessor gprs --- 32-bit vs. 64-bit, and integer
467 vs. floating-point --- and we show or hide them depending on the
471 MEP_FIRST_RAW_REGNUM
= 0,
473 MEP_FIRST_GPR_REGNUM
= 0,
487 MEP_FP_REGNUM
= MEP_R8_REGNUM
,
489 MEP_TP_REGNUM
= MEP_R13_REGNUM
, /* (r13) Tiny data pointer */
491 MEP_GP_REGNUM
= MEP_R14_REGNUM
, /* (r14) Global pointer */
493 MEP_SP_REGNUM
= MEP_R15_REGNUM
, /* (r15) Stack pointer */
494 MEP_LAST_GPR_REGNUM
= MEP_R15_REGNUM
,
496 /* The raw control registers. These are the values as received via
497 the remote protocol, directly from the target; we only let user
498 code touch the via the pseudoregisters, which enforce read-only
500 MEP_FIRST_RAW_CSR_REGNUM
= 16,
501 MEP_RAW_PC_REGNUM
= 16, /* Program counter */
502 MEP_RAW_LP_REGNUM
= 17, /* Link pointer */
503 MEP_RAW_SAR_REGNUM
= 18, /* Raw shift amount */
504 MEP_RAW_CSR3_REGNUM
= 19, /* csr3: reserved */
505 MEP_RAW_RPB_REGNUM
= 20, /* Raw repeat begin address */
506 MEP_RAW_RPE_REGNUM
= 21, /* Repeat end address */
507 MEP_RAW_RPC_REGNUM
= 22, /* Repeat count */
508 MEP_RAW_HI_REGNUM
= 23, /* Upper 32 bits of result of 64 bit mult/div */
509 MEP_RAW_LO_REGNUM
= 24, /* Lower 32 bits of result of 64 bit mult/div */
510 MEP_RAW_CSR9_REGNUM
= 25, /* csr3: reserved */
511 MEP_RAW_CSR10_REGNUM
= 26, /* csr3: reserved */
512 MEP_RAW_CSR11_REGNUM
= 27, /* csr3: reserved */
513 MEP_RAW_MB0_REGNUM
= 28, /* Raw modulo begin address 0 */
514 MEP_RAW_ME0_REGNUM
= 29, /* Raw modulo end address 0 */
515 MEP_RAW_MB1_REGNUM
= 30, /* Raw modulo begin address 1 */
516 MEP_RAW_ME1_REGNUM
= 31, /* Raw modulo end address 1 */
517 MEP_RAW_PSW_REGNUM
= 32, /* Raw program status word */
518 MEP_RAW_ID_REGNUM
= 33, /* Raw processor ID/revision */
519 MEP_RAW_TMP_REGNUM
= 34, /* Temporary */
520 MEP_RAW_EPC_REGNUM
= 35, /* Exception program counter */
521 MEP_RAW_EXC_REGNUM
= 36, /* Raw exception cause */
522 MEP_RAW_CFG_REGNUM
= 37, /* Raw processor configuration*/
523 MEP_RAW_CSR22_REGNUM
= 38, /* csr3: reserved */
524 MEP_RAW_NPC_REGNUM
= 39, /* Nonmaskable interrupt PC */
525 MEP_RAW_DBG_REGNUM
= 40, /* Raw debug */
526 MEP_RAW_DEPC_REGNUM
= 41, /* Debug exception PC */
527 MEP_RAW_OPT_REGNUM
= 42, /* Raw options */
528 MEP_RAW_RCFG_REGNUM
= 43, /* Raw local ram config */
529 MEP_RAW_CCFG_REGNUM
= 44, /* Raw cache config */
530 MEP_RAW_CSR29_REGNUM
= 45, /* csr3: reserved */
531 MEP_RAW_CSR30_REGNUM
= 46, /* csr3: reserved */
532 MEP_RAW_CSR31_REGNUM
= 47, /* csr3: reserved */
533 MEP_LAST_RAW_CSR_REGNUM
= MEP_RAW_CSR31_REGNUM
,
535 /* The raw coprocessor general-purpose registers. These are all 64
537 MEP_FIRST_RAW_CR_REGNUM
= 48,
538 MEP_LAST_RAW_CR_REGNUM
= MEP_FIRST_RAW_CR_REGNUM
+ 31,
540 MEP_FIRST_RAW_CCR_REGNUM
= 80,
541 MEP_LAST_RAW_CCR_REGNUM
= MEP_FIRST_RAW_CCR_REGNUM
+ 63,
543 /* The module number register. This is the index of the me_module
544 of which the current target is an instance. (This is not a real
545 MeP-specified register; it's provided by SID.) */
548 MEP_LAST_RAW_REGNUM
= MEP_MODULE_REGNUM
,
550 MEP_NUM_RAW_REGS
= MEP_LAST_RAW_REGNUM
+ 1,
552 /* Pseudoregisters. See mep_pseudo_register_read and
553 mep_pseudo_register_write. */
554 MEP_FIRST_PSEUDO_REGNUM
= MEP_NUM_RAW_REGS
,
556 /* We have a pseudoregister for every control/special register, to
557 implement registers with read-only bits. */
558 MEP_FIRST_CSR_REGNUM
= MEP_FIRST_PSEUDO_REGNUM
,
559 MEP_PC_REGNUM
= MEP_FIRST_CSR_REGNUM
, /* Program counter */
560 MEP_LP_REGNUM
, /* Link pointer */
561 MEP_SAR_REGNUM
, /* shift amount */
562 MEP_CSR3_REGNUM
, /* csr3: reserved */
563 MEP_RPB_REGNUM
, /* repeat begin address */
564 MEP_RPE_REGNUM
, /* Repeat end address */
565 MEP_RPC_REGNUM
, /* Repeat count */
566 MEP_HI_REGNUM
, /* Upper 32 bits of the result of 64 bit mult/div */
567 MEP_LO_REGNUM
, /* Lower 32 bits of the result of 64 bit mult/div */
568 MEP_CSR9_REGNUM
, /* csr3: reserved */
569 MEP_CSR10_REGNUM
, /* csr3: reserved */
570 MEP_CSR11_REGNUM
, /* csr3: reserved */
571 MEP_MB0_REGNUM
, /* modulo begin address 0 */
572 MEP_ME0_REGNUM
, /* modulo end address 0 */
573 MEP_MB1_REGNUM
, /* modulo begin address 1 */
574 MEP_ME1_REGNUM
, /* modulo end address 1 */
575 MEP_PSW_REGNUM
, /* program status word */
576 MEP_ID_REGNUM
, /* processor ID/revision */
577 MEP_TMP_REGNUM
, /* Temporary */
578 MEP_EPC_REGNUM
, /* Exception program counter */
579 MEP_EXC_REGNUM
, /* exception cause */
580 MEP_CFG_REGNUM
, /* processor configuration*/
581 MEP_CSR22_REGNUM
, /* csr3: reserved */
582 MEP_NPC_REGNUM
, /* Nonmaskable interrupt PC */
583 MEP_DBG_REGNUM
, /* debug */
584 MEP_DEPC_REGNUM
, /* Debug exception PC */
585 MEP_OPT_REGNUM
, /* options */
586 MEP_RCFG_REGNUM
, /* local ram config */
587 MEP_CCFG_REGNUM
, /* cache config */
588 MEP_CSR29_REGNUM
, /* csr3: reserved */
589 MEP_CSR30_REGNUM
, /* csr3: reserved */
590 MEP_CSR31_REGNUM
, /* csr3: reserved */
591 MEP_LAST_CSR_REGNUM
= MEP_CSR31_REGNUM
,
593 /* The 32-bit integer view of the coprocessor GPR's. */
594 MEP_FIRST_CR32_REGNUM
,
595 MEP_LAST_CR32_REGNUM
= MEP_FIRST_CR32_REGNUM
+ 31,
597 /* The 32-bit floating-point view of the coprocessor GPR's. */
598 MEP_FIRST_FP_CR32_REGNUM
,
599 MEP_LAST_FP_CR32_REGNUM
= MEP_FIRST_FP_CR32_REGNUM
+ 31,
601 /* The 64-bit integer view of the coprocessor GPR's. */
602 MEP_FIRST_CR64_REGNUM
,
603 MEP_LAST_CR64_REGNUM
= MEP_FIRST_CR64_REGNUM
+ 31,
605 /* The 64-bit floating-point view of the coprocessor GPR's. */
606 MEP_FIRST_FP_CR64_REGNUM
,
607 MEP_LAST_FP_CR64_REGNUM
= MEP_FIRST_FP_CR64_REGNUM
+ 31,
609 MEP_FIRST_CCR_REGNUM
,
610 MEP_LAST_CCR_REGNUM
= MEP_FIRST_CCR_REGNUM
+ 63,
612 MEP_LAST_PSEUDO_REGNUM
= MEP_LAST_CCR_REGNUM
,
614 MEP_NUM_PSEUDO_REGS
= (MEP_LAST_PSEUDO_REGNUM
- MEP_LAST_RAW_REGNUM
),
616 MEP_NUM_REGS
= MEP_NUM_RAW_REGS
+ MEP_NUM_PSEUDO_REGS
620 #define IN_SET(set, n) \
621 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
623 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
624 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
625 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
626 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
628 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
629 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
630 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
631 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
632 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
633 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
634 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
635 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
637 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
638 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
640 #define NUM_REGS_IN_SET(set) \
641 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
643 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
644 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
645 #define MEP_LP_SIZE (4) /* Size of the LP register. */
648 /* Many of the control/special registers contain bits that cannot be
649 written to; some are entirely read-only. So we present them all as
652 The following table describes the special properties of each CSR. */
653 struct mep_csr_register
655 /* The number of this CSR's raw register. */
658 /* The number of this CSR's pseudoregister. */
661 /* A mask of the bits that are writeable: if a bit is set here, then
662 it can be modified; if the bit is clear, then it cannot. */
663 LONGEST writeable_bits
;
667 /* mep_csr_registers[i] describes the i'th CSR.
668 We just list the register numbers here explicitly to help catch
670 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
671 struct mep_csr_register mep_csr_registers
[] = {
672 { CSR(PC
), 0xffffffff }, /* manual says r/o, but we can write it */
673 { CSR(LP
), 0xffffffff },
674 { CSR(SAR
), 0x0000003f },
675 { CSR(CSR3
), 0xffffffff },
676 { CSR(RPB
), 0xfffffffe },
677 { CSR(RPE
), 0xffffffff },
678 { CSR(RPC
), 0xffffffff },
679 { CSR(HI
), 0xffffffff },
680 { CSR(LO
), 0xffffffff },
681 { CSR(CSR9
), 0xffffffff },
682 { CSR(CSR10
), 0xffffffff },
683 { CSR(CSR11
), 0xffffffff },
684 { CSR(MB0
), 0x0000ffff },
685 { CSR(ME0
), 0x0000ffff },
686 { CSR(MB1
), 0x0000ffff },
687 { CSR(ME1
), 0x0000ffff },
688 { CSR(PSW
), 0x000003ff },
689 { CSR(ID
), 0x00000000 },
690 { CSR(TMP
), 0xffffffff },
691 { CSR(EPC
), 0xffffffff },
692 { CSR(EXC
), 0x000030f0 },
693 { CSR(CFG
), 0x00c0001b },
694 { CSR(CSR22
), 0xffffffff },
695 { CSR(NPC
), 0xffffffff },
696 { CSR(DBG
), 0x00000580 },
697 { CSR(DEPC
), 0xffffffff },
698 { CSR(OPT
), 0x00000000 },
699 { CSR(RCFG
), 0x00000000 },
700 { CSR(CCFG
), 0x00000000 },
701 { CSR(CSR29
), 0xffffffff },
702 { CSR(CSR30
), 0xffffffff },
703 { CSR(CSR31
), 0xffffffff },
707 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
708 the number of the corresponding pseudoregister. Otherwise,
709 mep_raw_to_pseudo[R] == R. */
710 static int mep_raw_to_pseudo
[MEP_NUM_REGS
];
712 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
713 is the number of the underlying raw register. Otherwise
714 mep_pseudo_to_raw[R] == R. */
715 static int mep_pseudo_to_raw
[MEP_NUM_REGS
];
718 mep_init_pseudoregister_maps (void)
722 /* Verify that mep_csr_registers covers all the CSRs, in order. */
723 gdb_assert (ARRAY_SIZE (mep_csr_registers
) == NUM_REGS_IN_SET (CSR
));
724 gdb_assert (ARRAY_SIZE (mep_csr_registers
) == NUM_REGS_IN_SET (RAW_CSR
));
726 /* Verify that the raw and pseudo ranges have matching sizes. */
727 gdb_assert (NUM_REGS_IN_SET (RAW_CSR
) == NUM_REGS_IN_SET (CSR
));
728 gdb_assert (NUM_REGS_IN_SET (RAW_CR
) == NUM_REGS_IN_SET (CR32
));
729 gdb_assert (NUM_REGS_IN_SET (RAW_CR
) == NUM_REGS_IN_SET (CR64
));
730 gdb_assert (NUM_REGS_IN_SET (RAW_CCR
) == NUM_REGS_IN_SET (CCR
));
732 for (i
= 0; i
< ARRAY_SIZE (mep_csr_registers
); i
++)
734 struct mep_csr_register
*r
= &mep_csr_registers
[i
];
736 gdb_assert (r
->pseudo
== MEP_FIRST_CSR_REGNUM
+ i
);
737 gdb_assert (r
->raw
== MEP_FIRST_RAW_CSR_REGNUM
+ i
);
740 /* Set up the initial raw<->pseudo mappings. */
741 for (i
= 0; i
< MEP_NUM_REGS
; i
++)
743 mep_raw_to_pseudo
[i
] = i
;
744 mep_pseudo_to_raw
[i
] = i
;
747 /* Add the CSR raw<->pseudo mappings. */
748 for (i
= 0; i
< ARRAY_SIZE (mep_csr_registers
); i
++)
750 struct mep_csr_register
*r
= &mep_csr_registers
[i
];
752 mep_raw_to_pseudo
[r
->raw
] = r
->pseudo
;
753 mep_pseudo_to_raw
[r
->pseudo
] = r
->raw
;
756 /* Add the CR raw<->pseudo mappings. */
757 for (i
= 0; i
< NUM_REGS_IN_SET (RAW_CR
); i
++)
759 int raw
= MEP_FIRST_RAW_CR_REGNUM
+ i
;
760 int pseudo32
= MEP_FIRST_CR32_REGNUM
+ i
;
761 int pseudofp32
= MEP_FIRST_FP_CR32_REGNUM
+ i
;
762 int pseudo64
= MEP_FIRST_CR64_REGNUM
+ i
;
763 int pseudofp64
= MEP_FIRST_FP_CR64_REGNUM
+ i
;
765 /* Truly, the raw->pseudo mapping depends on the current module.
766 But we use the raw->pseudo mapping when we read the debugging
767 info; at that point, we don't know what module we'll actually
768 be running yet. So, we always supply the 64-bit register
769 numbers; GDB knows how to pick a smaller value out of a
770 larger register properly. */
771 mep_raw_to_pseudo
[raw
] = pseudo64
;
772 mep_pseudo_to_raw
[pseudo32
] = raw
;
773 mep_pseudo_to_raw
[pseudofp32
] = raw
;
774 mep_pseudo_to_raw
[pseudo64
] = raw
;
775 mep_pseudo_to_raw
[pseudofp64
] = raw
;
778 /* Add the CCR raw<->pseudo mappings. */
779 for (i
= 0; i
< NUM_REGS_IN_SET (CCR
); i
++)
781 int raw
= MEP_FIRST_RAW_CCR_REGNUM
+ i
;
782 int pseudo
= MEP_FIRST_CCR_REGNUM
+ i
;
783 mep_raw_to_pseudo
[raw
] = pseudo
;
784 mep_pseudo_to_raw
[pseudo
] = raw
;
790 mep_debug_reg_to_regnum (int debug_reg
)
792 /* The debug info uses the raw register numbers. */
793 return mep_raw_to_pseudo
[debug_reg
];
797 /* Return the size, in bits, of the coprocessor pseudoregister
800 mep_pseudo_cr_size (int pseudo
)
802 if (IS_CR32_REGNUM (pseudo
)
803 || IS_FP_CR32_REGNUM (pseudo
))
805 else if (IS_CR64_REGNUM (pseudo
)
806 || IS_FP_CR64_REGNUM (pseudo
))
813 /* If the coprocessor pseudoregister numbered PSEUDO is a
814 floating-point register, return non-zero; if it is an integer
815 register, return zero. */
817 mep_pseudo_cr_is_float (int pseudo
)
819 return (IS_FP_CR32_REGNUM (pseudo
)
820 || IS_FP_CR64_REGNUM (pseudo
));
824 /* Given a coprocessor GPR pseudoregister number, return its index
825 within that register bank. */
827 mep_pseudo_cr_index (int pseudo
)
829 if (IS_CR32_REGNUM (pseudo
))
830 return pseudo
- MEP_FIRST_CR32_REGNUM
;
831 else if (IS_FP_CR32_REGNUM (pseudo
))
832 return pseudo
- MEP_FIRST_FP_CR32_REGNUM
;
833 else if (IS_CR64_REGNUM (pseudo
))
834 return pseudo
- MEP_FIRST_CR64_REGNUM
;
835 else if (IS_FP_CR64_REGNUM (pseudo
))
836 return pseudo
- MEP_FIRST_FP_CR64_REGNUM
;
842 /* Return the me_module index describing the current target.
844 If the current target has registers (e.g., simulator, remote
845 target), then this uses the value of the 'module' register, raw
846 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
847 from the ELF header's e_flags field of the current executable
852 if (target_has_registers
)
855 regcache_cooked_read_unsigned (get_current_regcache (),
856 MEP_MODULE_REGNUM
, ®val
);
860 return gdbarch_tdep (current_gdbarch
)->me_module
;
864 /* Return the set of options for the current target, in the form that
865 the OPT register would use.
867 If the current target has registers (e.g., simulator, remote
868 target), then this is the actual value of the OPT register. If the
869 current target does not have registers (e.g., an executable file),
870 then use the 'module_opt' field we computed when we build the
871 gdbarch object for this module. */
875 if (target_has_registers
)
878 regcache_cooked_read_unsigned (get_current_regcache (),
879 MEP_OPT_REGNUM
, ®val
);
883 return me_module_opt (current_me_module ());
887 /* Return the width of the current me_module's coprocessor data bus,
888 in bits. This is either 32 or 64. */
890 current_cop_data_bus_width ()
892 return me_module_cop_data_bus_width (current_me_module ());
896 /* Return the keyword table of coprocessor general-purpose register
897 names appropriate for the me_module we're dealing with. */
898 static CGEN_KEYWORD
*
901 const CGEN_HW_ENTRY
*hw
902 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR
);
904 return register_set_keyword_table (hw
);
908 /* Return non-zero if the coprocessor general-purpose registers are
909 floating-point values, zero otherwise. */
911 current_cr_is_float ()
913 const CGEN_HW_ENTRY
*hw
914 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR
);
916 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw
));
920 /* Return the keyword table of coprocessor control register names
921 appropriate for the me_module we're dealing with. */
922 static CGEN_KEYWORD
*
925 const CGEN_HW_ENTRY
*hw
926 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR
);
928 return register_set_keyword_table (hw
);
933 mep_register_name (int regnr
)
935 struct gdbarch_tdep
*tdep
= gdbarch_tdep (current_gdbarch
);
937 /* General-purpose registers. */
938 static const char *gpr_names
[] = {
939 "r0", "r1", "r2", "r3", /* 0 */
940 "r4", "r5", "r6", "r7", /* 4 */
941 "fp", "r9", "r10", "r11", /* 8 */
942 "r12", "tp", "gp", "sp" /* 12 */
945 /* Special-purpose registers. */
946 static const char *csr_names
[] = {
947 "pc", "lp", "sar", "", /* 0 csr3: reserved */
948 "rpb", "rpe", "rpc", "hi", /* 4 */
949 "lo", "", "", "", /* 8 csr9-csr11: reserved */
950 "mb0", "me0", "mb1", "me1", /* 12 */
952 "psw", "id", "tmp", "epc", /* 16 */
953 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
954 "dbg", "depc", "opt", "rcfg", /* 24 */
955 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
958 if (IS_GPR_REGNUM (regnr
))
959 return gpr_names
[regnr
- MEP_R0_REGNUM
];
960 else if (IS_CSR_REGNUM (regnr
))
962 /* The 'hi' and 'lo' registers are only present on processors
963 that have the 'MUL' or 'DIV' instructions enabled. */
964 if ((regnr
== MEP_HI_REGNUM
|| regnr
== MEP_LO_REGNUM
)
965 && (! (current_options () & (MEP_OPT_MUL
| MEP_OPT_DIV
))))
968 return csr_names
[regnr
- MEP_FIRST_CSR_REGNUM
];
970 else if (IS_CR_REGNUM (regnr
))
976 /* Does this module have a coprocessor at all? */
977 if (! (current_options () & MEP_OPT_COP
))
980 names
= current_cr_names ();
982 /* This module's coprocessor has no general-purpose registers. */
985 cr_size
= current_cop_data_bus_width ();
986 if (cr_size
!= mep_pseudo_cr_size (regnr
))
987 /* This module's coprocessor's GPR's are of a different size. */
990 cr_is_float
= current_cr_is_float ();
991 /* The extra ! operators ensure we get boolean equality, not
993 if (! cr_is_float
!= ! mep_pseudo_cr_is_float (regnr
))
994 /* This module's coprocessor's GPR's are of a different type. */
997 return register_name_from_keyword (names
, mep_pseudo_cr_index (regnr
));
999 else if (IS_CCR_REGNUM (regnr
))
1001 /* Does this module have a coprocessor at all? */
1002 if (! (current_options () & MEP_OPT_COP
))
1006 CGEN_KEYWORD
*names
= current_ccr_names ();
1009 /* This me_module's coprocessor has no control registers. */
1012 return register_name_from_keyword (names
, regnr
-MEP_FIRST_CCR_REGNUM
);
1016 /* It might be nice to give the 'module' register a name, but that
1017 would affect the output of 'info all-registers', which would
1018 disturb the test suites. So we leave it invisible. */
1024 /* Custom register groups for the MeP. */
1025 static struct reggroup
*mep_csr_reggroup
; /* control/special */
1026 static struct reggroup
*mep_cr_reggroup
; /* coprocessor general-purpose */
1027 static struct reggroup
*mep_ccr_reggroup
; /* coprocessor control */
1031 mep_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
1032 struct reggroup
*group
)
1034 /* Filter reserved or unused register numbers. */
1036 const char *name
= mep_register_name (regnum
);
1038 if (! name
|| name
[0] == '\0')
1042 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1043 the existing behavior, so we'd want to run that by them. */
1044 if (group
== general_reggroup
)
1045 return (IS_GPR_REGNUM (regnum
)
1046 || IS_CSR_REGNUM (regnum
));
1048 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1049 else if (group
== all_reggroup
)
1050 return (IS_GPR_REGNUM (regnum
)
1051 || IS_CSR_REGNUM (regnum
)
1052 || IS_CR_REGNUM (regnum
)
1053 || IS_CCR_REGNUM (regnum
));
1055 /* All registers should be saved and restored, except for the raw
1058 This is probably right if the coprocessor is something like a
1059 floating-point unit, but would be wrong if the coprocessor is
1060 something that does I/O, where register accesses actually cause
1061 externally-visible actions. But I get the impression that the
1062 coprocessor isn't supposed to do things like that --- you'd use a
1063 hardware engine, perhaps. */
1064 else if (group
== save_reggroup
|| group
== restore_reggroup
)
1065 return (IS_GPR_REGNUM (regnum
)
1066 || IS_CSR_REGNUM (regnum
)
1067 || IS_CR_REGNUM (regnum
)
1068 || IS_CCR_REGNUM (regnum
));
1070 else if (group
== mep_csr_reggroup
)
1071 return IS_CSR_REGNUM (regnum
);
1072 else if (group
== mep_cr_reggroup
)
1073 return IS_CR_REGNUM (regnum
);
1074 else if (group
== mep_ccr_reggroup
)
1075 return IS_CCR_REGNUM (regnum
);
1081 static struct type
*
1082 mep_register_type (struct gdbarch
*gdbarch
, int reg_nr
)
1084 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1085 long. So for them, the raw registers are always 64 bits long (to
1086 keep the 'g' packet format fixed), and the pseudoregisters vary
1088 if (IS_RAW_CR_REGNUM (reg_nr
))
1089 return builtin_type_uint64
;
1091 /* Since GDB doesn't allow registers to change type, we have two
1092 banks of pseudoregisters for the coprocessor general-purpose
1093 registers: one that gives a 32-bit view, and one that gives a
1094 64-bit view. We hide or show one or the other depending on the
1096 if (IS_CR_REGNUM (reg_nr
))
1098 int size
= mep_pseudo_cr_size (reg_nr
);
1101 if (mep_pseudo_cr_is_float (reg_nr
))
1102 return builtin_type_float
;
1104 return builtin_type_uint32
;
1106 else if (size
== 64)
1108 if (mep_pseudo_cr_is_float (reg_nr
))
1109 return builtin_type_double
;
1111 return builtin_type_uint64
;
1117 /* All other registers are 32 bits long. */
1119 return builtin_type_uint32
;
1124 mep_read_pc (struct regcache
*regcache
)
1127 regcache_cooked_read_unsigned (regcache
, MEP_PC_REGNUM
, &pc
);
1132 mep_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
1134 regcache_cooked_write_unsigned (regcache
, MEP_PC_REGNUM
, pc
);
1139 mep_pseudo_cr32_read (struct gdbarch
*gdbarch
,
1140 struct regcache
*regcache
,
1144 /* Read the raw register into a 64-bit buffer, and then return the
1145 appropriate end of that buffer. */
1146 int rawnum
= mep_pseudo_to_raw
[cookednum
];
1149 gdb_assert (TYPE_LENGTH (register_type (gdbarch
, rawnum
)) == sizeof (buf64
));
1150 gdb_assert (TYPE_LENGTH (register_type (gdbarch
, cookednum
)) == 4);
1151 regcache_raw_read (regcache
, rawnum
, buf64
);
1152 /* Slow, but legible. */
1153 store_unsigned_integer (buf
, 4, extract_unsigned_integer (buf64
, 8));
1158 mep_pseudo_cr64_read (struct gdbarch
*gdbarch
,
1159 struct regcache
*regcache
,
1163 regcache_raw_read (regcache
, mep_pseudo_to_raw
[cookednum
], buf
);
1168 mep_pseudo_register_read (struct gdbarch
*gdbarch
,
1169 struct regcache
*regcache
,
1173 if (IS_CSR_REGNUM (cookednum
)
1174 || IS_CCR_REGNUM (cookednum
))
1175 regcache_raw_read (regcache
, mep_pseudo_to_raw
[cookednum
], buf
);
1176 else if (IS_CR32_REGNUM (cookednum
)
1177 || IS_FP_CR32_REGNUM (cookednum
))
1178 mep_pseudo_cr32_read (gdbarch
, regcache
, cookednum
, buf
);
1179 else if (IS_CR64_REGNUM (cookednum
)
1180 || IS_FP_CR64_REGNUM (cookednum
))
1181 mep_pseudo_cr64_read (gdbarch
, regcache
, cookednum
, buf
);
1188 mep_pseudo_csr_write (struct gdbarch
*gdbarch
,
1189 struct regcache
*regcache
,
1193 int size
= register_size (gdbarch
, cookednum
);
1194 struct mep_csr_register
*r
1195 = &mep_csr_registers
[cookednum
- MEP_FIRST_CSR_REGNUM
];
1197 if (r
->writeable_bits
== 0)
1198 /* A completely read-only register; avoid the read-modify-
1199 write cycle, and juts ignore the entire write. */
1203 /* A partially writeable register; do a read-modify-write cycle. */
1206 ULONGEST mixed_bits
;
1208 regcache_raw_read_unsigned (regcache
, r
->raw
, &old_bits
);
1209 new_bits
= extract_unsigned_integer (buf
, size
);
1210 mixed_bits
= ((r
->writeable_bits
& new_bits
)
1211 | (~r
->writeable_bits
& old_bits
));
1212 regcache_raw_write_unsigned (regcache
, r
->raw
, mixed_bits
);
1218 mep_pseudo_cr32_write (struct gdbarch
*gdbarch
,
1219 struct regcache
*regcache
,
1223 /* Expand the 32-bit value into a 64-bit value, and write that to
1224 the pseudoregister. */
1225 int rawnum
= mep_pseudo_to_raw
[cookednum
];
1228 gdb_assert (TYPE_LENGTH (register_type (gdbarch
, rawnum
)) == sizeof (buf64
));
1229 gdb_assert (TYPE_LENGTH (register_type (gdbarch
, cookednum
)) == 4);
1230 /* Slow, but legible. */
1231 store_unsigned_integer (buf64
, 8, extract_unsigned_integer (buf
, 4));
1232 regcache_raw_write (regcache
, rawnum
, buf64
);
1237 mep_pseudo_cr64_write (struct gdbarch
*gdbarch
,
1238 struct regcache
*regcache
,
1242 regcache_raw_write (regcache
, mep_pseudo_to_raw
[cookednum
], buf
);
1247 mep_pseudo_register_write (struct gdbarch
*gdbarch
,
1248 struct regcache
*regcache
,
1250 const gdb_byte
*buf
)
1252 if (IS_CSR_REGNUM (cookednum
))
1253 mep_pseudo_csr_write (gdbarch
, regcache
, cookednum
, buf
);
1254 else if (IS_CR32_REGNUM (cookednum
)
1255 || IS_FP_CR32_REGNUM (cookednum
))
1256 mep_pseudo_cr32_write (gdbarch
, regcache
, cookednum
, buf
);
1257 else if (IS_CR64_REGNUM (cookednum
)
1258 || IS_FP_CR64_REGNUM (cookednum
))
1259 mep_pseudo_cr64_write (gdbarch
, regcache
, cookednum
, buf
);
1260 else if (IS_CCR_REGNUM (cookednum
))
1261 regcache_raw_write (regcache
, mep_pseudo_to_raw
[cookednum
], buf
);
1270 /* The mep disassembler needs to know about the section in order to
1273 mep_gdb_print_insn (bfd_vma pc
, disassemble_info
* info
)
1275 struct obj_section
* s
= find_pc_section (pc
);
1279 /* The libopcodes disassembly code uses the section to find the
1280 BFD, the BFD to find the ELF header, the ELF header to find
1281 the me_module index, and the me_module index to select the
1282 right instructions to print. */
1283 info
->section
= s
->the_bfd_section
;
1284 info
->arch
= bfd_arch_mep
;
1286 return print_insn_mep (pc
, info
);
1293 /* Prologue analysis. */
1296 /* The MeP has two classes of instructions: "core" instructions, which
1297 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1298 which are mostly concerned with moving data in and out of
1299 coprocessor registers, and branching on coprocessor condition
1300 codes. There's space in the instruction set for custom coprocessor
1303 Instructions can be 16 or 32 bits long; the top two bits of the
1304 first byte indicate the length. The coprocessor instructions are
1305 mixed in with the core instructions, and there's no easy way to
1306 distinguish them; you have to completely decode them to tell one
1309 The MeP also supports a "VLIW" operation mode, where instructions
1310 always occur in fixed-width bundles. The bundles are either 32
1311 bits or 64 bits long, depending on a fixed configuration flag. You
1312 decode the first part of the bundle as normal; if it's a core
1313 instruction, and there's any space left in the bundle, the
1314 remainder of the bundle is a coprocessor instruction, which will
1315 execute in parallel with the core instruction. If the first part
1316 of the bundle is a coprocessor instruction, it occupies the entire
1319 So, here are all the cases:
1322 Every bundle is four bytes long, and naturally aligned, and can hold
1323 one or two instructions:
1324 - 16-bit core instruction; 16-bit coprocessor instruction
1325 These execute in parallel.
1326 - 32-bit core instruction
1327 - 32-bit coprocessor instruction
1330 Every bundle is eight bytes long, and naturally aligned, and can hold
1331 one or two instructions:
1332 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1333 These execute in parallel.
1334 - 32-bit core instruction; 32-bit coprocessor instruction
1335 These execute in parallel.
1336 - 64-bit coprocessor instruction
1338 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1339 instruction, so I don't really know what's up there; perhaps these
1340 are always the user-defined coprocessor instructions. */
1343 /* Return non-zero if PC is in a VLIW code section, zero
1346 mep_pc_in_vliw_section (CORE_ADDR pc
)
1348 struct obj_section
*s
= find_pc_section (pc
);
1350 return (s
->the_bfd_section
->flags
& SEC_MEP_VLIW
);
1355 /* Set *INSN to the next core instruction at PC, and return the
1356 address of the next instruction.
1358 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1359 instructions are encoded as one or two two-byte parts, and each
1360 part is byte-swapped independently. Thus:
1365 asm ("movu $1, 0x123456");
1366 asm ("sb $1,0x5678($2)");
1367 asm ("clip $1, 19");
1370 compiles to this big-endian code:
1372 0: d1 56 12 34 movu $1,0x123456
1373 4: c1 28 56 78 sb $1,22136($2)
1374 8: f1 01 10 98 clip $1,0x13
1377 and this little-endian code:
1379 0: 56 d1 34 12 movu $1,0x123456
1380 4: 28 c1 78 56 sb $1,22136($2)
1381 8: 01 f1 98 10 clip $1,0x13
1384 Instructions are returned in *INSN in an endian-independent form: a
1385 given instruction always appears in *INSN the same way, regardless
1386 of whether the instruction stream is big-endian or little-endian.
1388 *INSN's most significant 16 bits are the first (i.e., at lower
1389 addresses) 16 bit part of the instruction. Its least significant
1390 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1391 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1392 are fetched using the current endianness.
1394 So, the *INSN values for the instruction sequence above would be
1395 the following, in either endianness:
1397 0xd1561234 movu $1,0x123456
1398 0xc1285678 sb $1,22136($2)
1399 0xf1011098 clip $1,0x13
1402 (In a sense, it would be more natural to return 16-bit instructions
1403 in the least significant 16 bits of *INSN, but that would be
1404 ambiguous. In order to tell whether you're looking at a 16- or a
1405 32-bit instruction, you have to consult the major opcode field ---
1406 the most significant four bits of the instruction's first 16-bit
1407 part. But if we put 16-bit instructions at the least significant
1408 end of *INSN, then you don't know where to find the major opcode
1409 field until you know if it's a 16- or a 32-bit instruction ---
1410 which is where we started.)
1412 If PC points to a core / coprocessor bundle in a VLIW section, set
1413 *INSN to the core instruction, and return the address of the next
1414 bundle. This has the effect of skipping the bundled coprocessor
1415 instruction. That's okay, since coprocessor instructions aren't
1416 significant to prologue analysis --- for the time being,
1420 mep_get_insn (CORE_ADDR pc
, long *insn
)
1422 int pc_in_vliw_section
;
1429 /* Are we in a VLIW section? */
1430 pc_in_vliw_section
= mep_pc_in_vliw_section (pc
);
1431 if (pc_in_vliw_section
)
1433 /* Yes, find out which bundle size. */
1434 vliw_mode
= current_options () & (MEP_OPT_VL32
| MEP_OPT_VL64
);
1436 /* If PC is in a VLIW section, but the current core doesn't say
1437 that it supports either VLIW mode, then we don't have enough
1438 information to parse the instruction stream it contains.
1439 Since the "undifferentiated" standard core doesn't have
1440 either VLIW mode bit set, this could happen.
1442 But it shouldn't be an error to (say) set a breakpoint in a
1443 VLIW section, if you know you'll never reach it. (Perhaps
1444 you have a script that sets a bunch of standard breakpoints.)
1446 So we'll just return zero here, and hope for the best. */
1447 if (! (vliw_mode
& (MEP_OPT_VL32
| MEP_OPT_VL64
)))
1450 /* If both VL32 and VL64 are set, that's bogus, too. */
1451 if (vliw_mode
== (MEP_OPT_VL32
| MEP_OPT_VL64
))
1457 read_memory (pc
, buf
, sizeof (buf
));
1458 *insn
= extract_unsigned_integer (buf
, 2) << 16;
1460 /* The major opcode --- the top four bits of the first 16-bit
1461 part --- indicates whether this instruction is 16 or 32 bits
1462 long. All 32-bit instructions have a major opcode whose top
1463 two bits are 11; all the rest are 16-bit instructions. */
1464 if ((*insn
& 0xc0000000) == 0xc0000000)
1466 /* Fetch the second 16-bit part of the instruction. */
1467 read_memory (pc
+ 2, buf
, sizeof (buf
));
1468 *insn
= *insn
| extract_unsigned_integer (buf
, 2);
1471 /* If we're in VLIW code, then the VLIW width determines the address
1472 of the next instruction. */
1475 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1476 coprocessor half of a core / copro bundle. */
1477 if (vliw_mode
== MEP_OPT_VL32
)
1480 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1481 coprocessor half of a core / copro bundle. */
1482 else if (vliw_mode
== MEP_OPT_VL64
)
1485 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1490 /* Otherwise, the top two bits of the major opcode are (again) what
1491 we need to check. */
1492 else if ((*insn
& 0xc0000000) == 0xc0000000)
1497 return pc
+ insn_len
;
1501 /* Sign-extend the LEN-bit value N. */
1502 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1504 /* Return the LEN-bit field at POS from I. */
1505 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1507 /* Like FIELD, but sign-extend the field's value. */
1508 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1511 /* Macros for decoding instructions.
1513 Remember that 16-bit instructions are placed in bits 16..31 of i,
1514 not at the least significant end; this means that the major opcode
1515 field is always in the same place, regardless of the width of the
1516 instruction. As a reminder of this, we show the lower 16 bits of a
1517 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1519 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1520 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1521 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1523 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1524 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1525 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1526 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1527 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1528 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1529 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1530 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1531 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1533 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1534 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1535 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1536 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1538 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1539 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1540 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1541 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1543 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1544 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1545 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1546 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1548 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1549 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1550 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1551 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1552 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1554 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1555 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1556 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1557 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1559 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1560 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1561 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1562 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1564 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1566 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1567 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1568 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1570 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1571 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1572 #define LW_TARGET(i) (FIELD (i, 24, 4))
1573 #define LW_BASE(i) (FIELD (i, 20, 4))
1574 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1576 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1577 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1578 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1579 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1582 /* This structure holds the results of a prologue analysis. */
1585 /* The offset from the frame base to the stack pointer --- always
1588 Calling this a "size" is a bit misleading, but given that the
1589 stack grows downwards, using offsets for everything keeps one
1590 from going completely sign-crazy: you never change anything's
1591 sign for an ADD instruction; always change the second operand's
1592 sign for a SUB instruction; and everything takes care of
1596 /* Non-zero if this function has initialized the frame pointer from
1597 the stack pointer, zero otherwise. */
1600 /* If has_frame_ptr is non-zero, this is the offset from the frame
1601 base to where the frame pointer points. This is always zero or
1603 int frame_ptr_offset
;
1605 /* The address of the first instruction at which the frame has been
1606 set up and the arguments are where the debug info says they are
1607 --- as best as we can tell. */
1608 CORE_ADDR prologue_end
;
1610 /* reg_offset[R] is the offset from the CFA at which register R is
1611 saved, or 1 if register R has not been saved. (Real values are
1612 always zero or negative.) */
1613 int reg_offset
[MEP_NUM_REGS
];
1616 /* Return non-zero if VALUE is an incoming argument register. */
1619 is_arg_reg (pv_t value
)
1621 return (value
.kind
== pvk_register
1622 && MEP_R1_REGNUM
<= value
.reg
&& value
.reg
<= MEP_R4_REGNUM
1626 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1627 probably spilling an argument register to its stack slot in STACK.
1628 Such instructions should be included in the prologue, if possible.
1630 The store is a spill if:
1631 - the value being stored is REG's original value;
1632 - the value has not already been stored somewhere in STACK; and
1633 - ADDR is a stack slot's address (e.g., relative to the original
1634 value of the SP). */
1636 is_arg_spill (pv_t value
, pv_t addr
, struct pv_area
*stack
)
1638 return (is_arg_reg (value
)
1639 && pv_is_register (addr
, MEP_SP_REGNUM
)
1640 && ! pv_area_find_reg (stack
, current_gdbarch
, value
.reg
, 0));
1644 /* Function for finding saved registers in a 'struct pv_area'; we pass
1645 this to pv_area_scan.
1647 If VALUE is a saved register, ADDR says it was saved at a constant
1648 offset from the frame base, and SIZE indicates that the whole
1649 register was saved, record its offset in RESULT_UNTYPED. */
1651 check_for_saved (void *result_untyped
, pv_t addr
, CORE_ADDR size
, pv_t value
)
1653 struct mep_prologue
*result
= (struct mep_prologue
*) result_untyped
;
1655 if (value
.kind
== pvk_register
1657 && pv_is_register (addr
, MEP_SP_REGNUM
)
1658 && size
== register_size (current_gdbarch
, value
.reg
))
1659 result
->reg_offset
[value
.reg
] = addr
.k
;
1663 /* Analyze a prologue starting at START_PC, going no further than
1664 LIMIT_PC. Fill in RESULT as appropriate. */
1666 mep_analyze_prologue (CORE_ADDR start_pc
, CORE_ADDR limit_pc
,
1667 struct mep_prologue
*result
)
1673 pv_t reg
[MEP_NUM_REGS
];
1674 struct pv_area
*stack
;
1675 struct cleanup
*back_to
;
1676 CORE_ADDR after_last_frame_setup_insn
= start_pc
;
1678 memset (result
, 0, sizeof (*result
));
1680 for (rn
= 0; rn
< MEP_NUM_REGS
; rn
++)
1682 reg
[rn
] = pv_register (rn
, 0);
1683 result
->reg_offset
[rn
] = 1;
1686 stack
= make_pv_area (MEP_SP_REGNUM
);
1687 back_to
= make_cleanup_free_pv_area (stack
);
1690 while (pc
< limit_pc
)
1693 pv_t pre_insn_fp
, pre_insn_sp
;
1695 next_pc
= mep_get_insn (pc
, &insn
);
1697 /* A zero return from mep_get_insn means that either we weren't
1698 able to read the instruction from memory, or that we don't
1699 have enough information to be able to reliably decode it. So
1700 we'll store here and hope for the best. */
1704 /* Note the current values of the SP and FP, so we can tell if
1705 this instruction changed them, below. */
1706 pre_insn_fp
= reg
[MEP_FP_REGNUM
];
1707 pre_insn_sp
= reg
[MEP_SP_REGNUM
];
1711 int rn
= ADD_TARGET (insn
);
1712 CORE_ADDR imm6
= ADD_OFFSET (insn
);
1714 reg
[rn
] = pv_add_constant (reg
[rn
], imm6
);
1716 else if (IS_ADD3_16 (insn
))
1718 int rn
= ADD3_16_TARGET (insn
);
1719 int imm7
= ADD3_16_OFFSET (insn
);
1721 reg
[rn
] = pv_add_constant (reg
[MEP_SP_REGNUM
], imm7
);
1723 else if (IS_ADD3_32 (insn
))
1725 int rn
= ADD3_32_TARGET (insn
);
1726 int rm
= ADD3_32_SOURCE (insn
);
1727 int imm16
= ADD3_32_OFFSET (insn
);
1729 reg
[rn
] = pv_add_constant (reg
[rm
], imm16
);
1731 else if (IS_SW_REG (insn
))
1733 int rn
= SW_REG_SOURCE (insn
);
1734 int rm
= SW_REG_BASE (insn
);
1736 /* If simulating this store would require us to forget
1737 everything we know about the stack frame in the name of
1738 accuracy, it would be better to just quit now. */
1739 if (pv_area_store_would_trash (stack
, reg
[rm
]))
1742 if (is_arg_spill (reg
[rn
], reg
[rm
], stack
))
1743 after_last_frame_setup_insn
= next_pc
;
1745 pv_area_store (stack
, reg
[rm
], 4, reg
[rn
]);
1747 else if (IS_SW_IMMD (insn
))
1749 int rn
= SW_IMMD_SOURCE (insn
);
1750 int offset
= SW_IMMD_OFFSET (insn
);
1751 pv_t addr
= pv_add_constant (reg
[MEP_SP_REGNUM
], offset
);
1753 /* If simulating this store would require us to forget
1754 everything we know about the stack frame in the name of
1755 accuracy, it would be better to just quit now. */
1756 if (pv_area_store_would_trash (stack
, addr
))
1759 if (is_arg_spill (reg
[rn
], addr
, stack
))
1760 after_last_frame_setup_insn
= next_pc
;
1762 pv_area_store (stack
, addr
, 4, reg
[rn
]);
1764 else if (IS_MOV (insn
))
1766 int rn
= MOV_TARGET (insn
);
1767 int rm
= MOV_SOURCE (insn
);
1771 if (pv_is_register (reg
[rm
], rm
) && is_arg_reg (reg
[rm
]))
1772 after_last_frame_setup_insn
= next_pc
;
1774 else if (IS_SB (insn
) || IS_SH (insn
) || IS_SW (insn
))
1776 int rn
= SWBH_32_SOURCE (insn
);
1777 int rm
= SWBH_32_BASE (insn
);
1778 int disp
= SWBH_32_OFFSET (insn
);
1779 int size
= (IS_SB (insn
) ? 1
1782 : (gdb_assert (0), 1));
1783 pv_t addr
= pv_add_constant (reg
[rm
], disp
);
1785 if (pv_area_store_would_trash (stack
, addr
))
1788 if (is_arg_spill (reg
[rn
], addr
, stack
))
1789 after_last_frame_setup_insn
= next_pc
;
1791 pv_area_store (stack
, addr
, size
, reg
[rn
]);
1793 else if (IS_LDC (insn
))
1795 int rn
= LDC_TARGET (insn
);
1796 int cr
= LDC_IMM (insn
) + MEP_FIRST_CSR_REGNUM
;
1800 else if (IS_LW (insn
))
1802 int rn
= LW_TARGET (insn
);
1803 int rm
= LW_BASE (insn
);
1804 int offset
= LW_OFFSET (insn
);
1805 pv_t addr
= pv_add_constant (reg
[rm
], offset
);
1807 reg
[rn
] = pv_area_fetch (stack
, addr
, 4);
1810 /* We've hit some instruction we don't know how to simulate.
1811 Strictly speaking, we should set every value we're
1812 tracking to "unknown". But we'll be optimistic, assume
1813 that we have enough information already, and stop
1817 /* If this instruction changed the FP or decreased the SP (i.e.,
1818 allocated more stack space), then this may be a good place to
1819 declare the prologue finished. However, there are some
1822 - If the instruction just changed the FP back to its original
1823 value, then that's probably a restore instruction. The
1824 prologue should definitely end before that.
1826 - If the instruction increased the value of the SP (that is,
1827 shrunk the frame), then it's probably part of a frame
1828 teardown sequence, and the prologue should end before that. */
1830 if (! pv_is_identical (reg
[MEP_FP_REGNUM
], pre_insn_fp
))
1832 if (! pv_is_register_k (reg
[MEP_FP_REGNUM
], MEP_FP_REGNUM
, 0))
1833 after_last_frame_setup_insn
= next_pc
;
1835 else if (! pv_is_identical (reg
[MEP_SP_REGNUM
], pre_insn_sp
))
1837 /* The comparison of constants looks odd, there, because .k
1838 is unsigned. All it really means is that the new value
1839 is lower than it was before the instruction. */
1840 if (pv_is_register (pre_insn_sp
, MEP_SP_REGNUM
)
1841 && pv_is_register (reg
[MEP_SP_REGNUM
], MEP_SP_REGNUM
)
1842 && ((pre_insn_sp
.k
- reg
[MEP_SP_REGNUM
].k
)
1843 < (reg
[MEP_SP_REGNUM
].k
- pre_insn_sp
.k
)))
1844 after_last_frame_setup_insn
= next_pc
;
1850 /* Is the frame size (offset, really) a known constant? */
1851 if (pv_is_register (reg
[MEP_SP_REGNUM
], MEP_SP_REGNUM
))
1852 result
->frame_size
= reg
[MEP_SP_REGNUM
].k
;
1854 /* Was the frame pointer initialized? */
1855 if (pv_is_register (reg
[MEP_FP_REGNUM
], MEP_SP_REGNUM
))
1857 result
->has_frame_ptr
= 1;
1858 result
->frame_ptr_offset
= reg
[MEP_FP_REGNUM
].k
;
1861 /* Record where all the registers were saved. */
1862 pv_area_scan (stack
, check_for_saved
, (void *) result
);
1864 result
->prologue_end
= after_last_frame_setup_insn
;
1866 do_cleanups (back_to
);
1871 mep_skip_prologue (CORE_ADDR pc
)
1874 CORE_ADDR func_addr
, func_end
;
1875 struct mep_prologue p
;
1877 /* Try to find the extent of the function that contains PC. */
1878 if (! find_pc_partial_function (pc
, &name
, &func_addr
, &func_end
))
1881 mep_analyze_prologue (pc
, func_end
, &p
);
1882 return p
.prologue_end
;
1889 static const unsigned char *
1890 mep_breakpoint_from_pc (CORE_ADDR
* pcptr
, int *lenptr
)
1892 static unsigned char breakpoint
[] = { 0x70, 0x32 };
1893 *lenptr
= sizeof (breakpoint
);
1899 /* Frames and frame unwinding. */
1902 static struct mep_prologue
*
1903 mep_analyze_frame_prologue (struct frame_info
*next_frame
,
1904 void **this_prologue_cache
)
1906 if (! *this_prologue_cache
)
1908 CORE_ADDR func_start
, stop_addr
;
1910 *this_prologue_cache
1911 = FRAME_OBSTACK_ZALLOC (struct mep_prologue
);
1913 func_start
= frame_func_unwind (next_frame
, NORMAL_FRAME
);
1914 stop_addr
= frame_pc_unwind (next_frame
);
1916 /* If we couldn't find any function containing the PC, then
1917 just initialize the prologue cache, but don't do anything. */
1919 stop_addr
= func_start
;
1921 mep_analyze_prologue (func_start
, stop_addr
, *this_prologue_cache
);
1924 return *this_prologue_cache
;
1928 /* Given the next frame and a prologue cache, return this frame's
1931 mep_frame_base (struct frame_info
*next_frame
,
1932 void **this_prologue_cache
)
1934 struct mep_prologue
*p
1935 = mep_analyze_frame_prologue (next_frame
, this_prologue_cache
);
1937 /* In functions that use alloca, the distance between the stack
1938 pointer and the frame base varies dynamically, so we can't use
1939 the SP plus static information like prologue analysis to find the
1940 frame base. However, such functions must have a frame pointer,
1941 to be able to restore the SP on exit. So whenever we do have a
1942 frame pointer, use that to find the base. */
1943 if (p
->has_frame_ptr
)
1946 = frame_unwind_register_unsigned (next_frame
, MEP_FP_REGNUM
);
1947 return fp
- p
->frame_ptr_offset
;
1952 = frame_unwind_register_unsigned (next_frame
, MEP_SP_REGNUM
);
1953 return sp
- p
->frame_size
;
1959 mep_frame_this_id (struct frame_info
*next_frame
,
1960 void **this_prologue_cache
,
1961 struct frame_id
*this_id
)
1963 *this_id
= frame_id_build (mep_frame_base (next_frame
, this_prologue_cache
),
1964 frame_func_unwind (next_frame
, NORMAL_FRAME
));
1969 mep_frame_prev_register (struct frame_info
*next_frame
,
1970 void **this_prologue_cache
,
1971 int regnum
, int *optimizedp
,
1972 enum lval_type
*lvalp
, CORE_ADDR
*addrp
,
1973 int *realnump
, gdb_byte
*bufferp
)
1975 struct mep_prologue
*p
1976 = mep_analyze_frame_prologue (next_frame
, this_prologue_cache
);
1978 /* There are a number of complications in unwinding registers on the
1979 MeP, having to do with core functions calling VLIW functions and
1982 The least significant bit of the link register, LP.LTOM, is the
1983 VLIW mode toggle bit: it's set if a core function called a VLIW
1984 function, or vice versa, and clear when the caller and callee
1985 were both in the same mode.
1987 So, if we're asked to unwind the PC, then we really want to
1988 unwind the LP and clear the least significant bit. (Real return
1989 addresses are always even.) And if we want to unwind the program
1990 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
1992 Tweaking the register values we return in this way means that the
1993 bits in BUFFERP[] are not the same as the bits you'd find at
1994 ADDRP in the inferior, so we make sure lvalp is not_lval when we
1996 if (regnum
== MEP_PC_REGNUM
)
1998 mep_frame_prev_register (next_frame
, this_prologue_cache
, MEP_LP_REGNUM
,
1999 optimizedp
, lvalp
, addrp
, realnump
, bufferp
);
2000 store_unsigned_integer (bufferp
, MEP_LP_SIZE
,
2001 (extract_unsigned_integer (bufferp
, MEP_LP_SIZE
)
2007 CORE_ADDR frame_base
= mep_frame_base (next_frame
, this_prologue_cache
);
2008 int reg_size
= register_size (get_frame_arch (next_frame
), regnum
);
2010 /* Our caller's SP is our frame base. */
2011 if (regnum
== MEP_SP_REGNUM
)
2018 store_unsigned_integer (bufferp
, reg_size
, frame_base
);
2021 /* If prologue analysis says we saved this register somewhere,
2022 return a description of the stack slot holding it. */
2023 else if (p
->reg_offset
[regnum
] != 1)
2026 *lvalp
= lval_memory
;
2027 *addrp
= frame_base
+ p
->reg_offset
[regnum
];
2030 get_frame_memory (next_frame
, *addrp
, bufferp
, reg_size
);
2033 /* Otherwise, presume we haven't changed the value of this
2034 register, and get it from the next frame. */
2036 frame_register_unwind (next_frame
, regnum
,
2037 optimizedp
, lvalp
, addrp
, realnump
, bufferp
);
2039 /* If we need to toggle the operating mode, do so. */
2040 if (regnum
== MEP_PSW_REGNUM
)
2043 enum lval_type lp_lval
;
2046 char lp_buffer
[MEP_LP_SIZE
];
2048 /* Get the LP's value, too. */
2049 frame_register_unwind (next_frame
, MEP_LP_REGNUM
,
2050 &lp_optimized
, &lp_lval
, &lp_addr
,
2051 &lp_realnum
, lp_buffer
);
2053 /* If LP.LTOM is set, then toggle PSW.OM. */
2054 if (extract_unsigned_integer (lp_buffer
, MEP_LP_SIZE
) & 0x1)
2055 store_unsigned_integer
2056 (bufferp
, MEP_PSW_SIZE
,
2057 (extract_unsigned_integer (bufferp
, MEP_PSW_SIZE
) ^ 0x1000));
2064 static const struct frame_unwind mep_frame_unwind
= {
2067 mep_frame_prev_register
2071 static const struct frame_unwind
*
2072 mep_frame_sniffer (struct frame_info
*next_frame
)
2074 return &mep_frame_unwind
;
2078 /* Our general unwinding function can handle unwinding the PC. */
2080 mep_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2082 return frame_unwind_register_unsigned (next_frame
, MEP_PC_REGNUM
);
2086 /* Our general unwinding function can handle unwinding the SP. */
2088 mep_unwind_sp (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2090 return frame_unwind_register_unsigned (next_frame
, MEP_SP_REGNUM
);
2095 /* Return values. */
2099 mep_use_struct_convention (struct type
*type
)
2101 return (TYPE_LENGTH (type
) > MEP_GPR_SIZE
);
2106 mep_extract_return_value (struct gdbarch
*arch
,
2108 struct regcache
*regcache
,
2111 int byte_order
= gdbarch_byte_order (arch
);
2113 /* Values that don't occupy a full register appear at the less
2114 significant end of the value. This is the offset to where the
2118 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2119 pointed to by R0. */
2120 gdb_assert (TYPE_LENGTH (type
) <= MEP_GPR_SIZE
);
2122 if (byte_order
== BFD_ENDIAN_BIG
)
2123 offset
= MEP_GPR_SIZE
- TYPE_LENGTH (type
);
2127 /* Return values that do fit in a single register are returned in R0. */
2128 regcache_cooked_read_part (regcache
, MEP_R0_REGNUM
,
2129 offset
, TYPE_LENGTH (type
),
2135 mep_store_return_value (struct gdbarch
*arch
,
2137 struct regcache
*regcache
,
2138 const gdb_byte
*valbuf
)
2140 int byte_order
= gdbarch_byte_order (arch
);
2142 /* Values that fit in a single register go in R0. */
2143 if (TYPE_LENGTH (type
) <= MEP_GPR_SIZE
)
2145 /* Values that don't occupy a full register appear at the least
2146 significant end of the value. This is the offset to where the
2150 if (byte_order
== BFD_ENDIAN_BIG
)
2151 offset
= MEP_GPR_SIZE
- TYPE_LENGTH (type
);
2155 regcache_cooked_write_part (regcache
, MEP_R0_REGNUM
,
2156 offset
, TYPE_LENGTH (type
),
2160 /* Return values larger than a single register are returned in
2161 memory, pointed to by R0. Unfortunately, we can't count on R0
2162 pointing to the return buffer, so we raise an error here. */
2164 error ("GDB cannot set return values larger than four bytes; "
2165 "the Media Processor's\n"
2166 "calling conventions do not provide enough information "
2168 "Try using the 'return' command with no argument.");
2171 enum return_value_convention
2172 mep_return_value (struct gdbarch
*gdbarch
, struct type
*type
,
2173 struct regcache
*regcache
, gdb_byte
*readbuf
,
2174 const gdb_byte
*writebuf
)
2176 if (mep_use_struct_convention (type
))
2181 /* Although the address of the struct buffer gets passed in R1, it's
2182 returned in R0. Fetch R0's value and then read the memory
2184 regcache_raw_read_unsigned (regcache
, MEP_R0_REGNUM
, &addr
);
2185 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
2189 /* Return values larger than a single register are returned in
2190 memory, pointed to by R0. Unfortunately, we can't count on R0
2191 pointing to the return buffer, so we raise an error here. */
2192 error ("GDB cannot set return values larger than four bytes; "
2193 "the Media Processor's\n"
2194 "calling conventions do not provide enough information "
2196 "Try using the 'return' command with no argument.");
2198 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
2202 mep_extract_return_value (gdbarch
, type
, regcache
, readbuf
);
2204 mep_store_return_value (gdbarch
, type
, regcache
, writebuf
);
2206 return RETURN_VALUE_REGISTER_CONVENTION
;
2210 /* Inferior calls. */
2214 mep_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
2216 /* Require word alignment. */
2221 /* From "lang_spec2.txt":
2223 4.2 Calling conventions
2225 4.2.1 Core register conventions
2227 - Parameters should be evaluated from left to right, and they
2228 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2229 after should be held in the stack. If the size is larger than 4
2230 bytes in the first four parameters, the pointer should be held in
2231 the registers instead. If the size is larger than 4 bytes in the
2232 fifth parameter or after, the pointer should be held in the stack.
2234 - Return value of a function should be held in register $0. If the
2235 size of return value is larger than 4 bytes, $1 should hold the
2236 pointer pointing memory that would hold the return value. In this
2237 case, the first parameter should be held in $2, the second one in
2238 $3, and the third one in $4, and the forth parameter or after
2239 should be held in the stack.
2241 [This doesn't say so, but arguments shorter than four bytes are
2242 passed in the least significant end of a four-byte word when
2243 they're passed on the stack.] */
2246 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2247 large to fit in a register, save it on the stack, and place its
2248 address in COPY[i]. SP is the initial stack pointer; return the
2249 new stack pointer. */
2251 push_large_arguments (CORE_ADDR sp
, int argc
, struct value
**argv
,
2256 for (i
= 0; i
< argc
; i
++)
2258 unsigned arg_len
= TYPE_LENGTH (value_type (argv
[i
]));
2260 if (arg_len
> MEP_GPR_SIZE
)
2262 /* Reserve space for the copy, and then round the SP down, to
2263 make sure it's all aligned properly. */
2264 sp
= (sp
- arg_len
) & -4;
2265 write_memory (sp
, value_contents (argv
[i
]), arg_len
);
2275 mep_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
2276 struct regcache
*regcache
, CORE_ADDR bp_addr
,
2277 int argc
, struct value
**argv
, CORE_ADDR sp
,
2279 CORE_ADDR struct_addr
)
2281 CORE_ADDR
*copy
= (CORE_ADDR
*) alloca (argc
* sizeof (copy
[0]));
2282 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
2285 /* The number of the next register available to hold an argument. */
2288 /* The address of the next stack slot available to hold an argument. */
2289 CORE_ADDR arg_stack
;
2291 /* The address of the end of the stack area for arguments. This is
2292 just for error checking. */
2293 CORE_ADDR arg_stack_end
;
2295 sp
= push_large_arguments (sp
, argc
, argv
, copy
);
2297 /* Reserve space for the stack arguments, if any. */
2299 if (argc
+ (struct_addr
? 1 : 0) > 4)
2300 sp
-= ((argc
+ (struct_addr
? 1 : 0)) - 4) * MEP_GPR_SIZE
;
2302 arg_reg
= MEP_R1_REGNUM
;
2305 /* If we're returning a structure by value, push the pointer to the
2306 buffer as the first argument. */
2309 regcache_cooked_write_unsigned (regcache
, arg_reg
, struct_addr
);
2313 for (i
= 0; i
< argc
; i
++)
2315 unsigned arg_size
= TYPE_LENGTH (value_type (argv
[i
]));
2318 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2319 if (arg_size
<= MEP_GPR_SIZE
)
2320 value
= extract_unsigned_integer (value_contents (argv
[i
]),
2321 TYPE_LENGTH (value_type (argv
[i
])));
2323 /* Arguments too large to fit in a GPR get copied to the stack,
2324 and we pass a pointer to the copy. */
2328 /* We use $1 -- $4 for passing arguments, then use the stack. */
2329 if (arg_reg
<= MEP_R4_REGNUM
)
2331 regcache_cooked_write_unsigned (regcache
, arg_reg
, value
);
2336 char buf
[MEP_GPR_SIZE
];
2337 store_unsigned_integer (buf
, MEP_GPR_SIZE
, value
);
2338 write_memory (arg_stack
, buf
, MEP_GPR_SIZE
);
2339 arg_stack
+= MEP_GPR_SIZE
;
2343 gdb_assert (arg_stack
<= arg_stack_end
);
2345 /* Set the return address. */
2346 regcache_cooked_write_unsigned (regcache
, MEP_LP_REGNUM
, bp_addr
);
2348 /* Update the stack pointer. */
2349 regcache_cooked_write_unsigned (regcache
, MEP_SP_REGNUM
, sp
);
2355 static struct frame_id
2356 mep_unwind_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
2358 return frame_id_build (mep_unwind_sp (gdbarch
, next_frame
),
2359 frame_pc_unwind (next_frame
));
2364 /* Initialization. */
2367 static struct gdbarch
*
2368 mep_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
2370 struct gdbarch
*gdbarch
;
2371 struct gdbarch_tdep
*tdep
;
2373 /* Which me_module are we building a gdbarch object for? */
2374 CONFIG_ATTR me_module
;
2376 /* If we have a BFD in hand, figure out which me_module it was built
2377 for. Otherwise, use the no-particular-me_module code. */
2380 /* The way to get the me_module code depends on the object file
2381 format. At the moment, we only know how to handle ELF. */
2382 if (bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
2383 me_module
= elf_elfheader (info
.abfd
)->e_flags
& EF_MEP_INDEX_MASK
;
2385 me_module
= CONFIG_NONE
;
2388 me_module
= CONFIG_NONE
;
2390 /* If we're setting the architecture from a file, check the
2391 endianness of the file against that of the me_module. */
2394 /* The negations on either side make the comparison treat all
2395 non-zero (true) values as equal. */
2396 if (! bfd_big_endian (info
.abfd
) != ! me_module_big_endian (me_module
))
2398 const char *module_name
= me_module_name (me_module
);
2399 const char *module_endianness
2400 = me_module_big_endian (me_module
) ? "big" : "little";
2401 const char *file_name
= bfd_get_filename (info
.abfd
);
2402 const char *file_endianness
2403 = bfd_big_endian (info
.abfd
) ? "big" : "little";
2405 fputc_unfiltered ('\n', gdb_stderr
);
2407 warning ("the MeP module '%s' is %s-endian, but the executable\n"
2409 module_name
, module_endianness
,
2410 file_name
, file_endianness
);
2412 warning ("the selected MeP module is %s-endian, but the "
2415 module_endianness
, file_name
, file_endianness
);
2419 /* Find a candidate among the list of architectures we've created
2420 already. info->bfd_arch_info needs to match, but we also want
2421 the right me_module: the ELF header's e_flags field needs to
2423 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
2425 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
2426 if (gdbarch_tdep (arches
->gdbarch
)->me_module
== me_module
)
2427 return arches
->gdbarch
;
2429 tdep
= (struct gdbarch_tdep
*) xmalloc (sizeof (struct gdbarch_tdep
));
2430 gdbarch
= gdbarch_alloc (&info
, tdep
);
2432 /* Get a CGEN CPU descriptor for this architecture. */
2434 const char *mach_name
= info
.bfd_arch_info
->printable_name
;
2435 enum cgen_endian endian
= (info
.byte_order
== BFD_ENDIAN_BIG
2437 : CGEN_ENDIAN_LITTLE
);
2439 tdep
->cpu_desc
= mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH
, mach_name
,
2440 CGEN_CPU_OPEN_ENDIAN
, endian
,
2444 tdep
->me_module
= me_module
;
2447 set_gdbarch_read_pc (gdbarch
, mep_read_pc
);
2448 set_gdbarch_write_pc (gdbarch
, mep_write_pc
);
2449 set_gdbarch_num_regs (gdbarch
, MEP_NUM_RAW_REGS
);
2450 set_gdbarch_sp_regnum (gdbarch
, MEP_SP_REGNUM
);
2451 set_gdbarch_register_name (gdbarch
, mep_register_name
);
2452 set_gdbarch_register_type (gdbarch
, mep_register_type
);
2453 set_gdbarch_num_pseudo_regs (gdbarch
, MEP_NUM_PSEUDO_REGS
);
2454 set_gdbarch_pseudo_register_read (gdbarch
, mep_pseudo_register_read
);
2455 set_gdbarch_pseudo_register_write (gdbarch
, mep_pseudo_register_write
);
2456 set_gdbarch_dwarf2_reg_to_regnum (gdbarch
, mep_debug_reg_to_regnum
);
2457 set_gdbarch_stab_reg_to_regnum (gdbarch
, mep_debug_reg_to_regnum
);
2459 set_gdbarch_register_reggroup_p (gdbarch
, mep_register_reggroup_p
);
2460 reggroup_add (gdbarch
, all_reggroup
);
2461 reggroup_add (gdbarch
, general_reggroup
);
2462 reggroup_add (gdbarch
, save_reggroup
);
2463 reggroup_add (gdbarch
, restore_reggroup
);
2464 reggroup_add (gdbarch
, mep_csr_reggroup
);
2465 reggroup_add (gdbarch
, mep_cr_reggroup
);
2466 reggroup_add (gdbarch
, mep_ccr_reggroup
);
2469 set_gdbarch_print_insn (gdbarch
, mep_gdb_print_insn
);
2472 set_gdbarch_breakpoint_from_pc (gdbarch
, mep_breakpoint_from_pc
);
2473 set_gdbarch_decr_pc_after_break (gdbarch
, 0);
2474 set_gdbarch_skip_prologue (gdbarch
, mep_skip_prologue
);
2476 /* Frames and frame unwinding. */
2477 frame_unwind_append_sniffer (gdbarch
, mep_frame_sniffer
);
2478 set_gdbarch_unwind_pc (gdbarch
, mep_unwind_pc
);
2479 set_gdbarch_unwind_sp (gdbarch
, mep_unwind_sp
);
2480 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
2481 set_gdbarch_frame_args_skip (gdbarch
, 0);
2483 /* Return values. */
2484 set_gdbarch_return_value (gdbarch
, mep_return_value
);
2486 /* Inferior function calls. */
2487 set_gdbarch_frame_align (gdbarch
, mep_frame_align
);
2488 set_gdbarch_push_dummy_call (gdbarch
, mep_push_dummy_call
);
2489 set_gdbarch_unwind_dummy_id (gdbarch
, mep_unwind_dummy_id
);
2496 _initialize_mep_tdep (void)
2498 mep_csr_reggroup
= reggroup_new ("csr", USER_REGGROUP
);
2499 mep_cr_reggroup
= reggroup_new ("cr", USER_REGGROUP
);
2500 mep_ccr_reggroup
= reggroup_new ("ccr", USER_REGGROUP
);
2502 register_gdbarch_init (bfd_arch_mep
, mep_gdbarch_init
);
2504 mep_init_pseudoregister_maps ();