mi/mi-interp.c: Add missing braces
[deliverable/binutils-gdb.git] / gdb / mi / mi-interp.c
1 /* MI Interpreter Definitions and Commands for GDB, the GNU debugger.
2
3 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "interps.h"
22 #include "event-top.h"
23 #include "event-loop.h"
24 #include "inferior.h"
25 #include "infrun.h"
26 #include "ui-out.h"
27 #include "top.h"
28 #include "mi-main.h"
29 #include "mi-cmds.h"
30 #include "mi-out.h"
31 #include "mi-console.h"
32 #include "mi-common.h"
33 #include "observer.h"
34 #include "gdbthread.h"
35 #include "solist.h"
36 #include "gdb.h"
37 #include "objfiles.h"
38 #include "tracepoint.h"
39 #include "cli-out.h"
40 #include "thread-fsm.h"
41
42 /* These are the interpreter setup, etc. functions for the MI
43 interpreter. */
44
45 static void mi_execute_command_wrapper (const char *cmd);
46 static void mi_execute_command_input_handler (char *cmd);
47 static void mi_command_loop (void *data);
48
49 /* These are hooks that we put in place while doing interpreter_exec
50 so we can report interesting things that happened "behind the MI's
51 back" in this command. */
52
53 static int mi_interp_query_hook (const char *ctlstr, va_list ap)
54 ATTRIBUTE_PRINTF (1, 0);
55
56 static void mi_insert_notify_hooks (void);
57 static void mi_remove_notify_hooks (void);
58
59 static void mi_on_signal_received (enum gdb_signal siggnal);
60 static void mi_on_end_stepping_range (void);
61 static void mi_on_signal_exited (enum gdb_signal siggnal);
62 static void mi_on_exited (int exitstatus);
63 static void mi_on_normal_stop (struct bpstats *bs, int print_frame);
64 static void mi_on_no_history (void);
65
66 static void mi_new_thread (struct thread_info *t);
67 static void mi_thread_exit (struct thread_info *t, int silent);
68 static void mi_record_changed (struct inferior*, int, const char *,
69 const char *);
70 static void mi_inferior_added (struct inferior *inf);
71 static void mi_inferior_appeared (struct inferior *inf);
72 static void mi_inferior_exit (struct inferior *inf);
73 static void mi_inferior_removed (struct inferior *inf);
74 static void mi_on_resume (ptid_t ptid);
75 static void mi_solib_loaded (struct so_list *solib);
76 static void mi_solib_unloaded (struct so_list *solib);
77 static void mi_about_to_proceed (void);
78 static void mi_traceframe_changed (int tfnum, int tpnum);
79 static void mi_tsv_created (const struct trace_state_variable *tsv);
80 static void mi_tsv_deleted (const struct trace_state_variable *tsv);
81 static void mi_tsv_modified (const struct trace_state_variable *tsv);
82 static void mi_breakpoint_created (struct breakpoint *b);
83 static void mi_breakpoint_deleted (struct breakpoint *b);
84 static void mi_breakpoint_modified (struct breakpoint *b);
85 static void mi_command_param_changed (const char *param, const char *value);
86 static void mi_memory_changed (struct inferior *inf, CORE_ADDR memaddr,
87 ssize_t len, const bfd_byte *myaddr);
88 static void mi_on_sync_execution_done (void);
89
90 static int report_initial_inferior (struct inferior *inf, void *closure);
91
92 static void *
93 mi_interpreter_init (struct interp *interp, int top_level)
94 {
95 struct mi_interp *mi = XNEW (struct mi_interp);
96 const char *name;
97 int mi_version;
98
99 /* Assign the output channel created at startup to its own global,
100 so that we can create a console channel that encapsulates and
101 prefixes all gdb_output-type bits coming from the rest of the
102 debugger. */
103
104 raw_stdout = gdb_stdout;
105
106 /* Create MI console channels, each with a different prefix so they
107 can be distinguished. */
108 mi->out = mi_console_file_new (raw_stdout, "~", '"');
109 mi->err = mi_console_file_new (raw_stdout, "&", '"');
110 mi->log = mi->err;
111 mi->targ = mi_console_file_new (raw_stdout, "@", '"');
112 mi->event_channel = mi_console_file_new (raw_stdout, "=", 0);
113
114 name = interp_name (interp);
115 /* INTERP_MI selects the most recent released version. "mi2" was
116 released as part of GDB 6.0. */
117 if (strcmp (name, INTERP_MI) == 0)
118 mi_version = 2;
119 else if (strcmp (name, INTERP_MI1) == 0)
120 mi_version = 1;
121 else if (strcmp (name, INTERP_MI2) == 0)
122 mi_version = 2;
123 else if (strcmp (name, INTERP_MI3) == 0)
124 mi_version = 3;
125 else
126 gdb_assert_not_reached ("unhandled MI version");
127
128 mi->mi_uiout = mi_out_new (mi_version);
129 mi->cli_uiout = cli_out_new (mi->out);
130
131 /* There are installed even if MI is not the top level interpreter.
132 The callbacks themselves decide whether to be skipped. */
133 observer_attach_signal_received (mi_on_signal_received);
134 observer_attach_end_stepping_range (mi_on_end_stepping_range);
135 observer_attach_signal_exited (mi_on_signal_exited);
136 observer_attach_exited (mi_on_exited);
137 observer_attach_no_history (mi_on_no_history);
138
139 if (top_level)
140 {
141 observer_attach_new_thread (mi_new_thread);
142 observer_attach_thread_exit (mi_thread_exit);
143 observer_attach_inferior_added (mi_inferior_added);
144 observer_attach_inferior_appeared (mi_inferior_appeared);
145 observer_attach_inferior_exit (mi_inferior_exit);
146 observer_attach_inferior_removed (mi_inferior_removed);
147 observer_attach_record_changed (mi_record_changed);
148 observer_attach_normal_stop (mi_on_normal_stop);
149 observer_attach_target_resumed (mi_on_resume);
150 observer_attach_solib_loaded (mi_solib_loaded);
151 observer_attach_solib_unloaded (mi_solib_unloaded);
152 observer_attach_about_to_proceed (mi_about_to_proceed);
153 observer_attach_traceframe_changed (mi_traceframe_changed);
154 observer_attach_tsv_created (mi_tsv_created);
155 observer_attach_tsv_deleted (mi_tsv_deleted);
156 observer_attach_tsv_modified (mi_tsv_modified);
157 observer_attach_breakpoint_created (mi_breakpoint_created);
158 observer_attach_breakpoint_deleted (mi_breakpoint_deleted);
159 observer_attach_breakpoint_modified (mi_breakpoint_modified);
160 observer_attach_command_param_changed (mi_command_param_changed);
161 observer_attach_memory_changed (mi_memory_changed);
162 observer_attach_sync_execution_done (mi_on_sync_execution_done);
163
164 /* The initial inferior is created before this function is
165 called, so we need to report it explicitly. Use iteration in
166 case future version of GDB creates more than one inferior
167 up-front. */
168 iterate_over_inferiors (report_initial_inferior, mi);
169 }
170
171 return mi;
172 }
173
174 static int
175 mi_interpreter_resume (void *data)
176 {
177 struct mi_interp *mi = (struct mi_interp *) data;
178
179 /* As per hack note in mi_interpreter_init, swap in the output
180 channels... */
181 gdb_setup_readline ();
182
183 /* These overwrite some of the initialization done in
184 _intialize_event_loop. */
185 call_readline = gdb_readline_no_editing_callback;
186 input_handler = mi_execute_command_input_handler;
187 async_command_editing_p = 0;
188 /* FIXME: This is a total hack for now. PB's use of the MI
189 implicitly relies on a bug in the async support which allows
190 asynchronous commands to leak through the commmand loop. The bug
191 involves (but is not limited to) the fact that sync_execution was
192 erroneously initialized to 0. Duplicate by initializing it thus
193 here... */
194 sync_execution = 0;
195
196 gdb_stdout = mi->out;
197 /* Route error and log output through the MI. */
198 gdb_stderr = mi->err;
199 gdb_stdlog = mi->log;
200 /* Route target output through the MI. */
201 gdb_stdtarg = mi->targ;
202 /* Route target error through the MI as well. */
203 gdb_stdtargerr = mi->targ;
204
205 /* Replace all the hooks that we know about. There really needs to
206 be a better way of doing this... */
207 clear_interpreter_hooks ();
208
209 deprecated_show_load_progress = mi_load_progress;
210
211 return 1;
212 }
213
214 static int
215 mi_interpreter_suspend (void *data)
216 {
217 gdb_disable_readline ();
218 return 1;
219 }
220
221 static struct gdb_exception
222 mi_interpreter_exec (void *data, const char *command)
223 {
224 mi_execute_command_wrapper (command);
225 return exception_none;
226 }
227
228 void
229 mi_cmd_interpreter_exec (char *command, char **argv, int argc)
230 {
231 struct interp *interp_to_use;
232 int i;
233 char *mi_error_message = NULL;
234 struct cleanup *old_chain;
235
236 if (argc < 2)
237 error (_("-interpreter-exec: "
238 "Usage: -interpreter-exec interp command"));
239
240 interp_to_use = interp_lookup (argv[0]);
241 if (interp_to_use == NULL)
242 error (_("-interpreter-exec: could not find interpreter \"%s\""),
243 argv[0]);
244
245 /* Note that unlike the CLI version of this command, we don't
246 actually set INTERP_TO_USE as the current interpreter, as we
247 still want gdb_stdout, etc. to point at MI streams. */
248
249 /* Insert the MI out hooks, making sure to also call the
250 interpreter's hooks if it has any. */
251 /* KRS: We shouldn't need this... Events should be installed and
252 they should just ALWAYS fire something out down the MI
253 channel. */
254 mi_insert_notify_hooks ();
255
256 /* Now run the code. */
257
258 old_chain = make_cleanup (null_cleanup, 0);
259 for (i = 1; i < argc; i++)
260 {
261 struct gdb_exception e = interp_exec (interp_to_use, argv[i]);
262
263 if (e.reason < 0)
264 {
265 mi_error_message = xstrdup (e.message);
266 make_cleanup (xfree, mi_error_message);
267 break;
268 }
269 }
270
271 mi_remove_notify_hooks ();
272
273 if (mi_error_message != NULL)
274 error ("%s", mi_error_message);
275 do_cleanups (old_chain);
276 }
277
278 /* This inserts a number of hooks that are meant to produce
279 async-notify ("=") MI messages while running commands in another
280 interpreter using mi_interpreter_exec. The canonical use for this
281 is to allow access to the gdb CLI interpreter from within the MI,
282 while still producing MI style output when actions in the CLI
283 command change GDB's state. */
284
285 static void
286 mi_insert_notify_hooks (void)
287 {
288 deprecated_query_hook = mi_interp_query_hook;
289 }
290
291 static void
292 mi_remove_notify_hooks (void)
293 {
294 deprecated_query_hook = NULL;
295 }
296
297 static int
298 mi_interp_query_hook (const char *ctlstr, va_list ap)
299 {
300 return 1;
301 }
302
303 static void
304 mi_execute_command_wrapper (const char *cmd)
305 {
306 mi_execute_command (cmd, stdin == instream);
307 }
308
309 /* Observer for the synchronous_command_done notification. */
310
311 static void
312 mi_on_sync_execution_done (void)
313 {
314 /* If MI is sync, then output the MI prompt now, indicating we're
315 ready for further input. */
316 if (!mi_async_p ())
317 {
318 fputs_unfiltered ("(gdb) \n", raw_stdout);
319 gdb_flush (raw_stdout);
320 }
321 }
322
323 /* mi_execute_command_wrapper wrapper suitable for INPUT_HANDLER. */
324
325 static void
326 mi_execute_command_input_handler (char *cmd)
327 {
328 mi_execute_command_wrapper (cmd);
329
330 /* Print a prompt, indicating we're ready for further input, unless
331 we just started a synchronous command. In that case, we're about
332 to go back to the event loop and will output the prompt in the
333 'synchronous_command_done' observer when the target next
334 stops. */
335 if (!sync_execution)
336 {
337 fputs_unfiltered ("(gdb) \n", raw_stdout);
338 gdb_flush (raw_stdout);
339 }
340 }
341
342 static void
343 mi_command_loop (void *data)
344 {
345 /* Turn off 8 bit strings in quoted output. Any character with the
346 high bit set is printed using C's octal format. */
347 sevenbit_strings = 1;
348
349 /* Tell the world that we're alive. */
350 fputs_unfiltered ("(gdb) \n", raw_stdout);
351 gdb_flush (raw_stdout);
352
353 start_event_loop ();
354 }
355
356 static void
357 mi_new_thread (struct thread_info *t)
358 {
359 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
360 struct inferior *inf = find_inferior_ptid (t->ptid);
361 struct cleanup *old_chain;
362
363 gdb_assert (inf);
364
365 old_chain = make_cleanup_restore_target_terminal ();
366 target_terminal_ours_for_output ();
367
368 fprintf_unfiltered (mi->event_channel,
369 "thread-created,id=\"%d\",group-id=\"i%d\"",
370 t->global_num, inf->num);
371 gdb_flush (mi->event_channel);
372
373 do_cleanups (old_chain);
374 }
375
376 static void
377 mi_thread_exit (struct thread_info *t, int silent)
378 {
379 struct mi_interp *mi;
380 struct inferior *inf;
381 struct cleanup *old_chain;
382
383 if (silent)
384 return;
385
386 inf = find_inferior_ptid (t->ptid);
387
388 mi = (struct mi_interp *) top_level_interpreter_data ();
389 old_chain = make_cleanup_restore_target_terminal ();
390 target_terminal_ours_for_output ();
391
392 fprintf_unfiltered (mi->event_channel,
393 "thread-exited,id=\"%d\",group-id=\"i%d\"",
394 t->global_num, inf->num);
395 gdb_flush (mi->event_channel);
396
397 do_cleanups (old_chain);
398 }
399
400 /* Emit notification on changing the state of record. */
401
402 static void
403 mi_record_changed (struct inferior *inferior, int started, const char *method,
404 const char *format)
405 {
406 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
407 struct cleanup *old_chain;
408
409 old_chain = make_cleanup_restore_target_terminal ();
410 target_terminal_ours_for_output ();
411
412 if (started)
413 {
414 if (format != NULL)
415 {
416 fprintf_unfiltered (
417 mi->event_channel,
418 "record-started,thread-group=\"i%d\",method=\"%s\",format=\"%s\"",
419 inferior->num, method, format);
420 }
421 else
422 {
423 fprintf_unfiltered (
424 mi->event_channel,
425 "record-started,thread-group=\"i%d\",method=\"%s\"",
426 inferior->num, method);
427 }
428 }
429 else
430 {
431 fprintf_unfiltered (mi->event_channel,
432 "record-stopped,thread-group=\"i%d\"", inferior->num);
433 }
434
435
436 gdb_flush (mi->event_channel);
437
438 do_cleanups (old_chain);
439 }
440
441 static void
442 mi_inferior_added (struct inferior *inf)
443 {
444 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
445 struct cleanup *old_chain;
446
447 old_chain = make_cleanup_restore_target_terminal ();
448 target_terminal_ours_for_output ();
449
450 fprintf_unfiltered (mi->event_channel,
451 "thread-group-added,id=\"i%d\"",
452 inf->num);
453 gdb_flush (mi->event_channel);
454
455 do_cleanups (old_chain);
456 }
457
458 static void
459 mi_inferior_appeared (struct inferior *inf)
460 {
461 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
462 struct cleanup *old_chain;
463
464 old_chain = make_cleanup_restore_target_terminal ();
465 target_terminal_ours_for_output ();
466
467 fprintf_unfiltered (mi->event_channel,
468 "thread-group-started,id=\"i%d\",pid=\"%d\"",
469 inf->num, inf->pid);
470 gdb_flush (mi->event_channel);
471
472 do_cleanups (old_chain);
473 }
474
475 static void
476 mi_inferior_exit (struct inferior *inf)
477 {
478 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
479 struct cleanup *old_chain;
480
481 old_chain = make_cleanup_restore_target_terminal ();
482 target_terminal_ours_for_output ();
483
484 if (inf->has_exit_code)
485 fprintf_unfiltered (mi->event_channel,
486 "thread-group-exited,id=\"i%d\",exit-code=\"%s\"",
487 inf->num, int_string (inf->exit_code, 8, 0, 0, 1));
488 else
489 fprintf_unfiltered (mi->event_channel,
490 "thread-group-exited,id=\"i%d\"", inf->num);
491 gdb_flush (mi->event_channel);
492
493 do_cleanups (old_chain);
494 }
495
496 static void
497 mi_inferior_removed (struct inferior *inf)
498 {
499 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
500 struct cleanup *old_chain;
501
502 old_chain = make_cleanup_restore_target_terminal ();
503 target_terminal_ours_for_output ();
504
505 fprintf_unfiltered (mi->event_channel,
506 "thread-group-removed,id=\"i%d\"",
507 inf->num);
508 gdb_flush (mi->event_channel);
509
510 do_cleanups (old_chain);
511 }
512
513 /* Return the MI interpreter, if it is active -- either because it's
514 the top-level interpreter or the interpreter executing the current
515 command. Returns NULL if the MI interpreter is not being used. */
516
517 static struct interp *
518 find_mi_interpreter (void)
519 {
520 struct interp *interp;
521
522 interp = top_level_interpreter ();
523 if (ui_out_is_mi_like_p (interp_ui_out (interp)))
524 return interp;
525
526 interp = command_interp ();
527 if (ui_out_is_mi_like_p (interp_ui_out (interp)))
528 return interp;
529
530 return NULL;
531 }
532
533 /* Return the MI_INTERP structure of the active MI interpreter.
534 Returns NULL if MI is not active. */
535
536 static struct mi_interp *
537 mi_interp_data (void)
538 {
539 struct interp *interp = find_mi_interpreter ();
540
541 if (interp != NULL)
542 return (struct mi_interp *) interp_data (interp);
543 return NULL;
544 }
545
546 /* Observers for several run control events that print why the
547 inferior has stopped to both the the MI event channel and to the MI
548 console. If the MI interpreter is not active, print nothing. */
549
550 /* Observer for the signal_received notification. */
551
552 static void
553 mi_on_signal_received (enum gdb_signal siggnal)
554 {
555 struct mi_interp *mi = mi_interp_data ();
556
557 if (mi == NULL)
558 return;
559
560 print_signal_received_reason (mi->mi_uiout, siggnal);
561 print_signal_received_reason (mi->cli_uiout, siggnal);
562 }
563
564 /* Observer for the end_stepping_range notification. */
565
566 static void
567 mi_on_end_stepping_range (void)
568 {
569 struct mi_interp *mi = mi_interp_data ();
570
571 if (mi == NULL)
572 return;
573
574 print_end_stepping_range_reason (mi->mi_uiout);
575 print_end_stepping_range_reason (mi->cli_uiout);
576 }
577
578 /* Observer for the signal_exited notification. */
579
580 static void
581 mi_on_signal_exited (enum gdb_signal siggnal)
582 {
583 struct mi_interp *mi = mi_interp_data ();
584
585 if (mi == NULL)
586 return;
587
588 print_signal_exited_reason (mi->mi_uiout, siggnal);
589 print_signal_exited_reason (mi->cli_uiout, siggnal);
590 }
591
592 /* Observer for the exited notification. */
593
594 static void
595 mi_on_exited (int exitstatus)
596 {
597 struct mi_interp *mi = mi_interp_data ();
598
599 if (mi == NULL)
600 return;
601
602 print_exited_reason (mi->mi_uiout, exitstatus);
603 print_exited_reason (mi->cli_uiout, exitstatus);
604 }
605
606 /* Observer for the no_history notification. */
607
608 static void
609 mi_on_no_history (void)
610 {
611 struct mi_interp *mi = mi_interp_data ();
612
613 if (mi == NULL)
614 return;
615
616 print_no_history_reason (mi->mi_uiout);
617 print_no_history_reason (mi->cli_uiout);
618 }
619
620 static void
621 mi_on_normal_stop (struct bpstats *bs, int print_frame)
622 {
623 /* Since this can be called when CLI command is executing,
624 using cli interpreter, be sure to use MI uiout for output,
625 not the current one. */
626 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
627
628 if (print_frame)
629 {
630 struct thread_info *tp;
631 int core;
632
633 tp = inferior_thread ();
634
635 if (tp->thread_fsm != NULL
636 && thread_fsm_finished_p (tp->thread_fsm))
637 {
638 enum async_reply_reason reason;
639
640 reason = thread_fsm_async_reply_reason (tp->thread_fsm);
641 ui_out_field_string (mi_uiout, "reason",
642 async_reason_lookup (reason));
643 }
644 print_stop_event (mi_uiout);
645
646 /* Breakpoint hits should always be mirrored to the console.
647 Deciding what to mirror to the console wrt to breakpoints and
648 random stops gets messy real fast. E.g., say "s" trips on a
649 breakpoint. We'd clearly want to mirror the event to the
650 console in this case. But what about more complicated cases
651 like "s&; thread n; s&", and one of those steps spawning a
652 new thread, and that thread hitting a breakpoint? It's
653 impossible in general to track whether the thread had any
654 relation to the commands that had been executed. So we just
655 simplify and always mirror breakpoints and random events to
656 the console.
657
658 OTOH, we should print the source line to the console when
659 stepping or other similar commands, iff the step was started
660 by a console command, but not if it was started with
661 -exec-step or similar. */
662 if ((bpstat_what (tp->control.stop_bpstat).main_action
663 == BPSTAT_WHAT_STOP_NOISY)
664 || !(tp->thread_fsm != NULL
665 && thread_fsm_finished_p (tp->thread_fsm))
666 || (tp->control.command_interp != NULL
667 && tp->control.command_interp != top_level_interpreter ()))
668 {
669 struct mi_interp *mi
670 = (struct mi_interp *) top_level_interpreter_data ();
671
672 print_stop_event (mi->cli_uiout);
673 }
674
675 tp = inferior_thread ();
676 ui_out_field_int (mi_uiout, "thread-id", tp->global_num);
677 if (non_stop)
678 {
679 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
680 (mi_uiout, "stopped-threads");
681
682 ui_out_field_int (mi_uiout, NULL, tp->global_num);
683 do_cleanups (back_to);
684 }
685 else
686 ui_out_field_string (mi_uiout, "stopped-threads", "all");
687
688 core = target_core_of_thread (inferior_ptid);
689 if (core != -1)
690 ui_out_field_int (mi_uiout, "core", core);
691 }
692
693 fputs_unfiltered ("*stopped", raw_stdout);
694 mi_out_put (mi_uiout, raw_stdout);
695 mi_out_rewind (mi_uiout);
696 mi_print_timing_maybe ();
697 fputs_unfiltered ("\n", raw_stdout);
698 gdb_flush (raw_stdout);
699 }
700
701 static void
702 mi_about_to_proceed (void)
703 {
704 /* Suppress output while calling an inferior function. */
705
706 if (!ptid_equal (inferior_ptid, null_ptid))
707 {
708 struct thread_info *tp = inferior_thread ();
709
710 if (tp->control.in_infcall)
711 return;
712 }
713
714 mi_proceeded = 1;
715 }
716
717 /* When the element is non-zero, no MI notifications will be emitted in
718 response to the corresponding observers. */
719
720 struct mi_suppress_notification mi_suppress_notification =
721 {
722 0,
723 0,
724 0,
725 };
726
727 /* Emit notification on changing a traceframe. */
728
729 static void
730 mi_traceframe_changed (int tfnum, int tpnum)
731 {
732 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
733 struct cleanup *old_chain;
734
735 if (mi_suppress_notification.traceframe)
736 return;
737
738 old_chain = make_cleanup_restore_target_terminal ();
739 target_terminal_ours_for_output ();
740
741 if (tfnum >= 0)
742 fprintf_unfiltered (mi->event_channel, "traceframe-changed,"
743 "num=\"%d\",tracepoint=\"%d\"\n",
744 tfnum, tpnum);
745 else
746 fprintf_unfiltered (mi->event_channel, "traceframe-changed,end");
747
748 gdb_flush (mi->event_channel);
749
750 do_cleanups (old_chain);
751 }
752
753 /* Emit notification on creating a trace state variable. */
754
755 static void
756 mi_tsv_created (const struct trace_state_variable *tsv)
757 {
758 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
759 struct cleanup *old_chain;
760
761 old_chain = make_cleanup_restore_target_terminal ();
762 target_terminal_ours_for_output ();
763
764 fprintf_unfiltered (mi->event_channel, "tsv-created,"
765 "name=\"%s\",initial=\"%s\"\n",
766 tsv->name, plongest (tsv->initial_value));
767
768 gdb_flush (mi->event_channel);
769
770 do_cleanups (old_chain);
771 }
772
773 /* Emit notification on deleting a trace state variable. */
774
775 static void
776 mi_tsv_deleted (const struct trace_state_variable *tsv)
777 {
778 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
779 struct cleanup *old_chain;
780
781 old_chain = make_cleanup_restore_target_terminal ();
782 target_terminal_ours_for_output ();
783
784 if (tsv != NULL)
785 fprintf_unfiltered (mi->event_channel, "tsv-deleted,"
786 "name=\"%s\"\n", tsv->name);
787 else
788 fprintf_unfiltered (mi->event_channel, "tsv-deleted\n");
789
790 gdb_flush (mi->event_channel);
791
792 do_cleanups (old_chain);
793 }
794
795 /* Emit notification on modifying a trace state variable. */
796
797 static void
798 mi_tsv_modified (const struct trace_state_variable *tsv)
799 {
800 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
801 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
802 struct cleanup *old_chain;
803
804 old_chain = make_cleanup_restore_target_terminal ();
805 target_terminal_ours_for_output ();
806
807 fprintf_unfiltered (mi->event_channel,
808 "tsv-modified");
809
810 ui_out_redirect (mi_uiout, mi->event_channel);
811
812 ui_out_field_string (mi_uiout, "name", tsv->name);
813 ui_out_field_string (mi_uiout, "initial",
814 plongest (tsv->initial_value));
815 if (tsv->value_known)
816 ui_out_field_string (mi_uiout, "current", plongest (tsv->value));
817
818 ui_out_redirect (mi_uiout, NULL);
819
820 gdb_flush (mi->event_channel);
821
822 do_cleanups (old_chain);
823 }
824
825 /* Emit notification about a created breakpoint. */
826
827 static void
828 mi_breakpoint_created (struct breakpoint *b)
829 {
830 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
831 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
832 struct cleanup *old_chain;
833
834 if (mi_suppress_notification.breakpoint)
835 return;
836
837 if (b->number <= 0)
838 return;
839
840 old_chain = make_cleanup_restore_target_terminal ();
841 target_terminal_ours_for_output ();
842
843 fprintf_unfiltered (mi->event_channel,
844 "breakpoint-created");
845 /* We want the output from gdb_breakpoint_query to go to
846 mi->event_channel. One approach would be to just call
847 gdb_breakpoint_query, and then use mi_out_put to send the current
848 content of mi_outout into mi->event_channel. However, that will
849 break if anything is output to mi_uiout prior to calling the
850 breakpoint_created notifications. So, we use
851 ui_out_redirect. */
852 ui_out_redirect (mi_uiout, mi->event_channel);
853 TRY
854 {
855 gdb_breakpoint_query (mi_uiout, b->number, NULL);
856 }
857 CATCH (e, RETURN_MASK_ERROR)
858 {
859 }
860 END_CATCH
861
862 ui_out_redirect (mi_uiout, NULL);
863
864 gdb_flush (mi->event_channel);
865
866 do_cleanups (old_chain);
867 }
868
869 /* Emit notification about deleted breakpoint. */
870
871 static void
872 mi_breakpoint_deleted (struct breakpoint *b)
873 {
874 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
875 struct cleanup *old_chain;
876
877 if (mi_suppress_notification.breakpoint)
878 return;
879
880 if (b->number <= 0)
881 return;
882
883 old_chain = make_cleanup_restore_target_terminal ();
884 target_terminal_ours_for_output ();
885
886 fprintf_unfiltered (mi->event_channel, "breakpoint-deleted,id=\"%d\"",
887 b->number);
888
889 gdb_flush (mi->event_channel);
890
891 do_cleanups (old_chain);
892 }
893
894 /* Emit notification about modified breakpoint. */
895
896 static void
897 mi_breakpoint_modified (struct breakpoint *b)
898 {
899 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
900 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
901 struct cleanup *old_chain;
902
903 if (mi_suppress_notification.breakpoint)
904 return;
905
906 if (b->number <= 0)
907 return;
908
909 old_chain = make_cleanup_restore_target_terminal ();
910 target_terminal_ours_for_output ();
911
912 fprintf_unfiltered (mi->event_channel,
913 "breakpoint-modified");
914 /* We want the output from gdb_breakpoint_query to go to
915 mi->event_channel. One approach would be to just call
916 gdb_breakpoint_query, and then use mi_out_put to send the current
917 content of mi_outout into mi->event_channel. However, that will
918 break if anything is output to mi_uiout prior to calling the
919 breakpoint_created notifications. So, we use
920 ui_out_redirect. */
921 ui_out_redirect (mi_uiout, mi->event_channel);
922 TRY
923 {
924 gdb_breakpoint_query (mi_uiout, b->number, NULL);
925 }
926 CATCH (e, RETURN_MASK_ERROR)
927 {
928 }
929 END_CATCH
930
931 ui_out_redirect (mi_uiout, NULL);
932
933 gdb_flush (mi->event_channel);
934
935 do_cleanups (old_chain);
936 }
937
938 static int
939 mi_output_running_pid (struct thread_info *info, void *arg)
940 {
941 ptid_t *ptid = (ptid_t *) arg;
942
943 if (ptid_get_pid (*ptid) == ptid_get_pid (info->ptid))
944 fprintf_unfiltered (raw_stdout,
945 "*running,thread-id=\"%d\"\n",
946 info->global_num);
947
948 return 0;
949 }
950
951 static int
952 mi_inferior_count (struct inferior *inf, void *arg)
953 {
954 if (inf->pid != 0)
955 {
956 int *count_p = (int *) arg;
957 (*count_p)++;
958 }
959
960 return 0;
961 }
962
963 static void
964 mi_on_resume (ptid_t ptid)
965 {
966 struct thread_info *tp = NULL;
967
968 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
969 tp = inferior_thread ();
970 else
971 tp = find_thread_ptid (ptid);
972
973 /* Suppress output while calling an inferior function. */
974 if (tp->control.in_infcall)
975 return;
976
977 /* To cater for older frontends, emit ^running, but do it only once
978 per each command. We do it here, since at this point we know
979 that the target was successfully resumed, and in non-async mode,
980 we won't return back to MI interpreter code until the target
981 is done running, so delaying the output of "^running" until then
982 will make it impossible for frontend to know what's going on.
983
984 In future (MI3), we'll be outputting "^done" here. */
985 if (!running_result_record_printed && mi_proceeded)
986 {
987 fprintf_unfiltered (raw_stdout, "%s^running\n",
988 current_token ? current_token : "");
989 }
990
991 if (ptid_get_pid (ptid) == -1)
992 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
993 else if (ptid_is_pid (ptid))
994 {
995 int count = 0;
996
997 /* Backwards compatibility. If there's only one inferior,
998 output "all", otherwise, output each resumed thread
999 individually. */
1000 iterate_over_inferiors (mi_inferior_count, &count);
1001
1002 if (count == 1)
1003 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"all\"\n");
1004 else
1005 iterate_over_threads (mi_output_running_pid, &ptid);
1006 }
1007 else
1008 {
1009 struct thread_info *ti = find_thread_ptid (ptid);
1010
1011 gdb_assert (ti);
1012 fprintf_unfiltered (raw_stdout, "*running,thread-id=\"%d\"\n",
1013 ti->global_num);
1014 }
1015
1016 if (!running_result_record_printed && mi_proceeded)
1017 {
1018 running_result_record_printed = 1;
1019 /* This is what gdb used to do historically -- printing prompt even if
1020 it cannot actually accept any input. This will be surely removed
1021 for MI3, and may be removed even earlier. SYNC_EXECUTION is
1022 checked here because we only need to emit a prompt if a
1023 synchronous command was issued when the target is async. */
1024 if (!target_can_async_p () || sync_execution)
1025 fputs_unfiltered ("(gdb) \n", raw_stdout);
1026 }
1027 gdb_flush (raw_stdout);
1028 }
1029
1030 static void
1031 mi_solib_loaded (struct so_list *solib)
1032 {
1033 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1034 struct ui_out *uiout = interp_ui_out (top_level_interpreter ());
1035 struct cleanup *old_chain;
1036
1037 old_chain = make_cleanup_restore_target_terminal ();
1038 target_terminal_ours_for_output ();
1039
1040 fprintf_unfiltered (mi->event_channel, "library-loaded");
1041
1042 ui_out_redirect (uiout, mi->event_channel);
1043
1044 ui_out_field_string (uiout, "id", solib->so_original_name);
1045 ui_out_field_string (uiout, "target-name", solib->so_original_name);
1046 ui_out_field_string (uiout, "host-name", solib->so_name);
1047 ui_out_field_int (uiout, "symbols-loaded", solib->symbols_loaded);
1048 if (!gdbarch_has_global_solist (target_gdbarch ()))
1049 {
1050 ui_out_field_fmt (uiout, "thread-group", "i%d",
1051 current_inferior ()->num);
1052 }
1053
1054 ui_out_redirect (uiout, NULL);
1055
1056 gdb_flush (mi->event_channel);
1057
1058 do_cleanups (old_chain);
1059 }
1060
1061 static void
1062 mi_solib_unloaded (struct so_list *solib)
1063 {
1064 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1065 struct ui_out *uiout = interp_ui_out (top_level_interpreter ());
1066 struct cleanup *old_chain;
1067
1068 old_chain = make_cleanup_restore_target_terminal ();
1069 target_terminal_ours_for_output ();
1070
1071 fprintf_unfiltered (mi->event_channel, "library-unloaded");
1072
1073 ui_out_redirect (uiout, mi->event_channel);
1074
1075 ui_out_field_string (uiout, "id", solib->so_original_name);
1076 ui_out_field_string (uiout, "target-name", solib->so_original_name);
1077 ui_out_field_string (uiout, "host-name", solib->so_name);
1078 if (!gdbarch_has_global_solist (target_gdbarch ()))
1079 {
1080 ui_out_field_fmt (uiout, "thread-group", "i%d",
1081 current_inferior ()->num);
1082 }
1083
1084 ui_out_redirect (uiout, NULL);
1085
1086 gdb_flush (mi->event_channel);
1087
1088 do_cleanups (old_chain);
1089 }
1090
1091 /* Emit notification about the command parameter change. */
1092
1093 static void
1094 mi_command_param_changed (const char *param, const char *value)
1095 {
1096 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1097 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
1098 struct cleanup *old_chain;
1099
1100 if (mi_suppress_notification.cmd_param_changed)
1101 return;
1102
1103 old_chain = make_cleanup_restore_target_terminal ();
1104 target_terminal_ours_for_output ();
1105
1106 fprintf_unfiltered (mi->event_channel,
1107 "cmd-param-changed");
1108
1109 ui_out_redirect (mi_uiout, mi->event_channel);
1110
1111 ui_out_field_string (mi_uiout, "param", param);
1112 ui_out_field_string (mi_uiout, "value", value);
1113
1114 ui_out_redirect (mi_uiout, NULL);
1115
1116 gdb_flush (mi->event_channel);
1117
1118 do_cleanups (old_chain);
1119 }
1120
1121 /* Emit notification about the target memory change. */
1122
1123 static void
1124 mi_memory_changed (struct inferior *inferior, CORE_ADDR memaddr,
1125 ssize_t len, const bfd_byte *myaddr)
1126 {
1127 struct mi_interp *mi = (struct mi_interp *) top_level_interpreter_data ();
1128 struct ui_out *mi_uiout = interp_ui_out (top_level_interpreter ());
1129 struct obj_section *sec;
1130 struct cleanup *old_chain;
1131
1132 if (mi_suppress_notification.memory)
1133 return;
1134
1135 old_chain = make_cleanup_restore_target_terminal ();
1136 target_terminal_ours_for_output ();
1137
1138 fprintf_unfiltered (mi->event_channel,
1139 "memory-changed");
1140
1141 ui_out_redirect (mi_uiout, mi->event_channel);
1142
1143 ui_out_field_fmt (mi_uiout, "thread-group", "i%d", inferior->num);
1144 ui_out_field_core_addr (mi_uiout, "addr", target_gdbarch (), memaddr);
1145 ui_out_field_fmt (mi_uiout, "len", "%s", hex_string (len));
1146
1147 /* Append 'type=code' into notification if MEMADDR falls in the range of
1148 sections contain code. */
1149 sec = find_pc_section (memaddr);
1150 if (sec != NULL && sec->objfile != NULL)
1151 {
1152 flagword flags = bfd_get_section_flags (sec->objfile->obfd,
1153 sec->the_bfd_section);
1154
1155 if (flags & SEC_CODE)
1156 ui_out_field_string (mi_uiout, "type", "code");
1157 }
1158
1159 ui_out_redirect (mi_uiout, NULL);
1160
1161 gdb_flush (mi->event_channel);
1162
1163 do_cleanups (old_chain);
1164 }
1165
1166 static int
1167 report_initial_inferior (struct inferior *inf, void *closure)
1168 {
1169 /* This function is called from mi_intepreter_init, and since
1170 mi_inferior_added assumes that inferior is fully initialized
1171 and top_level_interpreter_data is set, we cannot call
1172 it here. */
1173 struct mi_interp *mi = (struct mi_interp *) closure;
1174 struct cleanup *old_chain;
1175
1176 old_chain = make_cleanup_restore_target_terminal ();
1177 target_terminal_ours_for_output ();
1178
1179 fprintf_unfiltered (mi->event_channel,
1180 "thread-group-added,id=\"i%d\"",
1181 inf->num);
1182 gdb_flush (mi->event_channel);
1183
1184 do_cleanups (old_chain);
1185 return 0;
1186 }
1187
1188 static struct ui_out *
1189 mi_ui_out (struct interp *interp)
1190 {
1191 struct mi_interp *mi = (struct mi_interp *) interp_data (interp);
1192
1193 return mi->mi_uiout;
1194 }
1195
1196 /* Save the original value of raw_stdout here when logging, so we can
1197 restore correctly when done. */
1198
1199 static struct ui_file *saved_raw_stdout;
1200
1201 /* Do MI-specific logging actions; save raw_stdout, and change all
1202 the consoles to use the supplied ui-file(s). */
1203
1204 static int
1205 mi_set_logging (struct interp *interp, int start_log,
1206 struct ui_file *out, struct ui_file *logfile)
1207 {
1208 struct mi_interp *mi = (struct mi_interp *) interp_data (interp);
1209
1210 if (!mi)
1211 return 0;
1212
1213 if (start_log)
1214 {
1215 /* The tee created already is based on gdb_stdout, which for MI
1216 is a console and so we end up in an infinite loop of console
1217 writing to ui_file writing to console etc. So discard the
1218 existing tee (it hasn't been used yet, and MI won't ever use
1219 it), and create one based on raw_stdout instead. */
1220 if (logfile)
1221 {
1222 ui_file_delete (out);
1223 out = tee_file_new (raw_stdout, 0, logfile, 0);
1224 }
1225
1226 saved_raw_stdout = raw_stdout;
1227 raw_stdout = out;
1228 }
1229 else
1230 {
1231 raw_stdout = saved_raw_stdout;
1232 saved_raw_stdout = NULL;
1233 }
1234
1235 mi_console_set_raw (mi->out, raw_stdout);
1236 mi_console_set_raw (mi->err, raw_stdout);
1237 mi_console_set_raw (mi->log, raw_stdout);
1238 mi_console_set_raw (mi->targ, raw_stdout);
1239 mi_console_set_raw (mi->event_channel, raw_stdout);
1240
1241 return 1;
1242 }
1243
1244 extern initialize_file_ftype _initialize_mi_interp; /* -Wmissing-prototypes */
1245
1246 void
1247 _initialize_mi_interp (void)
1248 {
1249 static const struct interp_procs procs =
1250 {
1251 mi_interpreter_init, /* init_proc */
1252 mi_interpreter_resume, /* resume_proc */
1253 mi_interpreter_suspend, /* suspend_proc */
1254 mi_interpreter_exec, /* exec_proc */
1255 mi_ui_out, /* ui_out_proc */
1256 mi_set_logging, /* set_logging_proc */
1257 mi_command_loop /* command_loop_proc */
1258 };
1259
1260 /* The various interpreter levels. */
1261 interp_add (interp_new (INTERP_MI1, &procs));
1262 interp_add (interp_new (INTERP_MI2, &procs));
1263 interp_add (interp_new (INTERP_MI3, &procs));
1264 interp_add (interp_new (INTERP_MI, &procs));
1265 }
This page took 0.0733 seconds and 4 git commands to generate.