07f1dc11f2e8a72c1698c40bfb7263ff1ae5353a
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include <string.h>
27 #include "exceptions.h"
28 #include "top.h"
29 #include "gdbthread.h"
30 #include "mi-cmds.h"
31 #include "mi-parse.h"
32 #include "mi-getopt.h"
33 #include "mi-console.h"
34 #include "ui-out.h"
35 #include "mi-out.h"
36 #include "interps.h"
37 #include "event-loop.h"
38 #include "event-top.h"
39 #include "gdbcore.h" /* For write_memory(). */
40 #include "value.h"
41 #include "regcache.h"
42 #include "gdb.h"
43 #include "frame.h"
44 #include "mi-main.h"
45 #include "mi-common.h"
46 #include "language.h"
47 #include "valprint.h"
48 #include "inferior.h"
49 #include "osdata.h"
50 #include "splay-tree.h"
51 #include "tracepoint.h"
52 #include "ctf.h"
53 #include "ada-lang.h"
54 #include "linespec.h"
55 #ifdef HAVE_PYTHON
56 #include "python/python-internal.h"
57 #endif
58
59 #include <ctype.h>
60 #include <sys/time.h>
61
62 #if defined HAVE_SYS_RESOURCE_H
63 #include <sys/resource.h>
64 #endif
65
66 #ifdef HAVE_GETRUSAGE
67 struct rusage rusage;
68 #endif
69
70 enum
71 {
72 FROM_TTY = 0
73 };
74
75 int mi_debug_p;
76
77 struct ui_file *raw_stdout;
78
79 /* This is used to pass the current command timestamp down to
80 continuation routines. */
81 static struct mi_timestamp *current_command_ts;
82
83 static int do_timings = 0;
84
85 char *current_token;
86 /* Few commands would like to know if options like --thread-group were
87 explicitly specified. This variable keeps the current parsed
88 command including all option, and make it possible. */
89 static struct mi_parse *current_context;
90
91 int running_result_record_printed = 1;
92
93 /* Flag indicating that the target has proceeded since the last
94 command was issued. */
95 int mi_proceeded;
96
97 extern void _initialize_mi_main (void);
98 static void mi_cmd_execute (struct mi_parse *parse);
99
100 static void mi_execute_cli_command (const char *cmd, int args_p,
101 const char *args);
102 static void mi_execute_async_cli_command (char *cli_command,
103 char **argv, int argc);
104 static int register_changed_p (int regnum, struct regcache *,
105 struct regcache *);
106 static void output_register (struct frame_info *, int regnum, int format,
107 int skip_unavailable);
108
109 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
110 layer that calls libgdb. Any operation used in the below should be
111 formalized. */
112
113 static void timestamp (struct mi_timestamp *tv);
114
115 static void print_diff_now (struct mi_timestamp *start);
116 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
117
118 void
119 mi_cmd_gdb_exit (char *command, char **argv, int argc)
120 {
121 /* We have to print everything right here because we never return. */
122 if (current_token)
123 fputs_unfiltered (current_token, raw_stdout);
124 fputs_unfiltered ("^exit\n", raw_stdout);
125 mi_out_put (current_uiout, raw_stdout);
126 gdb_flush (raw_stdout);
127 /* FIXME: The function called is not yet a formal libgdb function. */
128 quit_force (NULL, FROM_TTY);
129 }
130
131 void
132 mi_cmd_exec_next (char *command, char **argv, int argc)
133 {
134 /* FIXME: Should call a libgdb function, not a cli wrapper. */
135 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
136 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
137 else
138 mi_execute_async_cli_command ("next", argv, argc);
139 }
140
141 void
142 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
143 {
144 /* FIXME: Should call a libgdb function, not a cli wrapper. */
145 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
146 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
147 else
148 mi_execute_async_cli_command ("nexti", argv, argc);
149 }
150
151 void
152 mi_cmd_exec_step (char *command, char **argv, int argc)
153 {
154 /* FIXME: Should call a libgdb function, not a cli wrapper. */
155 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
156 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
157 else
158 mi_execute_async_cli_command ("step", argv, argc);
159 }
160
161 void
162 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
163 {
164 /* FIXME: Should call a libgdb function, not a cli wrapper. */
165 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
166 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
167 else
168 mi_execute_async_cli_command ("stepi", argv, argc);
169 }
170
171 void
172 mi_cmd_exec_finish (char *command, char **argv, int argc)
173 {
174 /* FIXME: Should call a libgdb function, not a cli wrapper. */
175 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
176 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
177 else
178 mi_execute_async_cli_command ("finish", argv, argc);
179 }
180
181 void
182 mi_cmd_exec_return (char *command, char **argv, int argc)
183 {
184 /* This command doesn't really execute the target, it just pops the
185 specified number of frames. */
186 if (argc)
187 /* Call return_command with from_tty argument equal to 0 so as to
188 avoid being queried. */
189 return_command (*argv, 0);
190 else
191 /* Call return_command with from_tty argument equal to 0 so as to
192 avoid being queried. */
193 return_command (NULL, 0);
194
195 /* Because we have called return_command with from_tty = 0, we need
196 to print the frame here. */
197 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
198 }
199
200 void
201 mi_cmd_exec_jump (char *args, char **argv, int argc)
202 {
203 /* FIXME: Should call a libgdb function, not a cli wrapper. */
204 mi_execute_async_cli_command ("jump", argv, argc);
205 }
206
207 static void
208 proceed_thread (struct thread_info *thread, int pid)
209 {
210 if (!is_stopped (thread->ptid))
211 return;
212
213 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
214 return;
215
216 switch_to_thread (thread->ptid);
217 clear_proceed_status ();
218 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
219 }
220
221 static int
222 proceed_thread_callback (struct thread_info *thread, void *arg)
223 {
224 int pid = *(int *)arg;
225
226 proceed_thread (thread, pid);
227 return 0;
228 }
229
230 static void
231 exec_continue (char **argv, int argc)
232 {
233 if (non_stop)
234 {
235 /* In non-stop mode, 'resume' always resumes a single thread.
236 Therefore, to resume all threads of the current inferior, or
237 all threads in all inferiors, we need to iterate over
238 threads.
239
240 See comment on infcmd.c:proceed_thread_callback for rationale. */
241 if (current_context->all || current_context->thread_group != -1)
242 {
243 int pid = 0;
244 struct cleanup *back_to = make_cleanup_restore_current_thread ();
245
246 if (!current_context->all)
247 {
248 struct inferior *inf
249 = find_inferior_id (current_context->thread_group);
250
251 pid = inf->pid;
252 }
253 iterate_over_threads (proceed_thread_callback, &pid);
254 do_cleanups (back_to);
255 }
256 else
257 {
258 continue_1 (0);
259 }
260 }
261 else
262 {
263 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
264
265 if (current_context->all)
266 {
267 sched_multi = 1;
268 continue_1 (0);
269 }
270 else
271 {
272 /* In all-stop mode, -exec-continue traditionally resumed
273 either all threads, or one thread, depending on the
274 'scheduler-locking' variable. Let's continue to do the
275 same. */
276 continue_1 (1);
277 }
278 do_cleanups (back_to);
279 }
280 }
281
282 static void
283 exec_direction_forward (void *notused)
284 {
285 execution_direction = EXEC_FORWARD;
286 }
287
288 static void
289 exec_reverse_continue (char **argv, int argc)
290 {
291 enum exec_direction_kind dir = execution_direction;
292 struct cleanup *old_chain;
293
294 if (dir == EXEC_REVERSE)
295 error (_("Already in reverse mode."));
296
297 if (!target_can_execute_reverse)
298 error (_("Target %s does not support this command."), target_shortname);
299
300 old_chain = make_cleanup (exec_direction_forward, NULL);
301 execution_direction = EXEC_REVERSE;
302 exec_continue (argv, argc);
303 do_cleanups (old_chain);
304 }
305
306 void
307 mi_cmd_exec_continue (char *command, char **argv, int argc)
308 {
309 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
310 exec_reverse_continue (argv + 1, argc - 1);
311 else
312 exec_continue (argv, argc);
313 }
314
315 static int
316 interrupt_thread_callback (struct thread_info *thread, void *arg)
317 {
318 int pid = *(int *)arg;
319
320 if (!is_running (thread->ptid))
321 return 0;
322
323 if (ptid_get_pid (thread->ptid) != pid)
324 return 0;
325
326 target_stop (thread->ptid);
327 return 0;
328 }
329
330 /* Interrupt the execution of the target. Note how we must play
331 around with the token variables, in order to display the current
332 token in the result of the interrupt command, and the previous
333 execution token when the target finally stops. See comments in
334 mi_cmd_execute. */
335
336 void
337 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
338 {
339 /* In all-stop mode, everything stops, so we don't need to try
340 anything specific. */
341 if (!non_stop)
342 {
343 interrupt_target_1 (0);
344 return;
345 }
346
347 if (current_context->all)
348 {
349 /* This will interrupt all threads in all inferiors. */
350 interrupt_target_1 (1);
351 }
352 else if (current_context->thread_group != -1)
353 {
354 struct inferior *inf = find_inferior_id (current_context->thread_group);
355
356 iterate_over_threads (interrupt_thread_callback, &inf->pid);
357 }
358 else
359 {
360 /* Interrupt just the current thread -- either explicitly
361 specified via --thread or whatever was current before
362 MI command was sent. */
363 interrupt_target_1 (0);
364 }
365 }
366
367 /* Callback for iterate_over_inferiors which starts the execution
368 of the given inferior.
369
370 ARG is a pointer to an integer whose value, if non-zero, indicates
371 that the program should be stopped when reaching the main subprogram
372 (similar to what the CLI "start" command does). */
373
374 static int
375 run_one_inferior (struct inferior *inf, void *arg)
376 {
377 int start_p = *(int *) arg;
378 const char *run_cmd = start_p ? "start" : "run";
379
380 if (inf->pid != 0)
381 {
382 if (inf->pid != ptid_get_pid (inferior_ptid))
383 {
384 struct thread_info *tp;
385
386 tp = any_thread_of_process (inf->pid);
387 if (!tp)
388 error (_("Inferior has no threads."));
389
390 switch_to_thread (tp->ptid);
391 }
392 }
393 else
394 {
395 set_current_inferior (inf);
396 switch_to_thread (null_ptid);
397 set_current_program_space (inf->pspace);
398 }
399 mi_execute_cli_command (run_cmd, target_can_async_p (),
400 target_can_async_p () ? "&" : NULL);
401 return 0;
402 }
403
404 void
405 mi_cmd_exec_run (char *command, char **argv, int argc)
406 {
407 int i;
408 int start_p = 0;
409
410 /* Parse the command options. */
411 enum opt
412 {
413 START_OPT,
414 };
415 static const struct mi_opt opts[] =
416 {
417 {"-start", START_OPT, 0},
418 {NULL, 0, 0},
419 };
420
421 int oind = 0;
422 char *oarg;
423
424 while (1)
425 {
426 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
427
428 if (opt < 0)
429 break;
430 switch ((enum opt) opt)
431 {
432 case START_OPT:
433 start_p = 1;
434 break;
435 }
436 }
437
438 /* This command does not accept any argument. Make sure the user
439 did not provide any. */
440 if (oind != argc)
441 error (_("Invalid argument: %s"), argv[oind]);
442
443 if (current_context->all)
444 {
445 struct cleanup *back_to = save_current_space_and_thread ();
446
447 iterate_over_inferiors (run_one_inferior, &start_p);
448 do_cleanups (back_to);
449 }
450 else
451 {
452 const char *run_cmd = start_p ? "start" : "run";
453
454 mi_execute_cli_command (run_cmd, target_can_async_p (),
455 target_can_async_p () ? "&" : NULL);
456 }
457 }
458
459
460 static int
461 find_thread_of_process (struct thread_info *ti, void *p)
462 {
463 int pid = *(int *)p;
464
465 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
466 return 1;
467
468 return 0;
469 }
470
471 void
472 mi_cmd_target_detach (char *command, char **argv, int argc)
473 {
474 if (argc != 0 && argc != 1)
475 error (_("Usage: -target-detach [pid | thread-group]"));
476
477 if (argc == 1)
478 {
479 struct thread_info *tp;
480 char *end = argv[0];
481 int pid;
482
483 /* First see if we are dealing with a thread-group id. */
484 if (*argv[0] == 'i')
485 {
486 struct inferior *inf;
487 int id = strtoul (argv[0] + 1, &end, 0);
488
489 if (*end != '\0')
490 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
491
492 inf = find_inferior_id (id);
493 if (!inf)
494 error (_("Non-existent thread-group id '%d'"), id);
495
496 pid = inf->pid;
497 }
498 else
499 {
500 /* We must be dealing with a pid. */
501 pid = strtol (argv[0], &end, 10);
502
503 if (*end != '\0')
504 error (_("Invalid identifier '%s'"), argv[0]);
505 }
506
507 /* Pick any thread in the desired process. Current
508 target_detach detaches from the parent of inferior_ptid. */
509 tp = iterate_over_threads (find_thread_of_process, &pid);
510 if (!tp)
511 error (_("Thread group is empty"));
512
513 switch_to_thread (tp->ptid);
514 }
515
516 detach_command (NULL, 0);
517 }
518
519 void
520 mi_cmd_thread_select (char *command, char **argv, int argc)
521 {
522 enum gdb_rc rc;
523 char *mi_error_message;
524
525 if (argc != 1)
526 error (_("-thread-select: USAGE: threadnum."));
527
528 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
529
530 if (rc == GDB_RC_FAIL)
531 {
532 make_cleanup (xfree, mi_error_message);
533 error ("%s", mi_error_message);
534 }
535 }
536
537 void
538 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
539 {
540 enum gdb_rc rc;
541 char *mi_error_message;
542
543 if (argc != 0)
544 error (_("-thread-list-ids: No arguments required."));
545
546 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
547
548 if (rc == GDB_RC_FAIL)
549 {
550 make_cleanup (xfree, mi_error_message);
551 error ("%s", mi_error_message);
552 }
553 }
554
555 void
556 mi_cmd_thread_info (char *command, char **argv, int argc)
557 {
558 if (argc != 0 && argc != 1)
559 error (_("Invalid MI command"));
560
561 print_thread_info (current_uiout, argv[0], -1);
562 }
563
564 struct collect_cores_data
565 {
566 int pid;
567
568 VEC (int) *cores;
569 };
570
571 static int
572 collect_cores (struct thread_info *ti, void *xdata)
573 {
574 struct collect_cores_data *data = xdata;
575
576 if (ptid_get_pid (ti->ptid) == data->pid)
577 {
578 int core = target_core_of_thread (ti->ptid);
579
580 if (core != -1)
581 VEC_safe_push (int, data->cores, core);
582 }
583
584 return 0;
585 }
586
587 static int *
588 unique (int *b, int *e)
589 {
590 int *d = b;
591
592 while (++b != e)
593 if (*d != *b)
594 *++d = *b;
595 return ++d;
596 }
597
598 struct print_one_inferior_data
599 {
600 int recurse;
601 VEC (int) *inferiors;
602 };
603
604 static int
605 print_one_inferior (struct inferior *inferior, void *xdata)
606 {
607 struct print_one_inferior_data *top_data = xdata;
608 struct ui_out *uiout = current_uiout;
609
610 if (VEC_empty (int, top_data->inferiors)
611 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
612 VEC_length (int, top_data->inferiors), sizeof (int),
613 compare_positive_ints))
614 {
615 struct collect_cores_data data;
616 struct cleanup *back_to
617 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
618
619 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
620 ui_out_field_string (uiout, "type", "process");
621 if (inferior->pid != 0)
622 ui_out_field_int (uiout, "pid", inferior->pid);
623
624 if (inferior->pspace->pspace_exec_filename != NULL)
625 {
626 ui_out_field_string (uiout, "executable",
627 inferior->pspace->pspace_exec_filename);
628 }
629
630 data.cores = 0;
631 if (inferior->pid != 0)
632 {
633 data.pid = inferior->pid;
634 iterate_over_threads (collect_cores, &data);
635 }
636
637 if (!VEC_empty (int, data.cores))
638 {
639 int *b, *e;
640 struct cleanup *back_to_2 =
641 make_cleanup_ui_out_list_begin_end (uiout, "cores");
642
643 qsort (VEC_address (int, data.cores),
644 VEC_length (int, data.cores), sizeof (int),
645 compare_positive_ints);
646
647 b = VEC_address (int, data.cores);
648 e = b + VEC_length (int, data.cores);
649 e = unique (b, e);
650
651 for (; b != e; ++b)
652 ui_out_field_int (uiout, NULL, *b);
653
654 do_cleanups (back_to_2);
655 }
656
657 if (top_data->recurse)
658 print_thread_info (uiout, NULL, inferior->pid);
659
660 do_cleanups (back_to);
661 }
662
663 return 0;
664 }
665
666 /* Output a field named 'cores' with a list as the value. The
667 elements of the list are obtained by splitting 'cores' on
668 comma. */
669
670 static void
671 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
672 {
673 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
674 field_name);
675 char *cores = xstrdup (xcores);
676 char *p = cores;
677
678 make_cleanup (xfree, cores);
679
680 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
681 ui_out_field_string (uiout, NULL, p);
682
683 do_cleanups (back_to);
684 }
685
686 static void
687 free_vector_of_ints (void *xvector)
688 {
689 VEC (int) **vector = xvector;
690
691 VEC_free (int, *vector);
692 }
693
694 static void
695 do_nothing (splay_tree_key k)
696 {
697 }
698
699 static void
700 free_vector_of_osdata_items (splay_tree_value xvalue)
701 {
702 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
703
704 /* We don't free the items itself, it will be done separately. */
705 VEC_free (osdata_item_s, value);
706 }
707
708 static int
709 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
710 {
711 int a = xa;
712 int b = xb;
713
714 return a - b;
715 }
716
717 static void
718 free_splay_tree (void *xt)
719 {
720 splay_tree t = xt;
721 splay_tree_delete (t);
722 }
723
724 static void
725 list_available_thread_groups (VEC (int) *ids, int recurse)
726 {
727 struct osdata *data;
728 struct osdata_item *item;
729 int ix_items;
730 struct ui_out *uiout = current_uiout;
731 struct cleanup *cleanup;
732
733 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
734 The vector contains information about all threads for the given pid.
735 This is assigned an initial value to avoid "may be used uninitialized"
736 warning from gcc. */
737 splay_tree tree = NULL;
738
739 /* get_osdata will throw if it cannot return data. */
740 data = get_osdata ("processes");
741 cleanup = make_cleanup_osdata_free (data);
742
743 if (recurse)
744 {
745 struct osdata *threads = get_osdata ("threads");
746
747 make_cleanup_osdata_free (threads);
748 tree = splay_tree_new (splay_tree_int_comparator,
749 do_nothing,
750 free_vector_of_osdata_items);
751 make_cleanup (free_splay_tree, tree);
752
753 for (ix_items = 0;
754 VEC_iterate (osdata_item_s, threads->items,
755 ix_items, item);
756 ix_items++)
757 {
758 const char *pid = get_osdata_column (item, "pid");
759 int pid_i = strtoul (pid, NULL, 0);
760 VEC (osdata_item_s) *vec = 0;
761
762 splay_tree_node n = splay_tree_lookup (tree, pid_i);
763 if (!n)
764 {
765 VEC_safe_push (osdata_item_s, vec, item);
766 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
767 }
768 else
769 {
770 vec = (VEC (osdata_item_s) *) n->value;
771 VEC_safe_push (osdata_item_s, vec, item);
772 n->value = (splay_tree_value) vec;
773 }
774 }
775 }
776
777 make_cleanup_ui_out_list_begin_end (uiout, "groups");
778
779 for (ix_items = 0;
780 VEC_iterate (osdata_item_s, data->items,
781 ix_items, item);
782 ix_items++)
783 {
784 struct cleanup *back_to;
785
786 const char *pid = get_osdata_column (item, "pid");
787 const char *cmd = get_osdata_column (item, "command");
788 const char *user = get_osdata_column (item, "user");
789 const char *cores = get_osdata_column (item, "cores");
790
791 int pid_i = strtoul (pid, NULL, 0);
792
793 /* At present, the target will return all available processes
794 and if information about specific ones was required, we filter
795 undesired processes here. */
796 if (ids && bsearch (&pid_i, VEC_address (int, ids),
797 VEC_length (int, ids),
798 sizeof (int), compare_positive_ints) == NULL)
799 continue;
800
801
802 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
803
804 ui_out_field_fmt (uiout, "id", "%s", pid);
805 ui_out_field_string (uiout, "type", "process");
806 if (cmd)
807 ui_out_field_string (uiout, "description", cmd);
808 if (user)
809 ui_out_field_string (uiout, "user", user);
810 if (cores)
811 output_cores (uiout, "cores", cores);
812
813 if (recurse)
814 {
815 splay_tree_node n = splay_tree_lookup (tree, pid_i);
816 if (n)
817 {
818 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
819 struct osdata_item *child;
820 int ix_child;
821
822 make_cleanup_ui_out_list_begin_end (uiout, "threads");
823
824 for (ix_child = 0;
825 VEC_iterate (osdata_item_s, children, ix_child, child);
826 ++ix_child)
827 {
828 struct cleanup *back_to_2 =
829 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
830 const char *tid = get_osdata_column (child, "tid");
831 const char *tcore = get_osdata_column (child, "core");
832
833 ui_out_field_string (uiout, "id", tid);
834 if (tcore)
835 ui_out_field_string (uiout, "core", tcore);
836
837 do_cleanups (back_to_2);
838 }
839 }
840 }
841
842 do_cleanups (back_to);
843 }
844
845 do_cleanups (cleanup);
846 }
847
848 void
849 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
850 {
851 struct ui_out *uiout = current_uiout;
852 struct cleanup *back_to;
853 int available = 0;
854 int recurse = 0;
855 VEC (int) *ids = 0;
856
857 enum opt
858 {
859 AVAILABLE_OPT, RECURSE_OPT
860 };
861 static const struct mi_opt opts[] =
862 {
863 {"-available", AVAILABLE_OPT, 0},
864 {"-recurse", RECURSE_OPT, 1},
865 { 0, 0, 0 }
866 };
867
868 int oind = 0;
869 char *oarg;
870
871 while (1)
872 {
873 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
874 &oind, &oarg);
875
876 if (opt < 0)
877 break;
878 switch ((enum opt) opt)
879 {
880 case AVAILABLE_OPT:
881 available = 1;
882 break;
883 case RECURSE_OPT:
884 if (strcmp (oarg, "0") == 0)
885 ;
886 else if (strcmp (oarg, "1") == 0)
887 recurse = 1;
888 else
889 error (_("only '0' and '1' are valid values "
890 "for the '--recurse' option"));
891 break;
892 }
893 }
894
895 for (; oind < argc; ++oind)
896 {
897 char *end;
898 int inf;
899
900 if (*(argv[oind]) != 'i')
901 error (_("invalid syntax of group id '%s'"), argv[oind]);
902
903 inf = strtoul (argv[oind] + 1, &end, 0);
904
905 if (*end != '\0')
906 error (_("invalid syntax of group id '%s'"), argv[oind]);
907 VEC_safe_push (int, ids, inf);
908 }
909 if (VEC_length (int, ids) > 1)
910 qsort (VEC_address (int, ids),
911 VEC_length (int, ids),
912 sizeof (int), compare_positive_ints);
913
914 back_to = make_cleanup (free_vector_of_ints, &ids);
915
916 if (available)
917 {
918 list_available_thread_groups (ids, recurse);
919 }
920 else if (VEC_length (int, ids) == 1)
921 {
922 /* Local thread groups, single id. */
923 int id = *VEC_address (int, ids);
924 struct inferior *inf = find_inferior_id (id);
925
926 if (!inf)
927 error (_("Non-existent thread group id '%d'"), id);
928
929 print_thread_info (uiout, NULL, inf->pid);
930 }
931 else
932 {
933 struct print_one_inferior_data data;
934
935 data.recurse = recurse;
936 data.inferiors = ids;
937
938 /* Local thread groups. Either no explicit ids -- and we
939 print everything, or several explicit ids. In both cases,
940 we print more than one group, and have to use 'groups'
941 as the top-level element. */
942 make_cleanup_ui_out_list_begin_end (uiout, "groups");
943 update_thread_list ();
944 iterate_over_inferiors (print_one_inferior, &data);
945 }
946
947 do_cleanups (back_to);
948 }
949
950 void
951 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
952 {
953 struct gdbarch *gdbarch;
954 struct ui_out *uiout = current_uiout;
955 int regnum, numregs;
956 int i;
957 struct cleanup *cleanup;
958
959 /* Note that the test for a valid register must include checking the
960 gdbarch_register_name because gdbarch_num_regs may be allocated
961 for the union of the register sets within a family of related
962 processors. In this case, some entries of gdbarch_register_name
963 will change depending upon the particular processor being
964 debugged. */
965
966 gdbarch = get_current_arch ();
967 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
968
969 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
970
971 if (argc == 0) /* No args, just do all the regs. */
972 {
973 for (regnum = 0;
974 regnum < numregs;
975 regnum++)
976 {
977 if (gdbarch_register_name (gdbarch, regnum) == NULL
978 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
979 ui_out_field_string (uiout, NULL, "");
980 else
981 ui_out_field_string (uiout, NULL,
982 gdbarch_register_name (gdbarch, regnum));
983 }
984 }
985
986 /* Else, list of register #s, just do listed regs. */
987 for (i = 0; i < argc; i++)
988 {
989 regnum = atoi (argv[i]);
990 if (regnum < 0 || regnum >= numregs)
991 error (_("bad register number"));
992
993 if (gdbarch_register_name (gdbarch, regnum) == NULL
994 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
995 ui_out_field_string (uiout, NULL, "");
996 else
997 ui_out_field_string (uiout, NULL,
998 gdbarch_register_name (gdbarch, regnum));
999 }
1000 do_cleanups (cleanup);
1001 }
1002
1003 void
1004 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1005 {
1006 static struct regcache *this_regs = NULL;
1007 struct ui_out *uiout = current_uiout;
1008 struct regcache *prev_regs;
1009 struct gdbarch *gdbarch;
1010 int regnum, numregs, changed;
1011 int i;
1012 struct cleanup *cleanup;
1013
1014 /* The last time we visited this function, the current frame's
1015 register contents were saved in THIS_REGS. Move THIS_REGS over
1016 to PREV_REGS, and refresh THIS_REGS with the now-current register
1017 contents. */
1018
1019 prev_regs = this_regs;
1020 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1021 cleanup = make_cleanup_regcache_xfree (prev_regs);
1022
1023 /* Note that the test for a valid register must include checking the
1024 gdbarch_register_name because gdbarch_num_regs may be allocated
1025 for the union of the register sets within a family of related
1026 processors. In this case, some entries of gdbarch_register_name
1027 will change depending upon the particular processor being
1028 debugged. */
1029
1030 gdbarch = get_regcache_arch (this_regs);
1031 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1032
1033 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1034
1035 if (argc == 0)
1036 {
1037 /* No args, just do all the regs. */
1038 for (regnum = 0;
1039 regnum < numregs;
1040 regnum++)
1041 {
1042 if (gdbarch_register_name (gdbarch, regnum) == NULL
1043 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1044 continue;
1045 changed = register_changed_p (regnum, prev_regs, this_regs);
1046 if (changed < 0)
1047 error (_("-data-list-changed-registers: "
1048 "Unable to read register contents."));
1049 else if (changed)
1050 ui_out_field_int (uiout, NULL, regnum);
1051 }
1052 }
1053
1054 /* Else, list of register #s, just do listed regs. */
1055 for (i = 0; i < argc; i++)
1056 {
1057 regnum = atoi (argv[i]);
1058
1059 if (regnum >= 0
1060 && regnum < numregs
1061 && gdbarch_register_name (gdbarch, regnum) != NULL
1062 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1063 {
1064 changed = register_changed_p (regnum, prev_regs, this_regs);
1065 if (changed < 0)
1066 error (_("-data-list-changed-registers: "
1067 "Unable to read register contents."));
1068 else if (changed)
1069 ui_out_field_int (uiout, NULL, regnum);
1070 }
1071 else
1072 error (_("bad register number"));
1073 }
1074 do_cleanups (cleanup);
1075 }
1076
1077 static int
1078 register_changed_p (int regnum, struct regcache *prev_regs,
1079 struct regcache *this_regs)
1080 {
1081 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1082 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1083 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1084 enum register_status prev_status;
1085 enum register_status this_status;
1086
1087 /* First time through or after gdbarch change consider all registers
1088 as changed. */
1089 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1090 return 1;
1091
1092 /* Get register contents and compare. */
1093 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1094 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1095
1096 if (this_status != prev_status)
1097 return 1;
1098 else if (this_status == REG_VALID)
1099 return memcmp (prev_buffer, this_buffer,
1100 register_size (gdbarch, regnum)) != 0;
1101 else
1102 return 0;
1103 }
1104
1105 /* Return a list of register number and value pairs. The valid
1106 arguments expected are: a letter indicating the format in which to
1107 display the registers contents. This can be one of: x
1108 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1109 (raw). After the format argument there can be a sequence of
1110 numbers, indicating which registers to fetch the content of. If
1111 the format is the only argument, a list of all the registers with
1112 their values is returned. */
1113
1114 void
1115 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1116 {
1117 struct ui_out *uiout = current_uiout;
1118 struct frame_info *frame;
1119 struct gdbarch *gdbarch;
1120 int regnum, numregs, format;
1121 int i;
1122 struct cleanup *list_cleanup;
1123 int skip_unavailable = 0;
1124 int oind = 0;
1125 enum opt
1126 {
1127 SKIP_UNAVAILABLE,
1128 };
1129 static const struct mi_opt opts[] =
1130 {
1131 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1132 { 0, 0, 0 }
1133 };
1134
1135 /* Note that the test for a valid register must include checking the
1136 gdbarch_register_name because gdbarch_num_regs may be allocated
1137 for the union of the register sets within a family of related
1138 processors. In this case, some entries of gdbarch_register_name
1139 will change depending upon the particular processor being
1140 debugged. */
1141
1142 while (1)
1143 {
1144 char *oarg;
1145 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1146 opts, &oind, &oarg);
1147
1148 if (opt < 0)
1149 break;
1150 switch ((enum opt) opt)
1151 {
1152 case SKIP_UNAVAILABLE:
1153 skip_unavailable = 1;
1154 break;
1155 }
1156 }
1157
1158 if (argc - oind < 1)
1159 error (_("-data-list-register-values: Usage: "
1160 "-data-list-register-values [--skip-unavailable] <format>"
1161 " [<regnum1>...<regnumN>]"));
1162
1163 format = (int) argv[oind][0];
1164
1165 frame = get_selected_frame (NULL);
1166 gdbarch = get_frame_arch (frame);
1167 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1168
1169 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1170
1171 if (argc - oind == 1)
1172 {
1173 /* No args, beside the format: do all the regs. */
1174 for (regnum = 0;
1175 regnum < numregs;
1176 regnum++)
1177 {
1178 if (gdbarch_register_name (gdbarch, regnum) == NULL
1179 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1180 continue;
1181
1182 output_register (frame, regnum, format, skip_unavailable);
1183 }
1184 }
1185
1186 /* Else, list of register #s, just do listed regs. */
1187 for (i = 1 + oind; i < argc; i++)
1188 {
1189 regnum = atoi (argv[i]);
1190
1191 if (regnum >= 0
1192 && regnum < numregs
1193 && gdbarch_register_name (gdbarch, regnum) != NULL
1194 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1195 output_register (frame, regnum, format, skip_unavailable);
1196 else
1197 error (_("bad register number"));
1198 }
1199 do_cleanups (list_cleanup);
1200 }
1201
1202 /* Output one register REGNUM's contents in the desired FORMAT. If
1203 SKIP_UNAVAILABLE is true, skip the register if it is
1204 unavailable. */
1205
1206 static void
1207 output_register (struct frame_info *frame, int regnum, int format,
1208 int skip_unavailable)
1209 {
1210 struct gdbarch *gdbarch = get_frame_arch (frame);
1211 struct ui_out *uiout = current_uiout;
1212 struct value *val = value_of_register (regnum, frame);
1213 struct cleanup *tuple_cleanup;
1214 struct value_print_options opts;
1215 struct ui_file *stb;
1216
1217 if (skip_unavailable && !value_entirely_available (val))
1218 return;
1219
1220 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1221 ui_out_field_int (uiout, "number", regnum);
1222
1223 if (format == 'N')
1224 format = 0;
1225
1226 if (format == 'r')
1227 format = 'z';
1228
1229 stb = mem_fileopen ();
1230 make_cleanup_ui_file_delete (stb);
1231
1232 get_formatted_print_options (&opts, format);
1233 opts.deref_ref = 1;
1234 val_print (value_type (val),
1235 value_contents_for_printing (val),
1236 value_embedded_offset (val), 0,
1237 stb, 0, val, &opts, current_language);
1238 ui_out_field_stream (uiout, "value", stb);
1239
1240 do_cleanups (tuple_cleanup);
1241 }
1242
1243 /* Write given values into registers. The registers and values are
1244 given as pairs. The corresponding MI command is
1245 -data-write-register-values <format>
1246 [<regnum1> <value1>...<regnumN> <valueN>] */
1247 void
1248 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1249 {
1250 struct regcache *regcache;
1251 struct gdbarch *gdbarch;
1252 int numregs, i;
1253
1254 /* Note that the test for a valid register must include checking the
1255 gdbarch_register_name because gdbarch_num_regs may be allocated
1256 for the union of the register sets within a family of related
1257 processors. In this case, some entries of gdbarch_register_name
1258 will change depending upon the particular processor being
1259 debugged. */
1260
1261 regcache = get_current_regcache ();
1262 gdbarch = get_regcache_arch (regcache);
1263 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1264
1265 if (argc == 0)
1266 error (_("-data-write-register-values: Usage: -data-write-register-"
1267 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1268
1269 if (!target_has_registers)
1270 error (_("-data-write-register-values: No registers."));
1271
1272 if (!(argc - 1))
1273 error (_("-data-write-register-values: No regs and values specified."));
1274
1275 if ((argc - 1) % 2)
1276 error (_("-data-write-register-values: "
1277 "Regs and vals are not in pairs."));
1278
1279 for (i = 1; i < argc; i = i + 2)
1280 {
1281 int regnum = atoi (argv[i]);
1282
1283 if (regnum >= 0 && regnum < numregs
1284 && gdbarch_register_name (gdbarch, regnum)
1285 && *gdbarch_register_name (gdbarch, regnum))
1286 {
1287 LONGEST value;
1288
1289 /* Get the value as a number. */
1290 value = parse_and_eval_address (argv[i + 1]);
1291
1292 /* Write it down. */
1293 regcache_cooked_write_signed (regcache, regnum, value);
1294 }
1295 else
1296 error (_("bad register number"));
1297 }
1298 }
1299
1300 /* Evaluate the value of the argument. The argument is an
1301 expression. If the expression contains spaces it needs to be
1302 included in double quotes. */
1303
1304 void
1305 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1306 {
1307 struct expression *expr;
1308 struct cleanup *old_chain;
1309 struct value *val;
1310 struct ui_file *stb;
1311 struct value_print_options opts;
1312 struct ui_out *uiout = current_uiout;
1313
1314 stb = mem_fileopen ();
1315 old_chain = make_cleanup_ui_file_delete (stb);
1316
1317 if (argc != 1)
1318 error (_("-data-evaluate-expression: "
1319 "Usage: -data-evaluate-expression expression"));
1320
1321 expr = parse_expression (argv[0]);
1322
1323 make_cleanup (free_current_contents, &expr);
1324
1325 val = evaluate_expression (expr);
1326
1327 /* Print the result of the expression evaluation. */
1328 get_user_print_options (&opts);
1329 opts.deref_ref = 0;
1330 common_val_print (val, stb, 0, &opts, current_language);
1331
1332 ui_out_field_stream (uiout, "value", stb);
1333
1334 do_cleanups (old_chain);
1335 }
1336
1337 /* This is the -data-read-memory command.
1338
1339 ADDR: start address of data to be dumped.
1340 WORD-FORMAT: a char indicating format for the ``word''. See
1341 the ``x'' command.
1342 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1343 NR_ROW: Number of rows.
1344 NR_COL: The number of colums (words per row).
1345 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1346 ASCHAR for unprintable characters.
1347
1348 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1349 displayes them. Returns:
1350
1351 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1352
1353 Returns:
1354 The number of bytes read is SIZE*ROW*COL. */
1355
1356 void
1357 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1358 {
1359 struct gdbarch *gdbarch = get_current_arch ();
1360 struct ui_out *uiout = current_uiout;
1361 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1362 CORE_ADDR addr;
1363 long total_bytes, nr_cols, nr_rows;
1364 char word_format;
1365 struct type *word_type;
1366 long word_size;
1367 char word_asize;
1368 char aschar;
1369 gdb_byte *mbuf;
1370 int nr_bytes;
1371 long offset = 0;
1372 int oind = 0;
1373 char *oarg;
1374 enum opt
1375 {
1376 OFFSET_OPT
1377 };
1378 static const struct mi_opt opts[] =
1379 {
1380 {"o", OFFSET_OPT, 1},
1381 { 0, 0, 0 }
1382 };
1383
1384 while (1)
1385 {
1386 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1387 &oind, &oarg);
1388
1389 if (opt < 0)
1390 break;
1391 switch ((enum opt) opt)
1392 {
1393 case OFFSET_OPT:
1394 offset = atol (oarg);
1395 break;
1396 }
1397 }
1398 argv += oind;
1399 argc -= oind;
1400
1401 if (argc < 5 || argc > 6)
1402 error (_("-data-read-memory: Usage: "
1403 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1404
1405 /* Extract all the arguments. */
1406
1407 /* Start address of the memory dump. */
1408 addr = parse_and_eval_address (argv[0]) + offset;
1409 /* The format character to use when displaying a memory word. See
1410 the ``x'' command. */
1411 word_format = argv[1][0];
1412 /* The size of the memory word. */
1413 word_size = atol (argv[2]);
1414 switch (word_size)
1415 {
1416 case 1:
1417 word_type = builtin_type (gdbarch)->builtin_int8;
1418 word_asize = 'b';
1419 break;
1420 case 2:
1421 word_type = builtin_type (gdbarch)->builtin_int16;
1422 word_asize = 'h';
1423 break;
1424 case 4:
1425 word_type = builtin_type (gdbarch)->builtin_int32;
1426 word_asize = 'w';
1427 break;
1428 case 8:
1429 word_type = builtin_type (gdbarch)->builtin_int64;
1430 word_asize = 'g';
1431 break;
1432 default:
1433 word_type = builtin_type (gdbarch)->builtin_int8;
1434 word_asize = 'b';
1435 }
1436 /* The number of rows. */
1437 nr_rows = atol (argv[3]);
1438 if (nr_rows <= 0)
1439 error (_("-data-read-memory: invalid number of rows."));
1440
1441 /* Number of bytes per row. */
1442 nr_cols = atol (argv[4]);
1443 if (nr_cols <= 0)
1444 error (_("-data-read-memory: invalid number of columns."));
1445
1446 /* The un-printable character when printing ascii. */
1447 if (argc == 6)
1448 aschar = *argv[5];
1449 else
1450 aschar = 0;
1451
1452 /* Create a buffer and read it in. */
1453 total_bytes = word_size * nr_rows * nr_cols;
1454 mbuf = xcalloc (total_bytes, 1);
1455 make_cleanup (xfree, mbuf);
1456
1457 /* Dispatch memory reads to the topmost target, not the flattened
1458 current_target. */
1459 nr_bytes = target_read (current_target.beneath,
1460 TARGET_OBJECT_MEMORY, NULL, mbuf,
1461 addr, total_bytes);
1462 if (nr_bytes <= 0)
1463 error (_("Unable to read memory."));
1464
1465 /* Output the header information. */
1466 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1467 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1468 ui_out_field_int (uiout, "total-bytes", total_bytes);
1469 ui_out_field_core_addr (uiout, "next-row",
1470 gdbarch, addr + word_size * nr_cols);
1471 ui_out_field_core_addr (uiout, "prev-row",
1472 gdbarch, addr - word_size * nr_cols);
1473 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1474 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1475
1476 /* Build the result as a two dimentional table. */
1477 {
1478 struct ui_file *stream;
1479 struct cleanup *cleanup_stream;
1480 int row;
1481 int row_byte;
1482
1483 stream = mem_fileopen ();
1484 cleanup_stream = make_cleanup_ui_file_delete (stream);
1485
1486 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1487 for (row = 0, row_byte = 0;
1488 row < nr_rows;
1489 row++, row_byte += nr_cols * word_size)
1490 {
1491 int col;
1492 int col_byte;
1493 struct cleanup *cleanup_tuple;
1494 struct cleanup *cleanup_list_data;
1495 struct value_print_options opts;
1496
1497 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1498 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1499 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1500 row_byte); */
1501 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1502 get_formatted_print_options (&opts, word_format);
1503 for (col = 0, col_byte = row_byte;
1504 col < nr_cols;
1505 col++, col_byte += word_size)
1506 {
1507 if (col_byte + word_size > nr_bytes)
1508 {
1509 ui_out_field_string (uiout, NULL, "N/A");
1510 }
1511 else
1512 {
1513 ui_file_rewind (stream);
1514 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1515 word_asize, stream);
1516 ui_out_field_stream (uiout, NULL, stream);
1517 }
1518 }
1519 do_cleanups (cleanup_list_data);
1520 if (aschar)
1521 {
1522 int byte;
1523
1524 ui_file_rewind (stream);
1525 for (byte = row_byte;
1526 byte < row_byte + word_size * nr_cols; byte++)
1527 {
1528 if (byte >= nr_bytes)
1529 fputc_unfiltered ('X', stream);
1530 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1531 fputc_unfiltered (aschar, stream);
1532 else
1533 fputc_unfiltered (mbuf[byte], stream);
1534 }
1535 ui_out_field_stream (uiout, "ascii", stream);
1536 }
1537 do_cleanups (cleanup_tuple);
1538 }
1539 do_cleanups (cleanup_stream);
1540 }
1541 do_cleanups (cleanups);
1542 }
1543
1544 void
1545 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1546 {
1547 struct gdbarch *gdbarch = get_current_arch ();
1548 struct ui_out *uiout = current_uiout;
1549 struct cleanup *cleanups;
1550 CORE_ADDR addr;
1551 LONGEST length;
1552 memory_read_result_s *read_result;
1553 int ix;
1554 VEC(memory_read_result_s) *result;
1555 long offset = 0;
1556 int oind = 0;
1557 char *oarg;
1558 enum opt
1559 {
1560 OFFSET_OPT
1561 };
1562 static const struct mi_opt opts[] =
1563 {
1564 {"o", OFFSET_OPT, 1},
1565 { 0, 0, 0 }
1566 };
1567
1568 while (1)
1569 {
1570 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1571 &oind, &oarg);
1572 if (opt < 0)
1573 break;
1574 switch ((enum opt) opt)
1575 {
1576 case OFFSET_OPT:
1577 offset = atol (oarg);
1578 break;
1579 }
1580 }
1581 argv += oind;
1582 argc -= oind;
1583
1584 if (argc != 2)
1585 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1586
1587 addr = parse_and_eval_address (argv[0]) + offset;
1588 length = atol (argv[1]);
1589
1590 result = read_memory_robust (current_target.beneath, addr, length);
1591
1592 cleanups = make_cleanup (free_memory_read_result_vector, result);
1593
1594 if (VEC_length (memory_read_result_s, result) == 0)
1595 error (_("Unable to read memory."));
1596
1597 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1598 for (ix = 0;
1599 VEC_iterate (memory_read_result_s, result, ix, read_result);
1600 ++ix)
1601 {
1602 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1603 char *data, *p;
1604 int i;
1605
1606 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1607 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1608 - addr);
1609 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1610
1611 data = xmalloc ((read_result->end - read_result->begin) * 2 + 1);
1612
1613 for (i = 0, p = data;
1614 i < (read_result->end - read_result->begin);
1615 ++i, p += 2)
1616 {
1617 sprintf (p, "%02x", read_result->data[i]);
1618 }
1619 ui_out_field_string (uiout, "contents", data);
1620 xfree (data);
1621 do_cleanups (t);
1622 }
1623 do_cleanups (cleanups);
1624 }
1625
1626 /* Implementation of the -data-write_memory command.
1627
1628 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1629 offset from the beginning of the memory grid row where the cell to
1630 be written is.
1631 ADDR: start address of the row in the memory grid where the memory
1632 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1633 the location to write to.
1634 FORMAT: a char indicating format for the ``word''. See
1635 the ``x'' command.
1636 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1637 VALUE: value to be written into the memory address.
1638
1639 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1640
1641 Prints nothing. */
1642
1643 void
1644 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1645 {
1646 struct gdbarch *gdbarch = get_current_arch ();
1647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1648 CORE_ADDR addr;
1649 long word_size;
1650 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1651 enough when using a compiler other than GCC. */
1652 LONGEST value;
1653 void *buffer;
1654 struct cleanup *old_chain;
1655 long offset = 0;
1656 int oind = 0;
1657 char *oarg;
1658 enum opt
1659 {
1660 OFFSET_OPT
1661 };
1662 static const struct mi_opt opts[] =
1663 {
1664 {"o", OFFSET_OPT, 1},
1665 { 0, 0, 0 }
1666 };
1667
1668 while (1)
1669 {
1670 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1671 &oind, &oarg);
1672
1673 if (opt < 0)
1674 break;
1675 switch ((enum opt) opt)
1676 {
1677 case OFFSET_OPT:
1678 offset = atol (oarg);
1679 break;
1680 }
1681 }
1682 argv += oind;
1683 argc -= oind;
1684
1685 if (argc != 4)
1686 error (_("-data-write-memory: Usage: "
1687 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1688
1689 /* Extract all the arguments. */
1690 /* Start address of the memory dump. */
1691 addr = parse_and_eval_address (argv[0]);
1692 /* The size of the memory word. */
1693 word_size = atol (argv[2]);
1694
1695 /* Calculate the real address of the write destination. */
1696 addr += (offset * word_size);
1697
1698 /* Get the value as a number. */
1699 value = parse_and_eval_address (argv[3]);
1700 /* Get the value into an array. */
1701 buffer = xmalloc (word_size);
1702 old_chain = make_cleanup (xfree, buffer);
1703 store_signed_integer (buffer, word_size, byte_order, value);
1704 /* Write it down to memory. */
1705 write_memory_with_notification (addr, buffer, word_size);
1706 /* Free the buffer. */
1707 do_cleanups (old_chain);
1708 }
1709
1710 /* Implementation of the -data-write-memory-bytes command.
1711
1712 ADDR: start address
1713 DATA: string of bytes to write at that address
1714 COUNT: number of bytes to be filled (decimal integer). */
1715
1716 void
1717 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1718 {
1719 CORE_ADDR addr;
1720 char *cdata;
1721 gdb_byte *data;
1722 gdb_byte *databuf;
1723 size_t len, i, steps, remainder;
1724 long int count, j;
1725 struct cleanup *back_to;
1726
1727 if (argc != 2 && argc != 3)
1728 error (_("Usage: ADDR DATA [COUNT]."));
1729
1730 addr = parse_and_eval_address (argv[0]);
1731 cdata = argv[1];
1732 if (strlen (cdata) % 2)
1733 error (_("Hex-encoded '%s' must have an even number of characters."),
1734 cdata);
1735
1736 len = strlen (cdata)/2;
1737 if (argc == 3)
1738 count = strtoul (argv[2], NULL, 10);
1739 else
1740 count = len;
1741
1742 databuf = xmalloc (len * sizeof (gdb_byte));
1743 back_to = make_cleanup (xfree, databuf);
1744
1745 for (i = 0; i < len; ++i)
1746 {
1747 int x;
1748 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1749 error (_("Invalid argument"));
1750 databuf[i] = (gdb_byte) x;
1751 }
1752
1753 if (len < count)
1754 {
1755 /* Pattern is made of less bytes than count:
1756 repeat pattern to fill memory. */
1757 data = xmalloc (count);
1758 make_cleanup (xfree, data);
1759
1760 steps = count / len;
1761 remainder = count % len;
1762 for (j = 0; j < steps; j++)
1763 memcpy (data + j * len, databuf, len);
1764
1765 if (remainder > 0)
1766 memcpy (data + steps * len, databuf, remainder);
1767 }
1768 else
1769 {
1770 /* Pattern is longer than or equal to count:
1771 just copy len bytes. */
1772 data = databuf;
1773 }
1774
1775 write_memory_with_notification (addr, data, count);
1776
1777 do_cleanups (back_to);
1778 }
1779
1780 void
1781 mi_cmd_enable_timings (char *command, char **argv, int argc)
1782 {
1783 if (argc == 0)
1784 do_timings = 1;
1785 else if (argc == 1)
1786 {
1787 if (strcmp (argv[0], "yes") == 0)
1788 do_timings = 1;
1789 else if (strcmp (argv[0], "no") == 0)
1790 do_timings = 0;
1791 else
1792 goto usage_error;
1793 }
1794 else
1795 goto usage_error;
1796
1797 return;
1798
1799 usage_error:
1800 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1801 }
1802
1803 void
1804 mi_cmd_list_features (char *command, char **argv, int argc)
1805 {
1806 if (argc == 0)
1807 {
1808 struct cleanup *cleanup = NULL;
1809 struct ui_out *uiout = current_uiout;
1810
1811 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1812 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1813 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1814 ui_out_field_string (uiout, NULL, "thread-info");
1815 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1816 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1817 ui_out_field_string (uiout, NULL, "ada-task-info");
1818 ui_out_field_string (uiout, NULL, "language-option");
1819 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1820 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1821
1822 #if HAVE_PYTHON
1823 if (gdb_python_initialized)
1824 ui_out_field_string (uiout, NULL, "python");
1825 #endif
1826
1827 do_cleanups (cleanup);
1828 return;
1829 }
1830
1831 error (_("-list-features should be passed no arguments"));
1832 }
1833
1834 void
1835 mi_cmd_list_target_features (char *command, char **argv, int argc)
1836 {
1837 if (argc == 0)
1838 {
1839 struct cleanup *cleanup = NULL;
1840 struct ui_out *uiout = current_uiout;
1841
1842 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1843 if (target_can_async_p ())
1844 ui_out_field_string (uiout, NULL, "async");
1845 if (target_can_execute_reverse)
1846 ui_out_field_string (uiout, NULL, "reverse");
1847
1848 do_cleanups (cleanup);
1849 return;
1850 }
1851
1852 error (_("-list-target-features should be passed no arguments"));
1853 }
1854
1855 void
1856 mi_cmd_add_inferior (char *command, char **argv, int argc)
1857 {
1858 struct inferior *inf;
1859
1860 if (argc != 0)
1861 error (_("-add-inferior should be passed no arguments"));
1862
1863 inf = add_inferior_with_spaces ();
1864
1865 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1866 }
1867
1868 /* Callback used to find the first inferior other than the current
1869 one. */
1870
1871 static int
1872 get_other_inferior (struct inferior *inf, void *arg)
1873 {
1874 if (inf == current_inferior ())
1875 return 0;
1876
1877 return 1;
1878 }
1879
1880 void
1881 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1882 {
1883 int id;
1884 struct inferior *inf;
1885
1886 if (argc != 1)
1887 error (_("-remove-inferior should be passed a single argument"));
1888
1889 if (sscanf (argv[0], "i%d", &id) != 1)
1890 error (_("the thread group id is syntactically invalid"));
1891
1892 inf = find_inferior_id (id);
1893 if (!inf)
1894 error (_("the specified thread group does not exist"));
1895
1896 if (inf->pid != 0)
1897 error (_("cannot remove an active inferior"));
1898
1899 if (inf == current_inferior ())
1900 {
1901 struct thread_info *tp = 0;
1902 struct inferior *new_inferior
1903 = iterate_over_inferiors (get_other_inferior, NULL);
1904
1905 if (new_inferior == NULL)
1906 error (_("Cannot remove last inferior"));
1907
1908 set_current_inferior (new_inferior);
1909 if (new_inferior->pid != 0)
1910 tp = any_thread_of_process (new_inferior->pid);
1911 switch_to_thread (tp ? tp->ptid : null_ptid);
1912 set_current_program_space (new_inferior->pspace);
1913 }
1914
1915 delete_inferior_1 (inf, 1 /* silent */);
1916 }
1917
1918 \f
1919
1920 /* Execute a command within a safe environment.
1921 Return <0 for error; >=0 for ok.
1922
1923 args->action will tell mi_execute_command what action
1924 to perfrom after the given command has executed (display/suppress
1925 prompt, display error). */
1926
1927 static void
1928 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1929 {
1930 struct cleanup *cleanup;
1931
1932 if (do_timings)
1933 current_command_ts = context->cmd_start;
1934
1935 current_token = xstrdup (context->token);
1936 cleanup = make_cleanup (free_current_contents, &current_token);
1937
1938 running_result_record_printed = 0;
1939 mi_proceeded = 0;
1940 switch (context->op)
1941 {
1942 case MI_COMMAND:
1943 /* A MI command was read from the input stream. */
1944 if (mi_debug_p)
1945 /* FIXME: gdb_???? */
1946 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1947 context->token, context->command, context->args);
1948
1949 mi_cmd_execute (context);
1950
1951 /* Print the result if there were no errors.
1952
1953 Remember that on the way out of executing a command, you have
1954 to directly use the mi_interp's uiout, since the command
1955 could have reset the interpreter, in which case the current
1956 uiout will most likely crash in the mi_out_* routines. */
1957 if (!running_result_record_printed)
1958 {
1959 fputs_unfiltered (context->token, raw_stdout);
1960 /* There's no particularly good reason why target-connect results
1961 in not ^done. Should kill ^connected for MI3. */
1962 fputs_unfiltered (strcmp (context->command, "target-select") == 0
1963 ? "^connected" : "^done", raw_stdout);
1964 mi_out_put (uiout, raw_stdout);
1965 mi_out_rewind (uiout);
1966 mi_print_timing_maybe ();
1967 fputs_unfiltered ("\n", raw_stdout);
1968 }
1969 else
1970 /* The command does not want anything to be printed. In that
1971 case, the command probably should not have written anything
1972 to uiout, but in case it has written something, discard it. */
1973 mi_out_rewind (uiout);
1974 break;
1975
1976 case CLI_COMMAND:
1977 {
1978 char *argv[2];
1979
1980 /* A CLI command was read from the input stream. */
1981 /* This "feature" will be removed as soon as we have a
1982 complete set of mi commands. */
1983 /* Echo the command on the console. */
1984 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1985 /* Call the "console" interpreter. */
1986 argv[0] = "console";
1987 argv[1] = context->command;
1988 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
1989
1990 /* If we changed interpreters, DON'T print out anything. */
1991 if (current_interp_named_p (INTERP_MI)
1992 || current_interp_named_p (INTERP_MI1)
1993 || current_interp_named_p (INTERP_MI2)
1994 || current_interp_named_p (INTERP_MI3))
1995 {
1996 if (!running_result_record_printed)
1997 {
1998 fputs_unfiltered (context->token, raw_stdout);
1999 fputs_unfiltered ("^done", raw_stdout);
2000 mi_out_put (uiout, raw_stdout);
2001 mi_out_rewind (uiout);
2002 mi_print_timing_maybe ();
2003 fputs_unfiltered ("\n", raw_stdout);
2004 }
2005 else
2006 mi_out_rewind (uiout);
2007 }
2008 break;
2009 }
2010 }
2011
2012 do_cleanups (cleanup);
2013 }
2014
2015 /* Print a gdb exception to the MI output stream. */
2016
2017 static void
2018 mi_print_exception (const char *token, struct gdb_exception exception)
2019 {
2020 fputs_unfiltered (token, raw_stdout);
2021 fputs_unfiltered ("^error,msg=\"", raw_stdout);
2022 if (exception.message == NULL)
2023 fputs_unfiltered ("unknown error", raw_stdout);
2024 else
2025 fputstr_unfiltered (exception.message, '"', raw_stdout);
2026 fputs_unfiltered ("\"", raw_stdout);
2027
2028 switch (exception.error)
2029 {
2030 case UNDEFINED_COMMAND_ERROR:
2031 fputs_unfiltered (",code=\"undefined-command\"", raw_stdout);
2032 break;
2033 }
2034
2035 fputs_unfiltered ("\n", raw_stdout);
2036 }
2037
2038 void
2039 mi_execute_command (const char *cmd, int from_tty)
2040 {
2041 char *token;
2042 struct mi_parse *command = NULL;
2043 volatile struct gdb_exception exception;
2044
2045 /* This is to handle EOF (^D). We just quit gdb. */
2046 /* FIXME: we should call some API function here. */
2047 if (cmd == 0)
2048 quit_force (NULL, from_tty);
2049
2050 target_log_command (cmd);
2051
2052 TRY_CATCH (exception, RETURN_MASK_ALL)
2053 {
2054 command = mi_parse (cmd, &token);
2055 }
2056 if (exception.reason < 0)
2057 {
2058 mi_print_exception (token, exception);
2059 xfree (token);
2060 }
2061 else
2062 {
2063 volatile struct gdb_exception result;
2064 ptid_t previous_ptid = inferior_ptid;
2065
2066 command->token = token;
2067
2068 if (do_timings)
2069 {
2070 command->cmd_start = (struct mi_timestamp *)
2071 xmalloc (sizeof (struct mi_timestamp));
2072 timestamp (command->cmd_start);
2073 }
2074
2075 TRY_CATCH (result, RETURN_MASK_ALL)
2076 {
2077 captured_mi_execute_command (current_uiout, command);
2078 }
2079 if (result.reason < 0)
2080 {
2081 /* The command execution failed and error() was called
2082 somewhere. */
2083 mi_print_exception (command->token, result);
2084 mi_out_rewind (current_uiout);
2085 }
2086
2087 bpstat_do_actions ();
2088
2089 if (/* The notifications are only output when the top-level
2090 interpreter (specified on the command line) is MI. */
2091 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2092 /* Don't try report anything if there are no threads --
2093 the program is dead. */
2094 && thread_count () != 0
2095 /* -thread-select explicitly changes thread. If frontend uses that
2096 internally, we don't want to emit =thread-selected, since
2097 =thread-selected is supposed to indicate user's intentions. */
2098 && strcmp (command->command, "thread-select") != 0)
2099 {
2100 struct mi_interp *mi = top_level_interpreter_data ();
2101 int report_change = 0;
2102
2103 if (command->thread == -1)
2104 {
2105 report_change = (!ptid_equal (previous_ptid, null_ptid)
2106 && !ptid_equal (inferior_ptid, previous_ptid)
2107 && !ptid_equal (inferior_ptid, null_ptid));
2108 }
2109 else if (!ptid_equal (inferior_ptid, null_ptid))
2110 {
2111 struct thread_info *ti = inferior_thread ();
2112
2113 report_change = (ti->num != command->thread);
2114 }
2115
2116 if (report_change)
2117 {
2118 struct thread_info *ti = inferior_thread ();
2119
2120 target_terminal_ours ();
2121 fprintf_unfiltered (mi->event_channel,
2122 "thread-selected,id=\"%d\"",
2123 ti->num);
2124 gdb_flush (mi->event_channel);
2125 }
2126 }
2127
2128 mi_parse_free (command);
2129 }
2130 }
2131
2132 static void
2133 mi_cmd_execute (struct mi_parse *parse)
2134 {
2135 struct cleanup *cleanup;
2136 enum language saved_language;
2137
2138 cleanup = prepare_execute_command ();
2139
2140 if (parse->all && parse->thread_group != -1)
2141 error (_("Cannot specify --thread-group together with --all"));
2142
2143 if (parse->all && parse->thread != -1)
2144 error (_("Cannot specify --thread together with --all"));
2145
2146 if (parse->thread_group != -1 && parse->thread != -1)
2147 error (_("Cannot specify --thread together with --thread-group"));
2148
2149 if (parse->frame != -1 && parse->thread == -1)
2150 error (_("Cannot specify --frame without --thread"));
2151
2152 if (parse->thread_group != -1)
2153 {
2154 struct inferior *inf = find_inferior_id (parse->thread_group);
2155 struct thread_info *tp = 0;
2156
2157 if (!inf)
2158 error (_("Invalid thread group for the --thread-group option"));
2159
2160 set_current_inferior (inf);
2161 /* This behaviour means that if --thread-group option identifies
2162 an inferior with multiple threads, then a random one will be
2163 picked. This is not a problem -- frontend should always
2164 provide --thread if it wishes to operate on a specific
2165 thread. */
2166 if (inf->pid != 0)
2167 tp = any_live_thread_of_process (inf->pid);
2168 switch_to_thread (tp ? tp->ptid : null_ptid);
2169 set_current_program_space (inf->pspace);
2170 }
2171
2172 if (parse->thread != -1)
2173 {
2174 struct thread_info *tp = find_thread_id (parse->thread);
2175
2176 if (!tp)
2177 error (_("Invalid thread id: %d"), parse->thread);
2178
2179 if (is_exited (tp->ptid))
2180 error (_("Thread id: %d has terminated"), parse->thread);
2181
2182 switch_to_thread (tp->ptid);
2183 }
2184
2185 if (parse->frame != -1)
2186 {
2187 struct frame_info *fid;
2188 int frame = parse->frame;
2189
2190 fid = find_relative_frame (get_current_frame (), &frame);
2191 if (frame == 0)
2192 /* find_relative_frame was successful */
2193 select_frame (fid);
2194 else
2195 error (_("Invalid frame id: %d"), frame);
2196 }
2197
2198 if (parse->language != language_unknown)
2199 {
2200 make_cleanup_restore_current_language ();
2201 set_language (parse->language);
2202 }
2203
2204 current_context = parse;
2205
2206 if (parse->cmd->suppress_notification != NULL)
2207 {
2208 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2209 *parse->cmd->suppress_notification = 1;
2210 }
2211
2212 if (parse->cmd->argv_func != NULL)
2213 {
2214 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2215 }
2216 else if (parse->cmd->cli.cmd != 0)
2217 {
2218 /* FIXME: DELETE THIS. */
2219 /* The operation is still implemented by a cli command. */
2220 /* Must be a synchronous one. */
2221 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2222 parse->args);
2223 }
2224 else
2225 {
2226 /* FIXME: DELETE THIS. */
2227 struct ui_file *stb;
2228
2229 stb = mem_fileopen ();
2230
2231 fputs_unfiltered ("Undefined mi command: ", stb);
2232 fputstr_unfiltered (parse->command, '"', stb);
2233 fputs_unfiltered (" (missing implementation)", stb);
2234
2235 make_cleanup_ui_file_delete (stb);
2236 error_stream (stb);
2237 }
2238 do_cleanups (cleanup);
2239 }
2240
2241 /* FIXME: This is just a hack so we can get some extra commands going.
2242 We don't want to channel things through the CLI, but call libgdb directly.
2243 Use only for synchronous commands. */
2244
2245 void
2246 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2247 {
2248 if (cmd != 0)
2249 {
2250 struct cleanup *old_cleanups;
2251 char *run;
2252
2253 if (args_p)
2254 run = xstrprintf ("%s %s", cmd, args);
2255 else
2256 run = xstrdup (cmd);
2257 if (mi_debug_p)
2258 /* FIXME: gdb_???? */
2259 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2260 cmd, run);
2261 old_cleanups = make_cleanup (xfree, run);
2262 execute_command (run, 0 /* from_tty */ );
2263 do_cleanups (old_cleanups);
2264 return;
2265 }
2266 }
2267
2268 void
2269 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2270 {
2271 struct cleanup *old_cleanups;
2272 char *run;
2273
2274 if (target_can_async_p ())
2275 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2276 else
2277 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2278 old_cleanups = make_cleanup (xfree, run);
2279
2280 execute_command (run, 0 /* from_tty */ );
2281
2282 /* Do this before doing any printing. It would appear that some
2283 print code leaves garbage around in the buffer. */
2284 do_cleanups (old_cleanups);
2285 }
2286
2287 void
2288 mi_load_progress (const char *section_name,
2289 unsigned long sent_so_far,
2290 unsigned long total_section,
2291 unsigned long total_sent,
2292 unsigned long grand_total)
2293 {
2294 struct timeval time_now, delta, update_threshold;
2295 static struct timeval last_update;
2296 static char *previous_sect_name = NULL;
2297 int new_section;
2298 struct ui_out *saved_uiout;
2299 struct ui_out *uiout;
2300
2301 /* This function is called through deprecated_show_load_progress
2302 which means uiout may not be correct. Fix it for the duration
2303 of this function. */
2304 saved_uiout = current_uiout;
2305
2306 if (current_interp_named_p (INTERP_MI)
2307 || current_interp_named_p (INTERP_MI2))
2308 current_uiout = mi_out_new (2);
2309 else if (current_interp_named_p (INTERP_MI1))
2310 current_uiout = mi_out_new (1);
2311 else if (current_interp_named_p (INTERP_MI3))
2312 current_uiout = mi_out_new (3);
2313 else
2314 return;
2315
2316 uiout = current_uiout;
2317
2318 update_threshold.tv_sec = 0;
2319 update_threshold.tv_usec = 500000;
2320 gettimeofday (&time_now, NULL);
2321
2322 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2323 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2324
2325 if (delta.tv_usec < 0)
2326 {
2327 delta.tv_sec -= 1;
2328 delta.tv_usec += 1000000L;
2329 }
2330
2331 new_section = (previous_sect_name ?
2332 strcmp (previous_sect_name, section_name) : 1);
2333 if (new_section)
2334 {
2335 struct cleanup *cleanup_tuple;
2336
2337 xfree (previous_sect_name);
2338 previous_sect_name = xstrdup (section_name);
2339
2340 if (current_token)
2341 fputs_unfiltered (current_token, raw_stdout);
2342 fputs_unfiltered ("+download", raw_stdout);
2343 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2344 ui_out_field_string (uiout, "section", section_name);
2345 ui_out_field_int (uiout, "section-size", total_section);
2346 ui_out_field_int (uiout, "total-size", grand_total);
2347 do_cleanups (cleanup_tuple);
2348 mi_out_put (uiout, raw_stdout);
2349 fputs_unfiltered ("\n", raw_stdout);
2350 gdb_flush (raw_stdout);
2351 }
2352
2353 if (delta.tv_sec >= update_threshold.tv_sec &&
2354 delta.tv_usec >= update_threshold.tv_usec)
2355 {
2356 struct cleanup *cleanup_tuple;
2357
2358 last_update.tv_sec = time_now.tv_sec;
2359 last_update.tv_usec = time_now.tv_usec;
2360 if (current_token)
2361 fputs_unfiltered (current_token, raw_stdout);
2362 fputs_unfiltered ("+download", raw_stdout);
2363 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2364 ui_out_field_string (uiout, "section", section_name);
2365 ui_out_field_int (uiout, "section-sent", sent_so_far);
2366 ui_out_field_int (uiout, "section-size", total_section);
2367 ui_out_field_int (uiout, "total-sent", total_sent);
2368 ui_out_field_int (uiout, "total-size", grand_total);
2369 do_cleanups (cleanup_tuple);
2370 mi_out_put (uiout, raw_stdout);
2371 fputs_unfiltered ("\n", raw_stdout);
2372 gdb_flush (raw_stdout);
2373 }
2374
2375 xfree (uiout);
2376 current_uiout = saved_uiout;
2377 }
2378
2379 static void
2380 timestamp (struct mi_timestamp *tv)
2381 {
2382 gettimeofday (&tv->wallclock, NULL);
2383 #ifdef HAVE_GETRUSAGE
2384 getrusage (RUSAGE_SELF, &rusage);
2385 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2386 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2387 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2388 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2389 #else
2390 {
2391 long usec = get_run_time ();
2392
2393 tv->utime.tv_sec = usec/1000000L;
2394 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2395 tv->stime.tv_sec = 0;
2396 tv->stime.tv_usec = 0;
2397 }
2398 #endif
2399 }
2400
2401 static void
2402 print_diff_now (struct mi_timestamp *start)
2403 {
2404 struct mi_timestamp now;
2405
2406 timestamp (&now);
2407 print_diff (start, &now);
2408 }
2409
2410 void
2411 mi_print_timing_maybe (void)
2412 {
2413 /* If the command is -enable-timing then do_timings may be true
2414 whilst current_command_ts is not initialized. */
2415 if (do_timings && current_command_ts)
2416 print_diff_now (current_command_ts);
2417 }
2418
2419 static long
2420 timeval_diff (struct timeval start, struct timeval end)
2421 {
2422 return ((end.tv_sec - start.tv_sec) * 1000000L)
2423 + (end.tv_usec - start.tv_usec);
2424 }
2425
2426 static void
2427 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2428 {
2429 fprintf_unfiltered
2430 (raw_stdout,
2431 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2432 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2433 timeval_diff (start->utime, end->utime) / 1000000.0,
2434 timeval_diff (start->stime, end->stime) / 1000000.0);
2435 }
2436
2437 void
2438 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2439 {
2440 struct expression *expr;
2441 LONGEST initval = 0;
2442 struct trace_state_variable *tsv;
2443 char *name = 0;
2444
2445 if (argc != 1 && argc != 2)
2446 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2447
2448 name = argv[0];
2449 if (*name++ != '$')
2450 error (_("Name of trace variable should start with '$'"));
2451
2452 validate_trace_state_variable_name (name);
2453
2454 tsv = find_trace_state_variable (name);
2455 if (!tsv)
2456 tsv = create_trace_state_variable (name);
2457
2458 if (argc == 2)
2459 initval = value_as_long (parse_and_eval (argv[1]));
2460
2461 tsv->initial_value = initval;
2462 }
2463
2464 void
2465 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2466 {
2467 if (argc != 0)
2468 error (_("-trace-list-variables: no arguments allowed"));
2469
2470 tvariables_info_1 ();
2471 }
2472
2473 void
2474 mi_cmd_trace_find (char *command, char **argv, int argc)
2475 {
2476 char *mode;
2477
2478 if (argc == 0)
2479 error (_("trace selection mode is required"));
2480
2481 mode = argv[0];
2482
2483 if (strcmp (mode, "none") == 0)
2484 {
2485 tfind_1 (tfind_number, -1, 0, 0, 0);
2486 return;
2487 }
2488
2489 if (current_trace_status ()->running)
2490 error (_("May not look at trace frames while trace is running."));
2491
2492 if (strcmp (mode, "frame-number") == 0)
2493 {
2494 if (argc != 2)
2495 error (_("frame number is required"));
2496 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2497 }
2498 else if (strcmp (mode, "tracepoint-number") == 0)
2499 {
2500 if (argc != 2)
2501 error (_("tracepoint number is required"));
2502 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2503 }
2504 else if (strcmp (mode, "pc") == 0)
2505 {
2506 if (argc != 2)
2507 error (_("PC is required"));
2508 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2509 }
2510 else if (strcmp (mode, "pc-inside-range") == 0)
2511 {
2512 if (argc != 3)
2513 error (_("Start and end PC are required"));
2514 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2515 parse_and_eval_address (argv[2]), 0);
2516 }
2517 else if (strcmp (mode, "pc-outside-range") == 0)
2518 {
2519 if (argc != 3)
2520 error (_("Start and end PC are required"));
2521 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2522 parse_and_eval_address (argv[2]), 0);
2523 }
2524 else if (strcmp (mode, "line") == 0)
2525 {
2526 struct symtabs_and_lines sals;
2527 struct symtab_and_line sal;
2528 static CORE_ADDR start_pc, end_pc;
2529 struct cleanup *back_to;
2530
2531 if (argc != 2)
2532 error (_("Line is required"));
2533
2534 sals = decode_line_with_current_source (argv[1],
2535 DECODE_LINE_FUNFIRSTLINE);
2536 back_to = make_cleanup (xfree, sals.sals);
2537
2538 sal = sals.sals[0];
2539
2540 if (sal.symtab == 0)
2541 error (_("Could not find the specified line"));
2542
2543 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2544 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2545 else
2546 error (_("Could not find the specified line"));
2547
2548 do_cleanups (back_to);
2549 }
2550 else
2551 error (_("Invalid mode '%s'"), mode);
2552
2553 if (has_stack_frames () || get_traceframe_number () >= 0)
2554 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2555 }
2556
2557 void
2558 mi_cmd_trace_save (char *command, char **argv, int argc)
2559 {
2560 int target_saves = 0;
2561 int generate_ctf = 0;
2562 char *filename;
2563 int oind = 0;
2564 char *oarg;
2565
2566 enum opt
2567 {
2568 TARGET_SAVE_OPT, CTF_OPT
2569 };
2570 static const struct mi_opt opts[] =
2571 {
2572 {"r", TARGET_SAVE_OPT, 0},
2573 {"ctf", CTF_OPT, 0},
2574 { 0, 0, 0 }
2575 };
2576
2577 while (1)
2578 {
2579 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2580 &oind, &oarg);
2581
2582 if (opt < 0)
2583 break;
2584 switch ((enum opt) opt)
2585 {
2586 case TARGET_SAVE_OPT:
2587 target_saves = 1;
2588 break;
2589 case CTF_OPT:
2590 generate_ctf = 1;
2591 break;
2592 }
2593 }
2594 filename = argv[oind];
2595
2596 if (generate_ctf)
2597 trace_save_ctf (filename, target_saves);
2598 else
2599 trace_save_tfile (filename, target_saves);
2600 }
2601
2602 void
2603 mi_cmd_trace_start (char *command, char **argv, int argc)
2604 {
2605 start_tracing (NULL);
2606 }
2607
2608 void
2609 mi_cmd_trace_status (char *command, char **argv, int argc)
2610 {
2611 trace_status_mi (0);
2612 }
2613
2614 void
2615 mi_cmd_trace_stop (char *command, char **argv, int argc)
2616 {
2617 stop_tracing (NULL);
2618 trace_status_mi (1);
2619 }
2620
2621 /* Implement the "-ada-task-info" command. */
2622
2623 void
2624 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2625 {
2626 if (argc != 0 && argc != 1)
2627 error (_("Invalid MI command"));
2628
2629 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2630 }
2631
2632 /* Print EXPRESSION according to VALUES. */
2633
2634 static void
2635 print_variable_or_computed (char *expression, enum print_values values)
2636 {
2637 struct expression *expr;
2638 struct cleanup *old_chain;
2639 struct value *val;
2640 struct ui_file *stb;
2641 struct value_print_options opts;
2642 struct type *type;
2643 struct ui_out *uiout = current_uiout;
2644
2645 stb = mem_fileopen ();
2646 old_chain = make_cleanup_ui_file_delete (stb);
2647
2648 expr = parse_expression (expression);
2649
2650 make_cleanup (free_current_contents, &expr);
2651
2652 if (values == PRINT_SIMPLE_VALUES)
2653 val = evaluate_type (expr);
2654 else
2655 val = evaluate_expression (expr);
2656
2657 if (values != PRINT_NO_VALUES)
2658 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2659 ui_out_field_string (uiout, "name", expression);
2660
2661 switch (values)
2662 {
2663 case PRINT_SIMPLE_VALUES:
2664 type = check_typedef (value_type (val));
2665 type_print (value_type (val), "", stb, -1);
2666 ui_out_field_stream (uiout, "type", stb);
2667 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2668 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2669 && TYPE_CODE (type) != TYPE_CODE_UNION)
2670 {
2671 struct value_print_options opts;
2672
2673 get_no_prettyformat_print_options (&opts);
2674 opts.deref_ref = 1;
2675 common_val_print (val, stb, 0, &opts, current_language);
2676 ui_out_field_stream (uiout, "value", stb);
2677 }
2678 break;
2679 case PRINT_ALL_VALUES:
2680 {
2681 struct value_print_options opts;
2682
2683 get_no_prettyformat_print_options (&opts);
2684 opts.deref_ref = 1;
2685 common_val_print (val, stb, 0, &opts, current_language);
2686 ui_out_field_stream (uiout, "value", stb);
2687 }
2688 break;
2689 }
2690
2691 do_cleanups (old_chain);
2692 }
2693
2694 /* Implement the "-trace-frame-collected" command. */
2695
2696 void
2697 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2698 {
2699 struct cleanup *old_chain;
2700 struct bp_location *tloc;
2701 int stepping_frame;
2702 struct collection_list *clist;
2703 struct collection_list tracepoint_list, stepping_list;
2704 struct traceframe_info *tinfo;
2705 int oind = 0;
2706 int var_print_values = PRINT_ALL_VALUES;
2707 int comp_print_values = PRINT_ALL_VALUES;
2708 int registers_format = 'x';
2709 int memory_contents = 0;
2710 struct ui_out *uiout = current_uiout;
2711 enum opt
2712 {
2713 VAR_PRINT_VALUES,
2714 COMP_PRINT_VALUES,
2715 REGISTERS_FORMAT,
2716 MEMORY_CONTENTS,
2717 };
2718 static const struct mi_opt opts[] =
2719 {
2720 {"-var-print-values", VAR_PRINT_VALUES, 1},
2721 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2722 {"-registers-format", REGISTERS_FORMAT, 1},
2723 {"-memory-contents", MEMORY_CONTENTS, 0},
2724 { 0, 0, 0 }
2725 };
2726
2727 while (1)
2728 {
2729 char *oarg;
2730 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2731 &oind, &oarg);
2732 if (opt < 0)
2733 break;
2734 switch ((enum opt) opt)
2735 {
2736 case VAR_PRINT_VALUES:
2737 var_print_values = mi_parse_print_values (oarg);
2738 break;
2739 case COMP_PRINT_VALUES:
2740 comp_print_values = mi_parse_print_values (oarg);
2741 break;
2742 case REGISTERS_FORMAT:
2743 registers_format = oarg[0];
2744 case MEMORY_CONTENTS:
2745 memory_contents = 1;
2746 break;
2747 }
2748 }
2749
2750 if (oind != argc)
2751 error (_("Usage: -trace-frame-collected "
2752 "[--var-print-values PRINT_VALUES] "
2753 "[--comp-print-values PRINT_VALUES] "
2754 "[--registers-format FORMAT]"
2755 "[--memory-contents]"));
2756
2757 /* This throws an error is not inspecting a trace frame. */
2758 tloc = get_traceframe_location (&stepping_frame);
2759
2760 /* This command only makes sense for the current frame, not the
2761 selected frame. */
2762 old_chain = make_cleanup_restore_current_thread ();
2763 select_frame (get_current_frame ());
2764
2765 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2766 &stepping_list);
2767
2768 if (stepping_frame)
2769 clist = &stepping_list;
2770 else
2771 clist = &tracepoint_list;
2772
2773 tinfo = get_traceframe_info ();
2774
2775 /* Explicitly wholly collected variables. */
2776 {
2777 struct cleanup *list_cleanup;
2778 char *p;
2779 int i;
2780
2781 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2782 "explicit-variables");
2783 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2784 print_variable_or_computed (p, var_print_values);
2785 do_cleanups (list_cleanup);
2786 }
2787
2788 /* Computed expressions. */
2789 {
2790 struct cleanup *list_cleanup;
2791 char *p;
2792 int i;
2793
2794 list_cleanup
2795 = make_cleanup_ui_out_list_begin_end (uiout,
2796 "computed-expressions");
2797 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2798 print_variable_or_computed (p, comp_print_values);
2799 do_cleanups (list_cleanup);
2800 }
2801
2802 /* Registers. Given pseudo-registers, and that some architectures
2803 (like MIPS) actually hide the raw registers, we don't go through
2804 the trace frame info, but instead consult the register cache for
2805 register availability. */
2806 {
2807 struct cleanup *list_cleanup;
2808 struct frame_info *frame;
2809 struct gdbarch *gdbarch;
2810 int regnum;
2811 int numregs;
2812
2813 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2814
2815 frame = get_selected_frame (NULL);
2816 gdbarch = get_frame_arch (frame);
2817 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2818
2819 for (regnum = 0; regnum < numregs; regnum++)
2820 {
2821 if (gdbarch_register_name (gdbarch, regnum) == NULL
2822 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2823 continue;
2824
2825 output_register (frame, regnum, registers_format, 1);
2826 }
2827
2828 do_cleanups (list_cleanup);
2829 }
2830
2831 /* Trace state variables. */
2832 {
2833 struct cleanup *list_cleanup;
2834 int tvar;
2835 char *tsvname;
2836 int i;
2837
2838 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2839
2840 tsvname = NULL;
2841 make_cleanup (free_current_contents, &tsvname);
2842
2843 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2844 {
2845 struct cleanup *cleanup_child;
2846 struct trace_state_variable *tsv;
2847
2848 tsv = find_trace_state_variable_by_number (tvar);
2849
2850 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2851
2852 if (tsv != NULL)
2853 {
2854 tsvname = xrealloc (tsvname, strlen (tsv->name) + 2);
2855 tsvname[0] = '$';
2856 strcpy (tsvname + 1, tsv->name);
2857 ui_out_field_string (uiout, "name", tsvname);
2858
2859 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2860 &tsv->value);
2861 ui_out_field_int (uiout, "current", tsv->value);
2862 }
2863 else
2864 {
2865 ui_out_field_skip (uiout, "name");
2866 ui_out_field_skip (uiout, "current");
2867 }
2868
2869 do_cleanups (cleanup_child);
2870 }
2871
2872 do_cleanups (list_cleanup);
2873 }
2874
2875 /* Memory. */
2876 {
2877 struct cleanup *list_cleanup;
2878 VEC(mem_range_s) *available_memory = NULL;
2879 struct mem_range *r;
2880 int i;
2881
2882 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2883 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2884
2885 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2886
2887 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2888 {
2889 struct cleanup *cleanup_child;
2890 gdb_byte *data;
2891 struct gdbarch *gdbarch = target_gdbarch ();
2892
2893 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2894
2895 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
2896 ui_out_field_int (uiout, "length", r->length);
2897
2898 data = xmalloc (r->length);
2899 make_cleanup (xfree, data);
2900
2901 if (memory_contents)
2902 {
2903 if (target_read_memory (r->start, data, r->length) == 0)
2904 {
2905 int m;
2906 char *data_str, *p;
2907
2908 data_str = xmalloc (r->length * 2 + 1);
2909 make_cleanup (xfree, data_str);
2910
2911 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2912 sprintf (p, "%02x", data[m]);
2913 ui_out_field_string (uiout, "contents", data_str);
2914 }
2915 else
2916 ui_out_field_skip (uiout, "contents");
2917 }
2918 do_cleanups (cleanup_child);
2919 }
2920
2921 do_cleanups (list_cleanup);
2922 }
2923
2924 do_cleanups (old_chain);
2925 }
This page took 0.088649 seconds and 4 git commands to generate.