2f189d5bfad2788d08f4531e6a3cb5d2393cee02
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56 #include "observer.h"
57
58 #include <ctype.h>
59 #include "gdb_sys_time.h"
60
61 #if defined HAVE_SYS_RESOURCE_H
62 #include <sys/resource.h>
63 #endif
64
65 #ifdef HAVE_GETRUSAGE
66 struct rusage rusage;
67 #endif
68
69 enum
70 {
71 FROM_TTY = 0
72 };
73
74 int mi_debug_p;
75
76 /* This is used to pass the current command timestamp down to
77 continuation routines. */
78 static struct mi_timestamp *current_command_ts;
79
80 static int do_timings = 0;
81
82 char *current_token;
83 /* Few commands would like to know if options like --thread-group were
84 explicitly specified. This variable keeps the current parsed
85 command including all option, and make it possible. */
86 static struct mi_parse *current_context;
87
88 int running_result_record_printed = 1;
89
90 /* Flag indicating that the target has proceeded since the last
91 command was issued. */
92 int mi_proceeded;
93
94 extern void _initialize_mi_main (void);
95 static void mi_cmd_execute (struct mi_parse *parse);
96
97 static void mi_execute_cli_command (const char *cmd, int args_p,
98 const char *args);
99 static void mi_execute_async_cli_command (char *cli_command,
100 char **argv, int argc);
101 static int register_changed_p (int regnum, struct regcache *,
102 struct regcache *);
103 static void output_register (struct frame_info *, int regnum, int format,
104 int skip_unavailable);
105
106 /* Controls whether the frontend wants MI in async mode. */
107 static int mi_async = 0;
108
109 /* The set command writes to this variable. If the inferior is
110 executing, mi_async is *not* updated. */
111 static int mi_async_1 = 0;
112
113 static void
114 set_mi_async_command (char *args, int from_tty,
115 struct cmd_list_element *c)
116 {
117 if (have_live_inferiors ())
118 {
119 mi_async_1 = mi_async;
120 error (_("Cannot change this setting while the inferior is running."));
121 }
122
123 mi_async = mi_async_1;
124 }
125
126 static void
127 show_mi_async_command (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c,
129 const char *value)
130 {
131 fprintf_filtered (file,
132 _("Whether MI is in asynchronous mode is %s.\n"),
133 value);
134 }
135
136 /* A wrapper for target_can_async_p that takes the MI setting into
137 account. */
138
139 int
140 mi_async_p (void)
141 {
142 return mi_async && target_can_async_p ();
143 }
144
145 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
146 layer that calls libgdb. Any operation used in the below should be
147 formalized. */
148
149 static void timestamp (struct mi_timestamp *tv);
150
151 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
152 struct mi_timestamp *end);
153
154 void
155 mi_cmd_gdb_exit (char *command, char **argv, int argc)
156 {
157 struct mi_interp *mi
158 = (struct mi_interp *) interp_data (current_interpreter ());
159
160 /* We have to print everything right here because we never return. */
161 if (current_token)
162 fputs_unfiltered (current_token, mi->raw_stdout);
163 fputs_unfiltered ("^exit\n", mi->raw_stdout);
164 mi_out_put (current_uiout, mi->raw_stdout);
165 gdb_flush (mi->raw_stdout);
166 /* FIXME: The function called is not yet a formal libgdb function. */
167 quit_force (NULL, FROM_TTY);
168 }
169
170 void
171 mi_cmd_exec_next (char *command, char **argv, int argc)
172 {
173 /* FIXME: Should call a libgdb function, not a cli wrapper. */
174 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
175 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
176 else
177 mi_execute_async_cli_command ("next", argv, argc);
178 }
179
180 void
181 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
182 {
183 /* FIXME: Should call a libgdb function, not a cli wrapper. */
184 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
185 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
186 else
187 mi_execute_async_cli_command ("nexti", argv, argc);
188 }
189
190 void
191 mi_cmd_exec_step (char *command, char **argv, int argc)
192 {
193 /* FIXME: Should call a libgdb function, not a cli wrapper. */
194 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
195 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
196 else
197 mi_execute_async_cli_command ("step", argv, argc);
198 }
199
200 void
201 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
202 {
203 /* FIXME: Should call a libgdb function, not a cli wrapper. */
204 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
205 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
206 else
207 mi_execute_async_cli_command ("stepi", argv, argc);
208 }
209
210 void
211 mi_cmd_exec_finish (char *command, char **argv, int argc)
212 {
213 /* FIXME: Should call a libgdb function, not a cli wrapper. */
214 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
215 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
216 else
217 mi_execute_async_cli_command ("finish", argv, argc);
218 }
219
220 void
221 mi_cmd_exec_return (char *command, char **argv, int argc)
222 {
223 /* This command doesn't really execute the target, it just pops the
224 specified number of frames. */
225 if (argc)
226 /* Call return_command with from_tty argument equal to 0 so as to
227 avoid being queried. */
228 return_command (*argv, 0);
229 else
230 /* Call return_command with from_tty argument equal to 0 so as to
231 avoid being queried. */
232 return_command (NULL, 0);
233
234 /* Because we have called return_command with from_tty = 0, we need
235 to print the frame here. */
236 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
237 }
238
239 void
240 mi_cmd_exec_jump (char *args, char **argv, int argc)
241 {
242 /* FIXME: Should call a libgdb function, not a cli wrapper. */
243 mi_execute_async_cli_command ("jump", argv, argc);
244 }
245
246 static void
247 proceed_thread (struct thread_info *thread, int pid)
248 {
249 if (!is_stopped (thread->ptid))
250 return;
251
252 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
253 return;
254
255 switch_to_thread (thread->ptid);
256 clear_proceed_status (0);
257 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
258 }
259
260 static int
261 proceed_thread_callback (struct thread_info *thread, void *arg)
262 {
263 int pid = *(int *)arg;
264
265 proceed_thread (thread, pid);
266 return 0;
267 }
268
269 static void
270 exec_continue (char **argv, int argc)
271 {
272 prepare_execution_command (&current_target, mi_async_p ());
273
274 if (non_stop)
275 {
276 /* In non-stop mode, 'resume' always resumes a single thread.
277 Therefore, to resume all threads of the current inferior, or
278 all threads in all inferiors, we need to iterate over
279 threads.
280
281 See comment on infcmd.c:proceed_thread_callback for rationale. */
282 if (current_context->all || current_context->thread_group != -1)
283 {
284 int pid = 0;
285 struct cleanup *back_to = make_cleanup_restore_current_thread ();
286
287 if (!current_context->all)
288 {
289 struct inferior *inf
290 = find_inferior_id (current_context->thread_group);
291
292 pid = inf->pid;
293 }
294 iterate_over_threads (proceed_thread_callback, &pid);
295 do_cleanups (back_to);
296 }
297 else
298 {
299 continue_1 (0);
300 }
301 }
302 else
303 {
304 scoped_restore save_multi = make_scoped_restore (&sched_multi);
305
306 if (current_context->all)
307 {
308 sched_multi = 1;
309 continue_1 (0);
310 }
311 else
312 {
313 /* In all-stop mode, -exec-continue traditionally resumed
314 either all threads, or one thread, depending on the
315 'scheduler-locking' variable. Let's continue to do the
316 same. */
317 continue_1 (1);
318 }
319 }
320 }
321
322 static void
323 exec_direction_forward (void *notused)
324 {
325 execution_direction = EXEC_FORWARD;
326 }
327
328 static void
329 exec_reverse_continue (char **argv, int argc)
330 {
331 enum exec_direction_kind dir = execution_direction;
332 struct cleanup *old_chain;
333
334 if (dir == EXEC_REVERSE)
335 error (_("Already in reverse mode."));
336
337 if (!target_can_execute_reverse)
338 error (_("Target %s does not support this command."), target_shortname);
339
340 old_chain = make_cleanup (exec_direction_forward, NULL);
341 execution_direction = EXEC_REVERSE;
342 exec_continue (argv, argc);
343 do_cleanups (old_chain);
344 }
345
346 void
347 mi_cmd_exec_continue (char *command, char **argv, int argc)
348 {
349 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
350 exec_reverse_continue (argv + 1, argc - 1);
351 else
352 exec_continue (argv, argc);
353 }
354
355 static int
356 interrupt_thread_callback (struct thread_info *thread, void *arg)
357 {
358 int pid = *(int *)arg;
359
360 if (!is_running (thread->ptid))
361 return 0;
362
363 if (ptid_get_pid (thread->ptid) != pid)
364 return 0;
365
366 target_stop (thread->ptid);
367 return 0;
368 }
369
370 /* Interrupt the execution of the target. Note how we must play
371 around with the token variables, in order to display the current
372 token in the result of the interrupt command, and the previous
373 execution token when the target finally stops. See comments in
374 mi_cmd_execute. */
375
376 void
377 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
378 {
379 /* In all-stop mode, everything stops, so we don't need to try
380 anything specific. */
381 if (!non_stop)
382 {
383 interrupt_target_1 (0);
384 return;
385 }
386
387 if (current_context->all)
388 {
389 /* This will interrupt all threads in all inferiors. */
390 interrupt_target_1 (1);
391 }
392 else if (current_context->thread_group != -1)
393 {
394 struct inferior *inf = find_inferior_id (current_context->thread_group);
395
396 iterate_over_threads (interrupt_thread_callback, &inf->pid);
397 }
398 else
399 {
400 /* Interrupt just the current thread -- either explicitly
401 specified via --thread or whatever was current before
402 MI command was sent. */
403 interrupt_target_1 (0);
404 }
405 }
406
407 /* Callback for iterate_over_inferiors which starts the execution
408 of the given inferior.
409
410 ARG is a pointer to an integer whose value, if non-zero, indicates
411 that the program should be stopped when reaching the main subprogram
412 (similar to what the CLI "start" command does). */
413
414 static int
415 run_one_inferior (struct inferior *inf, void *arg)
416 {
417 int start_p = *(int *) arg;
418 const char *run_cmd = start_p ? "start" : "run";
419 struct target_ops *run_target = find_run_target ();
420 int async_p = mi_async && run_target->to_can_async_p (run_target);
421
422 if (inf->pid != 0)
423 {
424 if (inf->pid != ptid_get_pid (inferior_ptid))
425 {
426 struct thread_info *tp;
427
428 tp = any_thread_of_process (inf->pid);
429 if (!tp)
430 error (_("Inferior has no threads."));
431
432 switch_to_thread (tp->ptid);
433 }
434 }
435 else
436 {
437 set_current_inferior (inf);
438 switch_to_thread (null_ptid);
439 set_current_program_space (inf->pspace);
440 }
441 mi_execute_cli_command (run_cmd, async_p,
442 async_p ? "&" : NULL);
443 return 0;
444 }
445
446 void
447 mi_cmd_exec_run (char *command, char **argv, int argc)
448 {
449 int start_p = 0;
450
451 /* Parse the command options. */
452 enum opt
453 {
454 START_OPT,
455 };
456 static const struct mi_opt opts[] =
457 {
458 {"-start", START_OPT, 0},
459 {NULL, 0, 0},
460 };
461
462 int oind = 0;
463 char *oarg;
464
465 while (1)
466 {
467 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
468
469 if (opt < 0)
470 break;
471 switch ((enum opt) opt)
472 {
473 case START_OPT:
474 start_p = 1;
475 break;
476 }
477 }
478
479 /* This command does not accept any argument. Make sure the user
480 did not provide any. */
481 if (oind != argc)
482 error (_("Invalid argument: %s"), argv[oind]);
483
484 if (current_context->all)
485 {
486 struct cleanup *back_to = save_current_space_and_thread ();
487
488 iterate_over_inferiors (run_one_inferior, &start_p);
489 do_cleanups (back_to);
490 }
491 else
492 {
493 const char *run_cmd = start_p ? "start" : "run";
494 struct target_ops *run_target = find_run_target ();
495 int async_p = mi_async && run_target->to_can_async_p (run_target);
496
497 mi_execute_cli_command (run_cmd, async_p,
498 async_p ? "&" : NULL);
499 }
500 }
501
502
503 static int
504 find_thread_of_process (struct thread_info *ti, void *p)
505 {
506 int pid = *(int *)p;
507
508 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
509 return 1;
510
511 return 0;
512 }
513
514 void
515 mi_cmd_target_detach (char *command, char **argv, int argc)
516 {
517 if (argc != 0 && argc != 1)
518 error (_("Usage: -target-detach [pid | thread-group]"));
519
520 if (argc == 1)
521 {
522 struct thread_info *tp;
523 char *end = argv[0];
524 int pid;
525
526 /* First see if we are dealing with a thread-group id. */
527 if (*argv[0] == 'i')
528 {
529 struct inferior *inf;
530 int id = strtoul (argv[0] + 1, &end, 0);
531
532 if (*end != '\0')
533 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
534
535 inf = find_inferior_id (id);
536 if (!inf)
537 error (_("Non-existent thread-group id '%d'"), id);
538
539 pid = inf->pid;
540 }
541 else
542 {
543 /* We must be dealing with a pid. */
544 pid = strtol (argv[0], &end, 10);
545
546 if (*end != '\0')
547 error (_("Invalid identifier '%s'"), argv[0]);
548 }
549
550 /* Pick any thread in the desired process. Current
551 target_detach detaches from the parent of inferior_ptid. */
552 tp = iterate_over_threads (find_thread_of_process, &pid);
553 if (!tp)
554 error (_("Thread group is empty"));
555
556 switch_to_thread (tp->ptid);
557 }
558
559 detach_command (NULL, 0);
560 }
561
562 void
563 mi_cmd_thread_select (char *command, char **argv, int argc)
564 {
565 enum gdb_rc rc;
566 char *mi_error_message;
567 ptid_t previous_ptid = inferior_ptid;
568
569 if (argc != 1)
570 error (_("-thread-select: USAGE: threadnum."));
571
572 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
573
574 /* If thread switch did not succeed don't notify or print. */
575 if (rc == GDB_RC_FAIL)
576 {
577 make_cleanup (xfree, mi_error_message);
578 error ("%s", mi_error_message);
579 }
580
581 print_selected_thread_frame (current_uiout,
582 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
583
584 /* Notify if the thread has effectively changed. */
585 if (!ptid_equal (inferior_ptid, previous_ptid))
586 {
587 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
588 | USER_SELECTED_FRAME);
589 }
590 }
591
592 void
593 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
594 {
595 enum gdb_rc rc;
596 char *mi_error_message;
597
598 if (argc != 0)
599 error (_("-thread-list-ids: No arguments required."));
600
601 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
602
603 if (rc == GDB_RC_FAIL)
604 {
605 make_cleanup (xfree, mi_error_message);
606 error ("%s", mi_error_message);
607 }
608 }
609
610 void
611 mi_cmd_thread_info (char *command, char **argv, int argc)
612 {
613 if (argc != 0 && argc != 1)
614 error (_("Invalid MI command"));
615
616 print_thread_info (current_uiout, argv[0], -1);
617 }
618
619 struct collect_cores_data
620 {
621 int pid;
622
623 VEC (int) *cores;
624 };
625
626 static int
627 collect_cores (struct thread_info *ti, void *xdata)
628 {
629 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
630
631 if (ptid_get_pid (ti->ptid) == data->pid)
632 {
633 int core = target_core_of_thread (ti->ptid);
634
635 if (core != -1)
636 VEC_safe_push (int, data->cores, core);
637 }
638
639 return 0;
640 }
641
642 static int *
643 unique (int *b, int *e)
644 {
645 int *d = b;
646
647 while (++b != e)
648 if (*d != *b)
649 *++d = *b;
650 return ++d;
651 }
652
653 struct print_one_inferior_data
654 {
655 int recurse;
656 VEC (int) *inferiors;
657 };
658
659 static int
660 print_one_inferior (struct inferior *inferior, void *xdata)
661 {
662 struct print_one_inferior_data *top_data
663 = (struct print_one_inferior_data *) xdata;
664 struct ui_out *uiout = current_uiout;
665
666 if (VEC_empty (int, top_data->inferiors)
667 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
668 VEC_length (int, top_data->inferiors), sizeof (int),
669 compare_positive_ints))
670 {
671 struct collect_cores_data data;
672 struct cleanup *back_to
673 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
674
675 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
676 ui_out_field_string (uiout, "type", "process");
677 if (inferior->has_exit_code)
678 ui_out_field_string (uiout, "exit-code",
679 int_string (inferior->exit_code, 8, 0, 0, 1));
680 if (inferior->pid != 0)
681 ui_out_field_int (uiout, "pid", inferior->pid);
682
683 if (inferior->pspace->pspace_exec_filename != NULL)
684 {
685 ui_out_field_string (uiout, "executable",
686 inferior->pspace->pspace_exec_filename);
687 }
688
689 data.cores = 0;
690 if (inferior->pid != 0)
691 {
692 data.pid = inferior->pid;
693 iterate_over_threads (collect_cores, &data);
694 }
695
696 if (!VEC_empty (int, data.cores))
697 {
698 int *b, *e;
699 struct cleanup *back_to_2 =
700 make_cleanup_ui_out_list_begin_end (uiout, "cores");
701
702 qsort (VEC_address (int, data.cores),
703 VEC_length (int, data.cores), sizeof (int),
704 compare_positive_ints);
705
706 b = VEC_address (int, data.cores);
707 e = b + VEC_length (int, data.cores);
708 e = unique (b, e);
709
710 for (; b != e; ++b)
711 ui_out_field_int (uiout, NULL, *b);
712
713 do_cleanups (back_to_2);
714 }
715
716 if (top_data->recurse)
717 print_thread_info (uiout, NULL, inferior->pid);
718
719 do_cleanups (back_to);
720 }
721
722 return 0;
723 }
724
725 /* Output a field named 'cores' with a list as the value. The
726 elements of the list are obtained by splitting 'cores' on
727 comma. */
728
729 static void
730 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
731 {
732 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
733 field_name);
734 char *cores = xstrdup (xcores);
735 char *p = cores;
736
737 make_cleanup (xfree, cores);
738
739 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
740 ui_out_field_string (uiout, NULL, p);
741
742 do_cleanups (back_to);
743 }
744
745 static void
746 free_vector_of_ints (void *xvector)
747 {
748 VEC (int) **vector = (VEC (int) **) xvector;
749
750 VEC_free (int, *vector);
751 }
752
753 static void
754 do_nothing (splay_tree_key k)
755 {
756 }
757
758 static void
759 free_vector_of_osdata_items (splay_tree_value xvalue)
760 {
761 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
762
763 /* We don't free the items itself, it will be done separately. */
764 VEC_free (osdata_item_s, value);
765 }
766
767 static int
768 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
769 {
770 int a = xa;
771 int b = xb;
772
773 return a - b;
774 }
775
776 static void
777 free_splay_tree (void *xt)
778 {
779 splay_tree t = (splay_tree) xt;
780 splay_tree_delete (t);
781 }
782
783 static void
784 list_available_thread_groups (VEC (int) *ids, int recurse)
785 {
786 struct osdata *data;
787 struct osdata_item *item;
788 int ix_items;
789 struct ui_out *uiout = current_uiout;
790 struct cleanup *cleanup;
791
792 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
793 The vector contains information about all threads for the given pid.
794 This is assigned an initial value to avoid "may be used uninitialized"
795 warning from gcc. */
796 splay_tree tree = NULL;
797
798 /* get_osdata will throw if it cannot return data. */
799 data = get_osdata ("processes");
800 cleanup = make_cleanup_osdata_free (data);
801
802 if (recurse)
803 {
804 struct osdata *threads = get_osdata ("threads");
805
806 make_cleanup_osdata_free (threads);
807 tree = splay_tree_new (splay_tree_int_comparator,
808 do_nothing,
809 free_vector_of_osdata_items);
810 make_cleanup (free_splay_tree, tree);
811
812 for (ix_items = 0;
813 VEC_iterate (osdata_item_s, threads->items,
814 ix_items, item);
815 ix_items++)
816 {
817 const char *pid = get_osdata_column (item, "pid");
818 int pid_i = strtoul (pid, NULL, 0);
819 VEC (osdata_item_s) *vec = 0;
820
821 splay_tree_node n = splay_tree_lookup (tree, pid_i);
822 if (!n)
823 {
824 VEC_safe_push (osdata_item_s, vec, item);
825 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
826 }
827 else
828 {
829 vec = (VEC (osdata_item_s) *) n->value;
830 VEC_safe_push (osdata_item_s, vec, item);
831 n->value = (splay_tree_value) vec;
832 }
833 }
834 }
835
836 make_cleanup_ui_out_list_begin_end (uiout, "groups");
837
838 for (ix_items = 0;
839 VEC_iterate (osdata_item_s, data->items,
840 ix_items, item);
841 ix_items++)
842 {
843 struct cleanup *back_to;
844
845 const char *pid = get_osdata_column (item, "pid");
846 const char *cmd = get_osdata_column (item, "command");
847 const char *user = get_osdata_column (item, "user");
848 const char *cores = get_osdata_column (item, "cores");
849
850 int pid_i = strtoul (pid, NULL, 0);
851
852 /* At present, the target will return all available processes
853 and if information about specific ones was required, we filter
854 undesired processes here. */
855 if (ids && bsearch (&pid_i, VEC_address (int, ids),
856 VEC_length (int, ids),
857 sizeof (int), compare_positive_ints) == NULL)
858 continue;
859
860
861 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
862
863 ui_out_field_fmt (uiout, "id", "%s", pid);
864 ui_out_field_string (uiout, "type", "process");
865 if (cmd)
866 ui_out_field_string (uiout, "description", cmd);
867 if (user)
868 ui_out_field_string (uiout, "user", user);
869 if (cores)
870 output_cores (uiout, "cores", cores);
871
872 if (recurse)
873 {
874 splay_tree_node n = splay_tree_lookup (tree, pid_i);
875 if (n)
876 {
877 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
878 struct osdata_item *child;
879 int ix_child;
880
881 make_cleanup_ui_out_list_begin_end (uiout, "threads");
882
883 for (ix_child = 0;
884 VEC_iterate (osdata_item_s, children, ix_child, child);
885 ++ix_child)
886 {
887 struct cleanup *back_to_2 =
888 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
889 const char *tid = get_osdata_column (child, "tid");
890 const char *tcore = get_osdata_column (child, "core");
891
892 ui_out_field_string (uiout, "id", tid);
893 if (tcore)
894 ui_out_field_string (uiout, "core", tcore);
895
896 do_cleanups (back_to_2);
897 }
898 }
899 }
900
901 do_cleanups (back_to);
902 }
903
904 do_cleanups (cleanup);
905 }
906
907 void
908 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
909 {
910 struct ui_out *uiout = current_uiout;
911 struct cleanup *back_to;
912 int available = 0;
913 int recurse = 0;
914 VEC (int) *ids = 0;
915
916 enum opt
917 {
918 AVAILABLE_OPT, RECURSE_OPT
919 };
920 static const struct mi_opt opts[] =
921 {
922 {"-available", AVAILABLE_OPT, 0},
923 {"-recurse", RECURSE_OPT, 1},
924 { 0, 0, 0 }
925 };
926
927 int oind = 0;
928 char *oarg;
929
930 while (1)
931 {
932 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
933 &oind, &oarg);
934
935 if (opt < 0)
936 break;
937 switch ((enum opt) opt)
938 {
939 case AVAILABLE_OPT:
940 available = 1;
941 break;
942 case RECURSE_OPT:
943 if (strcmp (oarg, "0") == 0)
944 ;
945 else if (strcmp (oarg, "1") == 0)
946 recurse = 1;
947 else
948 error (_("only '0' and '1' are valid values "
949 "for the '--recurse' option"));
950 break;
951 }
952 }
953
954 for (; oind < argc; ++oind)
955 {
956 char *end;
957 int inf;
958
959 if (*(argv[oind]) != 'i')
960 error (_("invalid syntax of group id '%s'"), argv[oind]);
961
962 inf = strtoul (argv[oind] + 1, &end, 0);
963
964 if (*end != '\0')
965 error (_("invalid syntax of group id '%s'"), argv[oind]);
966 VEC_safe_push (int, ids, inf);
967 }
968 if (VEC_length (int, ids) > 1)
969 qsort (VEC_address (int, ids),
970 VEC_length (int, ids),
971 sizeof (int), compare_positive_ints);
972
973 back_to = make_cleanup (free_vector_of_ints, &ids);
974
975 if (available)
976 {
977 list_available_thread_groups (ids, recurse);
978 }
979 else if (VEC_length (int, ids) == 1)
980 {
981 /* Local thread groups, single id. */
982 int id = *VEC_address (int, ids);
983 struct inferior *inf = find_inferior_id (id);
984
985 if (!inf)
986 error (_("Non-existent thread group id '%d'"), id);
987
988 print_thread_info (uiout, NULL, inf->pid);
989 }
990 else
991 {
992 struct print_one_inferior_data data;
993
994 data.recurse = recurse;
995 data.inferiors = ids;
996
997 /* Local thread groups. Either no explicit ids -- and we
998 print everything, or several explicit ids. In both cases,
999 we print more than one group, and have to use 'groups'
1000 as the top-level element. */
1001 make_cleanup_ui_out_list_begin_end (uiout, "groups");
1002 update_thread_list ();
1003 iterate_over_inferiors (print_one_inferior, &data);
1004 }
1005
1006 do_cleanups (back_to);
1007 }
1008
1009 void
1010 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
1011 {
1012 struct gdbarch *gdbarch;
1013 struct ui_out *uiout = current_uiout;
1014 int regnum, numregs;
1015 int i;
1016 struct cleanup *cleanup;
1017
1018 /* Note that the test for a valid register must include checking the
1019 gdbarch_register_name because gdbarch_num_regs may be allocated
1020 for the union of the register sets within a family of related
1021 processors. In this case, some entries of gdbarch_register_name
1022 will change depending upon the particular processor being
1023 debugged. */
1024
1025 gdbarch = get_current_arch ();
1026 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1027
1028 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1029
1030 if (argc == 0) /* No args, just do all the regs. */
1031 {
1032 for (regnum = 0;
1033 regnum < numregs;
1034 regnum++)
1035 {
1036 if (gdbarch_register_name (gdbarch, regnum) == NULL
1037 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1038 ui_out_field_string (uiout, NULL, "");
1039 else
1040 ui_out_field_string (uiout, NULL,
1041 gdbarch_register_name (gdbarch, regnum));
1042 }
1043 }
1044
1045 /* Else, list of register #s, just do listed regs. */
1046 for (i = 0; i < argc; i++)
1047 {
1048 regnum = atoi (argv[i]);
1049 if (regnum < 0 || regnum >= numregs)
1050 error (_("bad register number"));
1051
1052 if (gdbarch_register_name (gdbarch, regnum) == NULL
1053 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1054 ui_out_field_string (uiout, NULL, "");
1055 else
1056 ui_out_field_string (uiout, NULL,
1057 gdbarch_register_name (gdbarch, regnum));
1058 }
1059 do_cleanups (cleanup);
1060 }
1061
1062 void
1063 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1064 {
1065 static struct regcache *this_regs = NULL;
1066 struct ui_out *uiout = current_uiout;
1067 struct regcache *prev_regs;
1068 struct gdbarch *gdbarch;
1069 int regnum, numregs, changed;
1070 int i;
1071 struct cleanup *cleanup;
1072
1073 /* The last time we visited this function, the current frame's
1074 register contents were saved in THIS_REGS. Move THIS_REGS over
1075 to PREV_REGS, and refresh THIS_REGS with the now-current register
1076 contents. */
1077
1078 prev_regs = this_regs;
1079 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1080 cleanup = make_cleanup_regcache_xfree (prev_regs);
1081
1082 /* Note that the test for a valid register must include checking the
1083 gdbarch_register_name because gdbarch_num_regs may be allocated
1084 for the union of the register sets within a family of related
1085 processors. In this case, some entries of gdbarch_register_name
1086 will change depending upon the particular processor being
1087 debugged. */
1088
1089 gdbarch = get_regcache_arch (this_regs);
1090 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1091
1092 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1093
1094 if (argc == 0)
1095 {
1096 /* No args, just do all the regs. */
1097 for (regnum = 0;
1098 regnum < numregs;
1099 regnum++)
1100 {
1101 if (gdbarch_register_name (gdbarch, regnum) == NULL
1102 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1103 continue;
1104 changed = register_changed_p (regnum, prev_regs, this_regs);
1105 if (changed < 0)
1106 error (_("-data-list-changed-registers: "
1107 "Unable to read register contents."));
1108 else if (changed)
1109 ui_out_field_int (uiout, NULL, regnum);
1110 }
1111 }
1112
1113 /* Else, list of register #s, just do listed regs. */
1114 for (i = 0; i < argc; i++)
1115 {
1116 regnum = atoi (argv[i]);
1117
1118 if (regnum >= 0
1119 && regnum < numregs
1120 && gdbarch_register_name (gdbarch, regnum) != NULL
1121 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1122 {
1123 changed = register_changed_p (regnum, prev_regs, this_regs);
1124 if (changed < 0)
1125 error (_("-data-list-changed-registers: "
1126 "Unable to read register contents."));
1127 else if (changed)
1128 ui_out_field_int (uiout, NULL, regnum);
1129 }
1130 else
1131 error (_("bad register number"));
1132 }
1133 do_cleanups (cleanup);
1134 }
1135
1136 static int
1137 register_changed_p (int regnum, struct regcache *prev_regs,
1138 struct regcache *this_regs)
1139 {
1140 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1141 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1142 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1143 enum register_status prev_status;
1144 enum register_status this_status;
1145
1146 /* First time through or after gdbarch change consider all registers
1147 as changed. */
1148 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1149 return 1;
1150
1151 /* Get register contents and compare. */
1152 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1153 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1154
1155 if (this_status != prev_status)
1156 return 1;
1157 else if (this_status == REG_VALID)
1158 return memcmp (prev_buffer, this_buffer,
1159 register_size (gdbarch, regnum)) != 0;
1160 else
1161 return 0;
1162 }
1163
1164 /* Return a list of register number and value pairs. The valid
1165 arguments expected are: a letter indicating the format in which to
1166 display the registers contents. This can be one of: x
1167 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1168 (raw). After the format argument there can be a sequence of
1169 numbers, indicating which registers to fetch the content of. If
1170 the format is the only argument, a list of all the registers with
1171 their values is returned. */
1172
1173 void
1174 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1175 {
1176 struct ui_out *uiout = current_uiout;
1177 struct frame_info *frame;
1178 struct gdbarch *gdbarch;
1179 int regnum, numregs, format;
1180 int i;
1181 struct cleanup *list_cleanup;
1182 int skip_unavailable = 0;
1183 int oind = 0;
1184 enum opt
1185 {
1186 SKIP_UNAVAILABLE,
1187 };
1188 static const struct mi_opt opts[] =
1189 {
1190 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1191 { 0, 0, 0 }
1192 };
1193
1194 /* Note that the test for a valid register must include checking the
1195 gdbarch_register_name because gdbarch_num_regs may be allocated
1196 for the union of the register sets within a family of related
1197 processors. In this case, some entries of gdbarch_register_name
1198 will change depending upon the particular processor being
1199 debugged. */
1200
1201 while (1)
1202 {
1203 char *oarg;
1204 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1205 opts, &oind, &oarg);
1206
1207 if (opt < 0)
1208 break;
1209 switch ((enum opt) opt)
1210 {
1211 case SKIP_UNAVAILABLE:
1212 skip_unavailable = 1;
1213 break;
1214 }
1215 }
1216
1217 if (argc - oind < 1)
1218 error (_("-data-list-register-values: Usage: "
1219 "-data-list-register-values [--skip-unavailable] <format>"
1220 " [<regnum1>...<regnumN>]"));
1221
1222 format = (int) argv[oind][0];
1223
1224 frame = get_selected_frame (NULL);
1225 gdbarch = get_frame_arch (frame);
1226 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1227
1228 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1229
1230 if (argc - oind == 1)
1231 {
1232 /* No args, beside the format: do all the regs. */
1233 for (regnum = 0;
1234 regnum < numregs;
1235 regnum++)
1236 {
1237 if (gdbarch_register_name (gdbarch, regnum) == NULL
1238 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1239 continue;
1240
1241 output_register (frame, regnum, format, skip_unavailable);
1242 }
1243 }
1244
1245 /* Else, list of register #s, just do listed regs. */
1246 for (i = 1 + oind; i < argc; i++)
1247 {
1248 regnum = atoi (argv[i]);
1249
1250 if (regnum >= 0
1251 && regnum < numregs
1252 && gdbarch_register_name (gdbarch, regnum) != NULL
1253 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1254 output_register (frame, regnum, format, skip_unavailable);
1255 else
1256 error (_("bad register number"));
1257 }
1258 do_cleanups (list_cleanup);
1259 }
1260
1261 /* Output one register REGNUM's contents in the desired FORMAT. If
1262 SKIP_UNAVAILABLE is true, skip the register if it is
1263 unavailable. */
1264
1265 static void
1266 output_register (struct frame_info *frame, int regnum, int format,
1267 int skip_unavailable)
1268 {
1269 struct ui_out *uiout = current_uiout;
1270 struct value *val = value_of_register (regnum, frame);
1271 struct cleanup *tuple_cleanup;
1272 struct value_print_options opts;
1273 struct ui_file *stb;
1274
1275 if (skip_unavailable && !value_entirely_available (val))
1276 return;
1277
1278 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1279 ui_out_field_int (uiout, "number", regnum);
1280
1281 if (format == 'N')
1282 format = 0;
1283
1284 if (format == 'r')
1285 format = 'z';
1286
1287 stb = mem_fileopen ();
1288 make_cleanup_ui_file_delete (stb);
1289
1290 get_formatted_print_options (&opts, format);
1291 opts.deref_ref = 1;
1292 val_print (value_type (val),
1293 value_contents_for_printing (val),
1294 value_embedded_offset (val), 0,
1295 stb, 0, val, &opts, current_language);
1296 ui_out_field_stream (uiout, "value", stb);
1297
1298 do_cleanups (tuple_cleanup);
1299 }
1300
1301 /* Write given values into registers. The registers and values are
1302 given as pairs. The corresponding MI command is
1303 -data-write-register-values <format>
1304 [<regnum1> <value1>...<regnumN> <valueN>] */
1305 void
1306 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1307 {
1308 struct regcache *regcache;
1309 struct gdbarch *gdbarch;
1310 int numregs, i;
1311
1312 /* Note that the test for a valid register must include checking the
1313 gdbarch_register_name because gdbarch_num_regs may be allocated
1314 for the union of the register sets within a family of related
1315 processors. In this case, some entries of gdbarch_register_name
1316 will change depending upon the particular processor being
1317 debugged. */
1318
1319 regcache = get_current_regcache ();
1320 gdbarch = get_regcache_arch (regcache);
1321 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1322
1323 if (argc == 0)
1324 error (_("-data-write-register-values: Usage: -data-write-register-"
1325 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1326
1327 if (!target_has_registers)
1328 error (_("-data-write-register-values: No registers."));
1329
1330 if (!(argc - 1))
1331 error (_("-data-write-register-values: No regs and values specified."));
1332
1333 if ((argc - 1) % 2)
1334 error (_("-data-write-register-values: "
1335 "Regs and vals are not in pairs."));
1336
1337 for (i = 1; i < argc; i = i + 2)
1338 {
1339 int regnum = atoi (argv[i]);
1340
1341 if (regnum >= 0 && regnum < numregs
1342 && gdbarch_register_name (gdbarch, regnum)
1343 && *gdbarch_register_name (gdbarch, regnum))
1344 {
1345 LONGEST value;
1346
1347 /* Get the value as a number. */
1348 value = parse_and_eval_address (argv[i + 1]);
1349
1350 /* Write it down. */
1351 regcache_cooked_write_signed (regcache, regnum, value);
1352 }
1353 else
1354 error (_("bad register number"));
1355 }
1356 }
1357
1358 /* Evaluate the value of the argument. The argument is an
1359 expression. If the expression contains spaces it needs to be
1360 included in double quotes. */
1361
1362 void
1363 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1364 {
1365 struct cleanup *old_chain;
1366 struct value *val;
1367 struct ui_file *stb;
1368 struct value_print_options opts;
1369 struct ui_out *uiout = current_uiout;
1370
1371 stb = mem_fileopen ();
1372 old_chain = make_cleanup_ui_file_delete (stb);
1373
1374 if (argc != 1)
1375 error (_("-data-evaluate-expression: "
1376 "Usage: -data-evaluate-expression expression"));
1377
1378 expression_up expr = parse_expression (argv[0]);
1379
1380 val = evaluate_expression (expr.get ());
1381
1382 /* Print the result of the expression evaluation. */
1383 get_user_print_options (&opts);
1384 opts.deref_ref = 0;
1385 common_val_print (val, stb, 0, &opts, current_language);
1386
1387 ui_out_field_stream (uiout, "value", stb);
1388
1389 do_cleanups (old_chain);
1390 }
1391
1392 /* This is the -data-read-memory command.
1393
1394 ADDR: start address of data to be dumped.
1395 WORD-FORMAT: a char indicating format for the ``word''. See
1396 the ``x'' command.
1397 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1398 NR_ROW: Number of rows.
1399 NR_COL: The number of colums (words per row).
1400 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1401 ASCHAR for unprintable characters.
1402
1403 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1404 displayes them. Returns:
1405
1406 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1407
1408 Returns:
1409 The number of bytes read is SIZE*ROW*COL. */
1410
1411 void
1412 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1413 {
1414 struct gdbarch *gdbarch = get_current_arch ();
1415 struct ui_out *uiout = current_uiout;
1416 CORE_ADDR addr;
1417 long total_bytes, nr_cols, nr_rows;
1418 char word_format;
1419 struct type *word_type;
1420 long word_size;
1421 char word_asize;
1422 char aschar;
1423 int nr_bytes;
1424 long offset = 0;
1425 int oind = 0;
1426 char *oarg;
1427 enum opt
1428 {
1429 OFFSET_OPT
1430 };
1431 static const struct mi_opt opts[] =
1432 {
1433 {"o", OFFSET_OPT, 1},
1434 { 0, 0, 0 }
1435 };
1436
1437 while (1)
1438 {
1439 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1440 &oind, &oarg);
1441
1442 if (opt < 0)
1443 break;
1444 switch ((enum opt) opt)
1445 {
1446 case OFFSET_OPT:
1447 offset = atol (oarg);
1448 break;
1449 }
1450 }
1451 argv += oind;
1452 argc -= oind;
1453
1454 if (argc < 5 || argc > 6)
1455 error (_("-data-read-memory: Usage: "
1456 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1457
1458 /* Extract all the arguments. */
1459
1460 /* Start address of the memory dump. */
1461 addr = parse_and_eval_address (argv[0]) + offset;
1462 /* The format character to use when displaying a memory word. See
1463 the ``x'' command. */
1464 word_format = argv[1][0];
1465 /* The size of the memory word. */
1466 word_size = atol (argv[2]);
1467 switch (word_size)
1468 {
1469 case 1:
1470 word_type = builtin_type (gdbarch)->builtin_int8;
1471 word_asize = 'b';
1472 break;
1473 case 2:
1474 word_type = builtin_type (gdbarch)->builtin_int16;
1475 word_asize = 'h';
1476 break;
1477 case 4:
1478 word_type = builtin_type (gdbarch)->builtin_int32;
1479 word_asize = 'w';
1480 break;
1481 case 8:
1482 word_type = builtin_type (gdbarch)->builtin_int64;
1483 word_asize = 'g';
1484 break;
1485 default:
1486 word_type = builtin_type (gdbarch)->builtin_int8;
1487 word_asize = 'b';
1488 }
1489 /* The number of rows. */
1490 nr_rows = atol (argv[3]);
1491 if (nr_rows <= 0)
1492 error (_("-data-read-memory: invalid number of rows."));
1493
1494 /* Number of bytes per row. */
1495 nr_cols = atol (argv[4]);
1496 if (nr_cols <= 0)
1497 error (_("-data-read-memory: invalid number of columns."));
1498
1499 /* The un-printable character when printing ascii. */
1500 if (argc == 6)
1501 aschar = *argv[5];
1502 else
1503 aschar = 0;
1504
1505 /* Create a buffer and read it in. */
1506 total_bytes = word_size * nr_rows * nr_cols;
1507
1508 gdb::unique_ptr<gdb_byte[]> mbuf (new gdb_byte[total_bytes]);
1509
1510 /* Dispatch memory reads to the topmost target, not the flattened
1511 current_target. */
1512 nr_bytes = target_read (current_target.beneath,
1513 TARGET_OBJECT_MEMORY, NULL, mbuf.get (),
1514 addr, total_bytes);
1515 if (nr_bytes <= 0)
1516 error (_("Unable to read memory."));
1517
1518 /* Output the header information. */
1519 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1520 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1521 ui_out_field_int (uiout, "total-bytes", total_bytes);
1522 ui_out_field_core_addr (uiout, "next-row",
1523 gdbarch, addr + word_size * nr_cols);
1524 ui_out_field_core_addr (uiout, "prev-row",
1525 gdbarch, addr - word_size * nr_cols);
1526 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1527 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1528
1529 /* Build the result as a two dimentional table. */
1530 {
1531 struct ui_file *stream;
1532 struct cleanup *cleanup_stream;
1533 int row;
1534 int row_byte;
1535
1536 stream = mem_fileopen ();
1537 cleanup_stream = make_cleanup_ui_file_delete (stream);
1538
1539 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1540 for (row = 0, row_byte = 0;
1541 row < nr_rows;
1542 row++, row_byte += nr_cols * word_size)
1543 {
1544 int col;
1545 int col_byte;
1546 struct cleanup *cleanup_tuple;
1547 struct cleanup *cleanup_list_data;
1548 struct value_print_options opts;
1549
1550 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1551 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1552 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1553 row_byte); */
1554 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1555 get_formatted_print_options (&opts, word_format);
1556 for (col = 0, col_byte = row_byte;
1557 col < nr_cols;
1558 col++, col_byte += word_size)
1559 {
1560 if (col_byte + word_size > nr_bytes)
1561 {
1562 ui_out_field_string (uiout, NULL, "N/A");
1563 }
1564 else
1565 {
1566 ui_file_rewind (stream);
1567 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1568 word_asize, stream);
1569 ui_out_field_stream (uiout, NULL, stream);
1570 }
1571 }
1572 do_cleanups (cleanup_list_data);
1573 if (aschar)
1574 {
1575 int byte;
1576
1577 ui_file_rewind (stream);
1578 for (byte = row_byte;
1579 byte < row_byte + word_size * nr_cols; byte++)
1580 {
1581 if (byte >= nr_bytes)
1582 fputc_unfiltered ('X', stream);
1583 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1584 fputc_unfiltered (aschar, stream);
1585 else
1586 fputc_unfiltered (mbuf[byte], stream);
1587 }
1588 ui_out_field_stream (uiout, "ascii", stream);
1589 }
1590 do_cleanups (cleanup_tuple);
1591 }
1592 do_cleanups (cleanup_stream);
1593 }
1594 }
1595
1596 void
1597 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1598 {
1599 struct gdbarch *gdbarch = get_current_arch ();
1600 struct ui_out *uiout = current_uiout;
1601 struct cleanup *cleanups;
1602 CORE_ADDR addr;
1603 LONGEST length;
1604 memory_read_result_s *read_result;
1605 int ix;
1606 VEC(memory_read_result_s) *result;
1607 long offset = 0;
1608 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1609 int oind = 0;
1610 char *oarg;
1611 enum opt
1612 {
1613 OFFSET_OPT
1614 };
1615 static const struct mi_opt opts[] =
1616 {
1617 {"o", OFFSET_OPT, 1},
1618 { 0, 0, 0 }
1619 };
1620
1621 while (1)
1622 {
1623 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1624 &oind, &oarg);
1625 if (opt < 0)
1626 break;
1627 switch ((enum opt) opt)
1628 {
1629 case OFFSET_OPT:
1630 offset = atol (oarg);
1631 break;
1632 }
1633 }
1634 argv += oind;
1635 argc -= oind;
1636
1637 if (argc != 2)
1638 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1639
1640 addr = parse_and_eval_address (argv[0]) + offset;
1641 length = atol (argv[1]);
1642
1643 result = read_memory_robust (current_target.beneath, addr, length);
1644
1645 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1646
1647 if (VEC_length (memory_read_result_s, result) == 0)
1648 error (_("Unable to read memory."));
1649
1650 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1651 for (ix = 0;
1652 VEC_iterate (memory_read_result_s, result, ix, read_result);
1653 ++ix)
1654 {
1655 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1656 char *data, *p;
1657 int i;
1658 int alloc_len;
1659
1660 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1661 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1662 - addr);
1663 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1664
1665 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1666 data = (char *) xmalloc (alloc_len);
1667
1668 for (i = 0, p = data;
1669 i < ((read_result->end - read_result->begin) * unit_size);
1670 ++i, p += 2)
1671 {
1672 sprintf (p, "%02x", read_result->data[i]);
1673 }
1674 ui_out_field_string (uiout, "contents", data);
1675 xfree (data);
1676 do_cleanups (t);
1677 }
1678 do_cleanups (cleanups);
1679 }
1680
1681 /* Implementation of the -data-write_memory command.
1682
1683 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1684 offset from the beginning of the memory grid row where the cell to
1685 be written is.
1686 ADDR: start address of the row in the memory grid where the memory
1687 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1688 the location to write to.
1689 FORMAT: a char indicating format for the ``word''. See
1690 the ``x'' command.
1691 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1692 VALUE: value to be written into the memory address.
1693
1694 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1695
1696 Prints nothing. */
1697
1698 void
1699 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1700 {
1701 struct gdbarch *gdbarch = get_current_arch ();
1702 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1703 CORE_ADDR addr;
1704 long word_size;
1705 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1706 enough when using a compiler other than GCC. */
1707 LONGEST value;
1708 gdb_byte *buffer;
1709 struct cleanup *old_chain;
1710 long offset = 0;
1711 int oind = 0;
1712 char *oarg;
1713 enum opt
1714 {
1715 OFFSET_OPT
1716 };
1717 static const struct mi_opt opts[] =
1718 {
1719 {"o", OFFSET_OPT, 1},
1720 { 0, 0, 0 }
1721 };
1722
1723 while (1)
1724 {
1725 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1726 &oind, &oarg);
1727
1728 if (opt < 0)
1729 break;
1730 switch ((enum opt) opt)
1731 {
1732 case OFFSET_OPT:
1733 offset = atol (oarg);
1734 break;
1735 }
1736 }
1737 argv += oind;
1738 argc -= oind;
1739
1740 if (argc != 4)
1741 error (_("-data-write-memory: Usage: "
1742 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1743
1744 /* Extract all the arguments. */
1745 /* Start address of the memory dump. */
1746 addr = parse_and_eval_address (argv[0]);
1747 /* The size of the memory word. */
1748 word_size = atol (argv[2]);
1749
1750 /* Calculate the real address of the write destination. */
1751 addr += (offset * word_size);
1752
1753 /* Get the value as a number. */
1754 value = parse_and_eval_address (argv[3]);
1755 /* Get the value into an array. */
1756 buffer = (gdb_byte *) xmalloc (word_size);
1757 old_chain = make_cleanup (xfree, buffer);
1758 store_signed_integer (buffer, word_size, byte_order, value);
1759 /* Write it down to memory. */
1760 write_memory_with_notification (addr, buffer, word_size);
1761 /* Free the buffer. */
1762 do_cleanups (old_chain);
1763 }
1764
1765 /* Implementation of the -data-write-memory-bytes command.
1766
1767 ADDR: start address
1768 DATA: string of bytes to write at that address
1769 COUNT: number of bytes to be filled (decimal integer). */
1770
1771 void
1772 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1773 {
1774 CORE_ADDR addr;
1775 char *cdata;
1776 gdb_byte *data;
1777 gdb_byte *databuf;
1778 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1779 long int count_units;
1780 struct cleanup *back_to;
1781 int unit_size;
1782
1783 if (argc != 2 && argc != 3)
1784 error (_("Usage: ADDR DATA [COUNT]."));
1785
1786 addr = parse_and_eval_address (argv[0]);
1787 cdata = argv[1];
1788 len_hex = strlen (cdata);
1789 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1790
1791 if (len_hex % (unit_size * 2) != 0)
1792 error (_("Hex-encoded '%s' must represent an integral number of "
1793 "addressable memory units."),
1794 cdata);
1795
1796 len_bytes = len_hex / 2;
1797 len_units = len_bytes / unit_size;
1798
1799 if (argc == 3)
1800 count_units = strtoul (argv[2], NULL, 10);
1801 else
1802 count_units = len_units;
1803
1804 databuf = XNEWVEC (gdb_byte, len_bytes);
1805 back_to = make_cleanup (xfree, databuf);
1806
1807 for (i = 0; i < len_bytes; ++i)
1808 {
1809 int x;
1810 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1811 error (_("Invalid argument"));
1812 databuf[i] = (gdb_byte) x;
1813 }
1814
1815 if (len_units < count_units)
1816 {
1817 /* Pattern is made of less units than count:
1818 repeat pattern to fill memory. */
1819 data = (gdb_byte *) xmalloc (count_units * unit_size);
1820 make_cleanup (xfree, data);
1821
1822 /* Number of times the pattern is entirely repeated. */
1823 steps = count_units / len_units;
1824 /* Number of remaining addressable memory units. */
1825 remaining_units = count_units % len_units;
1826 for (i = 0; i < steps; i++)
1827 memcpy (data + i * len_bytes, databuf, len_bytes);
1828
1829 if (remaining_units > 0)
1830 memcpy (data + steps * len_bytes, databuf,
1831 remaining_units * unit_size);
1832 }
1833 else
1834 {
1835 /* Pattern is longer than or equal to count:
1836 just copy count addressable memory units. */
1837 data = databuf;
1838 }
1839
1840 write_memory_with_notification (addr, data, count_units);
1841
1842 do_cleanups (back_to);
1843 }
1844
1845 void
1846 mi_cmd_enable_timings (char *command, char **argv, int argc)
1847 {
1848 if (argc == 0)
1849 do_timings = 1;
1850 else if (argc == 1)
1851 {
1852 if (strcmp (argv[0], "yes") == 0)
1853 do_timings = 1;
1854 else if (strcmp (argv[0], "no") == 0)
1855 do_timings = 0;
1856 else
1857 goto usage_error;
1858 }
1859 else
1860 goto usage_error;
1861
1862 return;
1863
1864 usage_error:
1865 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1866 }
1867
1868 void
1869 mi_cmd_list_features (char *command, char **argv, int argc)
1870 {
1871 if (argc == 0)
1872 {
1873 struct cleanup *cleanup = NULL;
1874 struct ui_out *uiout = current_uiout;
1875
1876 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1877 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1878 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1879 ui_out_field_string (uiout, NULL, "thread-info");
1880 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1881 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1882 ui_out_field_string (uiout, NULL, "ada-task-info");
1883 ui_out_field_string (uiout, NULL, "language-option");
1884 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1885 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1886 ui_out_field_string (uiout, NULL, "exec-run-start-option");
1887
1888 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1889 ui_out_field_string (uiout, NULL, "python");
1890
1891 do_cleanups (cleanup);
1892 return;
1893 }
1894
1895 error (_("-list-features should be passed no arguments"));
1896 }
1897
1898 void
1899 mi_cmd_list_target_features (char *command, char **argv, int argc)
1900 {
1901 if (argc == 0)
1902 {
1903 struct cleanup *cleanup = NULL;
1904 struct ui_out *uiout = current_uiout;
1905
1906 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1907 if (mi_async_p ())
1908 ui_out_field_string (uiout, NULL, "async");
1909 if (target_can_execute_reverse)
1910 ui_out_field_string (uiout, NULL, "reverse");
1911 do_cleanups (cleanup);
1912 return;
1913 }
1914
1915 error (_("-list-target-features should be passed no arguments"));
1916 }
1917
1918 void
1919 mi_cmd_add_inferior (char *command, char **argv, int argc)
1920 {
1921 struct inferior *inf;
1922
1923 if (argc != 0)
1924 error (_("-add-inferior should be passed no arguments"));
1925
1926 inf = add_inferior_with_spaces ();
1927
1928 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1929 }
1930
1931 /* Callback used to find the first inferior other than the current
1932 one. */
1933
1934 static int
1935 get_other_inferior (struct inferior *inf, void *arg)
1936 {
1937 if (inf == current_inferior ())
1938 return 0;
1939
1940 return 1;
1941 }
1942
1943 void
1944 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1945 {
1946 int id;
1947 struct inferior *inf;
1948
1949 if (argc != 1)
1950 error (_("-remove-inferior should be passed a single argument"));
1951
1952 if (sscanf (argv[0], "i%d", &id) != 1)
1953 error (_("the thread group id is syntactically invalid"));
1954
1955 inf = find_inferior_id (id);
1956 if (!inf)
1957 error (_("the specified thread group does not exist"));
1958
1959 if (inf->pid != 0)
1960 error (_("cannot remove an active inferior"));
1961
1962 if (inf == current_inferior ())
1963 {
1964 struct thread_info *tp = 0;
1965 struct inferior *new_inferior
1966 = iterate_over_inferiors (get_other_inferior, NULL);
1967
1968 if (new_inferior == NULL)
1969 error (_("Cannot remove last inferior"));
1970
1971 set_current_inferior (new_inferior);
1972 if (new_inferior->pid != 0)
1973 tp = any_thread_of_process (new_inferior->pid);
1974 switch_to_thread (tp ? tp->ptid : null_ptid);
1975 set_current_program_space (new_inferior->pspace);
1976 }
1977
1978 delete_inferior (inf);
1979 }
1980
1981 \f
1982
1983 /* Execute a command within a safe environment.
1984 Return <0 for error; >=0 for ok.
1985
1986 args->action will tell mi_execute_command what action
1987 to perfrom after the given command has executed (display/suppress
1988 prompt, display error). */
1989
1990 static void
1991 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1992 {
1993 struct mi_interp *mi = (struct mi_interp *) interp_data (command_interp ());
1994 struct cleanup *cleanup;
1995
1996 if (do_timings)
1997 current_command_ts = context->cmd_start;
1998
1999 current_token = xstrdup (context->token);
2000 cleanup = make_cleanup (free_current_contents, &current_token);
2001
2002 running_result_record_printed = 0;
2003 mi_proceeded = 0;
2004 switch (context->op)
2005 {
2006 case MI_COMMAND:
2007 /* A MI command was read from the input stream. */
2008 if (mi_debug_p)
2009 /* FIXME: gdb_???? */
2010 fprintf_unfiltered (mi->raw_stdout,
2011 " token=`%s' command=`%s' args=`%s'\n",
2012 context->token, context->command, context->args);
2013
2014 mi_cmd_execute (context);
2015
2016 /* Print the result if there were no errors.
2017
2018 Remember that on the way out of executing a command, you have
2019 to directly use the mi_interp's uiout, since the command
2020 could have reset the interpreter, in which case the current
2021 uiout will most likely crash in the mi_out_* routines. */
2022 if (!running_result_record_printed)
2023 {
2024 fputs_unfiltered (context->token, mi->raw_stdout);
2025 /* There's no particularly good reason why target-connect results
2026 in not ^done. Should kill ^connected for MI3. */
2027 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2028 ? "^connected" : "^done", mi->raw_stdout);
2029 mi_out_put (uiout, mi->raw_stdout);
2030 mi_out_rewind (uiout);
2031 mi_print_timing_maybe (mi->raw_stdout);
2032 fputs_unfiltered ("\n", mi->raw_stdout);
2033 }
2034 else
2035 /* The command does not want anything to be printed. In that
2036 case, the command probably should not have written anything
2037 to uiout, but in case it has written something, discard it. */
2038 mi_out_rewind (uiout);
2039 break;
2040
2041 case CLI_COMMAND:
2042 {
2043 char *argv[2];
2044
2045 /* A CLI command was read from the input stream. */
2046 /* This "feature" will be removed as soon as we have a
2047 complete set of mi commands. */
2048 /* Echo the command on the console. */
2049 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2050 /* Call the "console" interpreter. */
2051 argv[0] = INTERP_CONSOLE;
2052 argv[1] = context->command;
2053 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2054
2055 /* If we changed interpreters, DON'T print out anything. */
2056 if (current_interp_named_p (INTERP_MI)
2057 || current_interp_named_p (INTERP_MI1)
2058 || current_interp_named_p (INTERP_MI2)
2059 || current_interp_named_p (INTERP_MI3))
2060 {
2061 if (!running_result_record_printed)
2062 {
2063 fputs_unfiltered (context->token, mi->raw_stdout);
2064 fputs_unfiltered ("^done", mi->raw_stdout);
2065 mi_out_put (uiout, mi->raw_stdout);
2066 mi_out_rewind (uiout);
2067 mi_print_timing_maybe (mi->raw_stdout);
2068 fputs_unfiltered ("\n", mi->raw_stdout);
2069 }
2070 else
2071 mi_out_rewind (uiout);
2072 }
2073 break;
2074 }
2075 }
2076
2077 do_cleanups (cleanup);
2078 }
2079
2080 /* Print a gdb exception to the MI output stream. */
2081
2082 static void
2083 mi_print_exception (const char *token, struct gdb_exception exception)
2084 {
2085 struct mi_interp *mi
2086 = (struct mi_interp *) interp_data (current_interpreter ());
2087
2088 fputs_unfiltered (token, mi->raw_stdout);
2089 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2090 if (exception.message == NULL)
2091 fputs_unfiltered ("unknown error", mi->raw_stdout);
2092 else
2093 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2094 fputs_unfiltered ("\"", mi->raw_stdout);
2095
2096 switch (exception.error)
2097 {
2098 case UNDEFINED_COMMAND_ERROR:
2099 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2100 break;
2101 }
2102
2103 fputs_unfiltered ("\n", mi->raw_stdout);
2104 }
2105
2106 /* Determine whether the parsed command already notifies the
2107 user_selected_context_changed observer. */
2108
2109 static int
2110 command_notifies_uscc_observer (struct mi_parse *command)
2111 {
2112 if (command->op == CLI_COMMAND)
2113 {
2114 /* CLI commands "thread" and "inferior" already send it. */
2115 return (strncmp (command->command, "thread ", 7) == 0
2116 || strncmp (command->command, "inferior ", 9) == 0);
2117 }
2118 else /* MI_COMMAND */
2119 {
2120 if (strcmp (command->command, "interpreter-exec") == 0
2121 && command->argc > 1)
2122 {
2123 /* "thread" and "inferior" again, but through -interpreter-exec. */
2124 return (strncmp (command->argv[1], "thread ", 7) == 0
2125 || strncmp (command->argv[1], "inferior ", 9) == 0);
2126 }
2127
2128 else
2129 /* -thread-select already sends it. */
2130 return strcmp (command->command, "thread-select") == 0;
2131 }
2132 }
2133
2134 void
2135 mi_execute_command (const char *cmd, int from_tty)
2136 {
2137 char *token;
2138 struct mi_parse *command = NULL;
2139
2140 /* This is to handle EOF (^D). We just quit gdb. */
2141 /* FIXME: we should call some API function here. */
2142 if (cmd == 0)
2143 quit_force (NULL, from_tty);
2144
2145 target_log_command (cmd);
2146
2147 TRY
2148 {
2149 command = mi_parse (cmd, &token);
2150 }
2151 CATCH (exception, RETURN_MASK_ALL)
2152 {
2153 mi_print_exception (token, exception);
2154 xfree (token);
2155 }
2156 END_CATCH
2157
2158 if (command != NULL)
2159 {
2160 ptid_t previous_ptid = inferior_ptid;
2161 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
2162
2163 command->token = token;
2164
2165 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2166 {
2167 make_cleanup_restore_integer (command->cmd->suppress_notification);
2168 *command->cmd->suppress_notification = 1;
2169 }
2170
2171 if (do_timings)
2172 {
2173 command->cmd_start = XNEW (struct mi_timestamp);
2174 timestamp (command->cmd_start);
2175 }
2176
2177 TRY
2178 {
2179 captured_mi_execute_command (current_uiout, command);
2180 }
2181 CATCH (result, RETURN_MASK_ALL)
2182 {
2183 /* Like in start_event_loop, enable input and force display
2184 of the prompt. Otherwise, any command that calls
2185 async_disable_stdin, and then throws, will leave input
2186 disabled. */
2187 async_enable_stdin ();
2188 current_ui->prompt_state = PROMPT_NEEDED;
2189
2190 /* The command execution failed and error() was called
2191 somewhere. */
2192 mi_print_exception (command->token, result);
2193 mi_out_rewind (current_uiout);
2194 }
2195 END_CATCH
2196
2197 bpstat_do_actions ();
2198
2199 if (/* The notifications are only output when the top-level
2200 interpreter (specified on the command line) is MI. */
2201 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2202 /* Don't try report anything if there are no threads --
2203 the program is dead. */
2204 && thread_count () != 0
2205 /* If the command already reports the thread change, no need to do it
2206 again. */
2207 && !command_notifies_uscc_observer (command))
2208 {
2209 struct mi_interp *mi
2210 = (struct mi_interp *) top_level_interpreter_data ();
2211 int report_change = 0;
2212
2213 if (command->thread == -1)
2214 {
2215 report_change = (!ptid_equal (previous_ptid, null_ptid)
2216 && !ptid_equal (inferior_ptid, previous_ptid)
2217 && !ptid_equal (inferior_ptid, null_ptid));
2218 }
2219 else if (!ptid_equal (inferior_ptid, null_ptid))
2220 {
2221 struct thread_info *ti = inferior_thread ();
2222
2223 report_change = (ti->global_num != command->thread);
2224 }
2225
2226 if (report_change)
2227 {
2228 observer_notify_user_selected_context_changed
2229 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2230 }
2231 }
2232
2233 mi_parse_free (command);
2234
2235 do_cleanups (cleanup);
2236 }
2237 }
2238
2239 static void
2240 mi_cmd_execute (struct mi_parse *parse)
2241 {
2242 struct cleanup *cleanup;
2243
2244 cleanup = prepare_execute_command ();
2245
2246 if (parse->all && parse->thread_group != -1)
2247 error (_("Cannot specify --thread-group together with --all"));
2248
2249 if (parse->all && parse->thread != -1)
2250 error (_("Cannot specify --thread together with --all"));
2251
2252 if (parse->thread_group != -1 && parse->thread != -1)
2253 error (_("Cannot specify --thread together with --thread-group"));
2254
2255 if (parse->frame != -1 && parse->thread == -1)
2256 error (_("Cannot specify --frame without --thread"));
2257
2258 if (parse->thread_group != -1)
2259 {
2260 struct inferior *inf = find_inferior_id (parse->thread_group);
2261 struct thread_info *tp = 0;
2262
2263 if (!inf)
2264 error (_("Invalid thread group for the --thread-group option"));
2265
2266 set_current_inferior (inf);
2267 /* This behaviour means that if --thread-group option identifies
2268 an inferior with multiple threads, then a random one will be
2269 picked. This is not a problem -- frontend should always
2270 provide --thread if it wishes to operate on a specific
2271 thread. */
2272 if (inf->pid != 0)
2273 tp = any_live_thread_of_process (inf->pid);
2274 switch_to_thread (tp ? tp->ptid : null_ptid);
2275 set_current_program_space (inf->pspace);
2276 }
2277
2278 if (parse->thread != -1)
2279 {
2280 struct thread_info *tp = find_thread_global_id (parse->thread);
2281
2282 if (!tp)
2283 error (_("Invalid thread id: %d"), parse->thread);
2284
2285 if (is_exited (tp->ptid))
2286 error (_("Thread id: %d has terminated"), parse->thread);
2287
2288 switch_to_thread (tp->ptid);
2289 }
2290
2291 if (parse->frame != -1)
2292 {
2293 struct frame_info *fid;
2294 int frame = parse->frame;
2295
2296 fid = find_relative_frame (get_current_frame (), &frame);
2297 if (frame == 0)
2298 /* find_relative_frame was successful */
2299 select_frame (fid);
2300 else
2301 error (_("Invalid frame id: %d"), frame);
2302 }
2303
2304 if (parse->language != language_unknown)
2305 {
2306 make_cleanup_restore_current_language ();
2307 set_language (parse->language);
2308 }
2309
2310 current_context = parse;
2311
2312 if (parse->cmd->argv_func != NULL)
2313 {
2314 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2315 }
2316 else if (parse->cmd->cli.cmd != 0)
2317 {
2318 /* FIXME: DELETE THIS. */
2319 /* The operation is still implemented by a cli command. */
2320 /* Must be a synchronous one. */
2321 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2322 parse->args);
2323 }
2324 else
2325 {
2326 /* FIXME: DELETE THIS. */
2327 struct ui_file *stb;
2328
2329 stb = mem_fileopen ();
2330
2331 fputs_unfiltered ("Undefined mi command: ", stb);
2332 fputstr_unfiltered (parse->command, '"', stb);
2333 fputs_unfiltered (" (missing implementation)", stb);
2334
2335 make_cleanup_ui_file_delete (stb);
2336 error_stream (stb);
2337 }
2338 do_cleanups (cleanup);
2339 }
2340
2341 /* FIXME: This is just a hack so we can get some extra commands going.
2342 We don't want to channel things through the CLI, but call libgdb directly.
2343 Use only for synchronous commands. */
2344
2345 void
2346 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2347 {
2348 if (cmd != 0)
2349 {
2350 struct cleanup *old_cleanups;
2351 char *run;
2352
2353 if (args_p)
2354 run = xstrprintf ("%s %s", cmd, args);
2355 else
2356 run = xstrdup (cmd);
2357 if (mi_debug_p)
2358 /* FIXME: gdb_???? */
2359 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2360 cmd, run);
2361 old_cleanups = make_cleanup (xfree, run);
2362 execute_command (run, 0 /* from_tty */ );
2363 do_cleanups (old_cleanups);
2364 return;
2365 }
2366 }
2367
2368 void
2369 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2370 {
2371 struct cleanup *old_cleanups;
2372 char *run;
2373
2374 if (mi_async_p ())
2375 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2376 else
2377 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2378 old_cleanups = make_cleanup (xfree, run);
2379
2380 execute_command (run, 0 /* from_tty */ );
2381
2382 /* Do this before doing any printing. It would appear that some
2383 print code leaves garbage around in the buffer. */
2384 do_cleanups (old_cleanups);
2385 }
2386
2387 void
2388 mi_load_progress (const char *section_name,
2389 unsigned long sent_so_far,
2390 unsigned long total_section,
2391 unsigned long total_sent,
2392 unsigned long grand_total)
2393 {
2394 struct timeval time_now, delta, update_threshold;
2395 static struct timeval last_update;
2396 static char *previous_sect_name = NULL;
2397 int new_section;
2398 struct ui_out *saved_uiout;
2399 struct ui_out *uiout;
2400 struct mi_interp *mi
2401 = (struct mi_interp *) interp_data (current_interpreter ());
2402
2403 /* This function is called through deprecated_show_load_progress
2404 which means uiout may not be correct. Fix it for the duration
2405 of this function. */
2406 saved_uiout = current_uiout;
2407
2408 if (current_interp_named_p (INTERP_MI)
2409 || current_interp_named_p (INTERP_MI2))
2410 current_uiout = mi_out_new (2);
2411 else if (current_interp_named_p (INTERP_MI1))
2412 current_uiout = mi_out_new (1);
2413 else if (current_interp_named_p (INTERP_MI3))
2414 current_uiout = mi_out_new (3);
2415 else
2416 return;
2417
2418 uiout = current_uiout;
2419
2420 update_threshold.tv_sec = 0;
2421 update_threshold.tv_usec = 500000;
2422 gettimeofday (&time_now, NULL);
2423
2424 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2425 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2426
2427 if (delta.tv_usec < 0)
2428 {
2429 delta.tv_sec -= 1;
2430 delta.tv_usec += 1000000L;
2431 }
2432
2433 new_section = (previous_sect_name ?
2434 strcmp (previous_sect_name, section_name) : 1);
2435 if (new_section)
2436 {
2437 struct cleanup *cleanup_tuple;
2438
2439 xfree (previous_sect_name);
2440 previous_sect_name = xstrdup (section_name);
2441
2442 if (current_token)
2443 fputs_unfiltered (current_token, mi->raw_stdout);
2444 fputs_unfiltered ("+download", mi->raw_stdout);
2445 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2446 ui_out_field_string (uiout, "section", section_name);
2447 ui_out_field_int (uiout, "section-size", total_section);
2448 ui_out_field_int (uiout, "total-size", grand_total);
2449 do_cleanups (cleanup_tuple);
2450 mi_out_put (uiout, mi->raw_stdout);
2451 fputs_unfiltered ("\n", mi->raw_stdout);
2452 gdb_flush (mi->raw_stdout);
2453 }
2454
2455 if (delta.tv_sec >= update_threshold.tv_sec &&
2456 delta.tv_usec >= update_threshold.tv_usec)
2457 {
2458 struct cleanup *cleanup_tuple;
2459
2460 last_update.tv_sec = time_now.tv_sec;
2461 last_update.tv_usec = time_now.tv_usec;
2462 if (current_token)
2463 fputs_unfiltered (current_token, mi->raw_stdout);
2464 fputs_unfiltered ("+download", mi->raw_stdout);
2465 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2466 ui_out_field_string (uiout, "section", section_name);
2467 ui_out_field_int (uiout, "section-sent", sent_so_far);
2468 ui_out_field_int (uiout, "section-size", total_section);
2469 ui_out_field_int (uiout, "total-sent", total_sent);
2470 ui_out_field_int (uiout, "total-size", grand_total);
2471 do_cleanups (cleanup_tuple);
2472 mi_out_put (uiout, mi->raw_stdout);
2473 fputs_unfiltered ("\n", mi->raw_stdout);
2474 gdb_flush (mi->raw_stdout);
2475 }
2476
2477 xfree (uiout);
2478 current_uiout = saved_uiout;
2479 }
2480
2481 static void
2482 timestamp (struct mi_timestamp *tv)
2483 {
2484 gettimeofday (&tv->wallclock, NULL);
2485 #ifdef HAVE_GETRUSAGE
2486 getrusage (RUSAGE_SELF, &rusage);
2487 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2488 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2489 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2490 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2491 #else
2492 {
2493 long usec = get_run_time ();
2494
2495 tv->utime.tv_sec = usec/1000000L;
2496 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2497 tv->stime.tv_sec = 0;
2498 tv->stime.tv_usec = 0;
2499 }
2500 #endif
2501 }
2502
2503 static void
2504 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2505 {
2506 struct mi_timestamp now;
2507
2508 timestamp (&now);
2509 print_diff (file, start, &now);
2510 }
2511
2512 void
2513 mi_print_timing_maybe (struct ui_file *file)
2514 {
2515 /* If the command is -enable-timing then do_timings may be true
2516 whilst current_command_ts is not initialized. */
2517 if (do_timings && current_command_ts)
2518 print_diff_now (file, current_command_ts);
2519 }
2520
2521 static long
2522 timeval_diff (struct timeval start, struct timeval end)
2523 {
2524 return ((end.tv_sec - start.tv_sec) * 1000000L)
2525 + (end.tv_usec - start.tv_usec);
2526 }
2527
2528 static void
2529 print_diff (struct ui_file *file, struct mi_timestamp *start,
2530 struct mi_timestamp *end)
2531 {
2532 fprintf_unfiltered
2533 (file,
2534 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2535 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2536 timeval_diff (start->utime, end->utime) / 1000000.0,
2537 timeval_diff (start->stime, end->stime) / 1000000.0);
2538 }
2539
2540 void
2541 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2542 {
2543 LONGEST initval = 0;
2544 struct trace_state_variable *tsv;
2545 char *name = 0;
2546
2547 if (argc != 1 && argc != 2)
2548 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2549
2550 name = argv[0];
2551 if (*name++ != '$')
2552 error (_("Name of trace variable should start with '$'"));
2553
2554 validate_trace_state_variable_name (name);
2555
2556 tsv = find_trace_state_variable (name);
2557 if (!tsv)
2558 tsv = create_trace_state_variable (name);
2559
2560 if (argc == 2)
2561 initval = value_as_long (parse_and_eval (argv[1]));
2562
2563 tsv->initial_value = initval;
2564 }
2565
2566 void
2567 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2568 {
2569 if (argc != 0)
2570 error (_("-trace-list-variables: no arguments allowed"));
2571
2572 tvariables_info_1 ();
2573 }
2574
2575 void
2576 mi_cmd_trace_find (char *command, char **argv, int argc)
2577 {
2578 char *mode;
2579
2580 if (argc == 0)
2581 error (_("trace selection mode is required"));
2582
2583 mode = argv[0];
2584
2585 if (strcmp (mode, "none") == 0)
2586 {
2587 tfind_1 (tfind_number, -1, 0, 0, 0);
2588 return;
2589 }
2590
2591 check_trace_running (current_trace_status ());
2592
2593 if (strcmp (mode, "frame-number") == 0)
2594 {
2595 if (argc != 2)
2596 error (_("frame number is required"));
2597 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2598 }
2599 else if (strcmp (mode, "tracepoint-number") == 0)
2600 {
2601 if (argc != 2)
2602 error (_("tracepoint number is required"));
2603 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2604 }
2605 else if (strcmp (mode, "pc") == 0)
2606 {
2607 if (argc != 2)
2608 error (_("PC is required"));
2609 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2610 }
2611 else if (strcmp (mode, "pc-inside-range") == 0)
2612 {
2613 if (argc != 3)
2614 error (_("Start and end PC are required"));
2615 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2616 parse_and_eval_address (argv[2]), 0);
2617 }
2618 else if (strcmp (mode, "pc-outside-range") == 0)
2619 {
2620 if (argc != 3)
2621 error (_("Start and end PC are required"));
2622 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2623 parse_and_eval_address (argv[2]), 0);
2624 }
2625 else if (strcmp (mode, "line") == 0)
2626 {
2627 struct symtabs_and_lines sals;
2628 struct symtab_and_line sal;
2629 static CORE_ADDR start_pc, end_pc;
2630 struct cleanup *back_to;
2631
2632 if (argc != 2)
2633 error (_("Line is required"));
2634
2635 sals = decode_line_with_current_source (argv[1],
2636 DECODE_LINE_FUNFIRSTLINE);
2637 back_to = make_cleanup (xfree, sals.sals);
2638
2639 sal = sals.sals[0];
2640
2641 if (sal.symtab == 0)
2642 error (_("Could not find the specified line"));
2643
2644 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2645 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2646 else
2647 error (_("Could not find the specified line"));
2648
2649 do_cleanups (back_to);
2650 }
2651 else
2652 error (_("Invalid mode '%s'"), mode);
2653
2654 if (has_stack_frames () || get_traceframe_number () >= 0)
2655 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2656 }
2657
2658 void
2659 mi_cmd_trace_save (char *command, char **argv, int argc)
2660 {
2661 int target_saves = 0;
2662 int generate_ctf = 0;
2663 char *filename;
2664 int oind = 0;
2665 char *oarg;
2666
2667 enum opt
2668 {
2669 TARGET_SAVE_OPT, CTF_OPT
2670 };
2671 static const struct mi_opt opts[] =
2672 {
2673 {"r", TARGET_SAVE_OPT, 0},
2674 {"ctf", CTF_OPT, 0},
2675 { 0, 0, 0 }
2676 };
2677
2678 while (1)
2679 {
2680 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2681 &oind, &oarg);
2682
2683 if (opt < 0)
2684 break;
2685 switch ((enum opt) opt)
2686 {
2687 case TARGET_SAVE_OPT:
2688 target_saves = 1;
2689 break;
2690 case CTF_OPT:
2691 generate_ctf = 1;
2692 break;
2693 }
2694 }
2695
2696 if (argc - oind != 1)
2697 error (_("Exactly one argument required "
2698 "(file in which to save trace data)"));
2699
2700 filename = argv[oind];
2701
2702 if (generate_ctf)
2703 trace_save_ctf (filename, target_saves);
2704 else
2705 trace_save_tfile (filename, target_saves);
2706 }
2707
2708 void
2709 mi_cmd_trace_start (char *command, char **argv, int argc)
2710 {
2711 start_tracing (NULL);
2712 }
2713
2714 void
2715 mi_cmd_trace_status (char *command, char **argv, int argc)
2716 {
2717 trace_status_mi (0);
2718 }
2719
2720 void
2721 mi_cmd_trace_stop (char *command, char **argv, int argc)
2722 {
2723 stop_tracing (NULL);
2724 trace_status_mi (1);
2725 }
2726
2727 /* Implement the "-ada-task-info" command. */
2728
2729 void
2730 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2731 {
2732 if (argc != 0 && argc != 1)
2733 error (_("Invalid MI command"));
2734
2735 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2736 }
2737
2738 /* Print EXPRESSION according to VALUES. */
2739
2740 static void
2741 print_variable_or_computed (char *expression, enum print_values values)
2742 {
2743 struct cleanup *old_chain;
2744 struct value *val;
2745 struct ui_file *stb;
2746 struct type *type;
2747 struct ui_out *uiout = current_uiout;
2748
2749 stb = mem_fileopen ();
2750 old_chain = make_cleanup_ui_file_delete (stb);
2751
2752 expression_up expr = parse_expression (expression);
2753
2754 if (values == PRINT_SIMPLE_VALUES)
2755 val = evaluate_type (expr.get ());
2756 else
2757 val = evaluate_expression (expr.get ());
2758
2759 if (values != PRINT_NO_VALUES)
2760 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2761 ui_out_field_string (uiout, "name", expression);
2762
2763 switch (values)
2764 {
2765 case PRINT_SIMPLE_VALUES:
2766 type = check_typedef (value_type (val));
2767 type_print (value_type (val), "", stb, -1);
2768 ui_out_field_stream (uiout, "type", stb);
2769 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2770 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2771 && TYPE_CODE (type) != TYPE_CODE_UNION)
2772 {
2773 struct value_print_options opts;
2774
2775 get_no_prettyformat_print_options (&opts);
2776 opts.deref_ref = 1;
2777 common_val_print (val, stb, 0, &opts, current_language);
2778 ui_out_field_stream (uiout, "value", stb);
2779 }
2780 break;
2781 case PRINT_ALL_VALUES:
2782 {
2783 struct value_print_options opts;
2784
2785 get_no_prettyformat_print_options (&opts);
2786 opts.deref_ref = 1;
2787 common_val_print (val, stb, 0, &opts, current_language);
2788 ui_out_field_stream (uiout, "value", stb);
2789 }
2790 break;
2791 }
2792
2793 do_cleanups (old_chain);
2794 }
2795
2796 /* Implement the "-trace-frame-collected" command. */
2797
2798 void
2799 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2800 {
2801 struct cleanup *old_chain;
2802 struct bp_location *tloc;
2803 int stepping_frame;
2804 struct collection_list *clist;
2805 struct collection_list tracepoint_list, stepping_list;
2806 struct traceframe_info *tinfo;
2807 int oind = 0;
2808 enum print_values var_print_values = PRINT_ALL_VALUES;
2809 enum print_values comp_print_values = PRINT_ALL_VALUES;
2810 int registers_format = 'x';
2811 int memory_contents = 0;
2812 struct ui_out *uiout = current_uiout;
2813 enum opt
2814 {
2815 VAR_PRINT_VALUES,
2816 COMP_PRINT_VALUES,
2817 REGISTERS_FORMAT,
2818 MEMORY_CONTENTS,
2819 };
2820 static const struct mi_opt opts[] =
2821 {
2822 {"-var-print-values", VAR_PRINT_VALUES, 1},
2823 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2824 {"-registers-format", REGISTERS_FORMAT, 1},
2825 {"-memory-contents", MEMORY_CONTENTS, 0},
2826 { 0, 0, 0 }
2827 };
2828
2829 while (1)
2830 {
2831 char *oarg;
2832 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2833 &oind, &oarg);
2834 if (opt < 0)
2835 break;
2836 switch ((enum opt) opt)
2837 {
2838 case VAR_PRINT_VALUES:
2839 var_print_values = mi_parse_print_values (oarg);
2840 break;
2841 case COMP_PRINT_VALUES:
2842 comp_print_values = mi_parse_print_values (oarg);
2843 break;
2844 case REGISTERS_FORMAT:
2845 registers_format = oarg[0];
2846 case MEMORY_CONTENTS:
2847 memory_contents = 1;
2848 break;
2849 }
2850 }
2851
2852 if (oind != argc)
2853 error (_("Usage: -trace-frame-collected "
2854 "[--var-print-values PRINT_VALUES] "
2855 "[--comp-print-values PRINT_VALUES] "
2856 "[--registers-format FORMAT]"
2857 "[--memory-contents]"));
2858
2859 /* This throws an error is not inspecting a trace frame. */
2860 tloc = get_traceframe_location (&stepping_frame);
2861
2862 /* This command only makes sense for the current frame, not the
2863 selected frame. */
2864 old_chain = make_cleanup_restore_current_thread ();
2865 select_frame (get_current_frame ());
2866
2867 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2868 &stepping_list);
2869
2870 if (stepping_frame)
2871 clist = &stepping_list;
2872 else
2873 clist = &tracepoint_list;
2874
2875 tinfo = get_traceframe_info ();
2876
2877 /* Explicitly wholly collected variables. */
2878 {
2879 struct cleanup *list_cleanup;
2880 char *p;
2881 int i;
2882
2883 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2884 "explicit-variables");
2885 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2886 print_variable_or_computed (p, var_print_values);
2887 do_cleanups (list_cleanup);
2888 }
2889
2890 /* Computed expressions. */
2891 {
2892 struct cleanup *list_cleanup;
2893 char *p;
2894 int i;
2895
2896 list_cleanup
2897 = make_cleanup_ui_out_list_begin_end (uiout,
2898 "computed-expressions");
2899 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2900 print_variable_or_computed (p, comp_print_values);
2901 do_cleanups (list_cleanup);
2902 }
2903
2904 /* Registers. Given pseudo-registers, and that some architectures
2905 (like MIPS) actually hide the raw registers, we don't go through
2906 the trace frame info, but instead consult the register cache for
2907 register availability. */
2908 {
2909 struct cleanup *list_cleanup;
2910 struct frame_info *frame;
2911 struct gdbarch *gdbarch;
2912 int regnum;
2913 int numregs;
2914
2915 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2916
2917 frame = get_selected_frame (NULL);
2918 gdbarch = get_frame_arch (frame);
2919 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2920
2921 for (regnum = 0; regnum < numregs; regnum++)
2922 {
2923 if (gdbarch_register_name (gdbarch, regnum) == NULL
2924 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2925 continue;
2926
2927 output_register (frame, regnum, registers_format, 1);
2928 }
2929
2930 do_cleanups (list_cleanup);
2931 }
2932
2933 /* Trace state variables. */
2934 {
2935 struct cleanup *list_cleanup;
2936 int tvar;
2937 char *tsvname;
2938 int i;
2939
2940 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2941
2942 tsvname = NULL;
2943 make_cleanup (free_current_contents, &tsvname);
2944
2945 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2946 {
2947 struct cleanup *cleanup_child;
2948 struct trace_state_variable *tsv;
2949
2950 tsv = find_trace_state_variable_by_number (tvar);
2951
2952 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2953
2954 if (tsv != NULL)
2955 {
2956 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2957 tsvname[0] = '$';
2958 strcpy (tsvname + 1, tsv->name);
2959 ui_out_field_string (uiout, "name", tsvname);
2960
2961 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2962 &tsv->value);
2963 ui_out_field_int (uiout, "current", tsv->value);
2964 }
2965 else
2966 {
2967 ui_out_field_skip (uiout, "name");
2968 ui_out_field_skip (uiout, "current");
2969 }
2970
2971 do_cleanups (cleanup_child);
2972 }
2973
2974 do_cleanups (list_cleanup);
2975 }
2976
2977 /* Memory. */
2978 {
2979 struct cleanup *list_cleanup;
2980 VEC(mem_range_s) *available_memory = NULL;
2981 struct mem_range *r;
2982 int i;
2983
2984 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2985 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2986
2987 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2988
2989 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2990 {
2991 struct cleanup *cleanup_child;
2992 gdb_byte *data;
2993 struct gdbarch *gdbarch = target_gdbarch ();
2994
2995 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2996
2997 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
2998 ui_out_field_int (uiout, "length", r->length);
2999
3000 data = (gdb_byte *) xmalloc (r->length);
3001 make_cleanup (xfree, data);
3002
3003 if (memory_contents)
3004 {
3005 if (target_read_memory (r->start, data, r->length) == 0)
3006 {
3007 int m;
3008 char *data_str, *p;
3009
3010 data_str = (char *) xmalloc (r->length * 2 + 1);
3011 make_cleanup (xfree, data_str);
3012
3013 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
3014 sprintf (p, "%02x", data[m]);
3015 ui_out_field_string (uiout, "contents", data_str);
3016 }
3017 else
3018 ui_out_field_skip (uiout, "contents");
3019 }
3020 do_cleanups (cleanup_child);
3021 }
3022
3023 do_cleanups (list_cleanup);
3024 }
3025
3026 do_cleanups (old_chain);
3027 }
3028
3029 void
3030 _initialize_mi_main (void)
3031 {
3032 struct cmd_list_element *c;
3033
3034 add_setshow_boolean_cmd ("mi-async", class_run,
3035 &mi_async_1, _("\
3036 Set whether MI asynchronous mode is enabled."), _("\
3037 Show whether MI asynchronous mode is enabled."), _("\
3038 Tells GDB whether MI should be in asynchronous mode."),
3039 set_mi_async_command,
3040 show_mi_async_command,
3041 &setlist,
3042 &showlist);
3043
3044 /* Alias old "target-async" to "mi-async". */
3045 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
3046 deprecate_cmd (c, "set mi-async");
3047 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
3048 deprecate_cmd (c, "show mi-async");
3049 }
This page took 0.094817 seconds and 4 git commands to generate.