[ppc64le] Use skip_entrypoint for skip_trampoline_code
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56
57 #include <ctype.h>
58 #include "gdb_sys_time.h"
59
60 #if defined HAVE_SYS_RESOURCE_H
61 #include <sys/resource.h>
62 #endif
63
64 #ifdef HAVE_GETRUSAGE
65 struct rusage rusage;
66 #endif
67
68 enum
69 {
70 FROM_TTY = 0
71 };
72
73 int mi_debug_p;
74
75 struct ui_file *raw_stdout;
76
77 /* This is used to pass the current command timestamp down to
78 continuation routines. */
79 static struct mi_timestamp *current_command_ts;
80
81 static int do_timings = 0;
82
83 char *current_token;
84 /* Few commands would like to know if options like --thread-group were
85 explicitly specified. This variable keeps the current parsed
86 command including all option, and make it possible. */
87 static struct mi_parse *current_context;
88
89 int running_result_record_printed = 1;
90
91 /* Flag indicating that the target has proceeded since the last
92 command was issued. */
93 int mi_proceeded;
94
95 extern void _initialize_mi_main (void);
96 static void mi_cmd_execute (struct mi_parse *parse);
97
98 static void mi_execute_cli_command (const char *cmd, int args_p,
99 const char *args);
100 static void mi_execute_async_cli_command (char *cli_command,
101 char **argv, int argc);
102 static int register_changed_p (int regnum, struct regcache *,
103 struct regcache *);
104 static void output_register (struct frame_info *, int regnum, int format,
105 int skip_unavailable);
106
107 /* Controls whether the frontend wants MI in async mode. */
108 static int mi_async = 0;
109
110 /* The set command writes to this variable. If the inferior is
111 executing, mi_async is *not* updated. */
112 static int mi_async_1 = 0;
113
114 static void
115 set_mi_async_command (char *args, int from_tty,
116 struct cmd_list_element *c)
117 {
118 if (have_live_inferiors ())
119 {
120 mi_async_1 = mi_async;
121 error (_("Cannot change this setting while the inferior is running."));
122 }
123
124 mi_async = mi_async_1;
125 }
126
127 static void
128 show_mi_async_command (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c,
130 const char *value)
131 {
132 fprintf_filtered (file,
133 _("Whether MI is in asynchronous mode is %s.\n"),
134 value);
135 }
136
137 /* A wrapper for target_can_async_p that takes the MI setting into
138 account. */
139
140 int
141 mi_async_p (void)
142 {
143 return mi_async && target_can_async_p ();
144 }
145
146 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
147 layer that calls libgdb. Any operation used in the below should be
148 formalized. */
149
150 static void timestamp (struct mi_timestamp *tv);
151
152 static void print_diff_now (struct mi_timestamp *start);
153 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
154
155 void
156 mi_cmd_gdb_exit (char *command, char **argv, int argc)
157 {
158 /* We have to print everything right here because we never return. */
159 if (current_token)
160 fputs_unfiltered (current_token, raw_stdout);
161 fputs_unfiltered ("^exit\n", raw_stdout);
162 mi_out_put (current_uiout, raw_stdout);
163 gdb_flush (raw_stdout);
164 /* FIXME: The function called is not yet a formal libgdb function. */
165 quit_force (NULL, FROM_TTY);
166 }
167
168 void
169 mi_cmd_exec_next (char *command, char **argv, int argc)
170 {
171 /* FIXME: Should call a libgdb function, not a cli wrapper. */
172 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
173 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
174 else
175 mi_execute_async_cli_command ("next", argv, argc);
176 }
177
178 void
179 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
180 {
181 /* FIXME: Should call a libgdb function, not a cli wrapper. */
182 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
183 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
184 else
185 mi_execute_async_cli_command ("nexti", argv, argc);
186 }
187
188 void
189 mi_cmd_exec_step (char *command, char **argv, int argc)
190 {
191 /* FIXME: Should call a libgdb function, not a cli wrapper. */
192 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
193 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
194 else
195 mi_execute_async_cli_command ("step", argv, argc);
196 }
197
198 void
199 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
200 {
201 /* FIXME: Should call a libgdb function, not a cli wrapper. */
202 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
203 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
204 else
205 mi_execute_async_cli_command ("stepi", argv, argc);
206 }
207
208 void
209 mi_cmd_exec_finish (char *command, char **argv, int argc)
210 {
211 /* FIXME: Should call a libgdb function, not a cli wrapper. */
212 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
213 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
214 else
215 mi_execute_async_cli_command ("finish", argv, argc);
216 }
217
218 void
219 mi_cmd_exec_return (char *command, char **argv, int argc)
220 {
221 /* This command doesn't really execute the target, it just pops the
222 specified number of frames. */
223 if (argc)
224 /* Call return_command with from_tty argument equal to 0 so as to
225 avoid being queried. */
226 return_command (*argv, 0);
227 else
228 /* Call return_command with from_tty argument equal to 0 so as to
229 avoid being queried. */
230 return_command (NULL, 0);
231
232 /* Because we have called return_command with from_tty = 0, we need
233 to print the frame here. */
234 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
235 }
236
237 void
238 mi_cmd_exec_jump (char *args, char **argv, int argc)
239 {
240 /* FIXME: Should call a libgdb function, not a cli wrapper. */
241 mi_execute_async_cli_command ("jump", argv, argc);
242 }
243
244 static void
245 proceed_thread (struct thread_info *thread, int pid)
246 {
247 if (!is_stopped (thread->ptid))
248 return;
249
250 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
251 return;
252
253 switch_to_thread (thread->ptid);
254 clear_proceed_status (0);
255 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
256 }
257
258 static int
259 proceed_thread_callback (struct thread_info *thread, void *arg)
260 {
261 int pid = *(int *)arg;
262
263 proceed_thread (thread, pid);
264 return 0;
265 }
266
267 static void
268 exec_continue (char **argv, int argc)
269 {
270 prepare_execution_command (&current_target, mi_async_p ());
271
272 if (non_stop)
273 {
274 /* In non-stop mode, 'resume' always resumes a single thread.
275 Therefore, to resume all threads of the current inferior, or
276 all threads in all inferiors, we need to iterate over
277 threads.
278
279 See comment on infcmd.c:proceed_thread_callback for rationale. */
280 if (current_context->all || current_context->thread_group != -1)
281 {
282 int pid = 0;
283 struct cleanup *back_to = make_cleanup_restore_current_thread ();
284
285 if (!current_context->all)
286 {
287 struct inferior *inf
288 = find_inferior_id (current_context->thread_group);
289
290 pid = inf->pid;
291 }
292 iterate_over_threads (proceed_thread_callback, &pid);
293 do_cleanups (back_to);
294 }
295 else
296 {
297 continue_1 (0);
298 }
299 }
300 else
301 {
302 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
303
304 if (current_context->all)
305 {
306 sched_multi = 1;
307 continue_1 (0);
308 }
309 else
310 {
311 /* In all-stop mode, -exec-continue traditionally resumed
312 either all threads, or one thread, depending on the
313 'scheduler-locking' variable. Let's continue to do the
314 same. */
315 continue_1 (1);
316 }
317 do_cleanups (back_to);
318 }
319 }
320
321 static void
322 exec_direction_forward (void *notused)
323 {
324 execution_direction = EXEC_FORWARD;
325 }
326
327 static void
328 exec_reverse_continue (char **argv, int argc)
329 {
330 enum exec_direction_kind dir = execution_direction;
331 struct cleanup *old_chain;
332
333 if (dir == EXEC_REVERSE)
334 error (_("Already in reverse mode."));
335
336 if (!target_can_execute_reverse)
337 error (_("Target %s does not support this command."), target_shortname);
338
339 old_chain = make_cleanup (exec_direction_forward, NULL);
340 execution_direction = EXEC_REVERSE;
341 exec_continue (argv, argc);
342 do_cleanups (old_chain);
343 }
344
345 void
346 mi_cmd_exec_continue (char *command, char **argv, int argc)
347 {
348 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
349 exec_reverse_continue (argv + 1, argc - 1);
350 else
351 exec_continue (argv, argc);
352 }
353
354 static int
355 interrupt_thread_callback (struct thread_info *thread, void *arg)
356 {
357 int pid = *(int *)arg;
358
359 if (!is_running (thread->ptid))
360 return 0;
361
362 if (ptid_get_pid (thread->ptid) != pid)
363 return 0;
364
365 target_stop (thread->ptid);
366 return 0;
367 }
368
369 /* Interrupt the execution of the target. Note how we must play
370 around with the token variables, in order to display the current
371 token in the result of the interrupt command, and the previous
372 execution token when the target finally stops. See comments in
373 mi_cmd_execute. */
374
375 void
376 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
377 {
378 /* In all-stop mode, everything stops, so we don't need to try
379 anything specific. */
380 if (!non_stop)
381 {
382 interrupt_target_1 (0);
383 return;
384 }
385
386 if (current_context->all)
387 {
388 /* This will interrupt all threads in all inferiors. */
389 interrupt_target_1 (1);
390 }
391 else if (current_context->thread_group != -1)
392 {
393 struct inferior *inf = find_inferior_id (current_context->thread_group);
394
395 iterate_over_threads (interrupt_thread_callback, &inf->pid);
396 }
397 else
398 {
399 /* Interrupt just the current thread -- either explicitly
400 specified via --thread or whatever was current before
401 MI command was sent. */
402 interrupt_target_1 (0);
403 }
404 }
405
406 /* Callback for iterate_over_inferiors which starts the execution
407 of the given inferior.
408
409 ARG is a pointer to an integer whose value, if non-zero, indicates
410 that the program should be stopped when reaching the main subprogram
411 (similar to what the CLI "start" command does). */
412
413 static int
414 run_one_inferior (struct inferior *inf, void *arg)
415 {
416 int start_p = *(int *) arg;
417 const char *run_cmd = start_p ? "start" : "run";
418
419 if (inf->pid != 0)
420 {
421 if (inf->pid != ptid_get_pid (inferior_ptid))
422 {
423 struct thread_info *tp;
424
425 tp = any_thread_of_process (inf->pid);
426 if (!tp)
427 error (_("Inferior has no threads."));
428
429 switch_to_thread (tp->ptid);
430 }
431 }
432 else
433 {
434 set_current_inferior (inf);
435 switch_to_thread (null_ptid);
436 set_current_program_space (inf->pspace);
437 }
438 mi_execute_cli_command (run_cmd, mi_async_p (),
439 mi_async_p () ? "&" : NULL);
440 return 0;
441 }
442
443 void
444 mi_cmd_exec_run (char *command, char **argv, int argc)
445 {
446 int i;
447 int start_p = 0;
448
449 /* Parse the command options. */
450 enum opt
451 {
452 START_OPT,
453 };
454 static const struct mi_opt opts[] =
455 {
456 {"-start", START_OPT, 0},
457 {NULL, 0, 0},
458 };
459
460 int oind = 0;
461 char *oarg;
462
463 while (1)
464 {
465 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
466
467 if (opt < 0)
468 break;
469 switch ((enum opt) opt)
470 {
471 case START_OPT:
472 start_p = 1;
473 break;
474 }
475 }
476
477 /* This command does not accept any argument. Make sure the user
478 did not provide any. */
479 if (oind != argc)
480 error (_("Invalid argument: %s"), argv[oind]);
481
482 if (current_context->all)
483 {
484 struct cleanup *back_to = save_current_space_and_thread ();
485
486 iterate_over_inferiors (run_one_inferior, &start_p);
487 do_cleanups (back_to);
488 }
489 else
490 {
491 const char *run_cmd = start_p ? "start" : "run";
492
493 mi_execute_cli_command (run_cmd, mi_async_p (),
494 mi_async_p () ? "&" : NULL);
495 }
496 }
497
498
499 static int
500 find_thread_of_process (struct thread_info *ti, void *p)
501 {
502 int pid = *(int *)p;
503
504 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
505 return 1;
506
507 return 0;
508 }
509
510 void
511 mi_cmd_target_detach (char *command, char **argv, int argc)
512 {
513 if (argc != 0 && argc != 1)
514 error (_("Usage: -target-detach [pid | thread-group]"));
515
516 if (argc == 1)
517 {
518 struct thread_info *tp;
519 char *end = argv[0];
520 int pid;
521
522 /* First see if we are dealing with a thread-group id. */
523 if (*argv[0] == 'i')
524 {
525 struct inferior *inf;
526 int id = strtoul (argv[0] + 1, &end, 0);
527
528 if (*end != '\0')
529 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
530
531 inf = find_inferior_id (id);
532 if (!inf)
533 error (_("Non-existent thread-group id '%d'"), id);
534
535 pid = inf->pid;
536 }
537 else
538 {
539 /* We must be dealing with a pid. */
540 pid = strtol (argv[0], &end, 10);
541
542 if (*end != '\0')
543 error (_("Invalid identifier '%s'"), argv[0]);
544 }
545
546 /* Pick any thread in the desired process. Current
547 target_detach detaches from the parent of inferior_ptid. */
548 tp = iterate_over_threads (find_thread_of_process, &pid);
549 if (!tp)
550 error (_("Thread group is empty"));
551
552 switch_to_thread (tp->ptid);
553 }
554
555 detach_command (NULL, 0);
556 }
557
558 void
559 mi_cmd_thread_select (char *command, char **argv, int argc)
560 {
561 enum gdb_rc rc;
562 char *mi_error_message;
563
564 if (argc != 1)
565 error (_("-thread-select: USAGE: threadnum."));
566
567 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
568
569 if (rc == GDB_RC_FAIL)
570 {
571 make_cleanup (xfree, mi_error_message);
572 error ("%s", mi_error_message);
573 }
574 }
575
576 void
577 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
578 {
579 enum gdb_rc rc;
580 char *mi_error_message;
581
582 if (argc != 0)
583 error (_("-thread-list-ids: No arguments required."));
584
585 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
586
587 if (rc == GDB_RC_FAIL)
588 {
589 make_cleanup (xfree, mi_error_message);
590 error ("%s", mi_error_message);
591 }
592 }
593
594 void
595 mi_cmd_thread_info (char *command, char **argv, int argc)
596 {
597 if (argc != 0 && argc != 1)
598 error (_("Invalid MI command"));
599
600 print_thread_info (current_uiout, argv[0], -1);
601 }
602
603 struct collect_cores_data
604 {
605 int pid;
606
607 VEC (int) *cores;
608 };
609
610 static int
611 collect_cores (struct thread_info *ti, void *xdata)
612 {
613 struct collect_cores_data *data = xdata;
614
615 if (ptid_get_pid (ti->ptid) == data->pid)
616 {
617 int core = target_core_of_thread (ti->ptid);
618
619 if (core != -1)
620 VEC_safe_push (int, data->cores, core);
621 }
622
623 return 0;
624 }
625
626 static int *
627 unique (int *b, int *e)
628 {
629 int *d = b;
630
631 while (++b != e)
632 if (*d != *b)
633 *++d = *b;
634 return ++d;
635 }
636
637 struct print_one_inferior_data
638 {
639 int recurse;
640 VEC (int) *inferiors;
641 };
642
643 static int
644 print_one_inferior (struct inferior *inferior, void *xdata)
645 {
646 struct print_one_inferior_data *top_data = xdata;
647 struct ui_out *uiout = current_uiout;
648
649 if (VEC_empty (int, top_data->inferiors)
650 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
651 VEC_length (int, top_data->inferiors), sizeof (int),
652 compare_positive_ints))
653 {
654 struct collect_cores_data data;
655 struct cleanup *back_to
656 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
657
658 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
659 ui_out_field_string (uiout, "type", "process");
660 if (inferior->has_exit_code)
661 ui_out_field_string (uiout, "exit-code",
662 int_string (inferior->exit_code, 8, 0, 0, 1));
663 if (inferior->pid != 0)
664 ui_out_field_int (uiout, "pid", inferior->pid);
665
666 if (inferior->pspace->pspace_exec_filename != NULL)
667 {
668 ui_out_field_string (uiout, "executable",
669 inferior->pspace->pspace_exec_filename);
670 }
671
672 data.cores = 0;
673 if (inferior->pid != 0)
674 {
675 data.pid = inferior->pid;
676 iterate_over_threads (collect_cores, &data);
677 }
678
679 if (!VEC_empty (int, data.cores))
680 {
681 int *b, *e;
682 struct cleanup *back_to_2 =
683 make_cleanup_ui_out_list_begin_end (uiout, "cores");
684
685 qsort (VEC_address (int, data.cores),
686 VEC_length (int, data.cores), sizeof (int),
687 compare_positive_ints);
688
689 b = VEC_address (int, data.cores);
690 e = b + VEC_length (int, data.cores);
691 e = unique (b, e);
692
693 for (; b != e; ++b)
694 ui_out_field_int (uiout, NULL, *b);
695
696 do_cleanups (back_to_2);
697 }
698
699 if (top_data->recurse)
700 print_thread_info (uiout, NULL, inferior->pid);
701
702 do_cleanups (back_to);
703 }
704
705 return 0;
706 }
707
708 /* Output a field named 'cores' with a list as the value. The
709 elements of the list are obtained by splitting 'cores' on
710 comma. */
711
712 static void
713 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
714 {
715 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
716 field_name);
717 char *cores = xstrdup (xcores);
718 char *p = cores;
719
720 make_cleanup (xfree, cores);
721
722 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
723 ui_out_field_string (uiout, NULL, p);
724
725 do_cleanups (back_to);
726 }
727
728 static void
729 free_vector_of_ints (void *xvector)
730 {
731 VEC (int) **vector = xvector;
732
733 VEC_free (int, *vector);
734 }
735
736 static void
737 do_nothing (splay_tree_key k)
738 {
739 }
740
741 static void
742 free_vector_of_osdata_items (splay_tree_value xvalue)
743 {
744 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
745
746 /* We don't free the items itself, it will be done separately. */
747 VEC_free (osdata_item_s, value);
748 }
749
750 static int
751 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
752 {
753 int a = xa;
754 int b = xb;
755
756 return a - b;
757 }
758
759 static void
760 free_splay_tree (void *xt)
761 {
762 splay_tree t = xt;
763 splay_tree_delete (t);
764 }
765
766 static void
767 list_available_thread_groups (VEC (int) *ids, int recurse)
768 {
769 struct osdata *data;
770 struct osdata_item *item;
771 int ix_items;
772 struct ui_out *uiout = current_uiout;
773 struct cleanup *cleanup;
774
775 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
776 The vector contains information about all threads for the given pid.
777 This is assigned an initial value to avoid "may be used uninitialized"
778 warning from gcc. */
779 splay_tree tree = NULL;
780
781 /* get_osdata will throw if it cannot return data. */
782 data = get_osdata ("processes");
783 cleanup = make_cleanup_osdata_free (data);
784
785 if (recurse)
786 {
787 struct osdata *threads = get_osdata ("threads");
788
789 make_cleanup_osdata_free (threads);
790 tree = splay_tree_new (splay_tree_int_comparator,
791 do_nothing,
792 free_vector_of_osdata_items);
793 make_cleanup (free_splay_tree, tree);
794
795 for (ix_items = 0;
796 VEC_iterate (osdata_item_s, threads->items,
797 ix_items, item);
798 ix_items++)
799 {
800 const char *pid = get_osdata_column (item, "pid");
801 int pid_i = strtoul (pid, NULL, 0);
802 VEC (osdata_item_s) *vec = 0;
803
804 splay_tree_node n = splay_tree_lookup (tree, pid_i);
805 if (!n)
806 {
807 VEC_safe_push (osdata_item_s, vec, item);
808 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
809 }
810 else
811 {
812 vec = (VEC (osdata_item_s) *) n->value;
813 VEC_safe_push (osdata_item_s, vec, item);
814 n->value = (splay_tree_value) vec;
815 }
816 }
817 }
818
819 make_cleanup_ui_out_list_begin_end (uiout, "groups");
820
821 for (ix_items = 0;
822 VEC_iterate (osdata_item_s, data->items,
823 ix_items, item);
824 ix_items++)
825 {
826 struct cleanup *back_to;
827
828 const char *pid = get_osdata_column (item, "pid");
829 const char *cmd = get_osdata_column (item, "command");
830 const char *user = get_osdata_column (item, "user");
831 const char *cores = get_osdata_column (item, "cores");
832
833 int pid_i = strtoul (pid, NULL, 0);
834
835 /* At present, the target will return all available processes
836 and if information about specific ones was required, we filter
837 undesired processes here. */
838 if (ids && bsearch (&pid_i, VEC_address (int, ids),
839 VEC_length (int, ids),
840 sizeof (int), compare_positive_ints) == NULL)
841 continue;
842
843
844 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
845
846 ui_out_field_fmt (uiout, "id", "%s", pid);
847 ui_out_field_string (uiout, "type", "process");
848 if (cmd)
849 ui_out_field_string (uiout, "description", cmd);
850 if (user)
851 ui_out_field_string (uiout, "user", user);
852 if (cores)
853 output_cores (uiout, "cores", cores);
854
855 if (recurse)
856 {
857 splay_tree_node n = splay_tree_lookup (tree, pid_i);
858 if (n)
859 {
860 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
861 struct osdata_item *child;
862 int ix_child;
863
864 make_cleanup_ui_out_list_begin_end (uiout, "threads");
865
866 for (ix_child = 0;
867 VEC_iterate (osdata_item_s, children, ix_child, child);
868 ++ix_child)
869 {
870 struct cleanup *back_to_2 =
871 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
872 const char *tid = get_osdata_column (child, "tid");
873 const char *tcore = get_osdata_column (child, "core");
874
875 ui_out_field_string (uiout, "id", tid);
876 if (tcore)
877 ui_out_field_string (uiout, "core", tcore);
878
879 do_cleanups (back_to_2);
880 }
881 }
882 }
883
884 do_cleanups (back_to);
885 }
886
887 do_cleanups (cleanup);
888 }
889
890 void
891 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
892 {
893 struct ui_out *uiout = current_uiout;
894 struct cleanup *back_to;
895 int available = 0;
896 int recurse = 0;
897 VEC (int) *ids = 0;
898
899 enum opt
900 {
901 AVAILABLE_OPT, RECURSE_OPT
902 };
903 static const struct mi_opt opts[] =
904 {
905 {"-available", AVAILABLE_OPT, 0},
906 {"-recurse", RECURSE_OPT, 1},
907 { 0, 0, 0 }
908 };
909
910 int oind = 0;
911 char *oarg;
912
913 while (1)
914 {
915 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
916 &oind, &oarg);
917
918 if (opt < 0)
919 break;
920 switch ((enum opt) opt)
921 {
922 case AVAILABLE_OPT:
923 available = 1;
924 break;
925 case RECURSE_OPT:
926 if (strcmp (oarg, "0") == 0)
927 ;
928 else if (strcmp (oarg, "1") == 0)
929 recurse = 1;
930 else
931 error (_("only '0' and '1' are valid values "
932 "for the '--recurse' option"));
933 break;
934 }
935 }
936
937 for (; oind < argc; ++oind)
938 {
939 char *end;
940 int inf;
941
942 if (*(argv[oind]) != 'i')
943 error (_("invalid syntax of group id '%s'"), argv[oind]);
944
945 inf = strtoul (argv[oind] + 1, &end, 0);
946
947 if (*end != '\0')
948 error (_("invalid syntax of group id '%s'"), argv[oind]);
949 VEC_safe_push (int, ids, inf);
950 }
951 if (VEC_length (int, ids) > 1)
952 qsort (VEC_address (int, ids),
953 VEC_length (int, ids),
954 sizeof (int), compare_positive_ints);
955
956 back_to = make_cleanup (free_vector_of_ints, &ids);
957
958 if (available)
959 {
960 list_available_thread_groups (ids, recurse);
961 }
962 else if (VEC_length (int, ids) == 1)
963 {
964 /* Local thread groups, single id. */
965 int id = *VEC_address (int, ids);
966 struct inferior *inf = find_inferior_id (id);
967
968 if (!inf)
969 error (_("Non-existent thread group id '%d'"), id);
970
971 print_thread_info (uiout, NULL, inf->pid);
972 }
973 else
974 {
975 struct print_one_inferior_data data;
976
977 data.recurse = recurse;
978 data.inferiors = ids;
979
980 /* Local thread groups. Either no explicit ids -- and we
981 print everything, or several explicit ids. In both cases,
982 we print more than one group, and have to use 'groups'
983 as the top-level element. */
984 make_cleanup_ui_out_list_begin_end (uiout, "groups");
985 update_thread_list ();
986 iterate_over_inferiors (print_one_inferior, &data);
987 }
988
989 do_cleanups (back_to);
990 }
991
992 void
993 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
994 {
995 struct gdbarch *gdbarch;
996 struct ui_out *uiout = current_uiout;
997 int regnum, numregs;
998 int i;
999 struct cleanup *cleanup;
1000
1001 /* Note that the test for a valid register must include checking the
1002 gdbarch_register_name because gdbarch_num_regs may be allocated
1003 for the union of the register sets within a family of related
1004 processors. In this case, some entries of gdbarch_register_name
1005 will change depending upon the particular processor being
1006 debugged. */
1007
1008 gdbarch = get_current_arch ();
1009 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1010
1011 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1012
1013 if (argc == 0) /* No args, just do all the regs. */
1014 {
1015 for (regnum = 0;
1016 regnum < numregs;
1017 regnum++)
1018 {
1019 if (gdbarch_register_name (gdbarch, regnum) == NULL
1020 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1021 ui_out_field_string (uiout, NULL, "");
1022 else
1023 ui_out_field_string (uiout, NULL,
1024 gdbarch_register_name (gdbarch, regnum));
1025 }
1026 }
1027
1028 /* Else, list of register #s, just do listed regs. */
1029 for (i = 0; i < argc; i++)
1030 {
1031 regnum = atoi (argv[i]);
1032 if (regnum < 0 || regnum >= numregs)
1033 error (_("bad register number"));
1034
1035 if (gdbarch_register_name (gdbarch, regnum) == NULL
1036 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1037 ui_out_field_string (uiout, NULL, "");
1038 else
1039 ui_out_field_string (uiout, NULL,
1040 gdbarch_register_name (gdbarch, regnum));
1041 }
1042 do_cleanups (cleanup);
1043 }
1044
1045 void
1046 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1047 {
1048 static struct regcache *this_regs = NULL;
1049 struct ui_out *uiout = current_uiout;
1050 struct regcache *prev_regs;
1051 struct gdbarch *gdbarch;
1052 int regnum, numregs, changed;
1053 int i;
1054 struct cleanup *cleanup;
1055
1056 /* The last time we visited this function, the current frame's
1057 register contents were saved in THIS_REGS. Move THIS_REGS over
1058 to PREV_REGS, and refresh THIS_REGS with the now-current register
1059 contents. */
1060
1061 prev_regs = this_regs;
1062 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1063 cleanup = make_cleanup_regcache_xfree (prev_regs);
1064
1065 /* Note that the test for a valid register must include checking the
1066 gdbarch_register_name because gdbarch_num_regs may be allocated
1067 for the union of the register sets within a family of related
1068 processors. In this case, some entries of gdbarch_register_name
1069 will change depending upon the particular processor being
1070 debugged. */
1071
1072 gdbarch = get_regcache_arch (this_regs);
1073 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1074
1075 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1076
1077 if (argc == 0)
1078 {
1079 /* No args, just do all the regs. */
1080 for (regnum = 0;
1081 regnum < numregs;
1082 regnum++)
1083 {
1084 if (gdbarch_register_name (gdbarch, regnum) == NULL
1085 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1086 continue;
1087 changed = register_changed_p (regnum, prev_regs, this_regs);
1088 if (changed < 0)
1089 error (_("-data-list-changed-registers: "
1090 "Unable to read register contents."));
1091 else if (changed)
1092 ui_out_field_int (uiout, NULL, regnum);
1093 }
1094 }
1095
1096 /* Else, list of register #s, just do listed regs. */
1097 for (i = 0; i < argc; i++)
1098 {
1099 regnum = atoi (argv[i]);
1100
1101 if (regnum >= 0
1102 && regnum < numregs
1103 && gdbarch_register_name (gdbarch, regnum) != NULL
1104 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1105 {
1106 changed = register_changed_p (regnum, prev_regs, this_regs);
1107 if (changed < 0)
1108 error (_("-data-list-changed-registers: "
1109 "Unable to read register contents."));
1110 else if (changed)
1111 ui_out_field_int (uiout, NULL, regnum);
1112 }
1113 else
1114 error (_("bad register number"));
1115 }
1116 do_cleanups (cleanup);
1117 }
1118
1119 static int
1120 register_changed_p (int regnum, struct regcache *prev_regs,
1121 struct regcache *this_regs)
1122 {
1123 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1124 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1125 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1126 enum register_status prev_status;
1127 enum register_status this_status;
1128
1129 /* First time through or after gdbarch change consider all registers
1130 as changed. */
1131 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1132 return 1;
1133
1134 /* Get register contents and compare. */
1135 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1136 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1137
1138 if (this_status != prev_status)
1139 return 1;
1140 else if (this_status == REG_VALID)
1141 return memcmp (prev_buffer, this_buffer,
1142 register_size (gdbarch, regnum)) != 0;
1143 else
1144 return 0;
1145 }
1146
1147 /* Return a list of register number and value pairs. The valid
1148 arguments expected are: a letter indicating the format in which to
1149 display the registers contents. This can be one of: x
1150 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1151 (raw). After the format argument there can be a sequence of
1152 numbers, indicating which registers to fetch the content of. If
1153 the format is the only argument, a list of all the registers with
1154 their values is returned. */
1155
1156 void
1157 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1158 {
1159 struct ui_out *uiout = current_uiout;
1160 struct frame_info *frame;
1161 struct gdbarch *gdbarch;
1162 int regnum, numregs, format;
1163 int i;
1164 struct cleanup *list_cleanup;
1165 int skip_unavailable = 0;
1166 int oind = 0;
1167 enum opt
1168 {
1169 SKIP_UNAVAILABLE,
1170 };
1171 static const struct mi_opt opts[] =
1172 {
1173 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1174 { 0, 0, 0 }
1175 };
1176
1177 /* Note that the test for a valid register must include checking the
1178 gdbarch_register_name because gdbarch_num_regs may be allocated
1179 for the union of the register sets within a family of related
1180 processors. In this case, some entries of gdbarch_register_name
1181 will change depending upon the particular processor being
1182 debugged. */
1183
1184 while (1)
1185 {
1186 char *oarg;
1187 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1188 opts, &oind, &oarg);
1189
1190 if (opt < 0)
1191 break;
1192 switch ((enum opt) opt)
1193 {
1194 case SKIP_UNAVAILABLE:
1195 skip_unavailable = 1;
1196 break;
1197 }
1198 }
1199
1200 if (argc - oind < 1)
1201 error (_("-data-list-register-values: Usage: "
1202 "-data-list-register-values [--skip-unavailable] <format>"
1203 " [<regnum1>...<regnumN>]"));
1204
1205 format = (int) argv[oind][0];
1206
1207 frame = get_selected_frame (NULL);
1208 gdbarch = get_frame_arch (frame);
1209 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1210
1211 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1212
1213 if (argc - oind == 1)
1214 {
1215 /* No args, beside the format: do all the regs. */
1216 for (regnum = 0;
1217 regnum < numregs;
1218 regnum++)
1219 {
1220 if (gdbarch_register_name (gdbarch, regnum) == NULL
1221 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1222 continue;
1223
1224 output_register (frame, regnum, format, skip_unavailable);
1225 }
1226 }
1227
1228 /* Else, list of register #s, just do listed regs. */
1229 for (i = 1 + oind; i < argc; i++)
1230 {
1231 regnum = atoi (argv[i]);
1232
1233 if (regnum >= 0
1234 && regnum < numregs
1235 && gdbarch_register_name (gdbarch, regnum) != NULL
1236 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1237 output_register (frame, regnum, format, skip_unavailable);
1238 else
1239 error (_("bad register number"));
1240 }
1241 do_cleanups (list_cleanup);
1242 }
1243
1244 /* Output one register REGNUM's contents in the desired FORMAT. If
1245 SKIP_UNAVAILABLE is true, skip the register if it is
1246 unavailable. */
1247
1248 static void
1249 output_register (struct frame_info *frame, int regnum, int format,
1250 int skip_unavailable)
1251 {
1252 struct gdbarch *gdbarch = get_frame_arch (frame);
1253 struct ui_out *uiout = current_uiout;
1254 struct value *val = value_of_register (regnum, frame);
1255 struct cleanup *tuple_cleanup;
1256 struct value_print_options opts;
1257 struct ui_file *stb;
1258
1259 if (skip_unavailable && !value_entirely_available (val))
1260 return;
1261
1262 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1263 ui_out_field_int (uiout, "number", regnum);
1264
1265 if (format == 'N')
1266 format = 0;
1267
1268 if (format == 'r')
1269 format = 'z';
1270
1271 stb = mem_fileopen ();
1272 make_cleanup_ui_file_delete (stb);
1273
1274 get_formatted_print_options (&opts, format);
1275 opts.deref_ref = 1;
1276 val_print (value_type (val),
1277 value_contents_for_printing (val),
1278 value_embedded_offset (val), 0,
1279 stb, 0, val, &opts, current_language);
1280 ui_out_field_stream (uiout, "value", stb);
1281
1282 do_cleanups (tuple_cleanup);
1283 }
1284
1285 /* Write given values into registers. The registers and values are
1286 given as pairs. The corresponding MI command is
1287 -data-write-register-values <format>
1288 [<regnum1> <value1>...<regnumN> <valueN>] */
1289 void
1290 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1291 {
1292 struct regcache *regcache;
1293 struct gdbarch *gdbarch;
1294 int numregs, i;
1295
1296 /* Note that the test for a valid register must include checking the
1297 gdbarch_register_name because gdbarch_num_regs may be allocated
1298 for the union of the register sets within a family of related
1299 processors. In this case, some entries of gdbarch_register_name
1300 will change depending upon the particular processor being
1301 debugged. */
1302
1303 regcache = get_current_regcache ();
1304 gdbarch = get_regcache_arch (regcache);
1305 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1306
1307 if (argc == 0)
1308 error (_("-data-write-register-values: Usage: -data-write-register-"
1309 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1310
1311 if (!target_has_registers)
1312 error (_("-data-write-register-values: No registers."));
1313
1314 if (!(argc - 1))
1315 error (_("-data-write-register-values: No regs and values specified."));
1316
1317 if ((argc - 1) % 2)
1318 error (_("-data-write-register-values: "
1319 "Regs and vals are not in pairs."));
1320
1321 for (i = 1; i < argc; i = i + 2)
1322 {
1323 int regnum = atoi (argv[i]);
1324
1325 if (regnum >= 0 && regnum < numregs
1326 && gdbarch_register_name (gdbarch, regnum)
1327 && *gdbarch_register_name (gdbarch, regnum))
1328 {
1329 LONGEST value;
1330
1331 /* Get the value as a number. */
1332 value = parse_and_eval_address (argv[i + 1]);
1333
1334 /* Write it down. */
1335 regcache_cooked_write_signed (regcache, regnum, value);
1336 }
1337 else
1338 error (_("bad register number"));
1339 }
1340 }
1341
1342 /* Evaluate the value of the argument. The argument is an
1343 expression. If the expression contains spaces it needs to be
1344 included in double quotes. */
1345
1346 void
1347 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1348 {
1349 struct expression *expr;
1350 struct cleanup *old_chain;
1351 struct value *val;
1352 struct ui_file *stb;
1353 struct value_print_options opts;
1354 struct ui_out *uiout = current_uiout;
1355
1356 stb = mem_fileopen ();
1357 old_chain = make_cleanup_ui_file_delete (stb);
1358
1359 if (argc != 1)
1360 error (_("-data-evaluate-expression: "
1361 "Usage: -data-evaluate-expression expression"));
1362
1363 expr = parse_expression (argv[0]);
1364
1365 make_cleanup (free_current_contents, &expr);
1366
1367 val = evaluate_expression (expr);
1368
1369 /* Print the result of the expression evaluation. */
1370 get_user_print_options (&opts);
1371 opts.deref_ref = 0;
1372 common_val_print (val, stb, 0, &opts, current_language);
1373
1374 ui_out_field_stream (uiout, "value", stb);
1375
1376 do_cleanups (old_chain);
1377 }
1378
1379 /* This is the -data-read-memory command.
1380
1381 ADDR: start address of data to be dumped.
1382 WORD-FORMAT: a char indicating format for the ``word''. See
1383 the ``x'' command.
1384 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1385 NR_ROW: Number of rows.
1386 NR_COL: The number of colums (words per row).
1387 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1388 ASCHAR for unprintable characters.
1389
1390 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1391 displayes them. Returns:
1392
1393 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1394
1395 Returns:
1396 The number of bytes read is SIZE*ROW*COL. */
1397
1398 void
1399 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1400 {
1401 struct gdbarch *gdbarch = get_current_arch ();
1402 struct ui_out *uiout = current_uiout;
1403 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1404 CORE_ADDR addr;
1405 long total_bytes, nr_cols, nr_rows;
1406 char word_format;
1407 struct type *word_type;
1408 long word_size;
1409 char word_asize;
1410 char aschar;
1411 gdb_byte *mbuf;
1412 int nr_bytes;
1413 long offset = 0;
1414 int oind = 0;
1415 char *oarg;
1416 enum opt
1417 {
1418 OFFSET_OPT
1419 };
1420 static const struct mi_opt opts[] =
1421 {
1422 {"o", OFFSET_OPT, 1},
1423 { 0, 0, 0 }
1424 };
1425
1426 while (1)
1427 {
1428 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1429 &oind, &oarg);
1430
1431 if (opt < 0)
1432 break;
1433 switch ((enum opt) opt)
1434 {
1435 case OFFSET_OPT:
1436 offset = atol (oarg);
1437 break;
1438 }
1439 }
1440 argv += oind;
1441 argc -= oind;
1442
1443 if (argc < 5 || argc > 6)
1444 error (_("-data-read-memory: Usage: "
1445 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1446
1447 /* Extract all the arguments. */
1448
1449 /* Start address of the memory dump. */
1450 addr = parse_and_eval_address (argv[0]) + offset;
1451 /* The format character to use when displaying a memory word. See
1452 the ``x'' command. */
1453 word_format = argv[1][0];
1454 /* The size of the memory word. */
1455 word_size = atol (argv[2]);
1456 switch (word_size)
1457 {
1458 case 1:
1459 word_type = builtin_type (gdbarch)->builtin_int8;
1460 word_asize = 'b';
1461 break;
1462 case 2:
1463 word_type = builtin_type (gdbarch)->builtin_int16;
1464 word_asize = 'h';
1465 break;
1466 case 4:
1467 word_type = builtin_type (gdbarch)->builtin_int32;
1468 word_asize = 'w';
1469 break;
1470 case 8:
1471 word_type = builtin_type (gdbarch)->builtin_int64;
1472 word_asize = 'g';
1473 break;
1474 default:
1475 word_type = builtin_type (gdbarch)->builtin_int8;
1476 word_asize = 'b';
1477 }
1478 /* The number of rows. */
1479 nr_rows = atol (argv[3]);
1480 if (nr_rows <= 0)
1481 error (_("-data-read-memory: invalid number of rows."));
1482
1483 /* Number of bytes per row. */
1484 nr_cols = atol (argv[4]);
1485 if (nr_cols <= 0)
1486 error (_("-data-read-memory: invalid number of columns."));
1487
1488 /* The un-printable character when printing ascii. */
1489 if (argc == 6)
1490 aschar = *argv[5];
1491 else
1492 aschar = 0;
1493
1494 /* Create a buffer and read it in. */
1495 total_bytes = word_size * nr_rows * nr_cols;
1496 mbuf = xcalloc (total_bytes, 1);
1497 make_cleanup (xfree, mbuf);
1498
1499 /* Dispatch memory reads to the topmost target, not the flattened
1500 current_target. */
1501 nr_bytes = target_read (current_target.beneath,
1502 TARGET_OBJECT_MEMORY, NULL, mbuf,
1503 addr, total_bytes);
1504 if (nr_bytes <= 0)
1505 error (_("Unable to read memory."));
1506
1507 /* Output the header information. */
1508 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1509 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1510 ui_out_field_int (uiout, "total-bytes", total_bytes);
1511 ui_out_field_core_addr (uiout, "next-row",
1512 gdbarch, addr + word_size * nr_cols);
1513 ui_out_field_core_addr (uiout, "prev-row",
1514 gdbarch, addr - word_size * nr_cols);
1515 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1516 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1517
1518 /* Build the result as a two dimentional table. */
1519 {
1520 struct ui_file *stream;
1521 struct cleanup *cleanup_stream;
1522 int row;
1523 int row_byte;
1524
1525 stream = mem_fileopen ();
1526 cleanup_stream = make_cleanup_ui_file_delete (stream);
1527
1528 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1529 for (row = 0, row_byte = 0;
1530 row < nr_rows;
1531 row++, row_byte += nr_cols * word_size)
1532 {
1533 int col;
1534 int col_byte;
1535 struct cleanup *cleanup_tuple;
1536 struct cleanup *cleanup_list_data;
1537 struct value_print_options opts;
1538
1539 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1540 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1541 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1542 row_byte); */
1543 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1544 get_formatted_print_options (&opts, word_format);
1545 for (col = 0, col_byte = row_byte;
1546 col < nr_cols;
1547 col++, col_byte += word_size)
1548 {
1549 if (col_byte + word_size > nr_bytes)
1550 {
1551 ui_out_field_string (uiout, NULL, "N/A");
1552 }
1553 else
1554 {
1555 ui_file_rewind (stream);
1556 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1557 word_asize, stream);
1558 ui_out_field_stream (uiout, NULL, stream);
1559 }
1560 }
1561 do_cleanups (cleanup_list_data);
1562 if (aschar)
1563 {
1564 int byte;
1565
1566 ui_file_rewind (stream);
1567 for (byte = row_byte;
1568 byte < row_byte + word_size * nr_cols; byte++)
1569 {
1570 if (byte >= nr_bytes)
1571 fputc_unfiltered ('X', stream);
1572 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1573 fputc_unfiltered (aschar, stream);
1574 else
1575 fputc_unfiltered (mbuf[byte], stream);
1576 }
1577 ui_out_field_stream (uiout, "ascii", stream);
1578 }
1579 do_cleanups (cleanup_tuple);
1580 }
1581 do_cleanups (cleanup_stream);
1582 }
1583 do_cleanups (cleanups);
1584 }
1585
1586 void
1587 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1588 {
1589 struct gdbarch *gdbarch = get_current_arch ();
1590 struct ui_out *uiout = current_uiout;
1591 struct cleanup *cleanups;
1592 CORE_ADDR addr;
1593 LONGEST length;
1594 memory_read_result_s *read_result;
1595 int ix;
1596 VEC(memory_read_result_s) *result;
1597 long offset = 0;
1598 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1599 int oind = 0;
1600 char *oarg;
1601 enum opt
1602 {
1603 OFFSET_OPT
1604 };
1605 static const struct mi_opt opts[] =
1606 {
1607 {"o", OFFSET_OPT, 1},
1608 { 0, 0, 0 }
1609 };
1610
1611 while (1)
1612 {
1613 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1614 &oind, &oarg);
1615 if (opt < 0)
1616 break;
1617 switch ((enum opt) opt)
1618 {
1619 case OFFSET_OPT:
1620 offset = atol (oarg);
1621 break;
1622 }
1623 }
1624 argv += oind;
1625 argc -= oind;
1626
1627 if (argc != 2)
1628 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1629
1630 addr = parse_and_eval_address (argv[0]) + offset;
1631 length = atol (argv[1]);
1632
1633 result = read_memory_robust (current_target.beneath, addr, length);
1634
1635 cleanups = make_cleanup (free_memory_read_result_vector, result);
1636
1637 if (VEC_length (memory_read_result_s, result) == 0)
1638 error (_("Unable to read memory."));
1639
1640 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1641 for (ix = 0;
1642 VEC_iterate (memory_read_result_s, result, ix, read_result);
1643 ++ix)
1644 {
1645 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1646 char *data, *p;
1647 int i;
1648
1649 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1650 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1651 - addr);
1652 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1653
1654 data = xmalloc (
1655 (read_result->end - read_result->begin) * 2 * unit_size + 1);
1656
1657 for (i = 0, p = data;
1658 i < ((read_result->end - read_result->begin) * unit_size);
1659 ++i, p += 2)
1660 {
1661 sprintf (p, "%02x", read_result->data[i]);
1662 }
1663 ui_out_field_string (uiout, "contents", data);
1664 xfree (data);
1665 do_cleanups (t);
1666 }
1667 do_cleanups (cleanups);
1668 }
1669
1670 /* Implementation of the -data-write_memory command.
1671
1672 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1673 offset from the beginning of the memory grid row where the cell to
1674 be written is.
1675 ADDR: start address of the row in the memory grid where the memory
1676 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1677 the location to write to.
1678 FORMAT: a char indicating format for the ``word''. See
1679 the ``x'' command.
1680 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1681 VALUE: value to be written into the memory address.
1682
1683 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1684
1685 Prints nothing. */
1686
1687 void
1688 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1689 {
1690 struct gdbarch *gdbarch = get_current_arch ();
1691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1692 CORE_ADDR addr;
1693 long word_size;
1694 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1695 enough when using a compiler other than GCC. */
1696 LONGEST value;
1697 void *buffer;
1698 struct cleanup *old_chain;
1699 long offset = 0;
1700 int oind = 0;
1701 char *oarg;
1702 enum opt
1703 {
1704 OFFSET_OPT
1705 };
1706 static const struct mi_opt opts[] =
1707 {
1708 {"o", OFFSET_OPT, 1},
1709 { 0, 0, 0 }
1710 };
1711
1712 while (1)
1713 {
1714 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1715 &oind, &oarg);
1716
1717 if (opt < 0)
1718 break;
1719 switch ((enum opt) opt)
1720 {
1721 case OFFSET_OPT:
1722 offset = atol (oarg);
1723 break;
1724 }
1725 }
1726 argv += oind;
1727 argc -= oind;
1728
1729 if (argc != 4)
1730 error (_("-data-write-memory: Usage: "
1731 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1732
1733 /* Extract all the arguments. */
1734 /* Start address of the memory dump. */
1735 addr = parse_and_eval_address (argv[0]);
1736 /* The size of the memory word. */
1737 word_size = atol (argv[2]);
1738
1739 /* Calculate the real address of the write destination. */
1740 addr += (offset * word_size);
1741
1742 /* Get the value as a number. */
1743 value = parse_and_eval_address (argv[3]);
1744 /* Get the value into an array. */
1745 buffer = xmalloc (word_size);
1746 old_chain = make_cleanup (xfree, buffer);
1747 store_signed_integer (buffer, word_size, byte_order, value);
1748 /* Write it down to memory. */
1749 write_memory_with_notification (addr, buffer, word_size);
1750 /* Free the buffer. */
1751 do_cleanups (old_chain);
1752 }
1753
1754 /* Implementation of the -data-write-memory-bytes command.
1755
1756 ADDR: start address
1757 DATA: string of bytes to write at that address
1758 COUNT: number of bytes to be filled (decimal integer). */
1759
1760 void
1761 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1762 {
1763 CORE_ADDR addr;
1764 char *cdata;
1765 gdb_byte *data;
1766 gdb_byte *databuf;
1767 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1768 long int count_units;
1769 struct cleanup *back_to;
1770 int unit_size;
1771
1772 if (argc != 2 && argc != 3)
1773 error (_("Usage: ADDR DATA [COUNT]."));
1774
1775 addr = parse_and_eval_address (argv[0]);
1776 cdata = argv[1];
1777 len_hex = strlen (cdata);
1778 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1779
1780 if (len_hex % (unit_size * 2) != 0)
1781 error (_("Hex-encoded '%s' must represent an integral number of "
1782 "addressable memory units."),
1783 cdata);
1784
1785 len_bytes = len_hex / 2;
1786 len_units = len_bytes / unit_size;
1787
1788 if (argc == 3)
1789 count_units = strtoul (argv[2], NULL, 10);
1790 else
1791 count_units = len_units;
1792
1793 databuf = xmalloc (len_bytes * sizeof (gdb_byte));
1794 back_to = make_cleanup (xfree, databuf);
1795
1796 for (i = 0; i < len_bytes; ++i)
1797 {
1798 int x;
1799 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1800 error (_("Invalid argument"));
1801 databuf[i] = (gdb_byte) x;
1802 }
1803
1804 if (len_units < count_units)
1805 {
1806 /* Pattern is made of less units than count:
1807 repeat pattern to fill memory. */
1808 data = xmalloc (count_units * unit_size);
1809 make_cleanup (xfree, data);
1810
1811 /* Number of times the pattern is entirely repeated. */
1812 steps = count_units / len_units;
1813 /* Number of remaining addressable memory units. */
1814 remaining_units = count_units % len_units;
1815 for (i = 0; i < steps; i++)
1816 memcpy (data + i * len_bytes, databuf, len_bytes);
1817
1818 if (remaining_units > 0)
1819 memcpy (data + steps * len_bytes, databuf,
1820 remaining_units * unit_size);
1821 }
1822 else
1823 {
1824 /* Pattern is longer than or equal to count:
1825 just copy count addressable memory units. */
1826 data = databuf;
1827 }
1828
1829 write_memory_with_notification (addr, data, count_units);
1830
1831 do_cleanups (back_to);
1832 }
1833
1834 void
1835 mi_cmd_enable_timings (char *command, char **argv, int argc)
1836 {
1837 if (argc == 0)
1838 do_timings = 1;
1839 else if (argc == 1)
1840 {
1841 if (strcmp (argv[0], "yes") == 0)
1842 do_timings = 1;
1843 else if (strcmp (argv[0], "no") == 0)
1844 do_timings = 0;
1845 else
1846 goto usage_error;
1847 }
1848 else
1849 goto usage_error;
1850
1851 return;
1852
1853 usage_error:
1854 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1855 }
1856
1857 void
1858 mi_cmd_list_features (char *command, char **argv, int argc)
1859 {
1860 if (argc == 0)
1861 {
1862 struct cleanup *cleanup = NULL;
1863 struct ui_out *uiout = current_uiout;
1864
1865 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1866 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1867 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1868 ui_out_field_string (uiout, NULL, "thread-info");
1869 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1870 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1871 ui_out_field_string (uiout, NULL, "ada-task-info");
1872 ui_out_field_string (uiout, NULL, "language-option");
1873 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1874 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1875 ui_out_field_string (uiout, NULL, "exec-run-start-option");
1876
1877 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1878 ui_out_field_string (uiout, NULL, "python");
1879
1880 do_cleanups (cleanup);
1881 return;
1882 }
1883
1884 error (_("-list-features should be passed no arguments"));
1885 }
1886
1887 void
1888 mi_cmd_list_target_features (char *command, char **argv, int argc)
1889 {
1890 if (argc == 0)
1891 {
1892 struct cleanup *cleanup = NULL;
1893 struct ui_out *uiout = current_uiout;
1894
1895 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1896 if (mi_async_p ())
1897 ui_out_field_string (uiout, NULL, "async");
1898 if (target_can_execute_reverse)
1899 ui_out_field_string (uiout, NULL, "reverse");
1900 do_cleanups (cleanup);
1901 return;
1902 }
1903
1904 error (_("-list-target-features should be passed no arguments"));
1905 }
1906
1907 void
1908 mi_cmd_add_inferior (char *command, char **argv, int argc)
1909 {
1910 struct inferior *inf;
1911
1912 if (argc != 0)
1913 error (_("-add-inferior should be passed no arguments"));
1914
1915 inf = add_inferior_with_spaces ();
1916
1917 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1918 }
1919
1920 /* Callback used to find the first inferior other than the current
1921 one. */
1922
1923 static int
1924 get_other_inferior (struct inferior *inf, void *arg)
1925 {
1926 if (inf == current_inferior ())
1927 return 0;
1928
1929 return 1;
1930 }
1931
1932 void
1933 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1934 {
1935 int id;
1936 struct inferior *inf;
1937
1938 if (argc != 1)
1939 error (_("-remove-inferior should be passed a single argument"));
1940
1941 if (sscanf (argv[0], "i%d", &id) != 1)
1942 error (_("the thread group id is syntactically invalid"));
1943
1944 inf = find_inferior_id (id);
1945 if (!inf)
1946 error (_("the specified thread group does not exist"));
1947
1948 if (inf->pid != 0)
1949 error (_("cannot remove an active inferior"));
1950
1951 if (inf == current_inferior ())
1952 {
1953 struct thread_info *tp = 0;
1954 struct inferior *new_inferior
1955 = iterate_over_inferiors (get_other_inferior, NULL);
1956
1957 if (new_inferior == NULL)
1958 error (_("Cannot remove last inferior"));
1959
1960 set_current_inferior (new_inferior);
1961 if (new_inferior->pid != 0)
1962 tp = any_thread_of_process (new_inferior->pid);
1963 switch_to_thread (tp ? tp->ptid : null_ptid);
1964 set_current_program_space (new_inferior->pspace);
1965 }
1966
1967 delete_inferior (inf);
1968 }
1969
1970 \f
1971
1972 /* Execute a command within a safe environment.
1973 Return <0 for error; >=0 for ok.
1974
1975 args->action will tell mi_execute_command what action
1976 to perfrom after the given command has executed (display/suppress
1977 prompt, display error). */
1978
1979 static void
1980 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1981 {
1982 struct cleanup *cleanup;
1983
1984 if (do_timings)
1985 current_command_ts = context->cmd_start;
1986
1987 current_token = xstrdup (context->token);
1988 cleanup = make_cleanup (free_current_contents, &current_token);
1989
1990 running_result_record_printed = 0;
1991 mi_proceeded = 0;
1992 switch (context->op)
1993 {
1994 case MI_COMMAND:
1995 /* A MI command was read from the input stream. */
1996 if (mi_debug_p)
1997 /* FIXME: gdb_???? */
1998 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1999 context->token, context->command, context->args);
2000
2001 mi_cmd_execute (context);
2002
2003 /* Print the result if there were no errors.
2004
2005 Remember that on the way out of executing a command, you have
2006 to directly use the mi_interp's uiout, since the command
2007 could have reset the interpreter, in which case the current
2008 uiout will most likely crash in the mi_out_* routines. */
2009 if (!running_result_record_printed)
2010 {
2011 fputs_unfiltered (context->token, raw_stdout);
2012 /* There's no particularly good reason why target-connect results
2013 in not ^done. Should kill ^connected for MI3. */
2014 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2015 ? "^connected" : "^done", raw_stdout);
2016 mi_out_put (uiout, raw_stdout);
2017 mi_out_rewind (uiout);
2018 mi_print_timing_maybe ();
2019 fputs_unfiltered ("\n", raw_stdout);
2020 }
2021 else
2022 /* The command does not want anything to be printed. In that
2023 case, the command probably should not have written anything
2024 to uiout, but in case it has written something, discard it. */
2025 mi_out_rewind (uiout);
2026 break;
2027
2028 case CLI_COMMAND:
2029 {
2030 char *argv[2];
2031
2032 /* A CLI command was read from the input stream. */
2033 /* This "feature" will be removed as soon as we have a
2034 complete set of mi commands. */
2035 /* Echo the command on the console. */
2036 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2037 /* Call the "console" interpreter. */
2038 argv[0] = "console";
2039 argv[1] = context->command;
2040 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2041
2042 /* If we changed interpreters, DON'T print out anything. */
2043 if (current_interp_named_p (INTERP_MI)
2044 || current_interp_named_p (INTERP_MI1)
2045 || current_interp_named_p (INTERP_MI2)
2046 || current_interp_named_p (INTERP_MI3))
2047 {
2048 if (!running_result_record_printed)
2049 {
2050 fputs_unfiltered (context->token, raw_stdout);
2051 fputs_unfiltered ("^done", raw_stdout);
2052 mi_out_put (uiout, raw_stdout);
2053 mi_out_rewind (uiout);
2054 mi_print_timing_maybe ();
2055 fputs_unfiltered ("\n", raw_stdout);
2056 }
2057 else
2058 mi_out_rewind (uiout);
2059 }
2060 break;
2061 }
2062 }
2063
2064 do_cleanups (cleanup);
2065 }
2066
2067 /* Print a gdb exception to the MI output stream. */
2068
2069 static void
2070 mi_print_exception (const char *token, struct gdb_exception exception)
2071 {
2072 fputs_unfiltered (token, raw_stdout);
2073 fputs_unfiltered ("^error,msg=\"", raw_stdout);
2074 if (exception.message == NULL)
2075 fputs_unfiltered ("unknown error", raw_stdout);
2076 else
2077 fputstr_unfiltered (exception.message, '"', raw_stdout);
2078 fputs_unfiltered ("\"", raw_stdout);
2079
2080 switch (exception.error)
2081 {
2082 case UNDEFINED_COMMAND_ERROR:
2083 fputs_unfiltered (",code=\"undefined-command\"", raw_stdout);
2084 break;
2085 }
2086
2087 fputs_unfiltered ("\n", raw_stdout);
2088 }
2089
2090 void
2091 mi_execute_command (const char *cmd, int from_tty)
2092 {
2093 char *token;
2094 struct mi_parse *command = NULL;
2095
2096 /* This is to handle EOF (^D). We just quit gdb. */
2097 /* FIXME: we should call some API function here. */
2098 if (cmd == 0)
2099 quit_force (NULL, from_tty);
2100
2101 target_log_command (cmd);
2102
2103 TRY
2104 {
2105 command = mi_parse (cmd, &token);
2106 }
2107 CATCH (exception, RETURN_MASK_ALL)
2108 {
2109 mi_print_exception (token, exception);
2110 xfree (token);
2111 }
2112 END_CATCH
2113
2114 if (command != NULL)
2115 {
2116 ptid_t previous_ptid = inferior_ptid;
2117
2118 command->token = token;
2119
2120 if (do_timings)
2121 {
2122 command->cmd_start = XNEW (struct mi_timestamp);
2123 timestamp (command->cmd_start);
2124 }
2125
2126 TRY
2127 {
2128 captured_mi_execute_command (current_uiout, command);
2129 }
2130 CATCH (result, RETURN_MASK_ALL)
2131 {
2132 /* The command execution failed and error() was called
2133 somewhere. */
2134 mi_print_exception (command->token, result);
2135 mi_out_rewind (current_uiout);
2136 }
2137 END_CATCH
2138
2139 bpstat_do_actions ();
2140
2141 if (/* The notifications are only output when the top-level
2142 interpreter (specified on the command line) is MI. */
2143 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2144 /* Don't try report anything if there are no threads --
2145 the program is dead. */
2146 && thread_count () != 0
2147 /* -thread-select explicitly changes thread. If frontend uses that
2148 internally, we don't want to emit =thread-selected, since
2149 =thread-selected is supposed to indicate user's intentions. */
2150 && strcmp (command->command, "thread-select") != 0)
2151 {
2152 struct mi_interp *mi = top_level_interpreter_data ();
2153 int report_change = 0;
2154
2155 if (command->thread == -1)
2156 {
2157 report_change = (!ptid_equal (previous_ptid, null_ptid)
2158 && !ptid_equal (inferior_ptid, previous_ptid)
2159 && !ptid_equal (inferior_ptid, null_ptid));
2160 }
2161 else if (!ptid_equal (inferior_ptid, null_ptid))
2162 {
2163 struct thread_info *ti = inferior_thread ();
2164
2165 report_change = (ti->num != command->thread);
2166 }
2167
2168 if (report_change)
2169 {
2170 struct thread_info *ti = inferior_thread ();
2171
2172 target_terminal_ours ();
2173 fprintf_unfiltered (mi->event_channel,
2174 "thread-selected,id=\"%d\"",
2175 ti->num);
2176 gdb_flush (mi->event_channel);
2177 }
2178 }
2179
2180 mi_parse_free (command);
2181 }
2182 }
2183
2184 static void
2185 mi_cmd_execute (struct mi_parse *parse)
2186 {
2187 struct cleanup *cleanup;
2188 enum language saved_language;
2189
2190 cleanup = prepare_execute_command ();
2191
2192 if (parse->all && parse->thread_group != -1)
2193 error (_("Cannot specify --thread-group together with --all"));
2194
2195 if (parse->all && parse->thread != -1)
2196 error (_("Cannot specify --thread together with --all"));
2197
2198 if (parse->thread_group != -1 && parse->thread != -1)
2199 error (_("Cannot specify --thread together with --thread-group"));
2200
2201 if (parse->frame != -1 && parse->thread == -1)
2202 error (_("Cannot specify --frame without --thread"));
2203
2204 if (parse->thread_group != -1)
2205 {
2206 struct inferior *inf = find_inferior_id (parse->thread_group);
2207 struct thread_info *tp = 0;
2208
2209 if (!inf)
2210 error (_("Invalid thread group for the --thread-group option"));
2211
2212 set_current_inferior (inf);
2213 /* This behaviour means that if --thread-group option identifies
2214 an inferior with multiple threads, then a random one will be
2215 picked. This is not a problem -- frontend should always
2216 provide --thread if it wishes to operate on a specific
2217 thread. */
2218 if (inf->pid != 0)
2219 tp = any_live_thread_of_process (inf->pid);
2220 switch_to_thread (tp ? tp->ptid : null_ptid);
2221 set_current_program_space (inf->pspace);
2222 }
2223
2224 if (parse->thread != -1)
2225 {
2226 struct thread_info *tp = find_thread_id (parse->thread);
2227
2228 if (!tp)
2229 error (_("Invalid thread id: %d"), parse->thread);
2230
2231 if (is_exited (tp->ptid))
2232 error (_("Thread id: %d has terminated"), parse->thread);
2233
2234 switch_to_thread (tp->ptid);
2235 }
2236
2237 if (parse->frame != -1)
2238 {
2239 struct frame_info *fid;
2240 int frame = parse->frame;
2241
2242 fid = find_relative_frame (get_current_frame (), &frame);
2243 if (frame == 0)
2244 /* find_relative_frame was successful */
2245 select_frame (fid);
2246 else
2247 error (_("Invalid frame id: %d"), frame);
2248 }
2249
2250 if (parse->language != language_unknown)
2251 {
2252 make_cleanup_restore_current_language ();
2253 set_language (parse->language);
2254 }
2255
2256 current_context = parse;
2257
2258 if (parse->cmd->suppress_notification != NULL)
2259 {
2260 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2261 *parse->cmd->suppress_notification = 1;
2262 }
2263
2264 if (parse->cmd->argv_func != NULL)
2265 {
2266 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2267 }
2268 else if (parse->cmd->cli.cmd != 0)
2269 {
2270 /* FIXME: DELETE THIS. */
2271 /* The operation is still implemented by a cli command. */
2272 /* Must be a synchronous one. */
2273 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2274 parse->args);
2275 }
2276 else
2277 {
2278 /* FIXME: DELETE THIS. */
2279 struct ui_file *stb;
2280
2281 stb = mem_fileopen ();
2282
2283 fputs_unfiltered ("Undefined mi command: ", stb);
2284 fputstr_unfiltered (parse->command, '"', stb);
2285 fputs_unfiltered (" (missing implementation)", stb);
2286
2287 make_cleanup_ui_file_delete (stb);
2288 error_stream (stb);
2289 }
2290 do_cleanups (cleanup);
2291 }
2292
2293 /* FIXME: This is just a hack so we can get some extra commands going.
2294 We don't want to channel things through the CLI, but call libgdb directly.
2295 Use only for synchronous commands. */
2296
2297 void
2298 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2299 {
2300 if (cmd != 0)
2301 {
2302 struct cleanup *old_cleanups;
2303 char *run;
2304
2305 if (args_p)
2306 run = xstrprintf ("%s %s", cmd, args);
2307 else
2308 run = xstrdup (cmd);
2309 if (mi_debug_p)
2310 /* FIXME: gdb_???? */
2311 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2312 cmd, run);
2313 old_cleanups = make_cleanup (xfree, run);
2314 execute_command (run, 0 /* from_tty */ );
2315 do_cleanups (old_cleanups);
2316 return;
2317 }
2318 }
2319
2320 void
2321 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2322 {
2323 struct cleanup *old_cleanups;
2324 char *run;
2325
2326 if (mi_async_p ())
2327 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2328 else
2329 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2330 old_cleanups = make_cleanup (xfree, run);
2331
2332 execute_command (run, 0 /* from_tty */ );
2333
2334 /* Do this before doing any printing. It would appear that some
2335 print code leaves garbage around in the buffer. */
2336 do_cleanups (old_cleanups);
2337 }
2338
2339 void
2340 mi_load_progress (const char *section_name,
2341 unsigned long sent_so_far,
2342 unsigned long total_section,
2343 unsigned long total_sent,
2344 unsigned long grand_total)
2345 {
2346 struct timeval time_now, delta, update_threshold;
2347 static struct timeval last_update;
2348 static char *previous_sect_name = NULL;
2349 int new_section;
2350 struct ui_out *saved_uiout;
2351 struct ui_out *uiout;
2352
2353 /* This function is called through deprecated_show_load_progress
2354 which means uiout may not be correct. Fix it for the duration
2355 of this function. */
2356 saved_uiout = current_uiout;
2357
2358 if (current_interp_named_p (INTERP_MI)
2359 || current_interp_named_p (INTERP_MI2))
2360 current_uiout = mi_out_new (2);
2361 else if (current_interp_named_p (INTERP_MI1))
2362 current_uiout = mi_out_new (1);
2363 else if (current_interp_named_p (INTERP_MI3))
2364 current_uiout = mi_out_new (3);
2365 else
2366 return;
2367
2368 uiout = current_uiout;
2369
2370 update_threshold.tv_sec = 0;
2371 update_threshold.tv_usec = 500000;
2372 gettimeofday (&time_now, NULL);
2373
2374 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2375 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2376
2377 if (delta.tv_usec < 0)
2378 {
2379 delta.tv_sec -= 1;
2380 delta.tv_usec += 1000000L;
2381 }
2382
2383 new_section = (previous_sect_name ?
2384 strcmp (previous_sect_name, section_name) : 1);
2385 if (new_section)
2386 {
2387 struct cleanup *cleanup_tuple;
2388
2389 xfree (previous_sect_name);
2390 previous_sect_name = xstrdup (section_name);
2391
2392 if (current_token)
2393 fputs_unfiltered (current_token, raw_stdout);
2394 fputs_unfiltered ("+download", raw_stdout);
2395 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2396 ui_out_field_string (uiout, "section", section_name);
2397 ui_out_field_int (uiout, "section-size", total_section);
2398 ui_out_field_int (uiout, "total-size", grand_total);
2399 do_cleanups (cleanup_tuple);
2400 mi_out_put (uiout, raw_stdout);
2401 fputs_unfiltered ("\n", raw_stdout);
2402 gdb_flush (raw_stdout);
2403 }
2404
2405 if (delta.tv_sec >= update_threshold.tv_sec &&
2406 delta.tv_usec >= update_threshold.tv_usec)
2407 {
2408 struct cleanup *cleanup_tuple;
2409
2410 last_update.tv_sec = time_now.tv_sec;
2411 last_update.tv_usec = time_now.tv_usec;
2412 if (current_token)
2413 fputs_unfiltered (current_token, raw_stdout);
2414 fputs_unfiltered ("+download", raw_stdout);
2415 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2416 ui_out_field_string (uiout, "section", section_name);
2417 ui_out_field_int (uiout, "section-sent", sent_so_far);
2418 ui_out_field_int (uiout, "section-size", total_section);
2419 ui_out_field_int (uiout, "total-sent", total_sent);
2420 ui_out_field_int (uiout, "total-size", grand_total);
2421 do_cleanups (cleanup_tuple);
2422 mi_out_put (uiout, raw_stdout);
2423 fputs_unfiltered ("\n", raw_stdout);
2424 gdb_flush (raw_stdout);
2425 }
2426
2427 xfree (uiout);
2428 current_uiout = saved_uiout;
2429 }
2430
2431 static void
2432 timestamp (struct mi_timestamp *tv)
2433 {
2434 gettimeofday (&tv->wallclock, NULL);
2435 #ifdef HAVE_GETRUSAGE
2436 getrusage (RUSAGE_SELF, &rusage);
2437 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2438 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2439 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2440 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2441 #else
2442 {
2443 long usec = get_run_time ();
2444
2445 tv->utime.tv_sec = usec/1000000L;
2446 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2447 tv->stime.tv_sec = 0;
2448 tv->stime.tv_usec = 0;
2449 }
2450 #endif
2451 }
2452
2453 static void
2454 print_diff_now (struct mi_timestamp *start)
2455 {
2456 struct mi_timestamp now;
2457
2458 timestamp (&now);
2459 print_diff (start, &now);
2460 }
2461
2462 void
2463 mi_print_timing_maybe (void)
2464 {
2465 /* If the command is -enable-timing then do_timings may be true
2466 whilst current_command_ts is not initialized. */
2467 if (do_timings && current_command_ts)
2468 print_diff_now (current_command_ts);
2469 }
2470
2471 static long
2472 timeval_diff (struct timeval start, struct timeval end)
2473 {
2474 return ((end.tv_sec - start.tv_sec) * 1000000L)
2475 + (end.tv_usec - start.tv_usec);
2476 }
2477
2478 static void
2479 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2480 {
2481 fprintf_unfiltered
2482 (raw_stdout,
2483 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2484 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2485 timeval_diff (start->utime, end->utime) / 1000000.0,
2486 timeval_diff (start->stime, end->stime) / 1000000.0);
2487 }
2488
2489 void
2490 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2491 {
2492 struct expression *expr;
2493 LONGEST initval = 0;
2494 struct trace_state_variable *tsv;
2495 char *name = 0;
2496
2497 if (argc != 1 && argc != 2)
2498 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2499
2500 name = argv[0];
2501 if (*name++ != '$')
2502 error (_("Name of trace variable should start with '$'"));
2503
2504 validate_trace_state_variable_name (name);
2505
2506 tsv = find_trace_state_variable (name);
2507 if (!tsv)
2508 tsv = create_trace_state_variable (name);
2509
2510 if (argc == 2)
2511 initval = value_as_long (parse_and_eval (argv[1]));
2512
2513 tsv->initial_value = initval;
2514 }
2515
2516 void
2517 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2518 {
2519 if (argc != 0)
2520 error (_("-trace-list-variables: no arguments allowed"));
2521
2522 tvariables_info_1 ();
2523 }
2524
2525 void
2526 mi_cmd_trace_find (char *command, char **argv, int argc)
2527 {
2528 char *mode;
2529
2530 if (argc == 0)
2531 error (_("trace selection mode is required"));
2532
2533 mode = argv[0];
2534
2535 if (strcmp (mode, "none") == 0)
2536 {
2537 tfind_1 (tfind_number, -1, 0, 0, 0);
2538 return;
2539 }
2540
2541 check_trace_running (current_trace_status ());
2542
2543 if (strcmp (mode, "frame-number") == 0)
2544 {
2545 if (argc != 2)
2546 error (_("frame number is required"));
2547 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2548 }
2549 else if (strcmp (mode, "tracepoint-number") == 0)
2550 {
2551 if (argc != 2)
2552 error (_("tracepoint number is required"));
2553 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2554 }
2555 else if (strcmp (mode, "pc") == 0)
2556 {
2557 if (argc != 2)
2558 error (_("PC is required"));
2559 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2560 }
2561 else if (strcmp (mode, "pc-inside-range") == 0)
2562 {
2563 if (argc != 3)
2564 error (_("Start and end PC are required"));
2565 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2566 parse_and_eval_address (argv[2]), 0);
2567 }
2568 else if (strcmp (mode, "pc-outside-range") == 0)
2569 {
2570 if (argc != 3)
2571 error (_("Start and end PC are required"));
2572 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2573 parse_and_eval_address (argv[2]), 0);
2574 }
2575 else if (strcmp (mode, "line") == 0)
2576 {
2577 struct symtabs_and_lines sals;
2578 struct symtab_and_line sal;
2579 static CORE_ADDR start_pc, end_pc;
2580 struct cleanup *back_to;
2581
2582 if (argc != 2)
2583 error (_("Line is required"));
2584
2585 sals = decode_line_with_current_source (argv[1],
2586 DECODE_LINE_FUNFIRSTLINE);
2587 back_to = make_cleanup (xfree, sals.sals);
2588
2589 sal = sals.sals[0];
2590
2591 if (sal.symtab == 0)
2592 error (_("Could not find the specified line"));
2593
2594 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2595 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2596 else
2597 error (_("Could not find the specified line"));
2598
2599 do_cleanups (back_to);
2600 }
2601 else
2602 error (_("Invalid mode '%s'"), mode);
2603
2604 if (has_stack_frames () || get_traceframe_number () >= 0)
2605 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2606 }
2607
2608 void
2609 mi_cmd_trace_save (char *command, char **argv, int argc)
2610 {
2611 int target_saves = 0;
2612 int generate_ctf = 0;
2613 char *filename;
2614 int oind = 0;
2615 char *oarg;
2616
2617 enum opt
2618 {
2619 TARGET_SAVE_OPT, CTF_OPT
2620 };
2621 static const struct mi_opt opts[] =
2622 {
2623 {"r", TARGET_SAVE_OPT, 0},
2624 {"ctf", CTF_OPT, 0},
2625 { 0, 0, 0 }
2626 };
2627
2628 while (1)
2629 {
2630 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2631 &oind, &oarg);
2632
2633 if (opt < 0)
2634 break;
2635 switch ((enum opt) opt)
2636 {
2637 case TARGET_SAVE_OPT:
2638 target_saves = 1;
2639 break;
2640 case CTF_OPT:
2641 generate_ctf = 1;
2642 break;
2643 }
2644 }
2645 filename = argv[oind];
2646
2647 if (generate_ctf)
2648 trace_save_ctf (filename, target_saves);
2649 else
2650 trace_save_tfile (filename, target_saves);
2651 }
2652
2653 void
2654 mi_cmd_trace_start (char *command, char **argv, int argc)
2655 {
2656 start_tracing (NULL);
2657 }
2658
2659 void
2660 mi_cmd_trace_status (char *command, char **argv, int argc)
2661 {
2662 trace_status_mi (0);
2663 }
2664
2665 void
2666 mi_cmd_trace_stop (char *command, char **argv, int argc)
2667 {
2668 stop_tracing (NULL);
2669 trace_status_mi (1);
2670 }
2671
2672 /* Implement the "-ada-task-info" command. */
2673
2674 void
2675 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2676 {
2677 if (argc != 0 && argc != 1)
2678 error (_("Invalid MI command"));
2679
2680 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2681 }
2682
2683 /* Print EXPRESSION according to VALUES. */
2684
2685 static void
2686 print_variable_or_computed (char *expression, enum print_values values)
2687 {
2688 struct expression *expr;
2689 struct cleanup *old_chain;
2690 struct value *val;
2691 struct ui_file *stb;
2692 struct value_print_options opts;
2693 struct type *type;
2694 struct ui_out *uiout = current_uiout;
2695
2696 stb = mem_fileopen ();
2697 old_chain = make_cleanup_ui_file_delete (stb);
2698
2699 expr = parse_expression (expression);
2700
2701 make_cleanup (free_current_contents, &expr);
2702
2703 if (values == PRINT_SIMPLE_VALUES)
2704 val = evaluate_type (expr);
2705 else
2706 val = evaluate_expression (expr);
2707
2708 if (values != PRINT_NO_VALUES)
2709 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2710 ui_out_field_string (uiout, "name", expression);
2711
2712 switch (values)
2713 {
2714 case PRINT_SIMPLE_VALUES:
2715 type = check_typedef (value_type (val));
2716 type_print (value_type (val), "", stb, -1);
2717 ui_out_field_stream (uiout, "type", stb);
2718 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2719 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2720 && TYPE_CODE (type) != TYPE_CODE_UNION)
2721 {
2722 struct value_print_options opts;
2723
2724 get_no_prettyformat_print_options (&opts);
2725 opts.deref_ref = 1;
2726 common_val_print (val, stb, 0, &opts, current_language);
2727 ui_out_field_stream (uiout, "value", stb);
2728 }
2729 break;
2730 case PRINT_ALL_VALUES:
2731 {
2732 struct value_print_options opts;
2733
2734 get_no_prettyformat_print_options (&opts);
2735 opts.deref_ref = 1;
2736 common_val_print (val, stb, 0, &opts, current_language);
2737 ui_out_field_stream (uiout, "value", stb);
2738 }
2739 break;
2740 }
2741
2742 do_cleanups (old_chain);
2743 }
2744
2745 /* Implement the "-trace-frame-collected" command. */
2746
2747 void
2748 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2749 {
2750 struct cleanup *old_chain;
2751 struct bp_location *tloc;
2752 int stepping_frame;
2753 struct collection_list *clist;
2754 struct collection_list tracepoint_list, stepping_list;
2755 struct traceframe_info *tinfo;
2756 int oind = 0;
2757 enum print_values var_print_values = PRINT_ALL_VALUES;
2758 enum print_values comp_print_values = PRINT_ALL_VALUES;
2759 int registers_format = 'x';
2760 int memory_contents = 0;
2761 struct ui_out *uiout = current_uiout;
2762 enum opt
2763 {
2764 VAR_PRINT_VALUES,
2765 COMP_PRINT_VALUES,
2766 REGISTERS_FORMAT,
2767 MEMORY_CONTENTS,
2768 };
2769 static const struct mi_opt opts[] =
2770 {
2771 {"-var-print-values", VAR_PRINT_VALUES, 1},
2772 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2773 {"-registers-format", REGISTERS_FORMAT, 1},
2774 {"-memory-contents", MEMORY_CONTENTS, 0},
2775 { 0, 0, 0 }
2776 };
2777
2778 while (1)
2779 {
2780 char *oarg;
2781 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2782 &oind, &oarg);
2783 if (opt < 0)
2784 break;
2785 switch ((enum opt) opt)
2786 {
2787 case VAR_PRINT_VALUES:
2788 var_print_values = mi_parse_print_values (oarg);
2789 break;
2790 case COMP_PRINT_VALUES:
2791 comp_print_values = mi_parse_print_values (oarg);
2792 break;
2793 case REGISTERS_FORMAT:
2794 registers_format = oarg[0];
2795 case MEMORY_CONTENTS:
2796 memory_contents = 1;
2797 break;
2798 }
2799 }
2800
2801 if (oind != argc)
2802 error (_("Usage: -trace-frame-collected "
2803 "[--var-print-values PRINT_VALUES] "
2804 "[--comp-print-values PRINT_VALUES] "
2805 "[--registers-format FORMAT]"
2806 "[--memory-contents]"));
2807
2808 /* This throws an error is not inspecting a trace frame. */
2809 tloc = get_traceframe_location (&stepping_frame);
2810
2811 /* This command only makes sense for the current frame, not the
2812 selected frame. */
2813 old_chain = make_cleanup_restore_current_thread ();
2814 select_frame (get_current_frame ());
2815
2816 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2817 &stepping_list);
2818
2819 if (stepping_frame)
2820 clist = &stepping_list;
2821 else
2822 clist = &tracepoint_list;
2823
2824 tinfo = get_traceframe_info ();
2825
2826 /* Explicitly wholly collected variables. */
2827 {
2828 struct cleanup *list_cleanup;
2829 char *p;
2830 int i;
2831
2832 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2833 "explicit-variables");
2834 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2835 print_variable_or_computed (p, var_print_values);
2836 do_cleanups (list_cleanup);
2837 }
2838
2839 /* Computed expressions. */
2840 {
2841 struct cleanup *list_cleanup;
2842 char *p;
2843 int i;
2844
2845 list_cleanup
2846 = make_cleanup_ui_out_list_begin_end (uiout,
2847 "computed-expressions");
2848 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2849 print_variable_or_computed (p, comp_print_values);
2850 do_cleanups (list_cleanup);
2851 }
2852
2853 /* Registers. Given pseudo-registers, and that some architectures
2854 (like MIPS) actually hide the raw registers, we don't go through
2855 the trace frame info, but instead consult the register cache for
2856 register availability. */
2857 {
2858 struct cleanup *list_cleanup;
2859 struct frame_info *frame;
2860 struct gdbarch *gdbarch;
2861 int regnum;
2862 int numregs;
2863
2864 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2865
2866 frame = get_selected_frame (NULL);
2867 gdbarch = get_frame_arch (frame);
2868 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2869
2870 for (regnum = 0; regnum < numregs; regnum++)
2871 {
2872 if (gdbarch_register_name (gdbarch, regnum) == NULL
2873 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2874 continue;
2875
2876 output_register (frame, regnum, registers_format, 1);
2877 }
2878
2879 do_cleanups (list_cleanup);
2880 }
2881
2882 /* Trace state variables. */
2883 {
2884 struct cleanup *list_cleanup;
2885 int tvar;
2886 char *tsvname;
2887 int i;
2888
2889 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2890
2891 tsvname = NULL;
2892 make_cleanup (free_current_contents, &tsvname);
2893
2894 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2895 {
2896 struct cleanup *cleanup_child;
2897 struct trace_state_variable *tsv;
2898
2899 tsv = find_trace_state_variable_by_number (tvar);
2900
2901 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2902
2903 if (tsv != NULL)
2904 {
2905 tsvname = xrealloc (tsvname, strlen (tsv->name) + 2);
2906 tsvname[0] = '$';
2907 strcpy (tsvname + 1, tsv->name);
2908 ui_out_field_string (uiout, "name", tsvname);
2909
2910 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2911 &tsv->value);
2912 ui_out_field_int (uiout, "current", tsv->value);
2913 }
2914 else
2915 {
2916 ui_out_field_skip (uiout, "name");
2917 ui_out_field_skip (uiout, "current");
2918 }
2919
2920 do_cleanups (cleanup_child);
2921 }
2922
2923 do_cleanups (list_cleanup);
2924 }
2925
2926 /* Memory. */
2927 {
2928 struct cleanup *list_cleanup;
2929 VEC(mem_range_s) *available_memory = NULL;
2930 struct mem_range *r;
2931 int i;
2932
2933 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2934 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2935
2936 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2937
2938 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2939 {
2940 struct cleanup *cleanup_child;
2941 gdb_byte *data;
2942 struct gdbarch *gdbarch = target_gdbarch ();
2943
2944 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2945
2946 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
2947 ui_out_field_int (uiout, "length", r->length);
2948
2949 data = xmalloc (r->length);
2950 make_cleanup (xfree, data);
2951
2952 if (memory_contents)
2953 {
2954 if (target_read_memory (r->start, data, r->length) == 0)
2955 {
2956 int m;
2957 char *data_str, *p;
2958
2959 data_str = xmalloc (r->length * 2 + 1);
2960 make_cleanup (xfree, data_str);
2961
2962 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2963 sprintf (p, "%02x", data[m]);
2964 ui_out_field_string (uiout, "contents", data_str);
2965 }
2966 else
2967 ui_out_field_skip (uiout, "contents");
2968 }
2969 do_cleanups (cleanup_child);
2970 }
2971
2972 do_cleanups (list_cleanup);
2973 }
2974
2975 do_cleanups (old_chain);
2976 }
2977
2978 void
2979 _initialize_mi_main (void)
2980 {
2981 struct cmd_list_element *c;
2982
2983 add_setshow_boolean_cmd ("mi-async", class_run,
2984 &mi_async_1, _("\
2985 Set whether MI asynchronous mode is enabled."), _("\
2986 Show whether MI asynchronous mode is enabled."), _("\
2987 Tells GDB whether MI should be in asynchronous mode."),
2988 set_mi_async_command,
2989 show_mi_async_command,
2990 &setlist,
2991 &showlist);
2992
2993 /* Alias old "target-async" to "mi-async". */
2994 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2995 deprecate_cmd (c, "set mi-async");
2996 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
2997 deprecate_cmd (c, "show mi-async");
2998 }
This page took 0.095824 seconds and 4 git commands to generate.