2003-08-04 David Carlton <carlton@kealia.com>
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Cygnus Solutions (a Red Hat company).
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Work in progress */
23
24 #include "defs.h"
25 #include "target.h"
26 #include "inferior.h"
27 #include "gdb_string.h"
28 #include "top.h"
29 #include "gdbthread.h"
30 #include "mi-cmds.h"
31 #include "mi-parse.h"
32 #include "mi-getopt.h"
33 #include "mi-console.h"
34 #include "ui-out.h"
35 #include "mi-out.h"
36 #include "interps.h"
37 #include "event-loop.h"
38 #include "event-top.h"
39 #include "gdbcore.h" /* for write_memory() */
40 #include "value.h" /* for deprecated_write_register_bytes() */
41 #include "regcache.h"
42 #include "gdb.h"
43 #include "frame.h"
44 #include "mi-main.h"
45
46 #include <ctype.h>
47 #include <sys/time.h>
48
49 enum
50 {
51 FROM_TTY = 0
52 };
53
54 /* Enumerations of the actions that may result from calling
55 captured_mi_execute_command */
56
57 enum captured_mi_execute_command_actions
58 {
59 EXECUTE_COMMAND_DISPLAY_PROMPT,
60 EXECUTE_COMMAND_SUPRESS_PROMPT,
61 EXECUTE_COMMAND_DISPLAY_ERROR
62 };
63
64 /* This structure is used to pass information from captured_mi_execute_command
65 to mi_execute_command. */
66 struct captured_mi_execute_command_args
67 {
68 /* This return result of the MI command (output) */
69 enum mi_cmd_result rc;
70
71 /* What action to perform when the call is finished (output) */
72 enum captured_mi_execute_command_actions action;
73
74 /* The command context to be executed (input) */
75 struct mi_parse *command;
76 };
77
78 int mi_debug_p;
79 struct ui_file *raw_stdout;
80
81 /* The token of the last asynchronous command */
82 static char *last_async_command;
83 static char *previous_async_command;
84 char *mi_error_message;
85 static char *old_regs;
86
87 extern void _initialize_mi_main (void);
88 static enum mi_cmd_result mi_cmd_execute (struct mi_parse *parse);
89
90 static void mi_execute_cli_command (const char *cli, char *args);
91 static enum mi_cmd_result mi_execute_async_cli_command (char *mi, char *args, int from_tty);
92
93 static void mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg);
94
95 static int register_changed_p (int regnum);
96 static int get_register (int regnum, int format);
97
98 /* A helper function which will set mi_error_message to
99 error_last_message. */
100 void
101 mi_error_last_message (void)
102 {
103 char *s = error_last_message ();
104 xasprintf (&mi_error_message, "%s", s);
105 xfree (s);
106 }
107
108 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
109 layer that calls libgdb. Any operation used in the below should be
110 formalized. */
111
112 enum mi_cmd_result
113 mi_cmd_gdb_exit (char *command, char **argv, int argc)
114 {
115 /* We have to print everything right here because we never return */
116 if (last_async_command)
117 fputs_unfiltered (last_async_command, raw_stdout);
118 fputs_unfiltered ("^exit\n", raw_stdout);
119 mi_out_put (uiout, raw_stdout);
120 /* FIXME: The function called is not yet a formal libgdb function */
121 quit_force (NULL, FROM_TTY);
122 return MI_CMD_DONE;
123 }
124
125 enum mi_cmd_result
126 mi_cmd_exec_run (char *args, int from_tty)
127 {
128 /* FIXME: Should call a libgdb function, not a cli wrapper */
129 return mi_execute_async_cli_command ("run", args, from_tty);
130 }
131
132 enum mi_cmd_result
133 mi_cmd_exec_next (char *args, int from_tty)
134 {
135 /* FIXME: Should call a libgdb function, not a cli wrapper */
136 return mi_execute_async_cli_command ("next", args, from_tty);
137 }
138
139 enum mi_cmd_result
140 mi_cmd_exec_next_instruction (char *args, int from_tty)
141 {
142 /* FIXME: Should call a libgdb function, not a cli wrapper */
143 return mi_execute_async_cli_command ("nexti", args, from_tty);
144 }
145
146 enum mi_cmd_result
147 mi_cmd_exec_step (char *args, int from_tty)
148 {
149 /* FIXME: Should call a libgdb function, not a cli wrapper */
150 return mi_execute_async_cli_command ("step", args, from_tty);
151 }
152
153 enum mi_cmd_result
154 mi_cmd_exec_step_instruction (char *args, int from_tty)
155 {
156 /* FIXME: Should call a libgdb function, not a cli wrapper */
157 return mi_execute_async_cli_command ("stepi", args, from_tty);
158 }
159
160 enum mi_cmd_result
161 mi_cmd_exec_finish (char *args, int from_tty)
162 {
163 /* FIXME: Should call a libgdb function, not a cli wrapper */
164 return mi_execute_async_cli_command ("finish", args, from_tty);
165 }
166
167 enum mi_cmd_result
168 mi_cmd_exec_until (char *args, int from_tty)
169 {
170 /* FIXME: Should call a libgdb function, not a cli wrapper */
171 return mi_execute_async_cli_command ("until", args, from_tty);
172 }
173
174 enum mi_cmd_result
175 mi_cmd_exec_return (char *args, int from_tty)
176 {
177 /* This command doesn't really execute the target, it just pops the
178 specified number of frames. */
179 if (*args)
180 /* Call return_command with from_tty argument equal to 0 so as to
181 avoid being queried. */
182 return_command (args, 0);
183 else
184 /* Call return_command with from_tty argument equal to 0 so as to
185 avoid being queried. */
186 return_command (NULL, 0);
187
188 /* Because we have called return_command with from_tty = 0, we need
189 to print the frame here. */
190 print_stack_frame (deprecated_selected_frame,
191 frame_relative_level (deprecated_selected_frame),
192 LOC_AND_ADDRESS);
193
194 return MI_CMD_DONE;
195 }
196
197 enum mi_cmd_result
198 mi_cmd_exec_continue (char *args, int from_tty)
199 {
200 /* FIXME: Should call a libgdb function, not a cli wrapper */
201 return mi_execute_async_cli_command ("continue", args, from_tty);
202 }
203
204 /* Interrupt the execution of the target. Note how we must play around
205 with the token varialbes, in order to display the current token in
206 the result of the interrupt command, and the previous execution
207 token when the target finally stops. See comments in
208 mi_cmd_execute. */
209 enum mi_cmd_result
210 mi_cmd_exec_interrupt (char *args, int from_tty)
211 {
212 if (!target_executing)
213 {
214 xasprintf (&mi_error_message,
215 "mi_cmd_exec_interrupt: Inferior not executing.");
216 return MI_CMD_ERROR;
217 }
218 interrupt_target_command (args, from_tty);
219 if (last_async_command)
220 fputs_unfiltered (last_async_command, raw_stdout);
221 fputs_unfiltered ("^done", raw_stdout);
222 xfree (last_async_command);
223 if (previous_async_command)
224 last_async_command = xstrdup (previous_async_command);
225 xfree (previous_async_command);
226 previous_async_command = NULL;
227 mi_out_put (uiout, raw_stdout);
228 mi_out_rewind (uiout);
229 fputs_unfiltered ("\n", raw_stdout);
230 return MI_CMD_QUIET;
231 }
232
233 enum mi_cmd_result
234 mi_cmd_thread_select (char *command, char **argv, int argc)
235 {
236 enum gdb_rc rc;
237
238 if (argc != 1)
239 {
240 xasprintf (&mi_error_message,
241 "mi_cmd_thread_select: USAGE: threadnum.");
242 return MI_CMD_ERROR;
243 }
244 else
245 rc = gdb_thread_select (uiout, argv[0]);
246
247 /* RC is enum gdb_rc if it is successful (>=0)
248 enum return_reason if not (<0). */
249 if ((int) rc < 0 && (enum return_reason) rc == RETURN_ERROR)
250 return MI_CMD_CAUGHT_ERROR;
251 else if ((int) rc >= 0 && rc == GDB_RC_FAIL)
252 return MI_CMD_ERROR;
253 else
254 return MI_CMD_DONE;
255 }
256
257 enum mi_cmd_result
258 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
259 {
260 enum gdb_rc rc = MI_CMD_DONE;
261
262 if (argc != 0)
263 {
264 xasprintf (&mi_error_message,
265 "mi_cmd_thread_list_ids: No arguments required.");
266 return MI_CMD_ERROR;
267 }
268 else
269 rc = gdb_list_thread_ids (uiout);
270
271 if (rc == GDB_RC_FAIL)
272 return MI_CMD_CAUGHT_ERROR;
273 else
274 return MI_CMD_DONE;
275 }
276
277 enum mi_cmd_result
278 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
279 {
280 int regnum, numregs;
281 int i;
282 struct cleanup *cleanup;
283
284 /* Note that the test for a valid register must include checking the
285 REGISTER_NAME because NUM_REGS may be allocated for the union of
286 the register sets within a family of related processors. In this
287 case, some entries of REGISTER_NAME will change depending upon
288 the particular processor being debugged. */
289
290 numregs = NUM_REGS + NUM_PSEUDO_REGS;
291
292 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
293
294 if (argc == 0) /* No args, just do all the regs */
295 {
296 for (regnum = 0;
297 regnum < numregs;
298 regnum++)
299 {
300 if (REGISTER_NAME (regnum) == NULL
301 || *(REGISTER_NAME (regnum)) == '\0')
302 ui_out_field_string (uiout, NULL, "");
303 else
304 ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
305 }
306 }
307
308 /* Else, list of register #s, just do listed regs */
309 for (i = 0; i < argc; i++)
310 {
311 regnum = atoi (argv[i]);
312 if (regnum < 0 || regnum >= numregs)
313 {
314 do_cleanups (cleanup);
315 xasprintf (&mi_error_message, "bad register number");
316 return MI_CMD_ERROR;
317 }
318 if (REGISTER_NAME (regnum) == NULL
319 || *(REGISTER_NAME (regnum)) == '\0')
320 ui_out_field_string (uiout, NULL, "");
321 else
322 ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
323 }
324 do_cleanups (cleanup);
325 return MI_CMD_DONE;
326 }
327
328 enum mi_cmd_result
329 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
330 {
331 int regnum, numregs, changed;
332 int i;
333 struct cleanup *cleanup;
334
335 /* Note that the test for a valid register must include checking the
336 REGISTER_NAME because NUM_REGS may be allocated for the union of
337 the register sets within a family of related processors. In this
338 case, some entries of REGISTER_NAME will change depending upon
339 the particular processor being debugged. */
340
341 numregs = NUM_REGS;
342
343 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
344
345 if (argc == 0) /* No args, just do all the regs */
346 {
347 for (regnum = 0;
348 regnum < numregs;
349 regnum++)
350 {
351 if (REGISTER_NAME (regnum) == NULL
352 || *(REGISTER_NAME (regnum)) == '\0')
353 continue;
354 changed = register_changed_p (regnum);
355 if (changed < 0)
356 {
357 do_cleanups (cleanup);
358 xasprintf (&mi_error_message,
359 "mi_cmd_data_list_changed_registers: Unable to read register contents.");
360 return MI_CMD_ERROR;
361 }
362 else if (changed)
363 ui_out_field_int (uiout, NULL, regnum);
364 }
365 }
366
367 /* Else, list of register #s, just do listed regs */
368 for (i = 0; i < argc; i++)
369 {
370 regnum = atoi (argv[i]);
371
372 if (regnum >= 0
373 && regnum < numregs
374 && REGISTER_NAME (regnum) != NULL
375 && *REGISTER_NAME (regnum) != '\000')
376 {
377 changed = register_changed_p (regnum);
378 if (changed < 0)
379 {
380 do_cleanups (cleanup);
381 xasprintf (&mi_error_message,
382 "mi_cmd_data_list_register_change: Unable to read register contents.");
383 return MI_CMD_ERROR;
384 }
385 else if (changed)
386 ui_out_field_int (uiout, NULL, regnum);
387 }
388 else
389 {
390 do_cleanups (cleanup);
391 xasprintf (&mi_error_message, "bad register number");
392 return MI_CMD_ERROR;
393 }
394 }
395 do_cleanups (cleanup);
396 return MI_CMD_DONE;
397 }
398
399 static int
400 register_changed_p (int regnum)
401 {
402 char raw_buffer[MAX_REGISTER_SIZE];
403
404 if (! frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
405 return -1;
406
407 if (memcmp (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
408 REGISTER_RAW_SIZE (regnum)) == 0)
409 return 0;
410
411 /* Found a changed register. Return 1. */
412
413 memcpy (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
414 REGISTER_RAW_SIZE (regnum));
415
416 return 1;
417 }
418
419 /* Return a list of register number and value pairs. The valid
420 arguments expected are: a letter indicating the format in which to
421 display the registers contents. This can be one of: x (hexadecimal), d
422 (decimal), N (natural), t (binary), o (octal), r (raw). After the
423 format argumetn there can be a sequence of numbers, indicating which
424 registers to fetch the content of. If the format is the only argument,
425 a list of all the registers with their values is returned. */
426 enum mi_cmd_result
427 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
428 {
429 int regnum, numregs, format, result;
430 int i;
431 struct cleanup *list_cleanup, *tuple_cleanup;
432
433 /* Note that the test for a valid register must include checking the
434 REGISTER_NAME because NUM_REGS may be allocated for the union of
435 the register sets within a family of related processors. In this
436 case, some entries of REGISTER_NAME will change depending upon
437 the particular processor being debugged. */
438
439 numregs = NUM_REGS;
440
441 if (argc == 0)
442 {
443 xasprintf (&mi_error_message,
444 "mi_cmd_data_list_register_values: Usage: -data-list-register-values <format> [<regnum1>...<regnumN>]");
445 return MI_CMD_ERROR;
446 }
447
448 format = (int) argv[0][0];
449
450 if (!target_has_registers)
451 {
452 xasprintf (&mi_error_message,
453 "mi_cmd_data_list_register_values: No registers.");
454 return MI_CMD_ERROR;
455 }
456
457 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
458
459 if (argc == 1) /* No args, beside the format: do all the regs */
460 {
461 for (regnum = 0;
462 regnum < numregs;
463 regnum++)
464 {
465 if (REGISTER_NAME (regnum) == NULL
466 || *(REGISTER_NAME (regnum)) == '\0')
467 continue;
468 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
469 ui_out_field_int (uiout, "number", regnum);
470 result = get_register (regnum, format);
471 if (result == -1)
472 {
473 do_cleanups (list_cleanup);
474 return MI_CMD_ERROR;
475 }
476 do_cleanups (tuple_cleanup);
477 }
478 }
479
480 /* Else, list of register #s, just do listed regs */
481 for (i = 1; i < argc; i++)
482 {
483 regnum = atoi (argv[i]);
484
485 if (regnum >= 0
486 && regnum < numregs
487 && REGISTER_NAME (regnum) != NULL
488 && *REGISTER_NAME (regnum) != '\000')
489 {
490 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
491 ui_out_field_int (uiout, "number", regnum);
492 result = get_register (regnum, format);
493 if (result == -1)
494 {
495 do_cleanups (list_cleanup);
496 return MI_CMD_ERROR;
497 }
498 do_cleanups (tuple_cleanup);
499 }
500 else
501 {
502 do_cleanups (list_cleanup);
503 xasprintf (&mi_error_message, "bad register number");
504 return MI_CMD_ERROR;
505 }
506 }
507 do_cleanups (list_cleanup);
508 return MI_CMD_DONE;
509 }
510
511 /* Output one register's contents in the desired format. */
512 static int
513 get_register (int regnum, int format)
514 {
515 char raw_buffer[MAX_REGISTER_SIZE];
516 char virtual_buffer[MAX_REGISTER_SIZE];
517 int optim;
518 int realnum;
519 CORE_ADDR addr;
520 enum lval_type lval;
521 static struct ui_stream *stb = NULL;
522
523 stb = ui_out_stream_new (uiout);
524
525 if (format == 'N')
526 format = 0;
527
528 frame_register (deprecated_selected_frame, regnum, &optim, &lval, &addr,
529 &realnum, raw_buffer);
530
531 if (optim)
532 {
533 xasprintf (&mi_error_message, "Optimized out");
534 return -1;
535 }
536
537 /* Convert raw data to virtual format if necessary. */
538
539 if (DEPRECATED_REGISTER_CONVERTIBLE (regnum))
540 {
541 DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum,
542 register_type (current_gdbarch, regnum),
543 raw_buffer, virtual_buffer);
544 }
545 else
546 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
547
548 if (format == 'r')
549 {
550 int j;
551 char *ptr, buf[1024];
552
553 strcpy (buf, "0x");
554 ptr = buf + 2;
555 for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
556 {
557 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
558 : REGISTER_RAW_SIZE (regnum) - 1 - j;
559 sprintf (ptr, "%02x", (unsigned char) raw_buffer[idx]);
560 ptr += 2;
561 }
562 ui_out_field_string (uiout, "value", buf);
563 /*fputs_filtered (buf, gdb_stdout); */
564 }
565 else
566 {
567 val_print (register_type (current_gdbarch, regnum), virtual_buffer, 0, 0,
568 stb->stream, format, 1, 0, Val_pretty_default);
569 ui_out_field_stream (uiout, "value", stb);
570 ui_out_stream_delete (stb);
571 }
572 return 1;
573 }
574
575 /* Write given values into registers. The registers and values are
576 given as pairs. The corresponding MI command is
577 -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]*/
578 enum mi_cmd_result
579 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
580 {
581 int regnum;
582 int i;
583 int numregs;
584 LONGEST value;
585 char format;
586
587 /* Note that the test for a valid register must include checking the
588 REGISTER_NAME because NUM_REGS may be allocated for the union of
589 the register sets within a family of related processors. In this
590 case, some entries of REGISTER_NAME will change depending upon
591 the particular processor being debugged. */
592
593 numregs = NUM_REGS;
594
595 if (argc == 0)
596 {
597 xasprintf (&mi_error_message,
598 "mi_cmd_data_write_register_values: Usage: -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]");
599 return MI_CMD_ERROR;
600 }
601
602 format = (int) argv[0][0];
603
604 if (!target_has_registers)
605 {
606 xasprintf (&mi_error_message,
607 "mi_cmd_data_write_register_values: No registers.");
608 return MI_CMD_ERROR;
609 }
610
611 if (!(argc - 1))
612 {
613 xasprintf (&mi_error_message,
614 "mi_cmd_data_write_register_values: No regs and values specified.");
615 return MI_CMD_ERROR;
616 }
617
618 if ((argc - 1) % 2)
619 {
620 xasprintf (&mi_error_message,
621 "mi_cmd_data_write_register_values: Regs and vals are not in pairs.");
622 return MI_CMD_ERROR;
623 }
624
625 for (i = 1; i < argc; i = i + 2)
626 {
627 regnum = atoi (argv[i]);
628
629 if (regnum >= 0
630 && regnum < numregs
631 && REGISTER_NAME (regnum) != NULL
632 && *REGISTER_NAME (regnum) != '\000')
633 {
634 void *buffer;
635 struct cleanup *old_chain;
636
637 /* Get the value as a number */
638 value = parse_and_eval_address (argv[i + 1]);
639 /* Get the value into an array */
640 buffer = xmalloc (DEPRECATED_REGISTER_SIZE);
641 old_chain = make_cleanup (xfree, buffer);
642 store_signed_integer (buffer, DEPRECATED_REGISTER_SIZE, value);
643 /* Write it down */
644 deprecated_write_register_bytes (REGISTER_BYTE (regnum), buffer, REGISTER_RAW_SIZE (regnum));
645 /* Free the buffer. */
646 do_cleanups (old_chain);
647 }
648 else
649 {
650 xasprintf (&mi_error_message, "bad register number");
651 return MI_CMD_ERROR;
652 }
653 }
654 return MI_CMD_DONE;
655 }
656
657 #if 0
658 /*This is commented out because we decided it was not useful. I leave
659 it, just in case. ezannoni:1999-12-08 */
660
661 /* Assign a value to a variable. The expression argument must be in
662 the form A=2 or "A = 2" (I.e. if there are spaces it needs to be
663 quoted. */
664 enum mi_cmd_result
665 mi_cmd_data_assign (char *command, char **argv, int argc)
666 {
667 struct expression *expr;
668 struct cleanup *old_chain;
669
670 if (argc != 1)
671 {
672 xasprintf (&mi_error_message,
673 "mi_cmd_data_assign: Usage: -data-assign expression");
674 return MI_CMD_ERROR;
675 }
676
677 /* NOTE what follows is a clone of set_command(). FIXME: ezannoni
678 01-12-1999: Need to decide what to do with this for libgdb purposes. */
679
680 expr = parse_expression (argv[0]);
681 old_chain = make_cleanup (free_current_contents, &expr);
682 evaluate_expression (expr);
683 do_cleanups (old_chain);
684 return MI_CMD_DONE;
685 }
686 #endif
687
688 /* Evaluate the value of the argument. The argument is an
689 expression. If the expression contains spaces it needs to be
690 included in double quotes. */
691 enum mi_cmd_result
692 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
693 {
694 struct expression *expr;
695 struct cleanup *old_chain = NULL;
696 struct value *val;
697 struct ui_stream *stb = NULL;
698
699 stb = ui_out_stream_new (uiout);
700
701 if (argc != 1)
702 {
703 xasprintf (&mi_error_message,
704 "mi_cmd_data_evaluate_expression: Usage: -data-evaluate-expression expression");
705 return MI_CMD_ERROR;
706 }
707
708 expr = parse_expression (argv[0]);
709
710 old_chain = make_cleanup (free_current_contents, &expr);
711
712 val = evaluate_expression (expr);
713
714 /* Print the result of the expression evaluation. */
715 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val),
716 VALUE_EMBEDDED_OFFSET (val), VALUE_ADDRESS (val),
717 stb->stream, 0, 0, 0, 0);
718
719 ui_out_field_stream (uiout, "value", stb);
720 ui_out_stream_delete (stb);
721
722 do_cleanups (old_chain);
723
724 return MI_CMD_DONE;
725 }
726
727 enum mi_cmd_result
728 mi_cmd_target_download (char *args, int from_tty)
729 {
730 char *run;
731 struct cleanup *old_cleanups = NULL;
732
733 xasprintf (&run, "load %s", args);
734 old_cleanups = make_cleanup (xfree, run);
735 execute_command (run, from_tty);
736
737 do_cleanups (old_cleanups);
738 return MI_CMD_DONE;
739 }
740
741 /* Connect to the remote target. */
742 enum mi_cmd_result
743 mi_cmd_target_select (char *args, int from_tty)
744 {
745 char *run;
746 struct cleanup *old_cleanups = NULL;
747
748 xasprintf (&run, "target %s", args);
749 old_cleanups = make_cleanup (xfree, run);
750
751 /* target-select is always synchronous. once the call has returned
752 we know that we are connected. */
753 /* NOTE: At present all targets that are connected are also
754 (implicitly) talking to a halted target. In the future this may
755 change. */
756 execute_command (run, from_tty);
757
758 do_cleanups (old_cleanups);
759
760 /* Issue the completion message here. */
761 if (last_async_command)
762 fputs_unfiltered (last_async_command, raw_stdout);
763 fputs_unfiltered ("^connected", raw_stdout);
764 mi_out_put (uiout, raw_stdout);
765 mi_out_rewind (uiout);
766 fputs_unfiltered ("\n", raw_stdout);
767 do_exec_cleanups (ALL_CLEANUPS);
768 return MI_CMD_QUIET;
769 }
770
771 /* DATA-MEMORY-READ:
772
773 ADDR: start address of data to be dumped.
774 WORD-FORMAT: a char indicating format for the ``word''. See
775 the ``x'' command.
776 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes
777 NR_ROW: Number of rows.
778 NR_COL: The number of colums (words per row).
779 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
780 ASCHAR for unprintable characters.
781
782 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
783 displayes them. Returns:
784
785 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
786
787 Returns:
788 The number of bytes read is SIZE*ROW*COL. */
789
790 enum mi_cmd_result
791 mi_cmd_data_read_memory (char *command, char **argv, int argc)
792 {
793 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
794 CORE_ADDR addr;
795 long total_bytes;
796 long nr_cols;
797 long nr_rows;
798 char word_format;
799 struct type *word_type;
800 long word_size;
801 char word_asize;
802 char aschar;
803 char *mbuf;
804 int nr_bytes;
805 long offset = 0;
806 int optind = 0;
807 char *optarg;
808 enum opt
809 {
810 OFFSET_OPT
811 };
812 static struct mi_opt opts[] =
813 {
814 {"o", OFFSET_OPT, 1},
815 0
816 };
817
818 while (1)
819 {
820 int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
821 &optind, &optarg);
822 if (opt < 0)
823 break;
824 switch ((enum opt) opt)
825 {
826 case OFFSET_OPT:
827 offset = atol (optarg);
828 break;
829 }
830 }
831 argv += optind;
832 argc -= optind;
833
834 if (argc < 5 || argc > 6)
835 {
836 xasprintf (&mi_error_message,
837 "mi_cmd_data_read_memory: Usage: ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
838 return MI_CMD_ERROR;
839 }
840
841 /* Extract all the arguments. */
842
843 /* Start address of the memory dump. */
844 addr = parse_and_eval_address (argv[0]) + offset;
845 /* The format character to use when displaying a memory word. See
846 the ``x'' command. */
847 word_format = argv[1][0];
848 /* The size of the memory word. */
849 word_size = atol (argv[2]);
850 switch (word_size)
851 {
852 case 1:
853 word_type = builtin_type_int8;
854 word_asize = 'b';
855 break;
856 case 2:
857 word_type = builtin_type_int16;
858 word_asize = 'h';
859 break;
860 case 4:
861 word_type = builtin_type_int32;
862 word_asize = 'w';
863 break;
864 case 8:
865 word_type = builtin_type_int64;
866 word_asize = 'g';
867 break;
868 default:
869 word_type = builtin_type_int8;
870 word_asize = 'b';
871 }
872 /* The number of rows */
873 nr_rows = atol (argv[3]);
874 if (nr_rows <= 0)
875 {
876 xasprintf (&mi_error_message,
877 "mi_cmd_data_read_memory: invalid number of rows.");
878 return MI_CMD_ERROR;
879 }
880 /* number of bytes per row. */
881 nr_cols = atol (argv[4]);
882 if (nr_cols <= 0)
883 {
884 xasprintf (&mi_error_message,
885 "mi_cmd_data_read_memory: invalid number of columns.");
886 }
887 /* The un-printable character when printing ascii. */
888 if (argc == 6)
889 aschar = *argv[5];
890 else
891 aschar = 0;
892
893 /* create a buffer and read it in. */
894 total_bytes = word_size * nr_rows * nr_cols;
895 mbuf = xcalloc (total_bytes, 1);
896 make_cleanup (xfree, mbuf);
897 if (mbuf == NULL)
898 {
899 xasprintf (&mi_error_message,
900 "mi_cmd_data_read_memory: out of memory.");
901 return MI_CMD_ERROR;
902 }
903 nr_bytes = 0;
904 while (nr_bytes < total_bytes)
905 {
906 int error;
907 long num = target_read_memory_partial (addr + nr_bytes, mbuf + nr_bytes,
908 total_bytes - nr_bytes,
909 &error);
910 if (num <= 0)
911 break;
912 nr_bytes += num;
913 }
914
915 /* output the header information. */
916 ui_out_field_core_addr (uiout, "addr", addr);
917 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
918 ui_out_field_int (uiout, "total-bytes", total_bytes);
919 ui_out_field_core_addr (uiout, "next-row", addr + word_size * nr_cols);
920 ui_out_field_core_addr (uiout, "prev-row", addr - word_size * nr_cols);
921 ui_out_field_core_addr (uiout, "next-page", addr + total_bytes);
922 ui_out_field_core_addr (uiout, "prev-page", addr - total_bytes);
923
924 /* Build the result as a two dimentional table. */
925 {
926 struct ui_stream *stream = ui_out_stream_new (uiout);
927 struct cleanup *cleanup_list_memory;
928 int row;
929 int row_byte;
930 cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
931 for (row = 0, row_byte = 0;
932 row < nr_rows;
933 row++, row_byte += nr_cols * word_size)
934 {
935 int col;
936 int col_byte;
937 struct cleanup *cleanup_tuple;
938 struct cleanup *cleanup_list_data;
939 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
940 ui_out_field_core_addr (uiout, "addr", addr + row_byte);
941 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */
942 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
943 for (col = 0, col_byte = row_byte;
944 col < nr_cols;
945 col++, col_byte += word_size)
946 {
947 if (col_byte + word_size > nr_bytes)
948 {
949 ui_out_field_string (uiout, NULL, "N/A");
950 }
951 else
952 {
953 ui_file_rewind (stream->stream);
954 print_scalar_formatted (mbuf + col_byte, word_type, word_format,
955 word_asize, stream->stream);
956 ui_out_field_stream (uiout, NULL, stream);
957 }
958 }
959 do_cleanups (cleanup_list_data);
960 if (aschar)
961 {
962 int byte;
963 ui_file_rewind (stream->stream);
964 for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++)
965 {
966 if (byte >= nr_bytes)
967 {
968 fputc_unfiltered ('X', stream->stream);
969 }
970 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
971 {
972 fputc_unfiltered (aschar, stream->stream);
973 }
974 else
975 fputc_unfiltered (mbuf[byte], stream->stream);
976 }
977 ui_out_field_stream (uiout, "ascii", stream);
978 }
979 do_cleanups (cleanup_tuple);
980 }
981 ui_out_stream_delete (stream);
982 do_cleanups (cleanup_list_memory);
983 }
984 do_cleanups (cleanups);
985 return MI_CMD_DONE;
986 }
987
988 /* DATA-MEMORY-WRITE:
989
990 COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
991 offset from the beginning of the memory grid row where the cell to
992 be written is.
993 ADDR: start address of the row in the memory grid where the memory
994 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
995 the location to write to.
996 FORMAT: a char indicating format for the ``word''. See
997 the ``x'' command.
998 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
999 VALUE: value to be written into the memory address.
1000
1001 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1002
1003 Prints nothing. */
1004 enum mi_cmd_result
1005 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1006 {
1007 CORE_ADDR addr;
1008 char word_format;
1009 long word_size;
1010 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1011 enough when using a compiler other than GCC. */
1012 LONGEST value;
1013 void *buffer;
1014 struct cleanup *old_chain;
1015 long offset = 0;
1016 int optind = 0;
1017 char *optarg;
1018 enum opt
1019 {
1020 OFFSET_OPT
1021 };
1022 static struct mi_opt opts[] =
1023 {
1024 {"o", OFFSET_OPT, 1},
1025 0
1026 };
1027
1028 while (1)
1029 {
1030 int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
1031 &optind, &optarg);
1032 if (opt < 0)
1033 break;
1034 switch ((enum opt) opt)
1035 {
1036 case OFFSET_OPT:
1037 offset = atol (optarg);
1038 break;
1039 }
1040 }
1041 argv += optind;
1042 argc -= optind;
1043
1044 if (argc != 4)
1045 {
1046 xasprintf (&mi_error_message,
1047 "mi_cmd_data_write_memory: Usage: [-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
1048 return MI_CMD_ERROR;
1049 }
1050
1051 /* Extract all the arguments. */
1052 /* Start address of the memory dump. */
1053 addr = parse_and_eval_address (argv[0]);
1054 /* The format character to use when displaying a memory word. See
1055 the ``x'' command. */
1056 word_format = argv[1][0];
1057 /* The size of the memory word. */
1058 word_size = atol (argv[2]);
1059
1060 /* Calculate the real address of the write destination. */
1061 addr += (offset * word_size);
1062
1063 /* Get the value as a number */
1064 value = parse_and_eval_address (argv[3]);
1065 /* Get the value into an array */
1066 buffer = xmalloc (word_size);
1067 old_chain = make_cleanup (xfree, buffer);
1068 store_signed_integer (buffer, word_size, value);
1069 /* Write it down to memory */
1070 write_memory (addr, buffer, word_size);
1071 /* Free the buffer. */
1072 do_cleanups (old_chain);
1073
1074 return MI_CMD_DONE;
1075 }
1076
1077 /* Execute a command within a safe environment.
1078 Return <0 for error; >=0 for ok.
1079
1080 args->action will tell mi_execute_command what action
1081 to perfrom after the given command has executed (display/supress
1082 prompt, display error). */
1083
1084 static int
1085 captured_mi_execute_command (struct ui_out *uiout, void *data)
1086 {
1087 struct captured_mi_execute_command_args *args =
1088 (struct captured_mi_execute_command_args *) data;
1089 struct mi_parse *context = args->command;
1090
1091 switch (context->op)
1092 {
1093
1094 case MI_COMMAND:
1095 /* A MI command was read from the input stream */
1096 if (mi_debug_p)
1097 /* FIXME: gdb_???? */
1098 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1099 context->token, context->command, context->args);
1100 /* FIXME: cagney/1999-09-25: Rather than this convoluted
1101 condition expression, each function should return an
1102 indication of what action is required and then switch on
1103 that. */
1104 args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
1105 args->rc = mi_cmd_execute (context);
1106
1107 if (!target_can_async_p () || !target_executing)
1108 {
1109 /* print the result if there were no errors
1110
1111 Remember that on the way out of executing a command, you have
1112 to directly use the mi_interp's uiout, since the command could
1113 have reset the interpreter, in which case the current uiout
1114 will most likely crash in the mi_out_* routines. */
1115 if (args->rc == MI_CMD_DONE)
1116 {
1117 fputs_unfiltered (context->token, raw_stdout);
1118 fputs_unfiltered ("^done", raw_stdout);
1119 mi_out_put (uiout, raw_stdout);
1120 mi_out_rewind (uiout);
1121 fputs_unfiltered ("\n", raw_stdout);
1122 }
1123 else if (args->rc == MI_CMD_ERROR)
1124 {
1125 if (mi_error_message)
1126 {
1127 fputs_unfiltered (context->token, raw_stdout);
1128 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1129 fputstr_unfiltered (mi_error_message, '"', raw_stdout);
1130 xfree (mi_error_message);
1131 fputs_unfiltered ("\"\n", raw_stdout);
1132 }
1133 mi_out_rewind (uiout);
1134 }
1135 else if (args->rc == MI_CMD_CAUGHT_ERROR)
1136 {
1137 mi_out_rewind (uiout);
1138 args->action = EXECUTE_COMMAND_DISPLAY_ERROR;
1139 return 1;
1140 }
1141 else
1142 mi_out_rewind (uiout);
1143 }
1144 else if (sync_execution)
1145 {
1146 /* Don't print the prompt. We are executing the target in
1147 synchronous mode. */
1148 args->action = EXECUTE_COMMAND_SUPRESS_PROMPT;
1149 return 1;
1150 }
1151 break;
1152
1153 case CLI_COMMAND:
1154 /* A CLI command was read from the input stream */
1155 /* This will be removed as soon as we have a complete set of
1156 mi commands */
1157 /* echo the command on the console. */
1158 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1159 /* FIXME: If the command string has something that looks like
1160 a format spec (e.g. %s) we will get a core dump */
1161 mi_execute_cli_command ("%s", context->command);
1162
1163 /* If we changed interpreters, DON'T print out anything. */
1164 if (current_interp_named_p (INTERP_MI)
1165 || current_interp_named_p (INTERP_MI1))
1166 {
1167 /* print the result */
1168 /* FIXME: Check for errors here. */
1169 fputs_unfiltered (context->token, raw_stdout);
1170 fputs_unfiltered ("^done", raw_stdout);
1171 mi_out_put (uiout, raw_stdout);
1172 mi_out_rewind (uiout);
1173 fputs_unfiltered ("\n", raw_stdout);
1174 args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
1175 args->rc = MI_CMD_DONE;
1176 }
1177 break;
1178
1179 }
1180
1181 return 1;
1182 }
1183
1184
1185 void
1186 mi_execute_command (char *cmd, int from_tty)
1187 {
1188 struct mi_parse *command;
1189 struct captured_mi_execute_command_args args;
1190 struct ui_out *saved_uiout = uiout;
1191 int result;
1192
1193 /* This is to handle EOF (^D). We just quit gdb. */
1194 /* FIXME: we should call some API function here. */
1195 if (cmd == 0)
1196 quit_force (NULL, from_tty);
1197
1198 command = mi_parse (cmd);
1199
1200 if (command != NULL)
1201 {
1202 /* FIXME: cagney/1999-11-04: Can this use of catch_exceptions either
1203 be pushed even further down or even eliminated? */
1204 args.command = command;
1205 result = catch_exceptions (uiout, captured_mi_execute_command, &args, "",
1206 RETURN_MASK_ALL);
1207
1208 if (args.action == EXECUTE_COMMAND_SUPRESS_PROMPT)
1209 {
1210 /* The command is executing synchronously. Bail out early
1211 suppressing the finished prompt. */
1212 mi_parse_free (command);
1213 return;
1214 }
1215 if (args.action == EXECUTE_COMMAND_DISPLAY_ERROR || result < 0)
1216 {
1217 char *msg = error_last_message ();
1218 struct cleanup *cleanup = make_cleanup (xfree, msg);
1219 /* The command execution failed and error() was called
1220 somewhere */
1221 fputs_unfiltered (command->token, raw_stdout);
1222 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1223 fputstr_unfiltered (msg, '"', raw_stdout);
1224 fputs_unfiltered ("\"\n", raw_stdout);
1225 }
1226 mi_parse_free (command);
1227 }
1228
1229 fputs_unfiltered ("(gdb) \n", raw_stdout);
1230 gdb_flush (raw_stdout);
1231 /* print any buffered hook code */
1232 /* ..... */
1233 }
1234
1235 static enum mi_cmd_result
1236 mi_cmd_execute (struct mi_parse *parse)
1237 {
1238 if (parse->cmd->argv_func != NULL
1239 || parse->cmd->args_func != NULL)
1240 {
1241 /* FIXME: We need to save the token because the command executed
1242 may be asynchronous and need to print the token again.
1243 In the future we can pass the token down to the func
1244 and get rid of the last_async_command */
1245 /* The problem here is to keep the token around when we launch
1246 the target, and we want to interrupt it later on. The
1247 interrupt command will have its own token, but when the
1248 target stops, we must display the token corresponding to the
1249 last execution command given. So we have another string where
1250 we copy the token (previous_async_command), if this was
1251 indeed the token of an execution command, and when we stop we
1252 print that one. This is possible because the interrupt
1253 command, when over, will copy that token back into the
1254 default token string (last_async_command). */
1255
1256 if (target_executing)
1257 {
1258 if (!previous_async_command)
1259 previous_async_command = xstrdup (last_async_command);
1260 if (strcmp (parse->command, "exec-interrupt"))
1261 {
1262 fputs_unfiltered (parse->token, raw_stdout);
1263 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1264 fputs_unfiltered ("Cannot execute command ", raw_stdout);
1265 fputstr_unfiltered (parse->command, '"', raw_stdout);
1266 fputs_unfiltered (" while target running", raw_stdout);
1267 fputs_unfiltered ("\"\n", raw_stdout);
1268 return MI_CMD_ERROR;
1269 }
1270 }
1271 last_async_command = xstrdup (parse->token);
1272 make_exec_cleanup (free_current_contents, &last_async_command);
1273 /* FIXME: DELETE THIS! */
1274 if (parse->cmd->args_func != NULL)
1275 return parse->cmd->args_func (parse->args, 0 /*from_tty */ );
1276 return parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
1277 }
1278 else if (parse->cmd->cli != 0)
1279 {
1280 /* FIXME: DELETE THIS. */
1281 /* The operation is still implemented by a cli command */
1282 /* Must be a synchronous one */
1283 mi_execute_cli_command (parse->cmd->cli, parse->args);
1284 return MI_CMD_DONE;
1285 }
1286 else
1287 {
1288 /* FIXME: DELETE THIS. */
1289 fputs_unfiltered (parse->token, raw_stdout);
1290 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1291 fputs_unfiltered ("Undefined mi command: ", raw_stdout);
1292 fputstr_unfiltered (parse->command, '"', raw_stdout);
1293 fputs_unfiltered (" (missing implementation)", raw_stdout);
1294 fputs_unfiltered ("\"\n", raw_stdout);
1295 return MI_CMD_ERROR;
1296 }
1297 }
1298
1299 /* FIXME: This is just a hack so we can get some extra commands going.
1300 We don't want to channel things through the CLI, but call libgdb directly */
1301 /* Use only for synchronous commands */
1302
1303 void
1304 mi_execute_cli_command (const char *cli, char *args)
1305 {
1306 if (cli != 0)
1307 {
1308 struct cleanup *old_cleanups;
1309 char *run;
1310 xasprintf (&run, cli, args);
1311 if (mi_debug_p)
1312 /* FIXME: gdb_???? */
1313 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
1314 cli, run);
1315 old_cleanups = make_cleanup (xfree, run);
1316 execute_command ( /*ui */ run, 0 /*from_tty */ );
1317 do_cleanups (old_cleanups);
1318 return;
1319 }
1320 }
1321
1322 enum mi_cmd_result
1323 mi_execute_async_cli_command (char *mi, char *args, int from_tty)
1324 {
1325 struct cleanup *old_cleanups;
1326 char *run;
1327 char *async_args;
1328
1329 if (target_can_async_p ())
1330 {
1331 async_args = (char *) xmalloc (strlen (args) + 2);
1332 make_exec_cleanup (free, async_args);
1333 strcpy (async_args, args);
1334 strcat (async_args, "&");
1335 xasprintf (&run, "%s %s", mi, async_args);
1336 make_exec_cleanup (free, run);
1337 add_continuation (mi_exec_async_cli_cmd_continuation, NULL);
1338 old_cleanups = NULL;
1339 }
1340 else
1341 {
1342 xasprintf (&run, "%s %s", mi, args);
1343 old_cleanups = make_cleanup (xfree, run);
1344 }
1345
1346 if (!target_can_async_p ())
1347 {
1348 /* NOTE: For synchronous targets asynchronous behavour is faked by
1349 printing out the GDB prompt before we even try to execute the
1350 command. */
1351 if (last_async_command)
1352 fputs_unfiltered (last_async_command, raw_stdout);
1353 fputs_unfiltered ("^running\n", raw_stdout);
1354 fputs_unfiltered ("(gdb) \n", raw_stdout);
1355 gdb_flush (raw_stdout);
1356 }
1357 else
1358 {
1359 /* FIXME: cagney/1999-11-29: Printing this message before
1360 calling execute_command is wrong. It should only be printed
1361 once gdb has confirmed that it really has managed to send a
1362 run command to the target. */
1363 if (last_async_command)
1364 fputs_unfiltered (last_async_command, raw_stdout);
1365 fputs_unfiltered ("^running\n", raw_stdout);
1366 }
1367
1368 execute_command ( /*ui */ run, 0 /*from_tty */ );
1369
1370 if (!target_can_async_p ())
1371 {
1372 /* Do this before doing any printing. It would appear that some
1373 print code leaves garbage around in the buffer. */
1374 do_cleanups (old_cleanups);
1375 /* If the target was doing the operation synchronously we fake
1376 the stopped message. */
1377 if (last_async_command)
1378 fputs_unfiltered (last_async_command, raw_stdout);
1379 fputs_unfiltered ("*stopped", raw_stdout);
1380 mi_out_put (uiout, raw_stdout);
1381 mi_out_rewind (uiout);
1382 fputs_unfiltered ("\n", raw_stdout);
1383 return MI_CMD_QUIET;
1384 }
1385 return MI_CMD_DONE;
1386 }
1387
1388 void
1389 mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg)
1390 {
1391 if (last_async_command)
1392 fputs_unfiltered (last_async_command, raw_stdout);
1393 fputs_unfiltered ("*stopped", raw_stdout);
1394 mi_out_put (uiout, raw_stdout);
1395 fputs_unfiltered ("\n", raw_stdout);
1396 fputs_unfiltered ("(gdb) \n", raw_stdout);
1397 gdb_flush (raw_stdout);
1398 do_exec_cleanups (ALL_CLEANUPS);
1399 }
1400
1401 void
1402 mi_load_progress (const char *section_name,
1403 unsigned long sent_so_far,
1404 unsigned long total_section,
1405 unsigned long total_sent,
1406 unsigned long grand_total)
1407 {
1408 struct timeval time_now, delta, update_threshold;
1409 static struct timeval last_update;
1410 static char *previous_sect_name = NULL;
1411 int new_section;
1412
1413 if (!current_interp_named_p (INTERP_MI)
1414 && !current_interp_named_p (INTERP_MI1))
1415 return;
1416
1417 update_threshold.tv_sec = 0;
1418 update_threshold.tv_usec = 500000;
1419 gettimeofday (&time_now, NULL);
1420
1421 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
1422 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
1423
1424 if (delta.tv_usec < 0)
1425 {
1426 delta.tv_sec -= 1;
1427 delta.tv_usec += 1000000;
1428 }
1429
1430 new_section = (previous_sect_name ?
1431 strcmp (previous_sect_name, section_name) : 1);
1432 if (new_section)
1433 {
1434 struct cleanup *cleanup_tuple;
1435 xfree (previous_sect_name);
1436 previous_sect_name = xstrdup (section_name);
1437
1438 if (last_async_command)
1439 fputs_unfiltered (last_async_command, raw_stdout);
1440 fputs_unfiltered ("+download", raw_stdout);
1441 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1442 ui_out_field_string (uiout, "section", section_name);
1443 ui_out_field_int (uiout, "section-size", total_section);
1444 ui_out_field_int (uiout, "total-size", grand_total);
1445 do_cleanups (cleanup_tuple);
1446 mi_out_put (uiout, raw_stdout);
1447 fputs_unfiltered ("\n", raw_stdout);
1448 gdb_flush (raw_stdout);
1449 }
1450
1451 if (delta.tv_sec >= update_threshold.tv_sec &&
1452 delta.tv_usec >= update_threshold.tv_usec)
1453 {
1454 struct cleanup *cleanup_tuple;
1455 last_update.tv_sec = time_now.tv_sec;
1456 last_update.tv_usec = time_now.tv_usec;
1457 if (last_async_command)
1458 fputs_unfiltered (last_async_command, raw_stdout);
1459 fputs_unfiltered ("+download", raw_stdout);
1460 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1461 ui_out_field_string (uiout, "section", section_name);
1462 ui_out_field_int (uiout, "section-sent", sent_so_far);
1463 ui_out_field_int (uiout, "section-size", total_section);
1464 ui_out_field_int (uiout, "total-sent", total_sent);
1465 ui_out_field_int (uiout, "total-size", grand_total);
1466 do_cleanups (cleanup_tuple);
1467 mi_out_put (uiout, raw_stdout);
1468 fputs_unfiltered ("\n", raw_stdout);
1469 gdb_flush (raw_stdout);
1470 }
1471 }
1472
1473 void
1474 mi_setup_architecture_data (void)
1475 {
1476 /* don't trust DEPRECATED_REGISTER_BYTES to be zero. */
1477 old_regs = xmalloc (DEPRECATED_REGISTER_BYTES + 1);
1478 memset (old_regs, 0, DEPRECATED_REGISTER_BYTES + 1);
1479 }
1480
1481 void
1482 _initialize_mi_main (void)
1483 {
1484 register_gdbarch_swap (&old_regs, sizeof (old_regs), NULL);
1485 register_gdbarch_swap (NULL, 0, mi_setup_architecture_data);
1486 }
This page took 0.057696 seconds and 5 git commands to generate.