Remove some cleanups in MI
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56 #include "observer.h"
57
58 #include <ctype.h>
59 #include "gdb_sys_time.h"
60
61 #if defined HAVE_SYS_RESOURCE_H
62 #include <sys/resource.h>
63 #endif
64
65 #ifdef HAVE_GETRUSAGE
66 struct rusage rusage;
67 #endif
68
69 enum
70 {
71 FROM_TTY = 0
72 };
73
74 int mi_debug_p;
75
76 /* This is used to pass the current command timestamp down to
77 continuation routines. */
78 static struct mi_timestamp *current_command_ts;
79
80 static int do_timings = 0;
81
82 char *current_token;
83 /* Few commands would like to know if options like --thread-group were
84 explicitly specified. This variable keeps the current parsed
85 command including all option, and make it possible. */
86 static struct mi_parse *current_context;
87
88 int running_result_record_printed = 1;
89
90 /* Flag indicating that the target has proceeded since the last
91 command was issued. */
92 int mi_proceeded;
93
94 extern void _initialize_mi_main (void);
95 static void mi_cmd_execute (struct mi_parse *parse);
96
97 static void mi_execute_cli_command (const char *cmd, int args_p,
98 const char *args);
99 static void mi_execute_async_cli_command (char *cli_command,
100 char **argv, int argc);
101 static int register_changed_p (int regnum, struct regcache *,
102 struct regcache *);
103 static void output_register (struct frame_info *, int regnum, int format,
104 int skip_unavailable);
105
106 /* Controls whether the frontend wants MI in async mode. */
107 static int mi_async = 0;
108
109 /* The set command writes to this variable. If the inferior is
110 executing, mi_async is *not* updated. */
111 static int mi_async_1 = 0;
112
113 static void
114 set_mi_async_command (char *args, int from_tty,
115 struct cmd_list_element *c)
116 {
117 if (have_live_inferiors ())
118 {
119 mi_async_1 = mi_async;
120 error (_("Cannot change this setting while the inferior is running."));
121 }
122
123 mi_async = mi_async_1;
124 }
125
126 static void
127 show_mi_async_command (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c,
129 const char *value)
130 {
131 fprintf_filtered (file,
132 _("Whether MI is in asynchronous mode is %s.\n"),
133 value);
134 }
135
136 /* A wrapper for target_can_async_p that takes the MI setting into
137 account. */
138
139 int
140 mi_async_p (void)
141 {
142 return mi_async && target_can_async_p ();
143 }
144
145 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
146 layer that calls libgdb. Any operation used in the below should be
147 formalized. */
148
149 static void timestamp (struct mi_timestamp *tv);
150
151 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
152 struct mi_timestamp *end);
153
154 void
155 mi_cmd_gdb_exit (char *command, char **argv, int argc)
156 {
157 struct mi_interp *mi
158 = (struct mi_interp *) interp_data (current_interpreter ());
159
160 /* We have to print everything right here because we never return. */
161 if (current_token)
162 fputs_unfiltered (current_token, mi->raw_stdout);
163 fputs_unfiltered ("^exit\n", mi->raw_stdout);
164 mi_out_put (current_uiout, mi->raw_stdout);
165 gdb_flush (mi->raw_stdout);
166 /* FIXME: The function called is not yet a formal libgdb function. */
167 quit_force (NULL, FROM_TTY);
168 }
169
170 void
171 mi_cmd_exec_next (char *command, char **argv, int argc)
172 {
173 /* FIXME: Should call a libgdb function, not a cli wrapper. */
174 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
175 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
176 else
177 mi_execute_async_cli_command ("next", argv, argc);
178 }
179
180 void
181 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
182 {
183 /* FIXME: Should call a libgdb function, not a cli wrapper. */
184 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
185 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
186 else
187 mi_execute_async_cli_command ("nexti", argv, argc);
188 }
189
190 void
191 mi_cmd_exec_step (char *command, char **argv, int argc)
192 {
193 /* FIXME: Should call a libgdb function, not a cli wrapper. */
194 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
195 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
196 else
197 mi_execute_async_cli_command ("step", argv, argc);
198 }
199
200 void
201 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
202 {
203 /* FIXME: Should call a libgdb function, not a cli wrapper. */
204 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
205 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
206 else
207 mi_execute_async_cli_command ("stepi", argv, argc);
208 }
209
210 void
211 mi_cmd_exec_finish (char *command, char **argv, int argc)
212 {
213 /* FIXME: Should call a libgdb function, not a cli wrapper. */
214 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
215 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
216 else
217 mi_execute_async_cli_command ("finish", argv, argc);
218 }
219
220 void
221 mi_cmd_exec_return (char *command, char **argv, int argc)
222 {
223 /* This command doesn't really execute the target, it just pops the
224 specified number of frames. */
225 if (argc)
226 /* Call return_command with from_tty argument equal to 0 so as to
227 avoid being queried. */
228 return_command (*argv, 0);
229 else
230 /* Call return_command with from_tty argument equal to 0 so as to
231 avoid being queried. */
232 return_command (NULL, 0);
233
234 /* Because we have called return_command with from_tty = 0, we need
235 to print the frame here. */
236 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
237 }
238
239 void
240 mi_cmd_exec_jump (char *args, char **argv, int argc)
241 {
242 /* FIXME: Should call a libgdb function, not a cli wrapper. */
243 mi_execute_async_cli_command ("jump", argv, argc);
244 }
245
246 static void
247 proceed_thread (struct thread_info *thread, int pid)
248 {
249 if (!is_stopped (thread->ptid))
250 return;
251
252 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
253 return;
254
255 switch_to_thread (thread->ptid);
256 clear_proceed_status (0);
257 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
258 }
259
260 static int
261 proceed_thread_callback (struct thread_info *thread, void *arg)
262 {
263 int pid = *(int *)arg;
264
265 proceed_thread (thread, pid);
266 return 0;
267 }
268
269 static void
270 exec_continue (char **argv, int argc)
271 {
272 prepare_execution_command (&current_target, mi_async_p ());
273
274 if (non_stop)
275 {
276 /* In non-stop mode, 'resume' always resumes a single thread.
277 Therefore, to resume all threads of the current inferior, or
278 all threads in all inferiors, we need to iterate over
279 threads.
280
281 See comment on infcmd.c:proceed_thread_callback for rationale. */
282 if (current_context->all || current_context->thread_group != -1)
283 {
284 int pid = 0;
285 struct cleanup *back_to = make_cleanup_restore_current_thread ();
286
287 if (!current_context->all)
288 {
289 struct inferior *inf
290 = find_inferior_id (current_context->thread_group);
291
292 pid = inf->pid;
293 }
294 iterate_over_threads (proceed_thread_callback, &pid);
295 do_cleanups (back_to);
296 }
297 else
298 {
299 continue_1 (0);
300 }
301 }
302 else
303 {
304 scoped_restore save_multi = make_scoped_restore (&sched_multi);
305
306 if (current_context->all)
307 {
308 sched_multi = 1;
309 continue_1 (0);
310 }
311 else
312 {
313 /* In all-stop mode, -exec-continue traditionally resumed
314 either all threads, or one thread, depending on the
315 'scheduler-locking' variable. Let's continue to do the
316 same. */
317 continue_1 (1);
318 }
319 }
320 }
321
322 static void
323 exec_direction_forward (void *notused)
324 {
325 execution_direction = EXEC_FORWARD;
326 }
327
328 static void
329 exec_reverse_continue (char **argv, int argc)
330 {
331 enum exec_direction_kind dir = execution_direction;
332 struct cleanup *old_chain;
333
334 if (dir == EXEC_REVERSE)
335 error (_("Already in reverse mode."));
336
337 if (!target_can_execute_reverse)
338 error (_("Target %s does not support this command."), target_shortname);
339
340 old_chain = make_cleanup (exec_direction_forward, NULL);
341 execution_direction = EXEC_REVERSE;
342 exec_continue (argv, argc);
343 do_cleanups (old_chain);
344 }
345
346 void
347 mi_cmd_exec_continue (char *command, char **argv, int argc)
348 {
349 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
350 exec_reverse_continue (argv + 1, argc - 1);
351 else
352 exec_continue (argv, argc);
353 }
354
355 static int
356 interrupt_thread_callback (struct thread_info *thread, void *arg)
357 {
358 int pid = *(int *)arg;
359
360 if (!is_running (thread->ptid))
361 return 0;
362
363 if (ptid_get_pid (thread->ptid) != pid)
364 return 0;
365
366 target_stop (thread->ptid);
367 return 0;
368 }
369
370 /* Interrupt the execution of the target. Note how we must play
371 around with the token variables, in order to display the current
372 token in the result of the interrupt command, and the previous
373 execution token when the target finally stops. See comments in
374 mi_cmd_execute. */
375
376 void
377 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
378 {
379 /* In all-stop mode, everything stops, so we don't need to try
380 anything specific. */
381 if (!non_stop)
382 {
383 interrupt_target_1 (0);
384 return;
385 }
386
387 if (current_context->all)
388 {
389 /* This will interrupt all threads in all inferiors. */
390 interrupt_target_1 (1);
391 }
392 else if (current_context->thread_group != -1)
393 {
394 struct inferior *inf = find_inferior_id (current_context->thread_group);
395
396 iterate_over_threads (interrupt_thread_callback, &inf->pid);
397 }
398 else
399 {
400 /* Interrupt just the current thread -- either explicitly
401 specified via --thread or whatever was current before
402 MI command was sent. */
403 interrupt_target_1 (0);
404 }
405 }
406
407 /* Callback for iterate_over_inferiors which starts the execution
408 of the given inferior.
409
410 ARG is a pointer to an integer whose value, if non-zero, indicates
411 that the program should be stopped when reaching the main subprogram
412 (similar to what the CLI "start" command does). */
413
414 static int
415 run_one_inferior (struct inferior *inf, void *arg)
416 {
417 int start_p = *(int *) arg;
418 const char *run_cmd = start_p ? "start" : "run";
419 struct target_ops *run_target = find_run_target ();
420 int async_p = mi_async && run_target->to_can_async_p (run_target);
421
422 if (inf->pid != 0)
423 {
424 if (inf->pid != ptid_get_pid (inferior_ptid))
425 {
426 struct thread_info *tp;
427
428 tp = any_thread_of_process (inf->pid);
429 if (!tp)
430 error (_("Inferior has no threads."));
431
432 switch_to_thread (tp->ptid);
433 }
434 }
435 else
436 {
437 set_current_inferior (inf);
438 switch_to_thread (null_ptid);
439 set_current_program_space (inf->pspace);
440 }
441 mi_execute_cli_command (run_cmd, async_p,
442 async_p ? "&" : NULL);
443 return 0;
444 }
445
446 void
447 mi_cmd_exec_run (char *command, char **argv, int argc)
448 {
449 int start_p = 0;
450
451 /* Parse the command options. */
452 enum opt
453 {
454 START_OPT,
455 };
456 static const struct mi_opt opts[] =
457 {
458 {"-start", START_OPT, 0},
459 {NULL, 0, 0},
460 };
461
462 int oind = 0;
463 char *oarg;
464
465 while (1)
466 {
467 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
468
469 if (opt < 0)
470 break;
471 switch ((enum opt) opt)
472 {
473 case START_OPT:
474 start_p = 1;
475 break;
476 }
477 }
478
479 /* This command does not accept any argument. Make sure the user
480 did not provide any. */
481 if (oind != argc)
482 error (_("Invalid argument: %s"), argv[oind]);
483
484 if (current_context->all)
485 {
486 struct cleanup *back_to = save_current_space_and_thread ();
487
488 iterate_over_inferiors (run_one_inferior, &start_p);
489 do_cleanups (back_to);
490 }
491 else
492 {
493 const char *run_cmd = start_p ? "start" : "run";
494 struct target_ops *run_target = find_run_target ();
495 int async_p = mi_async && run_target->to_can_async_p (run_target);
496
497 mi_execute_cli_command (run_cmd, async_p,
498 async_p ? "&" : NULL);
499 }
500 }
501
502
503 static int
504 find_thread_of_process (struct thread_info *ti, void *p)
505 {
506 int pid = *(int *)p;
507
508 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
509 return 1;
510
511 return 0;
512 }
513
514 void
515 mi_cmd_target_detach (char *command, char **argv, int argc)
516 {
517 if (argc != 0 && argc != 1)
518 error (_("Usage: -target-detach [pid | thread-group]"));
519
520 if (argc == 1)
521 {
522 struct thread_info *tp;
523 char *end = argv[0];
524 int pid;
525
526 /* First see if we are dealing with a thread-group id. */
527 if (*argv[0] == 'i')
528 {
529 struct inferior *inf;
530 int id = strtoul (argv[0] + 1, &end, 0);
531
532 if (*end != '\0')
533 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
534
535 inf = find_inferior_id (id);
536 if (!inf)
537 error (_("Non-existent thread-group id '%d'"), id);
538
539 pid = inf->pid;
540 }
541 else
542 {
543 /* We must be dealing with a pid. */
544 pid = strtol (argv[0], &end, 10);
545
546 if (*end != '\0')
547 error (_("Invalid identifier '%s'"), argv[0]);
548 }
549
550 /* Pick any thread in the desired process. Current
551 target_detach detaches from the parent of inferior_ptid. */
552 tp = iterate_over_threads (find_thread_of_process, &pid);
553 if (!tp)
554 error (_("Thread group is empty"));
555
556 switch_to_thread (tp->ptid);
557 }
558
559 detach_command (NULL, 0);
560 }
561
562 void
563 mi_cmd_thread_select (char *command, char **argv, int argc)
564 {
565 enum gdb_rc rc;
566 char *mi_error_message;
567 ptid_t previous_ptid = inferior_ptid;
568
569 if (argc != 1)
570 error (_("-thread-select: USAGE: threadnum."));
571
572 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
573
574 /* If thread switch did not succeed don't notify or print. */
575 if (rc == GDB_RC_FAIL)
576 {
577 make_cleanup (xfree, mi_error_message);
578 error ("%s", mi_error_message);
579 }
580
581 print_selected_thread_frame (current_uiout,
582 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
583
584 /* Notify if the thread has effectively changed. */
585 if (!ptid_equal (inferior_ptid, previous_ptid))
586 {
587 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
588 | USER_SELECTED_FRAME);
589 }
590 }
591
592 void
593 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
594 {
595 enum gdb_rc rc;
596 char *mi_error_message;
597
598 if (argc != 0)
599 error (_("-thread-list-ids: No arguments required."));
600
601 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
602
603 if (rc == GDB_RC_FAIL)
604 {
605 make_cleanup (xfree, mi_error_message);
606 error ("%s", mi_error_message);
607 }
608 }
609
610 void
611 mi_cmd_thread_info (char *command, char **argv, int argc)
612 {
613 if (argc != 0 && argc != 1)
614 error (_("Invalid MI command"));
615
616 print_thread_info (current_uiout, argv[0], -1);
617 }
618
619 struct collect_cores_data
620 {
621 int pid;
622
623 VEC (int) *cores;
624 };
625
626 static int
627 collect_cores (struct thread_info *ti, void *xdata)
628 {
629 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
630
631 if (ptid_get_pid (ti->ptid) == data->pid)
632 {
633 int core = target_core_of_thread (ti->ptid);
634
635 if (core != -1)
636 VEC_safe_push (int, data->cores, core);
637 }
638
639 return 0;
640 }
641
642 static int *
643 unique (int *b, int *e)
644 {
645 int *d = b;
646
647 while (++b != e)
648 if (*d != *b)
649 *++d = *b;
650 return ++d;
651 }
652
653 struct print_one_inferior_data
654 {
655 int recurse;
656 VEC (int) *inferiors;
657 };
658
659 static int
660 print_one_inferior (struct inferior *inferior, void *xdata)
661 {
662 struct print_one_inferior_data *top_data
663 = (struct print_one_inferior_data *) xdata;
664 struct ui_out *uiout = current_uiout;
665
666 if (VEC_empty (int, top_data->inferiors)
667 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
668 VEC_length (int, top_data->inferiors), sizeof (int),
669 compare_positive_ints))
670 {
671 struct collect_cores_data data;
672 struct cleanup *back_to
673 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
674
675 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
676 ui_out_field_string (uiout, "type", "process");
677 if (inferior->has_exit_code)
678 ui_out_field_string (uiout, "exit-code",
679 int_string (inferior->exit_code, 8, 0, 0, 1));
680 if (inferior->pid != 0)
681 ui_out_field_int (uiout, "pid", inferior->pid);
682
683 if (inferior->pspace->pspace_exec_filename != NULL)
684 {
685 ui_out_field_string (uiout, "executable",
686 inferior->pspace->pspace_exec_filename);
687 }
688
689 data.cores = 0;
690 if (inferior->pid != 0)
691 {
692 data.pid = inferior->pid;
693 iterate_over_threads (collect_cores, &data);
694 }
695
696 if (!VEC_empty (int, data.cores))
697 {
698 int *b, *e;
699 struct cleanup *back_to_2 =
700 make_cleanup_ui_out_list_begin_end (uiout, "cores");
701
702 qsort (VEC_address (int, data.cores),
703 VEC_length (int, data.cores), sizeof (int),
704 compare_positive_ints);
705
706 b = VEC_address (int, data.cores);
707 e = b + VEC_length (int, data.cores);
708 e = unique (b, e);
709
710 for (; b != e; ++b)
711 ui_out_field_int (uiout, NULL, *b);
712
713 do_cleanups (back_to_2);
714 }
715
716 if (top_data->recurse)
717 print_thread_info (uiout, NULL, inferior->pid);
718
719 do_cleanups (back_to);
720 }
721
722 return 0;
723 }
724
725 /* Output a field named 'cores' with a list as the value. The
726 elements of the list are obtained by splitting 'cores' on
727 comma. */
728
729 static void
730 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
731 {
732 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
733 field_name);
734 char *cores = xstrdup (xcores);
735 char *p = cores;
736
737 make_cleanup (xfree, cores);
738
739 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
740 ui_out_field_string (uiout, NULL, p);
741
742 do_cleanups (back_to);
743 }
744
745 static void
746 free_vector_of_ints (void *xvector)
747 {
748 VEC (int) **vector = (VEC (int) **) xvector;
749
750 VEC_free (int, *vector);
751 }
752
753 static void
754 do_nothing (splay_tree_key k)
755 {
756 }
757
758 static void
759 free_vector_of_osdata_items (splay_tree_value xvalue)
760 {
761 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
762
763 /* We don't free the items itself, it will be done separately. */
764 VEC_free (osdata_item_s, value);
765 }
766
767 static int
768 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
769 {
770 int a = xa;
771 int b = xb;
772
773 return a - b;
774 }
775
776 static void
777 free_splay_tree (void *xt)
778 {
779 splay_tree t = (splay_tree) xt;
780 splay_tree_delete (t);
781 }
782
783 static void
784 list_available_thread_groups (VEC (int) *ids, int recurse)
785 {
786 struct osdata *data;
787 struct osdata_item *item;
788 int ix_items;
789 struct ui_out *uiout = current_uiout;
790 struct cleanup *cleanup;
791
792 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
793 The vector contains information about all threads for the given pid.
794 This is assigned an initial value to avoid "may be used uninitialized"
795 warning from gcc. */
796 splay_tree tree = NULL;
797
798 /* get_osdata will throw if it cannot return data. */
799 data = get_osdata ("processes");
800 cleanup = make_cleanup_osdata_free (data);
801
802 if (recurse)
803 {
804 struct osdata *threads = get_osdata ("threads");
805
806 make_cleanup_osdata_free (threads);
807 tree = splay_tree_new (splay_tree_int_comparator,
808 do_nothing,
809 free_vector_of_osdata_items);
810 make_cleanup (free_splay_tree, tree);
811
812 for (ix_items = 0;
813 VEC_iterate (osdata_item_s, threads->items,
814 ix_items, item);
815 ix_items++)
816 {
817 const char *pid = get_osdata_column (item, "pid");
818 int pid_i = strtoul (pid, NULL, 0);
819 VEC (osdata_item_s) *vec = 0;
820
821 splay_tree_node n = splay_tree_lookup (tree, pid_i);
822 if (!n)
823 {
824 VEC_safe_push (osdata_item_s, vec, item);
825 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
826 }
827 else
828 {
829 vec = (VEC (osdata_item_s) *) n->value;
830 VEC_safe_push (osdata_item_s, vec, item);
831 n->value = (splay_tree_value) vec;
832 }
833 }
834 }
835
836 make_cleanup_ui_out_list_begin_end (uiout, "groups");
837
838 for (ix_items = 0;
839 VEC_iterate (osdata_item_s, data->items,
840 ix_items, item);
841 ix_items++)
842 {
843 struct cleanup *back_to;
844
845 const char *pid = get_osdata_column (item, "pid");
846 const char *cmd = get_osdata_column (item, "command");
847 const char *user = get_osdata_column (item, "user");
848 const char *cores = get_osdata_column (item, "cores");
849
850 int pid_i = strtoul (pid, NULL, 0);
851
852 /* At present, the target will return all available processes
853 and if information about specific ones was required, we filter
854 undesired processes here. */
855 if (ids && bsearch (&pid_i, VEC_address (int, ids),
856 VEC_length (int, ids),
857 sizeof (int), compare_positive_ints) == NULL)
858 continue;
859
860
861 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
862
863 ui_out_field_fmt (uiout, "id", "%s", pid);
864 ui_out_field_string (uiout, "type", "process");
865 if (cmd)
866 ui_out_field_string (uiout, "description", cmd);
867 if (user)
868 ui_out_field_string (uiout, "user", user);
869 if (cores)
870 output_cores (uiout, "cores", cores);
871
872 if (recurse)
873 {
874 splay_tree_node n = splay_tree_lookup (tree, pid_i);
875 if (n)
876 {
877 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
878 struct osdata_item *child;
879 int ix_child;
880
881 make_cleanup_ui_out_list_begin_end (uiout, "threads");
882
883 for (ix_child = 0;
884 VEC_iterate (osdata_item_s, children, ix_child, child);
885 ++ix_child)
886 {
887 struct cleanup *back_to_2 =
888 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
889 const char *tid = get_osdata_column (child, "tid");
890 const char *tcore = get_osdata_column (child, "core");
891
892 ui_out_field_string (uiout, "id", tid);
893 if (tcore)
894 ui_out_field_string (uiout, "core", tcore);
895
896 do_cleanups (back_to_2);
897 }
898 }
899 }
900
901 do_cleanups (back_to);
902 }
903
904 do_cleanups (cleanup);
905 }
906
907 void
908 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
909 {
910 struct ui_out *uiout = current_uiout;
911 struct cleanup *back_to;
912 int available = 0;
913 int recurse = 0;
914 VEC (int) *ids = 0;
915
916 enum opt
917 {
918 AVAILABLE_OPT, RECURSE_OPT
919 };
920 static const struct mi_opt opts[] =
921 {
922 {"-available", AVAILABLE_OPT, 0},
923 {"-recurse", RECURSE_OPT, 1},
924 { 0, 0, 0 }
925 };
926
927 int oind = 0;
928 char *oarg;
929
930 while (1)
931 {
932 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
933 &oind, &oarg);
934
935 if (opt < 0)
936 break;
937 switch ((enum opt) opt)
938 {
939 case AVAILABLE_OPT:
940 available = 1;
941 break;
942 case RECURSE_OPT:
943 if (strcmp (oarg, "0") == 0)
944 ;
945 else if (strcmp (oarg, "1") == 0)
946 recurse = 1;
947 else
948 error (_("only '0' and '1' are valid values "
949 "for the '--recurse' option"));
950 break;
951 }
952 }
953
954 for (; oind < argc; ++oind)
955 {
956 char *end;
957 int inf;
958
959 if (*(argv[oind]) != 'i')
960 error (_("invalid syntax of group id '%s'"), argv[oind]);
961
962 inf = strtoul (argv[oind] + 1, &end, 0);
963
964 if (*end != '\0')
965 error (_("invalid syntax of group id '%s'"), argv[oind]);
966 VEC_safe_push (int, ids, inf);
967 }
968 if (VEC_length (int, ids) > 1)
969 qsort (VEC_address (int, ids),
970 VEC_length (int, ids),
971 sizeof (int), compare_positive_ints);
972
973 back_to = make_cleanup (free_vector_of_ints, &ids);
974
975 if (available)
976 {
977 list_available_thread_groups (ids, recurse);
978 }
979 else if (VEC_length (int, ids) == 1)
980 {
981 /* Local thread groups, single id. */
982 int id = *VEC_address (int, ids);
983 struct inferior *inf = find_inferior_id (id);
984
985 if (!inf)
986 error (_("Non-existent thread group id '%d'"), id);
987
988 print_thread_info (uiout, NULL, inf->pid);
989 }
990 else
991 {
992 struct print_one_inferior_data data;
993
994 data.recurse = recurse;
995 data.inferiors = ids;
996
997 /* Local thread groups. Either no explicit ids -- and we
998 print everything, or several explicit ids. In both cases,
999 we print more than one group, and have to use 'groups'
1000 as the top-level element. */
1001 make_cleanup_ui_out_list_begin_end (uiout, "groups");
1002 update_thread_list ();
1003 iterate_over_inferiors (print_one_inferior, &data);
1004 }
1005
1006 do_cleanups (back_to);
1007 }
1008
1009 void
1010 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
1011 {
1012 struct gdbarch *gdbarch;
1013 struct ui_out *uiout = current_uiout;
1014 int regnum, numregs;
1015 int i;
1016 struct cleanup *cleanup;
1017
1018 /* Note that the test for a valid register must include checking the
1019 gdbarch_register_name because gdbarch_num_regs may be allocated
1020 for the union of the register sets within a family of related
1021 processors. In this case, some entries of gdbarch_register_name
1022 will change depending upon the particular processor being
1023 debugged. */
1024
1025 gdbarch = get_current_arch ();
1026 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1027
1028 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1029
1030 if (argc == 0) /* No args, just do all the regs. */
1031 {
1032 for (regnum = 0;
1033 regnum < numregs;
1034 regnum++)
1035 {
1036 if (gdbarch_register_name (gdbarch, regnum) == NULL
1037 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1038 ui_out_field_string (uiout, NULL, "");
1039 else
1040 ui_out_field_string (uiout, NULL,
1041 gdbarch_register_name (gdbarch, regnum));
1042 }
1043 }
1044
1045 /* Else, list of register #s, just do listed regs. */
1046 for (i = 0; i < argc; i++)
1047 {
1048 regnum = atoi (argv[i]);
1049 if (regnum < 0 || regnum >= numregs)
1050 error (_("bad register number"));
1051
1052 if (gdbarch_register_name (gdbarch, regnum) == NULL
1053 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1054 ui_out_field_string (uiout, NULL, "");
1055 else
1056 ui_out_field_string (uiout, NULL,
1057 gdbarch_register_name (gdbarch, regnum));
1058 }
1059 do_cleanups (cleanup);
1060 }
1061
1062 void
1063 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1064 {
1065 static struct regcache *this_regs = NULL;
1066 struct ui_out *uiout = current_uiout;
1067 struct regcache *prev_regs;
1068 struct gdbarch *gdbarch;
1069 int regnum, numregs, changed;
1070 int i;
1071 struct cleanup *cleanup;
1072
1073 /* The last time we visited this function, the current frame's
1074 register contents were saved in THIS_REGS. Move THIS_REGS over
1075 to PREV_REGS, and refresh THIS_REGS with the now-current register
1076 contents. */
1077
1078 prev_regs = this_regs;
1079 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1080 cleanup = make_cleanup_regcache_xfree (prev_regs);
1081
1082 /* Note that the test for a valid register must include checking the
1083 gdbarch_register_name because gdbarch_num_regs may be allocated
1084 for the union of the register sets within a family of related
1085 processors. In this case, some entries of gdbarch_register_name
1086 will change depending upon the particular processor being
1087 debugged. */
1088
1089 gdbarch = get_regcache_arch (this_regs);
1090 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1091
1092 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1093
1094 if (argc == 0)
1095 {
1096 /* No args, just do all the regs. */
1097 for (regnum = 0;
1098 regnum < numregs;
1099 regnum++)
1100 {
1101 if (gdbarch_register_name (gdbarch, regnum) == NULL
1102 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1103 continue;
1104 changed = register_changed_p (regnum, prev_regs, this_regs);
1105 if (changed < 0)
1106 error (_("-data-list-changed-registers: "
1107 "Unable to read register contents."));
1108 else if (changed)
1109 ui_out_field_int (uiout, NULL, regnum);
1110 }
1111 }
1112
1113 /* Else, list of register #s, just do listed regs. */
1114 for (i = 0; i < argc; i++)
1115 {
1116 regnum = atoi (argv[i]);
1117
1118 if (regnum >= 0
1119 && regnum < numregs
1120 && gdbarch_register_name (gdbarch, regnum) != NULL
1121 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1122 {
1123 changed = register_changed_p (regnum, prev_regs, this_regs);
1124 if (changed < 0)
1125 error (_("-data-list-changed-registers: "
1126 "Unable to read register contents."));
1127 else if (changed)
1128 ui_out_field_int (uiout, NULL, regnum);
1129 }
1130 else
1131 error (_("bad register number"));
1132 }
1133 do_cleanups (cleanup);
1134 }
1135
1136 static int
1137 register_changed_p (int regnum, struct regcache *prev_regs,
1138 struct regcache *this_regs)
1139 {
1140 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1141 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1142 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1143 enum register_status prev_status;
1144 enum register_status this_status;
1145
1146 /* First time through or after gdbarch change consider all registers
1147 as changed. */
1148 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1149 return 1;
1150
1151 /* Get register contents and compare. */
1152 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1153 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1154
1155 if (this_status != prev_status)
1156 return 1;
1157 else if (this_status == REG_VALID)
1158 return memcmp (prev_buffer, this_buffer,
1159 register_size (gdbarch, regnum)) != 0;
1160 else
1161 return 0;
1162 }
1163
1164 /* Return a list of register number and value pairs. The valid
1165 arguments expected are: a letter indicating the format in which to
1166 display the registers contents. This can be one of: x
1167 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1168 (raw). After the format argument there can be a sequence of
1169 numbers, indicating which registers to fetch the content of. If
1170 the format is the only argument, a list of all the registers with
1171 their values is returned. */
1172
1173 void
1174 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1175 {
1176 struct ui_out *uiout = current_uiout;
1177 struct frame_info *frame;
1178 struct gdbarch *gdbarch;
1179 int regnum, numregs, format;
1180 int i;
1181 struct cleanup *list_cleanup;
1182 int skip_unavailable = 0;
1183 int oind = 0;
1184 enum opt
1185 {
1186 SKIP_UNAVAILABLE,
1187 };
1188 static const struct mi_opt opts[] =
1189 {
1190 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1191 { 0, 0, 0 }
1192 };
1193
1194 /* Note that the test for a valid register must include checking the
1195 gdbarch_register_name because gdbarch_num_regs may be allocated
1196 for the union of the register sets within a family of related
1197 processors. In this case, some entries of gdbarch_register_name
1198 will change depending upon the particular processor being
1199 debugged. */
1200
1201 while (1)
1202 {
1203 char *oarg;
1204 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1205 opts, &oind, &oarg);
1206
1207 if (opt < 0)
1208 break;
1209 switch ((enum opt) opt)
1210 {
1211 case SKIP_UNAVAILABLE:
1212 skip_unavailable = 1;
1213 break;
1214 }
1215 }
1216
1217 if (argc - oind < 1)
1218 error (_("-data-list-register-values: Usage: "
1219 "-data-list-register-values [--skip-unavailable] <format>"
1220 " [<regnum1>...<regnumN>]"));
1221
1222 format = (int) argv[oind][0];
1223
1224 frame = get_selected_frame (NULL);
1225 gdbarch = get_frame_arch (frame);
1226 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1227
1228 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1229
1230 if (argc - oind == 1)
1231 {
1232 /* No args, beside the format: do all the regs. */
1233 for (regnum = 0;
1234 regnum < numregs;
1235 regnum++)
1236 {
1237 if (gdbarch_register_name (gdbarch, regnum) == NULL
1238 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1239 continue;
1240
1241 output_register (frame, regnum, format, skip_unavailable);
1242 }
1243 }
1244
1245 /* Else, list of register #s, just do listed regs. */
1246 for (i = 1 + oind; i < argc; i++)
1247 {
1248 regnum = atoi (argv[i]);
1249
1250 if (regnum >= 0
1251 && regnum < numregs
1252 && gdbarch_register_name (gdbarch, regnum) != NULL
1253 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1254 output_register (frame, regnum, format, skip_unavailable);
1255 else
1256 error (_("bad register number"));
1257 }
1258 do_cleanups (list_cleanup);
1259 }
1260
1261 /* Output one register REGNUM's contents in the desired FORMAT. If
1262 SKIP_UNAVAILABLE is true, skip the register if it is
1263 unavailable. */
1264
1265 static void
1266 output_register (struct frame_info *frame, int regnum, int format,
1267 int skip_unavailable)
1268 {
1269 struct ui_out *uiout = current_uiout;
1270 struct value *val = value_of_register (regnum, frame);
1271 struct cleanup *tuple_cleanup;
1272 struct value_print_options opts;
1273 struct ui_file *stb;
1274
1275 if (skip_unavailable && !value_entirely_available (val))
1276 return;
1277
1278 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1279 ui_out_field_int (uiout, "number", regnum);
1280
1281 if (format == 'N')
1282 format = 0;
1283
1284 if (format == 'r')
1285 format = 'z';
1286
1287 stb = mem_fileopen ();
1288 make_cleanup_ui_file_delete (stb);
1289
1290 get_formatted_print_options (&opts, format);
1291 opts.deref_ref = 1;
1292 val_print (value_type (val),
1293 value_contents_for_printing (val),
1294 value_embedded_offset (val), 0,
1295 stb, 0, val, &opts, current_language);
1296 ui_out_field_stream (uiout, "value", stb);
1297
1298 do_cleanups (tuple_cleanup);
1299 }
1300
1301 /* Write given values into registers. The registers and values are
1302 given as pairs. The corresponding MI command is
1303 -data-write-register-values <format>
1304 [<regnum1> <value1>...<regnumN> <valueN>] */
1305 void
1306 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1307 {
1308 struct regcache *regcache;
1309 struct gdbarch *gdbarch;
1310 int numregs, i;
1311
1312 /* Note that the test for a valid register must include checking the
1313 gdbarch_register_name because gdbarch_num_regs may be allocated
1314 for the union of the register sets within a family of related
1315 processors. In this case, some entries of gdbarch_register_name
1316 will change depending upon the particular processor being
1317 debugged. */
1318
1319 regcache = get_current_regcache ();
1320 gdbarch = get_regcache_arch (regcache);
1321 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1322
1323 if (argc == 0)
1324 error (_("-data-write-register-values: Usage: -data-write-register-"
1325 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1326
1327 if (!target_has_registers)
1328 error (_("-data-write-register-values: No registers."));
1329
1330 if (!(argc - 1))
1331 error (_("-data-write-register-values: No regs and values specified."));
1332
1333 if ((argc - 1) % 2)
1334 error (_("-data-write-register-values: "
1335 "Regs and vals are not in pairs."));
1336
1337 for (i = 1; i < argc; i = i + 2)
1338 {
1339 int regnum = atoi (argv[i]);
1340
1341 if (regnum >= 0 && regnum < numregs
1342 && gdbarch_register_name (gdbarch, regnum)
1343 && *gdbarch_register_name (gdbarch, regnum))
1344 {
1345 LONGEST value;
1346
1347 /* Get the value as a number. */
1348 value = parse_and_eval_address (argv[i + 1]);
1349
1350 /* Write it down. */
1351 regcache_cooked_write_signed (regcache, regnum, value);
1352 }
1353 else
1354 error (_("bad register number"));
1355 }
1356 }
1357
1358 /* Evaluate the value of the argument. The argument is an
1359 expression. If the expression contains spaces it needs to be
1360 included in double quotes. */
1361
1362 void
1363 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1364 {
1365 struct expression *expr;
1366 struct cleanup *old_chain;
1367 struct value *val;
1368 struct ui_file *stb;
1369 struct value_print_options opts;
1370 struct ui_out *uiout = current_uiout;
1371
1372 stb = mem_fileopen ();
1373 old_chain = make_cleanup_ui_file_delete (stb);
1374
1375 if (argc != 1)
1376 error (_("-data-evaluate-expression: "
1377 "Usage: -data-evaluate-expression expression"));
1378
1379 expr = parse_expression (argv[0]);
1380
1381 make_cleanup (free_current_contents, &expr);
1382
1383 val = evaluate_expression (expr);
1384
1385 /* Print the result of the expression evaluation. */
1386 get_user_print_options (&opts);
1387 opts.deref_ref = 0;
1388 common_val_print (val, stb, 0, &opts, current_language);
1389
1390 ui_out_field_stream (uiout, "value", stb);
1391
1392 do_cleanups (old_chain);
1393 }
1394
1395 /* This is the -data-read-memory command.
1396
1397 ADDR: start address of data to be dumped.
1398 WORD-FORMAT: a char indicating format for the ``word''. See
1399 the ``x'' command.
1400 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1401 NR_ROW: Number of rows.
1402 NR_COL: The number of colums (words per row).
1403 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1404 ASCHAR for unprintable characters.
1405
1406 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1407 displayes them. Returns:
1408
1409 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1410
1411 Returns:
1412 The number of bytes read is SIZE*ROW*COL. */
1413
1414 void
1415 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1416 {
1417 struct gdbarch *gdbarch = get_current_arch ();
1418 struct ui_out *uiout = current_uiout;
1419 CORE_ADDR addr;
1420 long total_bytes, nr_cols, nr_rows;
1421 char word_format;
1422 struct type *word_type;
1423 long word_size;
1424 char word_asize;
1425 char aschar;
1426 int nr_bytes;
1427 long offset = 0;
1428 int oind = 0;
1429 char *oarg;
1430 enum opt
1431 {
1432 OFFSET_OPT
1433 };
1434 static const struct mi_opt opts[] =
1435 {
1436 {"o", OFFSET_OPT, 1},
1437 { 0, 0, 0 }
1438 };
1439
1440 while (1)
1441 {
1442 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1443 &oind, &oarg);
1444
1445 if (opt < 0)
1446 break;
1447 switch ((enum opt) opt)
1448 {
1449 case OFFSET_OPT:
1450 offset = atol (oarg);
1451 break;
1452 }
1453 }
1454 argv += oind;
1455 argc -= oind;
1456
1457 if (argc < 5 || argc > 6)
1458 error (_("-data-read-memory: Usage: "
1459 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1460
1461 /* Extract all the arguments. */
1462
1463 /* Start address of the memory dump. */
1464 addr = parse_and_eval_address (argv[0]) + offset;
1465 /* The format character to use when displaying a memory word. See
1466 the ``x'' command. */
1467 word_format = argv[1][0];
1468 /* The size of the memory word. */
1469 word_size = atol (argv[2]);
1470 switch (word_size)
1471 {
1472 case 1:
1473 word_type = builtin_type (gdbarch)->builtin_int8;
1474 word_asize = 'b';
1475 break;
1476 case 2:
1477 word_type = builtin_type (gdbarch)->builtin_int16;
1478 word_asize = 'h';
1479 break;
1480 case 4:
1481 word_type = builtin_type (gdbarch)->builtin_int32;
1482 word_asize = 'w';
1483 break;
1484 case 8:
1485 word_type = builtin_type (gdbarch)->builtin_int64;
1486 word_asize = 'g';
1487 break;
1488 default:
1489 word_type = builtin_type (gdbarch)->builtin_int8;
1490 word_asize = 'b';
1491 }
1492 /* The number of rows. */
1493 nr_rows = atol (argv[3]);
1494 if (nr_rows <= 0)
1495 error (_("-data-read-memory: invalid number of rows."));
1496
1497 /* Number of bytes per row. */
1498 nr_cols = atol (argv[4]);
1499 if (nr_cols <= 0)
1500 error (_("-data-read-memory: invalid number of columns."));
1501
1502 /* The un-printable character when printing ascii. */
1503 if (argc == 6)
1504 aschar = *argv[5];
1505 else
1506 aschar = 0;
1507
1508 /* Create a buffer and read it in. */
1509 total_bytes = word_size * nr_rows * nr_cols;
1510
1511 gdb::unique_ptr<gdb_byte[]> mbuf (new gdb_byte[total_bytes]);
1512
1513 /* Dispatch memory reads to the topmost target, not the flattened
1514 current_target. */
1515 nr_bytes = target_read (current_target.beneath,
1516 TARGET_OBJECT_MEMORY, NULL, mbuf.get (),
1517 addr, total_bytes);
1518 if (nr_bytes <= 0)
1519 error (_("Unable to read memory."));
1520
1521 /* Output the header information. */
1522 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1523 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1524 ui_out_field_int (uiout, "total-bytes", total_bytes);
1525 ui_out_field_core_addr (uiout, "next-row",
1526 gdbarch, addr + word_size * nr_cols);
1527 ui_out_field_core_addr (uiout, "prev-row",
1528 gdbarch, addr - word_size * nr_cols);
1529 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1530 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1531
1532 /* Build the result as a two dimentional table. */
1533 {
1534 struct ui_file *stream;
1535 struct cleanup *cleanup_stream;
1536 int row;
1537 int row_byte;
1538
1539 stream = mem_fileopen ();
1540 cleanup_stream = make_cleanup_ui_file_delete (stream);
1541
1542 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1543 for (row = 0, row_byte = 0;
1544 row < nr_rows;
1545 row++, row_byte += nr_cols * word_size)
1546 {
1547 int col;
1548 int col_byte;
1549 struct cleanup *cleanup_tuple;
1550 struct cleanup *cleanup_list_data;
1551 struct value_print_options opts;
1552
1553 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1554 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1555 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1556 row_byte); */
1557 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1558 get_formatted_print_options (&opts, word_format);
1559 for (col = 0, col_byte = row_byte;
1560 col < nr_cols;
1561 col++, col_byte += word_size)
1562 {
1563 if (col_byte + word_size > nr_bytes)
1564 {
1565 ui_out_field_string (uiout, NULL, "N/A");
1566 }
1567 else
1568 {
1569 ui_file_rewind (stream);
1570 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1571 word_asize, stream);
1572 ui_out_field_stream (uiout, NULL, stream);
1573 }
1574 }
1575 do_cleanups (cleanup_list_data);
1576 if (aschar)
1577 {
1578 int byte;
1579
1580 ui_file_rewind (stream);
1581 for (byte = row_byte;
1582 byte < row_byte + word_size * nr_cols; byte++)
1583 {
1584 if (byte >= nr_bytes)
1585 fputc_unfiltered ('X', stream);
1586 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1587 fputc_unfiltered (aschar, stream);
1588 else
1589 fputc_unfiltered (mbuf[byte], stream);
1590 }
1591 ui_out_field_stream (uiout, "ascii", stream);
1592 }
1593 do_cleanups (cleanup_tuple);
1594 }
1595 do_cleanups (cleanup_stream);
1596 }
1597 }
1598
1599 void
1600 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1601 {
1602 struct gdbarch *gdbarch = get_current_arch ();
1603 struct ui_out *uiout = current_uiout;
1604 struct cleanup *cleanups;
1605 CORE_ADDR addr;
1606 LONGEST length;
1607 memory_read_result_s *read_result;
1608 int ix;
1609 VEC(memory_read_result_s) *result;
1610 long offset = 0;
1611 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1612 int oind = 0;
1613 char *oarg;
1614 enum opt
1615 {
1616 OFFSET_OPT
1617 };
1618 static const struct mi_opt opts[] =
1619 {
1620 {"o", OFFSET_OPT, 1},
1621 { 0, 0, 0 }
1622 };
1623
1624 while (1)
1625 {
1626 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1627 &oind, &oarg);
1628 if (opt < 0)
1629 break;
1630 switch ((enum opt) opt)
1631 {
1632 case OFFSET_OPT:
1633 offset = atol (oarg);
1634 break;
1635 }
1636 }
1637 argv += oind;
1638 argc -= oind;
1639
1640 if (argc != 2)
1641 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1642
1643 addr = parse_and_eval_address (argv[0]) + offset;
1644 length = atol (argv[1]);
1645
1646 result = read_memory_robust (current_target.beneath, addr, length);
1647
1648 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1649
1650 if (VEC_length (memory_read_result_s, result) == 0)
1651 error (_("Unable to read memory."));
1652
1653 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1654 for (ix = 0;
1655 VEC_iterate (memory_read_result_s, result, ix, read_result);
1656 ++ix)
1657 {
1658 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1659 char *data, *p;
1660 int i;
1661 int alloc_len;
1662
1663 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1664 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1665 - addr);
1666 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1667
1668 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1669 data = (char *) xmalloc (alloc_len);
1670
1671 for (i = 0, p = data;
1672 i < ((read_result->end - read_result->begin) * unit_size);
1673 ++i, p += 2)
1674 {
1675 sprintf (p, "%02x", read_result->data[i]);
1676 }
1677 ui_out_field_string (uiout, "contents", data);
1678 xfree (data);
1679 do_cleanups (t);
1680 }
1681 do_cleanups (cleanups);
1682 }
1683
1684 /* Implementation of the -data-write_memory command.
1685
1686 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1687 offset from the beginning of the memory grid row where the cell to
1688 be written is.
1689 ADDR: start address of the row in the memory grid where the memory
1690 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1691 the location to write to.
1692 FORMAT: a char indicating format for the ``word''. See
1693 the ``x'' command.
1694 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1695 VALUE: value to be written into the memory address.
1696
1697 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1698
1699 Prints nothing. */
1700
1701 void
1702 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1703 {
1704 struct gdbarch *gdbarch = get_current_arch ();
1705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1706 CORE_ADDR addr;
1707 long word_size;
1708 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1709 enough when using a compiler other than GCC. */
1710 LONGEST value;
1711 gdb_byte *buffer;
1712 struct cleanup *old_chain;
1713 long offset = 0;
1714 int oind = 0;
1715 char *oarg;
1716 enum opt
1717 {
1718 OFFSET_OPT
1719 };
1720 static const struct mi_opt opts[] =
1721 {
1722 {"o", OFFSET_OPT, 1},
1723 { 0, 0, 0 }
1724 };
1725
1726 while (1)
1727 {
1728 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1729 &oind, &oarg);
1730
1731 if (opt < 0)
1732 break;
1733 switch ((enum opt) opt)
1734 {
1735 case OFFSET_OPT:
1736 offset = atol (oarg);
1737 break;
1738 }
1739 }
1740 argv += oind;
1741 argc -= oind;
1742
1743 if (argc != 4)
1744 error (_("-data-write-memory: Usage: "
1745 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1746
1747 /* Extract all the arguments. */
1748 /* Start address of the memory dump. */
1749 addr = parse_and_eval_address (argv[0]);
1750 /* The size of the memory word. */
1751 word_size = atol (argv[2]);
1752
1753 /* Calculate the real address of the write destination. */
1754 addr += (offset * word_size);
1755
1756 /* Get the value as a number. */
1757 value = parse_and_eval_address (argv[3]);
1758 /* Get the value into an array. */
1759 buffer = (gdb_byte *) xmalloc (word_size);
1760 old_chain = make_cleanup (xfree, buffer);
1761 store_signed_integer (buffer, word_size, byte_order, value);
1762 /* Write it down to memory. */
1763 write_memory_with_notification (addr, buffer, word_size);
1764 /* Free the buffer. */
1765 do_cleanups (old_chain);
1766 }
1767
1768 /* Implementation of the -data-write-memory-bytes command.
1769
1770 ADDR: start address
1771 DATA: string of bytes to write at that address
1772 COUNT: number of bytes to be filled (decimal integer). */
1773
1774 void
1775 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1776 {
1777 CORE_ADDR addr;
1778 char *cdata;
1779 gdb_byte *data;
1780 gdb_byte *databuf;
1781 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1782 long int count_units;
1783 struct cleanup *back_to;
1784 int unit_size;
1785
1786 if (argc != 2 && argc != 3)
1787 error (_("Usage: ADDR DATA [COUNT]."));
1788
1789 addr = parse_and_eval_address (argv[0]);
1790 cdata = argv[1];
1791 len_hex = strlen (cdata);
1792 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1793
1794 if (len_hex % (unit_size * 2) != 0)
1795 error (_("Hex-encoded '%s' must represent an integral number of "
1796 "addressable memory units."),
1797 cdata);
1798
1799 len_bytes = len_hex / 2;
1800 len_units = len_bytes / unit_size;
1801
1802 if (argc == 3)
1803 count_units = strtoul (argv[2], NULL, 10);
1804 else
1805 count_units = len_units;
1806
1807 databuf = XNEWVEC (gdb_byte, len_bytes);
1808 back_to = make_cleanup (xfree, databuf);
1809
1810 for (i = 0; i < len_bytes; ++i)
1811 {
1812 int x;
1813 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1814 error (_("Invalid argument"));
1815 databuf[i] = (gdb_byte) x;
1816 }
1817
1818 if (len_units < count_units)
1819 {
1820 /* Pattern is made of less units than count:
1821 repeat pattern to fill memory. */
1822 data = (gdb_byte *) xmalloc (count_units * unit_size);
1823 make_cleanup (xfree, data);
1824
1825 /* Number of times the pattern is entirely repeated. */
1826 steps = count_units / len_units;
1827 /* Number of remaining addressable memory units. */
1828 remaining_units = count_units % len_units;
1829 for (i = 0; i < steps; i++)
1830 memcpy (data + i * len_bytes, databuf, len_bytes);
1831
1832 if (remaining_units > 0)
1833 memcpy (data + steps * len_bytes, databuf,
1834 remaining_units * unit_size);
1835 }
1836 else
1837 {
1838 /* Pattern is longer than or equal to count:
1839 just copy count addressable memory units. */
1840 data = databuf;
1841 }
1842
1843 write_memory_with_notification (addr, data, count_units);
1844
1845 do_cleanups (back_to);
1846 }
1847
1848 void
1849 mi_cmd_enable_timings (char *command, char **argv, int argc)
1850 {
1851 if (argc == 0)
1852 do_timings = 1;
1853 else if (argc == 1)
1854 {
1855 if (strcmp (argv[0], "yes") == 0)
1856 do_timings = 1;
1857 else if (strcmp (argv[0], "no") == 0)
1858 do_timings = 0;
1859 else
1860 goto usage_error;
1861 }
1862 else
1863 goto usage_error;
1864
1865 return;
1866
1867 usage_error:
1868 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1869 }
1870
1871 void
1872 mi_cmd_list_features (char *command, char **argv, int argc)
1873 {
1874 if (argc == 0)
1875 {
1876 struct cleanup *cleanup = NULL;
1877 struct ui_out *uiout = current_uiout;
1878
1879 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1880 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1881 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1882 ui_out_field_string (uiout, NULL, "thread-info");
1883 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1884 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1885 ui_out_field_string (uiout, NULL, "ada-task-info");
1886 ui_out_field_string (uiout, NULL, "language-option");
1887 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1888 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1889 ui_out_field_string (uiout, NULL, "exec-run-start-option");
1890
1891 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1892 ui_out_field_string (uiout, NULL, "python");
1893
1894 do_cleanups (cleanup);
1895 return;
1896 }
1897
1898 error (_("-list-features should be passed no arguments"));
1899 }
1900
1901 void
1902 mi_cmd_list_target_features (char *command, char **argv, int argc)
1903 {
1904 if (argc == 0)
1905 {
1906 struct cleanup *cleanup = NULL;
1907 struct ui_out *uiout = current_uiout;
1908
1909 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1910 if (mi_async_p ())
1911 ui_out_field_string (uiout, NULL, "async");
1912 if (target_can_execute_reverse)
1913 ui_out_field_string (uiout, NULL, "reverse");
1914 do_cleanups (cleanup);
1915 return;
1916 }
1917
1918 error (_("-list-target-features should be passed no arguments"));
1919 }
1920
1921 void
1922 mi_cmd_add_inferior (char *command, char **argv, int argc)
1923 {
1924 struct inferior *inf;
1925
1926 if (argc != 0)
1927 error (_("-add-inferior should be passed no arguments"));
1928
1929 inf = add_inferior_with_spaces ();
1930
1931 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1932 }
1933
1934 /* Callback used to find the first inferior other than the current
1935 one. */
1936
1937 static int
1938 get_other_inferior (struct inferior *inf, void *arg)
1939 {
1940 if (inf == current_inferior ())
1941 return 0;
1942
1943 return 1;
1944 }
1945
1946 void
1947 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1948 {
1949 int id;
1950 struct inferior *inf;
1951
1952 if (argc != 1)
1953 error (_("-remove-inferior should be passed a single argument"));
1954
1955 if (sscanf (argv[0], "i%d", &id) != 1)
1956 error (_("the thread group id is syntactically invalid"));
1957
1958 inf = find_inferior_id (id);
1959 if (!inf)
1960 error (_("the specified thread group does not exist"));
1961
1962 if (inf->pid != 0)
1963 error (_("cannot remove an active inferior"));
1964
1965 if (inf == current_inferior ())
1966 {
1967 struct thread_info *tp = 0;
1968 struct inferior *new_inferior
1969 = iterate_over_inferiors (get_other_inferior, NULL);
1970
1971 if (new_inferior == NULL)
1972 error (_("Cannot remove last inferior"));
1973
1974 set_current_inferior (new_inferior);
1975 if (new_inferior->pid != 0)
1976 tp = any_thread_of_process (new_inferior->pid);
1977 switch_to_thread (tp ? tp->ptid : null_ptid);
1978 set_current_program_space (new_inferior->pspace);
1979 }
1980
1981 delete_inferior (inf);
1982 }
1983
1984 \f
1985
1986 /* Execute a command within a safe environment.
1987 Return <0 for error; >=0 for ok.
1988
1989 args->action will tell mi_execute_command what action
1990 to perfrom after the given command has executed (display/suppress
1991 prompt, display error). */
1992
1993 static void
1994 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1995 {
1996 struct mi_interp *mi = (struct mi_interp *) interp_data (command_interp ());
1997 struct cleanup *cleanup;
1998
1999 if (do_timings)
2000 current_command_ts = context->cmd_start;
2001
2002 current_token = xstrdup (context->token);
2003 cleanup = make_cleanup (free_current_contents, &current_token);
2004
2005 running_result_record_printed = 0;
2006 mi_proceeded = 0;
2007 switch (context->op)
2008 {
2009 case MI_COMMAND:
2010 /* A MI command was read from the input stream. */
2011 if (mi_debug_p)
2012 /* FIXME: gdb_???? */
2013 fprintf_unfiltered (mi->raw_stdout,
2014 " token=`%s' command=`%s' args=`%s'\n",
2015 context->token, context->command, context->args);
2016
2017 mi_cmd_execute (context);
2018
2019 /* Print the result if there were no errors.
2020
2021 Remember that on the way out of executing a command, you have
2022 to directly use the mi_interp's uiout, since the command
2023 could have reset the interpreter, in which case the current
2024 uiout will most likely crash in the mi_out_* routines. */
2025 if (!running_result_record_printed)
2026 {
2027 fputs_unfiltered (context->token, mi->raw_stdout);
2028 /* There's no particularly good reason why target-connect results
2029 in not ^done. Should kill ^connected for MI3. */
2030 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2031 ? "^connected" : "^done", mi->raw_stdout);
2032 mi_out_put (uiout, mi->raw_stdout);
2033 mi_out_rewind (uiout);
2034 mi_print_timing_maybe (mi->raw_stdout);
2035 fputs_unfiltered ("\n", mi->raw_stdout);
2036 }
2037 else
2038 /* The command does not want anything to be printed. In that
2039 case, the command probably should not have written anything
2040 to uiout, but in case it has written something, discard it. */
2041 mi_out_rewind (uiout);
2042 break;
2043
2044 case CLI_COMMAND:
2045 {
2046 char *argv[2];
2047
2048 /* A CLI command was read from the input stream. */
2049 /* This "feature" will be removed as soon as we have a
2050 complete set of mi commands. */
2051 /* Echo the command on the console. */
2052 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2053 /* Call the "console" interpreter. */
2054 argv[0] = INTERP_CONSOLE;
2055 argv[1] = context->command;
2056 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2057
2058 /* If we changed interpreters, DON'T print out anything. */
2059 if (current_interp_named_p (INTERP_MI)
2060 || current_interp_named_p (INTERP_MI1)
2061 || current_interp_named_p (INTERP_MI2)
2062 || current_interp_named_p (INTERP_MI3))
2063 {
2064 if (!running_result_record_printed)
2065 {
2066 fputs_unfiltered (context->token, mi->raw_stdout);
2067 fputs_unfiltered ("^done", mi->raw_stdout);
2068 mi_out_put (uiout, mi->raw_stdout);
2069 mi_out_rewind (uiout);
2070 mi_print_timing_maybe (mi->raw_stdout);
2071 fputs_unfiltered ("\n", mi->raw_stdout);
2072 }
2073 else
2074 mi_out_rewind (uiout);
2075 }
2076 break;
2077 }
2078 }
2079
2080 do_cleanups (cleanup);
2081 }
2082
2083 /* Print a gdb exception to the MI output stream. */
2084
2085 static void
2086 mi_print_exception (const char *token, struct gdb_exception exception)
2087 {
2088 struct mi_interp *mi
2089 = (struct mi_interp *) interp_data (current_interpreter ());
2090
2091 fputs_unfiltered (token, mi->raw_stdout);
2092 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2093 if (exception.message == NULL)
2094 fputs_unfiltered ("unknown error", mi->raw_stdout);
2095 else
2096 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2097 fputs_unfiltered ("\"", mi->raw_stdout);
2098
2099 switch (exception.error)
2100 {
2101 case UNDEFINED_COMMAND_ERROR:
2102 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2103 break;
2104 }
2105
2106 fputs_unfiltered ("\n", mi->raw_stdout);
2107 }
2108
2109 /* Determine whether the parsed command already notifies the
2110 user_selected_context_changed observer. */
2111
2112 static int
2113 command_notifies_uscc_observer (struct mi_parse *command)
2114 {
2115 if (command->op == CLI_COMMAND)
2116 {
2117 /* CLI commands "thread" and "inferior" already send it. */
2118 return (strncmp (command->command, "thread ", 7) == 0
2119 || strncmp (command->command, "inferior ", 9) == 0);
2120 }
2121 else /* MI_COMMAND */
2122 {
2123 if (strcmp (command->command, "interpreter-exec") == 0
2124 && command->argc > 1)
2125 {
2126 /* "thread" and "inferior" again, but through -interpreter-exec. */
2127 return (strncmp (command->argv[1], "thread ", 7) == 0
2128 || strncmp (command->argv[1], "inferior ", 9) == 0);
2129 }
2130
2131 else
2132 /* -thread-select already sends it. */
2133 return strcmp (command->command, "thread-select") == 0;
2134 }
2135 }
2136
2137 void
2138 mi_execute_command (const char *cmd, int from_tty)
2139 {
2140 char *token;
2141 struct mi_parse *command = NULL;
2142
2143 /* This is to handle EOF (^D). We just quit gdb. */
2144 /* FIXME: we should call some API function here. */
2145 if (cmd == 0)
2146 quit_force (NULL, from_tty);
2147
2148 target_log_command (cmd);
2149
2150 TRY
2151 {
2152 command = mi_parse (cmd, &token);
2153 }
2154 CATCH (exception, RETURN_MASK_ALL)
2155 {
2156 mi_print_exception (token, exception);
2157 xfree (token);
2158 }
2159 END_CATCH
2160
2161 if (command != NULL)
2162 {
2163 ptid_t previous_ptid = inferior_ptid;
2164 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
2165
2166 command->token = token;
2167
2168 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2169 {
2170 make_cleanup_restore_integer (command->cmd->suppress_notification);
2171 *command->cmd->suppress_notification = 1;
2172 }
2173
2174 if (do_timings)
2175 {
2176 command->cmd_start = XNEW (struct mi_timestamp);
2177 timestamp (command->cmd_start);
2178 }
2179
2180 TRY
2181 {
2182 captured_mi_execute_command (current_uiout, command);
2183 }
2184 CATCH (result, RETURN_MASK_ALL)
2185 {
2186 /* Like in start_event_loop, enable input and force display
2187 of the prompt. Otherwise, any command that calls
2188 async_disable_stdin, and then throws, will leave input
2189 disabled. */
2190 async_enable_stdin ();
2191 current_ui->prompt_state = PROMPT_NEEDED;
2192
2193 /* The command execution failed and error() was called
2194 somewhere. */
2195 mi_print_exception (command->token, result);
2196 mi_out_rewind (current_uiout);
2197 }
2198 END_CATCH
2199
2200 bpstat_do_actions ();
2201
2202 if (/* The notifications are only output when the top-level
2203 interpreter (specified on the command line) is MI. */
2204 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2205 /* Don't try report anything if there are no threads --
2206 the program is dead. */
2207 && thread_count () != 0
2208 /* If the command already reports the thread change, no need to do it
2209 again. */
2210 && !command_notifies_uscc_observer (command))
2211 {
2212 struct mi_interp *mi
2213 = (struct mi_interp *) top_level_interpreter_data ();
2214 int report_change = 0;
2215
2216 if (command->thread == -1)
2217 {
2218 report_change = (!ptid_equal (previous_ptid, null_ptid)
2219 && !ptid_equal (inferior_ptid, previous_ptid)
2220 && !ptid_equal (inferior_ptid, null_ptid));
2221 }
2222 else if (!ptid_equal (inferior_ptid, null_ptid))
2223 {
2224 struct thread_info *ti = inferior_thread ();
2225
2226 report_change = (ti->global_num != command->thread);
2227 }
2228
2229 if (report_change)
2230 {
2231 observer_notify_user_selected_context_changed
2232 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2233 }
2234 }
2235
2236 mi_parse_free (command);
2237
2238 do_cleanups (cleanup);
2239 }
2240 }
2241
2242 static void
2243 mi_cmd_execute (struct mi_parse *parse)
2244 {
2245 struct cleanup *cleanup;
2246
2247 cleanup = prepare_execute_command ();
2248
2249 if (parse->all && parse->thread_group != -1)
2250 error (_("Cannot specify --thread-group together with --all"));
2251
2252 if (parse->all && parse->thread != -1)
2253 error (_("Cannot specify --thread together with --all"));
2254
2255 if (parse->thread_group != -1 && parse->thread != -1)
2256 error (_("Cannot specify --thread together with --thread-group"));
2257
2258 if (parse->frame != -1 && parse->thread == -1)
2259 error (_("Cannot specify --frame without --thread"));
2260
2261 if (parse->thread_group != -1)
2262 {
2263 struct inferior *inf = find_inferior_id (parse->thread_group);
2264 struct thread_info *tp = 0;
2265
2266 if (!inf)
2267 error (_("Invalid thread group for the --thread-group option"));
2268
2269 set_current_inferior (inf);
2270 /* This behaviour means that if --thread-group option identifies
2271 an inferior with multiple threads, then a random one will be
2272 picked. This is not a problem -- frontend should always
2273 provide --thread if it wishes to operate on a specific
2274 thread. */
2275 if (inf->pid != 0)
2276 tp = any_live_thread_of_process (inf->pid);
2277 switch_to_thread (tp ? tp->ptid : null_ptid);
2278 set_current_program_space (inf->pspace);
2279 }
2280
2281 if (parse->thread != -1)
2282 {
2283 struct thread_info *tp = find_thread_global_id (parse->thread);
2284
2285 if (!tp)
2286 error (_("Invalid thread id: %d"), parse->thread);
2287
2288 if (is_exited (tp->ptid))
2289 error (_("Thread id: %d has terminated"), parse->thread);
2290
2291 switch_to_thread (tp->ptid);
2292 }
2293
2294 if (parse->frame != -1)
2295 {
2296 struct frame_info *fid;
2297 int frame = parse->frame;
2298
2299 fid = find_relative_frame (get_current_frame (), &frame);
2300 if (frame == 0)
2301 /* find_relative_frame was successful */
2302 select_frame (fid);
2303 else
2304 error (_("Invalid frame id: %d"), frame);
2305 }
2306
2307 if (parse->language != language_unknown)
2308 {
2309 make_cleanup_restore_current_language ();
2310 set_language (parse->language);
2311 }
2312
2313 current_context = parse;
2314
2315 if (parse->cmd->argv_func != NULL)
2316 {
2317 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2318 }
2319 else if (parse->cmd->cli.cmd != 0)
2320 {
2321 /* FIXME: DELETE THIS. */
2322 /* The operation is still implemented by a cli command. */
2323 /* Must be a synchronous one. */
2324 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2325 parse->args);
2326 }
2327 else
2328 {
2329 /* FIXME: DELETE THIS. */
2330 struct ui_file *stb;
2331
2332 stb = mem_fileopen ();
2333
2334 fputs_unfiltered ("Undefined mi command: ", stb);
2335 fputstr_unfiltered (parse->command, '"', stb);
2336 fputs_unfiltered (" (missing implementation)", stb);
2337
2338 make_cleanup_ui_file_delete (stb);
2339 error_stream (stb);
2340 }
2341 do_cleanups (cleanup);
2342 }
2343
2344 /* FIXME: This is just a hack so we can get some extra commands going.
2345 We don't want to channel things through the CLI, but call libgdb directly.
2346 Use only for synchronous commands. */
2347
2348 void
2349 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2350 {
2351 if (cmd != 0)
2352 {
2353 struct cleanup *old_cleanups;
2354 char *run;
2355
2356 if (args_p)
2357 run = xstrprintf ("%s %s", cmd, args);
2358 else
2359 run = xstrdup (cmd);
2360 if (mi_debug_p)
2361 /* FIXME: gdb_???? */
2362 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2363 cmd, run);
2364 old_cleanups = make_cleanup (xfree, run);
2365 execute_command (run, 0 /* from_tty */ );
2366 do_cleanups (old_cleanups);
2367 return;
2368 }
2369 }
2370
2371 void
2372 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2373 {
2374 struct cleanup *old_cleanups;
2375 char *run;
2376
2377 if (mi_async_p ())
2378 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2379 else
2380 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2381 old_cleanups = make_cleanup (xfree, run);
2382
2383 execute_command (run, 0 /* from_tty */ );
2384
2385 /* Do this before doing any printing. It would appear that some
2386 print code leaves garbage around in the buffer. */
2387 do_cleanups (old_cleanups);
2388 }
2389
2390 void
2391 mi_load_progress (const char *section_name,
2392 unsigned long sent_so_far,
2393 unsigned long total_section,
2394 unsigned long total_sent,
2395 unsigned long grand_total)
2396 {
2397 struct timeval time_now, delta, update_threshold;
2398 static struct timeval last_update;
2399 static char *previous_sect_name = NULL;
2400 int new_section;
2401 struct ui_out *saved_uiout;
2402 struct ui_out *uiout;
2403 struct mi_interp *mi
2404 = (struct mi_interp *) interp_data (current_interpreter ());
2405
2406 /* This function is called through deprecated_show_load_progress
2407 which means uiout may not be correct. Fix it for the duration
2408 of this function. */
2409 saved_uiout = current_uiout;
2410
2411 if (current_interp_named_p (INTERP_MI)
2412 || current_interp_named_p (INTERP_MI2))
2413 current_uiout = mi_out_new (2);
2414 else if (current_interp_named_p (INTERP_MI1))
2415 current_uiout = mi_out_new (1);
2416 else if (current_interp_named_p (INTERP_MI3))
2417 current_uiout = mi_out_new (3);
2418 else
2419 return;
2420
2421 uiout = current_uiout;
2422
2423 update_threshold.tv_sec = 0;
2424 update_threshold.tv_usec = 500000;
2425 gettimeofday (&time_now, NULL);
2426
2427 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2428 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2429
2430 if (delta.tv_usec < 0)
2431 {
2432 delta.tv_sec -= 1;
2433 delta.tv_usec += 1000000L;
2434 }
2435
2436 new_section = (previous_sect_name ?
2437 strcmp (previous_sect_name, section_name) : 1);
2438 if (new_section)
2439 {
2440 struct cleanup *cleanup_tuple;
2441
2442 xfree (previous_sect_name);
2443 previous_sect_name = xstrdup (section_name);
2444
2445 if (current_token)
2446 fputs_unfiltered (current_token, mi->raw_stdout);
2447 fputs_unfiltered ("+download", mi->raw_stdout);
2448 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2449 ui_out_field_string (uiout, "section", section_name);
2450 ui_out_field_int (uiout, "section-size", total_section);
2451 ui_out_field_int (uiout, "total-size", grand_total);
2452 do_cleanups (cleanup_tuple);
2453 mi_out_put (uiout, mi->raw_stdout);
2454 fputs_unfiltered ("\n", mi->raw_stdout);
2455 gdb_flush (mi->raw_stdout);
2456 }
2457
2458 if (delta.tv_sec >= update_threshold.tv_sec &&
2459 delta.tv_usec >= update_threshold.tv_usec)
2460 {
2461 struct cleanup *cleanup_tuple;
2462
2463 last_update.tv_sec = time_now.tv_sec;
2464 last_update.tv_usec = time_now.tv_usec;
2465 if (current_token)
2466 fputs_unfiltered (current_token, mi->raw_stdout);
2467 fputs_unfiltered ("+download", mi->raw_stdout);
2468 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2469 ui_out_field_string (uiout, "section", section_name);
2470 ui_out_field_int (uiout, "section-sent", sent_so_far);
2471 ui_out_field_int (uiout, "section-size", total_section);
2472 ui_out_field_int (uiout, "total-sent", total_sent);
2473 ui_out_field_int (uiout, "total-size", grand_total);
2474 do_cleanups (cleanup_tuple);
2475 mi_out_put (uiout, mi->raw_stdout);
2476 fputs_unfiltered ("\n", mi->raw_stdout);
2477 gdb_flush (mi->raw_stdout);
2478 }
2479
2480 xfree (uiout);
2481 current_uiout = saved_uiout;
2482 }
2483
2484 static void
2485 timestamp (struct mi_timestamp *tv)
2486 {
2487 gettimeofday (&tv->wallclock, NULL);
2488 #ifdef HAVE_GETRUSAGE
2489 getrusage (RUSAGE_SELF, &rusage);
2490 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2491 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2492 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2493 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2494 #else
2495 {
2496 long usec = get_run_time ();
2497
2498 tv->utime.tv_sec = usec/1000000L;
2499 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2500 tv->stime.tv_sec = 0;
2501 tv->stime.tv_usec = 0;
2502 }
2503 #endif
2504 }
2505
2506 static void
2507 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2508 {
2509 struct mi_timestamp now;
2510
2511 timestamp (&now);
2512 print_diff (file, start, &now);
2513 }
2514
2515 void
2516 mi_print_timing_maybe (struct ui_file *file)
2517 {
2518 /* If the command is -enable-timing then do_timings may be true
2519 whilst current_command_ts is not initialized. */
2520 if (do_timings && current_command_ts)
2521 print_diff_now (file, current_command_ts);
2522 }
2523
2524 static long
2525 timeval_diff (struct timeval start, struct timeval end)
2526 {
2527 return ((end.tv_sec - start.tv_sec) * 1000000L)
2528 + (end.tv_usec - start.tv_usec);
2529 }
2530
2531 static void
2532 print_diff (struct ui_file *file, struct mi_timestamp *start,
2533 struct mi_timestamp *end)
2534 {
2535 fprintf_unfiltered
2536 (file,
2537 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2538 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2539 timeval_diff (start->utime, end->utime) / 1000000.0,
2540 timeval_diff (start->stime, end->stime) / 1000000.0);
2541 }
2542
2543 void
2544 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2545 {
2546 LONGEST initval = 0;
2547 struct trace_state_variable *tsv;
2548 char *name = 0;
2549
2550 if (argc != 1 && argc != 2)
2551 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2552
2553 name = argv[0];
2554 if (*name++ != '$')
2555 error (_("Name of trace variable should start with '$'"));
2556
2557 validate_trace_state_variable_name (name);
2558
2559 tsv = find_trace_state_variable (name);
2560 if (!tsv)
2561 tsv = create_trace_state_variable (name);
2562
2563 if (argc == 2)
2564 initval = value_as_long (parse_and_eval (argv[1]));
2565
2566 tsv->initial_value = initval;
2567 }
2568
2569 void
2570 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2571 {
2572 if (argc != 0)
2573 error (_("-trace-list-variables: no arguments allowed"));
2574
2575 tvariables_info_1 ();
2576 }
2577
2578 void
2579 mi_cmd_trace_find (char *command, char **argv, int argc)
2580 {
2581 char *mode;
2582
2583 if (argc == 0)
2584 error (_("trace selection mode is required"));
2585
2586 mode = argv[0];
2587
2588 if (strcmp (mode, "none") == 0)
2589 {
2590 tfind_1 (tfind_number, -1, 0, 0, 0);
2591 return;
2592 }
2593
2594 check_trace_running (current_trace_status ());
2595
2596 if (strcmp (mode, "frame-number") == 0)
2597 {
2598 if (argc != 2)
2599 error (_("frame number is required"));
2600 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2601 }
2602 else if (strcmp (mode, "tracepoint-number") == 0)
2603 {
2604 if (argc != 2)
2605 error (_("tracepoint number is required"));
2606 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2607 }
2608 else if (strcmp (mode, "pc") == 0)
2609 {
2610 if (argc != 2)
2611 error (_("PC is required"));
2612 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2613 }
2614 else if (strcmp (mode, "pc-inside-range") == 0)
2615 {
2616 if (argc != 3)
2617 error (_("Start and end PC are required"));
2618 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2619 parse_and_eval_address (argv[2]), 0);
2620 }
2621 else if (strcmp (mode, "pc-outside-range") == 0)
2622 {
2623 if (argc != 3)
2624 error (_("Start and end PC are required"));
2625 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2626 parse_and_eval_address (argv[2]), 0);
2627 }
2628 else if (strcmp (mode, "line") == 0)
2629 {
2630 struct symtabs_and_lines sals;
2631 struct symtab_and_line sal;
2632 static CORE_ADDR start_pc, end_pc;
2633 struct cleanup *back_to;
2634
2635 if (argc != 2)
2636 error (_("Line is required"));
2637
2638 sals = decode_line_with_current_source (argv[1],
2639 DECODE_LINE_FUNFIRSTLINE);
2640 back_to = make_cleanup (xfree, sals.sals);
2641
2642 sal = sals.sals[0];
2643
2644 if (sal.symtab == 0)
2645 error (_("Could not find the specified line"));
2646
2647 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2648 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2649 else
2650 error (_("Could not find the specified line"));
2651
2652 do_cleanups (back_to);
2653 }
2654 else
2655 error (_("Invalid mode '%s'"), mode);
2656
2657 if (has_stack_frames () || get_traceframe_number () >= 0)
2658 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2659 }
2660
2661 void
2662 mi_cmd_trace_save (char *command, char **argv, int argc)
2663 {
2664 int target_saves = 0;
2665 int generate_ctf = 0;
2666 char *filename;
2667 int oind = 0;
2668 char *oarg;
2669
2670 enum opt
2671 {
2672 TARGET_SAVE_OPT, CTF_OPT
2673 };
2674 static const struct mi_opt opts[] =
2675 {
2676 {"r", TARGET_SAVE_OPT, 0},
2677 {"ctf", CTF_OPT, 0},
2678 { 0, 0, 0 }
2679 };
2680
2681 while (1)
2682 {
2683 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2684 &oind, &oarg);
2685
2686 if (opt < 0)
2687 break;
2688 switch ((enum opt) opt)
2689 {
2690 case TARGET_SAVE_OPT:
2691 target_saves = 1;
2692 break;
2693 case CTF_OPT:
2694 generate_ctf = 1;
2695 break;
2696 }
2697 }
2698
2699 if (argc - oind != 1)
2700 error (_("Exactly one argument required "
2701 "(file in which to save trace data)"));
2702
2703 filename = argv[oind];
2704
2705 if (generate_ctf)
2706 trace_save_ctf (filename, target_saves);
2707 else
2708 trace_save_tfile (filename, target_saves);
2709 }
2710
2711 void
2712 mi_cmd_trace_start (char *command, char **argv, int argc)
2713 {
2714 start_tracing (NULL);
2715 }
2716
2717 void
2718 mi_cmd_trace_status (char *command, char **argv, int argc)
2719 {
2720 trace_status_mi (0);
2721 }
2722
2723 void
2724 mi_cmd_trace_stop (char *command, char **argv, int argc)
2725 {
2726 stop_tracing (NULL);
2727 trace_status_mi (1);
2728 }
2729
2730 /* Implement the "-ada-task-info" command. */
2731
2732 void
2733 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2734 {
2735 if (argc != 0 && argc != 1)
2736 error (_("Invalid MI command"));
2737
2738 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2739 }
2740
2741 /* Print EXPRESSION according to VALUES. */
2742
2743 static void
2744 print_variable_or_computed (char *expression, enum print_values values)
2745 {
2746 struct expression *expr;
2747 struct cleanup *old_chain;
2748 struct value *val;
2749 struct ui_file *stb;
2750 struct type *type;
2751 struct ui_out *uiout = current_uiout;
2752
2753 stb = mem_fileopen ();
2754 old_chain = make_cleanup_ui_file_delete (stb);
2755
2756 expr = parse_expression (expression);
2757
2758 make_cleanup (free_current_contents, &expr);
2759
2760 if (values == PRINT_SIMPLE_VALUES)
2761 val = evaluate_type (expr);
2762 else
2763 val = evaluate_expression (expr);
2764
2765 if (values != PRINT_NO_VALUES)
2766 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2767 ui_out_field_string (uiout, "name", expression);
2768
2769 switch (values)
2770 {
2771 case PRINT_SIMPLE_VALUES:
2772 type = check_typedef (value_type (val));
2773 type_print (value_type (val), "", stb, -1);
2774 ui_out_field_stream (uiout, "type", stb);
2775 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2776 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2777 && TYPE_CODE (type) != TYPE_CODE_UNION)
2778 {
2779 struct value_print_options opts;
2780
2781 get_no_prettyformat_print_options (&opts);
2782 opts.deref_ref = 1;
2783 common_val_print (val, stb, 0, &opts, current_language);
2784 ui_out_field_stream (uiout, "value", stb);
2785 }
2786 break;
2787 case PRINT_ALL_VALUES:
2788 {
2789 struct value_print_options opts;
2790
2791 get_no_prettyformat_print_options (&opts);
2792 opts.deref_ref = 1;
2793 common_val_print (val, stb, 0, &opts, current_language);
2794 ui_out_field_stream (uiout, "value", stb);
2795 }
2796 break;
2797 }
2798
2799 do_cleanups (old_chain);
2800 }
2801
2802 /* Implement the "-trace-frame-collected" command. */
2803
2804 void
2805 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2806 {
2807 struct cleanup *old_chain;
2808 struct bp_location *tloc;
2809 int stepping_frame;
2810 struct collection_list *clist;
2811 struct collection_list tracepoint_list, stepping_list;
2812 struct traceframe_info *tinfo;
2813 int oind = 0;
2814 enum print_values var_print_values = PRINT_ALL_VALUES;
2815 enum print_values comp_print_values = PRINT_ALL_VALUES;
2816 int registers_format = 'x';
2817 int memory_contents = 0;
2818 struct ui_out *uiout = current_uiout;
2819 enum opt
2820 {
2821 VAR_PRINT_VALUES,
2822 COMP_PRINT_VALUES,
2823 REGISTERS_FORMAT,
2824 MEMORY_CONTENTS,
2825 };
2826 static const struct mi_opt opts[] =
2827 {
2828 {"-var-print-values", VAR_PRINT_VALUES, 1},
2829 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2830 {"-registers-format", REGISTERS_FORMAT, 1},
2831 {"-memory-contents", MEMORY_CONTENTS, 0},
2832 { 0, 0, 0 }
2833 };
2834
2835 while (1)
2836 {
2837 char *oarg;
2838 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2839 &oind, &oarg);
2840 if (opt < 0)
2841 break;
2842 switch ((enum opt) opt)
2843 {
2844 case VAR_PRINT_VALUES:
2845 var_print_values = mi_parse_print_values (oarg);
2846 break;
2847 case COMP_PRINT_VALUES:
2848 comp_print_values = mi_parse_print_values (oarg);
2849 break;
2850 case REGISTERS_FORMAT:
2851 registers_format = oarg[0];
2852 case MEMORY_CONTENTS:
2853 memory_contents = 1;
2854 break;
2855 }
2856 }
2857
2858 if (oind != argc)
2859 error (_("Usage: -trace-frame-collected "
2860 "[--var-print-values PRINT_VALUES] "
2861 "[--comp-print-values PRINT_VALUES] "
2862 "[--registers-format FORMAT]"
2863 "[--memory-contents]"));
2864
2865 /* This throws an error is not inspecting a trace frame. */
2866 tloc = get_traceframe_location (&stepping_frame);
2867
2868 /* This command only makes sense for the current frame, not the
2869 selected frame. */
2870 old_chain = make_cleanup_restore_current_thread ();
2871 select_frame (get_current_frame ());
2872
2873 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2874 &stepping_list);
2875
2876 if (stepping_frame)
2877 clist = &stepping_list;
2878 else
2879 clist = &tracepoint_list;
2880
2881 tinfo = get_traceframe_info ();
2882
2883 /* Explicitly wholly collected variables. */
2884 {
2885 struct cleanup *list_cleanup;
2886 char *p;
2887 int i;
2888
2889 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2890 "explicit-variables");
2891 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2892 print_variable_or_computed (p, var_print_values);
2893 do_cleanups (list_cleanup);
2894 }
2895
2896 /* Computed expressions. */
2897 {
2898 struct cleanup *list_cleanup;
2899 char *p;
2900 int i;
2901
2902 list_cleanup
2903 = make_cleanup_ui_out_list_begin_end (uiout,
2904 "computed-expressions");
2905 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2906 print_variable_or_computed (p, comp_print_values);
2907 do_cleanups (list_cleanup);
2908 }
2909
2910 /* Registers. Given pseudo-registers, and that some architectures
2911 (like MIPS) actually hide the raw registers, we don't go through
2912 the trace frame info, but instead consult the register cache for
2913 register availability. */
2914 {
2915 struct cleanup *list_cleanup;
2916 struct frame_info *frame;
2917 struct gdbarch *gdbarch;
2918 int regnum;
2919 int numregs;
2920
2921 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2922
2923 frame = get_selected_frame (NULL);
2924 gdbarch = get_frame_arch (frame);
2925 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2926
2927 for (regnum = 0; regnum < numregs; regnum++)
2928 {
2929 if (gdbarch_register_name (gdbarch, regnum) == NULL
2930 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2931 continue;
2932
2933 output_register (frame, regnum, registers_format, 1);
2934 }
2935
2936 do_cleanups (list_cleanup);
2937 }
2938
2939 /* Trace state variables. */
2940 {
2941 struct cleanup *list_cleanup;
2942 int tvar;
2943 char *tsvname;
2944 int i;
2945
2946 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2947
2948 tsvname = NULL;
2949 make_cleanup (free_current_contents, &tsvname);
2950
2951 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2952 {
2953 struct cleanup *cleanup_child;
2954 struct trace_state_variable *tsv;
2955
2956 tsv = find_trace_state_variable_by_number (tvar);
2957
2958 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2959
2960 if (tsv != NULL)
2961 {
2962 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2963 tsvname[0] = '$';
2964 strcpy (tsvname + 1, tsv->name);
2965 ui_out_field_string (uiout, "name", tsvname);
2966
2967 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2968 &tsv->value);
2969 ui_out_field_int (uiout, "current", tsv->value);
2970 }
2971 else
2972 {
2973 ui_out_field_skip (uiout, "name");
2974 ui_out_field_skip (uiout, "current");
2975 }
2976
2977 do_cleanups (cleanup_child);
2978 }
2979
2980 do_cleanups (list_cleanup);
2981 }
2982
2983 /* Memory. */
2984 {
2985 struct cleanup *list_cleanup;
2986 VEC(mem_range_s) *available_memory = NULL;
2987 struct mem_range *r;
2988 int i;
2989
2990 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2991 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2992
2993 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2994
2995 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2996 {
2997 struct cleanup *cleanup_child;
2998 gdb_byte *data;
2999 struct gdbarch *gdbarch = target_gdbarch ();
3000
3001 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
3002
3003 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
3004 ui_out_field_int (uiout, "length", r->length);
3005
3006 data = (gdb_byte *) xmalloc (r->length);
3007 make_cleanup (xfree, data);
3008
3009 if (memory_contents)
3010 {
3011 if (target_read_memory (r->start, data, r->length) == 0)
3012 {
3013 int m;
3014 char *data_str, *p;
3015
3016 data_str = (char *) xmalloc (r->length * 2 + 1);
3017 make_cleanup (xfree, data_str);
3018
3019 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
3020 sprintf (p, "%02x", data[m]);
3021 ui_out_field_string (uiout, "contents", data_str);
3022 }
3023 else
3024 ui_out_field_skip (uiout, "contents");
3025 }
3026 do_cleanups (cleanup_child);
3027 }
3028
3029 do_cleanups (list_cleanup);
3030 }
3031
3032 do_cleanups (old_chain);
3033 }
3034
3035 void
3036 _initialize_mi_main (void)
3037 {
3038 struct cmd_list_element *c;
3039
3040 add_setshow_boolean_cmd ("mi-async", class_run,
3041 &mi_async_1, _("\
3042 Set whether MI asynchronous mode is enabled."), _("\
3043 Show whether MI asynchronous mode is enabled."), _("\
3044 Tells GDB whether MI should be in asynchronous mode."),
3045 set_mi_async_command,
3046 show_mi_async_command,
3047 &setlist,
3048 &showlist);
3049
3050 /* Alias old "target-async" to "mi-async". */
3051 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
3052 deprecate_cmd (c, "set mi-async");
3053 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
3054 deprecate_cmd (c, "show mi-async");
3055 }
This page took 0.097312 seconds and 5 git commands to generate.