remove trivialy unused variables
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56
57 #include <ctype.h>
58 #include "gdb_sys_time.h"
59
60 #if defined HAVE_SYS_RESOURCE_H
61 #include <sys/resource.h>
62 #endif
63
64 #ifdef HAVE_GETRUSAGE
65 struct rusage rusage;
66 #endif
67
68 enum
69 {
70 FROM_TTY = 0
71 };
72
73 int mi_debug_p;
74
75 struct ui_file *raw_stdout;
76
77 /* This is used to pass the current command timestamp down to
78 continuation routines. */
79 static struct mi_timestamp *current_command_ts;
80
81 static int do_timings = 0;
82
83 char *current_token;
84 /* Few commands would like to know if options like --thread-group were
85 explicitly specified. This variable keeps the current parsed
86 command including all option, and make it possible. */
87 static struct mi_parse *current_context;
88
89 int running_result_record_printed = 1;
90
91 /* Flag indicating that the target has proceeded since the last
92 command was issued. */
93 int mi_proceeded;
94
95 extern void _initialize_mi_main (void);
96 static void mi_cmd_execute (struct mi_parse *parse);
97
98 static void mi_execute_cli_command (const char *cmd, int args_p,
99 const char *args);
100 static void mi_execute_async_cli_command (char *cli_command,
101 char **argv, int argc);
102 static int register_changed_p (int regnum, struct regcache *,
103 struct regcache *);
104 static void output_register (struct frame_info *, int regnum, int format,
105 int skip_unavailable);
106
107 /* Controls whether the frontend wants MI in async mode. */
108 static int mi_async = 0;
109
110 /* The set command writes to this variable. If the inferior is
111 executing, mi_async is *not* updated. */
112 static int mi_async_1 = 0;
113
114 static void
115 set_mi_async_command (char *args, int from_tty,
116 struct cmd_list_element *c)
117 {
118 if (have_live_inferiors ())
119 {
120 mi_async_1 = mi_async;
121 error (_("Cannot change this setting while the inferior is running."));
122 }
123
124 mi_async = mi_async_1;
125 }
126
127 static void
128 show_mi_async_command (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c,
130 const char *value)
131 {
132 fprintf_filtered (file,
133 _("Whether MI is in asynchronous mode is %s.\n"),
134 value);
135 }
136
137 /* A wrapper for target_can_async_p that takes the MI setting into
138 account. */
139
140 int
141 mi_async_p (void)
142 {
143 return mi_async && target_can_async_p ();
144 }
145
146 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
147 layer that calls libgdb. Any operation used in the below should be
148 formalized. */
149
150 static void timestamp (struct mi_timestamp *tv);
151
152 static void print_diff_now (struct mi_timestamp *start);
153 static void print_diff (struct mi_timestamp *start, struct mi_timestamp *end);
154
155 void
156 mi_cmd_gdb_exit (char *command, char **argv, int argc)
157 {
158 /* We have to print everything right here because we never return. */
159 if (current_token)
160 fputs_unfiltered (current_token, raw_stdout);
161 fputs_unfiltered ("^exit\n", raw_stdout);
162 mi_out_put (current_uiout, raw_stdout);
163 gdb_flush (raw_stdout);
164 /* FIXME: The function called is not yet a formal libgdb function. */
165 quit_force (NULL, FROM_TTY);
166 }
167
168 void
169 mi_cmd_exec_next (char *command, char **argv, int argc)
170 {
171 /* FIXME: Should call a libgdb function, not a cli wrapper. */
172 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
173 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
174 else
175 mi_execute_async_cli_command ("next", argv, argc);
176 }
177
178 void
179 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
180 {
181 /* FIXME: Should call a libgdb function, not a cli wrapper. */
182 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
183 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
184 else
185 mi_execute_async_cli_command ("nexti", argv, argc);
186 }
187
188 void
189 mi_cmd_exec_step (char *command, char **argv, int argc)
190 {
191 /* FIXME: Should call a libgdb function, not a cli wrapper. */
192 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
193 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
194 else
195 mi_execute_async_cli_command ("step", argv, argc);
196 }
197
198 void
199 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
200 {
201 /* FIXME: Should call a libgdb function, not a cli wrapper. */
202 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
203 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
204 else
205 mi_execute_async_cli_command ("stepi", argv, argc);
206 }
207
208 void
209 mi_cmd_exec_finish (char *command, char **argv, int argc)
210 {
211 /* FIXME: Should call a libgdb function, not a cli wrapper. */
212 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
213 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
214 else
215 mi_execute_async_cli_command ("finish", argv, argc);
216 }
217
218 void
219 mi_cmd_exec_return (char *command, char **argv, int argc)
220 {
221 /* This command doesn't really execute the target, it just pops the
222 specified number of frames. */
223 if (argc)
224 /* Call return_command with from_tty argument equal to 0 so as to
225 avoid being queried. */
226 return_command (*argv, 0);
227 else
228 /* Call return_command with from_tty argument equal to 0 so as to
229 avoid being queried. */
230 return_command (NULL, 0);
231
232 /* Because we have called return_command with from_tty = 0, we need
233 to print the frame here. */
234 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
235 }
236
237 void
238 mi_cmd_exec_jump (char *args, char **argv, int argc)
239 {
240 /* FIXME: Should call a libgdb function, not a cli wrapper. */
241 mi_execute_async_cli_command ("jump", argv, argc);
242 }
243
244 static void
245 proceed_thread (struct thread_info *thread, int pid)
246 {
247 if (!is_stopped (thread->ptid))
248 return;
249
250 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
251 return;
252
253 switch_to_thread (thread->ptid);
254 clear_proceed_status (0);
255 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
256 }
257
258 static int
259 proceed_thread_callback (struct thread_info *thread, void *arg)
260 {
261 int pid = *(int *)arg;
262
263 proceed_thread (thread, pid);
264 return 0;
265 }
266
267 static void
268 exec_continue (char **argv, int argc)
269 {
270 prepare_execution_command (&current_target, mi_async_p ());
271
272 if (non_stop)
273 {
274 /* In non-stop mode, 'resume' always resumes a single thread.
275 Therefore, to resume all threads of the current inferior, or
276 all threads in all inferiors, we need to iterate over
277 threads.
278
279 See comment on infcmd.c:proceed_thread_callback for rationale. */
280 if (current_context->all || current_context->thread_group != -1)
281 {
282 int pid = 0;
283 struct cleanup *back_to = make_cleanup_restore_current_thread ();
284
285 if (!current_context->all)
286 {
287 struct inferior *inf
288 = find_inferior_id (current_context->thread_group);
289
290 pid = inf->pid;
291 }
292 iterate_over_threads (proceed_thread_callback, &pid);
293 do_cleanups (back_to);
294 }
295 else
296 {
297 continue_1 (0);
298 }
299 }
300 else
301 {
302 struct cleanup *back_to = make_cleanup_restore_integer (&sched_multi);
303
304 if (current_context->all)
305 {
306 sched_multi = 1;
307 continue_1 (0);
308 }
309 else
310 {
311 /* In all-stop mode, -exec-continue traditionally resumed
312 either all threads, or one thread, depending on the
313 'scheduler-locking' variable. Let's continue to do the
314 same. */
315 continue_1 (1);
316 }
317 do_cleanups (back_to);
318 }
319 }
320
321 static void
322 exec_direction_forward (void *notused)
323 {
324 execution_direction = EXEC_FORWARD;
325 }
326
327 static void
328 exec_reverse_continue (char **argv, int argc)
329 {
330 enum exec_direction_kind dir = execution_direction;
331 struct cleanup *old_chain;
332
333 if (dir == EXEC_REVERSE)
334 error (_("Already in reverse mode."));
335
336 if (!target_can_execute_reverse)
337 error (_("Target %s does not support this command."), target_shortname);
338
339 old_chain = make_cleanup (exec_direction_forward, NULL);
340 execution_direction = EXEC_REVERSE;
341 exec_continue (argv, argc);
342 do_cleanups (old_chain);
343 }
344
345 void
346 mi_cmd_exec_continue (char *command, char **argv, int argc)
347 {
348 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
349 exec_reverse_continue (argv + 1, argc - 1);
350 else
351 exec_continue (argv, argc);
352 }
353
354 static int
355 interrupt_thread_callback (struct thread_info *thread, void *arg)
356 {
357 int pid = *(int *)arg;
358
359 if (!is_running (thread->ptid))
360 return 0;
361
362 if (ptid_get_pid (thread->ptid) != pid)
363 return 0;
364
365 target_stop (thread->ptid);
366 return 0;
367 }
368
369 /* Interrupt the execution of the target. Note how we must play
370 around with the token variables, in order to display the current
371 token in the result of the interrupt command, and the previous
372 execution token when the target finally stops. See comments in
373 mi_cmd_execute. */
374
375 void
376 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
377 {
378 /* In all-stop mode, everything stops, so we don't need to try
379 anything specific. */
380 if (!non_stop)
381 {
382 interrupt_target_1 (0);
383 return;
384 }
385
386 if (current_context->all)
387 {
388 /* This will interrupt all threads in all inferiors. */
389 interrupt_target_1 (1);
390 }
391 else if (current_context->thread_group != -1)
392 {
393 struct inferior *inf = find_inferior_id (current_context->thread_group);
394
395 iterate_over_threads (interrupt_thread_callback, &inf->pid);
396 }
397 else
398 {
399 /* Interrupt just the current thread -- either explicitly
400 specified via --thread or whatever was current before
401 MI command was sent. */
402 interrupt_target_1 (0);
403 }
404 }
405
406 /* Callback for iterate_over_inferiors which starts the execution
407 of the given inferior.
408
409 ARG is a pointer to an integer whose value, if non-zero, indicates
410 that the program should be stopped when reaching the main subprogram
411 (similar to what the CLI "start" command does). */
412
413 static int
414 run_one_inferior (struct inferior *inf, void *arg)
415 {
416 int start_p = *(int *) arg;
417 const char *run_cmd = start_p ? "start" : "run";
418
419 if (inf->pid != 0)
420 {
421 if (inf->pid != ptid_get_pid (inferior_ptid))
422 {
423 struct thread_info *tp;
424
425 tp = any_thread_of_process (inf->pid);
426 if (!tp)
427 error (_("Inferior has no threads."));
428
429 switch_to_thread (tp->ptid);
430 }
431 }
432 else
433 {
434 set_current_inferior (inf);
435 switch_to_thread (null_ptid);
436 set_current_program_space (inf->pspace);
437 }
438 mi_execute_cli_command (run_cmd, mi_async_p (),
439 mi_async_p () ? "&" : NULL);
440 return 0;
441 }
442
443 void
444 mi_cmd_exec_run (char *command, char **argv, int argc)
445 {
446 int start_p = 0;
447
448 /* Parse the command options. */
449 enum opt
450 {
451 START_OPT,
452 };
453 static const struct mi_opt opts[] =
454 {
455 {"-start", START_OPT, 0},
456 {NULL, 0, 0},
457 };
458
459 int oind = 0;
460 char *oarg;
461
462 while (1)
463 {
464 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
465
466 if (opt < 0)
467 break;
468 switch ((enum opt) opt)
469 {
470 case START_OPT:
471 start_p = 1;
472 break;
473 }
474 }
475
476 /* This command does not accept any argument. Make sure the user
477 did not provide any. */
478 if (oind != argc)
479 error (_("Invalid argument: %s"), argv[oind]);
480
481 if (current_context->all)
482 {
483 struct cleanup *back_to = save_current_space_and_thread ();
484
485 iterate_over_inferiors (run_one_inferior, &start_p);
486 do_cleanups (back_to);
487 }
488 else
489 {
490 const char *run_cmd = start_p ? "start" : "run";
491
492 mi_execute_cli_command (run_cmd, mi_async_p (),
493 mi_async_p () ? "&" : NULL);
494 }
495 }
496
497
498 static int
499 find_thread_of_process (struct thread_info *ti, void *p)
500 {
501 int pid = *(int *)p;
502
503 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
504 return 1;
505
506 return 0;
507 }
508
509 void
510 mi_cmd_target_detach (char *command, char **argv, int argc)
511 {
512 if (argc != 0 && argc != 1)
513 error (_("Usage: -target-detach [pid | thread-group]"));
514
515 if (argc == 1)
516 {
517 struct thread_info *tp;
518 char *end = argv[0];
519 int pid;
520
521 /* First see if we are dealing with a thread-group id. */
522 if (*argv[0] == 'i')
523 {
524 struct inferior *inf;
525 int id = strtoul (argv[0] + 1, &end, 0);
526
527 if (*end != '\0')
528 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
529
530 inf = find_inferior_id (id);
531 if (!inf)
532 error (_("Non-existent thread-group id '%d'"), id);
533
534 pid = inf->pid;
535 }
536 else
537 {
538 /* We must be dealing with a pid. */
539 pid = strtol (argv[0], &end, 10);
540
541 if (*end != '\0')
542 error (_("Invalid identifier '%s'"), argv[0]);
543 }
544
545 /* Pick any thread in the desired process. Current
546 target_detach detaches from the parent of inferior_ptid. */
547 tp = iterate_over_threads (find_thread_of_process, &pid);
548 if (!tp)
549 error (_("Thread group is empty"));
550
551 switch_to_thread (tp->ptid);
552 }
553
554 detach_command (NULL, 0);
555 }
556
557 void
558 mi_cmd_thread_select (char *command, char **argv, int argc)
559 {
560 enum gdb_rc rc;
561 char *mi_error_message;
562
563 if (argc != 1)
564 error (_("-thread-select: USAGE: threadnum."));
565
566 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
567
568 if (rc == GDB_RC_FAIL)
569 {
570 make_cleanup (xfree, mi_error_message);
571 error ("%s", mi_error_message);
572 }
573 }
574
575 void
576 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
577 {
578 enum gdb_rc rc;
579 char *mi_error_message;
580
581 if (argc != 0)
582 error (_("-thread-list-ids: No arguments required."));
583
584 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
585
586 if (rc == GDB_RC_FAIL)
587 {
588 make_cleanup (xfree, mi_error_message);
589 error ("%s", mi_error_message);
590 }
591 }
592
593 void
594 mi_cmd_thread_info (char *command, char **argv, int argc)
595 {
596 if (argc != 0 && argc != 1)
597 error (_("Invalid MI command"));
598
599 print_thread_info (current_uiout, argv[0], -1);
600 }
601
602 struct collect_cores_data
603 {
604 int pid;
605
606 VEC (int) *cores;
607 };
608
609 static int
610 collect_cores (struct thread_info *ti, void *xdata)
611 {
612 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
613
614 if (ptid_get_pid (ti->ptid) == data->pid)
615 {
616 int core = target_core_of_thread (ti->ptid);
617
618 if (core != -1)
619 VEC_safe_push (int, data->cores, core);
620 }
621
622 return 0;
623 }
624
625 static int *
626 unique (int *b, int *e)
627 {
628 int *d = b;
629
630 while (++b != e)
631 if (*d != *b)
632 *++d = *b;
633 return ++d;
634 }
635
636 struct print_one_inferior_data
637 {
638 int recurse;
639 VEC (int) *inferiors;
640 };
641
642 static int
643 print_one_inferior (struct inferior *inferior, void *xdata)
644 {
645 struct print_one_inferior_data *top_data
646 = (struct print_one_inferior_data *) xdata;
647 struct ui_out *uiout = current_uiout;
648
649 if (VEC_empty (int, top_data->inferiors)
650 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
651 VEC_length (int, top_data->inferiors), sizeof (int),
652 compare_positive_ints))
653 {
654 struct collect_cores_data data;
655 struct cleanup *back_to
656 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
657
658 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
659 ui_out_field_string (uiout, "type", "process");
660 if (inferior->has_exit_code)
661 ui_out_field_string (uiout, "exit-code",
662 int_string (inferior->exit_code, 8, 0, 0, 1));
663 if (inferior->pid != 0)
664 ui_out_field_int (uiout, "pid", inferior->pid);
665
666 if (inferior->pspace->pspace_exec_filename != NULL)
667 {
668 ui_out_field_string (uiout, "executable",
669 inferior->pspace->pspace_exec_filename);
670 }
671
672 data.cores = 0;
673 if (inferior->pid != 0)
674 {
675 data.pid = inferior->pid;
676 iterate_over_threads (collect_cores, &data);
677 }
678
679 if (!VEC_empty (int, data.cores))
680 {
681 int *b, *e;
682 struct cleanup *back_to_2 =
683 make_cleanup_ui_out_list_begin_end (uiout, "cores");
684
685 qsort (VEC_address (int, data.cores),
686 VEC_length (int, data.cores), sizeof (int),
687 compare_positive_ints);
688
689 b = VEC_address (int, data.cores);
690 e = b + VEC_length (int, data.cores);
691 e = unique (b, e);
692
693 for (; b != e; ++b)
694 ui_out_field_int (uiout, NULL, *b);
695
696 do_cleanups (back_to_2);
697 }
698
699 if (top_data->recurse)
700 print_thread_info (uiout, NULL, inferior->pid);
701
702 do_cleanups (back_to);
703 }
704
705 return 0;
706 }
707
708 /* Output a field named 'cores' with a list as the value. The
709 elements of the list are obtained by splitting 'cores' on
710 comma. */
711
712 static void
713 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
714 {
715 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
716 field_name);
717 char *cores = xstrdup (xcores);
718 char *p = cores;
719
720 make_cleanup (xfree, cores);
721
722 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
723 ui_out_field_string (uiout, NULL, p);
724
725 do_cleanups (back_to);
726 }
727
728 static void
729 free_vector_of_ints (void *xvector)
730 {
731 VEC (int) **vector = (VEC (int) **) xvector;
732
733 VEC_free (int, *vector);
734 }
735
736 static void
737 do_nothing (splay_tree_key k)
738 {
739 }
740
741 static void
742 free_vector_of_osdata_items (splay_tree_value xvalue)
743 {
744 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
745
746 /* We don't free the items itself, it will be done separately. */
747 VEC_free (osdata_item_s, value);
748 }
749
750 static int
751 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
752 {
753 int a = xa;
754 int b = xb;
755
756 return a - b;
757 }
758
759 static void
760 free_splay_tree (void *xt)
761 {
762 splay_tree t = (splay_tree) xt;
763 splay_tree_delete (t);
764 }
765
766 static void
767 list_available_thread_groups (VEC (int) *ids, int recurse)
768 {
769 struct osdata *data;
770 struct osdata_item *item;
771 int ix_items;
772 struct ui_out *uiout = current_uiout;
773 struct cleanup *cleanup;
774
775 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
776 The vector contains information about all threads for the given pid.
777 This is assigned an initial value to avoid "may be used uninitialized"
778 warning from gcc. */
779 splay_tree tree = NULL;
780
781 /* get_osdata will throw if it cannot return data. */
782 data = get_osdata ("processes");
783 cleanup = make_cleanup_osdata_free (data);
784
785 if (recurse)
786 {
787 struct osdata *threads = get_osdata ("threads");
788
789 make_cleanup_osdata_free (threads);
790 tree = splay_tree_new (splay_tree_int_comparator,
791 do_nothing,
792 free_vector_of_osdata_items);
793 make_cleanup (free_splay_tree, tree);
794
795 for (ix_items = 0;
796 VEC_iterate (osdata_item_s, threads->items,
797 ix_items, item);
798 ix_items++)
799 {
800 const char *pid = get_osdata_column (item, "pid");
801 int pid_i = strtoul (pid, NULL, 0);
802 VEC (osdata_item_s) *vec = 0;
803
804 splay_tree_node n = splay_tree_lookup (tree, pid_i);
805 if (!n)
806 {
807 VEC_safe_push (osdata_item_s, vec, item);
808 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
809 }
810 else
811 {
812 vec = (VEC (osdata_item_s) *) n->value;
813 VEC_safe_push (osdata_item_s, vec, item);
814 n->value = (splay_tree_value) vec;
815 }
816 }
817 }
818
819 make_cleanup_ui_out_list_begin_end (uiout, "groups");
820
821 for (ix_items = 0;
822 VEC_iterate (osdata_item_s, data->items,
823 ix_items, item);
824 ix_items++)
825 {
826 struct cleanup *back_to;
827
828 const char *pid = get_osdata_column (item, "pid");
829 const char *cmd = get_osdata_column (item, "command");
830 const char *user = get_osdata_column (item, "user");
831 const char *cores = get_osdata_column (item, "cores");
832
833 int pid_i = strtoul (pid, NULL, 0);
834
835 /* At present, the target will return all available processes
836 and if information about specific ones was required, we filter
837 undesired processes here. */
838 if (ids && bsearch (&pid_i, VEC_address (int, ids),
839 VEC_length (int, ids),
840 sizeof (int), compare_positive_ints) == NULL)
841 continue;
842
843
844 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
845
846 ui_out_field_fmt (uiout, "id", "%s", pid);
847 ui_out_field_string (uiout, "type", "process");
848 if (cmd)
849 ui_out_field_string (uiout, "description", cmd);
850 if (user)
851 ui_out_field_string (uiout, "user", user);
852 if (cores)
853 output_cores (uiout, "cores", cores);
854
855 if (recurse)
856 {
857 splay_tree_node n = splay_tree_lookup (tree, pid_i);
858 if (n)
859 {
860 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
861 struct osdata_item *child;
862 int ix_child;
863
864 make_cleanup_ui_out_list_begin_end (uiout, "threads");
865
866 for (ix_child = 0;
867 VEC_iterate (osdata_item_s, children, ix_child, child);
868 ++ix_child)
869 {
870 struct cleanup *back_to_2 =
871 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
872 const char *tid = get_osdata_column (child, "tid");
873 const char *tcore = get_osdata_column (child, "core");
874
875 ui_out_field_string (uiout, "id", tid);
876 if (tcore)
877 ui_out_field_string (uiout, "core", tcore);
878
879 do_cleanups (back_to_2);
880 }
881 }
882 }
883
884 do_cleanups (back_to);
885 }
886
887 do_cleanups (cleanup);
888 }
889
890 void
891 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
892 {
893 struct ui_out *uiout = current_uiout;
894 struct cleanup *back_to;
895 int available = 0;
896 int recurse = 0;
897 VEC (int) *ids = 0;
898
899 enum opt
900 {
901 AVAILABLE_OPT, RECURSE_OPT
902 };
903 static const struct mi_opt opts[] =
904 {
905 {"-available", AVAILABLE_OPT, 0},
906 {"-recurse", RECURSE_OPT, 1},
907 { 0, 0, 0 }
908 };
909
910 int oind = 0;
911 char *oarg;
912
913 while (1)
914 {
915 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
916 &oind, &oarg);
917
918 if (opt < 0)
919 break;
920 switch ((enum opt) opt)
921 {
922 case AVAILABLE_OPT:
923 available = 1;
924 break;
925 case RECURSE_OPT:
926 if (strcmp (oarg, "0") == 0)
927 ;
928 else if (strcmp (oarg, "1") == 0)
929 recurse = 1;
930 else
931 error (_("only '0' and '1' are valid values "
932 "for the '--recurse' option"));
933 break;
934 }
935 }
936
937 for (; oind < argc; ++oind)
938 {
939 char *end;
940 int inf;
941
942 if (*(argv[oind]) != 'i')
943 error (_("invalid syntax of group id '%s'"), argv[oind]);
944
945 inf = strtoul (argv[oind] + 1, &end, 0);
946
947 if (*end != '\0')
948 error (_("invalid syntax of group id '%s'"), argv[oind]);
949 VEC_safe_push (int, ids, inf);
950 }
951 if (VEC_length (int, ids) > 1)
952 qsort (VEC_address (int, ids),
953 VEC_length (int, ids),
954 sizeof (int), compare_positive_ints);
955
956 back_to = make_cleanup (free_vector_of_ints, &ids);
957
958 if (available)
959 {
960 list_available_thread_groups (ids, recurse);
961 }
962 else if (VEC_length (int, ids) == 1)
963 {
964 /* Local thread groups, single id. */
965 int id = *VEC_address (int, ids);
966 struct inferior *inf = find_inferior_id (id);
967
968 if (!inf)
969 error (_("Non-existent thread group id '%d'"), id);
970
971 print_thread_info (uiout, NULL, inf->pid);
972 }
973 else
974 {
975 struct print_one_inferior_data data;
976
977 data.recurse = recurse;
978 data.inferiors = ids;
979
980 /* Local thread groups. Either no explicit ids -- and we
981 print everything, or several explicit ids. In both cases,
982 we print more than one group, and have to use 'groups'
983 as the top-level element. */
984 make_cleanup_ui_out_list_begin_end (uiout, "groups");
985 update_thread_list ();
986 iterate_over_inferiors (print_one_inferior, &data);
987 }
988
989 do_cleanups (back_to);
990 }
991
992 void
993 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
994 {
995 struct gdbarch *gdbarch;
996 struct ui_out *uiout = current_uiout;
997 int regnum, numregs;
998 int i;
999 struct cleanup *cleanup;
1000
1001 /* Note that the test for a valid register must include checking the
1002 gdbarch_register_name because gdbarch_num_regs may be allocated
1003 for the union of the register sets within a family of related
1004 processors. In this case, some entries of gdbarch_register_name
1005 will change depending upon the particular processor being
1006 debugged. */
1007
1008 gdbarch = get_current_arch ();
1009 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1010
1011 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1012
1013 if (argc == 0) /* No args, just do all the regs. */
1014 {
1015 for (regnum = 0;
1016 regnum < numregs;
1017 regnum++)
1018 {
1019 if (gdbarch_register_name (gdbarch, regnum) == NULL
1020 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1021 ui_out_field_string (uiout, NULL, "");
1022 else
1023 ui_out_field_string (uiout, NULL,
1024 gdbarch_register_name (gdbarch, regnum));
1025 }
1026 }
1027
1028 /* Else, list of register #s, just do listed regs. */
1029 for (i = 0; i < argc; i++)
1030 {
1031 regnum = atoi (argv[i]);
1032 if (regnum < 0 || regnum >= numregs)
1033 error (_("bad register number"));
1034
1035 if (gdbarch_register_name (gdbarch, regnum) == NULL
1036 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1037 ui_out_field_string (uiout, NULL, "");
1038 else
1039 ui_out_field_string (uiout, NULL,
1040 gdbarch_register_name (gdbarch, regnum));
1041 }
1042 do_cleanups (cleanup);
1043 }
1044
1045 void
1046 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1047 {
1048 static struct regcache *this_regs = NULL;
1049 struct ui_out *uiout = current_uiout;
1050 struct regcache *prev_regs;
1051 struct gdbarch *gdbarch;
1052 int regnum, numregs, changed;
1053 int i;
1054 struct cleanup *cleanup;
1055
1056 /* The last time we visited this function, the current frame's
1057 register contents were saved in THIS_REGS. Move THIS_REGS over
1058 to PREV_REGS, and refresh THIS_REGS with the now-current register
1059 contents. */
1060
1061 prev_regs = this_regs;
1062 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1063 cleanup = make_cleanup_regcache_xfree (prev_regs);
1064
1065 /* Note that the test for a valid register must include checking the
1066 gdbarch_register_name because gdbarch_num_regs may be allocated
1067 for the union of the register sets within a family of related
1068 processors. In this case, some entries of gdbarch_register_name
1069 will change depending upon the particular processor being
1070 debugged. */
1071
1072 gdbarch = get_regcache_arch (this_regs);
1073 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1074
1075 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1076
1077 if (argc == 0)
1078 {
1079 /* No args, just do all the regs. */
1080 for (regnum = 0;
1081 regnum < numregs;
1082 regnum++)
1083 {
1084 if (gdbarch_register_name (gdbarch, regnum) == NULL
1085 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1086 continue;
1087 changed = register_changed_p (regnum, prev_regs, this_regs);
1088 if (changed < 0)
1089 error (_("-data-list-changed-registers: "
1090 "Unable to read register contents."));
1091 else if (changed)
1092 ui_out_field_int (uiout, NULL, regnum);
1093 }
1094 }
1095
1096 /* Else, list of register #s, just do listed regs. */
1097 for (i = 0; i < argc; i++)
1098 {
1099 regnum = atoi (argv[i]);
1100
1101 if (regnum >= 0
1102 && regnum < numregs
1103 && gdbarch_register_name (gdbarch, regnum) != NULL
1104 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1105 {
1106 changed = register_changed_p (regnum, prev_regs, this_regs);
1107 if (changed < 0)
1108 error (_("-data-list-changed-registers: "
1109 "Unable to read register contents."));
1110 else if (changed)
1111 ui_out_field_int (uiout, NULL, regnum);
1112 }
1113 else
1114 error (_("bad register number"));
1115 }
1116 do_cleanups (cleanup);
1117 }
1118
1119 static int
1120 register_changed_p (int regnum, struct regcache *prev_regs,
1121 struct regcache *this_regs)
1122 {
1123 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1124 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1125 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1126 enum register_status prev_status;
1127 enum register_status this_status;
1128
1129 /* First time through or after gdbarch change consider all registers
1130 as changed. */
1131 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1132 return 1;
1133
1134 /* Get register contents and compare. */
1135 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1136 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1137
1138 if (this_status != prev_status)
1139 return 1;
1140 else if (this_status == REG_VALID)
1141 return memcmp (prev_buffer, this_buffer,
1142 register_size (gdbarch, regnum)) != 0;
1143 else
1144 return 0;
1145 }
1146
1147 /* Return a list of register number and value pairs. The valid
1148 arguments expected are: a letter indicating the format in which to
1149 display the registers contents. This can be one of: x
1150 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1151 (raw). After the format argument there can be a sequence of
1152 numbers, indicating which registers to fetch the content of. If
1153 the format is the only argument, a list of all the registers with
1154 their values is returned. */
1155
1156 void
1157 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1158 {
1159 struct ui_out *uiout = current_uiout;
1160 struct frame_info *frame;
1161 struct gdbarch *gdbarch;
1162 int regnum, numregs, format;
1163 int i;
1164 struct cleanup *list_cleanup;
1165 int skip_unavailable = 0;
1166 int oind = 0;
1167 enum opt
1168 {
1169 SKIP_UNAVAILABLE,
1170 };
1171 static const struct mi_opt opts[] =
1172 {
1173 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1174 { 0, 0, 0 }
1175 };
1176
1177 /* Note that the test for a valid register must include checking the
1178 gdbarch_register_name because gdbarch_num_regs may be allocated
1179 for the union of the register sets within a family of related
1180 processors. In this case, some entries of gdbarch_register_name
1181 will change depending upon the particular processor being
1182 debugged. */
1183
1184 while (1)
1185 {
1186 char *oarg;
1187 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1188 opts, &oind, &oarg);
1189
1190 if (opt < 0)
1191 break;
1192 switch ((enum opt) opt)
1193 {
1194 case SKIP_UNAVAILABLE:
1195 skip_unavailable = 1;
1196 break;
1197 }
1198 }
1199
1200 if (argc - oind < 1)
1201 error (_("-data-list-register-values: Usage: "
1202 "-data-list-register-values [--skip-unavailable] <format>"
1203 " [<regnum1>...<regnumN>]"));
1204
1205 format = (int) argv[oind][0];
1206
1207 frame = get_selected_frame (NULL);
1208 gdbarch = get_frame_arch (frame);
1209 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1210
1211 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1212
1213 if (argc - oind == 1)
1214 {
1215 /* No args, beside the format: do all the regs. */
1216 for (regnum = 0;
1217 regnum < numregs;
1218 regnum++)
1219 {
1220 if (gdbarch_register_name (gdbarch, regnum) == NULL
1221 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1222 continue;
1223
1224 output_register (frame, regnum, format, skip_unavailable);
1225 }
1226 }
1227
1228 /* Else, list of register #s, just do listed regs. */
1229 for (i = 1 + oind; i < argc; i++)
1230 {
1231 regnum = atoi (argv[i]);
1232
1233 if (regnum >= 0
1234 && regnum < numregs
1235 && gdbarch_register_name (gdbarch, regnum) != NULL
1236 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1237 output_register (frame, regnum, format, skip_unavailable);
1238 else
1239 error (_("bad register number"));
1240 }
1241 do_cleanups (list_cleanup);
1242 }
1243
1244 /* Output one register REGNUM's contents in the desired FORMAT. If
1245 SKIP_UNAVAILABLE is true, skip the register if it is
1246 unavailable. */
1247
1248 static void
1249 output_register (struct frame_info *frame, int regnum, int format,
1250 int skip_unavailable)
1251 {
1252 struct ui_out *uiout = current_uiout;
1253 struct value *val = value_of_register (regnum, frame);
1254 struct cleanup *tuple_cleanup;
1255 struct value_print_options opts;
1256 struct ui_file *stb;
1257
1258 if (skip_unavailable && !value_entirely_available (val))
1259 return;
1260
1261 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1262 ui_out_field_int (uiout, "number", regnum);
1263
1264 if (format == 'N')
1265 format = 0;
1266
1267 if (format == 'r')
1268 format = 'z';
1269
1270 stb = mem_fileopen ();
1271 make_cleanup_ui_file_delete (stb);
1272
1273 get_formatted_print_options (&opts, format);
1274 opts.deref_ref = 1;
1275 val_print (value_type (val),
1276 value_contents_for_printing (val),
1277 value_embedded_offset (val), 0,
1278 stb, 0, val, &opts, current_language);
1279 ui_out_field_stream (uiout, "value", stb);
1280
1281 do_cleanups (tuple_cleanup);
1282 }
1283
1284 /* Write given values into registers. The registers and values are
1285 given as pairs. The corresponding MI command is
1286 -data-write-register-values <format>
1287 [<regnum1> <value1>...<regnumN> <valueN>] */
1288 void
1289 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1290 {
1291 struct regcache *regcache;
1292 struct gdbarch *gdbarch;
1293 int numregs, i;
1294
1295 /* Note that the test for a valid register must include checking the
1296 gdbarch_register_name because gdbarch_num_regs may be allocated
1297 for the union of the register sets within a family of related
1298 processors. In this case, some entries of gdbarch_register_name
1299 will change depending upon the particular processor being
1300 debugged. */
1301
1302 regcache = get_current_regcache ();
1303 gdbarch = get_regcache_arch (regcache);
1304 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1305
1306 if (argc == 0)
1307 error (_("-data-write-register-values: Usage: -data-write-register-"
1308 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1309
1310 if (!target_has_registers)
1311 error (_("-data-write-register-values: No registers."));
1312
1313 if (!(argc - 1))
1314 error (_("-data-write-register-values: No regs and values specified."));
1315
1316 if ((argc - 1) % 2)
1317 error (_("-data-write-register-values: "
1318 "Regs and vals are not in pairs."));
1319
1320 for (i = 1; i < argc; i = i + 2)
1321 {
1322 int regnum = atoi (argv[i]);
1323
1324 if (regnum >= 0 && regnum < numregs
1325 && gdbarch_register_name (gdbarch, regnum)
1326 && *gdbarch_register_name (gdbarch, regnum))
1327 {
1328 LONGEST value;
1329
1330 /* Get the value as a number. */
1331 value = parse_and_eval_address (argv[i + 1]);
1332
1333 /* Write it down. */
1334 regcache_cooked_write_signed (regcache, regnum, value);
1335 }
1336 else
1337 error (_("bad register number"));
1338 }
1339 }
1340
1341 /* Evaluate the value of the argument. The argument is an
1342 expression. If the expression contains spaces it needs to be
1343 included in double quotes. */
1344
1345 void
1346 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1347 {
1348 struct expression *expr;
1349 struct cleanup *old_chain;
1350 struct value *val;
1351 struct ui_file *stb;
1352 struct value_print_options opts;
1353 struct ui_out *uiout = current_uiout;
1354
1355 stb = mem_fileopen ();
1356 old_chain = make_cleanup_ui_file_delete (stb);
1357
1358 if (argc != 1)
1359 error (_("-data-evaluate-expression: "
1360 "Usage: -data-evaluate-expression expression"));
1361
1362 expr = parse_expression (argv[0]);
1363
1364 make_cleanup (free_current_contents, &expr);
1365
1366 val = evaluate_expression (expr);
1367
1368 /* Print the result of the expression evaluation. */
1369 get_user_print_options (&opts);
1370 opts.deref_ref = 0;
1371 common_val_print (val, stb, 0, &opts, current_language);
1372
1373 ui_out_field_stream (uiout, "value", stb);
1374
1375 do_cleanups (old_chain);
1376 }
1377
1378 /* This is the -data-read-memory command.
1379
1380 ADDR: start address of data to be dumped.
1381 WORD-FORMAT: a char indicating format for the ``word''. See
1382 the ``x'' command.
1383 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1384 NR_ROW: Number of rows.
1385 NR_COL: The number of colums (words per row).
1386 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1387 ASCHAR for unprintable characters.
1388
1389 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1390 displayes them. Returns:
1391
1392 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1393
1394 Returns:
1395 The number of bytes read is SIZE*ROW*COL. */
1396
1397 void
1398 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1399 {
1400 struct gdbarch *gdbarch = get_current_arch ();
1401 struct ui_out *uiout = current_uiout;
1402 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1403 CORE_ADDR addr;
1404 long total_bytes, nr_cols, nr_rows;
1405 char word_format;
1406 struct type *word_type;
1407 long word_size;
1408 char word_asize;
1409 char aschar;
1410 gdb_byte *mbuf;
1411 int nr_bytes;
1412 long offset = 0;
1413 int oind = 0;
1414 char *oarg;
1415 enum opt
1416 {
1417 OFFSET_OPT
1418 };
1419 static const struct mi_opt opts[] =
1420 {
1421 {"o", OFFSET_OPT, 1},
1422 { 0, 0, 0 }
1423 };
1424
1425 while (1)
1426 {
1427 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1428 &oind, &oarg);
1429
1430 if (opt < 0)
1431 break;
1432 switch ((enum opt) opt)
1433 {
1434 case OFFSET_OPT:
1435 offset = atol (oarg);
1436 break;
1437 }
1438 }
1439 argv += oind;
1440 argc -= oind;
1441
1442 if (argc < 5 || argc > 6)
1443 error (_("-data-read-memory: Usage: "
1444 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1445
1446 /* Extract all the arguments. */
1447
1448 /* Start address of the memory dump. */
1449 addr = parse_and_eval_address (argv[0]) + offset;
1450 /* The format character to use when displaying a memory word. See
1451 the ``x'' command. */
1452 word_format = argv[1][0];
1453 /* The size of the memory word. */
1454 word_size = atol (argv[2]);
1455 switch (word_size)
1456 {
1457 case 1:
1458 word_type = builtin_type (gdbarch)->builtin_int8;
1459 word_asize = 'b';
1460 break;
1461 case 2:
1462 word_type = builtin_type (gdbarch)->builtin_int16;
1463 word_asize = 'h';
1464 break;
1465 case 4:
1466 word_type = builtin_type (gdbarch)->builtin_int32;
1467 word_asize = 'w';
1468 break;
1469 case 8:
1470 word_type = builtin_type (gdbarch)->builtin_int64;
1471 word_asize = 'g';
1472 break;
1473 default:
1474 word_type = builtin_type (gdbarch)->builtin_int8;
1475 word_asize = 'b';
1476 }
1477 /* The number of rows. */
1478 nr_rows = atol (argv[3]);
1479 if (nr_rows <= 0)
1480 error (_("-data-read-memory: invalid number of rows."));
1481
1482 /* Number of bytes per row. */
1483 nr_cols = atol (argv[4]);
1484 if (nr_cols <= 0)
1485 error (_("-data-read-memory: invalid number of columns."));
1486
1487 /* The un-printable character when printing ascii. */
1488 if (argc == 6)
1489 aschar = *argv[5];
1490 else
1491 aschar = 0;
1492
1493 /* Create a buffer and read it in. */
1494 total_bytes = word_size * nr_rows * nr_cols;
1495 mbuf = XCNEWVEC (gdb_byte, total_bytes);
1496 make_cleanup (xfree, mbuf);
1497
1498 /* Dispatch memory reads to the topmost target, not the flattened
1499 current_target. */
1500 nr_bytes = target_read (current_target.beneath,
1501 TARGET_OBJECT_MEMORY, NULL, mbuf,
1502 addr, total_bytes);
1503 if (nr_bytes <= 0)
1504 error (_("Unable to read memory."));
1505
1506 /* Output the header information. */
1507 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1508 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1509 ui_out_field_int (uiout, "total-bytes", total_bytes);
1510 ui_out_field_core_addr (uiout, "next-row",
1511 gdbarch, addr + word_size * nr_cols);
1512 ui_out_field_core_addr (uiout, "prev-row",
1513 gdbarch, addr - word_size * nr_cols);
1514 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1515 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1516
1517 /* Build the result as a two dimentional table. */
1518 {
1519 struct ui_file *stream;
1520 struct cleanup *cleanup_stream;
1521 int row;
1522 int row_byte;
1523
1524 stream = mem_fileopen ();
1525 cleanup_stream = make_cleanup_ui_file_delete (stream);
1526
1527 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1528 for (row = 0, row_byte = 0;
1529 row < nr_rows;
1530 row++, row_byte += nr_cols * word_size)
1531 {
1532 int col;
1533 int col_byte;
1534 struct cleanup *cleanup_tuple;
1535 struct cleanup *cleanup_list_data;
1536 struct value_print_options opts;
1537
1538 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1539 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1540 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1541 row_byte); */
1542 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1543 get_formatted_print_options (&opts, word_format);
1544 for (col = 0, col_byte = row_byte;
1545 col < nr_cols;
1546 col++, col_byte += word_size)
1547 {
1548 if (col_byte + word_size > nr_bytes)
1549 {
1550 ui_out_field_string (uiout, NULL, "N/A");
1551 }
1552 else
1553 {
1554 ui_file_rewind (stream);
1555 print_scalar_formatted (mbuf + col_byte, word_type, &opts,
1556 word_asize, stream);
1557 ui_out_field_stream (uiout, NULL, stream);
1558 }
1559 }
1560 do_cleanups (cleanup_list_data);
1561 if (aschar)
1562 {
1563 int byte;
1564
1565 ui_file_rewind (stream);
1566 for (byte = row_byte;
1567 byte < row_byte + word_size * nr_cols; byte++)
1568 {
1569 if (byte >= nr_bytes)
1570 fputc_unfiltered ('X', stream);
1571 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1572 fputc_unfiltered (aschar, stream);
1573 else
1574 fputc_unfiltered (mbuf[byte], stream);
1575 }
1576 ui_out_field_stream (uiout, "ascii", stream);
1577 }
1578 do_cleanups (cleanup_tuple);
1579 }
1580 do_cleanups (cleanup_stream);
1581 }
1582 do_cleanups (cleanups);
1583 }
1584
1585 void
1586 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1587 {
1588 struct gdbarch *gdbarch = get_current_arch ();
1589 struct ui_out *uiout = current_uiout;
1590 struct cleanup *cleanups;
1591 CORE_ADDR addr;
1592 LONGEST length;
1593 memory_read_result_s *read_result;
1594 int ix;
1595 VEC(memory_read_result_s) *result;
1596 long offset = 0;
1597 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1598 int oind = 0;
1599 char *oarg;
1600 enum opt
1601 {
1602 OFFSET_OPT
1603 };
1604 static const struct mi_opt opts[] =
1605 {
1606 {"o", OFFSET_OPT, 1},
1607 { 0, 0, 0 }
1608 };
1609
1610 while (1)
1611 {
1612 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1613 &oind, &oarg);
1614 if (opt < 0)
1615 break;
1616 switch ((enum opt) opt)
1617 {
1618 case OFFSET_OPT:
1619 offset = atol (oarg);
1620 break;
1621 }
1622 }
1623 argv += oind;
1624 argc -= oind;
1625
1626 if (argc != 2)
1627 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1628
1629 addr = parse_and_eval_address (argv[0]) + offset;
1630 length = atol (argv[1]);
1631
1632 result = read_memory_robust (current_target.beneath, addr, length);
1633
1634 cleanups = make_cleanup (free_memory_read_result_vector, result);
1635
1636 if (VEC_length (memory_read_result_s, result) == 0)
1637 error (_("Unable to read memory."));
1638
1639 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1640 for (ix = 0;
1641 VEC_iterate (memory_read_result_s, result, ix, read_result);
1642 ++ix)
1643 {
1644 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1645 char *data, *p;
1646 int i;
1647 int alloc_len;
1648
1649 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1650 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1651 - addr);
1652 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1653
1654 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1655 data = (char *) xmalloc (alloc_len);
1656
1657 for (i = 0, p = data;
1658 i < ((read_result->end - read_result->begin) * unit_size);
1659 ++i, p += 2)
1660 {
1661 sprintf (p, "%02x", read_result->data[i]);
1662 }
1663 ui_out_field_string (uiout, "contents", data);
1664 xfree (data);
1665 do_cleanups (t);
1666 }
1667 do_cleanups (cleanups);
1668 }
1669
1670 /* Implementation of the -data-write_memory command.
1671
1672 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1673 offset from the beginning of the memory grid row where the cell to
1674 be written is.
1675 ADDR: start address of the row in the memory grid where the memory
1676 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1677 the location to write to.
1678 FORMAT: a char indicating format for the ``word''. See
1679 the ``x'' command.
1680 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1681 VALUE: value to be written into the memory address.
1682
1683 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1684
1685 Prints nothing. */
1686
1687 void
1688 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1689 {
1690 struct gdbarch *gdbarch = get_current_arch ();
1691 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1692 CORE_ADDR addr;
1693 long word_size;
1694 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1695 enough when using a compiler other than GCC. */
1696 LONGEST value;
1697 gdb_byte *buffer;
1698 struct cleanup *old_chain;
1699 long offset = 0;
1700 int oind = 0;
1701 char *oarg;
1702 enum opt
1703 {
1704 OFFSET_OPT
1705 };
1706 static const struct mi_opt opts[] =
1707 {
1708 {"o", OFFSET_OPT, 1},
1709 { 0, 0, 0 }
1710 };
1711
1712 while (1)
1713 {
1714 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1715 &oind, &oarg);
1716
1717 if (opt < 0)
1718 break;
1719 switch ((enum opt) opt)
1720 {
1721 case OFFSET_OPT:
1722 offset = atol (oarg);
1723 break;
1724 }
1725 }
1726 argv += oind;
1727 argc -= oind;
1728
1729 if (argc != 4)
1730 error (_("-data-write-memory: Usage: "
1731 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1732
1733 /* Extract all the arguments. */
1734 /* Start address of the memory dump. */
1735 addr = parse_and_eval_address (argv[0]);
1736 /* The size of the memory word. */
1737 word_size = atol (argv[2]);
1738
1739 /* Calculate the real address of the write destination. */
1740 addr += (offset * word_size);
1741
1742 /* Get the value as a number. */
1743 value = parse_and_eval_address (argv[3]);
1744 /* Get the value into an array. */
1745 buffer = (gdb_byte *) xmalloc (word_size);
1746 old_chain = make_cleanup (xfree, buffer);
1747 store_signed_integer (buffer, word_size, byte_order, value);
1748 /* Write it down to memory. */
1749 write_memory_with_notification (addr, buffer, word_size);
1750 /* Free the buffer. */
1751 do_cleanups (old_chain);
1752 }
1753
1754 /* Implementation of the -data-write-memory-bytes command.
1755
1756 ADDR: start address
1757 DATA: string of bytes to write at that address
1758 COUNT: number of bytes to be filled (decimal integer). */
1759
1760 void
1761 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1762 {
1763 CORE_ADDR addr;
1764 char *cdata;
1765 gdb_byte *data;
1766 gdb_byte *databuf;
1767 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1768 long int count_units;
1769 struct cleanup *back_to;
1770 int unit_size;
1771
1772 if (argc != 2 && argc != 3)
1773 error (_("Usage: ADDR DATA [COUNT]."));
1774
1775 addr = parse_and_eval_address (argv[0]);
1776 cdata = argv[1];
1777 len_hex = strlen (cdata);
1778 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1779
1780 if (len_hex % (unit_size * 2) != 0)
1781 error (_("Hex-encoded '%s' must represent an integral number of "
1782 "addressable memory units."),
1783 cdata);
1784
1785 len_bytes = len_hex / 2;
1786 len_units = len_bytes / unit_size;
1787
1788 if (argc == 3)
1789 count_units = strtoul (argv[2], NULL, 10);
1790 else
1791 count_units = len_units;
1792
1793 databuf = XNEWVEC (gdb_byte, len_bytes);
1794 back_to = make_cleanup (xfree, databuf);
1795
1796 for (i = 0; i < len_bytes; ++i)
1797 {
1798 int x;
1799 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1800 error (_("Invalid argument"));
1801 databuf[i] = (gdb_byte) x;
1802 }
1803
1804 if (len_units < count_units)
1805 {
1806 /* Pattern is made of less units than count:
1807 repeat pattern to fill memory. */
1808 data = (gdb_byte *) xmalloc (count_units * unit_size);
1809 make_cleanup (xfree, data);
1810
1811 /* Number of times the pattern is entirely repeated. */
1812 steps = count_units / len_units;
1813 /* Number of remaining addressable memory units. */
1814 remaining_units = count_units % len_units;
1815 for (i = 0; i < steps; i++)
1816 memcpy (data + i * len_bytes, databuf, len_bytes);
1817
1818 if (remaining_units > 0)
1819 memcpy (data + steps * len_bytes, databuf,
1820 remaining_units * unit_size);
1821 }
1822 else
1823 {
1824 /* Pattern is longer than or equal to count:
1825 just copy count addressable memory units. */
1826 data = databuf;
1827 }
1828
1829 write_memory_with_notification (addr, data, count_units);
1830
1831 do_cleanups (back_to);
1832 }
1833
1834 void
1835 mi_cmd_enable_timings (char *command, char **argv, int argc)
1836 {
1837 if (argc == 0)
1838 do_timings = 1;
1839 else if (argc == 1)
1840 {
1841 if (strcmp (argv[0], "yes") == 0)
1842 do_timings = 1;
1843 else if (strcmp (argv[0], "no") == 0)
1844 do_timings = 0;
1845 else
1846 goto usage_error;
1847 }
1848 else
1849 goto usage_error;
1850
1851 return;
1852
1853 usage_error:
1854 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1855 }
1856
1857 void
1858 mi_cmd_list_features (char *command, char **argv, int argc)
1859 {
1860 if (argc == 0)
1861 {
1862 struct cleanup *cleanup = NULL;
1863 struct ui_out *uiout = current_uiout;
1864
1865 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1866 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1867 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1868 ui_out_field_string (uiout, NULL, "thread-info");
1869 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1870 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1871 ui_out_field_string (uiout, NULL, "ada-task-info");
1872 ui_out_field_string (uiout, NULL, "language-option");
1873 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1874 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1875 ui_out_field_string (uiout, NULL, "exec-run-start-option");
1876
1877 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1878 ui_out_field_string (uiout, NULL, "python");
1879
1880 do_cleanups (cleanup);
1881 return;
1882 }
1883
1884 error (_("-list-features should be passed no arguments"));
1885 }
1886
1887 void
1888 mi_cmd_list_target_features (char *command, char **argv, int argc)
1889 {
1890 if (argc == 0)
1891 {
1892 struct cleanup *cleanup = NULL;
1893 struct ui_out *uiout = current_uiout;
1894
1895 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1896 if (mi_async_p ())
1897 ui_out_field_string (uiout, NULL, "async");
1898 if (target_can_execute_reverse)
1899 ui_out_field_string (uiout, NULL, "reverse");
1900 do_cleanups (cleanup);
1901 return;
1902 }
1903
1904 error (_("-list-target-features should be passed no arguments"));
1905 }
1906
1907 void
1908 mi_cmd_add_inferior (char *command, char **argv, int argc)
1909 {
1910 struct inferior *inf;
1911
1912 if (argc != 0)
1913 error (_("-add-inferior should be passed no arguments"));
1914
1915 inf = add_inferior_with_spaces ();
1916
1917 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1918 }
1919
1920 /* Callback used to find the first inferior other than the current
1921 one. */
1922
1923 static int
1924 get_other_inferior (struct inferior *inf, void *arg)
1925 {
1926 if (inf == current_inferior ())
1927 return 0;
1928
1929 return 1;
1930 }
1931
1932 void
1933 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1934 {
1935 int id;
1936 struct inferior *inf;
1937
1938 if (argc != 1)
1939 error (_("-remove-inferior should be passed a single argument"));
1940
1941 if (sscanf (argv[0], "i%d", &id) != 1)
1942 error (_("the thread group id is syntactically invalid"));
1943
1944 inf = find_inferior_id (id);
1945 if (!inf)
1946 error (_("the specified thread group does not exist"));
1947
1948 if (inf->pid != 0)
1949 error (_("cannot remove an active inferior"));
1950
1951 if (inf == current_inferior ())
1952 {
1953 struct thread_info *tp = 0;
1954 struct inferior *new_inferior
1955 = iterate_over_inferiors (get_other_inferior, NULL);
1956
1957 if (new_inferior == NULL)
1958 error (_("Cannot remove last inferior"));
1959
1960 set_current_inferior (new_inferior);
1961 if (new_inferior->pid != 0)
1962 tp = any_thread_of_process (new_inferior->pid);
1963 switch_to_thread (tp ? tp->ptid : null_ptid);
1964 set_current_program_space (new_inferior->pspace);
1965 }
1966
1967 delete_inferior (inf);
1968 }
1969
1970 \f
1971
1972 /* Execute a command within a safe environment.
1973 Return <0 for error; >=0 for ok.
1974
1975 args->action will tell mi_execute_command what action
1976 to perfrom after the given command has executed (display/suppress
1977 prompt, display error). */
1978
1979 static void
1980 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1981 {
1982 struct cleanup *cleanup;
1983
1984 if (do_timings)
1985 current_command_ts = context->cmd_start;
1986
1987 current_token = xstrdup (context->token);
1988 cleanup = make_cleanup (free_current_contents, &current_token);
1989
1990 running_result_record_printed = 0;
1991 mi_proceeded = 0;
1992 switch (context->op)
1993 {
1994 case MI_COMMAND:
1995 /* A MI command was read from the input stream. */
1996 if (mi_debug_p)
1997 /* FIXME: gdb_???? */
1998 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1999 context->token, context->command, context->args);
2000
2001 mi_cmd_execute (context);
2002
2003 /* Print the result if there were no errors.
2004
2005 Remember that on the way out of executing a command, you have
2006 to directly use the mi_interp's uiout, since the command
2007 could have reset the interpreter, in which case the current
2008 uiout will most likely crash in the mi_out_* routines. */
2009 if (!running_result_record_printed)
2010 {
2011 fputs_unfiltered (context->token, raw_stdout);
2012 /* There's no particularly good reason why target-connect results
2013 in not ^done. Should kill ^connected for MI3. */
2014 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2015 ? "^connected" : "^done", raw_stdout);
2016 mi_out_put (uiout, raw_stdout);
2017 mi_out_rewind (uiout);
2018 mi_print_timing_maybe ();
2019 fputs_unfiltered ("\n", raw_stdout);
2020 }
2021 else
2022 /* The command does not want anything to be printed. In that
2023 case, the command probably should not have written anything
2024 to uiout, but in case it has written something, discard it. */
2025 mi_out_rewind (uiout);
2026 break;
2027
2028 case CLI_COMMAND:
2029 {
2030 char *argv[2];
2031
2032 /* A CLI command was read from the input stream. */
2033 /* This "feature" will be removed as soon as we have a
2034 complete set of mi commands. */
2035 /* Echo the command on the console. */
2036 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2037 /* Call the "console" interpreter. */
2038 argv[0] = "console";
2039 argv[1] = context->command;
2040 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2041
2042 /* If we changed interpreters, DON'T print out anything. */
2043 if (current_interp_named_p (INTERP_MI)
2044 || current_interp_named_p (INTERP_MI1)
2045 || current_interp_named_p (INTERP_MI2)
2046 || current_interp_named_p (INTERP_MI3))
2047 {
2048 if (!running_result_record_printed)
2049 {
2050 fputs_unfiltered (context->token, raw_stdout);
2051 fputs_unfiltered ("^done", raw_stdout);
2052 mi_out_put (uiout, raw_stdout);
2053 mi_out_rewind (uiout);
2054 mi_print_timing_maybe ();
2055 fputs_unfiltered ("\n", raw_stdout);
2056 }
2057 else
2058 mi_out_rewind (uiout);
2059 }
2060 break;
2061 }
2062 }
2063
2064 do_cleanups (cleanup);
2065 }
2066
2067 /* Print a gdb exception to the MI output stream. */
2068
2069 static void
2070 mi_print_exception (const char *token, struct gdb_exception exception)
2071 {
2072 fputs_unfiltered (token, raw_stdout);
2073 fputs_unfiltered ("^error,msg=\"", raw_stdout);
2074 if (exception.message == NULL)
2075 fputs_unfiltered ("unknown error", raw_stdout);
2076 else
2077 fputstr_unfiltered (exception.message, '"', raw_stdout);
2078 fputs_unfiltered ("\"", raw_stdout);
2079
2080 switch (exception.error)
2081 {
2082 case UNDEFINED_COMMAND_ERROR:
2083 fputs_unfiltered (",code=\"undefined-command\"", raw_stdout);
2084 break;
2085 }
2086
2087 fputs_unfiltered ("\n", raw_stdout);
2088 }
2089
2090 void
2091 mi_execute_command (const char *cmd, int from_tty)
2092 {
2093 char *token;
2094 struct mi_parse *command = NULL;
2095
2096 /* This is to handle EOF (^D). We just quit gdb. */
2097 /* FIXME: we should call some API function here. */
2098 if (cmd == 0)
2099 quit_force (NULL, from_tty);
2100
2101 target_log_command (cmd);
2102
2103 TRY
2104 {
2105 command = mi_parse (cmd, &token);
2106 }
2107 CATCH (exception, RETURN_MASK_ALL)
2108 {
2109 mi_print_exception (token, exception);
2110 xfree (token);
2111 }
2112 END_CATCH
2113
2114 if (command != NULL)
2115 {
2116 ptid_t previous_ptid = inferior_ptid;
2117
2118 command->token = token;
2119
2120 if (do_timings)
2121 {
2122 command->cmd_start = XNEW (struct mi_timestamp);
2123 timestamp (command->cmd_start);
2124 }
2125
2126 TRY
2127 {
2128 captured_mi_execute_command (current_uiout, command);
2129 }
2130 CATCH (result, RETURN_MASK_ALL)
2131 {
2132 /* The command execution failed and error() was called
2133 somewhere. */
2134 mi_print_exception (command->token, result);
2135 mi_out_rewind (current_uiout);
2136 }
2137 END_CATCH
2138
2139 bpstat_do_actions ();
2140
2141 if (/* The notifications are only output when the top-level
2142 interpreter (specified on the command line) is MI. */
2143 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2144 /* Don't try report anything if there are no threads --
2145 the program is dead. */
2146 && thread_count () != 0
2147 /* -thread-select explicitly changes thread. If frontend uses that
2148 internally, we don't want to emit =thread-selected, since
2149 =thread-selected is supposed to indicate user's intentions. */
2150 && strcmp (command->command, "thread-select") != 0)
2151 {
2152 struct mi_interp *mi
2153 = (struct mi_interp *) top_level_interpreter_data ();
2154 int report_change = 0;
2155
2156 if (command->thread == -1)
2157 {
2158 report_change = (!ptid_equal (previous_ptid, null_ptid)
2159 && !ptid_equal (inferior_ptid, previous_ptid)
2160 && !ptid_equal (inferior_ptid, null_ptid));
2161 }
2162 else if (!ptid_equal (inferior_ptid, null_ptid))
2163 {
2164 struct thread_info *ti = inferior_thread ();
2165
2166 report_change = (ti->global_num != command->thread);
2167 }
2168
2169 if (report_change)
2170 {
2171 struct thread_info *ti = inferior_thread ();
2172 struct cleanup *old_chain;
2173
2174 old_chain = make_cleanup_restore_target_terminal ();
2175 target_terminal_ours_for_output ();
2176
2177 fprintf_unfiltered (mi->event_channel,
2178 "thread-selected,id=\"%d\"",
2179 ti->global_num);
2180 gdb_flush (mi->event_channel);
2181
2182 do_cleanups (old_chain);
2183 }
2184 }
2185
2186 mi_parse_free (command);
2187 }
2188 }
2189
2190 static void
2191 mi_cmd_execute (struct mi_parse *parse)
2192 {
2193 struct cleanup *cleanup;
2194
2195 cleanup = prepare_execute_command ();
2196
2197 if (parse->all && parse->thread_group != -1)
2198 error (_("Cannot specify --thread-group together with --all"));
2199
2200 if (parse->all && parse->thread != -1)
2201 error (_("Cannot specify --thread together with --all"));
2202
2203 if (parse->thread_group != -1 && parse->thread != -1)
2204 error (_("Cannot specify --thread together with --thread-group"));
2205
2206 if (parse->frame != -1 && parse->thread == -1)
2207 error (_("Cannot specify --frame without --thread"));
2208
2209 if (parse->thread_group != -1)
2210 {
2211 struct inferior *inf = find_inferior_id (parse->thread_group);
2212 struct thread_info *tp = 0;
2213
2214 if (!inf)
2215 error (_("Invalid thread group for the --thread-group option"));
2216
2217 set_current_inferior (inf);
2218 /* This behaviour means that if --thread-group option identifies
2219 an inferior with multiple threads, then a random one will be
2220 picked. This is not a problem -- frontend should always
2221 provide --thread if it wishes to operate on a specific
2222 thread. */
2223 if (inf->pid != 0)
2224 tp = any_live_thread_of_process (inf->pid);
2225 switch_to_thread (tp ? tp->ptid : null_ptid);
2226 set_current_program_space (inf->pspace);
2227 }
2228
2229 if (parse->thread != -1)
2230 {
2231 struct thread_info *tp = find_thread_global_id (parse->thread);
2232
2233 if (!tp)
2234 error (_("Invalid thread id: %d"), parse->thread);
2235
2236 if (is_exited (tp->ptid))
2237 error (_("Thread id: %d has terminated"), parse->thread);
2238
2239 switch_to_thread (tp->ptid);
2240 }
2241
2242 if (parse->frame != -1)
2243 {
2244 struct frame_info *fid;
2245 int frame = parse->frame;
2246
2247 fid = find_relative_frame (get_current_frame (), &frame);
2248 if (frame == 0)
2249 /* find_relative_frame was successful */
2250 select_frame (fid);
2251 else
2252 error (_("Invalid frame id: %d"), frame);
2253 }
2254
2255 if (parse->language != language_unknown)
2256 {
2257 make_cleanup_restore_current_language ();
2258 set_language (parse->language);
2259 }
2260
2261 current_context = parse;
2262
2263 if (parse->cmd->suppress_notification != NULL)
2264 {
2265 make_cleanup_restore_integer (parse->cmd->suppress_notification);
2266 *parse->cmd->suppress_notification = 1;
2267 }
2268
2269 if (parse->cmd->argv_func != NULL)
2270 {
2271 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2272 }
2273 else if (parse->cmd->cli.cmd != 0)
2274 {
2275 /* FIXME: DELETE THIS. */
2276 /* The operation is still implemented by a cli command. */
2277 /* Must be a synchronous one. */
2278 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2279 parse->args);
2280 }
2281 else
2282 {
2283 /* FIXME: DELETE THIS. */
2284 struct ui_file *stb;
2285
2286 stb = mem_fileopen ();
2287
2288 fputs_unfiltered ("Undefined mi command: ", stb);
2289 fputstr_unfiltered (parse->command, '"', stb);
2290 fputs_unfiltered (" (missing implementation)", stb);
2291
2292 make_cleanup_ui_file_delete (stb);
2293 error_stream (stb);
2294 }
2295 do_cleanups (cleanup);
2296 }
2297
2298 /* FIXME: This is just a hack so we can get some extra commands going.
2299 We don't want to channel things through the CLI, but call libgdb directly.
2300 Use only for synchronous commands. */
2301
2302 void
2303 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2304 {
2305 if (cmd != 0)
2306 {
2307 struct cleanup *old_cleanups;
2308 char *run;
2309
2310 if (args_p)
2311 run = xstrprintf ("%s %s", cmd, args);
2312 else
2313 run = xstrdup (cmd);
2314 if (mi_debug_p)
2315 /* FIXME: gdb_???? */
2316 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2317 cmd, run);
2318 old_cleanups = make_cleanup (xfree, run);
2319 execute_command (run, 0 /* from_tty */ );
2320 do_cleanups (old_cleanups);
2321 return;
2322 }
2323 }
2324
2325 void
2326 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2327 {
2328 struct cleanup *old_cleanups;
2329 char *run;
2330
2331 if (mi_async_p ())
2332 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2333 else
2334 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2335 old_cleanups = make_cleanup (xfree, run);
2336
2337 execute_command (run, 0 /* from_tty */ );
2338
2339 /* Do this before doing any printing. It would appear that some
2340 print code leaves garbage around in the buffer. */
2341 do_cleanups (old_cleanups);
2342 }
2343
2344 void
2345 mi_load_progress (const char *section_name,
2346 unsigned long sent_so_far,
2347 unsigned long total_section,
2348 unsigned long total_sent,
2349 unsigned long grand_total)
2350 {
2351 struct timeval time_now, delta, update_threshold;
2352 static struct timeval last_update;
2353 static char *previous_sect_name = NULL;
2354 int new_section;
2355 struct ui_out *saved_uiout;
2356 struct ui_out *uiout;
2357
2358 /* This function is called through deprecated_show_load_progress
2359 which means uiout may not be correct. Fix it for the duration
2360 of this function. */
2361 saved_uiout = current_uiout;
2362
2363 if (current_interp_named_p (INTERP_MI)
2364 || current_interp_named_p (INTERP_MI2))
2365 current_uiout = mi_out_new (2);
2366 else if (current_interp_named_p (INTERP_MI1))
2367 current_uiout = mi_out_new (1);
2368 else if (current_interp_named_p (INTERP_MI3))
2369 current_uiout = mi_out_new (3);
2370 else
2371 return;
2372
2373 uiout = current_uiout;
2374
2375 update_threshold.tv_sec = 0;
2376 update_threshold.tv_usec = 500000;
2377 gettimeofday (&time_now, NULL);
2378
2379 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2380 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2381
2382 if (delta.tv_usec < 0)
2383 {
2384 delta.tv_sec -= 1;
2385 delta.tv_usec += 1000000L;
2386 }
2387
2388 new_section = (previous_sect_name ?
2389 strcmp (previous_sect_name, section_name) : 1);
2390 if (new_section)
2391 {
2392 struct cleanup *cleanup_tuple;
2393
2394 xfree (previous_sect_name);
2395 previous_sect_name = xstrdup (section_name);
2396
2397 if (current_token)
2398 fputs_unfiltered (current_token, raw_stdout);
2399 fputs_unfiltered ("+download", raw_stdout);
2400 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2401 ui_out_field_string (uiout, "section", section_name);
2402 ui_out_field_int (uiout, "section-size", total_section);
2403 ui_out_field_int (uiout, "total-size", grand_total);
2404 do_cleanups (cleanup_tuple);
2405 mi_out_put (uiout, raw_stdout);
2406 fputs_unfiltered ("\n", raw_stdout);
2407 gdb_flush (raw_stdout);
2408 }
2409
2410 if (delta.tv_sec >= update_threshold.tv_sec &&
2411 delta.tv_usec >= update_threshold.tv_usec)
2412 {
2413 struct cleanup *cleanup_tuple;
2414
2415 last_update.tv_sec = time_now.tv_sec;
2416 last_update.tv_usec = time_now.tv_usec;
2417 if (current_token)
2418 fputs_unfiltered (current_token, raw_stdout);
2419 fputs_unfiltered ("+download", raw_stdout);
2420 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2421 ui_out_field_string (uiout, "section", section_name);
2422 ui_out_field_int (uiout, "section-sent", sent_so_far);
2423 ui_out_field_int (uiout, "section-size", total_section);
2424 ui_out_field_int (uiout, "total-sent", total_sent);
2425 ui_out_field_int (uiout, "total-size", grand_total);
2426 do_cleanups (cleanup_tuple);
2427 mi_out_put (uiout, raw_stdout);
2428 fputs_unfiltered ("\n", raw_stdout);
2429 gdb_flush (raw_stdout);
2430 }
2431
2432 xfree (uiout);
2433 current_uiout = saved_uiout;
2434 }
2435
2436 static void
2437 timestamp (struct mi_timestamp *tv)
2438 {
2439 gettimeofday (&tv->wallclock, NULL);
2440 #ifdef HAVE_GETRUSAGE
2441 getrusage (RUSAGE_SELF, &rusage);
2442 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2443 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2444 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2445 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2446 #else
2447 {
2448 long usec = get_run_time ();
2449
2450 tv->utime.tv_sec = usec/1000000L;
2451 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2452 tv->stime.tv_sec = 0;
2453 tv->stime.tv_usec = 0;
2454 }
2455 #endif
2456 }
2457
2458 static void
2459 print_diff_now (struct mi_timestamp *start)
2460 {
2461 struct mi_timestamp now;
2462
2463 timestamp (&now);
2464 print_diff (start, &now);
2465 }
2466
2467 void
2468 mi_print_timing_maybe (void)
2469 {
2470 /* If the command is -enable-timing then do_timings may be true
2471 whilst current_command_ts is not initialized. */
2472 if (do_timings && current_command_ts)
2473 print_diff_now (current_command_ts);
2474 }
2475
2476 static long
2477 timeval_diff (struct timeval start, struct timeval end)
2478 {
2479 return ((end.tv_sec - start.tv_sec) * 1000000L)
2480 + (end.tv_usec - start.tv_usec);
2481 }
2482
2483 static void
2484 print_diff (struct mi_timestamp *start, struct mi_timestamp *end)
2485 {
2486 fprintf_unfiltered
2487 (raw_stdout,
2488 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2489 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2490 timeval_diff (start->utime, end->utime) / 1000000.0,
2491 timeval_diff (start->stime, end->stime) / 1000000.0);
2492 }
2493
2494 void
2495 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2496 {
2497 LONGEST initval = 0;
2498 struct trace_state_variable *tsv;
2499 char *name = 0;
2500
2501 if (argc != 1 && argc != 2)
2502 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2503
2504 name = argv[0];
2505 if (*name++ != '$')
2506 error (_("Name of trace variable should start with '$'"));
2507
2508 validate_trace_state_variable_name (name);
2509
2510 tsv = find_trace_state_variable (name);
2511 if (!tsv)
2512 tsv = create_trace_state_variable (name);
2513
2514 if (argc == 2)
2515 initval = value_as_long (parse_and_eval (argv[1]));
2516
2517 tsv->initial_value = initval;
2518 }
2519
2520 void
2521 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2522 {
2523 if (argc != 0)
2524 error (_("-trace-list-variables: no arguments allowed"));
2525
2526 tvariables_info_1 ();
2527 }
2528
2529 void
2530 mi_cmd_trace_find (char *command, char **argv, int argc)
2531 {
2532 char *mode;
2533
2534 if (argc == 0)
2535 error (_("trace selection mode is required"));
2536
2537 mode = argv[0];
2538
2539 if (strcmp (mode, "none") == 0)
2540 {
2541 tfind_1 (tfind_number, -1, 0, 0, 0);
2542 return;
2543 }
2544
2545 check_trace_running (current_trace_status ());
2546
2547 if (strcmp (mode, "frame-number") == 0)
2548 {
2549 if (argc != 2)
2550 error (_("frame number is required"));
2551 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2552 }
2553 else if (strcmp (mode, "tracepoint-number") == 0)
2554 {
2555 if (argc != 2)
2556 error (_("tracepoint number is required"));
2557 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2558 }
2559 else if (strcmp (mode, "pc") == 0)
2560 {
2561 if (argc != 2)
2562 error (_("PC is required"));
2563 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2564 }
2565 else if (strcmp (mode, "pc-inside-range") == 0)
2566 {
2567 if (argc != 3)
2568 error (_("Start and end PC are required"));
2569 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2570 parse_and_eval_address (argv[2]), 0);
2571 }
2572 else if (strcmp (mode, "pc-outside-range") == 0)
2573 {
2574 if (argc != 3)
2575 error (_("Start and end PC are required"));
2576 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2577 parse_and_eval_address (argv[2]), 0);
2578 }
2579 else if (strcmp (mode, "line") == 0)
2580 {
2581 struct symtabs_and_lines sals;
2582 struct symtab_and_line sal;
2583 static CORE_ADDR start_pc, end_pc;
2584 struct cleanup *back_to;
2585
2586 if (argc != 2)
2587 error (_("Line is required"));
2588
2589 sals = decode_line_with_current_source (argv[1],
2590 DECODE_LINE_FUNFIRSTLINE);
2591 back_to = make_cleanup (xfree, sals.sals);
2592
2593 sal = sals.sals[0];
2594
2595 if (sal.symtab == 0)
2596 error (_("Could not find the specified line"));
2597
2598 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2599 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2600 else
2601 error (_("Could not find the specified line"));
2602
2603 do_cleanups (back_to);
2604 }
2605 else
2606 error (_("Invalid mode '%s'"), mode);
2607
2608 if (has_stack_frames () || get_traceframe_number () >= 0)
2609 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2610 }
2611
2612 void
2613 mi_cmd_trace_save (char *command, char **argv, int argc)
2614 {
2615 int target_saves = 0;
2616 int generate_ctf = 0;
2617 char *filename;
2618 int oind = 0;
2619 char *oarg;
2620
2621 enum opt
2622 {
2623 TARGET_SAVE_OPT, CTF_OPT
2624 };
2625 static const struct mi_opt opts[] =
2626 {
2627 {"r", TARGET_SAVE_OPT, 0},
2628 {"ctf", CTF_OPT, 0},
2629 { 0, 0, 0 }
2630 };
2631
2632 while (1)
2633 {
2634 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2635 &oind, &oarg);
2636
2637 if (opt < 0)
2638 break;
2639 switch ((enum opt) opt)
2640 {
2641 case TARGET_SAVE_OPT:
2642 target_saves = 1;
2643 break;
2644 case CTF_OPT:
2645 generate_ctf = 1;
2646 break;
2647 }
2648 }
2649 filename = argv[oind];
2650
2651 if (generate_ctf)
2652 trace_save_ctf (filename, target_saves);
2653 else
2654 trace_save_tfile (filename, target_saves);
2655 }
2656
2657 void
2658 mi_cmd_trace_start (char *command, char **argv, int argc)
2659 {
2660 start_tracing (NULL);
2661 }
2662
2663 void
2664 mi_cmd_trace_status (char *command, char **argv, int argc)
2665 {
2666 trace_status_mi (0);
2667 }
2668
2669 void
2670 mi_cmd_trace_stop (char *command, char **argv, int argc)
2671 {
2672 stop_tracing (NULL);
2673 trace_status_mi (1);
2674 }
2675
2676 /* Implement the "-ada-task-info" command. */
2677
2678 void
2679 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2680 {
2681 if (argc != 0 && argc != 1)
2682 error (_("Invalid MI command"));
2683
2684 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2685 }
2686
2687 /* Print EXPRESSION according to VALUES. */
2688
2689 static void
2690 print_variable_or_computed (char *expression, enum print_values values)
2691 {
2692 struct expression *expr;
2693 struct cleanup *old_chain;
2694 struct value *val;
2695 struct ui_file *stb;
2696 struct type *type;
2697 struct ui_out *uiout = current_uiout;
2698
2699 stb = mem_fileopen ();
2700 old_chain = make_cleanup_ui_file_delete (stb);
2701
2702 expr = parse_expression (expression);
2703
2704 make_cleanup (free_current_contents, &expr);
2705
2706 if (values == PRINT_SIMPLE_VALUES)
2707 val = evaluate_type (expr);
2708 else
2709 val = evaluate_expression (expr);
2710
2711 if (values != PRINT_NO_VALUES)
2712 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2713 ui_out_field_string (uiout, "name", expression);
2714
2715 switch (values)
2716 {
2717 case PRINT_SIMPLE_VALUES:
2718 type = check_typedef (value_type (val));
2719 type_print (value_type (val), "", stb, -1);
2720 ui_out_field_stream (uiout, "type", stb);
2721 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2722 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2723 && TYPE_CODE (type) != TYPE_CODE_UNION)
2724 {
2725 struct value_print_options opts;
2726
2727 get_no_prettyformat_print_options (&opts);
2728 opts.deref_ref = 1;
2729 common_val_print (val, stb, 0, &opts, current_language);
2730 ui_out_field_stream (uiout, "value", stb);
2731 }
2732 break;
2733 case PRINT_ALL_VALUES:
2734 {
2735 struct value_print_options opts;
2736
2737 get_no_prettyformat_print_options (&opts);
2738 opts.deref_ref = 1;
2739 common_val_print (val, stb, 0, &opts, current_language);
2740 ui_out_field_stream (uiout, "value", stb);
2741 }
2742 break;
2743 }
2744
2745 do_cleanups (old_chain);
2746 }
2747
2748 /* Implement the "-trace-frame-collected" command. */
2749
2750 void
2751 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2752 {
2753 struct cleanup *old_chain;
2754 struct bp_location *tloc;
2755 int stepping_frame;
2756 struct collection_list *clist;
2757 struct collection_list tracepoint_list, stepping_list;
2758 struct traceframe_info *tinfo;
2759 int oind = 0;
2760 enum print_values var_print_values = PRINT_ALL_VALUES;
2761 enum print_values comp_print_values = PRINT_ALL_VALUES;
2762 int registers_format = 'x';
2763 int memory_contents = 0;
2764 struct ui_out *uiout = current_uiout;
2765 enum opt
2766 {
2767 VAR_PRINT_VALUES,
2768 COMP_PRINT_VALUES,
2769 REGISTERS_FORMAT,
2770 MEMORY_CONTENTS,
2771 };
2772 static const struct mi_opt opts[] =
2773 {
2774 {"-var-print-values", VAR_PRINT_VALUES, 1},
2775 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2776 {"-registers-format", REGISTERS_FORMAT, 1},
2777 {"-memory-contents", MEMORY_CONTENTS, 0},
2778 { 0, 0, 0 }
2779 };
2780
2781 while (1)
2782 {
2783 char *oarg;
2784 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2785 &oind, &oarg);
2786 if (opt < 0)
2787 break;
2788 switch ((enum opt) opt)
2789 {
2790 case VAR_PRINT_VALUES:
2791 var_print_values = mi_parse_print_values (oarg);
2792 break;
2793 case COMP_PRINT_VALUES:
2794 comp_print_values = mi_parse_print_values (oarg);
2795 break;
2796 case REGISTERS_FORMAT:
2797 registers_format = oarg[0];
2798 case MEMORY_CONTENTS:
2799 memory_contents = 1;
2800 break;
2801 }
2802 }
2803
2804 if (oind != argc)
2805 error (_("Usage: -trace-frame-collected "
2806 "[--var-print-values PRINT_VALUES] "
2807 "[--comp-print-values PRINT_VALUES] "
2808 "[--registers-format FORMAT]"
2809 "[--memory-contents]"));
2810
2811 /* This throws an error is not inspecting a trace frame. */
2812 tloc = get_traceframe_location (&stepping_frame);
2813
2814 /* This command only makes sense for the current frame, not the
2815 selected frame. */
2816 old_chain = make_cleanup_restore_current_thread ();
2817 select_frame (get_current_frame ());
2818
2819 encode_actions_and_make_cleanup (tloc, &tracepoint_list,
2820 &stepping_list);
2821
2822 if (stepping_frame)
2823 clist = &stepping_list;
2824 else
2825 clist = &tracepoint_list;
2826
2827 tinfo = get_traceframe_info ();
2828
2829 /* Explicitly wholly collected variables. */
2830 {
2831 struct cleanup *list_cleanup;
2832 char *p;
2833 int i;
2834
2835 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2836 "explicit-variables");
2837 for (i = 0; VEC_iterate (char_ptr, clist->wholly_collected, i, p); i++)
2838 print_variable_or_computed (p, var_print_values);
2839 do_cleanups (list_cleanup);
2840 }
2841
2842 /* Computed expressions. */
2843 {
2844 struct cleanup *list_cleanup;
2845 char *p;
2846 int i;
2847
2848 list_cleanup
2849 = make_cleanup_ui_out_list_begin_end (uiout,
2850 "computed-expressions");
2851 for (i = 0; VEC_iterate (char_ptr, clist->computed, i, p); i++)
2852 print_variable_or_computed (p, comp_print_values);
2853 do_cleanups (list_cleanup);
2854 }
2855
2856 /* Registers. Given pseudo-registers, and that some architectures
2857 (like MIPS) actually hide the raw registers, we don't go through
2858 the trace frame info, but instead consult the register cache for
2859 register availability. */
2860 {
2861 struct cleanup *list_cleanup;
2862 struct frame_info *frame;
2863 struct gdbarch *gdbarch;
2864 int regnum;
2865 int numregs;
2866
2867 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2868
2869 frame = get_selected_frame (NULL);
2870 gdbarch = get_frame_arch (frame);
2871 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2872
2873 for (regnum = 0; regnum < numregs; regnum++)
2874 {
2875 if (gdbarch_register_name (gdbarch, regnum) == NULL
2876 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2877 continue;
2878
2879 output_register (frame, regnum, registers_format, 1);
2880 }
2881
2882 do_cleanups (list_cleanup);
2883 }
2884
2885 /* Trace state variables. */
2886 {
2887 struct cleanup *list_cleanup;
2888 int tvar;
2889 char *tsvname;
2890 int i;
2891
2892 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2893
2894 tsvname = NULL;
2895 make_cleanup (free_current_contents, &tsvname);
2896
2897 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2898 {
2899 struct cleanup *cleanup_child;
2900 struct trace_state_variable *tsv;
2901
2902 tsv = find_trace_state_variable_by_number (tvar);
2903
2904 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2905
2906 if (tsv != NULL)
2907 {
2908 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2909 tsvname[0] = '$';
2910 strcpy (tsvname + 1, tsv->name);
2911 ui_out_field_string (uiout, "name", tsvname);
2912
2913 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2914 &tsv->value);
2915 ui_out_field_int (uiout, "current", tsv->value);
2916 }
2917 else
2918 {
2919 ui_out_field_skip (uiout, "name");
2920 ui_out_field_skip (uiout, "current");
2921 }
2922
2923 do_cleanups (cleanup_child);
2924 }
2925
2926 do_cleanups (list_cleanup);
2927 }
2928
2929 /* Memory. */
2930 {
2931 struct cleanup *list_cleanup;
2932 VEC(mem_range_s) *available_memory = NULL;
2933 struct mem_range *r;
2934 int i;
2935
2936 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2937 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2938
2939 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2940
2941 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
2942 {
2943 struct cleanup *cleanup_child;
2944 gdb_byte *data;
2945 struct gdbarch *gdbarch = target_gdbarch ();
2946
2947 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2948
2949 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
2950 ui_out_field_int (uiout, "length", r->length);
2951
2952 data = (gdb_byte *) xmalloc (r->length);
2953 make_cleanup (xfree, data);
2954
2955 if (memory_contents)
2956 {
2957 if (target_read_memory (r->start, data, r->length) == 0)
2958 {
2959 int m;
2960 char *data_str, *p;
2961
2962 data_str = (char *) xmalloc (r->length * 2 + 1);
2963 make_cleanup (xfree, data_str);
2964
2965 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
2966 sprintf (p, "%02x", data[m]);
2967 ui_out_field_string (uiout, "contents", data_str);
2968 }
2969 else
2970 ui_out_field_skip (uiout, "contents");
2971 }
2972 do_cleanups (cleanup_child);
2973 }
2974
2975 do_cleanups (list_cleanup);
2976 }
2977
2978 do_cleanups (old_chain);
2979 }
2980
2981 void
2982 _initialize_mi_main (void)
2983 {
2984 struct cmd_list_element *c;
2985
2986 add_setshow_boolean_cmd ("mi-async", class_run,
2987 &mi_async_1, _("\
2988 Set whether MI asynchronous mode is enabled."), _("\
2989 Show whether MI asynchronous mode is enabled."), _("\
2990 Tells GDB whether MI should be in asynchronous mode."),
2991 set_mi_async_command,
2992 show_mi_async_command,
2993 &setlist,
2994 &showlist);
2995
2996 /* Alias old "target-async" to "mi-async". */
2997 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
2998 deprecate_cmd (c, "set mi-async");
2999 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
3000 deprecate_cmd (c, "show mi-async");
3001 }
This page took 0.105938 seconds and 5 git commands to generate.