gdb::{unique_ptr,move} -> std::{unique_ptr,move}
[deliverable/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Solutions (a Red Hat company).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "target.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "top.h"
28 #include "gdbthread.h"
29 #include "mi-cmds.h"
30 #include "mi-parse.h"
31 #include "mi-getopt.h"
32 #include "mi-console.h"
33 #include "ui-out.h"
34 #include "mi-out.h"
35 #include "interps.h"
36 #include "event-loop.h"
37 #include "event-top.h"
38 #include "gdbcore.h" /* For write_memory(). */
39 #include "value.h"
40 #include "regcache.h"
41 #include "gdb.h"
42 #include "frame.h"
43 #include "mi-main.h"
44 #include "mi-common.h"
45 #include "language.h"
46 #include "valprint.h"
47 #include "inferior.h"
48 #include "osdata.h"
49 #include "splay-tree.h"
50 #include "tracepoint.h"
51 #include "ctf.h"
52 #include "ada-lang.h"
53 #include "linespec.h"
54 #include "extension.h"
55 #include "gdbcmd.h"
56 #include "observer.h"
57
58 #include <ctype.h>
59 #include "gdb_sys_time.h"
60
61 #if defined HAVE_SYS_RESOURCE_H
62 #include <sys/resource.h>
63 #endif
64
65 #ifdef HAVE_GETRUSAGE
66 struct rusage rusage;
67 #endif
68
69 enum
70 {
71 FROM_TTY = 0
72 };
73
74 int mi_debug_p;
75
76 /* This is used to pass the current command timestamp down to
77 continuation routines. */
78 static struct mi_timestamp *current_command_ts;
79
80 static int do_timings = 0;
81
82 char *current_token;
83 /* Few commands would like to know if options like --thread-group were
84 explicitly specified. This variable keeps the current parsed
85 command including all option, and make it possible. */
86 static struct mi_parse *current_context;
87
88 int running_result_record_printed = 1;
89
90 /* Flag indicating that the target has proceeded since the last
91 command was issued. */
92 int mi_proceeded;
93
94 extern void _initialize_mi_main (void);
95 static void mi_cmd_execute (struct mi_parse *parse);
96
97 static void mi_execute_cli_command (const char *cmd, int args_p,
98 const char *args);
99 static void mi_execute_async_cli_command (char *cli_command,
100 char **argv, int argc);
101 static int register_changed_p (int regnum, struct regcache *,
102 struct regcache *);
103 static void output_register (struct frame_info *, int regnum, int format,
104 int skip_unavailable);
105
106 /* Controls whether the frontend wants MI in async mode. */
107 static int mi_async = 0;
108
109 /* The set command writes to this variable. If the inferior is
110 executing, mi_async is *not* updated. */
111 static int mi_async_1 = 0;
112
113 static void
114 set_mi_async_command (char *args, int from_tty,
115 struct cmd_list_element *c)
116 {
117 if (have_live_inferiors ())
118 {
119 mi_async_1 = mi_async;
120 error (_("Cannot change this setting while the inferior is running."));
121 }
122
123 mi_async = mi_async_1;
124 }
125
126 static void
127 show_mi_async_command (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c,
129 const char *value)
130 {
131 fprintf_filtered (file,
132 _("Whether MI is in asynchronous mode is %s.\n"),
133 value);
134 }
135
136 /* A wrapper for target_can_async_p that takes the MI setting into
137 account. */
138
139 int
140 mi_async_p (void)
141 {
142 return mi_async && target_can_async_p ();
143 }
144
145 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
146 layer that calls libgdb. Any operation used in the below should be
147 formalized. */
148
149 static void timestamp (struct mi_timestamp *tv);
150
151 static void print_diff (struct ui_file *file, struct mi_timestamp *start,
152 struct mi_timestamp *end);
153
154 void
155 mi_cmd_gdb_exit (char *command, char **argv, int argc)
156 {
157 struct mi_interp *mi
158 = (struct mi_interp *) interp_data (current_interpreter ());
159
160 /* We have to print everything right here because we never return. */
161 if (current_token)
162 fputs_unfiltered (current_token, mi->raw_stdout);
163 fputs_unfiltered ("^exit\n", mi->raw_stdout);
164 mi_out_put (current_uiout, mi->raw_stdout);
165 gdb_flush (mi->raw_stdout);
166 /* FIXME: The function called is not yet a formal libgdb function. */
167 quit_force (NULL, FROM_TTY);
168 }
169
170 void
171 mi_cmd_exec_next (char *command, char **argv, int argc)
172 {
173 /* FIXME: Should call a libgdb function, not a cli wrapper. */
174 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
175 mi_execute_async_cli_command ("reverse-next", argv + 1, argc - 1);
176 else
177 mi_execute_async_cli_command ("next", argv, argc);
178 }
179
180 void
181 mi_cmd_exec_next_instruction (char *command, char **argv, int argc)
182 {
183 /* FIXME: Should call a libgdb function, not a cli wrapper. */
184 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
185 mi_execute_async_cli_command ("reverse-nexti", argv + 1, argc - 1);
186 else
187 mi_execute_async_cli_command ("nexti", argv, argc);
188 }
189
190 void
191 mi_cmd_exec_step (char *command, char **argv, int argc)
192 {
193 /* FIXME: Should call a libgdb function, not a cli wrapper. */
194 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
195 mi_execute_async_cli_command ("reverse-step", argv + 1, argc - 1);
196 else
197 mi_execute_async_cli_command ("step", argv, argc);
198 }
199
200 void
201 mi_cmd_exec_step_instruction (char *command, char **argv, int argc)
202 {
203 /* FIXME: Should call a libgdb function, not a cli wrapper. */
204 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
205 mi_execute_async_cli_command ("reverse-stepi", argv + 1, argc - 1);
206 else
207 mi_execute_async_cli_command ("stepi", argv, argc);
208 }
209
210 void
211 mi_cmd_exec_finish (char *command, char **argv, int argc)
212 {
213 /* FIXME: Should call a libgdb function, not a cli wrapper. */
214 if (argc > 0 && strcmp(argv[0], "--reverse") == 0)
215 mi_execute_async_cli_command ("reverse-finish", argv + 1, argc - 1);
216 else
217 mi_execute_async_cli_command ("finish", argv, argc);
218 }
219
220 void
221 mi_cmd_exec_return (char *command, char **argv, int argc)
222 {
223 /* This command doesn't really execute the target, it just pops the
224 specified number of frames. */
225 if (argc)
226 /* Call return_command with from_tty argument equal to 0 so as to
227 avoid being queried. */
228 return_command (*argv, 0);
229 else
230 /* Call return_command with from_tty argument equal to 0 so as to
231 avoid being queried. */
232 return_command (NULL, 0);
233
234 /* Because we have called return_command with from_tty = 0, we need
235 to print the frame here. */
236 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
237 }
238
239 void
240 mi_cmd_exec_jump (char *args, char **argv, int argc)
241 {
242 /* FIXME: Should call a libgdb function, not a cli wrapper. */
243 mi_execute_async_cli_command ("jump", argv, argc);
244 }
245
246 static void
247 proceed_thread (struct thread_info *thread, int pid)
248 {
249 if (!is_stopped (thread->ptid))
250 return;
251
252 if (pid != 0 && ptid_get_pid (thread->ptid) != pid)
253 return;
254
255 switch_to_thread (thread->ptid);
256 clear_proceed_status (0);
257 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
258 }
259
260 static int
261 proceed_thread_callback (struct thread_info *thread, void *arg)
262 {
263 int pid = *(int *)arg;
264
265 proceed_thread (thread, pid);
266 return 0;
267 }
268
269 static void
270 exec_continue (char **argv, int argc)
271 {
272 prepare_execution_command (&current_target, mi_async_p ());
273
274 if (non_stop)
275 {
276 /* In non-stop mode, 'resume' always resumes a single thread.
277 Therefore, to resume all threads of the current inferior, or
278 all threads in all inferiors, we need to iterate over
279 threads.
280
281 See comment on infcmd.c:proceed_thread_callback for rationale. */
282 if (current_context->all || current_context->thread_group != -1)
283 {
284 int pid = 0;
285 struct cleanup *back_to = make_cleanup_restore_current_thread ();
286
287 if (!current_context->all)
288 {
289 struct inferior *inf
290 = find_inferior_id (current_context->thread_group);
291
292 pid = inf->pid;
293 }
294 iterate_over_threads (proceed_thread_callback, &pid);
295 do_cleanups (back_to);
296 }
297 else
298 {
299 continue_1 (0);
300 }
301 }
302 else
303 {
304 scoped_restore save_multi = make_scoped_restore (&sched_multi);
305
306 if (current_context->all)
307 {
308 sched_multi = 1;
309 continue_1 (0);
310 }
311 else
312 {
313 /* In all-stop mode, -exec-continue traditionally resumed
314 either all threads, or one thread, depending on the
315 'scheduler-locking' variable. Let's continue to do the
316 same. */
317 continue_1 (1);
318 }
319 }
320 }
321
322 static void
323 exec_direction_forward (void *notused)
324 {
325 execution_direction = EXEC_FORWARD;
326 }
327
328 static void
329 exec_reverse_continue (char **argv, int argc)
330 {
331 enum exec_direction_kind dir = execution_direction;
332 struct cleanup *old_chain;
333
334 if (dir == EXEC_REVERSE)
335 error (_("Already in reverse mode."));
336
337 if (!target_can_execute_reverse)
338 error (_("Target %s does not support this command."), target_shortname);
339
340 old_chain = make_cleanup (exec_direction_forward, NULL);
341 execution_direction = EXEC_REVERSE;
342 exec_continue (argv, argc);
343 do_cleanups (old_chain);
344 }
345
346 void
347 mi_cmd_exec_continue (char *command, char **argv, int argc)
348 {
349 if (argc > 0 && strcmp (argv[0], "--reverse") == 0)
350 exec_reverse_continue (argv + 1, argc - 1);
351 else
352 exec_continue (argv, argc);
353 }
354
355 static int
356 interrupt_thread_callback (struct thread_info *thread, void *arg)
357 {
358 int pid = *(int *)arg;
359
360 if (!is_running (thread->ptid))
361 return 0;
362
363 if (ptid_get_pid (thread->ptid) != pid)
364 return 0;
365
366 target_stop (thread->ptid);
367 return 0;
368 }
369
370 /* Interrupt the execution of the target. Note how we must play
371 around with the token variables, in order to display the current
372 token in the result of the interrupt command, and the previous
373 execution token when the target finally stops. See comments in
374 mi_cmd_execute. */
375
376 void
377 mi_cmd_exec_interrupt (char *command, char **argv, int argc)
378 {
379 /* In all-stop mode, everything stops, so we don't need to try
380 anything specific. */
381 if (!non_stop)
382 {
383 interrupt_target_1 (0);
384 return;
385 }
386
387 if (current_context->all)
388 {
389 /* This will interrupt all threads in all inferiors. */
390 interrupt_target_1 (1);
391 }
392 else if (current_context->thread_group != -1)
393 {
394 struct inferior *inf = find_inferior_id (current_context->thread_group);
395
396 iterate_over_threads (interrupt_thread_callback, &inf->pid);
397 }
398 else
399 {
400 /* Interrupt just the current thread -- either explicitly
401 specified via --thread or whatever was current before
402 MI command was sent. */
403 interrupt_target_1 (0);
404 }
405 }
406
407 /* Callback for iterate_over_inferiors which starts the execution
408 of the given inferior.
409
410 ARG is a pointer to an integer whose value, if non-zero, indicates
411 that the program should be stopped when reaching the main subprogram
412 (similar to what the CLI "start" command does). */
413
414 static int
415 run_one_inferior (struct inferior *inf, void *arg)
416 {
417 int start_p = *(int *) arg;
418 const char *run_cmd = start_p ? "start" : "run";
419 struct target_ops *run_target = find_run_target ();
420 int async_p = mi_async && run_target->to_can_async_p (run_target);
421
422 if (inf->pid != 0)
423 {
424 if (inf->pid != ptid_get_pid (inferior_ptid))
425 {
426 struct thread_info *tp;
427
428 tp = any_thread_of_process (inf->pid);
429 if (!tp)
430 error (_("Inferior has no threads."));
431
432 switch_to_thread (tp->ptid);
433 }
434 }
435 else
436 {
437 set_current_inferior (inf);
438 switch_to_thread (null_ptid);
439 set_current_program_space (inf->pspace);
440 }
441 mi_execute_cli_command (run_cmd, async_p,
442 async_p ? "&" : NULL);
443 return 0;
444 }
445
446 void
447 mi_cmd_exec_run (char *command, char **argv, int argc)
448 {
449 int start_p = 0;
450
451 /* Parse the command options. */
452 enum opt
453 {
454 START_OPT,
455 };
456 static const struct mi_opt opts[] =
457 {
458 {"-start", START_OPT, 0},
459 {NULL, 0, 0},
460 };
461
462 int oind = 0;
463 char *oarg;
464
465 while (1)
466 {
467 int opt = mi_getopt ("-exec-run", argc, argv, opts, &oind, &oarg);
468
469 if (opt < 0)
470 break;
471 switch ((enum opt) opt)
472 {
473 case START_OPT:
474 start_p = 1;
475 break;
476 }
477 }
478
479 /* This command does not accept any argument. Make sure the user
480 did not provide any. */
481 if (oind != argc)
482 error (_("Invalid argument: %s"), argv[oind]);
483
484 if (current_context->all)
485 {
486 struct cleanup *back_to = save_current_space_and_thread ();
487
488 iterate_over_inferiors (run_one_inferior, &start_p);
489 do_cleanups (back_to);
490 }
491 else
492 {
493 const char *run_cmd = start_p ? "start" : "run";
494 struct target_ops *run_target = find_run_target ();
495 int async_p = mi_async && run_target->to_can_async_p (run_target);
496
497 mi_execute_cli_command (run_cmd, async_p,
498 async_p ? "&" : NULL);
499 }
500 }
501
502
503 static int
504 find_thread_of_process (struct thread_info *ti, void *p)
505 {
506 int pid = *(int *)p;
507
508 if (ptid_get_pid (ti->ptid) == pid && !is_exited (ti->ptid))
509 return 1;
510
511 return 0;
512 }
513
514 void
515 mi_cmd_target_detach (char *command, char **argv, int argc)
516 {
517 if (argc != 0 && argc != 1)
518 error (_("Usage: -target-detach [pid | thread-group]"));
519
520 if (argc == 1)
521 {
522 struct thread_info *tp;
523 char *end = argv[0];
524 int pid;
525
526 /* First see if we are dealing with a thread-group id. */
527 if (*argv[0] == 'i')
528 {
529 struct inferior *inf;
530 int id = strtoul (argv[0] + 1, &end, 0);
531
532 if (*end != '\0')
533 error (_("Invalid syntax of thread-group id '%s'"), argv[0]);
534
535 inf = find_inferior_id (id);
536 if (!inf)
537 error (_("Non-existent thread-group id '%d'"), id);
538
539 pid = inf->pid;
540 }
541 else
542 {
543 /* We must be dealing with a pid. */
544 pid = strtol (argv[0], &end, 10);
545
546 if (*end != '\0')
547 error (_("Invalid identifier '%s'"), argv[0]);
548 }
549
550 /* Pick any thread in the desired process. Current
551 target_detach detaches from the parent of inferior_ptid. */
552 tp = iterate_over_threads (find_thread_of_process, &pid);
553 if (!tp)
554 error (_("Thread group is empty"));
555
556 switch_to_thread (tp->ptid);
557 }
558
559 detach_command (NULL, 0);
560 }
561
562 void
563 mi_cmd_thread_select (char *command, char **argv, int argc)
564 {
565 enum gdb_rc rc;
566 char *mi_error_message;
567 ptid_t previous_ptid = inferior_ptid;
568
569 if (argc != 1)
570 error (_("-thread-select: USAGE: threadnum."));
571
572 rc = gdb_thread_select (current_uiout, argv[0], &mi_error_message);
573
574 /* If thread switch did not succeed don't notify or print. */
575 if (rc == GDB_RC_FAIL)
576 {
577 make_cleanup (xfree, mi_error_message);
578 error ("%s", mi_error_message);
579 }
580
581 print_selected_thread_frame (current_uiout,
582 USER_SELECTED_THREAD | USER_SELECTED_FRAME);
583
584 /* Notify if the thread has effectively changed. */
585 if (!ptid_equal (inferior_ptid, previous_ptid))
586 {
587 observer_notify_user_selected_context_changed (USER_SELECTED_THREAD
588 | USER_SELECTED_FRAME);
589 }
590 }
591
592 void
593 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
594 {
595 enum gdb_rc rc;
596 char *mi_error_message;
597
598 if (argc != 0)
599 error (_("-thread-list-ids: No arguments required."));
600
601 rc = gdb_list_thread_ids (current_uiout, &mi_error_message);
602
603 if (rc == GDB_RC_FAIL)
604 {
605 make_cleanup (xfree, mi_error_message);
606 error ("%s", mi_error_message);
607 }
608 }
609
610 void
611 mi_cmd_thread_info (char *command, char **argv, int argc)
612 {
613 if (argc != 0 && argc != 1)
614 error (_("Invalid MI command"));
615
616 print_thread_info (current_uiout, argv[0], -1);
617 }
618
619 struct collect_cores_data
620 {
621 int pid;
622
623 VEC (int) *cores;
624 };
625
626 static int
627 collect_cores (struct thread_info *ti, void *xdata)
628 {
629 struct collect_cores_data *data = (struct collect_cores_data *) xdata;
630
631 if (ptid_get_pid (ti->ptid) == data->pid)
632 {
633 int core = target_core_of_thread (ti->ptid);
634
635 if (core != -1)
636 VEC_safe_push (int, data->cores, core);
637 }
638
639 return 0;
640 }
641
642 static int *
643 unique (int *b, int *e)
644 {
645 int *d = b;
646
647 while (++b != e)
648 if (*d != *b)
649 *++d = *b;
650 return ++d;
651 }
652
653 struct print_one_inferior_data
654 {
655 int recurse;
656 VEC (int) *inferiors;
657 };
658
659 static int
660 print_one_inferior (struct inferior *inferior, void *xdata)
661 {
662 struct print_one_inferior_data *top_data
663 = (struct print_one_inferior_data *) xdata;
664 struct ui_out *uiout = current_uiout;
665
666 if (VEC_empty (int, top_data->inferiors)
667 || bsearch (&(inferior->pid), VEC_address (int, top_data->inferiors),
668 VEC_length (int, top_data->inferiors), sizeof (int),
669 compare_positive_ints))
670 {
671 struct collect_cores_data data;
672 struct cleanup *back_to
673 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
674
675 ui_out_field_fmt (uiout, "id", "i%d", inferior->num);
676 ui_out_field_string (uiout, "type", "process");
677 if (inferior->has_exit_code)
678 ui_out_field_string (uiout, "exit-code",
679 int_string (inferior->exit_code, 8, 0, 0, 1));
680 if (inferior->pid != 0)
681 ui_out_field_int (uiout, "pid", inferior->pid);
682
683 if (inferior->pspace->pspace_exec_filename != NULL)
684 {
685 ui_out_field_string (uiout, "executable",
686 inferior->pspace->pspace_exec_filename);
687 }
688
689 data.cores = 0;
690 if (inferior->pid != 0)
691 {
692 data.pid = inferior->pid;
693 iterate_over_threads (collect_cores, &data);
694 }
695
696 if (!VEC_empty (int, data.cores))
697 {
698 int *b, *e;
699 struct cleanup *back_to_2 =
700 make_cleanup_ui_out_list_begin_end (uiout, "cores");
701
702 qsort (VEC_address (int, data.cores),
703 VEC_length (int, data.cores), sizeof (int),
704 compare_positive_ints);
705
706 b = VEC_address (int, data.cores);
707 e = b + VEC_length (int, data.cores);
708 e = unique (b, e);
709
710 for (; b != e; ++b)
711 ui_out_field_int (uiout, NULL, *b);
712
713 do_cleanups (back_to_2);
714 }
715
716 if (top_data->recurse)
717 print_thread_info (uiout, NULL, inferior->pid);
718
719 do_cleanups (back_to);
720 }
721
722 return 0;
723 }
724
725 /* Output a field named 'cores' with a list as the value. The
726 elements of the list are obtained by splitting 'cores' on
727 comma. */
728
729 static void
730 output_cores (struct ui_out *uiout, const char *field_name, const char *xcores)
731 {
732 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
733 field_name);
734 char *cores = xstrdup (xcores);
735 char *p = cores;
736
737 make_cleanup (xfree, cores);
738
739 for (p = strtok (p, ","); p; p = strtok (NULL, ","))
740 ui_out_field_string (uiout, NULL, p);
741
742 do_cleanups (back_to);
743 }
744
745 static void
746 free_vector_of_ints (void *xvector)
747 {
748 VEC (int) **vector = (VEC (int) **) xvector;
749
750 VEC_free (int, *vector);
751 }
752
753 static void
754 do_nothing (splay_tree_key k)
755 {
756 }
757
758 static void
759 free_vector_of_osdata_items (splay_tree_value xvalue)
760 {
761 VEC (osdata_item_s) *value = (VEC (osdata_item_s) *) xvalue;
762
763 /* We don't free the items itself, it will be done separately. */
764 VEC_free (osdata_item_s, value);
765 }
766
767 static int
768 splay_tree_int_comparator (splay_tree_key xa, splay_tree_key xb)
769 {
770 int a = xa;
771 int b = xb;
772
773 return a - b;
774 }
775
776 static void
777 free_splay_tree (void *xt)
778 {
779 splay_tree t = (splay_tree) xt;
780 splay_tree_delete (t);
781 }
782
783 static void
784 list_available_thread_groups (VEC (int) *ids, int recurse)
785 {
786 struct osdata *data;
787 struct osdata_item *item;
788 int ix_items;
789 struct ui_out *uiout = current_uiout;
790 struct cleanup *cleanup;
791
792 /* This keeps a map from integer (pid) to VEC (struct osdata_item *)*
793 The vector contains information about all threads for the given pid.
794 This is assigned an initial value to avoid "may be used uninitialized"
795 warning from gcc. */
796 splay_tree tree = NULL;
797
798 /* get_osdata will throw if it cannot return data. */
799 data = get_osdata ("processes");
800 cleanup = make_cleanup_osdata_free (data);
801
802 if (recurse)
803 {
804 struct osdata *threads = get_osdata ("threads");
805
806 make_cleanup_osdata_free (threads);
807 tree = splay_tree_new (splay_tree_int_comparator,
808 do_nothing,
809 free_vector_of_osdata_items);
810 make_cleanup (free_splay_tree, tree);
811
812 for (ix_items = 0;
813 VEC_iterate (osdata_item_s, threads->items,
814 ix_items, item);
815 ix_items++)
816 {
817 const char *pid = get_osdata_column (item, "pid");
818 int pid_i = strtoul (pid, NULL, 0);
819 VEC (osdata_item_s) *vec = 0;
820
821 splay_tree_node n = splay_tree_lookup (tree, pid_i);
822 if (!n)
823 {
824 VEC_safe_push (osdata_item_s, vec, item);
825 splay_tree_insert (tree, pid_i, (splay_tree_value)vec);
826 }
827 else
828 {
829 vec = (VEC (osdata_item_s) *) n->value;
830 VEC_safe_push (osdata_item_s, vec, item);
831 n->value = (splay_tree_value) vec;
832 }
833 }
834 }
835
836 make_cleanup_ui_out_list_begin_end (uiout, "groups");
837
838 for (ix_items = 0;
839 VEC_iterate (osdata_item_s, data->items,
840 ix_items, item);
841 ix_items++)
842 {
843 struct cleanup *back_to;
844
845 const char *pid = get_osdata_column (item, "pid");
846 const char *cmd = get_osdata_column (item, "command");
847 const char *user = get_osdata_column (item, "user");
848 const char *cores = get_osdata_column (item, "cores");
849
850 int pid_i = strtoul (pid, NULL, 0);
851
852 /* At present, the target will return all available processes
853 and if information about specific ones was required, we filter
854 undesired processes here. */
855 if (ids && bsearch (&pid_i, VEC_address (int, ids),
856 VEC_length (int, ids),
857 sizeof (int), compare_positive_ints) == NULL)
858 continue;
859
860
861 back_to = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
862
863 ui_out_field_fmt (uiout, "id", "%s", pid);
864 ui_out_field_string (uiout, "type", "process");
865 if (cmd)
866 ui_out_field_string (uiout, "description", cmd);
867 if (user)
868 ui_out_field_string (uiout, "user", user);
869 if (cores)
870 output_cores (uiout, "cores", cores);
871
872 if (recurse)
873 {
874 splay_tree_node n = splay_tree_lookup (tree, pid_i);
875 if (n)
876 {
877 VEC (osdata_item_s) *children = (VEC (osdata_item_s) *) n->value;
878 struct osdata_item *child;
879 int ix_child;
880
881 make_cleanup_ui_out_list_begin_end (uiout, "threads");
882
883 for (ix_child = 0;
884 VEC_iterate (osdata_item_s, children, ix_child, child);
885 ++ix_child)
886 {
887 struct cleanup *back_to_2 =
888 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
889 const char *tid = get_osdata_column (child, "tid");
890 const char *tcore = get_osdata_column (child, "core");
891
892 ui_out_field_string (uiout, "id", tid);
893 if (tcore)
894 ui_out_field_string (uiout, "core", tcore);
895
896 do_cleanups (back_to_2);
897 }
898 }
899 }
900
901 do_cleanups (back_to);
902 }
903
904 do_cleanups (cleanup);
905 }
906
907 void
908 mi_cmd_list_thread_groups (char *command, char **argv, int argc)
909 {
910 struct ui_out *uiout = current_uiout;
911 struct cleanup *back_to;
912 int available = 0;
913 int recurse = 0;
914 VEC (int) *ids = 0;
915
916 enum opt
917 {
918 AVAILABLE_OPT, RECURSE_OPT
919 };
920 static const struct mi_opt opts[] =
921 {
922 {"-available", AVAILABLE_OPT, 0},
923 {"-recurse", RECURSE_OPT, 1},
924 { 0, 0, 0 }
925 };
926
927 int oind = 0;
928 char *oarg;
929
930 while (1)
931 {
932 int opt = mi_getopt ("-list-thread-groups", argc, argv, opts,
933 &oind, &oarg);
934
935 if (opt < 0)
936 break;
937 switch ((enum opt) opt)
938 {
939 case AVAILABLE_OPT:
940 available = 1;
941 break;
942 case RECURSE_OPT:
943 if (strcmp (oarg, "0") == 0)
944 ;
945 else if (strcmp (oarg, "1") == 0)
946 recurse = 1;
947 else
948 error (_("only '0' and '1' are valid values "
949 "for the '--recurse' option"));
950 break;
951 }
952 }
953
954 for (; oind < argc; ++oind)
955 {
956 char *end;
957 int inf;
958
959 if (*(argv[oind]) != 'i')
960 error (_("invalid syntax of group id '%s'"), argv[oind]);
961
962 inf = strtoul (argv[oind] + 1, &end, 0);
963
964 if (*end != '\0')
965 error (_("invalid syntax of group id '%s'"), argv[oind]);
966 VEC_safe_push (int, ids, inf);
967 }
968 if (VEC_length (int, ids) > 1)
969 qsort (VEC_address (int, ids),
970 VEC_length (int, ids),
971 sizeof (int), compare_positive_ints);
972
973 back_to = make_cleanup (free_vector_of_ints, &ids);
974
975 if (available)
976 {
977 list_available_thread_groups (ids, recurse);
978 }
979 else if (VEC_length (int, ids) == 1)
980 {
981 /* Local thread groups, single id. */
982 int id = *VEC_address (int, ids);
983 struct inferior *inf = find_inferior_id (id);
984
985 if (!inf)
986 error (_("Non-existent thread group id '%d'"), id);
987
988 print_thread_info (uiout, NULL, inf->pid);
989 }
990 else
991 {
992 struct print_one_inferior_data data;
993
994 data.recurse = recurse;
995 data.inferiors = ids;
996
997 /* Local thread groups. Either no explicit ids -- and we
998 print everything, or several explicit ids. In both cases,
999 we print more than one group, and have to use 'groups'
1000 as the top-level element. */
1001 make_cleanup_ui_out_list_begin_end (uiout, "groups");
1002 update_thread_list ();
1003 iterate_over_inferiors (print_one_inferior, &data);
1004 }
1005
1006 do_cleanups (back_to);
1007 }
1008
1009 void
1010 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
1011 {
1012 struct gdbarch *gdbarch;
1013 struct ui_out *uiout = current_uiout;
1014 int regnum, numregs;
1015 int i;
1016 struct cleanup *cleanup;
1017
1018 /* Note that the test for a valid register must include checking the
1019 gdbarch_register_name because gdbarch_num_regs may be allocated
1020 for the union of the register sets within a family of related
1021 processors. In this case, some entries of gdbarch_register_name
1022 will change depending upon the particular processor being
1023 debugged. */
1024
1025 gdbarch = get_current_arch ();
1026 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1027
1028 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
1029
1030 if (argc == 0) /* No args, just do all the regs. */
1031 {
1032 for (regnum = 0;
1033 regnum < numregs;
1034 regnum++)
1035 {
1036 if (gdbarch_register_name (gdbarch, regnum) == NULL
1037 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1038 ui_out_field_string (uiout, NULL, "");
1039 else
1040 ui_out_field_string (uiout, NULL,
1041 gdbarch_register_name (gdbarch, regnum));
1042 }
1043 }
1044
1045 /* Else, list of register #s, just do listed regs. */
1046 for (i = 0; i < argc; i++)
1047 {
1048 regnum = atoi (argv[i]);
1049 if (regnum < 0 || regnum >= numregs)
1050 error (_("bad register number"));
1051
1052 if (gdbarch_register_name (gdbarch, regnum) == NULL
1053 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1054 ui_out_field_string (uiout, NULL, "");
1055 else
1056 ui_out_field_string (uiout, NULL,
1057 gdbarch_register_name (gdbarch, regnum));
1058 }
1059 do_cleanups (cleanup);
1060 }
1061
1062 void
1063 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
1064 {
1065 static struct regcache *this_regs = NULL;
1066 struct ui_out *uiout = current_uiout;
1067 struct regcache *prev_regs;
1068 struct gdbarch *gdbarch;
1069 int regnum, numregs, changed;
1070 int i;
1071 struct cleanup *cleanup;
1072
1073 /* The last time we visited this function, the current frame's
1074 register contents were saved in THIS_REGS. Move THIS_REGS over
1075 to PREV_REGS, and refresh THIS_REGS with the now-current register
1076 contents. */
1077
1078 prev_regs = this_regs;
1079 this_regs = frame_save_as_regcache (get_selected_frame (NULL));
1080 cleanup = make_cleanup_regcache_xfree (prev_regs);
1081
1082 /* Note that the test for a valid register must include checking the
1083 gdbarch_register_name because gdbarch_num_regs may be allocated
1084 for the union of the register sets within a family of related
1085 processors. In this case, some entries of gdbarch_register_name
1086 will change depending upon the particular processor being
1087 debugged. */
1088
1089 gdbarch = get_regcache_arch (this_regs);
1090 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1091
1092 make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
1093
1094 if (argc == 0)
1095 {
1096 /* No args, just do all the regs. */
1097 for (regnum = 0;
1098 regnum < numregs;
1099 regnum++)
1100 {
1101 if (gdbarch_register_name (gdbarch, regnum) == NULL
1102 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1103 continue;
1104 changed = register_changed_p (regnum, prev_regs, this_regs);
1105 if (changed < 0)
1106 error (_("-data-list-changed-registers: "
1107 "Unable to read register contents."));
1108 else if (changed)
1109 ui_out_field_int (uiout, NULL, regnum);
1110 }
1111 }
1112
1113 /* Else, list of register #s, just do listed regs. */
1114 for (i = 0; i < argc; i++)
1115 {
1116 regnum = atoi (argv[i]);
1117
1118 if (regnum >= 0
1119 && regnum < numregs
1120 && gdbarch_register_name (gdbarch, regnum) != NULL
1121 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1122 {
1123 changed = register_changed_p (regnum, prev_regs, this_regs);
1124 if (changed < 0)
1125 error (_("-data-list-changed-registers: "
1126 "Unable to read register contents."));
1127 else if (changed)
1128 ui_out_field_int (uiout, NULL, regnum);
1129 }
1130 else
1131 error (_("bad register number"));
1132 }
1133 do_cleanups (cleanup);
1134 }
1135
1136 static int
1137 register_changed_p (int regnum, struct regcache *prev_regs,
1138 struct regcache *this_regs)
1139 {
1140 struct gdbarch *gdbarch = get_regcache_arch (this_regs);
1141 gdb_byte prev_buffer[MAX_REGISTER_SIZE];
1142 gdb_byte this_buffer[MAX_REGISTER_SIZE];
1143 enum register_status prev_status;
1144 enum register_status this_status;
1145
1146 /* First time through or after gdbarch change consider all registers
1147 as changed. */
1148 if (!prev_regs || get_regcache_arch (prev_regs) != gdbarch)
1149 return 1;
1150
1151 /* Get register contents and compare. */
1152 prev_status = regcache_cooked_read (prev_regs, regnum, prev_buffer);
1153 this_status = regcache_cooked_read (this_regs, regnum, this_buffer);
1154
1155 if (this_status != prev_status)
1156 return 1;
1157 else if (this_status == REG_VALID)
1158 return memcmp (prev_buffer, this_buffer,
1159 register_size (gdbarch, regnum)) != 0;
1160 else
1161 return 0;
1162 }
1163
1164 /* Return a list of register number and value pairs. The valid
1165 arguments expected are: a letter indicating the format in which to
1166 display the registers contents. This can be one of: x
1167 (hexadecimal), d (decimal), N (natural), t (binary), o (octal), r
1168 (raw). After the format argument there can be a sequence of
1169 numbers, indicating which registers to fetch the content of. If
1170 the format is the only argument, a list of all the registers with
1171 their values is returned. */
1172
1173 void
1174 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
1175 {
1176 struct ui_out *uiout = current_uiout;
1177 struct frame_info *frame;
1178 struct gdbarch *gdbarch;
1179 int regnum, numregs, format;
1180 int i;
1181 struct cleanup *list_cleanup;
1182 int skip_unavailable = 0;
1183 int oind = 0;
1184 enum opt
1185 {
1186 SKIP_UNAVAILABLE,
1187 };
1188 static const struct mi_opt opts[] =
1189 {
1190 {"-skip-unavailable", SKIP_UNAVAILABLE, 0},
1191 { 0, 0, 0 }
1192 };
1193
1194 /* Note that the test for a valid register must include checking the
1195 gdbarch_register_name because gdbarch_num_regs may be allocated
1196 for the union of the register sets within a family of related
1197 processors. In this case, some entries of gdbarch_register_name
1198 will change depending upon the particular processor being
1199 debugged. */
1200
1201 while (1)
1202 {
1203 char *oarg;
1204 int opt = mi_getopt ("-data-list-register-values", argc, argv,
1205 opts, &oind, &oarg);
1206
1207 if (opt < 0)
1208 break;
1209 switch ((enum opt) opt)
1210 {
1211 case SKIP_UNAVAILABLE:
1212 skip_unavailable = 1;
1213 break;
1214 }
1215 }
1216
1217 if (argc - oind < 1)
1218 error (_("-data-list-register-values: Usage: "
1219 "-data-list-register-values [--skip-unavailable] <format>"
1220 " [<regnum1>...<regnumN>]"));
1221
1222 format = (int) argv[oind][0];
1223
1224 frame = get_selected_frame (NULL);
1225 gdbarch = get_frame_arch (frame);
1226 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1227
1228 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
1229
1230 if (argc - oind == 1)
1231 {
1232 /* No args, beside the format: do all the regs. */
1233 for (regnum = 0;
1234 regnum < numregs;
1235 regnum++)
1236 {
1237 if (gdbarch_register_name (gdbarch, regnum) == NULL
1238 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
1239 continue;
1240
1241 output_register (frame, regnum, format, skip_unavailable);
1242 }
1243 }
1244
1245 /* Else, list of register #s, just do listed regs. */
1246 for (i = 1 + oind; i < argc; i++)
1247 {
1248 regnum = atoi (argv[i]);
1249
1250 if (regnum >= 0
1251 && regnum < numregs
1252 && gdbarch_register_name (gdbarch, regnum) != NULL
1253 && *gdbarch_register_name (gdbarch, regnum) != '\000')
1254 output_register (frame, regnum, format, skip_unavailable);
1255 else
1256 error (_("bad register number"));
1257 }
1258 do_cleanups (list_cleanup);
1259 }
1260
1261 /* Output one register REGNUM's contents in the desired FORMAT. If
1262 SKIP_UNAVAILABLE is true, skip the register if it is
1263 unavailable. */
1264
1265 static void
1266 output_register (struct frame_info *frame, int regnum, int format,
1267 int skip_unavailable)
1268 {
1269 struct ui_out *uiout = current_uiout;
1270 struct value *val = value_of_register (regnum, frame);
1271 struct cleanup *tuple_cleanup;
1272 struct value_print_options opts;
1273 struct ui_file *stb;
1274
1275 if (skip_unavailable && !value_entirely_available (val))
1276 return;
1277
1278 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1279 ui_out_field_int (uiout, "number", regnum);
1280
1281 if (format == 'N')
1282 format = 0;
1283
1284 if (format == 'r')
1285 format = 'z';
1286
1287 stb = mem_fileopen ();
1288 make_cleanup_ui_file_delete (stb);
1289
1290 get_formatted_print_options (&opts, format);
1291 opts.deref_ref = 1;
1292 val_print (value_type (val),
1293 value_embedded_offset (val), 0,
1294 stb, 0, val, &opts, current_language);
1295 ui_out_field_stream (uiout, "value", stb);
1296
1297 do_cleanups (tuple_cleanup);
1298 }
1299
1300 /* Write given values into registers. The registers and values are
1301 given as pairs. The corresponding MI command is
1302 -data-write-register-values <format>
1303 [<regnum1> <value1>...<regnumN> <valueN>] */
1304 void
1305 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
1306 {
1307 struct regcache *regcache;
1308 struct gdbarch *gdbarch;
1309 int numregs, i;
1310
1311 /* Note that the test for a valid register must include checking the
1312 gdbarch_register_name because gdbarch_num_regs may be allocated
1313 for the union of the register sets within a family of related
1314 processors. In this case, some entries of gdbarch_register_name
1315 will change depending upon the particular processor being
1316 debugged. */
1317
1318 regcache = get_current_regcache ();
1319 gdbarch = get_regcache_arch (regcache);
1320 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
1321
1322 if (argc == 0)
1323 error (_("-data-write-register-values: Usage: -data-write-register-"
1324 "values <format> [<regnum1> <value1>...<regnumN> <valueN>]"));
1325
1326 if (!target_has_registers)
1327 error (_("-data-write-register-values: No registers."));
1328
1329 if (!(argc - 1))
1330 error (_("-data-write-register-values: No regs and values specified."));
1331
1332 if ((argc - 1) % 2)
1333 error (_("-data-write-register-values: "
1334 "Regs and vals are not in pairs."));
1335
1336 for (i = 1; i < argc; i = i + 2)
1337 {
1338 int regnum = atoi (argv[i]);
1339
1340 if (regnum >= 0 && regnum < numregs
1341 && gdbarch_register_name (gdbarch, regnum)
1342 && *gdbarch_register_name (gdbarch, regnum))
1343 {
1344 LONGEST value;
1345
1346 /* Get the value as a number. */
1347 value = parse_and_eval_address (argv[i + 1]);
1348
1349 /* Write it down. */
1350 regcache_cooked_write_signed (regcache, regnum, value);
1351 }
1352 else
1353 error (_("bad register number"));
1354 }
1355 }
1356
1357 /* Evaluate the value of the argument. The argument is an
1358 expression. If the expression contains spaces it needs to be
1359 included in double quotes. */
1360
1361 void
1362 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
1363 {
1364 struct cleanup *old_chain;
1365 struct value *val;
1366 struct ui_file *stb;
1367 struct value_print_options opts;
1368 struct ui_out *uiout = current_uiout;
1369
1370 stb = mem_fileopen ();
1371 old_chain = make_cleanup_ui_file_delete (stb);
1372
1373 if (argc != 1)
1374 error (_("-data-evaluate-expression: "
1375 "Usage: -data-evaluate-expression expression"));
1376
1377 expression_up expr = parse_expression (argv[0]);
1378
1379 val = evaluate_expression (expr.get ());
1380
1381 /* Print the result of the expression evaluation. */
1382 get_user_print_options (&opts);
1383 opts.deref_ref = 0;
1384 common_val_print (val, stb, 0, &opts, current_language);
1385
1386 ui_out_field_stream (uiout, "value", stb);
1387
1388 do_cleanups (old_chain);
1389 }
1390
1391 /* This is the -data-read-memory command.
1392
1393 ADDR: start address of data to be dumped.
1394 WORD-FORMAT: a char indicating format for the ``word''. See
1395 the ``x'' command.
1396 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes.
1397 NR_ROW: Number of rows.
1398 NR_COL: The number of colums (words per row).
1399 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
1400 ASCHAR for unprintable characters.
1401
1402 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
1403 displayes them. Returns:
1404
1405 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
1406
1407 Returns:
1408 The number of bytes read is SIZE*ROW*COL. */
1409
1410 void
1411 mi_cmd_data_read_memory (char *command, char **argv, int argc)
1412 {
1413 struct gdbarch *gdbarch = get_current_arch ();
1414 struct ui_out *uiout = current_uiout;
1415 CORE_ADDR addr;
1416 long total_bytes, nr_cols, nr_rows;
1417 char word_format;
1418 struct type *word_type;
1419 long word_size;
1420 char word_asize;
1421 char aschar;
1422 int nr_bytes;
1423 long offset = 0;
1424 int oind = 0;
1425 char *oarg;
1426 enum opt
1427 {
1428 OFFSET_OPT
1429 };
1430 static const struct mi_opt opts[] =
1431 {
1432 {"o", OFFSET_OPT, 1},
1433 { 0, 0, 0 }
1434 };
1435
1436 while (1)
1437 {
1438 int opt = mi_getopt ("-data-read-memory", argc, argv, opts,
1439 &oind, &oarg);
1440
1441 if (opt < 0)
1442 break;
1443 switch ((enum opt) opt)
1444 {
1445 case OFFSET_OPT:
1446 offset = atol (oarg);
1447 break;
1448 }
1449 }
1450 argv += oind;
1451 argc -= oind;
1452
1453 if (argc < 5 || argc > 6)
1454 error (_("-data-read-memory: Usage: "
1455 "ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR]."));
1456
1457 /* Extract all the arguments. */
1458
1459 /* Start address of the memory dump. */
1460 addr = parse_and_eval_address (argv[0]) + offset;
1461 /* The format character to use when displaying a memory word. See
1462 the ``x'' command. */
1463 word_format = argv[1][0];
1464 /* The size of the memory word. */
1465 word_size = atol (argv[2]);
1466 switch (word_size)
1467 {
1468 case 1:
1469 word_type = builtin_type (gdbarch)->builtin_int8;
1470 word_asize = 'b';
1471 break;
1472 case 2:
1473 word_type = builtin_type (gdbarch)->builtin_int16;
1474 word_asize = 'h';
1475 break;
1476 case 4:
1477 word_type = builtin_type (gdbarch)->builtin_int32;
1478 word_asize = 'w';
1479 break;
1480 case 8:
1481 word_type = builtin_type (gdbarch)->builtin_int64;
1482 word_asize = 'g';
1483 break;
1484 default:
1485 word_type = builtin_type (gdbarch)->builtin_int8;
1486 word_asize = 'b';
1487 }
1488 /* The number of rows. */
1489 nr_rows = atol (argv[3]);
1490 if (nr_rows <= 0)
1491 error (_("-data-read-memory: invalid number of rows."));
1492
1493 /* Number of bytes per row. */
1494 nr_cols = atol (argv[4]);
1495 if (nr_cols <= 0)
1496 error (_("-data-read-memory: invalid number of columns."));
1497
1498 /* The un-printable character when printing ascii. */
1499 if (argc == 6)
1500 aschar = *argv[5];
1501 else
1502 aschar = 0;
1503
1504 /* Create a buffer and read it in. */
1505 total_bytes = word_size * nr_rows * nr_cols;
1506
1507 std::unique_ptr<gdb_byte[]> mbuf (new gdb_byte[total_bytes]);
1508
1509 /* Dispatch memory reads to the topmost target, not the flattened
1510 current_target. */
1511 nr_bytes = target_read (current_target.beneath,
1512 TARGET_OBJECT_MEMORY, NULL, mbuf.get (),
1513 addr, total_bytes);
1514 if (nr_bytes <= 0)
1515 error (_("Unable to read memory."));
1516
1517 /* Output the header information. */
1518 ui_out_field_core_addr (uiout, "addr", gdbarch, addr);
1519 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
1520 ui_out_field_int (uiout, "total-bytes", total_bytes);
1521 ui_out_field_core_addr (uiout, "next-row",
1522 gdbarch, addr + word_size * nr_cols);
1523 ui_out_field_core_addr (uiout, "prev-row",
1524 gdbarch, addr - word_size * nr_cols);
1525 ui_out_field_core_addr (uiout, "next-page", gdbarch, addr + total_bytes);
1526 ui_out_field_core_addr (uiout, "prev-page", gdbarch, addr - total_bytes);
1527
1528 /* Build the result as a two dimentional table. */
1529 {
1530 struct ui_file *stream;
1531 struct cleanup *cleanup_stream;
1532 int row;
1533 int row_byte;
1534
1535 stream = mem_fileopen ();
1536 cleanup_stream = make_cleanup_ui_file_delete (stream);
1537
1538 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1539 for (row = 0, row_byte = 0;
1540 row < nr_rows;
1541 row++, row_byte += nr_cols * word_size)
1542 {
1543 int col;
1544 int col_byte;
1545 struct cleanup *cleanup_tuple;
1546 struct cleanup *cleanup_list_data;
1547 struct value_print_options opts;
1548
1549 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1550 ui_out_field_core_addr (uiout, "addr", gdbarch, addr + row_byte);
1551 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr +
1552 row_byte); */
1553 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
1554 get_formatted_print_options (&opts, word_format);
1555 for (col = 0, col_byte = row_byte;
1556 col < nr_cols;
1557 col++, col_byte += word_size)
1558 {
1559 if (col_byte + word_size > nr_bytes)
1560 {
1561 ui_out_field_string (uiout, NULL, "N/A");
1562 }
1563 else
1564 {
1565 ui_file_rewind (stream);
1566 print_scalar_formatted (&mbuf[col_byte], word_type, &opts,
1567 word_asize, stream);
1568 ui_out_field_stream (uiout, NULL, stream);
1569 }
1570 }
1571 do_cleanups (cleanup_list_data);
1572 if (aschar)
1573 {
1574 int byte;
1575
1576 ui_file_rewind (stream);
1577 for (byte = row_byte;
1578 byte < row_byte + word_size * nr_cols; byte++)
1579 {
1580 if (byte >= nr_bytes)
1581 fputc_unfiltered ('X', stream);
1582 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
1583 fputc_unfiltered (aschar, stream);
1584 else
1585 fputc_unfiltered (mbuf[byte], stream);
1586 }
1587 ui_out_field_stream (uiout, "ascii", stream);
1588 }
1589 do_cleanups (cleanup_tuple);
1590 }
1591 do_cleanups (cleanup_stream);
1592 }
1593 }
1594
1595 void
1596 mi_cmd_data_read_memory_bytes (char *command, char **argv, int argc)
1597 {
1598 struct gdbarch *gdbarch = get_current_arch ();
1599 struct ui_out *uiout = current_uiout;
1600 struct cleanup *cleanups;
1601 CORE_ADDR addr;
1602 LONGEST length;
1603 memory_read_result_s *read_result;
1604 int ix;
1605 VEC(memory_read_result_s) *result;
1606 long offset = 0;
1607 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
1608 int oind = 0;
1609 char *oarg;
1610 enum opt
1611 {
1612 OFFSET_OPT
1613 };
1614 static const struct mi_opt opts[] =
1615 {
1616 {"o", OFFSET_OPT, 1},
1617 { 0, 0, 0 }
1618 };
1619
1620 while (1)
1621 {
1622 int opt = mi_getopt ("-data-read-memory-bytes", argc, argv, opts,
1623 &oind, &oarg);
1624 if (opt < 0)
1625 break;
1626 switch ((enum opt) opt)
1627 {
1628 case OFFSET_OPT:
1629 offset = atol (oarg);
1630 break;
1631 }
1632 }
1633 argv += oind;
1634 argc -= oind;
1635
1636 if (argc != 2)
1637 error (_("Usage: [ -o OFFSET ] ADDR LENGTH."));
1638
1639 addr = parse_and_eval_address (argv[0]) + offset;
1640 length = atol (argv[1]);
1641
1642 result = read_memory_robust (current_target.beneath, addr, length);
1643
1644 cleanups = make_cleanup (free_memory_read_result_vector, &result);
1645
1646 if (VEC_length (memory_read_result_s, result) == 0)
1647 error (_("Unable to read memory."));
1648
1649 make_cleanup_ui_out_list_begin_end (uiout, "memory");
1650 for (ix = 0;
1651 VEC_iterate (memory_read_result_s, result, ix, read_result);
1652 ++ix)
1653 {
1654 struct cleanup *t = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1655 char *data, *p;
1656 int i;
1657 int alloc_len;
1658
1659 ui_out_field_core_addr (uiout, "begin", gdbarch, read_result->begin);
1660 ui_out_field_core_addr (uiout, "offset", gdbarch, read_result->begin
1661 - addr);
1662 ui_out_field_core_addr (uiout, "end", gdbarch, read_result->end);
1663
1664 alloc_len = (read_result->end - read_result->begin) * 2 * unit_size + 1;
1665 data = (char *) xmalloc (alloc_len);
1666
1667 for (i = 0, p = data;
1668 i < ((read_result->end - read_result->begin) * unit_size);
1669 ++i, p += 2)
1670 {
1671 sprintf (p, "%02x", read_result->data[i]);
1672 }
1673 ui_out_field_string (uiout, "contents", data);
1674 xfree (data);
1675 do_cleanups (t);
1676 }
1677 do_cleanups (cleanups);
1678 }
1679
1680 /* Implementation of the -data-write_memory command.
1681
1682 COLUMN_OFFSET: optional argument. Must be preceded by '-o'. The
1683 offset from the beginning of the memory grid row where the cell to
1684 be written is.
1685 ADDR: start address of the row in the memory grid where the memory
1686 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
1687 the location to write to.
1688 FORMAT: a char indicating format for the ``word''. See
1689 the ``x'' command.
1690 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
1691 VALUE: value to be written into the memory address.
1692
1693 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
1694
1695 Prints nothing. */
1696
1697 void
1698 mi_cmd_data_write_memory (char *command, char **argv, int argc)
1699 {
1700 struct gdbarch *gdbarch = get_current_arch ();
1701 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1702 CORE_ADDR addr;
1703 long word_size;
1704 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
1705 enough when using a compiler other than GCC. */
1706 LONGEST value;
1707 gdb_byte *buffer;
1708 struct cleanup *old_chain;
1709 long offset = 0;
1710 int oind = 0;
1711 char *oarg;
1712 enum opt
1713 {
1714 OFFSET_OPT
1715 };
1716 static const struct mi_opt opts[] =
1717 {
1718 {"o", OFFSET_OPT, 1},
1719 { 0, 0, 0 }
1720 };
1721
1722 while (1)
1723 {
1724 int opt = mi_getopt ("-data-write-memory", argc, argv, opts,
1725 &oind, &oarg);
1726
1727 if (opt < 0)
1728 break;
1729 switch ((enum opt) opt)
1730 {
1731 case OFFSET_OPT:
1732 offset = atol (oarg);
1733 break;
1734 }
1735 }
1736 argv += oind;
1737 argc -= oind;
1738
1739 if (argc != 4)
1740 error (_("-data-write-memory: Usage: "
1741 "[-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE."));
1742
1743 /* Extract all the arguments. */
1744 /* Start address of the memory dump. */
1745 addr = parse_and_eval_address (argv[0]);
1746 /* The size of the memory word. */
1747 word_size = atol (argv[2]);
1748
1749 /* Calculate the real address of the write destination. */
1750 addr += (offset * word_size);
1751
1752 /* Get the value as a number. */
1753 value = parse_and_eval_address (argv[3]);
1754 /* Get the value into an array. */
1755 buffer = (gdb_byte *) xmalloc (word_size);
1756 old_chain = make_cleanup (xfree, buffer);
1757 store_signed_integer (buffer, word_size, byte_order, value);
1758 /* Write it down to memory. */
1759 write_memory_with_notification (addr, buffer, word_size);
1760 /* Free the buffer. */
1761 do_cleanups (old_chain);
1762 }
1763
1764 /* Implementation of the -data-write-memory-bytes command.
1765
1766 ADDR: start address
1767 DATA: string of bytes to write at that address
1768 COUNT: number of bytes to be filled (decimal integer). */
1769
1770 void
1771 mi_cmd_data_write_memory_bytes (char *command, char **argv, int argc)
1772 {
1773 CORE_ADDR addr;
1774 char *cdata;
1775 gdb_byte *data;
1776 gdb_byte *databuf;
1777 size_t len_hex, len_bytes, len_units, i, steps, remaining_units;
1778 long int count_units;
1779 struct cleanup *back_to;
1780 int unit_size;
1781
1782 if (argc != 2 && argc != 3)
1783 error (_("Usage: ADDR DATA [COUNT]."));
1784
1785 addr = parse_and_eval_address (argv[0]);
1786 cdata = argv[1];
1787 len_hex = strlen (cdata);
1788 unit_size = gdbarch_addressable_memory_unit_size (get_current_arch ());
1789
1790 if (len_hex % (unit_size * 2) != 0)
1791 error (_("Hex-encoded '%s' must represent an integral number of "
1792 "addressable memory units."),
1793 cdata);
1794
1795 len_bytes = len_hex / 2;
1796 len_units = len_bytes / unit_size;
1797
1798 if (argc == 3)
1799 count_units = strtoul (argv[2], NULL, 10);
1800 else
1801 count_units = len_units;
1802
1803 databuf = XNEWVEC (gdb_byte, len_bytes);
1804 back_to = make_cleanup (xfree, databuf);
1805
1806 for (i = 0; i < len_bytes; ++i)
1807 {
1808 int x;
1809 if (sscanf (cdata + i * 2, "%02x", &x) != 1)
1810 error (_("Invalid argument"));
1811 databuf[i] = (gdb_byte) x;
1812 }
1813
1814 if (len_units < count_units)
1815 {
1816 /* Pattern is made of less units than count:
1817 repeat pattern to fill memory. */
1818 data = (gdb_byte *) xmalloc (count_units * unit_size);
1819 make_cleanup (xfree, data);
1820
1821 /* Number of times the pattern is entirely repeated. */
1822 steps = count_units / len_units;
1823 /* Number of remaining addressable memory units. */
1824 remaining_units = count_units % len_units;
1825 for (i = 0; i < steps; i++)
1826 memcpy (data + i * len_bytes, databuf, len_bytes);
1827
1828 if (remaining_units > 0)
1829 memcpy (data + steps * len_bytes, databuf,
1830 remaining_units * unit_size);
1831 }
1832 else
1833 {
1834 /* Pattern is longer than or equal to count:
1835 just copy count addressable memory units. */
1836 data = databuf;
1837 }
1838
1839 write_memory_with_notification (addr, data, count_units);
1840
1841 do_cleanups (back_to);
1842 }
1843
1844 void
1845 mi_cmd_enable_timings (char *command, char **argv, int argc)
1846 {
1847 if (argc == 0)
1848 do_timings = 1;
1849 else if (argc == 1)
1850 {
1851 if (strcmp (argv[0], "yes") == 0)
1852 do_timings = 1;
1853 else if (strcmp (argv[0], "no") == 0)
1854 do_timings = 0;
1855 else
1856 goto usage_error;
1857 }
1858 else
1859 goto usage_error;
1860
1861 return;
1862
1863 usage_error:
1864 error (_("-enable-timings: Usage: %s {yes|no}"), command);
1865 }
1866
1867 void
1868 mi_cmd_list_features (char *command, char **argv, int argc)
1869 {
1870 if (argc == 0)
1871 {
1872 struct cleanup *cleanup = NULL;
1873 struct ui_out *uiout = current_uiout;
1874
1875 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1876 ui_out_field_string (uiout, NULL, "frozen-varobjs");
1877 ui_out_field_string (uiout, NULL, "pending-breakpoints");
1878 ui_out_field_string (uiout, NULL, "thread-info");
1879 ui_out_field_string (uiout, NULL, "data-read-memory-bytes");
1880 ui_out_field_string (uiout, NULL, "breakpoint-notifications");
1881 ui_out_field_string (uiout, NULL, "ada-task-info");
1882 ui_out_field_string (uiout, NULL, "language-option");
1883 ui_out_field_string (uiout, NULL, "info-gdb-mi-command");
1884 ui_out_field_string (uiout, NULL, "undefined-command-error-code");
1885 ui_out_field_string (uiout, NULL, "exec-run-start-option");
1886
1887 if (ext_lang_initialized_p (get_ext_lang_defn (EXT_LANG_PYTHON)))
1888 ui_out_field_string (uiout, NULL, "python");
1889
1890 do_cleanups (cleanup);
1891 return;
1892 }
1893
1894 error (_("-list-features should be passed no arguments"));
1895 }
1896
1897 void
1898 mi_cmd_list_target_features (char *command, char **argv, int argc)
1899 {
1900 if (argc == 0)
1901 {
1902 struct cleanup *cleanup = NULL;
1903 struct ui_out *uiout = current_uiout;
1904
1905 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "features");
1906 if (mi_async_p ())
1907 ui_out_field_string (uiout, NULL, "async");
1908 if (target_can_execute_reverse)
1909 ui_out_field_string (uiout, NULL, "reverse");
1910 do_cleanups (cleanup);
1911 return;
1912 }
1913
1914 error (_("-list-target-features should be passed no arguments"));
1915 }
1916
1917 void
1918 mi_cmd_add_inferior (char *command, char **argv, int argc)
1919 {
1920 struct inferior *inf;
1921
1922 if (argc != 0)
1923 error (_("-add-inferior should be passed no arguments"));
1924
1925 inf = add_inferior_with_spaces ();
1926
1927 ui_out_field_fmt (current_uiout, "inferior", "i%d", inf->num);
1928 }
1929
1930 /* Callback used to find the first inferior other than the current
1931 one. */
1932
1933 static int
1934 get_other_inferior (struct inferior *inf, void *arg)
1935 {
1936 if (inf == current_inferior ())
1937 return 0;
1938
1939 return 1;
1940 }
1941
1942 void
1943 mi_cmd_remove_inferior (char *command, char **argv, int argc)
1944 {
1945 int id;
1946 struct inferior *inf;
1947
1948 if (argc != 1)
1949 error (_("-remove-inferior should be passed a single argument"));
1950
1951 if (sscanf (argv[0], "i%d", &id) != 1)
1952 error (_("the thread group id is syntactically invalid"));
1953
1954 inf = find_inferior_id (id);
1955 if (!inf)
1956 error (_("the specified thread group does not exist"));
1957
1958 if (inf->pid != 0)
1959 error (_("cannot remove an active inferior"));
1960
1961 if (inf == current_inferior ())
1962 {
1963 struct thread_info *tp = 0;
1964 struct inferior *new_inferior
1965 = iterate_over_inferiors (get_other_inferior, NULL);
1966
1967 if (new_inferior == NULL)
1968 error (_("Cannot remove last inferior"));
1969
1970 set_current_inferior (new_inferior);
1971 if (new_inferior->pid != 0)
1972 tp = any_thread_of_process (new_inferior->pid);
1973 switch_to_thread (tp ? tp->ptid : null_ptid);
1974 set_current_program_space (new_inferior->pspace);
1975 }
1976
1977 delete_inferior (inf);
1978 }
1979
1980 \f
1981
1982 /* Execute a command within a safe environment.
1983 Return <0 for error; >=0 for ok.
1984
1985 args->action will tell mi_execute_command what action
1986 to perfrom after the given command has executed (display/suppress
1987 prompt, display error). */
1988
1989 static void
1990 captured_mi_execute_command (struct ui_out *uiout, struct mi_parse *context)
1991 {
1992 struct mi_interp *mi = (struct mi_interp *) interp_data (command_interp ());
1993 struct cleanup *cleanup;
1994
1995 if (do_timings)
1996 current_command_ts = context->cmd_start;
1997
1998 current_token = xstrdup (context->token);
1999 cleanup = make_cleanup (free_current_contents, &current_token);
2000
2001 running_result_record_printed = 0;
2002 mi_proceeded = 0;
2003 switch (context->op)
2004 {
2005 case MI_COMMAND:
2006 /* A MI command was read from the input stream. */
2007 if (mi_debug_p)
2008 /* FIXME: gdb_???? */
2009 fprintf_unfiltered (mi->raw_stdout,
2010 " token=`%s' command=`%s' args=`%s'\n",
2011 context->token, context->command, context->args);
2012
2013 mi_cmd_execute (context);
2014
2015 /* Print the result if there were no errors.
2016
2017 Remember that on the way out of executing a command, you have
2018 to directly use the mi_interp's uiout, since the command
2019 could have reset the interpreter, in which case the current
2020 uiout will most likely crash in the mi_out_* routines. */
2021 if (!running_result_record_printed)
2022 {
2023 fputs_unfiltered (context->token, mi->raw_stdout);
2024 /* There's no particularly good reason why target-connect results
2025 in not ^done. Should kill ^connected for MI3. */
2026 fputs_unfiltered (strcmp (context->command, "target-select") == 0
2027 ? "^connected" : "^done", mi->raw_stdout);
2028 mi_out_put (uiout, mi->raw_stdout);
2029 mi_out_rewind (uiout);
2030 mi_print_timing_maybe (mi->raw_stdout);
2031 fputs_unfiltered ("\n", mi->raw_stdout);
2032 }
2033 else
2034 /* The command does not want anything to be printed. In that
2035 case, the command probably should not have written anything
2036 to uiout, but in case it has written something, discard it. */
2037 mi_out_rewind (uiout);
2038 break;
2039
2040 case CLI_COMMAND:
2041 {
2042 char *argv[2];
2043
2044 /* A CLI command was read from the input stream. */
2045 /* This "feature" will be removed as soon as we have a
2046 complete set of mi commands. */
2047 /* Echo the command on the console. */
2048 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
2049 /* Call the "console" interpreter. */
2050 argv[0] = INTERP_CONSOLE;
2051 argv[1] = context->command;
2052 mi_cmd_interpreter_exec ("-interpreter-exec", argv, 2);
2053
2054 /* If we changed interpreters, DON'T print out anything. */
2055 if (current_interp_named_p (INTERP_MI)
2056 || current_interp_named_p (INTERP_MI1)
2057 || current_interp_named_p (INTERP_MI2)
2058 || current_interp_named_p (INTERP_MI3))
2059 {
2060 if (!running_result_record_printed)
2061 {
2062 fputs_unfiltered (context->token, mi->raw_stdout);
2063 fputs_unfiltered ("^done", mi->raw_stdout);
2064 mi_out_put (uiout, mi->raw_stdout);
2065 mi_out_rewind (uiout);
2066 mi_print_timing_maybe (mi->raw_stdout);
2067 fputs_unfiltered ("\n", mi->raw_stdout);
2068 }
2069 else
2070 mi_out_rewind (uiout);
2071 }
2072 break;
2073 }
2074 }
2075
2076 do_cleanups (cleanup);
2077 }
2078
2079 /* Print a gdb exception to the MI output stream. */
2080
2081 static void
2082 mi_print_exception (const char *token, struct gdb_exception exception)
2083 {
2084 struct mi_interp *mi
2085 = (struct mi_interp *) interp_data (current_interpreter ());
2086
2087 fputs_unfiltered (token, mi->raw_stdout);
2088 fputs_unfiltered ("^error,msg=\"", mi->raw_stdout);
2089 if (exception.message == NULL)
2090 fputs_unfiltered ("unknown error", mi->raw_stdout);
2091 else
2092 fputstr_unfiltered (exception.message, '"', mi->raw_stdout);
2093 fputs_unfiltered ("\"", mi->raw_stdout);
2094
2095 switch (exception.error)
2096 {
2097 case UNDEFINED_COMMAND_ERROR:
2098 fputs_unfiltered (",code=\"undefined-command\"", mi->raw_stdout);
2099 break;
2100 }
2101
2102 fputs_unfiltered ("\n", mi->raw_stdout);
2103 }
2104
2105 /* Determine whether the parsed command already notifies the
2106 user_selected_context_changed observer. */
2107
2108 static int
2109 command_notifies_uscc_observer (struct mi_parse *command)
2110 {
2111 if (command->op == CLI_COMMAND)
2112 {
2113 /* CLI commands "thread" and "inferior" already send it. */
2114 return (strncmp (command->command, "thread ", 7) == 0
2115 || strncmp (command->command, "inferior ", 9) == 0);
2116 }
2117 else /* MI_COMMAND */
2118 {
2119 if (strcmp (command->command, "interpreter-exec") == 0
2120 && command->argc > 1)
2121 {
2122 /* "thread" and "inferior" again, but through -interpreter-exec. */
2123 return (strncmp (command->argv[1], "thread ", 7) == 0
2124 || strncmp (command->argv[1], "inferior ", 9) == 0);
2125 }
2126
2127 else
2128 /* -thread-select already sends it. */
2129 return strcmp (command->command, "thread-select") == 0;
2130 }
2131 }
2132
2133 void
2134 mi_execute_command (const char *cmd, int from_tty)
2135 {
2136 char *token;
2137 struct mi_parse *command = NULL;
2138
2139 /* This is to handle EOF (^D). We just quit gdb. */
2140 /* FIXME: we should call some API function here. */
2141 if (cmd == 0)
2142 quit_force (NULL, from_tty);
2143
2144 target_log_command (cmd);
2145
2146 TRY
2147 {
2148 command = mi_parse (cmd, &token);
2149 }
2150 CATCH (exception, RETURN_MASK_ALL)
2151 {
2152 mi_print_exception (token, exception);
2153 xfree (token);
2154 }
2155 END_CATCH
2156
2157 if (command != NULL)
2158 {
2159 ptid_t previous_ptid = inferior_ptid;
2160 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
2161
2162 command->token = token;
2163
2164 if (command->cmd != NULL && command->cmd->suppress_notification != NULL)
2165 {
2166 make_cleanup_restore_integer (command->cmd->suppress_notification);
2167 *command->cmd->suppress_notification = 1;
2168 }
2169
2170 if (do_timings)
2171 {
2172 command->cmd_start = XNEW (struct mi_timestamp);
2173 timestamp (command->cmd_start);
2174 }
2175
2176 TRY
2177 {
2178 captured_mi_execute_command (current_uiout, command);
2179 }
2180 CATCH (result, RETURN_MASK_ALL)
2181 {
2182 /* Like in start_event_loop, enable input and force display
2183 of the prompt. Otherwise, any command that calls
2184 async_disable_stdin, and then throws, will leave input
2185 disabled. */
2186 async_enable_stdin ();
2187 current_ui->prompt_state = PROMPT_NEEDED;
2188
2189 /* The command execution failed and error() was called
2190 somewhere. */
2191 mi_print_exception (command->token, result);
2192 mi_out_rewind (current_uiout);
2193 }
2194 END_CATCH
2195
2196 bpstat_do_actions ();
2197
2198 if (/* The notifications are only output when the top-level
2199 interpreter (specified on the command line) is MI. */
2200 ui_out_is_mi_like_p (interp_ui_out (top_level_interpreter ()))
2201 /* Don't try report anything if there are no threads --
2202 the program is dead. */
2203 && thread_count () != 0
2204 /* If the command already reports the thread change, no need to do it
2205 again. */
2206 && !command_notifies_uscc_observer (command))
2207 {
2208 struct mi_interp *mi
2209 = (struct mi_interp *) top_level_interpreter_data ();
2210 int report_change = 0;
2211
2212 if (command->thread == -1)
2213 {
2214 report_change = (!ptid_equal (previous_ptid, null_ptid)
2215 && !ptid_equal (inferior_ptid, previous_ptid)
2216 && !ptid_equal (inferior_ptid, null_ptid));
2217 }
2218 else if (!ptid_equal (inferior_ptid, null_ptid))
2219 {
2220 struct thread_info *ti = inferior_thread ();
2221
2222 report_change = (ti->global_num != command->thread);
2223 }
2224
2225 if (report_change)
2226 {
2227 observer_notify_user_selected_context_changed
2228 (USER_SELECTED_THREAD | USER_SELECTED_FRAME);
2229 }
2230 }
2231
2232 mi_parse_free (command);
2233
2234 do_cleanups (cleanup);
2235 }
2236 }
2237
2238 static void
2239 mi_cmd_execute (struct mi_parse *parse)
2240 {
2241 struct cleanup *cleanup;
2242
2243 cleanup = prepare_execute_command ();
2244
2245 if (parse->all && parse->thread_group != -1)
2246 error (_("Cannot specify --thread-group together with --all"));
2247
2248 if (parse->all && parse->thread != -1)
2249 error (_("Cannot specify --thread together with --all"));
2250
2251 if (parse->thread_group != -1 && parse->thread != -1)
2252 error (_("Cannot specify --thread together with --thread-group"));
2253
2254 if (parse->frame != -1 && parse->thread == -1)
2255 error (_("Cannot specify --frame without --thread"));
2256
2257 if (parse->thread_group != -1)
2258 {
2259 struct inferior *inf = find_inferior_id (parse->thread_group);
2260 struct thread_info *tp = 0;
2261
2262 if (!inf)
2263 error (_("Invalid thread group for the --thread-group option"));
2264
2265 set_current_inferior (inf);
2266 /* This behaviour means that if --thread-group option identifies
2267 an inferior with multiple threads, then a random one will be
2268 picked. This is not a problem -- frontend should always
2269 provide --thread if it wishes to operate on a specific
2270 thread. */
2271 if (inf->pid != 0)
2272 tp = any_live_thread_of_process (inf->pid);
2273 switch_to_thread (tp ? tp->ptid : null_ptid);
2274 set_current_program_space (inf->pspace);
2275 }
2276
2277 if (parse->thread != -1)
2278 {
2279 struct thread_info *tp = find_thread_global_id (parse->thread);
2280
2281 if (!tp)
2282 error (_("Invalid thread id: %d"), parse->thread);
2283
2284 if (is_exited (tp->ptid))
2285 error (_("Thread id: %d has terminated"), parse->thread);
2286
2287 switch_to_thread (tp->ptid);
2288 }
2289
2290 if (parse->frame != -1)
2291 {
2292 struct frame_info *fid;
2293 int frame = parse->frame;
2294
2295 fid = find_relative_frame (get_current_frame (), &frame);
2296 if (frame == 0)
2297 /* find_relative_frame was successful */
2298 select_frame (fid);
2299 else
2300 error (_("Invalid frame id: %d"), frame);
2301 }
2302
2303 if (parse->language != language_unknown)
2304 {
2305 make_cleanup_restore_current_language ();
2306 set_language (parse->language);
2307 }
2308
2309 current_context = parse;
2310
2311 if (parse->cmd->argv_func != NULL)
2312 {
2313 parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
2314 }
2315 else if (parse->cmd->cli.cmd != 0)
2316 {
2317 /* FIXME: DELETE THIS. */
2318 /* The operation is still implemented by a cli command. */
2319 /* Must be a synchronous one. */
2320 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
2321 parse->args);
2322 }
2323 else
2324 {
2325 /* FIXME: DELETE THIS. */
2326 struct ui_file *stb;
2327
2328 stb = mem_fileopen ();
2329
2330 fputs_unfiltered ("Undefined mi command: ", stb);
2331 fputstr_unfiltered (parse->command, '"', stb);
2332 fputs_unfiltered (" (missing implementation)", stb);
2333
2334 make_cleanup_ui_file_delete (stb);
2335 error_stream (stb);
2336 }
2337 do_cleanups (cleanup);
2338 }
2339
2340 /* FIXME: This is just a hack so we can get some extra commands going.
2341 We don't want to channel things through the CLI, but call libgdb directly.
2342 Use only for synchronous commands. */
2343
2344 void
2345 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
2346 {
2347 if (cmd != 0)
2348 {
2349 struct cleanup *old_cleanups;
2350 char *run;
2351
2352 if (args_p)
2353 run = xstrprintf ("%s %s", cmd, args);
2354 else
2355 run = xstrdup (cmd);
2356 if (mi_debug_p)
2357 /* FIXME: gdb_???? */
2358 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
2359 cmd, run);
2360 old_cleanups = make_cleanup (xfree, run);
2361 execute_command (run, 0 /* from_tty */ );
2362 do_cleanups (old_cleanups);
2363 return;
2364 }
2365 }
2366
2367 void
2368 mi_execute_async_cli_command (char *cli_command, char **argv, int argc)
2369 {
2370 struct cleanup *old_cleanups;
2371 char *run;
2372
2373 if (mi_async_p ())
2374 run = xstrprintf ("%s %s&", cli_command, argc ? *argv : "");
2375 else
2376 run = xstrprintf ("%s %s", cli_command, argc ? *argv : "");
2377 old_cleanups = make_cleanup (xfree, run);
2378
2379 execute_command (run, 0 /* from_tty */ );
2380
2381 /* Do this before doing any printing. It would appear that some
2382 print code leaves garbage around in the buffer. */
2383 do_cleanups (old_cleanups);
2384 }
2385
2386 void
2387 mi_load_progress (const char *section_name,
2388 unsigned long sent_so_far,
2389 unsigned long total_section,
2390 unsigned long total_sent,
2391 unsigned long grand_total)
2392 {
2393 struct timeval time_now, delta, update_threshold;
2394 static struct timeval last_update;
2395 static char *previous_sect_name = NULL;
2396 int new_section;
2397 struct ui_out *saved_uiout;
2398 struct ui_out *uiout;
2399 struct mi_interp *mi
2400 = (struct mi_interp *) interp_data (current_interpreter ());
2401
2402 /* This function is called through deprecated_show_load_progress
2403 which means uiout may not be correct. Fix it for the duration
2404 of this function. */
2405 saved_uiout = current_uiout;
2406
2407 if (current_interp_named_p (INTERP_MI)
2408 || current_interp_named_p (INTERP_MI2))
2409 current_uiout = mi_out_new (2);
2410 else if (current_interp_named_p (INTERP_MI1))
2411 current_uiout = mi_out_new (1);
2412 else if (current_interp_named_p (INTERP_MI3))
2413 current_uiout = mi_out_new (3);
2414 else
2415 return;
2416
2417 uiout = current_uiout;
2418
2419 update_threshold.tv_sec = 0;
2420 update_threshold.tv_usec = 500000;
2421 gettimeofday (&time_now, NULL);
2422
2423 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
2424 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
2425
2426 if (delta.tv_usec < 0)
2427 {
2428 delta.tv_sec -= 1;
2429 delta.tv_usec += 1000000L;
2430 }
2431
2432 new_section = (previous_sect_name ?
2433 strcmp (previous_sect_name, section_name) : 1);
2434 if (new_section)
2435 {
2436 struct cleanup *cleanup_tuple;
2437
2438 xfree (previous_sect_name);
2439 previous_sect_name = xstrdup (section_name);
2440
2441 if (current_token)
2442 fputs_unfiltered (current_token, mi->raw_stdout);
2443 fputs_unfiltered ("+download", mi->raw_stdout);
2444 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2445 ui_out_field_string (uiout, "section", section_name);
2446 ui_out_field_int (uiout, "section-size", total_section);
2447 ui_out_field_int (uiout, "total-size", grand_total);
2448 do_cleanups (cleanup_tuple);
2449 mi_out_put (uiout, mi->raw_stdout);
2450 fputs_unfiltered ("\n", mi->raw_stdout);
2451 gdb_flush (mi->raw_stdout);
2452 }
2453
2454 if (delta.tv_sec >= update_threshold.tv_sec &&
2455 delta.tv_usec >= update_threshold.tv_usec)
2456 {
2457 struct cleanup *cleanup_tuple;
2458
2459 last_update.tv_sec = time_now.tv_sec;
2460 last_update.tv_usec = time_now.tv_usec;
2461 if (current_token)
2462 fputs_unfiltered (current_token, mi->raw_stdout);
2463 fputs_unfiltered ("+download", mi->raw_stdout);
2464 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2465 ui_out_field_string (uiout, "section", section_name);
2466 ui_out_field_int (uiout, "section-sent", sent_so_far);
2467 ui_out_field_int (uiout, "section-size", total_section);
2468 ui_out_field_int (uiout, "total-sent", total_sent);
2469 ui_out_field_int (uiout, "total-size", grand_total);
2470 do_cleanups (cleanup_tuple);
2471 mi_out_put (uiout, mi->raw_stdout);
2472 fputs_unfiltered ("\n", mi->raw_stdout);
2473 gdb_flush (mi->raw_stdout);
2474 }
2475
2476 xfree (uiout);
2477 current_uiout = saved_uiout;
2478 }
2479
2480 static void
2481 timestamp (struct mi_timestamp *tv)
2482 {
2483 gettimeofday (&tv->wallclock, NULL);
2484 #ifdef HAVE_GETRUSAGE
2485 getrusage (RUSAGE_SELF, &rusage);
2486 tv->utime.tv_sec = rusage.ru_utime.tv_sec;
2487 tv->utime.tv_usec = rusage.ru_utime.tv_usec;
2488 tv->stime.tv_sec = rusage.ru_stime.tv_sec;
2489 tv->stime.tv_usec = rusage.ru_stime.tv_usec;
2490 #else
2491 {
2492 long usec = get_run_time ();
2493
2494 tv->utime.tv_sec = usec/1000000L;
2495 tv->utime.tv_usec = usec - 1000000L*tv->utime.tv_sec;
2496 tv->stime.tv_sec = 0;
2497 tv->stime.tv_usec = 0;
2498 }
2499 #endif
2500 }
2501
2502 static void
2503 print_diff_now (struct ui_file *file, struct mi_timestamp *start)
2504 {
2505 struct mi_timestamp now;
2506
2507 timestamp (&now);
2508 print_diff (file, start, &now);
2509 }
2510
2511 void
2512 mi_print_timing_maybe (struct ui_file *file)
2513 {
2514 /* If the command is -enable-timing then do_timings may be true
2515 whilst current_command_ts is not initialized. */
2516 if (do_timings && current_command_ts)
2517 print_diff_now (file, current_command_ts);
2518 }
2519
2520 static long
2521 timeval_diff (struct timeval start, struct timeval end)
2522 {
2523 return ((end.tv_sec - start.tv_sec) * 1000000L)
2524 + (end.tv_usec - start.tv_usec);
2525 }
2526
2527 static void
2528 print_diff (struct ui_file *file, struct mi_timestamp *start,
2529 struct mi_timestamp *end)
2530 {
2531 fprintf_unfiltered
2532 (file,
2533 ",time={wallclock=\"%0.5f\",user=\"%0.5f\",system=\"%0.5f\"}",
2534 timeval_diff (start->wallclock, end->wallclock) / 1000000.0,
2535 timeval_diff (start->utime, end->utime) / 1000000.0,
2536 timeval_diff (start->stime, end->stime) / 1000000.0);
2537 }
2538
2539 void
2540 mi_cmd_trace_define_variable (char *command, char **argv, int argc)
2541 {
2542 LONGEST initval = 0;
2543 struct trace_state_variable *tsv;
2544 char *name = 0;
2545
2546 if (argc != 1 && argc != 2)
2547 error (_("Usage: -trace-define-variable VARIABLE [VALUE]"));
2548
2549 name = argv[0];
2550 if (*name++ != '$')
2551 error (_("Name of trace variable should start with '$'"));
2552
2553 validate_trace_state_variable_name (name);
2554
2555 tsv = find_trace_state_variable (name);
2556 if (!tsv)
2557 tsv = create_trace_state_variable (name);
2558
2559 if (argc == 2)
2560 initval = value_as_long (parse_and_eval (argv[1]));
2561
2562 tsv->initial_value = initval;
2563 }
2564
2565 void
2566 mi_cmd_trace_list_variables (char *command, char **argv, int argc)
2567 {
2568 if (argc != 0)
2569 error (_("-trace-list-variables: no arguments allowed"));
2570
2571 tvariables_info_1 ();
2572 }
2573
2574 void
2575 mi_cmd_trace_find (char *command, char **argv, int argc)
2576 {
2577 char *mode;
2578
2579 if (argc == 0)
2580 error (_("trace selection mode is required"));
2581
2582 mode = argv[0];
2583
2584 if (strcmp (mode, "none") == 0)
2585 {
2586 tfind_1 (tfind_number, -1, 0, 0, 0);
2587 return;
2588 }
2589
2590 check_trace_running (current_trace_status ());
2591
2592 if (strcmp (mode, "frame-number") == 0)
2593 {
2594 if (argc != 2)
2595 error (_("frame number is required"));
2596 tfind_1 (tfind_number, atoi (argv[1]), 0, 0, 0);
2597 }
2598 else if (strcmp (mode, "tracepoint-number") == 0)
2599 {
2600 if (argc != 2)
2601 error (_("tracepoint number is required"));
2602 tfind_1 (tfind_tp, atoi (argv[1]), 0, 0, 0);
2603 }
2604 else if (strcmp (mode, "pc") == 0)
2605 {
2606 if (argc != 2)
2607 error (_("PC is required"));
2608 tfind_1 (tfind_pc, 0, parse_and_eval_address (argv[1]), 0, 0);
2609 }
2610 else if (strcmp (mode, "pc-inside-range") == 0)
2611 {
2612 if (argc != 3)
2613 error (_("Start and end PC are required"));
2614 tfind_1 (tfind_range, 0, parse_and_eval_address (argv[1]),
2615 parse_and_eval_address (argv[2]), 0);
2616 }
2617 else if (strcmp (mode, "pc-outside-range") == 0)
2618 {
2619 if (argc != 3)
2620 error (_("Start and end PC are required"));
2621 tfind_1 (tfind_outside, 0, parse_and_eval_address (argv[1]),
2622 parse_and_eval_address (argv[2]), 0);
2623 }
2624 else if (strcmp (mode, "line") == 0)
2625 {
2626 struct symtabs_and_lines sals;
2627 struct symtab_and_line sal;
2628 static CORE_ADDR start_pc, end_pc;
2629 struct cleanup *back_to;
2630
2631 if (argc != 2)
2632 error (_("Line is required"));
2633
2634 sals = decode_line_with_current_source (argv[1],
2635 DECODE_LINE_FUNFIRSTLINE);
2636 back_to = make_cleanup (xfree, sals.sals);
2637
2638 sal = sals.sals[0];
2639
2640 if (sal.symtab == 0)
2641 error (_("Could not find the specified line"));
2642
2643 if (sal.line > 0 && find_line_pc_range (sal, &start_pc, &end_pc))
2644 tfind_1 (tfind_range, 0, start_pc, end_pc - 1, 0);
2645 else
2646 error (_("Could not find the specified line"));
2647
2648 do_cleanups (back_to);
2649 }
2650 else
2651 error (_("Invalid mode '%s'"), mode);
2652
2653 if (has_stack_frames () || get_traceframe_number () >= 0)
2654 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS, 1);
2655 }
2656
2657 void
2658 mi_cmd_trace_save (char *command, char **argv, int argc)
2659 {
2660 int target_saves = 0;
2661 int generate_ctf = 0;
2662 char *filename;
2663 int oind = 0;
2664 char *oarg;
2665
2666 enum opt
2667 {
2668 TARGET_SAVE_OPT, CTF_OPT
2669 };
2670 static const struct mi_opt opts[] =
2671 {
2672 {"r", TARGET_SAVE_OPT, 0},
2673 {"ctf", CTF_OPT, 0},
2674 { 0, 0, 0 }
2675 };
2676
2677 while (1)
2678 {
2679 int opt = mi_getopt ("-trace-save", argc, argv, opts,
2680 &oind, &oarg);
2681
2682 if (opt < 0)
2683 break;
2684 switch ((enum opt) opt)
2685 {
2686 case TARGET_SAVE_OPT:
2687 target_saves = 1;
2688 break;
2689 case CTF_OPT:
2690 generate_ctf = 1;
2691 break;
2692 }
2693 }
2694
2695 if (argc - oind != 1)
2696 error (_("Exactly one argument required "
2697 "(file in which to save trace data)"));
2698
2699 filename = argv[oind];
2700
2701 if (generate_ctf)
2702 trace_save_ctf (filename, target_saves);
2703 else
2704 trace_save_tfile (filename, target_saves);
2705 }
2706
2707 void
2708 mi_cmd_trace_start (char *command, char **argv, int argc)
2709 {
2710 start_tracing (NULL);
2711 }
2712
2713 void
2714 mi_cmd_trace_status (char *command, char **argv, int argc)
2715 {
2716 trace_status_mi (0);
2717 }
2718
2719 void
2720 mi_cmd_trace_stop (char *command, char **argv, int argc)
2721 {
2722 stop_tracing (NULL);
2723 trace_status_mi (1);
2724 }
2725
2726 /* Implement the "-ada-task-info" command. */
2727
2728 void
2729 mi_cmd_ada_task_info (char *command, char **argv, int argc)
2730 {
2731 if (argc != 0 && argc != 1)
2732 error (_("Invalid MI command"));
2733
2734 print_ada_task_info (current_uiout, argv[0], current_inferior ());
2735 }
2736
2737 /* Print EXPRESSION according to VALUES. */
2738
2739 static void
2740 print_variable_or_computed (const char *expression, enum print_values values)
2741 {
2742 struct cleanup *old_chain;
2743 struct value *val;
2744 struct ui_file *stb;
2745 struct type *type;
2746 struct ui_out *uiout = current_uiout;
2747
2748 stb = mem_fileopen ();
2749 old_chain = make_cleanup_ui_file_delete (stb);
2750
2751 expression_up expr = parse_expression (expression);
2752
2753 if (values == PRINT_SIMPLE_VALUES)
2754 val = evaluate_type (expr.get ());
2755 else
2756 val = evaluate_expression (expr.get ());
2757
2758 if (values != PRINT_NO_VALUES)
2759 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2760 ui_out_field_string (uiout, "name", expression);
2761
2762 switch (values)
2763 {
2764 case PRINT_SIMPLE_VALUES:
2765 type = check_typedef (value_type (val));
2766 type_print (value_type (val), "", stb, -1);
2767 ui_out_field_stream (uiout, "type", stb);
2768 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2769 && TYPE_CODE (type) != TYPE_CODE_STRUCT
2770 && TYPE_CODE (type) != TYPE_CODE_UNION)
2771 {
2772 struct value_print_options opts;
2773
2774 get_no_prettyformat_print_options (&opts);
2775 opts.deref_ref = 1;
2776 common_val_print (val, stb, 0, &opts, current_language);
2777 ui_out_field_stream (uiout, "value", stb);
2778 }
2779 break;
2780 case PRINT_ALL_VALUES:
2781 {
2782 struct value_print_options opts;
2783
2784 get_no_prettyformat_print_options (&opts);
2785 opts.deref_ref = 1;
2786 common_val_print (val, stb, 0, &opts, current_language);
2787 ui_out_field_stream (uiout, "value", stb);
2788 }
2789 break;
2790 }
2791
2792 do_cleanups (old_chain);
2793 }
2794
2795 /* Implement the "-trace-frame-collected" command. */
2796
2797 void
2798 mi_cmd_trace_frame_collected (char *command, char **argv, int argc)
2799 {
2800 struct cleanup *old_chain;
2801 struct bp_location *tloc;
2802 int stepping_frame;
2803 struct collection_list *clist;
2804 struct collection_list tracepoint_list, stepping_list;
2805 struct traceframe_info *tinfo;
2806 int oind = 0;
2807 enum print_values var_print_values = PRINT_ALL_VALUES;
2808 enum print_values comp_print_values = PRINT_ALL_VALUES;
2809 int registers_format = 'x';
2810 int memory_contents = 0;
2811 struct ui_out *uiout = current_uiout;
2812 enum opt
2813 {
2814 VAR_PRINT_VALUES,
2815 COMP_PRINT_VALUES,
2816 REGISTERS_FORMAT,
2817 MEMORY_CONTENTS,
2818 };
2819 static const struct mi_opt opts[] =
2820 {
2821 {"-var-print-values", VAR_PRINT_VALUES, 1},
2822 {"-comp-print-values", COMP_PRINT_VALUES, 1},
2823 {"-registers-format", REGISTERS_FORMAT, 1},
2824 {"-memory-contents", MEMORY_CONTENTS, 0},
2825 { 0, 0, 0 }
2826 };
2827
2828 while (1)
2829 {
2830 char *oarg;
2831 int opt = mi_getopt ("-trace-frame-collected", argc, argv, opts,
2832 &oind, &oarg);
2833 if (opt < 0)
2834 break;
2835 switch ((enum opt) opt)
2836 {
2837 case VAR_PRINT_VALUES:
2838 var_print_values = mi_parse_print_values (oarg);
2839 break;
2840 case COMP_PRINT_VALUES:
2841 comp_print_values = mi_parse_print_values (oarg);
2842 break;
2843 case REGISTERS_FORMAT:
2844 registers_format = oarg[0];
2845 case MEMORY_CONTENTS:
2846 memory_contents = 1;
2847 break;
2848 }
2849 }
2850
2851 if (oind != argc)
2852 error (_("Usage: -trace-frame-collected "
2853 "[--var-print-values PRINT_VALUES] "
2854 "[--comp-print-values PRINT_VALUES] "
2855 "[--registers-format FORMAT]"
2856 "[--memory-contents]"));
2857
2858 /* This throws an error is not inspecting a trace frame. */
2859 tloc = get_traceframe_location (&stepping_frame);
2860
2861 /* This command only makes sense for the current frame, not the
2862 selected frame. */
2863 old_chain = make_cleanup_restore_current_thread ();
2864 select_frame (get_current_frame ());
2865
2866 encode_actions (tloc, &tracepoint_list, &stepping_list);
2867
2868 if (stepping_frame)
2869 clist = &stepping_list;
2870 else
2871 clist = &tracepoint_list;
2872
2873 tinfo = get_traceframe_info ();
2874
2875 /* Explicitly wholly collected variables. */
2876 {
2877 struct cleanup *list_cleanup;
2878 int i;
2879
2880 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout,
2881 "explicit-variables");
2882
2883 const std::vector<std::string> &wholly_collected
2884 = clist->wholly_collected ();
2885 for (size_t i = 0; i < wholly_collected.size (); i++)
2886 {
2887 const std::string &str = wholly_collected[i];
2888 print_variable_or_computed (str.c_str (), var_print_values);
2889 }
2890
2891 do_cleanups (list_cleanup);
2892 }
2893
2894 /* Computed expressions. */
2895 {
2896 struct cleanup *list_cleanup;
2897 char *p;
2898 int i;
2899
2900 list_cleanup
2901 = make_cleanup_ui_out_list_begin_end (uiout,
2902 "computed-expressions");
2903
2904 const std::vector<std::string> &computed = clist->computed ();
2905 for (size_t i = 0; i < computed.size (); i++)
2906 {
2907 const std::string &str = computed[i];
2908 print_variable_or_computed (str.c_str (), comp_print_values);
2909 }
2910
2911 do_cleanups (list_cleanup);
2912 }
2913
2914 /* Registers. Given pseudo-registers, and that some architectures
2915 (like MIPS) actually hide the raw registers, we don't go through
2916 the trace frame info, but instead consult the register cache for
2917 register availability. */
2918 {
2919 struct cleanup *list_cleanup;
2920 struct frame_info *frame;
2921 struct gdbarch *gdbarch;
2922 int regnum;
2923 int numregs;
2924
2925 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "registers");
2926
2927 frame = get_selected_frame (NULL);
2928 gdbarch = get_frame_arch (frame);
2929 numregs = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
2930
2931 for (regnum = 0; regnum < numregs; regnum++)
2932 {
2933 if (gdbarch_register_name (gdbarch, regnum) == NULL
2934 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
2935 continue;
2936
2937 output_register (frame, regnum, registers_format, 1);
2938 }
2939
2940 do_cleanups (list_cleanup);
2941 }
2942
2943 /* Trace state variables. */
2944 {
2945 struct cleanup *list_cleanup;
2946 int tvar;
2947 char *tsvname;
2948 int i;
2949
2950 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "tvars");
2951
2952 tsvname = NULL;
2953 make_cleanup (free_current_contents, &tsvname);
2954
2955 for (i = 0; VEC_iterate (int, tinfo->tvars, i, tvar); i++)
2956 {
2957 struct cleanup *cleanup_child;
2958 struct trace_state_variable *tsv;
2959
2960 tsv = find_trace_state_variable_by_number (tvar);
2961
2962 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
2963
2964 if (tsv != NULL)
2965 {
2966 tsvname = (char *) xrealloc (tsvname, strlen (tsv->name) + 2);
2967 tsvname[0] = '$';
2968 strcpy (tsvname + 1, tsv->name);
2969 ui_out_field_string (uiout, "name", tsvname);
2970
2971 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2972 &tsv->value);
2973 ui_out_field_int (uiout, "current", tsv->value);
2974 }
2975 else
2976 {
2977 ui_out_field_skip (uiout, "name");
2978 ui_out_field_skip (uiout, "current");
2979 }
2980
2981 do_cleanups (cleanup_child);
2982 }
2983
2984 do_cleanups (list_cleanup);
2985 }
2986
2987 /* Memory. */
2988 {
2989 struct cleanup *list_cleanup;
2990 VEC(mem_range_s) *available_memory = NULL;
2991 struct mem_range *r;
2992 int i;
2993
2994 traceframe_available_memory (&available_memory, 0, ULONGEST_MAX);
2995 make_cleanup (VEC_cleanup(mem_range_s), &available_memory);
2996
2997 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "memory");
2998
2999 for (i = 0; VEC_iterate (mem_range_s, available_memory, i, r); i++)
3000 {
3001 struct cleanup *cleanup_child;
3002 gdb_byte *data;
3003 struct gdbarch *gdbarch = target_gdbarch ();
3004
3005 cleanup_child = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
3006
3007 ui_out_field_core_addr (uiout, "address", gdbarch, r->start);
3008 ui_out_field_int (uiout, "length", r->length);
3009
3010 data = (gdb_byte *) xmalloc (r->length);
3011 make_cleanup (xfree, data);
3012
3013 if (memory_contents)
3014 {
3015 if (target_read_memory (r->start, data, r->length) == 0)
3016 {
3017 int m;
3018 char *data_str, *p;
3019
3020 data_str = (char *) xmalloc (r->length * 2 + 1);
3021 make_cleanup (xfree, data_str);
3022
3023 for (m = 0, p = data_str; m < r->length; ++m, p += 2)
3024 sprintf (p, "%02x", data[m]);
3025 ui_out_field_string (uiout, "contents", data_str);
3026 }
3027 else
3028 ui_out_field_skip (uiout, "contents");
3029 }
3030 do_cleanups (cleanup_child);
3031 }
3032
3033 do_cleanups (list_cleanup);
3034 }
3035
3036 do_cleanups (old_chain);
3037 }
3038
3039 void
3040 _initialize_mi_main (void)
3041 {
3042 struct cmd_list_element *c;
3043
3044 add_setshow_boolean_cmd ("mi-async", class_run,
3045 &mi_async_1, _("\
3046 Set whether MI asynchronous mode is enabled."), _("\
3047 Show whether MI asynchronous mode is enabled."), _("\
3048 Tells GDB whether MI should be in asynchronous mode."),
3049 set_mi_async_command,
3050 show_mi_async_command,
3051 &setlist,
3052 &showlist);
3053
3054 /* Alias old "target-async" to "mi-async". */
3055 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &setlist);
3056 deprecate_cmd (c, "set mi-async");
3057 c = add_alias_cmd ("target-async", "mi-async", class_run, 0, &showlist);
3058 deprecate_cmd (c, "show mi-async");
3059 }
This page took 0.093841 seconds and 5 git commands to generate.