Approved by Jim Blandy:
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* This file contains support routines for creating, manipulating, and
25 destroying minimal symbol tables.
26
27 Minimal symbol tables are used to hold some very basic information about
28 all defined global symbols (text, data, bss, abs, etc). The only two
29 required pieces of information are the symbol's name and the address
30 associated with that symbol.
31
32 In many cases, even if a file was compiled with no special options for
33 debugging at all, as long as was not stripped it will contain sufficient
34 information to build useful minimal symbol tables using this structure.
35
36 Even when a file contains enough debugging information to build a full
37 symbol table, these minimal symbols are still useful for quickly mapping
38 between names and addresses, and vice versa. They are also sometimes used
39 to figure out what full symbol table entries need to be read in. */
40
41
42 #include "defs.h"
43 #include <ctype.h>
44 #include "gdb_string.h"
45 #include "symtab.h"
46 #include "bfd.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "demangle.h"
50 #include "value.h"
51 #include "cp-abi.h"
52
53 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
54 At the end, copy them all into one newly allocated location on an objfile's
55 symbol obstack. */
56
57 #define BUNCH_SIZE 127
58
59 struct msym_bunch
60 {
61 struct msym_bunch *next;
62 struct minimal_symbol contents[BUNCH_SIZE];
63 };
64
65 /* Bunch currently being filled up.
66 The next field points to chain of filled bunches. */
67
68 static struct msym_bunch *msym_bunch;
69
70 /* Number of slots filled in current bunch. */
71
72 static int msym_bunch_index;
73
74 /* Total number of minimal symbols recorded so far for the objfile. */
75
76 static int msym_count;
77
78 /* Prototypes for local functions. */
79
80 static int compare_minimal_symbols (const PTR, const PTR);
81
82 static int
83 compact_minimal_symbols (struct minimal_symbol *, int, struct objfile *);
84
85 static void add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
86 struct minimal_symbol **table);
87
88 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
89
90 unsigned int
91 msymbol_hash_iw (const char *string)
92 {
93 unsigned int hash = 0;
94 while (*string && *string != '(')
95 {
96 while (isspace (*string))
97 ++string;
98 if (*string && *string != '(')
99 {
100 hash = hash * 67 + *string - 113;
101 ++string;
102 }
103 }
104 return hash % MINIMAL_SYMBOL_HASH_SIZE;
105 }
106
107 /* Compute a hash code for a string. */
108
109 unsigned int
110 msymbol_hash (const char *string)
111 {
112 unsigned int hash = 0;
113 for (; *string; ++string)
114 hash = hash * 67 + *string - 113;
115 return hash % MINIMAL_SYMBOL_HASH_SIZE;
116 }
117
118 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
119 void
120 add_minsym_to_hash_table (struct minimal_symbol *sym,
121 struct minimal_symbol **table)
122 {
123 if (sym->hash_next == NULL)
124 {
125 unsigned int hash = msymbol_hash (SYMBOL_NAME (sym));
126 sym->hash_next = table[hash];
127 table[hash] = sym;
128 }
129 }
130
131 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
132 TABLE. */
133 static void
134 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
135 struct minimal_symbol **table)
136 {
137 if (sym->demangled_hash_next == NULL)
138 {
139 unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym));
140 sym->demangled_hash_next = table[hash];
141 table[hash] = sym;
142 }
143 }
144
145
146 /* Look through all the current minimal symbol tables and find the
147 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
148 the search to that objfile. If SFILE is non-NULL, limit the search
149 to that source file. Returns a pointer to the minimal symbol that
150 matches, or NULL if no match is found.
151
152 Note: One instance where there may be duplicate minimal symbols with
153 the same name is when the symbol tables for a shared library and the
154 symbol tables for an executable contain global symbols with the same
155 names (the dynamic linker deals with the duplication). */
156
157 struct minimal_symbol *
158 lookup_minimal_symbol (register const char *name, const char *sfile,
159 struct objfile *objf)
160 {
161 struct objfile *objfile;
162 struct minimal_symbol *msymbol;
163 struct minimal_symbol *found_symbol = NULL;
164 struct minimal_symbol *found_file_symbol = NULL;
165 struct minimal_symbol *trampoline_symbol = NULL;
166
167 unsigned int hash = msymbol_hash (name);
168 unsigned int dem_hash = msymbol_hash_iw (name);
169
170 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
171 if (sfile != NULL)
172 {
173 char *p = strrchr (sfile, '/');
174 if (p != NULL)
175 sfile = p + 1;
176 }
177 #endif
178
179 for (objfile = object_files;
180 objfile != NULL && found_symbol == NULL;
181 objfile = objfile->next)
182 {
183 if (objf == NULL || objf == objfile)
184 {
185 /* Do two passes: the first over the ordinary hash table,
186 and the second over the demangled hash table. */
187 int pass;
188
189 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
190 {
191 /* Select hash list according to pass. */
192 if (pass == 1)
193 msymbol = objfile->msymbol_hash[hash];
194 else
195 msymbol = objfile->msymbol_demangled_hash[dem_hash];
196
197 while (msymbol != NULL && found_symbol == NULL)
198 {
199 if (SYMBOL_MATCHES_NAME (msymbol, name))
200 {
201 switch (MSYMBOL_TYPE (msymbol))
202 {
203 case mst_file_text:
204 case mst_file_data:
205 case mst_file_bss:
206 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
207 if (sfile == NULL || STREQ (msymbol->filename, sfile))
208 found_file_symbol = msymbol;
209 #else
210 /* We have neither the ability nor the need to
211 deal with the SFILE parameter. If we find
212 more than one symbol, just return the latest
213 one (the user can't expect useful behavior in
214 that case). */
215 found_file_symbol = msymbol;
216 #endif
217 break;
218
219 case mst_solib_trampoline:
220
221 /* If a trampoline symbol is found, we prefer to
222 keep looking for the *real* symbol. If the
223 actual symbol is not found, then we'll use the
224 trampoline entry. */
225 if (trampoline_symbol == NULL)
226 trampoline_symbol = msymbol;
227 break;
228
229 case mst_unknown:
230 default:
231 found_symbol = msymbol;
232 break;
233 }
234 }
235
236 /* Find the next symbol on the hash chain. */
237 if (pass == 1)
238 msymbol = msymbol->hash_next;
239 else
240 msymbol = msymbol->demangled_hash_next;
241 }
242 }
243 }
244 }
245 /* External symbols are best. */
246 if (found_symbol)
247 return found_symbol;
248
249 /* File-local symbols are next best. */
250 if (found_file_symbol)
251 return found_file_symbol;
252
253 /* Symbols for shared library trampolines are next best. */
254 if (trampoline_symbol)
255 return trampoline_symbol;
256
257 return NULL;
258 }
259
260 /* Look through all the current minimal symbol tables and find the
261 first minimal symbol that matches NAME and of text type.
262 If OBJF is non-NULL, limit
263 the search to that objfile. If SFILE is non-NULL, limit the search
264 to that source file. Returns a pointer to the minimal symbol that
265 matches, or NULL if no match is found.
266 */
267
268 struct minimal_symbol *
269 lookup_minimal_symbol_text (register const char *name, const char *sfile,
270 struct objfile *objf)
271 {
272 struct objfile *objfile;
273 struct minimal_symbol *msymbol;
274 struct minimal_symbol *found_symbol = NULL;
275 struct minimal_symbol *found_file_symbol = NULL;
276
277 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
278 if (sfile != NULL)
279 {
280 char *p = strrchr (sfile, '/');
281 if (p != NULL)
282 sfile = p + 1;
283 }
284 #endif
285
286 for (objfile = object_files;
287 objfile != NULL && found_symbol == NULL;
288 objfile = objfile->next)
289 {
290 if (objf == NULL || objf == objfile)
291 {
292 for (msymbol = objfile->msymbols;
293 msymbol != NULL && SYMBOL_NAME (msymbol) != NULL &&
294 found_symbol == NULL;
295 msymbol++)
296 {
297 if (SYMBOL_MATCHES_NAME (msymbol, name) &&
298 (MSYMBOL_TYPE (msymbol) == mst_text ||
299 MSYMBOL_TYPE (msymbol) == mst_file_text))
300 {
301 switch (MSYMBOL_TYPE (msymbol))
302 {
303 case mst_file_text:
304 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
305 if (sfile == NULL || STREQ (msymbol->filename, sfile))
306 found_file_symbol = msymbol;
307 #else
308 /* We have neither the ability nor the need to
309 deal with the SFILE parameter. If we find
310 more than one symbol, just return the latest
311 one (the user can't expect useful behavior in
312 that case). */
313 found_file_symbol = msymbol;
314 #endif
315 break;
316 default:
317 found_symbol = msymbol;
318 break;
319 }
320 }
321 }
322 }
323 }
324 /* External symbols are best. */
325 if (found_symbol)
326 return found_symbol;
327
328 /* File-local symbols are next best. */
329 if (found_file_symbol)
330 return found_file_symbol;
331
332 return NULL;
333 }
334
335 /* Look through all the current minimal symbol tables and find the
336 first minimal symbol that matches NAME and of solib trampoline type.
337 If OBJF is non-NULL, limit
338 the search to that objfile. If SFILE is non-NULL, limit the search
339 to that source file. Returns a pointer to the minimal symbol that
340 matches, or NULL if no match is found.
341 */
342
343 struct minimal_symbol *
344 lookup_minimal_symbol_solib_trampoline (register const char *name,
345 const char *sfile, struct objfile *objf)
346 {
347 struct objfile *objfile;
348 struct minimal_symbol *msymbol;
349 struct minimal_symbol *found_symbol = NULL;
350
351 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
352 if (sfile != NULL)
353 {
354 char *p = strrchr (sfile, '/');
355 if (p != NULL)
356 sfile = p + 1;
357 }
358 #endif
359
360 for (objfile = object_files;
361 objfile != NULL && found_symbol == NULL;
362 objfile = objfile->next)
363 {
364 if (objf == NULL || objf == objfile)
365 {
366 for (msymbol = objfile->msymbols;
367 msymbol != NULL && SYMBOL_NAME (msymbol) != NULL &&
368 found_symbol == NULL;
369 msymbol++)
370 {
371 if (SYMBOL_MATCHES_NAME (msymbol, name) &&
372 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
373 return msymbol;
374 }
375 }
376 }
377
378 return NULL;
379 }
380
381
382 /* Search through the minimal symbol table for each objfile and find
383 the symbol whose address is the largest address that is still less
384 than or equal to PC, and matches SECTION (if non-null). Returns a
385 pointer to the minimal symbol if such a symbol is found, or NULL if
386 PC is not in a suitable range. Note that we need to look through
387 ALL the minimal symbol tables before deciding on the symbol that
388 comes closest to the specified PC. This is because objfiles can
389 overlap, for example objfile A has .text at 0x100 and .data at
390 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */
391
392 struct minimal_symbol *
393 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section)
394 {
395 int lo;
396 int hi;
397 int new;
398 struct objfile *objfile;
399 struct minimal_symbol *msymbol;
400 struct minimal_symbol *best_symbol = NULL;
401
402 /* pc has to be in a known section. This ensures that anything beyond
403 the end of the last segment doesn't appear to be part of the last
404 function in the last segment. */
405 if (find_pc_section (pc) == NULL)
406 return NULL;
407
408 for (objfile = object_files;
409 objfile != NULL;
410 objfile = objfile->next)
411 {
412 /* If this objfile has a minimal symbol table, go search it using
413 a binary search. Note that a minimal symbol table always consists
414 of at least two symbols, a "real" symbol and the terminating
415 "null symbol". If there are no real symbols, then there is no
416 minimal symbol table at all. */
417
418 if ((msymbol = objfile->msymbols) != NULL)
419 {
420 lo = 0;
421 hi = objfile->minimal_symbol_count - 1;
422
423 /* This code assumes that the minimal symbols are sorted by
424 ascending address values. If the pc value is greater than or
425 equal to the first symbol's address, then some symbol in this
426 minimal symbol table is a suitable candidate for being the
427 "best" symbol. This includes the last real symbol, for cases
428 where the pc value is larger than any address in this vector.
429
430 By iterating until the address associated with the current
431 hi index (the endpoint of the test interval) is less than
432 or equal to the desired pc value, we accomplish two things:
433 (1) the case where the pc value is larger than any minimal
434 symbol address is trivially solved, (2) the address associated
435 with the hi index is always the one we want when the interation
436 terminates. In essence, we are iterating the test interval
437 down until the pc value is pushed out of it from the high end.
438
439 Warning: this code is trickier than it would appear at first. */
440
441 /* Should also require that pc is <= end of objfile. FIXME! */
442 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
443 {
444 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
445 {
446 /* pc is still strictly less than highest address */
447 /* Note "new" will always be >= lo */
448 new = (lo + hi) / 2;
449 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
450 (lo == new))
451 {
452 hi = new;
453 }
454 else
455 {
456 lo = new;
457 }
458 }
459
460 /* If we have multiple symbols at the same address, we want
461 hi to point to the last one. That way we can find the
462 right symbol if it has an index greater than hi. */
463 while (hi < objfile->minimal_symbol_count - 1
464 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
465 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
466 hi++;
467
468 /* The minimal symbol indexed by hi now is the best one in this
469 objfile's minimal symbol table. See if it is the best one
470 overall. */
471
472 /* Skip any absolute symbols. This is apparently what adb
473 and dbx do, and is needed for the CM-5. There are two
474 known possible problems: (1) on ELF, apparently end, edata,
475 etc. are absolute. Not sure ignoring them here is a big
476 deal, but if we want to use them, the fix would go in
477 elfread.c. (2) I think shared library entry points on the
478 NeXT are absolute. If we want special handling for this
479 it probably should be triggered by a special
480 mst_abs_or_lib or some such. */
481 while (hi >= 0
482 && msymbol[hi].type == mst_abs)
483 --hi;
484
485 /* If "section" specified, skip any symbol from wrong section */
486 /* This is the new code that distinguishes it from the old function */
487 if (section)
488 while (hi >= 0
489 /* Some types of debug info, such as COFF,
490 don't fill the bfd_section member, so don't
491 throw away symbols on those platforms. */
492 && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL
493 && SYMBOL_BFD_SECTION (&msymbol[hi]) != section)
494 --hi;
495
496 if (hi >= 0
497 && ((best_symbol == NULL) ||
498 (SYMBOL_VALUE_ADDRESS (best_symbol) <
499 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
500 {
501 best_symbol = &msymbol[hi];
502 }
503 }
504 }
505 }
506 return (best_symbol);
507 }
508
509 /* Backward compatibility: search through the minimal symbol table
510 for a matching PC (no section given) */
511
512 struct minimal_symbol *
513 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
514 {
515 return lookup_minimal_symbol_by_pc_section (pc, find_pc_mapped_section (pc));
516 }
517
518 #ifdef SOFUN_ADDRESS_MAYBE_MISSING
519 CORE_ADDR
520 find_stab_function_addr (char *namestring, char *filename,
521 struct objfile *objfile)
522 {
523 struct minimal_symbol *msym;
524 char *p;
525 int n;
526
527 p = strchr (namestring, ':');
528 if (p == NULL)
529 p = namestring;
530 n = p - namestring;
531 p = alloca (n + 2);
532 strncpy (p, namestring, n);
533 p[n] = 0;
534
535 msym = lookup_minimal_symbol (p, filename, objfile);
536 if (msym == NULL)
537 {
538 /* Sun Fortran appends an underscore to the minimal symbol name,
539 try again with an appended underscore if the minimal symbol
540 was not found. */
541 p[n] = '_';
542 p[n + 1] = 0;
543 msym = lookup_minimal_symbol (p, filename, objfile);
544 }
545
546 if (msym == NULL && filename != NULL)
547 {
548 /* Try again without the filename. */
549 p[n] = 0;
550 msym = lookup_minimal_symbol (p, NULL, objfile);
551 }
552 if (msym == NULL && filename != NULL)
553 {
554 /* And try again for Sun Fortran, but without the filename. */
555 p[n] = '_';
556 p[n + 1] = 0;
557 msym = lookup_minimal_symbol (p, NULL, objfile);
558 }
559
560 return msym == NULL ? 0 : SYMBOL_VALUE_ADDRESS (msym);
561 }
562 #endif /* SOFUN_ADDRESS_MAYBE_MISSING */
563 \f
564
565 /* Return leading symbol character for a BFD. If BFD is NULL,
566 return the leading symbol character from the main objfile. */
567
568 static int get_symbol_leading_char (bfd *);
569
570 static int
571 get_symbol_leading_char (bfd *abfd)
572 {
573 if (abfd != NULL)
574 return bfd_get_symbol_leading_char (abfd);
575 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
576 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
577 return 0;
578 }
579
580 /* Prepare to start collecting minimal symbols. Note that presetting
581 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
582 symbol to allocate the memory for the first bunch. */
583
584 void
585 init_minimal_symbol_collection (void)
586 {
587 msym_count = 0;
588 msym_bunch = NULL;
589 msym_bunch_index = BUNCH_SIZE;
590 }
591
592 void
593 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
594 enum minimal_symbol_type ms_type,
595 struct objfile *objfile)
596 {
597 int section;
598
599 switch (ms_type)
600 {
601 case mst_text:
602 case mst_file_text:
603 case mst_solib_trampoline:
604 section = SECT_OFF_TEXT (objfile);
605 break;
606 case mst_data:
607 case mst_file_data:
608 section = SECT_OFF_DATA (objfile);
609 break;
610 case mst_bss:
611 case mst_file_bss:
612 section = SECT_OFF_BSS (objfile);
613 break;
614 default:
615 section = -1;
616 }
617
618 prim_record_minimal_symbol_and_info (name, address, ms_type,
619 NULL, section, NULL, objfile);
620 }
621
622 /* Record a minimal symbol in the msym bunches. Returns the symbol
623 newly created. */
624
625 struct minimal_symbol *
626 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
627 enum minimal_symbol_type ms_type,
628 char *info, int section,
629 asection *bfd_section,
630 struct objfile *objfile)
631 {
632 register struct msym_bunch *new;
633 register struct minimal_symbol *msymbol;
634
635 if (ms_type == mst_file_text)
636 {
637 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
638 the minimal symbols, because if there is also another symbol
639 at the same address (e.g. the first function of the file),
640 lookup_minimal_symbol_by_pc would have no way of getting the
641 right one. */
642 if (name[0] == 'g'
643 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
644 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
645 return (NULL);
646
647 {
648 const char *tempstring = name;
649 if (tempstring[0] == get_symbol_leading_char (objfile->obfd))
650 ++tempstring;
651 if (STREQN (tempstring, "__gnu_compiled", 14))
652 return (NULL);
653 }
654 }
655
656 if (msym_bunch_index == BUNCH_SIZE)
657 {
658 new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch));
659 msym_bunch_index = 0;
660 new->next = msym_bunch;
661 msym_bunch = new;
662 }
663 msymbol = &msym_bunch->contents[msym_bunch_index];
664 SYMBOL_NAME (msymbol) = obsavestring ((char *) name, strlen (name),
665 &objfile->symbol_obstack);
666 SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown);
667 SYMBOL_VALUE_ADDRESS (msymbol) = address;
668 SYMBOL_SECTION (msymbol) = section;
669 SYMBOL_BFD_SECTION (msymbol) = bfd_section;
670
671 MSYMBOL_TYPE (msymbol) = ms_type;
672 /* FIXME: This info, if it remains, needs its own field. */
673 MSYMBOL_INFO (msymbol) = info; /* FIXME! */
674
675 /* The hash pointers must be cleared! If they're not,
676 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
677 msymbol->hash_next = NULL;
678 msymbol->demangled_hash_next = NULL;
679
680 msym_bunch_index++;
681 msym_count++;
682 OBJSTAT (objfile, n_minsyms++);
683 return msymbol;
684 }
685
686 /* Compare two minimal symbols by address and return a signed result based
687 on unsigned comparisons, so that we sort into unsigned numeric order.
688 Within groups with the same address, sort by name. */
689
690 static int
691 compare_minimal_symbols (const PTR fn1p, const PTR fn2p)
692 {
693 register const struct minimal_symbol *fn1;
694 register const struct minimal_symbol *fn2;
695
696 fn1 = (const struct minimal_symbol *) fn1p;
697 fn2 = (const struct minimal_symbol *) fn2p;
698
699 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
700 {
701 return (-1); /* addr 1 is less than addr 2 */
702 }
703 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
704 {
705 return (1); /* addr 1 is greater than addr 2 */
706 }
707 else
708 /* addrs are equal: sort by name */
709 {
710 char *name1 = SYMBOL_NAME (fn1);
711 char *name2 = SYMBOL_NAME (fn2);
712
713 if (name1 && name2) /* both have names */
714 return strcmp (name1, name2);
715 else if (name2)
716 return 1; /* fn1 has no name, so it is "less" */
717 else if (name1) /* fn2 has no name, so it is "less" */
718 return -1;
719 else
720 return (0); /* neither has a name, so they're equal. */
721 }
722 }
723
724 /* Discard the currently collected minimal symbols, if any. If we wish
725 to save them for later use, we must have already copied them somewhere
726 else before calling this function.
727
728 FIXME: We could allocate the minimal symbol bunches on their own
729 obstack and then simply blow the obstack away when we are done with
730 it. Is it worth the extra trouble though? */
731
732 static void
733 do_discard_minimal_symbols_cleanup (void *arg)
734 {
735 register struct msym_bunch *next;
736
737 while (msym_bunch != NULL)
738 {
739 next = msym_bunch->next;
740 xfree (msym_bunch);
741 msym_bunch = next;
742 }
743 }
744
745 struct cleanup *
746 make_cleanup_discard_minimal_symbols (void)
747 {
748 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
749 }
750
751
752
753 /* Compact duplicate entries out of a minimal symbol table by walking
754 through the table and compacting out entries with duplicate addresses
755 and matching names. Return the number of entries remaining.
756
757 On entry, the table resides between msymbol[0] and msymbol[mcount].
758 On exit, it resides between msymbol[0] and msymbol[result_count].
759
760 When files contain multiple sources of symbol information, it is
761 possible for the minimal symbol table to contain many duplicate entries.
762 As an example, SVR4 systems use ELF formatted object files, which
763 usually contain at least two different types of symbol tables (a
764 standard ELF one and a smaller dynamic linking table), as well as
765 DWARF debugging information for files compiled with -g.
766
767 Without compacting, the minimal symbol table for gdb itself contains
768 over a 1000 duplicates, about a third of the total table size. Aside
769 from the potential trap of not noticing that two successive entries
770 identify the same location, this duplication impacts the time required
771 to linearly scan the table, which is done in a number of places. So we
772 just do one linear scan here and toss out the duplicates.
773
774 Note that we are not concerned here about recovering the space that
775 is potentially freed up, because the strings themselves are allocated
776 on the symbol_obstack, and will get automatically freed when the symbol
777 table is freed. The caller can free up the unused minimal symbols at
778 the end of the compacted region if their allocation strategy allows it.
779
780 Also note we only go up to the next to last entry within the loop
781 and then copy the last entry explicitly after the loop terminates.
782
783 Since the different sources of information for each symbol may
784 have different levels of "completeness", we may have duplicates
785 that have one entry with type "mst_unknown" and the other with a
786 known type. So if the one we are leaving alone has type mst_unknown,
787 overwrite its type with the type from the one we are compacting out. */
788
789 static int
790 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
791 struct objfile *objfile)
792 {
793 struct minimal_symbol *copyfrom;
794 struct minimal_symbol *copyto;
795
796 if (mcount > 0)
797 {
798 copyfrom = copyto = msymbol;
799 while (copyfrom < msymbol + mcount - 1)
800 {
801 if (SYMBOL_VALUE_ADDRESS (copyfrom) ==
802 SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) &&
803 (STREQ (SYMBOL_NAME (copyfrom), SYMBOL_NAME ((copyfrom + 1)))))
804 {
805 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
806 {
807 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
808 }
809 copyfrom++;
810 }
811 else
812 *copyto++ = *copyfrom++;
813 }
814 *copyto++ = *copyfrom++;
815 mcount = copyto - msymbol;
816 }
817 return (mcount);
818 }
819
820 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
821 after compacting or sorting the table since the entries move around
822 thus causing the internal minimal_symbol pointers to become jumbled. */
823
824 static void
825 build_minimal_symbol_hash_tables (struct objfile *objfile)
826 {
827 int i;
828 struct minimal_symbol *msym;
829
830 /* Clear the hash tables. */
831 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
832 {
833 objfile->msymbol_hash[i] = 0;
834 objfile->msymbol_demangled_hash[i] = 0;
835 }
836
837 /* Now, (re)insert the actual entries. */
838 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
839 i > 0;
840 i--, msym++)
841 {
842 msym->hash_next = 0;
843 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
844
845 msym->demangled_hash_next = 0;
846 if (SYMBOL_DEMANGLED_NAME (msym) != NULL)
847 add_minsym_to_demangled_hash_table (msym,
848 objfile->msymbol_demangled_hash);
849 }
850 }
851
852 /* Add the minimal symbols in the existing bunches to the objfile's official
853 minimal symbol table. In most cases there is no minimal symbol table yet
854 for this objfile, and the existing bunches are used to create one. Once
855 in a while (for shared libraries for example), we add symbols (e.g. common
856 symbols) to an existing objfile.
857
858 Because of the way minimal symbols are collected, we generally have no way
859 of knowing what source language applies to any particular minimal symbol.
860 Specifically, we have no way of knowing if the minimal symbol comes from a
861 C++ compilation unit or not. So for the sake of supporting cached
862 demangled C++ names, we have no choice but to try and demangle each new one
863 that comes in. If the demangling succeeds, then we assume it is a C++
864 symbol and set the symbol's language and demangled name fields
865 appropriately. Note that in order to avoid unnecessary demanglings, and
866 allocating obstack space that subsequently can't be freed for the demangled
867 names, we mark all newly added symbols with language_auto. After
868 compaction of the minimal symbols, we go back and scan the entire minimal
869 symbol table looking for these new symbols. For each new symbol we attempt
870 to demangle it, and if successful, record it as a language_cplus symbol
871 and cache the demangled form on the symbol obstack. Symbols which don't
872 demangle are marked as language_unknown symbols, which inhibits future
873 attempts to demangle them if we later add more minimal symbols. */
874
875 void
876 install_minimal_symbols (struct objfile *objfile)
877 {
878 register int bindex;
879 register int mcount;
880 register struct msym_bunch *bunch;
881 register struct minimal_symbol *msymbols;
882 int alloc_count;
883 register char leading_char;
884
885 if (msym_count > 0)
886 {
887 /* Allocate enough space in the obstack, into which we will gather the
888 bunches of new and existing minimal symbols, sort them, and then
889 compact out the duplicate entries. Once we have a final table,
890 we will give back the excess space. */
891
892 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
893 obstack_blank (&objfile->symbol_obstack,
894 alloc_count * sizeof (struct minimal_symbol));
895 msymbols = (struct minimal_symbol *)
896 obstack_base (&objfile->symbol_obstack);
897
898 /* Copy in the existing minimal symbols, if there are any. */
899
900 if (objfile->minimal_symbol_count)
901 memcpy ((char *) msymbols, (char *) objfile->msymbols,
902 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
903
904 /* Walk through the list of minimal symbol bunches, adding each symbol
905 to the new contiguous array of symbols. Note that we start with the
906 current, possibly partially filled bunch (thus we use the current
907 msym_bunch_index for the first bunch we copy over), and thereafter
908 each bunch is full. */
909
910 mcount = objfile->minimal_symbol_count;
911 leading_char = get_symbol_leading_char (objfile->obfd);
912
913 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
914 {
915 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
916 {
917 msymbols[mcount] = bunch->contents[bindex];
918 SYMBOL_LANGUAGE (&msymbols[mcount]) = language_auto;
919 if (SYMBOL_NAME (&msymbols[mcount])[0] == leading_char)
920 {
921 SYMBOL_NAME (&msymbols[mcount])++;
922 }
923 }
924 msym_bunch_index = BUNCH_SIZE;
925 }
926
927 /* Sort the minimal symbols by address. */
928
929 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
930 compare_minimal_symbols);
931
932 /* Compact out any duplicates, and free up whatever space we are
933 no longer using. */
934
935 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
936
937 obstack_blank (&objfile->symbol_obstack,
938 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
939 msymbols = (struct minimal_symbol *)
940 obstack_finish (&objfile->symbol_obstack);
941
942 /* We also terminate the minimal symbol table with a "null symbol",
943 which is *not* included in the size of the table. This makes it
944 easier to find the end of the table when we are handed a pointer
945 to some symbol in the middle of it. Zero out the fields in the
946 "null symbol" allocated at the end of the array. Note that the
947 symbol count does *not* include this null symbol, which is why it
948 is indexed by mcount and not mcount-1. */
949
950 SYMBOL_NAME (&msymbols[mcount]) = NULL;
951 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
952 MSYMBOL_INFO (&msymbols[mcount]) = NULL;
953 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
954 SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown);
955
956 /* Attach the minimal symbol table to the specified objfile.
957 The strings themselves are also located in the symbol_obstack
958 of this objfile. */
959
960 objfile->minimal_symbol_count = mcount;
961 objfile->msymbols = msymbols;
962
963 /* Try to guess the appropriate C++ ABI by looking at the names
964 of the minimal symbols in the table. */
965 {
966 int i;
967
968 for (i = 0; i < mcount; i++)
969 {
970 const char *name = SYMBOL_NAME (&objfile->msymbols[i]);
971 if (name[0] == '_' && name[1] == 'Z')
972 {
973 switch_to_cp_abi ("gnu-v3");
974 break;
975 }
976 }
977 }
978
979 /* Now walk through all the minimal symbols, selecting the newly added
980 ones and attempting to cache their C++ demangled names. */
981 for (; mcount-- > 0; msymbols++)
982 SYMBOL_INIT_DEMANGLED_NAME (msymbols, &objfile->symbol_obstack);
983
984 /* Now build the hash tables; we can't do this incrementally
985 at an earlier point since we weren't finished with the obstack
986 yet. (And if the msymbol obstack gets moved, all the internal
987 pointers to other msymbols need to be adjusted.) */
988 build_minimal_symbol_hash_tables (objfile);
989 }
990 }
991
992 /* Sort all the minimal symbols in OBJFILE. */
993
994 void
995 msymbols_sort (struct objfile *objfile)
996 {
997 qsort (objfile->msymbols, objfile->minimal_symbol_count,
998 sizeof (struct minimal_symbol), compare_minimal_symbols);
999 build_minimal_symbol_hash_tables (objfile);
1000 }
1001
1002 /* Check if PC is in a shared library trampoline code stub.
1003 Return minimal symbol for the trampoline entry or NULL if PC is not
1004 in a trampoline code stub. */
1005
1006 struct minimal_symbol *
1007 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1008 {
1009 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
1010
1011 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1012 return msymbol;
1013 return NULL;
1014 }
1015
1016 /* If PC is in a shared library trampoline code stub, return the
1017 address of the `real' function belonging to the stub.
1018 Return 0 if PC is not in a trampoline code stub or if the real
1019 function is not found in the minimal symbol table.
1020
1021 We may fail to find the right function if a function with the
1022 same name is defined in more than one shared library, but this
1023 is considered bad programming style. We could return 0 if we find
1024 a duplicate function in case this matters someday. */
1025
1026 CORE_ADDR
1027 find_solib_trampoline_target (CORE_ADDR pc)
1028 {
1029 struct objfile *objfile;
1030 struct minimal_symbol *msymbol;
1031 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1032
1033 if (tsymbol != NULL)
1034 {
1035 ALL_MSYMBOLS (objfile, msymbol)
1036 {
1037 if (MSYMBOL_TYPE (msymbol) == mst_text
1038 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (tsymbol)))
1039 return SYMBOL_VALUE_ADDRESS (msymbol);
1040 }
1041 }
1042 return 0;
1043 }
This page took 0.065256 seconds and 4 git commands to generate.