4551b078adf135e7676f56a91c8a534ae1a63f19
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying minimal symbol tables.
25
26 Minimal symbol tables are used to hold some very basic information about
27 all defined global symbols (text, data, bss, abs, etc). The only two
28 required pieces of information are the symbol's name and the address
29 associated with that symbol.
30
31 In many cases, even if a file was compiled with no special options for
32 debugging at all, as long as was not stripped it will contain sufficient
33 information to build useful minimal symbol tables using this structure.
34
35 Even when a file contains enough debugging information to build a full
36 symbol table, these minimal symbols are still useful for quickly mapping
37 between names and addresses, and vice versa. They are also sometimes used
38 to figure out what full symbol table entries need to be read in. */
39
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "gdb_string.h"
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "filenames.h"
47 #include "symfile.h"
48 #include "objfiles.h"
49 #include "demangle.h"
50 #include "value.h"
51 #include "cp-abi.h"
52 #include "target.h"
53 #include "cp-support.h"
54 #include "language.h"
55
56 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
57 At the end, copy them all into one newly allocated location on an objfile's
58 symbol obstack. */
59
60 #define BUNCH_SIZE 127
61
62 struct msym_bunch
63 {
64 struct msym_bunch *next;
65 struct minimal_symbol contents[BUNCH_SIZE];
66 };
67
68 /* Bunch currently being filled up.
69 The next field points to chain of filled bunches. */
70
71 static struct msym_bunch *msym_bunch;
72
73 /* Number of slots filled in current bunch. */
74
75 static int msym_bunch_index;
76
77 /* Total number of minimal symbols recorded so far for the objfile. */
78
79 static int msym_count;
80
81 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
82
83 unsigned int
84 msymbol_hash_iw (const char *string)
85 {
86 unsigned int hash = 0;
87
88 while (*string && *string != '(')
89 {
90 while (isspace (*string))
91 ++string;
92 if (*string && *string != '(')
93 {
94 hash = hash * 67 + *string - 113;
95 ++string;
96 }
97 }
98 return hash;
99 }
100
101 /* Compute a hash code for a string. */
102
103 unsigned int
104 msymbol_hash (const char *string)
105 {
106 unsigned int hash = 0;
107
108 for (; *string; ++string)
109 hash = hash * 67 + *string - 113;
110 return hash;
111 }
112
113 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
114 void
115 add_minsym_to_hash_table (struct minimal_symbol *sym,
116 struct minimal_symbol **table)
117 {
118 if (sym->hash_next == NULL)
119 {
120 unsigned int hash
121 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
122
123 sym->hash_next = table[hash];
124 table[hash] = sym;
125 }
126 }
127
128 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
129 TABLE. */
130 static void
131 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
132 struct minimal_symbol **table)
133 {
134 if (sym->demangled_hash_next == NULL)
135 {
136 unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
137 % MINIMAL_SYMBOL_HASH_SIZE;
138
139 sym->demangled_hash_next = table[hash];
140 table[hash] = sym;
141 }
142 }
143
144
145 /* Return OBJFILE where minimal symbol SYM is defined. */
146 struct objfile *
147 msymbol_objfile (struct minimal_symbol *sym)
148 {
149 struct objfile *objf;
150 struct minimal_symbol *tsym;
151
152 unsigned int hash
153 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
154
155 for (objf = object_files; objf; objf = objf->next)
156 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
157 if (tsym == sym)
158 return objf;
159
160 /* We should always be able to find the objfile ... */
161 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
162 }
163
164
165 /* Look through all the current minimal symbol tables and find the
166 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
167 the search to that objfile. If SFILE is non-NULL, the only file-scope
168 symbols considered will be from that source file (global symbols are
169 still preferred). Returns a pointer to the minimal symbol that
170 matches, or NULL if no match is found.
171
172 Note: One instance where there may be duplicate minimal symbols with
173 the same name is when the symbol tables for a shared library and the
174 symbol tables for an executable contain global symbols with the same
175 names (the dynamic linker deals with the duplication).
176
177 It's also possible to have minimal symbols with different mangled
178 names, but identical demangled names. For example, the GNU C++ v3
179 ABI requires the generation of two (or perhaps three) copies of
180 constructor functions --- "in-charge", "not-in-charge", and
181 "allocate" copies; destructors may be duplicated as well.
182 Obviously, there must be distinct mangled names for each of these,
183 but the demangled names are all the same: S::S or S::~S. */
184
185 struct minimal_symbol *
186 lookup_minimal_symbol (const char *name, const char *sfile,
187 struct objfile *objf)
188 {
189 struct objfile *objfile;
190 struct minimal_symbol *msymbol;
191 struct minimal_symbol *found_symbol = NULL;
192 struct minimal_symbol *found_file_symbol = NULL;
193 struct minimal_symbol *trampoline_symbol = NULL;
194
195 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
196 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
197
198 int needtofreename = 0;
199 const char *modified_name;
200
201 if (sfile != NULL)
202 sfile = lbasename (sfile);
203
204 /* For C++, canonicalize the input name. */
205 modified_name = name;
206 if (current_language->la_language == language_cplus)
207 {
208 char *cname = cp_canonicalize_string (name);
209
210 if (cname)
211 {
212 modified_name = cname;
213 needtofreename = 1;
214 }
215 }
216
217 for (objfile = object_files;
218 objfile != NULL && found_symbol == NULL;
219 objfile = objfile->next)
220 {
221 if (objf == NULL || objf == objfile
222 || objf == objfile->separate_debug_objfile_backlink)
223 {
224 /* Do two passes: the first over the ordinary hash table,
225 and the second over the demangled hash table. */
226 int pass;
227
228 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
229 {
230 /* Select hash list according to pass. */
231 if (pass == 1)
232 msymbol = objfile->msymbol_hash[hash];
233 else
234 msymbol = objfile->msymbol_demangled_hash[dem_hash];
235
236 while (msymbol != NULL && found_symbol == NULL)
237 {
238 int match;
239
240 if (pass == 1)
241 {
242 match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
243 modified_name) == 0;
244 }
245 else
246 {
247 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
248 modified_name);
249 }
250
251 if (match)
252 {
253 switch (MSYMBOL_TYPE (msymbol))
254 {
255 case mst_file_text:
256 case mst_file_data:
257 case mst_file_bss:
258 if (sfile == NULL
259 || filename_cmp (msymbol->filename, sfile) == 0)
260 found_file_symbol = msymbol;
261 break;
262
263 case mst_solib_trampoline:
264
265 /* If a trampoline symbol is found, we prefer to
266 keep looking for the *real* symbol. If the
267 actual symbol is not found, then we'll use the
268 trampoline entry. */
269 if (trampoline_symbol == NULL)
270 trampoline_symbol = msymbol;
271 break;
272
273 case mst_unknown:
274 default:
275 found_symbol = msymbol;
276 break;
277 }
278 }
279
280 /* Find the next symbol on the hash chain. */
281 if (pass == 1)
282 msymbol = msymbol->hash_next;
283 else
284 msymbol = msymbol->demangled_hash_next;
285 }
286 }
287 }
288 }
289
290 if (needtofreename)
291 xfree ((void *) modified_name);
292
293 /* External symbols are best. */
294 if (found_symbol)
295 return found_symbol;
296
297 /* File-local symbols are next best. */
298 if (found_file_symbol)
299 return found_file_symbol;
300
301 /* Symbols for shared library trampolines are next best. */
302 if (trampoline_symbol)
303 return trampoline_symbol;
304
305 return NULL;
306 }
307
308 /* Look through all the current minimal symbol tables and find the
309 first minimal symbol that matches NAME and has text type. If OBJF
310 is non-NULL, limit the search to that objfile. Returns a pointer
311 to the minimal symbol that matches, or NULL if no match is found.
312
313 This function only searches the mangled (linkage) names. */
314
315 struct minimal_symbol *
316 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
317 {
318 struct objfile *objfile;
319 struct minimal_symbol *msymbol;
320 struct minimal_symbol *found_symbol = NULL;
321 struct minimal_symbol *found_file_symbol = NULL;
322
323 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
324
325 for (objfile = object_files;
326 objfile != NULL && found_symbol == NULL;
327 objfile = objfile->next)
328 {
329 if (objf == NULL || objf == objfile
330 || objf == objfile->separate_debug_objfile_backlink)
331 {
332 for (msymbol = objfile->msymbol_hash[hash];
333 msymbol != NULL && found_symbol == NULL;
334 msymbol = msymbol->hash_next)
335 {
336 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
337 (MSYMBOL_TYPE (msymbol) == mst_text ||
338 MSYMBOL_TYPE (msymbol) == mst_file_text))
339 {
340 switch (MSYMBOL_TYPE (msymbol))
341 {
342 case mst_file_text:
343 found_file_symbol = msymbol;
344 break;
345 default:
346 found_symbol = msymbol;
347 break;
348 }
349 }
350 }
351 }
352 }
353 /* External symbols are best. */
354 if (found_symbol)
355 return found_symbol;
356
357 /* File-local symbols are next best. */
358 if (found_file_symbol)
359 return found_file_symbol;
360
361 return NULL;
362 }
363
364 /* Look through all the current minimal symbol tables and find the
365 first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
366 limit the search to that objfile. Returns a pointer to the minimal
367 symbol that matches, or NULL if no match is found. */
368
369 struct minimal_symbol *
370 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
371 struct objfile *objf)
372 {
373 struct objfile *objfile;
374 struct minimal_symbol *msymbol;
375
376 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
377
378 for (objfile = object_files;
379 objfile != NULL;
380 objfile = objfile->next)
381 {
382 if (objf == NULL || objf == objfile
383 || objf == objfile->separate_debug_objfile_backlink)
384 {
385 for (msymbol = objfile->msymbol_hash[hash];
386 msymbol != NULL;
387 msymbol = msymbol->hash_next)
388 {
389 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
390 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
391 return msymbol;
392 }
393 }
394 }
395
396 return NULL;
397 }
398
399 /* Look through all the current minimal symbol tables and find the
400 first minimal symbol that matches NAME and is a solib trampoline.
401 If OBJF is non-NULL, limit the search to that objfile. Returns a
402 pointer to the minimal symbol that matches, or NULL if no match is
403 found.
404
405 This function only searches the mangled (linkage) names. */
406
407 struct minimal_symbol *
408 lookup_minimal_symbol_solib_trampoline (const char *name,
409 struct objfile *objf)
410 {
411 struct objfile *objfile;
412 struct minimal_symbol *msymbol;
413 struct minimal_symbol *found_symbol = NULL;
414
415 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
416
417 for (objfile = object_files;
418 objfile != NULL && found_symbol == NULL;
419 objfile = objfile->next)
420 {
421 if (objf == NULL || objf == objfile
422 || objf == objfile->separate_debug_objfile_backlink)
423 {
424 for (msymbol = objfile->msymbol_hash[hash];
425 msymbol != NULL && found_symbol == NULL;
426 msymbol = msymbol->hash_next)
427 {
428 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
429 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
430 return msymbol;
431 }
432 }
433 }
434
435 return NULL;
436 }
437
438 /* Search through the minimal symbol table for each objfile and find
439 the symbol whose address is the largest address that is still less
440 than or equal to PC, and matches SECTION (which is not NULL).
441 Returns a pointer to the minimal symbol if such a symbol is found,
442 or NULL if PC is not in a suitable range.
443 Note that we need to look through ALL the minimal symbol tables
444 before deciding on the symbol that comes closest to the specified PC.
445 This is because objfiles can overlap, for example objfile A has .text
446 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
447 .data at 0x40048.
448
449 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
450 there are text and trampoline symbols at the same address.
451 Otherwise prefer mst_text symbols. */
452
453 static struct minimal_symbol *
454 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
455 struct obj_section *section,
456 int want_trampoline)
457 {
458 int lo;
459 int hi;
460 int new;
461 struct objfile *objfile;
462 struct minimal_symbol *msymbol;
463 struct minimal_symbol *best_symbol = NULL;
464 enum minimal_symbol_type want_type, other_type;
465
466 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
467 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
468
469 /* We can not require the symbol found to be in section, because
470 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
471 symbol - but find_pc_section won't return an absolute section and
472 hence the code below would skip over absolute symbols. We can
473 still take advantage of the call to find_pc_section, though - the
474 object file still must match. In case we have separate debug
475 files, search both the file and its separate debug file. There's
476 no telling which one will have the minimal symbols. */
477
478 gdb_assert (section != NULL);
479
480 for (objfile = section->objfile;
481 objfile != NULL;
482 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
483 {
484 /* If this objfile has a minimal symbol table, go search it using
485 a binary search. Note that a minimal symbol table always consists
486 of at least two symbols, a "real" symbol and the terminating
487 "null symbol". If there are no real symbols, then there is no
488 minimal symbol table at all. */
489
490 if (objfile->minimal_symbol_count > 0)
491 {
492 int best_zero_sized = -1;
493
494 msymbol = objfile->msymbols;
495 lo = 0;
496 hi = objfile->minimal_symbol_count - 1;
497
498 /* This code assumes that the minimal symbols are sorted by
499 ascending address values. If the pc value is greater than or
500 equal to the first symbol's address, then some symbol in this
501 minimal symbol table is a suitable candidate for being the
502 "best" symbol. This includes the last real symbol, for cases
503 where the pc value is larger than any address in this vector.
504
505 By iterating until the address associated with the current
506 hi index (the endpoint of the test interval) is less than
507 or equal to the desired pc value, we accomplish two things:
508 (1) the case where the pc value is larger than any minimal
509 symbol address is trivially solved, (2) the address associated
510 with the hi index is always the one we want when the interation
511 terminates. In essence, we are iterating the test interval
512 down until the pc value is pushed out of it from the high end.
513
514 Warning: this code is trickier than it would appear at first. */
515
516 /* Should also require that pc is <= end of objfile. FIXME! */
517 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
518 {
519 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
520 {
521 /* pc is still strictly less than highest address. */
522 /* Note "new" will always be >= lo. */
523 new = (lo + hi) / 2;
524 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
525 (lo == new))
526 {
527 hi = new;
528 }
529 else
530 {
531 lo = new;
532 }
533 }
534
535 /* If we have multiple symbols at the same address, we want
536 hi to point to the last one. That way we can find the
537 right symbol if it has an index greater than hi. */
538 while (hi < objfile->minimal_symbol_count - 1
539 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
540 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
541 hi++;
542
543 /* Skip various undesirable symbols. */
544 while (hi >= 0)
545 {
546 /* Skip any absolute symbols. This is apparently
547 what adb and dbx do, and is needed for the CM-5.
548 There are two known possible problems: (1) on
549 ELF, apparently end, edata, etc. are absolute.
550 Not sure ignoring them here is a big deal, but if
551 we want to use them, the fix would go in
552 elfread.c. (2) I think shared library entry
553 points on the NeXT are absolute. If we want
554 special handling for this it probably should be
555 triggered by a special mst_abs_or_lib or some
556 such. */
557
558 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
559 {
560 hi--;
561 continue;
562 }
563
564 /* If SECTION was specified, skip any symbol from
565 wrong section. */
566 if (section
567 /* Some types of debug info, such as COFF,
568 don't fill the bfd_section member, so don't
569 throw away symbols on those platforms. */
570 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
571 && (!matching_obj_sections
572 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
573 {
574 hi--;
575 continue;
576 }
577
578 /* If we are looking for a trampoline and this is a
579 text symbol, or the other way around, check the
580 preceeding symbol too. If they are otherwise
581 identical prefer that one. */
582 if (hi > 0
583 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
584 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
585 && (MSYMBOL_SIZE (&msymbol[hi])
586 == MSYMBOL_SIZE (&msymbol[hi - 1]))
587 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
588 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
589 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
590 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
591 {
592 hi--;
593 continue;
594 }
595
596 /* If the minimal symbol has a zero size, save it
597 but keep scanning backwards looking for one with
598 a non-zero size. A zero size may mean that the
599 symbol isn't an object or function (e.g. a
600 label), or it may just mean that the size was not
601 specified. */
602 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
603 && best_zero_sized == -1)
604 {
605 best_zero_sized = hi;
606 hi--;
607 continue;
608 }
609
610 /* If we are past the end of the current symbol, try
611 the previous symbol if it has a larger overlapping
612 size. This happens on i686-pc-linux-gnu with glibc;
613 the nocancel variants of system calls are inside
614 the cancellable variants, but both have sizes. */
615 if (hi > 0
616 && MSYMBOL_SIZE (&msymbol[hi]) != 0
617 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
618 + MSYMBOL_SIZE (&msymbol[hi]))
619 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
620 + MSYMBOL_SIZE (&msymbol[hi - 1])))
621 {
622 hi--;
623 continue;
624 }
625
626 /* Otherwise, this symbol must be as good as we're going
627 to get. */
628 break;
629 }
630
631 /* If HI has a zero size, and best_zero_sized is set,
632 then we had two or more zero-sized symbols; prefer
633 the first one we found (which may have a higher
634 address). Also, if we ran off the end, be sure
635 to back up. */
636 if (best_zero_sized != -1
637 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
638 hi = best_zero_sized;
639
640 /* If the minimal symbol has a non-zero size, and this
641 PC appears to be outside the symbol's contents, then
642 refuse to use this symbol. If we found a zero-sized
643 symbol with an address greater than this symbol's,
644 use that instead. We assume that if symbols have
645 specified sizes, they do not overlap. */
646
647 if (hi >= 0
648 && MSYMBOL_SIZE (&msymbol[hi]) != 0
649 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
650 + MSYMBOL_SIZE (&msymbol[hi])))
651 {
652 if (best_zero_sized != -1)
653 hi = best_zero_sized;
654 else
655 /* Go on to the next object file. */
656 continue;
657 }
658
659 /* The minimal symbol indexed by hi now is the best one in this
660 objfile's minimal symbol table. See if it is the best one
661 overall. */
662
663 if (hi >= 0
664 && ((best_symbol == NULL) ||
665 (SYMBOL_VALUE_ADDRESS (best_symbol) <
666 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
667 {
668 best_symbol = &msymbol[hi];
669 }
670 }
671 }
672 }
673 return (best_symbol);
674 }
675
676 struct minimal_symbol *
677 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
678 {
679 if (section == NULL)
680 {
681 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
682 force the section but that (well unless you're doing overlay
683 debugging) always returns NULL making the call somewhat useless. */
684 section = find_pc_section (pc);
685 if (section == NULL)
686 return NULL;
687 }
688 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
689 }
690
691 /* Backward compatibility: search through the minimal symbol table
692 for a matching PC (no section given). */
693
694 struct minimal_symbol *
695 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
696 {
697 return lookup_minimal_symbol_by_pc_section (pc, NULL);
698 }
699
700 /* Find the minimal symbol named NAME, and return both the minsym
701 struct and its objfile. This only checks the linkage name. Sets
702 *OBJFILE_P and returns the minimal symbol, if it is found. If it
703 is not found, returns NULL. */
704
705 struct minimal_symbol *
706 lookup_minimal_symbol_and_objfile (const char *name,
707 struct objfile **objfile_p)
708 {
709 struct objfile *objfile;
710 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
711
712 ALL_OBJFILES (objfile)
713 {
714 struct minimal_symbol *msym;
715
716 for (msym = objfile->msymbol_hash[hash];
717 msym != NULL;
718 msym = msym->hash_next)
719 {
720 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
721 {
722 *objfile_p = objfile;
723 return msym;
724 }
725 }
726 }
727
728 return 0;
729 }
730 \f
731
732 /* Return leading symbol character for a BFD. If BFD is NULL,
733 return the leading symbol character from the main objfile. */
734
735 static int get_symbol_leading_char (bfd *);
736
737 static int
738 get_symbol_leading_char (bfd *abfd)
739 {
740 if (abfd != NULL)
741 return bfd_get_symbol_leading_char (abfd);
742 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
743 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
744 return 0;
745 }
746
747 /* Prepare to start collecting minimal symbols. Note that presetting
748 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
749 symbol to allocate the memory for the first bunch. */
750
751 void
752 init_minimal_symbol_collection (void)
753 {
754 msym_count = 0;
755 msym_bunch = NULL;
756 msym_bunch_index = BUNCH_SIZE;
757 }
758
759 void
760 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
761 enum minimal_symbol_type ms_type,
762 struct objfile *objfile)
763 {
764 int section;
765
766 switch (ms_type)
767 {
768 case mst_text:
769 case mst_file_text:
770 case mst_solib_trampoline:
771 section = SECT_OFF_TEXT (objfile);
772 break;
773 case mst_data:
774 case mst_file_data:
775 section = SECT_OFF_DATA (objfile);
776 break;
777 case mst_bss:
778 case mst_file_bss:
779 section = SECT_OFF_BSS (objfile);
780 break;
781 default:
782 section = -1;
783 }
784
785 prim_record_minimal_symbol_and_info (name, address, ms_type,
786 section, NULL, objfile);
787 }
788
789 /* Record a minimal symbol in the msym bunches. Returns the symbol
790 newly created. */
791
792 struct minimal_symbol *
793 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
794 CORE_ADDR address,
795 enum minimal_symbol_type ms_type,
796 int section,
797 asection *bfd_section,
798 struct objfile *objfile)
799 {
800 struct obj_section *obj_section;
801 struct msym_bunch *new;
802 struct minimal_symbol *msymbol;
803
804 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
805 the minimal symbols, because if there is also another symbol
806 at the same address (e.g. the first function of the file),
807 lookup_minimal_symbol_by_pc would have no way of getting the
808 right one. */
809 if (ms_type == mst_file_text && name[0] == 'g'
810 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
811 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
812 return (NULL);
813
814 /* It's safe to strip the leading char here once, since the name
815 is also stored stripped in the minimal symbol table. */
816 if (name[0] == get_symbol_leading_char (objfile->obfd))
817 {
818 ++name;
819 --name_len;
820 }
821
822 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
823 return (NULL);
824
825 if (msym_bunch_index == BUNCH_SIZE)
826 {
827 new = XCALLOC (1, struct msym_bunch);
828 msym_bunch_index = 0;
829 new->next = msym_bunch;
830 msym_bunch = new;
831 }
832 msymbol = &msym_bunch->contents[msym_bunch_index];
833 SYMBOL_SET_LANGUAGE (msymbol, language_auto);
834 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
835
836 SYMBOL_VALUE_ADDRESS (msymbol) = address;
837 SYMBOL_SECTION (msymbol) = section;
838 SYMBOL_OBJ_SECTION (msymbol) = NULL;
839
840 /* Find obj_section corresponding to bfd_section. */
841 if (bfd_section)
842 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
843 {
844 if (obj_section->the_bfd_section == bfd_section)
845 {
846 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
847 break;
848 }
849 }
850
851 MSYMBOL_TYPE (msymbol) = ms_type;
852 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
853 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
854 MSYMBOL_SIZE (msymbol) = 0;
855
856 /* The hash pointers must be cleared! If they're not,
857 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
858 msymbol->hash_next = NULL;
859 msymbol->demangled_hash_next = NULL;
860
861 msym_bunch_index++;
862 msym_count++;
863 OBJSTAT (objfile, n_minsyms++);
864 return msymbol;
865 }
866
867 /* Record a minimal symbol in the msym bunches. Returns the symbol
868 newly created. */
869
870 struct minimal_symbol *
871 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
872 enum minimal_symbol_type ms_type,
873 int section,
874 asection *bfd_section,
875 struct objfile *objfile)
876 {
877 return prim_record_minimal_symbol_full (name, strlen (name), 1,
878 address, ms_type, section,
879 bfd_section, objfile);
880 }
881
882 /* Compare two minimal symbols by address and return a signed result based
883 on unsigned comparisons, so that we sort into unsigned numeric order.
884 Within groups with the same address, sort by name. */
885
886 static int
887 compare_minimal_symbols (const void *fn1p, const void *fn2p)
888 {
889 const struct minimal_symbol *fn1;
890 const struct minimal_symbol *fn2;
891
892 fn1 = (const struct minimal_symbol *) fn1p;
893 fn2 = (const struct minimal_symbol *) fn2p;
894
895 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
896 {
897 return (-1); /* addr 1 is less than addr 2. */
898 }
899 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
900 {
901 return (1); /* addr 1 is greater than addr 2. */
902 }
903 else
904 /* addrs are equal: sort by name */
905 {
906 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
907 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
908
909 if (name1 && name2) /* both have names */
910 return strcmp (name1, name2);
911 else if (name2)
912 return 1; /* fn1 has no name, so it is "less". */
913 else if (name1) /* fn2 has no name, so it is "less". */
914 return -1;
915 else
916 return (0); /* Neither has a name, so they're equal. */
917 }
918 }
919
920 /* Discard the currently collected minimal symbols, if any. If we wish
921 to save them for later use, we must have already copied them somewhere
922 else before calling this function.
923
924 FIXME: We could allocate the minimal symbol bunches on their own
925 obstack and then simply blow the obstack away when we are done with
926 it. Is it worth the extra trouble though? */
927
928 static void
929 do_discard_minimal_symbols_cleanup (void *arg)
930 {
931 struct msym_bunch *next;
932
933 while (msym_bunch != NULL)
934 {
935 next = msym_bunch->next;
936 xfree (msym_bunch);
937 msym_bunch = next;
938 }
939 }
940
941 struct cleanup *
942 make_cleanup_discard_minimal_symbols (void)
943 {
944 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
945 }
946
947
948
949 /* Compact duplicate entries out of a minimal symbol table by walking
950 through the table and compacting out entries with duplicate addresses
951 and matching names. Return the number of entries remaining.
952
953 On entry, the table resides between msymbol[0] and msymbol[mcount].
954 On exit, it resides between msymbol[0] and msymbol[result_count].
955
956 When files contain multiple sources of symbol information, it is
957 possible for the minimal symbol table to contain many duplicate entries.
958 As an example, SVR4 systems use ELF formatted object files, which
959 usually contain at least two different types of symbol tables (a
960 standard ELF one and a smaller dynamic linking table), as well as
961 DWARF debugging information for files compiled with -g.
962
963 Without compacting, the minimal symbol table for gdb itself contains
964 over a 1000 duplicates, about a third of the total table size. Aside
965 from the potential trap of not noticing that two successive entries
966 identify the same location, this duplication impacts the time required
967 to linearly scan the table, which is done in a number of places. So we
968 just do one linear scan here and toss out the duplicates.
969
970 Note that we are not concerned here about recovering the space that
971 is potentially freed up, because the strings themselves are allocated
972 on the objfile_obstack, and will get automatically freed when the symbol
973 table is freed. The caller can free up the unused minimal symbols at
974 the end of the compacted region if their allocation strategy allows it.
975
976 Also note we only go up to the next to last entry within the loop
977 and then copy the last entry explicitly after the loop terminates.
978
979 Since the different sources of information for each symbol may
980 have different levels of "completeness", we may have duplicates
981 that have one entry with type "mst_unknown" and the other with a
982 known type. So if the one we are leaving alone has type mst_unknown,
983 overwrite its type with the type from the one we are compacting out. */
984
985 static int
986 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
987 struct objfile *objfile)
988 {
989 struct minimal_symbol *copyfrom;
990 struct minimal_symbol *copyto;
991
992 if (mcount > 0)
993 {
994 copyfrom = copyto = msymbol;
995 while (copyfrom < msymbol + mcount - 1)
996 {
997 if (SYMBOL_VALUE_ADDRESS (copyfrom)
998 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
999 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1000 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1001 {
1002 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1003 {
1004 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1005 }
1006 copyfrom++;
1007 }
1008 else
1009 *copyto++ = *copyfrom++;
1010 }
1011 *copyto++ = *copyfrom++;
1012 mcount = copyto - msymbol;
1013 }
1014 return (mcount);
1015 }
1016
1017 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1018 after compacting or sorting the table since the entries move around
1019 thus causing the internal minimal_symbol pointers to become jumbled. */
1020
1021 static void
1022 build_minimal_symbol_hash_tables (struct objfile *objfile)
1023 {
1024 int i;
1025 struct minimal_symbol *msym;
1026
1027 /* Clear the hash tables. */
1028 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1029 {
1030 objfile->msymbol_hash[i] = 0;
1031 objfile->msymbol_demangled_hash[i] = 0;
1032 }
1033
1034 /* Now, (re)insert the actual entries. */
1035 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1036 i > 0;
1037 i--, msym++)
1038 {
1039 msym->hash_next = 0;
1040 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1041
1042 msym->demangled_hash_next = 0;
1043 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1044 add_minsym_to_demangled_hash_table (msym,
1045 objfile->msymbol_demangled_hash);
1046 }
1047 }
1048
1049 /* Add the minimal symbols in the existing bunches to the objfile's official
1050 minimal symbol table. In most cases there is no minimal symbol table yet
1051 for this objfile, and the existing bunches are used to create one. Once
1052 in a while (for shared libraries for example), we add symbols (e.g. common
1053 symbols) to an existing objfile.
1054
1055 Because of the way minimal symbols are collected, we generally have no way
1056 of knowing what source language applies to any particular minimal symbol.
1057 Specifically, we have no way of knowing if the minimal symbol comes from a
1058 C++ compilation unit or not. So for the sake of supporting cached
1059 demangled C++ names, we have no choice but to try and demangle each new one
1060 that comes in. If the demangling succeeds, then we assume it is a C++
1061 symbol and set the symbol's language and demangled name fields
1062 appropriately. Note that in order to avoid unnecessary demanglings, and
1063 allocating obstack space that subsequently can't be freed for the demangled
1064 names, we mark all newly added symbols with language_auto. After
1065 compaction of the minimal symbols, we go back and scan the entire minimal
1066 symbol table looking for these new symbols. For each new symbol we attempt
1067 to demangle it, and if successful, record it as a language_cplus symbol
1068 and cache the demangled form on the symbol obstack. Symbols which don't
1069 demangle are marked as language_unknown symbols, which inhibits future
1070 attempts to demangle them if we later add more minimal symbols. */
1071
1072 void
1073 install_minimal_symbols (struct objfile *objfile)
1074 {
1075 int bindex;
1076 int mcount;
1077 struct msym_bunch *bunch;
1078 struct minimal_symbol *msymbols;
1079 int alloc_count;
1080
1081 if (msym_count > 0)
1082 {
1083 /* Allocate enough space in the obstack, into which we will gather the
1084 bunches of new and existing minimal symbols, sort them, and then
1085 compact out the duplicate entries. Once we have a final table,
1086 we will give back the excess space. */
1087
1088 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1089 obstack_blank (&objfile->objfile_obstack,
1090 alloc_count * sizeof (struct minimal_symbol));
1091 msymbols = (struct minimal_symbol *)
1092 obstack_base (&objfile->objfile_obstack);
1093
1094 /* Copy in the existing minimal symbols, if there are any. */
1095
1096 if (objfile->minimal_symbol_count)
1097 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1098 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1099
1100 /* Walk through the list of minimal symbol bunches, adding each symbol
1101 to the new contiguous array of symbols. Note that we start with the
1102 current, possibly partially filled bunch (thus we use the current
1103 msym_bunch_index for the first bunch we copy over), and thereafter
1104 each bunch is full. */
1105
1106 mcount = objfile->minimal_symbol_count;
1107
1108 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1109 {
1110 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1111 msymbols[mcount] = bunch->contents[bindex];
1112 msym_bunch_index = BUNCH_SIZE;
1113 }
1114
1115 /* Sort the minimal symbols by address. */
1116
1117 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1118 compare_minimal_symbols);
1119
1120 /* Compact out any duplicates, and free up whatever space we are
1121 no longer using. */
1122
1123 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1124
1125 obstack_blank (&objfile->objfile_obstack,
1126 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1127 msymbols = (struct minimal_symbol *)
1128 obstack_finish (&objfile->objfile_obstack);
1129
1130 /* We also terminate the minimal symbol table with a "null symbol",
1131 which is *not* included in the size of the table. This makes it
1132 easier to find the end of the table when we are handed a pointer
1133 to some symbol in the middle of it. Zero out the fields in the
1134 "null symbol" allocated at the end of the array. Note that the
1135 symbol count does *not* include this null symbol, which is why it
1136 is indexed by mcount and not mcount-1. */
1137
1138 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1139 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1140 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1141 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1142 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1143 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1144 SYMBOL_SET_LANGUAGE (&msymbols[mcount], language_unknown);
1145
1146 /* Attach the minimal symbol table to the specified objfile.
1147 The strings themselves are also located in the objfile_obstack
1148 of this objfile. */
1149
1150 objfile->minimal_symbol_count = mcount;
1151 objfile->msymbols = msymbols;
1152
1153 /* Try to guess the appropriate C++ ABI by looking at the names
1154 of the minimal symbols in the table. */
1155 {
1156 int i;
1157
1158 for (i = 0; i < mcount; i++)
1159 {
1160 /* If a symbol's name starts with _Z and was successfully
1161 demangled, then we can assume we've found a GNU v3 symbol.
1162 For now we set the C++ ABI globally; if the user is
1163 mixing ABIs then the user will need to "set cp-abi"
1164 manually. */
1165 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1166
1167 if (name[0] == '_' && name[1] == 'Z'
1168 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1169 {
1170 set_cp_abi_as_auto_default ("gnu-v3");
1171 break;
1172 }
1173 }
1174 }
1175
1176 /* Now build the hash tables; we can't do this incrementally
1177 at an earlier point since we weren't finished with the obstack
1178 yet. (And if the msymbol obstack gets moved, all the internal
1179 pointers to other msymbols need to be adjusted.) */
1180 build_minimal_symbol_hash_tables (objfile);
1181 }
1182 }
1183
1184 /* Sort all the minimal symbols in OBJFILE. */
1185
1186 void
1187 msymbols_sort (struct objfile *objfile)
1188 {
1189 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1190 sizeof (struct minimal_symbol), compare_minimal_symbols);
1191 build_minimal_symbol_hash_tables (objfile);
1192 }
1193
1194 /* Check if PC is in a shared library trampoline code stub.
1195 Return minimal symbol for the trampoline entry or NULL if PC is not
1196 in a trampoline code stub. */
1197
1198 struct minimal_symbol *
1199 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1200 {
1201 struct obj_section *section = find_pc_section (pc);
1202 struct minimal_symbol *msymbol;
1203
1204 if (section == NULL)
1205 return NULL;
1206 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1207
1208 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1209 return msymbol;
1210 return NULL;
1211 }
1212
1213 /* If PC is in a shared library trampoline code stub, return the
1214 address of the `real' function belonging to the stub.
1215 Return 0 if PC is not in a trampoline code stub or if the real
1216 function is not found in the minimal symbol table.
1217
1218 We may fail to find the right function if a function with the
1219 same name is defined in more than one shared library, but this
1220 is considered bad programming style. We could return 0 if we find
1221 a duplicate function in case this matters someday. */
1222
1223 CORE_ADDR
1224 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1225 {
1226 struct objfile *objfile;
1227 struct minimal_symbol *msymbol;
1228 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1229
1230 if (tsymbol != NULL)
1231 {
1232 ALL_MSYMBOLS (objfile, msymbol)
1233 {
1234 if (MSYMBOL_TYPE (msymbol) == mst_text
1235 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1236 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1237 return SYMBOL_VALUE_ADDRESS (msymbol);
1238
1239 /* Also handle minimal symbols pointing to function descriptors. */
1240 if (MSYMBOL_TYPE (msymbol) == mst_data
1241 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1242 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1243 {
1244 CORE_ADDR func;
1245
1246 func = gdbarch_convert_from_func_ptr_addr
1247 (get_objfile_arch (objfile),
1248 SYMBOL_VALUE_ADDRESS (msymbol),
1249 &current_target);
1250
1251 /* Ignore data symbols that are not function descriptors. */
1252 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1253 return func;
1254 }
1255 }
1256 }
1257 return 0;
1258 }
This page took 0.056078 seconds and 4 git commands to generate.