gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "target.h"
23 #include "solib-svr4.h"
24 #include "osabi.h"
25 #include "mips-tdep.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "regcache.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "solib.h"
35 #include "solib-svr4.h"
36 #include "solist.h"
37 #include "symtab.h"
38 #include "target-descriptions.h"
39 #include "regset.h"
40 #include "mips-linux-tdep.h"
41 #include "glibc-tdep.h"
42 #include "linux-tdep.h"
43 #include "xml-syscall.h"
44 #include "gdb_signals.h"
45
46 static struct target_so_ops mips_svr4_so_ops;
47
48 /* Figure out where the longjmp will land.
49 We expect the first arg to be a pointer to the jmp_buf structure
50 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
51 at. The pc is copied into PC. This routine returns 1 on
52 success. */
53
54 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
55 #define MIPS_LINUX_JB_PC 0
56
57 static int
58 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
59 {
60 CORE_ADDR jb_addr;
61 struct gdbarch *gdbarch = get_frame_arch (frame);
62 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
64
65 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
66
67 if (target_read_memory ((jb_addr
68 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
69 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
70 return 0;
71
72 *pc = extract_unsigned_integer (buf,
73 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
74 byte_order);
75
76 return 1;
77 }
78
79 /* Transform the bits comprising a 32-bit register to the right size
80 for regcache_raw_supply(). This is needed when mips_isa_regsize()
81 is 8. */
82
83 static void
84 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
85 {
86 struct gdbarch *gdbarch = get_regcache_arch (regcache);
87 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
88 gdb_byte buf[MAX_REGISTER_SIZE];
89 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
90 extract_signed_integer (addr, 4, byte_order));
91 regcache_raw_supply (regcache, regnum, buf);
92 }
93
94 /* Unpack an elf_gregset_t into GDB's register cache. */
95
96 void
97 mips_supply_gregset (struct regcache *regcache,
98 const mips_elf_gregset_t *gregsetp)
99 {
100 int regi;
101 const mips_elf_greg_t *regp = *gregsetp;
102 char zerobuf[MAX_REGISTER_SIZE];
103 struct gdbarch *gdbarch = get_regcache_arch (regcache);
104
105 memset (zerobuf, 0, MAX_REGISTER_SIZE);
106
107 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
108 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
109
110 if (mips_linux_restart_reg_p (gdbarch))
111 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
112
113 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
114 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
115
116 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
117 regp + EF_CP0_EPC);
118 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
119 regp + EF_CP0_BADVADDR);
120 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
121 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
122 regp + EF_CP0_CAUSE);
123
124 /* Fill the inaccessible zero register with zero. */
125 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
126 }
127
128 static void
129 mips_supply_gregset_wrapper (const struct regset *regset,
130 struct regcache *regcache,
131 int regnum, const void *gregs, size_t len)
132 {
133 gdb_assert (len == sizeof (mips_elf_gregset_t));
134
135 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
136 }
137
138 /* Pack our registers (or one register) into an elf_gregset_t. */
139
140 void
141 mips_fill_gregset (const struct regcache *regcache,
142 mips_elf_gregset_t *gregsetp, int regno)
143 {
144 struct gdbarch *gdbarch = get_regcache_arch (regcache);
145 int regaddr, regi;
146 mips_elf_greg_t *regp = *gregsetp;
147 void *dst;
148
149 if (regno == -1)
150 {
151 memset (regp, 0, sizeof (mips_elf_gregset_t));
152 for (regi = 1; regi < 32; regi++)
153 mips_fill_gregset (regcache, gregsetp, regi);
154 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
155 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
156 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
157 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
158 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
159 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
160 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
161 return;
162 }
163
164 if (regno > 0 && regno < 32)
165 {
166 dst = regp + regno + EF_REG0;
167 regcache_raw_collect (regcache, regno, dst);
168 return;
169 }
170
171 if (regno == mips_regnum (gdbarch)->lo)
172 regaddr = EF_LO;
173 else if (regno == mips_regnum (gdbarch)->hi)
174 regaddr = EF_HI;
175 else if (regno == mips_regnum (gdbarch)->pc)
176 regaddr = EF_CP0_EPC;
177 else if (regno == mips_regnum (gdbarch)->badvaddr)
178 regaddr = EF_CP0_BADVADDR;
179 else if (regno == MIPS_PS_REGNUM)
180 regaddr = EF_CP0_STATUS;
181 else if (regno == mips_regnum (gdbarch)->cause)
182 regaddr = EF_CP0_CAUSE;
183 else if (mips_linux_restart_reg_p (gdbarch)
184 && regno == MIPS_RESTART_REGNUM)
185 regaddr = EF_REG0;
186 else
187 regaddr = -1;
188
189 if (regaddr != -1)
190 {
191 dst = regp + regaddr;
192 regcache_raw_collect (regcache, regno, dst);
193 }
194 }
195
196 static void
197 mips_fill_gregset_wrapper (const struct regset *regset,
198 const struct regcache *regcache,
199 int regnum, void *gregs, size_t len)
200 {
201 gdb_assert (len == sizeof (mips_elf_gregset_t));
202
203 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
204 }
205
206 /* Likewise, unpack an elf_fpregset_t. */
207
208 void
209 mips_supply_fpregset (struct regcache *regcache,
210 const mips_elf_fpregset_t *fpregsetp)
211 {
212 struct gdbarch *gdbarch = get_regcache_arch (regcache);
213 int regi;
214 char zerobuf[MAX_REGISTER_SIZE];
215
216 memset (zerobuf, 0, MAX_REGISTER_SIZE);
217
218 for (regi = 0; regi < 32; regi++)
219 regcache_raw_supply (regcache,
220 gdbarch_fp0_regnum (gdbarch) + regi,
221 *fpregsetp + regi);
222
223 regcache_raw_supply (regcache,
224 mips_regnum (gdbarch)->fp_control_status,
225 *fpregsetp + 32);
226
227 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
228 regcache_raw_supply (regcache,
229 mips_regnum (gdbarch)->fp_implementation_revision,
230 zerobuf);
231 }
232
233 static void
234 mips_supply_fpregset_wrapper (const struct regset *regset,
235 struct regcache *regcache,
236 int regnum, const void *gregs, size_t len)
237 {
238 gdb_assert (len == sizeof (mips_elf_fpregset_t));
239
240 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
241 }
242
243 /* Likewise, pack one or all floating point registers into an
244 elf_fpregset_t. */
245
246 void
247 mips_fill_fpregset (const struct regcache *regcache,
248 mips_elf_fpregset_t *fpregsetp, int regno)
249 {
250 struct gdbarch *gdbarch = get_regcache_arch (regcache);
251 char *to;
252
253 if ((regno >= gdbarch_fp0_regnum (gdbarch))
254 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
255 {
256 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
257 regcache_raw_collect (regcache, regno, to);
258 }
259 else if (regno == mips_regnum (gdbarch)->fp_control_status)
260 {
261 to = (char *) (*fpregsetp + 32);
262 regcache_raw_collect (regcache, regno, to);
263 }
264 else if (regno == -1)
265 {
266 int regi;
267
268 for (regi = 0; regi < 32; regi++)
269 mips_fill_fpregset (regcache, fpregsetp,
270 gdbarch_fp0_regnum (gdbarch) + regi);
271 mips_fill_fpregset (regcache, fpregsetp,
272 mips_regnum (gdbarch)->fp_control_status);
273 }
274 }
275
276 static void
277 mips_fill_fpregset_wrapper (const struct regset *regset,
278 const struct regcache *regcache,
279 int regnum, void *gregs, size_t len)
280 {
281 gdb_assert (len == sizeof (mips_elf_fpregset_t));
282
283 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
284 }
285
286 /* Support for 64-bit ABIs. */
287
288 /* Figure out where the longjmp will land.
289 We expect the first arg to be a pointer to the jmp_buf structure
290 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
291 at. The pc is copied into PC. This routine returns 1 on
292 success. */
293
294 /* Details about jmp_buf. */
295
296 #define MIPS64_LINUX_JB_PC 0
297
298 static int
299 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
300 {
301 CORE_ADDR jb_addr;
302 struct gdbarch *gdbarch = get_frame_arch (frame);
303 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
304 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
305 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
306
307 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
308
309 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
310 buf,
311 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
312 return 0;
313
314 *pc = extract_unsigned_integer (buf,
315 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
316 byte_order);
317
318 return 1;
319 }
320
321 /* Register set support functions. These operate on standard 64-bit
322 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
323 target will still use the 64-bit format for PTRACE_GETREGS. */
324
325 /* Supply a 64-bit register. */
326
327 static void
328 supply_64bit_reg (struct regcache *regcache, int regnum,
329 const gdb_byte *buf)
330 {
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
333 && register_size (gdbarch, regnum) == 4)
334 regcache_raw_supply (regcache, regnum, buf + 4);
335 else
336 regcache_raw_supply (regcache, regnum, buf);
337 }
338
339 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
340
341 void
342 mips64_supply_gregset (struct regcache *regcache,
343 const mips64_elf_gregset_t *gregsetp)
344 {
345 int regi;
346 const mips64_elf_greg_t *regp = *gregsetp;
347 gdb_byte zerobuf[MAX_REGISTER_SIZE];
348 struct gdbarch *gdbarch = get_regcache_arch (regcache);
349
350 memset (zerobuf, 0, MAX_REGISTER_SIZE);
351
352 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
353 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
354 (const gdb_byte *) (regp + regi));
355
356 if (mips_linux_restart_reg_p (gdbarch))
357 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
358 (const gdb_byte *) (regp + MIPS64_EF_REG0));
359
360 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
361 (const gdb_byte *) (regp + MIPS64_EF_LO));
362 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
363 (const gdb_byte *) (regp + MIPS64_EF_HI));
364
365 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
366 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
367 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
368 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
369 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
370 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
371 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
372 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
373
374 /* Fill the inaccessible zero register with zero. */
375 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
376 }
377
378 static void
379 mips64_supply_gregset_wrapper (const struct regset *regset,
380 struct regcache *regcache,
381 int regnum, const void *gregs, size_t len)
382 {
383 gdb_assert (len == sizeof (mips64_elf_gregset_t));
384
385 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
386 }
387
388 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
389
390 void
391 mips64_fill_gregset (const struct regcache *regcache,
392 mips64_elf_gregset_t *gregsetp, int regno)
393 {
394 struct gdbarch *gdbarch = get_regcache_arch (regcache);
395 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
396 int regaddr, regi;
397 mips64_elf_greg_t *regp = *gregsetp;
398 void *dst;
399
400 if (regno == -1)
401 {
402 memset (regp, 0, sizeof (mips64_elf_gregset_t));
403 for (regi = 1; regi < 32; regi++)
404 mips64_fill_gregset (regcache, gregsetp, regi);
405 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
406 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
407 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
408 mips64_fill_gregset (regcache, gregsetp,
409 mips_regnum (gdbarch)->badvaddr);
410 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
411 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
412 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
413 return;
414 }
415
416 if (regno > 0 && regno < 32)
417 regaddr = regno + MIPS64_EF_REG0;
418 else if (regno == mips_regnum (gdbarch)->lo)
419 regaddr = MIPS64_EF_LO;
420 else if (regno == mips_regnum (gdbarch)->hi)
421 regaddr = MIPS64_EF_HI;
422 else if (regno == mips_regnum (gdbarch)->pc)
423 regaddr = MIPS64_EF_CP0_EPC;
424 else if (regno == mips_regnum (gdbarch)->badvaddr)
425 regaddr = MIPS64_EF_CP0_BADVADDR;
426 else if (regno == MIPS_PS_REGNUM)
427 regaddr = MIPS64_EF_CP0_STATUS;
428 else if (regno == mips_regnum (gdbarch)->cause)
429 regaddr = MIPS64_EF_CP0_CAUSE;
430 else if (mips_linux_restart_reg_p (gdbarch)
431 && regno == MIPS_RESTART_REGNUM)
432 regaddr = MIPS64_EF_REG0;
433 else
434 regaddr = -1;
435
436 if (regaddr != -1)
437 {
438 gdb_byte buf[MAX_REGISTER_SIZE];
439 LONGEST val;
440
441 regcache_raw_collect (regcache, regno, buf);
442 val = extract_signed_integer (buf, register_size (gdbarch, regno),
443 byte_order);
444 dst = regp + regaddr;
445 store_signed_integer (dst, 8, byte_order, val);
446 }
447 }
448
449 static void
450 mips64_fill_gregset_wrapper (const struct regset *regset,
451 const struct regcache *regcache,
452 int regnum, void *gregs, size_t len)
453 {
454 gdb_assert (len == sizeof (mips64_elf_gregset_t));
455
456 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
457 }
458
459 /* Likewise, unpack an elf_fpregset_t. */
460
461 void
462 mips64_supply_fpregset (struct regcache *regcache,
463 const mips64_elf_fpregset_t *fpregsetp)
464 {
465 struct gdbarch *gdbarch = get_regcache_arch (regcache);
466 int regi;
467
468 /* See mips_linux_o32_sigframe_init for a description of the
469 peculiar FP register layout. */
470 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
471 for (regi = 0; regi < 32; regi++)
472 {
473 const gdb_byte *reg_ptr
474 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
475 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
476 reg_ptr += 4;
477 regcache_raw_supply (regcache,
478 gdbarch_fp0_regnum (gdbarch) + regi,
479 reg_ptr);
480 }
481 else
482 for (regi = 0; regi < 32; regi++)
483 regcache_raw_supply (regcache,
484 gdbarch_fp0_regnum (gdbarch) + regi,
485 (const char *) (*fpregsetp + regi));
486
487 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
488 (const gdb_byte *) (*fpregsetp + 32));
489
490 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
491 include it - but the result of PTRACE_GETFPREGS does. The best we
492 can do is to assume that its value is present. */
493 supply_32bit_reg (regcache,
494 mips_regnum (gdbarch)->fp_implementation_revision,
495 (const gdb_byte *) (*fpregsetp + 32) + 4);
496 }
497
498 static void
499 mips64_supply_fpregset_wrapper (const struct regset *regset,
500 struct regcache *regcache,
501 int regnum, const void *gregs, size_t len)
502 {
503 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
504
505 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
506 }
507
508 /* Likewise, pack one or all floating point registers into an
509 elf_fpregset_t. */
510
511 void
512 mips64_fill_fpregset (const struct regcache *regcache,
513 mips64_elf_fpregset_t *fpregsetp, int regno)
514 {
515 struct gdbarch *gdbarch = get_regcache_arch (regcache);
516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
517 gdb_byte *to;
518
519 if ((regno >= gdbarch_fp0_regnum (gdbarch))
520 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
521 {
522 /* See mips_linux_o32_sigframe_init for a description of the
523 peculiar FP register layout. */
524 if (register_size (gdbarch, regno) == 4)
525 {
526 int regi = regno - gdbarch_fp0_regnum (gdbarch);
527
528 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
529 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
530 to += 4;
531 regcache_raw_collect (regcache, regno, to);
532 }
533 else
534 {
535 to = (gdb_byte *) (*fpregsetp + regno
536 - gdbarch_fp0_regnum (gdbarch));
537 regcache_raw_collect (regcache, regno, to);
538 }
539 }
540 else if (regno == mips_regnum (gdbarch)->fp_control_status)
541 {
542 gdb_byte buf[MAX_REGISTER_SIZE];
543 LONGEST val;
544
545 regcache_raw_collect (regcache, regno, buf);
546 val = extract_signed_integer (buf, register_size (gdbarch, regno),
547 byte_order);
548 to = (gdb_byte *) (*fpregsetp + 32);
549 store_signed_integer (to, 4, byte_order, val);
550 }
551 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
552 {
553 gdb_byte buf[MAX_REGISTER_SIZE];
554 LONGEST val;
555
556 regcache_raw_collect (regcache, regno, buf);
557 val = extract_signed_integer (buf, register_size (gdbarch, regno),
558 byte_order);
559 to = (gdb_byte *) (*fpregsetp + 32) + 4;
560 store_signed_integer (to, 4, byte_order, val);
561 }
562 else if (regno == -1)
563 {
564 int regi;
565
566 for (regi = 0; regi < 32; regi++)
567 mips64_fill_fpregset (regcache, fpregsetp,
568 gdbarch_fp0_regnum (gdbarch) + regi);
569 mips64_fill_fpregset (regcache, fpregsetp,
570 mips_regnum (gdbarch)->fp_control_status);
571 mips64_fill_fpregset (regcache, fpregsetp,
572 mips_regnum (gdbarch)->fp_implementation_revision);
573 }
574 }
575
576 static void
577 mips64_fill_fpregset_wrapper (const struct regset *regset,
578 const struct regcache *regcache,
579 int regnum, void *gregs, size_t len)
580 {
581 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
582
583 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
584 }
585
586 static const struct regset *
587 mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
588 const char *sect_name, size_t sect_size)
589 {
590 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
591 mips_elf_gregset_t gregset;
592 mips_elf_fpregset_t fpregset;
593 mips64_elf_gregset_t gregset64;
594 mips64_elf_fpregset_t fpregset64;
595
596 if (strcmp (sect_name, ".reg") == 0)
597 {
598 if (sect_size == sizeof (gregset))
599 {
600 if (tdep->gregset == NULL)
601 tdep->gregset = regset_alloc (gdbarch,
602 mips_supply_gregset_wrapper,
603 mips_fill_gregset_wrapper);
604 return tdep->gregset;
605 }
606 else if (sect_size == sizeof (gregset64))
607 {
608 if (tdep->gregset64 == NULL)
609 tdep->gregset64 = regset_alloc (gdbarch,
610 mips64_supply_gregset_wrapper,
611 mips64_fill_gregset_wrapper);
612 return tdep->gregset64;
613 }
614 else
615 {
616 warning (_("wrong size gregset struct in core file"));
617 }
618 }
619 else if (strcmp (sect_name, ".reg2") == 0)
620 {
621 if (sect_size == sizeof (fpregset))
622 {
623 if (tdep->fpregset == NULL)
624 tdep->fpregset = regset_alloc (gdbarch,
625 mips_supply_fpregset_wrapper,
626 mips_fill_fpregset_wrapper);
627 return tdep->fpregset;
628 }
629 else if (sect_size == sizeof (fpregset64))
630 {
631 if (tdep->fpregset64 == NULL)
632 tdep->fpregset64 = regset_alloc (gdbarch,
633 mips64_supply_fpregset_wrapper,
634 mips64_fill_fpregset_wrapper);
635 return tdep->fpregset64;
636 }
637 else
638 {
639 warning (_("wrong size fpregset struct in core file"));
640 }
641 }
642
643 return NULL;
644 }
645
646 static const struct target_desc *
647 mips_linux_core_read_description (struct gdbarch *gdbarch,
648 struct target_ops *target,
649 bfd *abfd)
650 {
651 asection *section = bfd_get_section_by_name (abfd, ".reg");
652 if (! section)
653 return NULL;
654
655 switch (bfd_section_size (abfd, section))
656 {
657 case sizeof (mips_elf_gregset_t):
658 return mips_tdesc_gp32;
659
660 case sizeof (mips64_elf_gregset_t):
661 return mips_tdesc_gp64;
662
663 default:
664 return NULL;
665 }
666 }
667
668
669 /* Check the code at PC for a dynamic linker lazy resolution stub.
670 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
671 section uniformly since version 2.15. If the pc is in that section,
672 then we are in such a stub. Before that ".stub" was used in 32-bit
673 ELF binaries, however we do not bother checking for that since we
674 have never had and that case should be extremely rare these days.
675 Instead we pattern-match on the code generated by GNU ld. They look
676 like this:
677
678 lw t9,0x8010(gp)
679 addu t7,ra
680 jalr t9,ra
681 addiu t8,zero,INDEX
682
683 (with the appropriate doubleword instructions for N64). As any lazy
684 resolution stubs in microMIPS binaries will always be in a
685 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
686
687 static int
688 mips_linux_in_dynsym_stub (CORE_ADDR pc)
689 {
690 gdb_byte buf[28], *p;
691 ULONGEST insn, insn1;
692 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
693 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
694
695 if (in_mips_stubs_section (pc))
696 return 1;
697
698 read_memory (pc - 12, buf, 28);
699
700 if (n64)
701 {
702 /* ld t9,0x8010(gp) */
703 insn1 = 0xdf998010;
704 }
705 else
706 {
707 /* lw t9,0x8010(gp) */
708 insn1 = 0x8f998010;
709 }
710
711 p = buf + 12;
712 while (p >= buf)
713 {
714 insn = extract_unsigned_integer (p, 4, byte_order);
715 if (insn == insn1)
716 break;
717 p -= 4;
718 }
719 if (p < buf)
720 return 0;
721
722 insn = extract_unsigned_integer (p + 4, 4, byte_order);
723 if (n64)
724 {
725 /* daddu t7,ra */
726 if (insn != 0x03e0782d)
727 return 0;
728 }
729 else
730 {
731 /* addu t7,ra */
732 if (insn != 0x03e07821)
733 return 0;
734 }
735
736 insn = extract_unsigned_integer (p + 8, 4, byte_order);
737 /* jalr t9,ra */
738 if (insn != 0x0320f809)
739 return 0;
740
741 insn = extract_unsigned_integer (p + 12, 4, byte_order);
742 if (n64)
743 {
744 /* daddiu t8,zero,0 */
745 if ((insn & 0xffff0000) != 0x64180000)
746 return 0;
747 }
748 else
749 {
750 /* addiu t8,zero,0 */
751 if ((insn & 0xffff0000) != 0x24180000)
752 return 0;
753 }
754
755 return 1;
756 }
757
758 /* Return non-zero iff PC belongs to the dynamic linker resolution
759 code, a PLT entry, or a lazy binding stub. */
760
761 static int
762 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
763 {
764 /* Check whether PC is in the dynamic linker. This also checks
765 whether it is in the .plt section, used by non-PIC executables. */
766 if (svr4_in_dynsym_resolve_code (pc))
767 return 1;
768
769 /* Likewise for the stubs. They live in the .MIPS.stubs section these
770 days, so we check if the PC is within, than fall back to a pattern
771 match. */
772 if (mips_linux_in_dynsym_stub (pc))
773 return 1;
774
775 return 0;
776 }
777
778 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
779 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
780 implementation of this triggers at "fixup" from the same objfile as
781 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
782 "__dl_runtime_resolve" directly. An unresolved lazy binding
783 stub will point to _dl_runtime_resolve, which will first call
784 __dl_runtime_resolve, and then pass control to the resolved
785 function. */
786
787 static CORE_ADDR
788 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
789 {
790 struct minimal_symbol *resolver;
791
792 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
793
794 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
795 return frame_unwind_caller_pc (get_current_frame ());
796
797 return glibc_skip_solib_resolver (gdbarch, pc);
798 }
799
800 /* Signal trampoline support. There are four supported layouts for a
801 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
802 n64 rt_sigframe. We handle them all independently; not the most
803 efficient way, but simplest. First, declare all the unwinders. */
804
805 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
806 struct frame_info *this_frame,
807 struct trad_frame_cache *this_cache,
808 CORE_ADDR func);
809
810 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
811 struct frame_info *this_frame,
812 struct trad_frame_cache *this_cache,
813 CORE_ADDR func);
814
815 #define MIPS_NR_LINUX 4000
816 #define MIPS_NR_N64_LINUX 5000
817 #define MIPS_NR_N32_LINUX 6000
818
819 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
820 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
821 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
822 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
823
824 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
825 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
826 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
827 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
828 #define MIPS_INST_SYSCALL 0x0000000c
829
830 static const struct tramp_frame mips_linux_o32_sigframe = {
831 SIGTRAMP_FRAME,
832 4,
833 {
834 { MIPS_INST_LI_V0_SIGRETURN, -1 },
835 { MIPS_INST_SYSCALL, -1 },
836 { TRAMP_SENTINEL_INSN, -1 }
837 },
838 mips_linux_o32_sigframe_init
839 };
840
841 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
842 SIGTRAMP_FRAME,
843 4,
844 {
845 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
846 { MIPS_INST_SYSCALL, -1 },
847 { TRAMP_SENTINEL_INSN, -1 } },
848 mips_linux_o32_sigframe_init
849 };
850
851 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
852 SIGTRAMP_FRAME,
853 4,
854 {
855 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
856 { MIPS_INST_SYSCALL, -1 },
857 { TRAMP_SENTINEL_INSN, -1 }
858 },
859 mips_linux_n32n64_sigframe_init
860 };
861
862 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
863 SIGTRAMP_FRAME,
864 4,
865 {
866 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
867 { MIPS_INST_SYSCALL, -1 },
868 { TRAMP_SENTINEL_INSN, -1 }
869 },
870 mips_linux_n32n64_sigframe_init
871 };
872
873 /* *INDENT-OFF* */
874 /* The unwinder for o32 signal frames. The legacy structures look
875 like this:
876
877 struct sigframe {
878 u32 sf_ass[4]; [argument save space for o32]
879 u32 sf_code[2]; [signal trampoline or fill]
880 struct sigcontext sf_sc;
881 sigset_t sf_mask;
882 };
883
884 Pre-2.6.12 sigcontext:
885
886 struct sigcontext {
887 unsigned int sc_regmask; [Unused]
888 unsigned int sc_status;
889 unsigned long long sc_pc;
890 unsigned long long sc_regs[32];
891 unsigned long long sc_fpregs[32];
892 unsigned int sc_ownedfp;
893 unsigned int sc_fpc_csr;
894 unsigned int sc_fpc_eir; [Unused]
895 unsigned int sc_used_math;
896 unsigned int sc_ssflags; [Unused]
897 [Alignment hole of four bytes]
898 unsigned long long sc_mdhi;
899 unsigned long long sc_mdlo;
900
901 unsigned int sc_cause; [Unused]
902 unsigned int sc_badvaddr; [Unused]
903
904 unsigned long sc_sigset[4]; [kernel's sigset_t]
905 };
906
907 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
908
909 struct sigcontext {
910 unsigned int sc_regmask; [Unused]
911 unsigned int sc_status; [Unused]
912 unsigned long long sc_pc;
913 unsigned long long sc_regs[32];
914 unsigned long long sc_fpregs[32];
915 unsigned int sc_acx;
916 unsigned int sc_fpc_csr;
917 unsigned int sc_fpc_eir; [Unused]
918 unsigned int sc_used_math;
919 unsigned int sc_dsp;
920 [Alignment hole of four bytes]
921 unsigned long long sc_mdhi;
922 unsigned long long sc_mdlo;
923 unsigned long sc_hi1;
924 unsigned long sc_lo1;
925 unsigned long sc_hi2;
926 unsigned long sc_lo2;
927 unsigned long sc_hi3;
928 unsigned long sc_lo3;
929 };
930
931 The RT signal frames look like this:
932
933 struct rt_sigframe {
934 u32 rs_ass[4]; [argument save space for o32]
935 u32 rs_code[2] [signal trampoline or fill]
936 struct siginfo rs_info;
937 struct ucontext rs_uc;
938 };
939
940 struct ucontext {
941 unsigned long uc_flags;
942 struct ucontext *uc_link;
943 stack_t uc_stack;
944 [Alignment hole of four bytes]
945 struct sigcontext uc_mcontext;
946 sigset_t uc_sigmask;
947 }; */
948 /* *INDENT-ON* */
949
950 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
951
952 #define RTSIGFRAME_SIGINFO_SIZE 128
953 #define STACK_T_SIZE (3 * 4)
954 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
955 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
956 + RTSIGFRAME_SIGINFO_SIZE \
957 + UCONTEXT_SIGCONTEXT_OFFSET)
958
959 #define SIGCONTEXT_PC (1 * 8)
960 #define SIGCONTEXT_REGS (2 * 8)
961 #define SIGCONTEXT_FPREGS (34 * 8)
962 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
963 #define SIGCONTEXT_DSPCTL (68 * 8 + 0)
964 #define SIGCONTEXT_HI (69 * 8)
965 #define SIGCONTEXT_LO (70 * 8)
966 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
967 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
968 #define SIGCONTEXT_HI1 (71 * 8 + 0)
969 #define SIGCONTEXT_LO1 (71 * 8 + 4)
970 #define SIGCONTEXT_HI2 (72 * 8 + 0)
971 #define SIGCONTEXT_LO2 (72 * 8 + 4)
972 #define SIGCONTEXT_HI3 (73 * 8 + 0)
973 #define SIGCONTEXT_LO3 (73 * 8 + 4)
974
975 #define SIGCONTEXT_REG_SIZE 8
976
977 static void
978 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
979 struct frame_info *this_frame,
980 struct trad_frame_cache *this_cache,
981 CORE_ADDR func)
982 {
983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
984 int ireg;
985 CORE_ADDR frame_sp = get_frame_sp (this_frame);
986 CORE_ADDR sigcontext_base;
987 const struct mips_regnum *regs = mips_regnum (gdbarch);
988 CORE_ADDR regs_base;
989
990 if (self == &mips_linux_o32_sigframe)
991 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
992 else
993 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
994
995 /* I'm not proud of this hack. Eventually we will have the
996 infrastructure to indicate the size of saved registers on a
997 per-frame basis, but right now we don't; the kernel saves eight
998 bytes but we only want four. Use regs_base to access any
999 64-bit fields. */
1000 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1001 regs_base = sigcontext_base + 4;
1002 else
1003 regs_base = sigcontext_base;
1004
1005 if (mips_linux_restart_reg_p (gdbarch))
1006 trad_frame_set_reg_addr (this_cache,
1007 (MIPS_RESTART_REGNUM
1008 + gdbarch_num_regs (gdbarch)),
1009 regs_base + SIGCONTEXT_REGS);
1010
1011 for (ireg = 1; ireg < 32; ireg++)
1012 trad_frame_set_reg_addr (this_cache,
1013 (ireg + MIPS_ZERO_REGNUM
1014 + gdbarch_num_regs (gdbarch)),
1015 (regs_base + SIGCONTEXT_REGS
1016 + ireg * SIGCONTEXT_REG_SIZE));
1017
1018 /* The way that floating point registers are saved, unfortunately,
1019 depends on the architecture the kernel is built for. For the r3000 and
1020 tx39, four bytes of each register are at the beginning of each of the
1021 32 eight byte slots. For everything else, the registers are saved
1022 using double precision; only the even-numbered slots are initialized,
1023 and the high bits are the odd-numbered register. Assume the latter
1024 layout, since we can't tell, and it's much more common. Which bits are
1025 the "high" bits depends on endianness. */
1026 for (ireg = 0; ireg < 32; ireg++)
1027 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
1028 trad_frame_set_reg_addr (this_cache,
1029 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1030 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1031 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1032 else
1033 trad_frame_set_reg_addr (this_cache,
1034 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1035 (sigcontext_base + SIGCONTEXT_FPREGS
1036 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1037
1038 trad_frame_set_reg_addr (this_cache,
1039 regs->pc + gdbarch_num_regs (gdbarch),
1040 regs_base + SIGCONTEXT_PC);
1041
1042 trad_frame_set_reg_addr (this_cache,
1043 (regs->fp_control_status
1044 + gdbarch_num_regs (gdbarch)),
1045 sigcontext_base + SIGCONTEXT_FPCSR);
1046
1047 if (regs->dspctl != -1)
1048 trad_frame_set_reg_addr (this_cache,
1049 regs->dspctl + gdbarch_num_regs (gdbarch),
1050 sigcontext_base + SIGCONTEXT_DSPCTL);
1051
1052 trad_frame_set_reg_addr (this_cache,
1053 regs->hi + gdbarch_num_regs (gdbarch),
1054 regs_base + SIGCONTEXT_HI);
1055 trad_frame_set_reg_addr (this_cache,
1056 regs->lo + gdbarch_num_regs (gdbarch),
1057 regs_base + SIGCONTEXT_LO);
1058
1059 if (regs->dspacc != -1)
1060 {
1061 trad_frame_set_reg_addr (this_cache,
1062 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1063 sigcontext_base + SIGCONTEXT_HI1);
1064 trad_frame_set_reg_addr (this_cache,
1065 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1066 sigcontext_base + SIGCONTEXT_LO1);
1067 trad_frame_set_reg_addr (this_cache,
1068 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1069 sigcontext_base + SIGCONTEXT_HI2);
1070 trad_frame_set_reg_addr (this_cache,
1071 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1072 sigcontext_base + SIGCONTEXT_LO2);
1073 trad_frame_set_reg_addr (this_cache,
1074 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1075 sigcontext_base + SIGCONTEXT_HI3);
1076 trad_frame_set_reg_addr (this_cache,
1077 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1078 sigcontext_base + SIGCONTEXT_LO3);
1079 }
1080 else
1081 {
1082 trad_frame_set_reg_addr (this_cache,
1083 regs->cause + gdbarch_num_regs (gdbarch),
1084 sigcontext_base + SIGCONTEXT_CAUSE);
1085 trad_frame_set_reg_addr (this_cache,
1086 regs->badvaddr + gdbarch_num_regs (gdbarch),
1087 sigcontext_base + SIGCONTEXT_BADVADDR);
1088 }
1089
1090 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1091 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1092 }
1093
1094 /* *INDENT-OFF* */
1095 /* For N32/N64 things look different. There is no non-rt signal frame.
1096
1097 struct rt_sigframe_n32 {
1098 u32 rs_ass[4]; [ argument save space for o32 ]
1099 u32 rs_code[2]; [ signal trampoline or fill ]
1100 struct siginfo rs_info;
1101 struct ucontextn32 rs_uc;
1102 };
1103
1104 struct ucontextn32 {
1105 u32 uc_flags;
1106 s32 uc_link;
1107 stack32_t uc_stack;
1108 struct sigcontext uc_mcontext;
1109 sigset_t uc_sigmask; [ mask last for extensibility ]
1110 };
1111
1112 struct rt_sigframe {
1113 u32 rs_ass[4]; [ argument save space for o32 ]
1114 u32 rs_code[2]; [ signal trampoline ]
1115 struct siginfo rs_info;
1116 struct ucontext rs_uc;
1117 };
1118
1119 struct ucontext {
1120 unsigned long uc_flags;
1121 struct ucontext *uc_link;
1122 stack_t uc_stack;
1123 struct sigcontext uc_mcontext;
1124 sigset_t uc_sigmask; [ mask last for extensibility ]
1125 };
1126
1127 And the sigcontext is different (this is for both n32 and n64):
1128
1129 struct sigcontext {
1130 unsigned long long sc_regs[32];
1131 unsigned long long sc_fpregs[32];
1132 unsigned long long sc_mdhi;
1133 unsigned long long sc_hi1;
1134 unsigned long long sc_hi2;
1135 unsigned long long sc_hi3;
1136 unsigned long long sc_mdlo;
1137 unsigned long long sc_lo1;
1138 unsigned long long sc_lo2;
1139 unsigned long long sc_lo3;
1140 unsigned long long sc_pc;
1141 unsigned int sc_fpc_csr;
1142 unsigned int sc_used_math;
1143 unsigned int sc_dsp;
1144 unsigned int sc_reserved;
1145 };
1146
1147 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1148 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1149 included too. */
1150 /* *INDENT-ON* */
1151
1152 #define N32_STACK_T_SIZE STACK_T_SIZE
1153 #define N64_STACK_T_SIZE (2 * 8 + 4)
1154 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1155 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1156 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1157 + RTSIGFRAME_SIGINFO_SIZE \
1158 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1159 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1160 + RTSIGFRAME_SIGINFO_SIZE \
1161 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1162
1163 #define N64_SIGCONTEXT_REGS (0 * 8)
1164 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1165 #define N64_SIGCONTEXT_HI (64 * 8)
1166 #define N64_SIGCONTEXT_HI1 (65 * 8)
1167 #define N64_SIGCONTEXT_HI2 (66 * 8)
1168 #define N64_SIGCONTEXT_HI3 (67 * 8)
1169 #define N64_SIGCONTEXT_LO (68 * 8)
1170 #define N64_SIGCONTEXT_LO1 (69 * 8)
1171 #define N64_SIGCONTEXT_LO2 (70 * 8)
1172 #define N64_SIGCONTEXT_LO3 (71 * 8)
1173 #define N64_SIGCONTEXT_PC (72 * 8)
1174 #define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1175 #define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
1176
1177 #define N64_SIGCONTEXT_REG_SIZE 8
1178
1179 static void
1180 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1181 struct frame_info *this_frame,
1182 struct trad_frame_cache *this_cache,
1183 CORE_ADDR func)
1184 {
1185 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1186 int ireg;
1187 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1188 CORE_ADDR sigcontext_base;
1189 const struct mips_regnum *regs = mips_regnum (gdbarch);
1190
1191 if (self == &mips_linux_n32_rt_sigframe)
1192 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1193 else
1194 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1195
1196 if (mips_linux_restart_reg_p (gdbarch))
1197 trad_frame_set_reg_addr (this_cache,
1198 (MIPS_RESTART_REGNUM
1199 + gdbarch_num_regs (gdbarch)),
1200 sigcontext_base + N64_SIGCONTEXT_REGS);
1201
1202 for (ireg = 1; ireg < 32; ireg++)
1203 trad_frame_set_reg_addr (this_cache,
1204 (ireg + MIPS_ZERO_REGNUM
1205 + gdbarch_num_regs (gdbarch)),
1206 (sigcontext_base + N64_SIGCONTEXT_REGS
1207 + ireg * N64_SIGCONTEXT_REG_SIZE));
1208
1209 for (ireg = 0; ireg < 32; ireg++)
1210 trad_frame_set_reg_addr (this_cache,
1211 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1212 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1213 + ireg * N64_SIGCONTEXT_REG_SIZE));
1214
1215 trad_frame_set_reg_addr (this_cache,
1216 regs->pc + gdbarch_num_regs (gdbarch),
1217 sigcontext_base + N64_SIGCONTEXT_PC);
1218
1219 trad_frame_set_reg_addr (this_cache,
1220 (regs->fp_control_status
1221 + gdbarch_num_regs (gdbarch)),
1222 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1223
1224 trad_frame_set_reg_addr (this_cache,
1225 regs->hi + gdbarch_num_regs (gdbarch),
1226 sigcontext_base + N64_SIGCONTEXT_HI);
1227 trad_frame_set_reg_addr (this_cache,
1228 regs->lo + gdbarch_num_regs (gdbarch),
1229 sigcontext_base + N64_SIGCONTEXT_LO);
1230
1231 if (regs->dspacc != -1)
1232 {
1233 trad_frame_set_reg_addr (this_cache,
1234 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1235 sigcontext_base + N64_SIGCONTEXT_HI1);
1236 trad_frame_set_reg_addr (this_cache,
1237 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1238 sigcontext_base + N64_SIGCONTEXT_LO1);
1239 trad_frame_set_reg_addr (this_cache,
1240 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1241 sigcontext_base + N64_SIGCONTEXT_HI2);
1242 trad_frame_set_reg_addr (this_cache,
1243 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1244 sigcontext_base + N64_SIGCONTEXT_LO2);
1245 trad_frame_set_reg_addr (this_cache,
1246 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1247 sigcontext_base + N64_SIGCONTEXT_HI3);
1248 trad_frame_set_reg_addr (this_cache,
1249 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1250 sigcontext_base + N64_SIGCONTEXT_LO3);
1251 }
1252 if (regs->dspctl != -1)
1253 trad_frame_set_reg_addr (this_cache,
1254 regs->dspctl + gdbarch_num_regs (gdbarch),
1255 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1256
1257 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1258 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1259 }
1260
1261 /* Implement the "write_pc" gdbarch method. */
1262
1263 static void
1264 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1265 {
1266 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1267
1268 mips_write_pc (regcache, pc);
1269
1270 /* Clear the syscall restart flag. */
1271 if (mips_linux_restart_reg_p (gdbarch))
1272 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1273 }
1274
1275 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1276
1277 int
1278 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1279 {
1280 /* If we do not have a target description with registers, then
1281 MIPS_RESTART_REGNUM will not be included in the register set. */
1282 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1283 return 0;
1284
1285 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1286 either be GPR-sized or missing. */
1287 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1288 }
1289
1290 /* When FRAME is at a syscall instruction, return the PC of the next
1291 instruction to be executed. */
1292
1293 static CORE_ADDR
1294 mips_linux_syscall_next_pc (struct frame_info *frame)
1295 {
1296 CORE_ADDR pc = get_frame_pc (frame);
1297 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1298
1299 /* If we are about to make a sigreturn syscall, use the unwinder to
1300 decode the signal frame. */
1301 if (v0 == MIPS_NR_sigreturn
1302 || v0 == MIPS_NR_rt_sigreturn
1303 || v0 == MIPS_NR_N64_rt_sigreturn
1304 || v0 == MIPS_NR_N32_rt_sigreturn)
1305 return frame_unwind_caller_pc (get_current_frame ());
1306
1307 return pc + 4;
1308 }
1309
1310 /* Return the current system call's number present in the
1311 v0 register. When the function fails, it returns -1. */
1312
1313 static LONGEST
1314 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1315 ptid_t ptid)
1316 {
1317 struct regcache *regcache = get_thread_regcache (ptid);
1318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1319 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1320 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1321 /* The content of a register */
1322 gdb_byte buf[8];
1323 /* The result */
1324 LONGEST ret;
1325
1326 /* Make sure we're in a known ABI */
1327 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1328 || tdep->mips_abi == MIPS_ABI_N32
1329 || tdep->mips_abi == MIPS_ABI_N64);
1330
1331 gdb_assert (regsize <= sizeof (buf));
1332
1333 /* Getting the system call number from the register.
1334 syscall number is in v0 or $2. */
1335 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1336
1337 ret = extract_signed_integer (buf, regsize, byte_order);
1338
1339 return ret;
1340 }
1341
1342 /* Translate signals based on MIPS signal values.
1343 Adapted from gdb/common/signals.c. */
1344
1345 static enum gdb_signal
1346 mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signo)
1347 {
1348 switch (signo)
1349 {
1350 case 0:
1351 return GDB_SIGNAL_0;
1352 case MIPS_SIGHUP:
1353 return GDB_SIGNAL_HUP;
1354 case MIPS_SIGINT:
1355 return GDB_SIGNAL_INT;
1356 case MIPS_SIGQUIT:
1357 return GDB_SIGNAL_QUIT;
1358 case MIPS_SIGILL:
1359 return GDB_SIGNAL_ILL;
1360 case MIPS_SIGTRAP:
1361 return GDB_SIGNAL_TRAP;
1362 case MIPS_SIGABRT:
1363 return GDB_SIGNAL_ABRT;
1364 case MIPS_SIGEMT:
1365 return GDB_SIGNAL_EMT;
1366 case MIPS_SIGFPE:
1367 return GDB_SIGNAL_FPE;
1368 case MIPS_SIGKILL:
1369 return GDB_SIGNAL_KILL;
1370 case MIPS_SIGBUS:
1371 return GDB_SIGNAL_BUS;
1372 case MIPS_SIGSEGV:
1373 return GDB_SIGNAL_SEGV;
1374 case MIPS_SIGSYS:
1375 return GDB_SIGNAL_SYS;
1376 case MIPS_SIGPIPE:
1377 return GDB_SIGNAL_PIPE;
1378 case MIPS_SIGALRM:
1379 return GDB_SIGNAL_ALRM;
1380 case MIPS_SIGTERM:
1381 return GDB_SIGNAL_TERM;
1382 case MIPS_SIGUSR1:
1383 return GDB_SIGNAL_USR1;
1384 case MIPS_SIGUSR2:
1385 return GDB_SIGNAL_USR2;
1386 case MIPS_SIGCHLD:
1387 return GDB_SIGNAL_CHLD;
1388 case MIPS_SIGPWR:
1389 return GDB_SIGNAL_PWR;
1390 case MIPS_SIGWINCH:
1391 return GDB_SIGNAL_WINCH;
1392 case MIPS_SIGURG:
1393 return GDB_SIGNAL_URG;
1394 case MIPS_SIGPOLL:
1395 return GDB_SIGNAL_POLL;
1396 case MIPS_SIGSTOP:
1397 return GDB_SIGNAL_STOP;
1398 case MIPS_SIGTSTP:
1399 return GDB_SIGNAL_TSTP;
1400 case MIPS_SIGCONT:
1401 return GDB_SIGNAL_CONT;
1402 case MIPS_SIGTTIN:
1403 return GDB_SIGNAL_TTIN;
1404 case MIPS_SIGTTOU:
1405 return GDB_SIGNAL_TTOU;
1406 case MIPS_SIGVTALRM:
1407 return GDB_SIGNAL_VTALRM;
1408 case MIPS_SIGPROF:
1409 return GDB_SIGNAL_PROF;
1410 case MIPS_SIGXCPU:
1411 return GDB_SIGNAL_XCPU;
1412 case MIPS_SIGXFSZ:
1413 return GDB_SIGNAL_XFSZ;
1414 }
1415
1416 if (signo >= MIPS_SIGRTMIN && signo <= MIPS_SIGRTMAX)
1417 {
1418 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1419 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
1420 signo -= MIPS_SIGRTMIN;
1421 if (signo == 0)
1422 return GDB_SIGNAL_REALTIME_32;
1423 else if (signo < 32)
1424 return ((enum gdb_signal) (signo - 1 + (int) GDB_SIGNAL_REALTIME_33));
1425 else
1426 return ((enum gdb_signal) (signo - 32 + (int) GDB_SIGNAL_REALTIME_64));
1427 }
1428
1429 return GDB_SIGNAL_UNKNOWN;
1430 }
1431
1432 /* Initialize one of the GNU/Linux OS ABIs. */
1433
1434 static void
1435 mips_linux_init_abi (struct gdbarch_info info,
1436 struct gdbarch *gdbarch)
1437 {
1438 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1439 enum mips_abi abi = mips_abi (gdbarch);
1440 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1441
1442 linux_init_abi (info, gdbarch);
1443
1444 /* Get the syscall number from the arch's register. */
1445 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1446
1447 switch (abi)
1448 {
1449 case MIPS_ABI_O32:
1450 set_gdbarch_get_longjmp_target (gdbarch,
1451 mips_linux_get_longjmp_target);
1452 set_solib_svr4_fetch_link_map_offsets
1453 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1454 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1455 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1456 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
1457 break;
1458 case MIPS_ABI_N32:
1459 set_gdbarch_get_longjmp_target (gdbarch,
1460 mips_linux_get_longjmp_target);
1461 set_solib_svr4_fetch_link_map_offsets
1462 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1463 set_gdbarch_long_double_bit (gdbarch, 128);
1464 /* These floatformats should probably be renamed. MIPS uses
1465 the same 128-bit IEEE floating point format that IA-64 uses,
1466 except that the quiet/signalling NaN bit is reversed (GDB
1467 does not distinguish between quiet and signalling NaNs). */
1468 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1469 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1470 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
1471 break;
1472 case MIPS_ABI_N64:
1473 set_gdbarch_get_longjmp_target (gdbarch,
1474 mips64_linux_get_longjmp_target);
1475 set_solib_svr4_fetch_link_map_offsets
1476 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1477 set_gdbarch_long_double_bit (gdbarch, 128);
1478 /* These floatformats should probably be renamed. MIPS uses
1479 the same 128-bit IEEE floating point format that IA-64 uses,
1480 except that the quiet/signalling NaN bit is reversed (GDB
1481 does not distinguish between quiet and signalling NaNs). */
1482 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1483 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1484 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
1485 break;
1486 default:
1487 break;
1488 }
1489
1490 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1491
1492 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1493
1494 /* Enable TLS support. */
1495 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1496 svr4_fetch_objfile_link_map);
1497
1498 /* Initialize this lazily, to avoid an initialization order
1499 dependency on solib-svr4.c's _initialize routine. */
1500 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1501 {
1502 mips_svr4_so_ops = svr4_so_ops;
1503 mips_svr4_so_ops.in_dynsym_resolve_code
1504 = mips_linux_in_dynsym_resolve_code;
1505 }
1506 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1507
1508 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1509
1510 set_gdbarch_core_read_description (gdbarch,
1511 mips_linux_core_read_description);
1512
1513 set_gdbarch_regset_from_core_section (gdbarch,
1514 mips_linux_regset_from_core_section);
1515
1516 set_gdbarch_gdb_signal_from_target (gdbarch,
1517 mips_gdb_signal_from_target);
1518
1519 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1520
1521 if (tdesc_data)
1522 {
1523 const struct tdesc_feature *feature;
1524
1525 /* If we have target-described registers, then we can safely
1526 reserve a number for MIPS_RESTART_REGNUM (whether it is
1527 described or not). */
1528 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1529 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1530 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1531
1532 /* If it's present, then assign it to the reserved number. */
1533 feature = tdesc_find_feature (info.target_desc,
1534 "org.gnu.gdb.mips.linux");
1535 if (feature != NULL)
1536 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1537 "restart");
1538 }
1539 }
1540
1541 /* Provide a prototype to silence -Wmissing-prototypes. */
1542 extern initialize_file_ftype _initialize_mips_linux_tdep;
1543
1544 void
1545 _initialize_mips_linux_tdep (void)
1546 {
1547 const struct bfd_arch_info *arch_info;
1548
1549 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1550 arch_info != NULL;
1551 arch_info = arch_info->next)
1552 {
1553 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1554 GDB_OSABI_LINUX,
1555 mips_linux_init_abi);
1556 }
1557 }
This page took 0.064818 seconds and 4 git commands to generate.