Add command support for Guile.
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "target.h"
23 #include "solib-svr4.h"
24 #include "osabi.h"
25 #include "mips-tdep.h"
26 #include <string.h>
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "regcache.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "solib.h"
35 #include "solist.h"
36 #include "symtab.h"
37 #include "target-descriptions.h"
38 #include "regset.h"
39 #include "mips-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "linux-tdep.h"
42 #include "xml-syscall.h"
43 #include "gdb_signals.h"
44
45 static struct target_so_ops mips_svr4_so_ops;
46
47 /* This enum represents the signals' numbers on the MIPS
48 architecture. It just contains the signal definitions which are
49 different from the generic implementation.
50
51 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
52 from the Linux kernel tree. */
53
54 enum
55 {
56 MIPS_LINUX_SIGEMT = 7,
57 MIPS_LINUX_SIGBUS = 10,
58 MIPS_LINUX_SIGSYS = 12,
59 MIPS_LINUX_SIGUSR1 = 16,
60 MIPS_LINUX_SIGUSR2 = 17,
61 MIPS_LINUX_SIGCHLD = 18,
62 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
63 MIPS_LINUX_SIGPWR = 19,
64 MIPS_LINUX_SIGWINCH = 20,
65 MIPS_LINUX_SIGURG = 21,
66 MIPS_LINUX_SIGIO = 22,
67 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
68 MIPS_LINUX_SIGSTOP = 23,
69 MIPS_LINUX_SIGTSTP = 24,
70 MIPS_LINUX_SIGCONT = 25,
71 MIPS_LINUX_SIGTTIN = 26,
72 MIPS_LINUX_SIGTTOU = 27,
73 MIPS_LINUX_SIGVTALRM = 28,
74 MIPS_LINUX_SIGPROF = 29,
75 MIPS_LINUX_SIGXCPU = 30,
76 MIPS_LINUX_SIGXFSZ = 31,
77
78 MIPS_LINUX_SIGRTMIN = 32,
79 MIPS_LINUX_SIGRT64 = 64,
80 MIPS_LINUX_SIGRTMAX = 127,
81 };
82
83 /* Figure out where the longjmp will land.
84 We expect the first arg to be a pointer to the jmp_buf structure
85 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
86 at. The pc is copied into PC. This routine returns 1 on
87 success. */
88
89 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
90 #define MIPS_LINUX_JB_PC 0
91
92 static int
93 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
94 {
95 CORE_ADDR jb_addr;
96 struct gdbarch *gdbarch = get_frame_arch (frame);
97 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
98 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
99
100 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
101
102 if (target_read_memory ((jb_addr
103 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
104 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
105 return 0;
106
107 *pc = extract_unsigned_integer (buf,
108 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
109 byte_order);
110
111 return 1;
112 }
113
114 /* Transform the bits comprising a 32-bit register to the right size
115 for regcache_raw_supply(). This is needed when mips_isa_regsize()
116 is 8. */
117
118 static void
119 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
120 {
121 struct gdbarch *gdbarch = get_regcache_arch (regcache);
122 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
123 gdb_byte buf[MAX_REGISTER_SIZE];
124 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
125 extract_signed_integer (addr, 4, byte_order));
126 regcache_raw_supply (regcache, regnum, buf);
127 }
128
129 /* Unpack an elf_gregset_t into GDB's register cache. */
130
131 void
132 mips_supply_gregset (struct regcache *regcache,
133 const mips_elf_gregset_t *gregsetp)
134 {
135 int regi;
136 const mips_elf_greg_t *regp = *gregsetp;
137 char zerobuf[MAX_REGISTER_SIZE];
138 struct gdbarch *gdbarch = get_regcache_arch (regcache);
139
140 memset (zerobuf, 0, MAX_REGISTER_SIZE);
141
142 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
143 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
144
145 if (mips_linux_restart_reg_p (gdbarch))
146 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
147
148 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
149 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
150
151 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
152 regp + EF_CP0_EPC);
153 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
154 regp + EF_CP0_BADVADDR);
155 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
156 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
157 regp + EF_CP0_CAUSE);
158
159 /* Fill the inaccessible zero register with zero. */
160 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
161 }
162
163 static void
164 mips_supply_gregset_wrapper (const struct regset *regset,
165 struct regcache *regcache,
166 int regnum, const void *gregs, size_t len)
167 {
168 gdb_assert (len == sizeof (mips_elf_gregset_t));
169
170 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
171 }
172
173 /* Pack our registers (or one register) into an elf_gregset_t. */
174
175 void
176 mips_fill_gregset (const struct regcache *regcache,
177 mips_elf_gregset_t *gregsetp, int regno)
178 {
179 struct gdbarch *gdbarch = get_regcache_arch (regcache);
180 int regaddr, regi;
181 mips_elf_greg_t *regp = *gregsetp;
182 void *dst;
183
184 if (regno == -1)
185 {
186 memset (regp, 0, sizeof (mips_elf_gregset_t));
187 for (regi = 1; regi < 32; regi++)
188 mips_fill_gregset (regcache, gregsetp, regi);
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
190 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
191 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
192 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
193 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
194 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
195 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
196 return;
197 }
198
199 if (regno > 0 && regno < 32)
200 {
201 dst = regp + regno + EF_REG0;
202 regcache_raw_collect (regcache, regno, dst);
203 return;
204 }
205
206 if (regno == mips_regnum (gdbarch)->lo)
207 regaddr = EF_LO;
208 else if (regno == mips_regnum (gdbarch)->hi)
209 regaddr = EF_HI;
210 else if (regno == mips_regnum (gdbarch)->pc)
211 regaddr = EF_CP0_EPC;
212 else if (regno == mips_regnum (gdbarch)->badvaddr)
213 regaddr = EF_CP0_BADVADDR;
214 else if (regno == MIPS_PS_REGNUM)
215 regaddr = EF_CP0_STATUS;
216 else if (regno == mips_regnum (gdbarch)->cause)
217 regaddr = EF_CP0_CAUSE;
218 else if (mips_linux_restart_reg_p (gdbarch)
219 && regno == MIPS_RESTART_REGNUM)
220 regaddr = EF_REG0;
221 else
222 regaddr = -1;
223
224 if (regaddr != -1)
225 {
226 dst = regp + regaddr;
227 regcache_raw_collect (regcache, regno, dst);
228 }
229 }
230
231 static void
232 mips_fill_gregset_wrapper (const struct regset *regset,
233 const struct regcache *regcache,
234 int regnum, void *gregs, size_t len)
235 {
236 gdb_assert (len == sizeof (mips_elf_gregset_t));
237
238 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
239 }
240
241 /* Likewise, unpack an elf_fpregset_t. */
242
243 void
244 mips_supply_fpregset (struct regcache *regcache,
245 const mips_elf_fpregset_t *fpregsetp)
246 {
247 struct gdbarch *gdbarch = get_regcache_arch (regcache);
248 int regi;
249 char zerobuf[MAX_REGISTER_SIZE];
250
251 memset (zerobuf, 0, MAX_REGISTER_SIZE);
252
253 for (regi = 0; regi < 32; regi++)
254 regcache_raw_supply (regcache,
255 gdbarch_fp0_regnum (gdbarch) + regi,
256 *fpregsetp + regi);
257
258 regcache_raw_supply (regcache,
259 mips_regnum (gdbarch)->fp_control_status,
260 *fpregsetp + 32);
261
262 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
263 regcache_raw_supply (regcache,
264 mips_regnum (gdbarch)->fp_implementation_revision,
265 zerobuf);
266 }
267
268 static void
269 mips_supply_fpregset_wrapper (const struct regset *regset,
270 struct regcache *regcache,
271 int regnum, const void *gregs, size_t len)
272 {
273 gdb_assert (len == sizeof (mips_elf_fpregset_t));
274
275 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
276 }
277
278 /* Likewise, pack one or all floating point registers into an
279 elf_fpregset_t. */
280
281 void
282 mips_fill_fpregset (const struct regcache *regcache,
283 mips_elf_fpregset_t *fpregsetp, int regno)
284 {
285 struct gdbarch *gdbarch = get_regcache_arch (regcache);
286 char *to;
287
288 if ((regno >= gdbarch_fp0_regnum (gdbarch))
289 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
290 {
291 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
292 regcache_raw_collect (regcache, regno, to);
293 }
294 else if (regno == mips_regnum (gdbarch)->fp_control_status)
295 {
296 to = (char *) (*fpregsetp + 32);
297 regcache_raw_collect (regcache, regno, to);
298 }
299 else if (regno == -1)
300 {
301 int regi;
302
303 for (regi = 0; regi < 32; regi++)
304 mips_fill_fpregset (regcache, fpregsetp,
305 gdbarch_fp0_regnum (gdbarch) + regi);
306 mips_fill_fpregset (regcache, fpregsetp,
307 mips_regnum (gdbarch)->fp_control_status);
308 }
309 }
310
311 static void
312 mips_fill_fpregset_wrapper (const struct regset *regset,
313 const struct regcache *regcache,
314 int regnum, void *gregs, size_t len)
315 {
316 gdb_assert (len == sizeof (mips_elf_fpregset_t));
317
318 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
319 }
320
321 /* Support for 64-bit ABIs. */
322
323 /* Figure out where the longjmp will land.
324 We expect the first arg to be a pointer to the jmp_buf structure
325 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
326 at. The pc is copied into PC. This routine returns 1 on
327 success. */
328
329 /* Details about jmp_buf. */
330
331 #define MIPS64_LINUX_JB_PC 0
332
333 static int
334 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
335 {
336 CORE_ADDR jb_addr;
337 struct gdbarch *gdbarch = get_frame_arch (frame);
338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
339 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
340 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
341
342 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
343
344 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
345 buf,
346 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
347 return 0;
348
349 *pc = extract_unsigned_integer (buf,
350 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
351 byte_order);
352
353 return 1;
354 }
355
356 /* Register set support functions. These operate on standard 64-bit
357 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
358 target will still use the 64-bit format for PTRACE_GETREGS. */
359
360 /* Supply a 64-bit register. */
361
362 static void
363 supply_64bit_reg (struct regcache *regcache, int regnum,
364 const gdb_byte *buf)
365 {
366 struct gdbarch *gdbarch = get_regcache_arch (regcache);
367 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
368 && register_size (gdbarch, regnum) == 4)
369 regcache_raw_supply (regcache, regnum, buf + 4);
370 else
371 regcache_raw_supply (regcache, regnum, buf);
372 }
373
374 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
375
376 void
377 mips64_supply_gregset (struct regcache *regcache,
378 const mips64_elf_gregset_t *gregsetp)
379 {
380 int regi;
381 const mips64_elf_greg_t *regp = *gregsetp;
382 gdb_byte zerobuf[MAX_REGISTER_SIZE];
383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
384
385 memset (zerobuf, 0, MAX_REGISTER_SIZE);
386
387 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
388 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
389 (const gdb_byte *) (regp + regi));
390
391 if (mips_linux_restart_reg_p (gdbarch))
392 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
393 (const gdb_byte *) (regp + MIPS64_EF_REG0));
394
395 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
396 (const gdb_byte *) (regp + MIPS64_EF_LO));
397 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
398 (const gdb_byte *) (regp + MIPS64_EF_HI));
399
400 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
401 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
402 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
403 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
404 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
405 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
406 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
407 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
408
409 /* Fill the inaccessible zero register with zero. */
410 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
411 }
412
413 static void
414 mips64_supply_gregset_wrapper (const struct regset *regset,
415 struct regcache *regcache,
416 int regnum, const void *gregs, size_t len)
417 {
418 gdb_assert (len == sizeof (mips64_elf_gregset_t));
419
420 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
421 }
422
423 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
424
425 void
426 mips64_fill_gregset (const struct regcache *regcache,
427 mips64_elf_gregset_t *gregsetp, int regno)
428 {
429 struct gdbarch *gdbarch = get_regcache_arch (regcache);
430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431 int regaddr, regi;
432 mips64_elf_greg_t *regp = *gregsetp;
433 void *dst;
434
435 if (regno == -1)
436 {
437 memset (regp, 0, sizeof (mips64_elf_gregset_t));
438 for (regi = 1; regi < 32; regi++)
439 mips64_fill_gregset (regcache, gregsetp, regi);
440 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
441 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
442 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
443 mips64_fill_gregset (regcache, gregsetp,
444 mips_regnum (gdbarch)->badvaddr);
445 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
446 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
447 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
448 return;
449 }
450
451 if (regno > 0 && regno < 32)
452 regaddr = regno + MIPS64_EF_REG0;
453 else if (regno == mips_regnum (gdbarch)->lo)
454 regaddr = MIPS64_EF_LO;
455 else if (regno == mips_regnum (gdbarch)->hi)
456 regaddr = MIPS64_EF_HI;
457 else if (regno == mips_regnum (gdbarch)->pc)
458 regaddr = MIPS64_EF_CP0_EPC;
459 else if (regno == mips_regnum (gdbarch)->badvaddr)
460 regaddr = MIPS64_EF_CP0_BADVADDR;
461 else if (regno == MIPS_PS_REGNUM)
462 regaddr = MIPS64_EF_CP0_STATUS;
463 else if (regno == mips_regnum (gdbarch)->cause)
464 regaddr = MIPS64_EF_CP0_CAUSE;
465 else if (mips_linux_restart_reg_p (gdbarch)
466 && regno == MIPS_RESTART_REGNUM)
467 regaddr = MIPS64_EF_REG0;
468 else
469 regaddr = -1;
470
471 if (regaddr != -1)
472 {
473 gdb_byte buf[MAX_REGISTER_SIZE];
474 LONGEST val;
475
476 regcache_raw_collect (regcache, regno, buf);
477 val = extract_signed_integer (buf, register_size (gdbarch, regno),
478 byte_order);
479 dst = regp + regaddr;
480 store_signed_integer (dst, 8, byte_order, val);
481 }
482 }
483
484 static void
485 mips64_fill_gregset_wrapper (const struct regset *regset,
486 const struct regcache *regcache,
487 int regnum, void *gregs, size_t len)
488 {
489 gdb_assert (len == sizeof (mips64_elf_gregset_t));
490
491 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
492 }
493
494 /* Likewise, unpack an elf_fpregset_t. */
495
496 void
497 mips64_supply_fpregset (struct regcache *regcache,
498 const mips64_elf_fpregset_t *fpregsetp)
499 {
500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
501 int regi;
502
503 /* See mips_linux_o32_sigframe_init for a description of the
504 peculiar FP register layout. */
505 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
506 for (regi = 0; regi < 32; regi++)
507 {
508 const gdb_byte *reg_ptr
509 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
510 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
511 reg_ptr += 4;
512 regcache_raw_supply (regcache,
513 gdbarch_fp0_regnum (gdbarch) + regi,
514 reg_ptr);
515 }
516 else
517 for (regi = 0; regi < 32; regi++)
518 regcache_raw_supply (regcache,
519 gdbarch_fp0_regnum (gdbarch) + regi,
520 (const char *) (*fpregsetp + regi));
521
522 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
523 (const gdb_byte *) (*fpregsetp + 32));
524
525 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
526 include it - but the result of PTRACE_GETFPREGS does. The best we
527 can do is to assume that its value is present. */
528 supply_32bit_reg (regcache,
529 mips_regnum (gdbarch)->fp_implementation_revision,
530 (const gdb_byte *) (*fpregsetp + 32) + 4);
531 }
532
533 static void
534 mips64_supply_fpregset_wrapper (const struct regset *regset,
535 struct regcache *regcache,
536 int regnum, const void *gregs, size_t len)
537 {
538 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
539
540 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
541 }
542
543 /* Likewise, pack one or all floating point registers into an
544 elf_fpregset_t. */
545
546 void
547 mips64_fill_fpregset (const struct regcache *regcache,
548 mips64_elf_fpregset_t *fpregsetp, int regno)
549 {
550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
552 gdb_byte *to;
553
554 if ((regno >= gdbarch_fp0_regnum (gdbarch))
555 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
556 {
557 /* See mips_linux_o32_sigframe_init for a description of the
558 peculiar FP register layout. */
559 if (register_size (gdbarch, regno) == 4)
560 {
561 int regi = regno - gdbarch_fp0_regnum (gdbarch);
562
563 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
564 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
565 to += 4;
566 regcache_raw_collect (regcache, regno, to);
567 }
568 else
569 {
570 to = (gdb_byte *) (*fpregsetp + regno
571 - gdbarch_fp0_regnum (gdbarch));
572 regcache_raw_collect (regcache, regno, to);
573 }
574 }
575 else if (regno == mips_regnum (gdbarch)->fp_control_status)
576 {
577 gdb_byte buf[MAX_REGISTER_SIZE];
578 LONGEST val;
579
580 regcache_raw_collect (regcache, regno, buf);
581 val = extract_signed_integer (buf, register_size (gdbarch, regno),
582 byte_order);
583 to = (gdb_byte *) (*fpregsetp + 32);
584 store_signed_integer (to, 4, byte_order, val);
585 }
586 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
587 {
588 gdb_byte buf[MAX_REGISTER_SIZE];
589 LONGEST val;
590
591 regcache_raw_collect (regcache, regno, buf);
592 val = extract_signed_integer (buf, register_size (gdbarch, regno),
593 byte_order);
594 to = (gdb_byte *) (*fpregsetp + 32) + 4;
595 store_signed_integer (to, 4, byte_order, val);
596 }
597 else if (regno == -1)
598 {
599 int regi;
600
601 for (regi = 0; regi < 32; regi++)
602 mips64_fill_fpregset (regcache, fpregsetp,
603 gdbarch_fp0_regnum (gdbarch) + regi);
604 mips64_fill_fpregset (regcache, fpregsetp,
605 mips_regnum (gdbarch)->fp_control_status);
606 mips64_fill_fpregset (regcache, fpregsetp,
607 mips_regnum (gdbarch)->fp_implementation_revision);
608 }
609 }
610
611 static void
612 mips64_fill_fpregset_wrapper (const struct regset *regset,
613 const struct regcache *regcache,
614 int regnum, void *gregs, size_t len)
615 {
616 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
617
618 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
619 }
620
621 static const struct regset mips_linux_gregset =
622 {
623 NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
624 };
625
626 static const struct regset mips64_linux_gregset =
627 {
628 NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
629 };
630
631 static const struct regset mips_linux_fpregset =
632 {
633 NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
634 };
635
636 static const struct regset mips64_linux_fpregset =
637 {
638 NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
639 };
640
641 static const struct regset *
642 mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
643 const char *sect_name, size_t sect_size)
644 {
645 mips_elf_gregset_t gregset;
646 mips_elf_fpregset_t fpregset;
647 mips64_elf_gregset_t gregset64;
648 mips64_elf_fpregset_t fpregset64;
649
650 if (strcmp (sect_name, ".reg") == 0)
651 {
652 if (sect_size == sizeof (gregset))
653 return &mips_linux_gregset;
654 else if (sect_size == sizeof (gregset64))
655 return &mips64_linux_gregset;
656 else
657 {
658 warning (_("wrong size gregset struct in core file"));
659 }
660 }
661 else if (strcmp (sect_name, ".reg2") == 0)
662 {
663 if (sect_size == sizeof (fpregset))
664 return &mips_linux_fpregset;
665 else if (sect_size == sizeof (fpregset64))
666 return &mips64_linux_fpregset;
667 else
668 {
669 warning (_("wrong size fpregset struct in core file"));
670 }
671 }
672
673 return NULL;
674 }
675
676 static const struct target_desc *
677 mips_linux_core_read_description (struct gdbarch *gdbarch,
678 struct target_ops *target,
679 bfd *abfd)
680 {
681 asection *section = bfd_get_section_by_name (abfd, ".reg");
682 if (! section)
683 return NULL;
684
685 switch (bfd_section_size (abfd, section))
686 {
687 case sizeof (mips_elf_gregset_t):
688 return mips_tdesc_gp32;
689
690 case sizeof (mips64_elf_gregset_t):
691 return mips_tdesc_gp64;
692
693 default:
694 return NULL;
695 }
696 }
697
698
699 /* Check the code at PC for a dynamic linker lazy resolution stub.
700 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
701 section uniformly since version 2.15. If the pc is in that section,
702 then we are in such a stub. Before that ".stub" was used in 32-bit
703 ELF binaries, however we do not bother checking for that since we
704 have never had and that case should be extremely rare these days.
705 Instead we pattern-match on the code generated by GNU ld. They look
706 like this:
707
708 lw t9,0x8010(gp)
709 addu t7,ra
710 jalr t9,ra
711 addiu t8,zero,INDEX
712
713 (with the appropriate doubleword instructions for N64). As any lazy
714 resolution stubs in microMIPS binaries will always be in a
715 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
716
717 static int
718 mips_linux_in_dynsym_stub (CORE_ADDR pc)
719 {
720 gdb_byte buf[28], *p;
721 ULONGEST insn, insn1;
722 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
723 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
724
725 if (in_mips_stubs_section (pc))
726 return 1;
727
728 read_memory (pc - 12, buf, 28);
729
730 if (n64)
731 {
732 /* ld t9,0x8010(gp) */
733 insn1 = 0xdf998010;
734 }
735 else
736 {
737 /* lw t9,0x8010(gp) */
738 insn1 = 0x8f998010;
739 }
740
741 p = buf + 12;
742 while (p >= buf)
743 {
744 insn = extract_unsigned_integer (p, 4, byte_order);
745 if (insn == insn1)
746 break;
747 p -= 4;
748 }
749 if (p < buf)
750 return 0;
751
752 insn = extract_unsigned_integer (p + 4, 4, byte_order);
753 if (n64)
754 {
755 /* daddu t7,ra */
756 if (insn != 0x03e0782d)
757 return 0;
758 }
759 else
760 {
761 /* addu t7,ra */
762 if (insn != 0x03e07821)
763 return 0;
764 }
765
766 insn = extract_unsigned_integer (p + 8, 4, byte_order);
767 /* jalr t9,ra */
768 if (insn != 0x0320f809)
769 return 0;
770
771 insn = extract_unsigned_integer (p + 12, 4, byte_order);
772 if (n64)
773 {
774 /* daddiu t8,zero,0 */
775 if ((insn & 0xffff0000) != 0x64180000)
776 return 0;
777 }
778 else
779 {
780 /* addiu t8,zero,0 */
781 if ((insn & 0xffff0000) != 0x24180000)
782 return 0;
783 }
784
785 return 1;
786 }
787
788 /* Return non-zero iff PC belongs to the dynamic linker resolution
789 code, a PLT entry, or a lazy binding stub. */
790
791 static int
792 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
793 {
794 /* Check whether PC is in the dynamic linker. This also checks
795 whether it is in the .plt section, used by non-PIC executables. */
796 if (svr4_in_dynsym_resolve_code (pc))
797 return 1;
798
799 /* Likewise for the stubs. They live in the .MIPS.stubs section these
800 days, so we check if the PC is within, than fall back to a pattern
801 match. */
802 if (mips_linux_in_dynsym_stub (pc))
803 return 1;
804
805 return 0;
806 }
807
808 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
809 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
810 implementation of this triggers at "fixup" from the same objfile as
811 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
812 "__dl_runtime_resolve" directly. An unresolved lazy binding
813 stub will point to _dl_runtime_resolve, which will first call
814 __dl_runtime_resolve, and then pass control to the resolved
815 function. */
816
817 static CORE_ADDR
818 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
819 {
820 struct bound_minimal_symbol resolver;
821
822 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
823
824 if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
825 return frame_unwind_caller_pc (get_current_frame ());
826
827 return glibc_skip_solib_resolver (gdbarch, pc);
828 }
829
830 /* Signal trampoline support. There are four supported layouts for a
831 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
832 n64 rt_sigframe. We handle them all independently; not the most
833 efficient way, but simplest. First, declare all the unwinders. */
834
835 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
836 struct frame_info *this_frame,
837 struct trad_frame_cache *this_cache,
838 CORE_ADDR func);
839
840 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
841 struct frame_info *this_frame,
842 struct trad_frame_cache *this_cache,
843 CORE_ADDR func);
844
845 #define MIPS_NR_LINUX 4000
846 #define MIPS_NR_N64_LINUX 5000
847 #define MIPS_NR_N32_LINUX 6000
848
849 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
850 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
851 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
852 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
853
854 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
855 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
856 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
857 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
858 #define MIPS_INST_SYSCALL 0x0000000c
859
860 static const struct tramp_frame mips_linux_o32_sigframe = {
861 SIGTRAMP_FRAME,
862 4,
863 {
864 { MIPS_INST_LI_V0_SIGRETURN, -1 },
865 { MIPS_INST_SYSCALL, -1 },
866 { TRAMP_SENTINEL_INSN, -1 }
867 },
868 mips_linux_o32_sigframe_init
869 };
870
871 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
872 SIGTRAMP_FRAME,
873 4,
874 {
875 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
876 { MIPS_INST_SYSCALL, -1 },
877 { TRAMP_SENTINEL_INSN, -1 } },
878 mips_linux_o32_sigframe_init
879 };
880
881 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
882 SIGTRAMP_FRAME,
883 4,
884 {
885 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
886 { MIPS_INST_SYSCALL, -1 },
887 { TRAMP_SENTINEL_INSN, -1 }
888 },
889 mips_linux_n32n64_sigframe_init
890 };
891
892 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
893 SIGTRAMP_FRAME,
894 4,
895 {
896 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
897 { MIPS_INST_SYSCALL, -1 },
898 { TRAMP_SENTINEL_INSN, -1 }
899 },
900 mips_linux_n32n64_sigframe_init
901 };
902
903 /* *INDENT-OFF* */
904 /* The unwinder for o32 signal frames. The legacy structures look
905 like this:
906
907 struct sigframe {
908 u32 sf_ass[4]; [argument save space for o32]
909 u32 sf_code[2]; [signal trampoline or fill]
910 struct sigcontext sf_sc;
911 sigset_t sf_mask;
912 };
913
914 Pre-2.6.12 sigcontext:
915
916 struct sigcontext {
917 unsigned int sc_regmask; [Unused]
918 unsigned int sc_status;
919 unsigned long long sc_pc;
920 unsigned long long sc_regs[32];
921 unsigned long long sc_fpregs[32];
922 unsigned int sc_ownedfp;
923 unsigned int sc_fpc_csr;
924 unsigned int sc_fpc_eir; [Unused]
925 unsigned int sc_used_math;
926 unsigned int sc_ssflags; [Unused]
927 [Alignment hole of four bytes]
928 unsigned long long sc_mdhi;
929 unsigned long long sc_mdlo;
930
931 unsigned int sc_cause; [Unused]
932 unsigned int sc_badvaddr; [Unused]
933
934 unsigned long sc_sigset[4]; [kernel's sigset_t]
935 };
936
937 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
938
939 struct sigcontext {
940 unsigned int sc_regmask; [Unused]
941 unsigned int sc_status; [Unused]
942 unsigned long long sc_pc;
943 unsigned long long sc_regs[32];
944 unsigned long long sc_fpregs[32];
945 unsigned int sc_acx;
946 unsigned int sc_fpc_csr;
947 unsigned int sc_fpc_eir; [Unused]
948 unsigned int sc_used_math;
949 unsigned int sc_dsp;
950 [Alignment hole of four bytes]
951 unsigned long long sc_mdhi;
952 unsigned long long sc_mdlo;
953 unsigned long sc_hi1;
954 unsigned long sc_lo1;
955 unsigned long sc_hi2;
956 unsigned long sc_lo2;
957 unsigned long sc_hi3;
958 unsigned long sc_lo3;
959 };
960
961 The RT signal frames look like this:
962
963 struct rt_sigframe {
964 u32 rs_ass[4]; [argument save space for o32]
965 u32 rs_code[2] [signal trampoline or fill]
966 struct siginfo rs_info;
967 struct ucontext rs_uc;
968 };
969
970 struct ucontext {
971 unsigned long uc_flags;
972 struct ucontext *uc_link;
973 stack_t uc_stack;
974 [Alignment hole of four bytes]
975 struct sigcontext uc_mcontext;
976 sigset_t uc_sigmask;
977 }; */
978 /* *INDENT-ON* */
979
980 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
981
982 #define RTSIGFRAME_SIGINFO_SIZE 128
983 #define STACK_T_SIZE (3 * 4)
984 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
985 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
986 + RTSIGFRAME_SIGINFO_SIZE \
987 + UCONTEXT_SIGCONTEXT_OFFSET)
988
989 #define SIGCONTEXT_PC (1 * 8)
990 #define SIGCONTEXT_REGS (2 * 8)
991 #define SIGCONTEXT_FPREGS (34 * 8)
992 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
993 #define SIGCONTEXT_DSPCTL (68 * 8 + 0)
994 #define SIGCONTEXT_HI (69 * 8)
995 #define SIGCONTEXT_LO (70 * 8)
996 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
997 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
998 #define SIGCONTEXT_HI1 (71 * 8 + 0)
999 #define SIGCONTEXT_LO1 (71 * 8 + 4)
1000 #define SIGCONTEXT_HI2 (72 * 8 + 0)
1001 #define SIGCONTEXT_LO2 (72 * 8 + 4)
1002 #define SIGCONTEXT_HI3 (73 * 8 + 0)
1003 #define SIGCONTEXT_LO3 (73 * 8 + 4)
1004
1005 #define SIGCONTEXT_REG_SIZE 8
1006
1007 static void
1008 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
1009 struct frame_info *this_frame,
1010 struct trad_frame_cache *this_cache,
1011 CORE_ADDR func)
1012 {
1013 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1014 int ireg;
1015 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1016 CORE_ADDR sigcontext_base;
1017 const struct mips_regnum *regs = mips_regnum (gdbarch);
1018 CORE_ADDR regs_base;
1019
1020 if (self == &mips_linux_o32_sigframe)
1021 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
1022 else
1023 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
1024
1025 /* I'm not proud of this hack. Eventually we will have the
1026 infrastructure to indicate the size of saved registers on a
1027 per-frame basis, but right now we don't; the kernel saves eight
1028 bytes but we only want four. Use regs_base to access any
1029 64-bit fields. */
1030 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1031 regs_base = sigcontext_base + 4;
1032 else
1033 regs_base = sigcontext_base;
1034
1035 if (mips_linux_restart_reg_p (gdbarch))
1036 trad_frame_set_reg_addr (this_cache,
1037 (MIPS_RESTART_REGNUM
1038 + gdbarch_num_regs (gdbarch)),
1039 regs_base + SIGCONTEXT_REGS);
1040
1041 for (ireg = 1; ireg < 32; ireg++)
1042 trad_frame_set_reg_addr (this_cache,
1043 (ireg + MIPS_ZERO_REGNUM
1044 + gdbarch_num_regs (gdbarch)),
1045 (regs_base + SIGCONTEXT_REGS
1046 + ireg * SIGCONTEXT_REG_SIZE));
1047
1048 /* The way that floating point registers are saved, unfortunately,
1049 depends on the architecture the kernel is built for. For the r3000 and
1050 tx39, four bytes of each register are at the beginning of each of the
1051 32 eight byte slots. For everything else, the registers are saved
1052 using double precision; only the even-numbered slots are initialized,
1053 and the high bits are the odd-numbered register. Assume the latter
1054 layout, since we can't tell, and it's much more common. Which bits are
1055 the "high" bits depends on endianness. */
1056 for (ireg = 0; ireg < 32; ireg++)
1057 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
1058 trad_frame_set_reg_addr (this_cache,
1059 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1060 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1061 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1062 else
1063 trad_frame_set_reg_addr (this_cache,
1064 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1065 (sigcontext_base + SIGCONTEXT_FPREGS
1066 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1067
1068 trad_frame_set_reg_addr (this_cache,
1069 regs->pc + gdbarch_num_regs (gdbarch),
1070 regs_base + SIGCONTEXT_PC);
1071
1072 trad_frame_set_reg_addr (this_cache,
1073 (regs->fp_control_status
1074 + gdbarch_num_regs (gdbarch)),
1075 sigcontext_base + SIGCONTEXT_FPCSR);
1076
1077 if (regs->dspctl != -1)
1078 trad_frame_set_reg_addr (this_cache,
1079 regs->dspctl + gdbarch_num_regs (gdbarch),
1080 sigcontext_base + SIGCONTEXT_DSPCTL);
1081
1082 trad_frame_set_reg_addr (this_cache,
1083 regs->hi + gdbarch_num_regs (gdbarch),
1084 regs_base + SIGCONTEXT_HI);
1085 trad_frame_set_reg_addr (this_cache,
1086 regs->lo + gdbarch_num_regs (gdbarch),
1087 regs_base + SIGCONTEXT_LO);
1088
1089 if (regs->dspacc != -1)
1090 {
1091 trad_frame_set_reg_addr (this_cache,
1092 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1093 sigcontext_base + SIGCONTEXT_HI1);
1094 trad_frame_set_reg_addr (this_cache,
1095 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1096 sigcontext_base + SIGCONTEXT_LO1);
1097 trad_frame_set_reg_addr (this_cache,
1098 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1099 sigcontext_base + SIGCONTEXT_HI2);
1100 trad_frame_set_reg_addr (this_cache,
1101 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1102 sigcontext_base + SIGCONTEXT_LO2);
1103 trad_frame_set_reg_addr (this_cache,
1104 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1105 sigcontext_base + SIGCONTEXT_HI3);
1106 trad_frame_set_reg_addr (this_cache,
1107 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1108 sigcontext_base + SIGCONTEXT_LO3);
1109 }
1110 else
1111 {
1112 trad_frame_set_reg_addr (this_cache,
1113 regs->cause + gdbarch_num_regs (gdbarch),
1114 sigcontext_base + SIGCONTEXT_CAUSE);
1115 trad_frame_set_reg_addr (this_cache,
1116 regs->badvaddr + gdbarch_num_regs (gdbarch),
1117 sigcontext_base + SIGCONTEXT_BADVADDR);
1118 }
1119
1120 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1121 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1122 }
1123
1124 /* *INDENT-OFF* */
1125 /* For N32/N64 things look different. There is no non-rt signal frame.
1126
1127 struct rt_sigframe_n32 {
1128 u32 rs_ass[4]; [ argument save space for o32 ]
1129 u32 rs_code[2]; [ signal trampoline or fill ]
1130 struct siginfo rs_info;
1131 struct ucontextn32 rs_uc;
1132 };
1133
1134 struct ucontextn32 {
1135 u32 uc_flags;
1136 s32 uc_link;
1137 stack32_t uc_stack;
1138 struct sigcontext uc_mcontext;
1139 sigset_t uc_sigmask; [ mask last for extensibility ]
1140 };
1141
1142 struct rt_sigframe {
1143 u32 rs_ass[4]; [ argument save space for o32 ]
1144 u32 rs_code[2]; [ signal trampoline ]
1145 struct siginfo rs_info;
1146 struct ucontext rs_uc;
1147 };
1148
1149 struct ucontext {
1150 unsigned long uc_flags;
1151 struct ucontext *uc_link;
1152 stack_t uc_stack;
1153 struct sigcontext uc_mcontext;
1154 sigset_t uc_sigmask; [ mask last for extensibility ]
1155 };
1156
1157 And the sigcontext is different (this is for both n32 and n64):
1158
1159 struct sigcontext {
1160 unsigned long long sc_regs[32];
1161 unsigned long long sc_fpregs[32];
1162 unsigned long long sc_mdhi;
1163 unsigned long long sc_hi1;
1164 unsigned long long sc_hi2;
1165 unsigned long long sc_hi3;
1166 unsigned long long sc_mdlo;
1167 unsigned long long sc_lo1;
1168 unsigned long long sc_lo2;
1169 unsigned long long sc_lo3;
1170 unsigned long long sc_pc;
1171 unsigned int sc_fpc_csr;
1172 unsigned int sc_used_math;
1173 unsigned int sc_dsp;
1174 unsigned int sc_reserved;
1175 };
1176
1177 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1178 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1179 included too. */
1180 /* *INDENT-ON* */
1181
1182 #define N32_STACK_T_SIZE STACK_T_SIZE
1183 #define N64_STACK_T_SIZE (2 * 8 + 4)
1184 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1185 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1186 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1187 + RTSIGFRAME_SIGINFO_SIZE \
1188 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1189 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1190 + RTSIGFRAME_SIGINFO_SIZE \
1191 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1192
1193 #define N64_SIGCONTEXT_REGS (0 * 8)
1194 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1195 #define N64_SIGCONTEXT_HI (64 * 8)
1196 #define N64_SIGCONTEXT_HI1 (65 * 8)
1197 #define N64_SIGCONTEXT_HI2 (66 * 8)
1198 #define N64_SIGCONTEXT_HI3 (67 * 8)
1199 #define N64_SIGCONTEXT_LO (68 * 8)
1200 #define N64_SIGCONTEXT_LO1 (69 * 8)
1201 #define N64_SIGCONTEXT_LO2 (70 * 8)
1202 #define N64_SIGCONTEXT_LO3 (71 * 8)
1203 #define N64_SIGCONTEXT_PC (72 * 8)
1204 #define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1205 #define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
1206
1207 #define N64_SIGCONTEXT_REG_SIZE 8
1208
1209 static void
1210 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1211 struct frame_info *this_frame,
1212 struct trad_frame_cache *this_cache,
1213 CORE_ADDR func)
1214 {
1215 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1216 int ireg;
1217 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1218 CORE_ADDR sigcontext_base;
1219 const struct mips_regnum *regs = mips_regnum (gdbarch);
1220
1221 if (self == &mips_linux_n32_rt_sigframe)
1222 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1223 else
1224 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1225
1226 if (mips_linux_restart_reg_p (gdbarch))
1227 trad_frame_set_reg_addr (this_cache,
1228 (MIPS_RESTART_REGNUM
1229 + gdbarch_num_regs (gdbarch)),
1230 sigcontext_base + N64_SIGCONTEXT_REGS);
1231
1232 for (ireg = 1; ireg < 32; ireg++)
1233 trad_frame_set_reg_addr (this_cache,
1234 (ireg + MIPS_ZERO_REGNUM
1235 + gdbarch_num_regs (gdbarch)),
1236 (sigcontext_base + N64_SIGCONTEXT_REGS
1237 + ireg * N64_SIGCONTEXT_REG_SIZE));
1238
1239 for (ireg = 0; ireg < 32; ireg++)
1240 trad_frame_set_reg_addr (this_cache,
1241 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1242 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1243 + ireg * N64_SIGCONTEXT_REG_SIZE));
1244
1245 trad_frame_set_reg_addr (this_cache,
1246 regs->pc + gdbarch_num_regs (gdbarch),
1247 sigcontext_base + N64_SIGCONTEXT_PC);
1248
1249 trad_frame_set_reg_addr (this_cache,
1250 (regs->fp_control_status
1251 + gdbarch_num_regs (gdbarch)),
1252 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1253
1254 trad_frame_set_reg_addr (this_cache,
1255 regs->hi + gdbarch_num_regs (gdbarch),
1256 sigcontext_base + N64_SIGCONTEXT_HI);
1257 trad_frame_set_reg_addr (this_cache,
1258 regs->lo + gdbarch_num_regs (gdbarch),
1259 sigcontext_base + N64_SIGCONTEXT_LO);
1260
1261 if (regs->dspacc != -1)
1262 {
1263 trad_frame_set_reg_addr (this_cache,
1264 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1265 sigcontext_base + N64_SIGCONTEXT_HI1);
1266 trad_frame_set_reg_addr (this_cache,
1267 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1268 sigcontext_base + N64_SIGCONTEXT_LO1);
1269 trad_frame_set_reg_addr (this_cache,
1270 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1271 sigcontext_base + N64_SIGCONTEXT_HI2);
1272 trad_frame_set_reg_addr (this_cache,
1273 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1274 sigcontext_base + N64_SIGCONTEXT_LO2);
1275 trad_frame_set_reg_addr (this_cache,
1276 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1277 sigcontext_base + N64_SIGCONTEXT_HI3);
1278 trad_frame_set_reg_addr (this_cache,
1279 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1280 sigcontext_base + N64_SIGCONTEXT_LO3);
1281 }
1282 if (regs->dspctl != -1)
1283 trad_frame_set_reg_addr (this_cache,
1284 regs->dspctl + gdbarch_num_regs (gdbarch),
1285 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1286
1287 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1288 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1289 }
1290
1291 /* Implement the "write_pc" gdbarch method. */
1292
1293 static void
1294 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1295 {
1296 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1297
1298 mips_write_pc (regcache, pc);
1299
1300 /* Clear the syscall restart flag. */
1301 if (mips_linux_restart_reg_p (gdbarch))
1302 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1303 }
1304
1305 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1306
1307 int
1308 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1309 {
1310 /* If we do not have a target description with registers, then
1311 MIPS_RESTART_REGNUM will not be included in the register set. */
1312 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1313 return 0;
1314
1315 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1316 either be GPR-sized or missing. */
1317 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1318 }
1319
1320 /* When FRAME is at a syscall instruction, return the PC of the next
1321 instruction to be executed. */
1322
1323 static CORE_ADDR
1324 mips_linux_syscall_next_pc (struct frame_info *frame)
1325 {
1326 CORE_ADDR pc = get_frame_pc (frame);
1327 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1328
1329 /* If we are about to make a sigreturn syscall, use the unwinder to
1330 decode the signal frame. */
1331 if (v0 == MIPS_NR_sigreturn
1332 || v0 == MIPS_NR_rt_sigreturn
1333 || v0 == MIPS_NR_N64_rt_sigreturn
1334 || v0 == MIPS_NR_N32_rt_sigreturn)
1335 return frame_unwind_caller_pc (get_current_frame ());
1336
1337 return pc + 4;
1338 }
1339
1340 /* Return the current system call's number present in the
1341 v0 register. When the function fails, it returns -1. */
1342
1343 static LONGEST
1344 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1345 ptid_t ptid)
1346 {
1347 struct regcache *regcache = get_thread_regcache (ptid);
1348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1350 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1351 /* The content of a register */
1352 gdb_byte buf[8];
1353 /* The result */
1354 LONGEST ret;
1355
1356 /* Make sure we're in a known ABI */
1357 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1358 || tdep->mips_abi == MIPS_ABI_N32
1359 || tdep->mips_abi == MIPS_ABI_N64);
1360
1361 gdb_assert (regsize <= sizeof (buf));
1362
1363 /* Getting the system call number from the register.
1364 syscall number is in v0 or $2. */
1365 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1366
1367 ret = extract_signed_integer (buf, regsize, byte_order);
1368
1369 return ret;
1370 }
1371
1372 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1373 gdbarch.h. */
1374
1375 static int
1376 mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1377 enum gdb_signal signal)
1378 {
1379 switch (signal)
1380 {
1381 case GDB_SIGNAL_EMT:
1382 return MIPS_LINUX_SIGEMT;
1383
1384 case GDB_SIGNAL_BUS:
1385 return MIPS_LINUX_SIGBUS;
1386
1387 case GDB_SIGNAL_SYS:
1388 return MIPS_LINUX_SIGSYS;
1389
1390 case GDB_SIGNAL_USR1:
1391 return MIPS_LINUX_SIGUSR1;
1392
1393 case GDB_SIGNAL_USR2:
1394 return MIPS_LINUX_SIGUSR2;
1395
1396 case GDB_SIGNAL_CHLD:
1397 return MIPS_LINUX_SIGCHLD;
1398
1399 case GDB_SIGNAL_PWR:
1400 return MIPS_LINUX_SIGPWR;
1401
1402 case GDB_SIGNAL_WINCH:
1403 return MIPS_LINUX_SIGWINCH;
1404
1405 case GDB_SIGNAL_URG:
1406 return MIPS_LINUX_SIGURG;
1407
1408 case GDB_SIGNAL_IO:
1409 return MIPS_LINUX_SIGIO;
1410
1411 case GDB_SIGNAL_POLL:
1412 return MIPS_LINUX_SIGPOLL;
1413
1414 case GDB_SIGNAL_STOP:
1415 return MIPS_LINUX_SIGSTOP;
1416
1417 case GDB_SIGNAL_TSTP:
1418 return MIPS_LINUX_SIGTSTP;
1419
1420 case GDB_SIGNAL_CONT:
1421 return MIPS_LINUX_SIGCONT;
1422
1423 case GDB_SIGNAL_TTIN:
1424 return MIPS_LINUX_SIGTTIN;
1425
1426 case GDB_SIGNAL_TTOU:
1427 return MIPS_LINUX_SIGTTOU;
1428
1429 case GDB_SIGNAL_VTALRM:
1430 return MIPS_LINUX_SIGVTALRM;
1431
1432 case GDB_SIGNAL_PROF:
1433 return MIPS_LINUX_SIGPROF;
1434
1435 case GDB_SIGNAL_XCPU:
1436 return MIPS_LINUX_SIGXCPU;
1437
1438 case GDB_SIGNAL_XFSZ:
1439 return MIPS_LINUX_SIGXFSZ;
1440
1441 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1442 therefore we have to handle it here. */
1443 case GDB_SIGNAL_REALTIME_32:
1444 return MIPS_LINUX_SIGRTMIN;
1445 }
1446
1447 if (signal >= GDB_SIGNAL_REALTIME_33
1448 && signal <= GDB_SIGNAL_REALTIME_63)
1449 {
1450 int offset = signal - GDB_SIGNAL_REALTIME_33;
1451
1452 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1453 }
1454 else if (signal >= GDB_SIGNAL_REALTIME_64
1455 && signal <= GDB_SIGNAL_REALTIME_127)
1456 {
1457 int offset = signal - GDB_SIGNAL_REALTIME_64;
1458
1459 return MIPS_LINUX_SIGRT64 + offset;
1460 }
1461
1462 return linux_gdb_signal_to_target (gdbarch, signal);
1463 }
1464
1465 /* Translate signals based on MIPS signal values.
1466 Adapted from gdb/common/signals.c. */
1467
1468 static enum gdb_signal
1469 mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1470 {
1471 switch (signal)
1472 {
1473 case MIPS_LINUX_SIGEMT:
1474 return GDB_SIGNAL_EMT;
1475
1476 case MIPS_LINUX_SIGBUS:
1477 return GDB_SIGNAL_BUS;
1478
1479 case MIPS_LINUX_SIGSYS:
1480 return GDB_SIGNAL_SYS;
1481
1482 case MIPS_LINUX_SIGUSR1:
1483 return GDB_SIGNAL_USR1;
1484
1485 case MIPS_LINUX_SIGUSR2:
1486 return GDB_SIGNAL_USR2;
1487
1488 case MIPS_LINUX_SIGCHLD:
1489 return GDB_SIGNAL_CHLD;
1490
1491 case MIPS_LINUX_SIGPWR:
1492 return GDB_SIGNAL_PWR;
1493
1494 case MIPS_LINUX_SIGWINCH:
1495 return GDB_SIGNAL_WINCH;
1496
1497 case MIPS_LINUX_SIGURG:
1498 return GDB_SIGNAL_URG;
1499
1500 /* No way to differentiate between SIGIO and SIGPOLL.
1501 Therefore, we just handle the first one. */
1502 case MIPS_LINUX_SIGIO:
1503 return GDB_SIGNAL_IO;
1504
1505 case MIPS_LINUX_SIGSTOP:
1506 return GDB_SIGNAL_STOP;
1507
1508 case MIPS_LINUX_SIGTSTP:
1509 return GDB_SIGNAL_TSTP;
1510
1511 case MIPS_LINUX_SIGCONT:
1512 return GDB_SIGNAL_CONT;
1513
1514 case MIPS_LINUX_SIGTTIN:
1515 return GDB_SIGNAL_TTIN;
1516
1517 case MIPS_LINUX_SIGTTOU:
1518 return GDB_SIGNAL_TTOU;
1519
1520 case MIPS_LINUX_SIGVTALRM:
1521 return GDB_SIGNAL_VTALRM;
1522
1523 case MIPS_LINUX_SIGPROF:
1524 return GDB_SIGNAL_PROF;
1525
1526 case MIPS_LINUX_SIGXCPU:
1527 return GDB_SIGNAL_XCPU;
1528
1529 case MIPS_LINUX_SIGXFSZ:
1530 return GDB_SIGNAL_XFSZ;
1531 }
1532
1533 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
1534 {
1535 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1536 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
1537 int offset = signal - MIPS_LINUX_SIGRTMIN;
1538
1539 if (offset == 0)
1540 return GDB_SIGNAL_REALTIME_32;
1541 else if (offset < 32)
1542 return (enum gdb_signal) (offset - 1
1543 + (int) GDB_SIGNAL_REALTIME_33);
1544 else
1545 return (enum gdb_signal) (offset - 32
1546 + (int) GDB_SIGNAL_REALTIME_64);
1547 }
1548
1549 return linux_gdb_signal_from_target (gdbarch, signal);
1550 }
1551
1552 /* Initialize one of the GNU/Linux OS ABIs. */
1553
1554 static void
1555 mips_linux_init_abi (struct gdbarch_info info,
1556 struct gdbarch *gdbarch)
1557 {
1558 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1559 enum mips_abi abi = mips_abi (gdbarch);
1560 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1561
1562 linux_init_abi (info, gdbarch);
1563
1564 /* Get the syscall number from the arch's register. */
1565 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1566
1567 switch (abi)
1568 {
1569 case MIPS_ABI_O32:
1570 set_gdbarch_get_longjmp_target (gdbarch,
1571 mips_linux_get_longjmp_target);
1572 set_solib_svr4_fetch_link_map_offsets
1573 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1574 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1575 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1576 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
1577 break;
1578 case MIPS_ABI_N32:
1579 set_gdbarch_get_longjmp_target (gdbarch,
1580 mips_linux_get_longjmp_target);
1581 set_solib_svr4_fetch_link_map_offsets
1582 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1583 set_gdbarch_long_double_bit (gdbarch, 128);
1584 /* These floatformats should probably be renamed. MIPS uses
1585 the same 128-bit IEEE floating point format that IA-64 uses,
1586 except that the quiet/signalling NaN bit is reversed (GDB
1587 does not distinguish between quiet and signalling NaNs). */
1588 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1589 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1590 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
1591 break;
1592 case MIPS_ABI_N64:
1593 set_gdbarch_get_longjmp_target (gdbarch,
1594 mips64_linux_get_longjmp_target);
1595 set_solib_svr4_fetch_link_map_offsets
1596 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1597 set_gdbarch_long_double_bit (gdbarch, 128);
1598 /* These floatformats should probably be renamed. MIPS uses
1599 the same 128-bit IEEE floating point format that IA-64 uses,
1600 except that the quiet/signalling NaN bit is reversed (GDB
1601 does not distinguish between quiet and signalling NaNs). */
1602 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1603 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1604 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
1605 break;
1606 default:
1607 break;
1608 }
1609
1610 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1611
1612 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1613
1614 /* Enable TLS support. */
1615 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1616 svr4_fetch_objfile_link_map);
1617
1618 /* Initialize this lazily, to avoid an initialization order
1619 dependency on solib-svr4.c's _initialize routine. */
1620 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1621 {
1622 mips_svr4_so_ops = svr4_so_ops;
1623 mips_svr4_so_ops.in_dynsym_resolve_code
1624 = mips_linux_in_dynsym_resolve_code;
1625 }
1626 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1627
1628 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1629
1630 set_gdbarch_core_read_description (gdbarch,
1631 mips_linux_core_read_description);
1632
1633 set_gdbarch_regset_from_core_section (gdbarch,
1634 mips_linux_regset_from_core_section);
1635
1636 set_gdbarch_gdb_signal_from_target (gdbarch,
1637 mips_gdb_signal_from_target);
1638
1639 set_gdbarch_gdb_signal_to_target (gdbarch,
1640 mips_gdb_signal_to_target);
1641
1642 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1643
1644 if (tdesc_data)
1645 {
1646 const struct tdesc_feature *feature;
1647
1648 /* If we have target-described registers, then we can safely
1649 reserve a number for MIPS_RESTART_REGNUM (whether it is
1650 described or not). */
1651 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1652 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1653 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1654
1655 /* If it's present, then assign it to the reserved number. */
1656 feature = tdesc_find_feature (info.target_desc,
1657 "org.gnu.gdb.mips.linux");
1658 if (feature != NULL)
1659 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1660 "restart");
1661 }
1662 }
1663
1664 /* Provide a prototype to silence -Wmissing-prototypes. */
1665 extern initialize_file_ftype _initialize_mips_linux_tdep;
1666
1667 void
1668 _initialize_mips_linux_tdep (void)
1669 {
1670 const struct bfd_arch_info *arch_info;
1671
1672 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1673 arch_info != NULL;
1674 arch_info = arch_info->next)
1675 {
1676 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1677 GDB_OSABI_LINUX,
1678 mips_linux_init_abi);
1679 }
1680 }
This page took 0.063349 seconds and 4 git commands to generate.