*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "gdbcore.h"
25 #include "target.h"
26 #include "solib-svr4.h"
27 #include "osabi.h"
28 #include "mips-tdep.h"
29 #include "gdb_string.h"
30 #include "gdb_assert.h"
31 #include "frame.h"
32 #include "regcache.h"
33 #include "trad-frame.h"
34 #include "tramp-frame.h"
35 #include "gdbtypes.h"
36 #include "solib.h"
37 #include "solib-svr4.h"
38 #include "solist.h"
39 #include "symtab.h"
40 #include "mips-linux-tdep.h"
41
42 static struct target_so_ops mips_svr4_so_ops;
43
44 /* Figure out where the longjmp will land.
45 We expect the first arg to be a pointer to the jmp_buf structure
46 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
47 at. The pc is copied into PC. This routine returns 1 on
48 success. */
49
50 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
51 #define MIPS_LINUX_JB_PC 0
52
53 static int
54 mips_linux_get_longjmp_target (CORE_ADDR *pc)
55 {
56 CORE_ADDR jb_addr;
57 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
58
59 jb_addr = read_register (MIPS_A0_REGNUM);
60
61 if (target_read_memory (jb_addr
62 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
63 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
64 return 0;
65
66 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
67
68 return 1;
69 }
70
71 /* Transform the bits comprising a 32-bit register to the right size
72 for regcache_raw_supply(). This is needed when mips_isa_regsize()
73 is 8. */
74
75 static void
76 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
77 {
78 gdb_byte buf[MAX_REGISTER_SIZE];
79 store_signed_integer (buf, register_size (current_gdbarch, regnum),
80 extract_signed_integer (addr, 4));
81 regcache_raw_supply (regcache, regnum, buf);
82 }
83
84 /* Unpack an elf_gregset_t into GDB's register cache. */
85
86 void
87 mips_supply_gregset (struct regcache *regcache,
88 const mips_elf_gregset_t *gregsetp)
89 {
90 int regi;
91 const mips_elf_greg_t *regp = *gregsetp;
92 char zerobuf[MAX_REGISTER_SIZE];
93
94 memset (zerobuf, 0, MAX_REGISTER_SIZE);
95
96 for (regi = EF_REG0; regi <= EF_REG31; regi++)
97 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
98
99 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
100 regp + EF_LO);
101 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
102 regp + EF_HI);
103
104 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
105 regp + EF_CP0_EPC);
106 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
107 regp + EF_CP0_BADVADDR);
108 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
109 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
110 regp + EF_CP0_CAUSE);
111
112 /* Fill inaccessible registers with zero. */
113 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
114 for (regi = MIPS_FIRST_EMBED_REGNUM;
115 regi < MIPS_LAST_EMBED_REGNUM;
116 regi++)
117 regcache_raw_supply (regcache, regi, zerobuf);
118 }
119
120 /* Pack our registers (or one register) into an elf_gregset_t. */
121
122 void
123 mips_fill_gregset (const struct regcache *regcache,
124 mips_elf_gregset_t *gregsetp, int regno)
125 {
126 int regaddr, regi;
127 mips_elf_greg_t *regp = *gregsetp;
128 void *dst;
129
130 if (regno == -1)
131 {
132 memset (regp, 0, sizeof (mips_elf_gregset_t));
133 for (regi = 0; regi < 32; regi++)
134 mips_fill_gregset (regcache, gregsetp, regi);
135 mips_fill_gregset (regcache, gregsetp,
136 mips_regnum (current_gdbarch)->lo);
137 mips_fill_gregset (regcache, gregsetp,
138 mips_regnum (current_gdbarch)->hi);
139 mips_fill_gregset (regcache, gregsetp,
140 mips_regnum (current_gdbarch)->pc);
141 mips_fill_gregset (regcache, gregsetp,
142 mips_regnum (current_gdbarch)->badvaddr);
143 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
144 mips_fill_gregset (regcache, gregsetp,
145 mips_regnum (current_gdbarch)->cause);
146 return;
147 }
148
149 if (regno < 32)
150 {
151 dst = regp + regno + EF_REG0;
152 regcache_raw_collect (regcache, regno, dst);
153 return;
154 }
155
156 if (regno == mips_regnum (current_gdbarch)->lo)
157 regaddr = EF_LO;
158 else if (regno == mips_regnum (current_gdbarch)->hi)
159 regaddr = EF_HI;
160 else if (regno == mips_regnum (current_gdbarch)->pc)
161 regaddr = EF_CP0_EPC;
162 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
163 regaddr = EF_CP0_BADVADDR;
164 else if (regno == MIPS_PS_REGNUM)
165 regaddr = EF_CP0_STATUS;
166 else if (regno == mips_regnum (current_gdbarch)->cause)
167 regaddr = EF_CP0_CAUSE;
168 else
169 regaddr = -1;
170
171 if (regaddr != -1)
172 {
173 dst = regp + regaddr;
174 regcache_raw_collect (regcache, regno, dst);
175 }
176 }
177
178 /* Likewise, unpack an elf_fpregset_t. */
179
180 void
181 mips_supply_fpregset (struct regcache *regcache,
182 const mips_elf_fpregset_t *fpregsetp)
183 {
184 int regi;
185 char zerobuf[MAX_REGISTER_SIZE];
186
187 memset (zerobuf, 0, MAX_REGISTER_SIZE);
188
189 for (regi = 0; regi < 32; regi++)
190 regcache_raw_supply (regcache, FP0_REGNUM + regi, *fpregsetp + regi);
191
192 regcache_raw_supply (regcache,
193 mips_regnum (current_gdbarch)->fp_control_status,
194 *fpregsetp + 32);
195
196 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
197 regcache_raw_supply (regcache,
198 mips_regnum (current_gdbarch)->fp_implementation_revision,
199 zerobuf);
200 }
201
202 /* Likewise, pack one or all floating point registers into an
203 elf_fpregset_t. */
204
205 void
206 mips_fill_fpregset (const struct regcache *regcache,
207 mips_elf_fpregset_t *fpregsetp, int regno)
208 {
209 char *from, *to;
210
211 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
212 {
213 to = (char *) (*fpregsetp + regno - FP0_REGNUM);
214 regcache_raw_collect (regcache, regno, to);
215 }
216 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
217 {
218 to = (char *) (*fpregsetp + 32);
219 regcache_raw_collect (regcache, regno, to);
220 }
221 else if (regno == -1)
222 {
223 int regi;
224
225 for (regi = 0; regi < 32; regi++)
226 mips_fill_fpregset (regcache, fpregsetp, FP0_REGNUM + regi);
227 mips_fill_fpregset (regcache, fpregsetp,
228 mips_regnum (current_gdbarch)->fp_control_status);
229 }
230 }
231
232 /* Support for 64-bit ABIs. */
233
234 /* Figure out where the longjmp will land.
235 We expect the first arg to be a pointer to the jmp_buf structure
236 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
237 at. The pc is copied into PC. This routine returns 1 on
238 success. */
239
240 /* Details about jmp_buf. */
241
242 #define MIPS64_LINUX_JB_PC 0
243
244 static int
245 mips64_linux_get_longjmp_target (CORE_ADDR *pc)
246 {
247 CORE_ADDR jb_addr;
248 void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
249 int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
250
251 jb_addr = read_register (MIPS_A0_REGNUM);
252
253 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
254 buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
255 return 0;
256
257 *pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
258
259 return 1;
260 }
261
262 /* Register set support functions. These operate on standard 64-bit
263 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
264 target will still use the 64-bit format for PTRACE_GETREGS. */
265
266 /* Supply a 64-bit register. */
267
268 void
269 supply_64bit_reg (struct regcache *regcache, int regnum,
270 const gdb_byte *buf)
271 {
272 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
273 && register_size (current_gdbarch, regnum) == 4)
274 regcache_raw_supply (regcache, regnum, buf + 4);
275 else
276 regcache_raw_supply (regcache, regnum, buf);
277 }
278
279 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
280
281 void
282 mips64_supply_gregset (struct regcache *regcache,
283 const mips64_elf_gregset_t *gregsetp)
284 {
285 int regi;
286 const mips64_elf_greg_t *regp = *gregsetp;
287 gdb_byte zerobuf[MAX_REGISTER_SIZE];
288
289 memset (zerobuf, 0, MAX_REGISTER_SIZE);
290
291 for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
292 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
293 (const gdb_byte *)(regp + regi));
294
295 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
296 (const gdb_byte *) (regp + MIPS64_EF_LO));
297 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
298 (const gdb_byte *) (regp + MIPS64_EF_HI));
299
300 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
301 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
302 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
303 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
304 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
305 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
306 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
307 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
308
309 /* Fill inaccessible registers with zero. */
310 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
311 for (regi = MIPS_FIRST_EMBED_REGNUM;
312 regi < MIPS_LAST_EMBED_REGNUM;
313 regi++)
314 regcache_raw_supply (regcache, regi, zerobuf);
315 }
316
317 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
318
319 void
320 mips64_fill_gregset (const struct regcache *regcache,
321 mips64_elf_gregset_t *gregsetp, int regno)
322 {
323 int regaddr, regi;
324 mips64_elf_greg_t *regp = *gregsetp;
325 void *src, *dst;
326
327 if (regno == -1)
328 {
329 memset (regp, 0, sizeof (mips64_elf_gregset_t));
330 for (regi = 0; regi < 32; regi++)
331 mips64_fill_gregset (regcache, gregsetp, regi);
332 mips64_fill_gregset (regcache, gregsetp,
333 mips_regnum (current_gdbarch)->lo);
334 mips64_fill_gregset (regcache, gregsetp,
335 mips_regnum (current_gdbarch)->hi);
336 mips64_fill_gregset (regcache, gregsetp,
337 mips_regnum (current_gdbarch)->pc);
338 mips64_fill_gregset (regcache, gregsetp,
339 mips_regnum (current_gdbarch)->badvaddr);
340 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
341 mips64_fill_gregset (regcache, gregsetp,
342 mips_regnum (current_gdbarch)->cause);
343 return;
344 }
345
346 if (regno < 32)
347 regaddr = regno + MIPS64_EF_REG0;
348 else if (regno == mips_regnum (current_gdbarch)->lo)
349 regaddr = MIPS64_EF_LO;
350 else if (regno == mips_regnum (current_gdbarch)->hi)
351 regaddr = MIPS64_EF_HI;
352 else if (regno == mips_regnum (current_gdbarch)->pc)
353 regaddr = MIPS64_EF_CP0_EPC;
354 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
355 regaddr = MIPS64_EF_CP0_BADVADDR;
356 else if (regno == MIPS_PS_REGNUM)
357 regaddr = MIPS64_EF_CP0_STATUS;
358 else if (regno == mips_regnum (current_gdbarch)->cause)
359 regaddr = MIPS64_EF_CP0_CAUSE;
360 else
361 regaddr = -1;
362
363 if (regaddr != -1)
364 {
365 gdb_byte buf[MAX_REGISTER_SIZE];
366 LONGEST val;
367
368 regcache_raw_collect (regcache, regno, buf);
369 val = extract_signed_integer (buf,
370 register_size (current_gdbarch, regno));
371 dst = regp + regaddr;
372 store_signed_integer (dst, 8, val);
373 }
374 }
375
376 /* Likewise, unpack an elf_fpregset_t. */
377
378 void
379 mips64_supply_fpregset (struct regcache *regcache,
380 const mips64_elf_fpregset_t *fpregsetp)
381 {
382 int regi;
383
384 /* See mips_linux_o32_sigframe_init for a description of the
385 peculiar FP register layout. */
386 if (register_size (current_gdbarch, FP0_REGNUM) == 4)
387 for (regi = 0; regi < 32; regi++)
388 {
389 const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
390 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
391 reg_ptr += 4;
392 regcache_raw_supply (regcache, FP0_REGNUM + regi, reg_ptr);
393 }
394 else
395 for (regi = 0; regi < 32; regi++)
396 regcache_raw_supply (regcache, FP0_REGNUM + regi,
397 (const char *)(*fpregsetp + regi));
398
399 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->fp_control_status,
400 (const gdb_byte *)(*fpregsetp + 32));
401
402 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
403 include it - but the result of PTRACE_GETFPREGS does. The best we
404 can do is to assume that its value is present. */
405 supply_32bit_reg (regcache,
406 mips_regnum (current_gdbarch)->fp_implementation_revision,
407 (const gdb_byte *)(*fpregsetp + 32) + 4);
408 }
409
410 /* Likewise, pack one or all floating point registers into an
411 elf_fpregset_t. */
412
413 void
414 mips64_fill_fpregset (const struct regcache *regcache,
415 mips64_elf_fpregset_t *fpregsetp, int regno)
416 {
417 gdb_byte *to;
418
419 if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
420 {
421 /* See mips_linux_o32_sigframe_init for a description of the
422 peculiar FP register layout. */
423 if (register_size (current_gdbarch, regno) == 4)
424 {
425 int regi = regno - FP0_REGNUM;
426
427 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
428 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (regi & 1))
429 to += 4;
430 regcache_raw_collect (regcache, regno, to);
431 }
432 else
433 {
434 to = (gdb_byte *) (*fpregsetp + regno - FP0_REGNUM);
435 regcache_raw_collect (regcache, regno, to);
436 }
437 }
438 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
439 {
440 gdb_byte buf[MAX_REGISTER_SIZE];
441 LONGEST val;
442
443 regcache_raw_collect (regcache, regno, buf);
444 val = extract_signed_integer (buf,
445 register_size (current_gdbarch, regno));
446 to = (gdb_byte *) (*fpregsetp + 32);
447 store_signed_integer (to, 4, val);
448 }
449 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
450 {
451 gdb_byte buf[MAX_REGISTER_SIZE];
452 LONGEST val;
453
454 regcache_raw_collect (regcache, regno, buf);
455 val = extract_signed_integer (buf,
456 register_size (current_gdbarch, regno));
457 to = (gdb_byte *) (*fpregsetp + 32) + 4;
458 store_signed_integer (to, 4, val);
459 }
460 else if (regno == -1)
461 {
462 int regi;
463
464 for (regi = 0; regi < 32; regi++)
465 mips64_fill_fpregset (regcache, fpregsetp, FP0_REGNUM + regi);
466 mips64_fill_fpregset (regcache, fpregsetp,
467 mips_regnum (current_gdbarch)->fp_control_status);
468 mips64_fill_fpregset (regcache, fpregsetp,
469 (mips_regnum (current_gdbarch)
470 ->fp_implementation_revision));
471 }
472 }
473
474
475 /* Use a local version of this function to get the correct types for
476 regsets, until multi-arch core support is ready. */
477
478 static void
479 fetch_core_registers (struct regcache *regcache,
480 char *core_reg_sect, unsigned core_reg_size,
481 int which, CORE_ADDR reg_addr)
482 {
483 mips_elf_gregset_t gregset;
484 mips_elf_fpregset_t fpregset;
485 mips64_elf_gregset_t gregset64;
486 mips64_elf_fpregset_t fpregset64;
487
488 if (which == 0)
489 {
490 if (core_reg_size == sizeof (gregset))
491 {
492 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
493 mips_supply_gregset (regcache,
494 (const mips_elf_gregset_t *) &gregset);
495 }
496 else if (core_reg_size == sizeof (gregset64))
497 {
498 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
499 mips64_supply_gregset (regcache,
500 (const mips64_elf_gregset_t *) &gregset64);
501 }
502 else
503 {
504 warning (_("wrong size gregset struct in core file"));
505 }
506 }
507 else if (which == 2)
508 {
509 if (core_reg_size == sizeof (fpregset))
510 {
511 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
512 mips_supply_fpregset (regcache,
513 (const mips_elf_fpregset_t *) &fpregset);
514 }
515 else if (core_reg_size == sizeof (fpregset64))
516 {
517 memcpy ((char *) &fpregset64, core_reg_sect,
518 sizeof (fpregset64));
519 mips64_supply_fpregset (regcache,
520 (const mips64_elf_fpregset_t *) &fpregset64);
521 }
522 else
523 {
524 warning (_("wrong size fpregset struct in core file"));
525 }
526 }
527 }
528
529 /* Register that we are able to handle ELF file formats using standard
530 procfs "regset" structures. */
531
532 static struct core_fns regset_core_fns =
533 {
534 bfd_target_elf_flavour, /* core_flavour */
535 default_check_format, /* check_format */
536 default_core_sniffer, /* core_sniffer */
537 fetch_core_registers, /* core_read_registers */
538 NULL /* next */
539 };
540
541
542 /* Check the code at PC for a dynamic linker lazy resolution stub.
543 Because they aren't in the .plt section, we pattern-match on the
544 code generated by GNU ld. They look like this:
545
546 lw t9,0x8010(gp)
547 addu t7,ra
548 jalr t9,ra
549 addiu t8,zero,INDEX
550
551 (with the appropriate doubleword instructions for N64). Also
552 return the dynamic symbol index used in the last instruction. */
553
554 static int
555 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
556 {
557 unsigned char buf[28], *p;
558 ULONGEST insn, insn1;
559 int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
560
561 read_memory (pc - 12, buf, 28);
562
563 if (n64)
564 {
565 /* ld t9,0x8010(gp) */
566 insn1 = 0xdf998010;
567 }
568 else
569 {
570 /* lw t9,0x8010(gp) */
571 insn1 = 0x8f998010;
572 }
573
574 p = buf + 12;
575 while (p >= buf)
576 {
577 insn = extract_unsigned_integer (p, 4);
578 if (insn == insn1)
579 break;
580 p -= 4;
581 }
582 if (p < buf)
583 return 0;
584
585 insn = extract_unsigned_integer (p + 4, 4);
586 if (n64)
587 {
588 /* daddu t7,ra */
589 if (insn != 0x03e0782d)
590 return 0;
591 }
592 else
593 {
594 /* addu t7,ra */
595 if (insn != 0x03e07821)
596 return 0;
597 }
598
599 insn = extract_unsigned_integer (p + 8, 4);
600 /* jalr t9,ra */
601 if (insn != 0x0320f809)
602 return 0;
603
604 insn = extract_unsigned_integer (p + 12, 4);
605 if (n64)
606 {
607 /* daddiu t8,zero,0 */
608 if ((insn & 0xffff0000) != 0x64180000)
609 return 0;
610 }
611 else
612 {
613 /* addiu t8,zero,0 */
614 if ((insn & 0xffff0000) != 0x24180000)
615 return 0;
616 }
617
618 return (insn & 0xffff);
619 }
620
621 /* Return non-zero iff PC belongs to the dynamic linker resolution
622 code or to a stub. */
623
624 static int
625 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
626 {
627 /* Check whether PC is in the dynamic linker. This also checks
628 whether it is in the .plt section, which MIPS does not use. */
629 if (svr4_in_dynsym_resolve_code (pc))
630 return 1;
631
632 /* Pattern match for the stub. It would be nice if there were a
633 more efficient way to avoid this check. */
634 if (mips_linux_in_dynsym_stub (pc, NULL))
635 return 1;
636
637 return 0;
638 }
639
640 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
641 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
642 implementation of this triggers at "fixup" from the same objfile as
643 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
644 "__dl_runtime_resolve" directly. An unresolved PLT entry will
645 point to _dl_runtime_resolve, which will first call
646 __dl_runtime_resolve, and then pass control to the resolved
647 function. */
648
649 static CORE_ADDR
650 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
651 {
652 struct minimal_symbol *resolver;
653
654 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
655
656 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
657 return frame_pc_unwind (get_current_frame ());
658
659 return 0;
660 }
661
662 /* Signal trampoline support. There are four supported layouts for a
663 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
664 n64 rt_sigframe. We handle them all independently; not the most
665 efficient way, but simplest. First, declare all the unwinders. */
666
667 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
668 struct frame_info *next_frame,
669 struct trad_frame_cache *this_cache,
670 CORE_ADDR func);
671
672 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
673 struct frame_info *next_frame,
674 struct trad_frame_cache *this_cache,
675 CORE_ADDR func);
676
677 #define MIPS_NR_LINUX 4000
678 #define MIPS_NR_N64_LINUX 5000
679 #define MIPS_NR_N32_LINUX 6000
680
681 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
682 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
683 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
684 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
685
686 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
687 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
688 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
689 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
690 #define MIPS_INST_SYSCALL 0x0000000c
691
692 static const struct tramp_frame mips_linux_o32_sigframe = {
693 SIGTRAMP_FRAME,
694 4,
695 {
696 { MIPS_INST_LI_V0_SIGRETURN, -1 },
697 { MIPS_INST_SYSCALL, -1 },
698 { TRAMP_SENTINEL_INSN, -1 }
699 },
700 mips_linux_o32_sigframe_init
701 };
702
703 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
704 SIGTRAMP_FRAME,
705 4,
706 {
707 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
708 { MIPS_INST_SYSCALL, -1 },
709 { TRAMP_SENTINEL_INSN, -1 } },
710 mips_linux_o32_sigframe_init
711 };
712
713 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
714 SIGTRAMP_FRAME,
715 4,
716 {
717 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
718 { MIPS_INST_SYSCALL, -1 },
719 { TRAMP_SENTINEL_INSN, -1 }
720 },
721 mips_linux_n32n64_sigframe_init
722 };
723
724 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
725 SIGTRAMP_FRAME,
726 4,
727 {
728 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
729 { MIPS_INST_SYSCALL, -1 },
730 { TRAMP_SENTINEL_INSN, -1 }
731 },
732 mips_linux_n32n64_sigframe_init
733 };
734
735 /* *INDENT-OFF* */
736 /* The unwinder for o32 signal frames. The legacy structures look
737 like this:
738
739 struct sigframe {
740 u32 sf_ass[4]; [argument save space for o32]
741 u32 sf_code[2]; [signal trampoline]
742 struct sigcontext sf_sc;
743 sigset_t sf_mask;
744 };
745
746 struct sigcontext {
747 unsigned int sc_regmask; [Unused]
748 unsigned int sc_status;
749 unsigned long long sc_pc;
750 unsigned long long sc_regs[32];
751 unsigned long long sc_fpregs[32];
752 unsigned int sc_ownedfp;
753 unsigned int sc_fpc_csr;
754 unsigned int sc_fpc_eir; [Unused]
755 unsigned int sc_used_math;
756 unsigned int sc_ssflags; [Unused]
757 [Alignment hole of four bytes]
758 unsigned long long sc_mdhi;
759 unsigned long long sc_mdlo;
760
761 unsigned int sc_cause; [Unused]
762 unsigned int sc_badvaddr; [Unused]
763
764 unsigned long sc_sigset[4]; [kernel's sigset_t]
765 };
766
767 The RT signal frames look like this:
768
769 struct rt_sigframe {
770 u32 rs_ass[4]; [argument save space for o32]
771 u32 rs_code[2] [signal trampoline]
772 struct siginfo rs_info;
773 struct ucontext rs_uc;
774 };
775
776 struct ucontext {
777 unsigned long uc_flags;
778 struct ucontext *uc_link;
779 stack_t uc_stack;
780 [Alignment hole of four bytes]
781 struct sigcontext uc_mcontext;
782 sigset_t uc_sigmask;
783 }; */
784 /* *INDENT-ON* */
785
786 #define SIGFRAME_CODE_OFFSET (4 * 4)
787 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
788
789 #define RTSIGFRAME_SIGINFO_SIZE 128
790 #define STACK_T_SIZE (3 * 4)
791 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
792 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
793 + RTSIGFRAME_SIGINFO_SIZE \
794 + UCONTEXT_SIGCONTEXT_OFFSET)
795
796 #define SIGCONTEXT_PC (1 * 8)
797 #define SIGCONTEXT_REGS (2 * 8)
798 #define SIGCONTEXT_FPREGS (34 * 8)
799 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
800 #define SIGCONTEXT_HI (69 * 8)
801 #define SIGCONTEXT_LO (70 * 8)
802 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
803 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
804
805 #define SIGCONTEXT_REG_SIZE 8
806
807 static void
808 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
809 struct frame_info *next_frame,
810 struct trad_frame_cache *this_cache,
811 CORE_ADDR func)
812 {
813 int ireg, reg_position;
814 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
815 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
816 CORE_ADDR regs_base;
817
818 if (self == &mips_linux_o32_sigframe)
819 sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
820 else
821 sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
822
823 /* I'm not proud of this hack. Eventually we will have the
824 infrastructure to indicate the size of saved registers on a
825 per-frame basis, but right now we don't; the kernel saves eight
826 bytes but we only want four. Use regs_base to access any
827 64-bit fields. */
828 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
829 regs_base = sigcontext_base + 4;
830 else
831 regs_base = sigcontext_base;
832
833 #if 0
834 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
835 regs_base + SIGCONTEXT_REGS);
836 #endif
837
838 for (ireg = 1; ireg < 32; ireg++)
839 trad_frame_set_reg_addr (this_cache,
840 ireg + MIPS_ZERO_REGNUM + NUM_REGS,
841 regs_base + SIGCONTEXT_REGS
842 + ireg * SIGCONTEXT_REG_SIZE);
843
844 /* The way that floating point registers are saved, unfortunately,
845 depends on the architecture the kernel is built for. For the r3000 and
846 tx39, four bytes of each register are at the beginning of each of the
847 32 eight byte slots. For everything else, the registers are saved
848 using double precision; only the even-numbered slots are initialized,
849 and the high bits are the odd-numbered register. Assume the latter
850 layout, since we can't tell, and it's much more common. Which bits are
851 the "high" bits depends on endianness. */
852 for (ireg = 0; ireg < 32; ireg++)
853 if ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) != (ireg & 1))
854 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
855 sigcontext_base + SIGCONTEXT_FPREGS + 4
856 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
857 else
858 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
859 sigcontext_base + SIGCONTEXT_FPREGS
860 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
861
862 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
863 regs_base + SIGCONTEXT_PC);
864
865 trad_frame_set_reg_addr (this_cache,
866 regs->fp_control_status + NUM_REGS,
867 sigcontext_base + SIGCONTEXT_FPCSR);
868 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
869 regs_base + SIGCONTEXT_HI);
870 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
871 regs_base + SIGCONTEXT_LO);
872 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
873 sigcontext_base + SIGCONTEXT_CAUSE);
874 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
875 sigcontext_base + SIGCONTEXT_BADVADDR);
876
877 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
878 trad_frame_set_id (this_cache,
879 frame_id_build (func - SIGFRAME_CODE_OFFSET,
880 func));
881 }
882
883 /* *INDENT-OFF* */
884 /* For N32/N64 things look different. There is no non-rt signal frame.
885
886 struct rt_sigframe_n32 {
887 u32 rs_ass[4]; [ argument save space for o32 ]
888 u32 rs_code[2]; [ signal trampoline ]
889 struct siginfo rs_info;
890 struct ucontextn32 rs_uc;
891 };
892
893 struct ucontextn32 {
894 u32 uc_flags;
895 s32 uc_link;
896 stack32_t uc_stack;
897 struct sigcontext uc_mcontext;
898 sigset_t uc_sigmask; [ mask last for extensibility ]
899 };
900
901 struct rt_sigframe_n32 {
902 u32 rs_ass[4]; [ argument save space for o32 ]
903 u32 rs_code[2]; [ signal trampoline ]
904 struct siginfo rs_info;
905 struct ucontext rs_uc;
906 };
907
908 struct ucontext {
909 unsigned long uc_flags;
910 struct ucontext *uc_link;
911 stack_t uc_stack;
912 struct sigcontext uc_mcontext;
913 sigset_t uc_sigmask; [ mask last for extensibility ]
914 };
915
916 And the sigcontext is different (this is for both n32 and n64):
917
918 struct sigcontext {
919 unsigned long long sc_regs[32];
920 unsigned long long sc_fpregs[32];
921 unsigned long long sc_mdhi;
922 unsigned long long sc_mdlo;
923 unsigned long long sc_pc;
924 unsigned int sc_status;
925 unsigned int sc_fpc_csr;
926 unsigned int sc_fpc_eir;
927 unsigned int sc_used_math;
928 unsigned int sc_cause;
929 unsigned int sc_badvaddr;
930 }; */
931 /* *INDENT-ON* */
932
933 #define N32_STACK_T_SIZE STACK_T_SIZE
934 #define N64_STACK_T_SIZE (2 * 8 + 4)
935 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
936 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
937 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
938 + RTSIGFRAME_SIGINFO_SIZE \
939 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
940 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
941 + RTSIGFRAME_SIGINFO_SIZE \
942 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
943
944 #define N64_SIGCONTEXT_REGS (0 * 8)
945 #define N64_SIGCONTEXT_FPREGS (32 * 8)
946 #define N64_SIGCONTEXT_HI (64 * 8)
947 #define N64_SIGCONTEXT_LO (65 * 8)
948 #define N64_SIGCONTEXT_PC (66 * 8)
949 #define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
950 #define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
951 #define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
952 #define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
953
954 #define N64_SIGCONTEXT_REG_SIZE 8
955
956 static void
957 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
958 struct frame_info *next_frame,
959 struct trad_frame_cache *this_cache,
960 CORE_ADDR func)
961 {
962 int ireg, reg_position;
963 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
964 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
965
966 if (self == &mips_linux_n32_rt_sigframe)
967 sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
968 else
969 sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
970
971 #if 0
972 trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
973 sigcontext_base + N64_SIGCONTEXT_REGS);
974 #endif
975
976 for (ireg = 1; ireg < 32; ireg++)
977 trad_frame_set_reg_addr (this_cache,
978 ireg + MIPS_ZERO_REGNUM + NUM_REGS,
979 sigcontext_base + N64_SIGCONTEXT_REGS
980 + ireg * N64_SIGCONTEXT_REG_SIZE);
981
982 for (ireg = 0; ireg < 32; ireg++)
983 trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
984 sigcontext_base + N64_SIGCONTEXT_FPREGS
985 + ireg * N64_SIGCONTEXT_REG_SIZE);
986
987 trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
988 sigcontext_base + N64_SIGCONTEXT_PC);
989
990 trad_frame_set_reg_addr (this_cache,
991 regs->fp_control_status + NUM_REGS,
992 sigcontext_base + N64_SIGCONTEXT_FPCSR);
993 trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
994 sigcontext_base + N64_SIGCONTEXT_HI);
995 trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
996 sigcontext_base + N64_SIGCONTEXT_LO);
997 trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
998 sigcontext_base + N64_SIGCONTEXT_CAUSE);
999 trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
1000 sigcontext_base + N64_SIGCONTEXT_BADVADDR);
1001
1002 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1003 trad_frame_set_id (this_cache,
1004 frame_id_build (func - SIGFRAME_CODE_OFFSET,
1005 func));
1006 }
1007
1008
1009 /* Initialize one of the GNU/Linux OS ABIs. */
1010
1011 static void
1012 mips_linux_init_abi (struct gdbarch_info info,
1013 struct gdbarch *gdbarch)
1014 {
1015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1016 enum mips_abi abi = mips_abi (gdbarch);
1017
1018 switch (abi)
1019 {
1020 case MIPS_ABI_O32:
1021 set_gdbarch_get_longjmp_target (gdbarch,
1022 mips_linux_get_longjmp_target);
1023 set_solib_svr4_fetch_link_map_offsets
1024 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1025 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1026 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1027 break;
1028 case MIPS_ABI_N32:
1029 set_gdbarch_get_longjmp_target (gdbarch,
1030 mips_linux_get_longjmp_target);
1031 set_solib_svr4_fetch_link_map_offsets
1032 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1033 set_gdbarch_long_double_bit (gdbarch, 128);
1034 /* These floatformats should probably be renamed. MIPS uses
1035 the same 128-bit IEEE floating point format that IA-64 uses,
1036 except that the quiet/signalling NaN bit is reversed (GDB
1037 does not distinguish between quiet and signalling NaNs). */
1038 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1039 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1040 break;
1041 case MIPS_ABI_N64:
1042 set_gdbarch_get_longjmp_target (gdbarch,
1043 mips64_linux_get_longjmp_target);
1044 set_solib_svr4_fetch_link_map_offsets
1045 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1046 set_gdbarch_long_double_bit (gdbarch, 128);
1047 /* These floatformats should probably be renamed. MIPS uses
1048 the same 128-bit IEEE floating point format that IA-64 uses,
1049 except that the quiet/signalling NaN bit is reversed (GDB
1050 does not distinguish between quiet and signalling NaNs). */
1051 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1052 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1053 break;
1054 default:
1055 internal_error (__FILE__, __LINE__, _("can't handle ABI"));
1056 break;
1057 }
1058
1059 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1060 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1061
1062 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1063
1064 /* Enable TLS support. */
1065 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1066 svr4_fetch_objfile_link_map);
1067
1068 /* Initialize this lazily, to avoid an initialization order
1069 dependency on solib-svr4.c's _initialize routine. */
1070 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1071 {
1072 mips_svr4_so_ops = svr4_so_ops;
1073 mips_svr4_so_ops.in_dynsym_resolve_code
1074 = mips_linux_in_dynsym_resolve_code;
1075 }
1076 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1077 }
1078
1079 void
1080 _initialize_mips_linux_tdep (void)
1081 {
1082 const struct bfd_arch_info *arch_info;
1083
1084 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1085 arch_info != NULL;
1086 arch_info = arch_info->next)
1087 {
1088 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1089 GDB_OSABI_LINUX,
1090 mips_linux_init_abi);
1091 }
1092
1093 deprecated_add_core_fns (&regset_core_fns);
1094 }
This page took 0.051499 seconds and 4 git commands to generate.