NEWS: Mention new sim --map-info flag.
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60 #include "valprint.h"
61
62 static const struct objfile_data *mips_pdr_data;
63
64 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
65
66 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
67 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
68 #define ST0_FR (1 << 26)
69
70 /* The sizes of floating point registers. */
71
72 enum
73 {
74 MIPS_FPU_SINGLE_REGSIZE = 4,
75 MIPS_FPU_DOUBLE_REGSIZE = 8
76 };
77
78 enum
79 {
80 MIPS32_REGSIZE = 4,
81 MIPS64_REGSIZE = 8
82 };
83
84 static const char *mips_abi_string;
85
86 static const char *mips_abi_strings[] = {
87 "auto",
88 "n32",
89 "o32",
90 "n64",
91 "o64",
92 "eabi32",
93 "eabi64",
94 NULL
95 };
96
97 /* The standard register names, and all the valid aliases for them. */
98 struct register_alias
99 {
100 const char *name;
101 int regnum;
102 };
103
104 /* Aliases for o32 and most other ABIs. */
105 const struct register_alias mips_o32_aliases[] = {
106 { "ta0", 12 },
107 { "ta1", 13 },
108 { "ta2", 14 },
109 { "ta3", 15 }
110 };
111
112 /* Aliases for n32 and n64. */
113 const struct register_alias mips_n32_n64_aliases[] = {
114 { "ta0", 8 },
115 { "ta1", 9 },
116 { "ta2", 10 },
117 { "ta3", 11 }
118 };
119
120 /* Aliases for ABI-independent registers. */
121 const struct register_alias mips_register_aliases[] = {
122 /* The architecture manuals specify these ABI-independent names for
123 the GPRs. */
124 #define R(n) { "r" #n, n }
125 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
126 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
127 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
128 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
129 #undef R
130
131 /* k0 and k1 are sometimes called these instead (for "kernel
132 temp"). */
133 { "kt0", 26 },
134 { "kt1", 27 },
135
136 /* This is the traditional GDB name for the CP0 status register. */
137 { "sr", MIPS_PS_REGNUM },
138
139 /* This is the traditional GDB name for the CP0 BadVAddr register. */
140 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
141
142 /* This is the traditional GDB name for the FCSR. */
143 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
144 };
145
146 const struct register_alias mips_numeric_register_aliases[] = {
147 #define R(n) { #n, n }
148 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
149 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
150 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
151 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
152 #undef R
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 const struct mips_regnum *
172 mips_regnum (struct gdbarch *gdbarch)
173 {
174 return gdbarch_tdep (gdbarch)->regnum;
175 }
176
177 static int
178 mips_fpa0_regnum (struct gdbarch *gdbarch)
179 {
180 return mips_regnum (gdbarch)->fp0 + 12;
181 }
182
183 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
184 == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM(gdbarch) (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~(CORE_ADDR) 1);
206 }
207
208 /* Return the MIPS ABI associated with GDBARCH. */
209 enum mips_abi
210 mips_abi (struct gdbarch *gdbarch)
211 {
212 return gdbarch_tdep (gdbarch)->mips_abi;
213 }
214
215 int
216 mips_isa_regsize (struct gdbarch *gdbarch)
217 {
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219
220 /* If we know how big the registers are, use that size. */
221 if (tdep->register_size_valid_p)
222 return tdep->register_size;
223
224 /* Fall back to the previous behavior. */
225 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
226 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
227 }
228
229 /* Return the currently configured (or set) saved register size. */
230
231 unsigned int
232 mips_abi_regsize (struct gdbarch *gdbarch)
233 {
234 switch (mips_abi (gdbarch))
235 {
236 case MIPS_ABI_EABI32:
237 case MIPS_ABI_O32:
238 return 4;
239 case MIPS_ABI_N32:
240 case MIPS_ABI_N64:
241 case MIPS_ABI_O64:
242 case MIPS_ABI_EABI64:
243 return 8;
244 case MIPS_ABI_UNKNOWN:
245 case MIPS_ABI_LAST:
246 default:
247 internal_error (__FILE__, __LINE__, _("bad switch"));
248 }
249 }
250
251 /* Functions for setting and testing a bit in a minimal symbol that
252 marks it as 16-bit function. The MSB of the minimal symbol's
253 "info" field is used for this purpose.
254
255 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
256 i.e. refers to a 16-bit function, and sets a "special" bit in a
257 minimal symbol to mark it as a 16-bit function
258
259 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
260
261 static void
262 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
263 {
264 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
265 {
266 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
267 SYMBOL_VALUE_ADDRESS (msym) |= 1;
268 }
269 }
270
271 static int
272 msymbol_is_special (struct minimal_symbol *msym)
273 {
274 return MSYMBOL_TARGET_FLAG_1 (msym);
275 }
276
277 /* XFER a value from the big/little/left end of the register.
278 Depending on the size of the value it might occupy the entire
279 register or just part of it. Make an allowance for this, aligning
280 things accordingly. */
281
282 static void
283 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
284 int reg_num, int length,
285 enum bfd_endian endian, gdb_byte *in,
286 const gdb_byte *out, int buf_offset)
287 {
288 int reg_offset = 0;
289
290 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
291 /* Need to transfer the left or right part of the register, based on
292 the targets byte order. */
293 switch (endian)
294 {
295 case BFD_ENDIAN_BIG:
296 reg_offset = register_size (gdbarch, reg_num) - length;
297 break;
298 case BFD_ENDIAN_LITTLE:
299 reg_offset = 0;
300 break;
301 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
302 reg_offset = 0;
303 break;
304 default:
305 internal_error (__FILE__, __LINE__, _("bad switch"));
306 }
307 if (mips_debug)
308 fprintf_unfiltered (gdb_stderr,
309 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
310 reg_num, reg_offset, buf_offset, length);
311 if (mips_debug && out != NULL)
312 {
313 int i;
314 fprintf_unfiltered (gdb_stdlog, "out ");
315 for (i = 0; i < length; i++)
316 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
317 }
318 if (in != NULL)
319 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
320 in + buf_offset);
321 if (out != NULL)
322 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
323 out + buf_offset);
324 if (mips_debug && in != NULL)
325 {
326 int i;
327 fprintf_unfiltered (gdb_stdlog, "in ");
328 for (i = 0; i < length; i++)
329 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
330 }
331 if (mips_debug)
332 fprintf_unfiltered (gdb_stdlog, "\n");
333 }
334
335 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
336 compatiblity mode. A return value of 1 means that we have
337 physical 64-bit registers, but should treat them as 32-bit registers. */
338
339 static int
340 mips2_fp_compat (struct frame_info *frame)
341 {
342 struct gdbarch *gdbarch = get_frame_arch (frame);
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
344 meaningful. */
345 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
346 return 0;
347
348 #if 0
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
353 mode. */
354 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
355 return 1;
356 #endif
357
358 return 0;
359 }
360
361 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
362
363 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
364
365 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
366
367 /* The list of available "set mips " and "show mips " commands */
368
369 static struct cmd_list_element *setmipscmdlist = NULL;
370 static struct cmd_list_element *showmipscmdlist = NULL;
371
372 /* Integer registers 0 thru 31 are handled explicitly by
373 mips_register_name(). Processor specific registers 32 and above
374 are listed in the following tables. */
375
376 enum
377 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
378
379 /* Generic MIPS. */
380
381 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
382 "sr", "lo", "hi", "bad", "cause", "pc",
383 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
384 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
385 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
386 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
387 "fsr", "fir", "" /*"fp" */ , "",
388 "", "", "", "", "", "", "", "",
389 "", "", "", "", "", "", "", "",
390 };
391
392 /* Names of IDT R3041 registers. */
393
394 static const char *mips_r3041_reg_names[] = {
395 "sr", "lo", "hi", "bad", "cause", "pc",
396 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
397 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
398 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
399 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
400 "fsr", "fir", "", /*"fp" */ "",
401 "", "", "bus", "ccfg", "", "", "", "",
402 "", "", "port", "cmp", "", "", "epc", "prid",
403 };
404
405 /* Names of tx39 registers. */
406
407 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
408 "sr", "lo", "hi", "bad", "cause", "pc",
409 "", "", "", "", "", "", "", "",
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
413 "", "", "", "",
414 "", "", "", "", "", "", "", "",
415 "", "", "config", "cache", "debug", "depc", "epc", ""
416 };
417
418 /* Names of IRIX registers. */
419 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
420 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
421 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
422 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
423 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
424 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
425 };
426
427
428 /* Return the name of the register corresponding to REGNO. */
429 static const char *
430 mips_register_name (struct gdbarch *gdbarch, int regno)
431 {
432 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
433 /* GPR names for all ABIs other than n32/n64. */
434 static char *mips_gpr_names[] = {
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
439 };
440
441 /* GPR names for n32 and n64 ABIs. */
442 static char *mips_n32_n64_gpr_names[] = {
443 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
444 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
445 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
446 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
447 };
448
449 enum mips_abi abi = mips_abi (gdbarch);
450
451 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
452 but then don't make the raw register names visible. */
453 int rawnum = regno % gdbarch_num_regs (gdbarch);
454 if (regno < gdbarch_num_regs (gdbarch))
455 return "";
456
457 /* The MIPS integer registers are always mapped from 0 to 31. The
458 names of the registers (which reflects the conventions regarding
459 register use) vary depending on the ABI. */
460 if (0 <= rawnum && rawnum < 32)
461 {
462 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
463 return mips_n32_n64_gpr_names[rawnum];
464 else
465 return mips_gpr_names[rawnum];
466 }
467 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
468 return tdesc_register_name (gdbarch, rawnum);
469 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
470 {
471 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
472 return tdep->mips_processor_reg_names[rawnum - 32];
473 }
474 else
475 internal_error (__FILE__, __LINE__,
476 _("mips_register_name: bad register number %d"), rawnum);
477 }
478
479 /* Return the groups that a MIPS register can be categorised into. */
480
481 static int
482 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
483 struct reggroup *reggroup)
484 {
485 int vector_p;
486 int float_p;
487 int raw_p;
488 int rawnum = regnum % gdbarch_num_regs (gdbarch);
489 int pseudo = regnum / gdbarch_num_regs (gdbarch);
490 if (reggroup == all_reggroup)
491 return pseudo;
492 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
493 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
494 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
495 (gdbarch), as not all architectures are multi-arch. */
496 raw_p = rawnum < gdbarch_num_regs (gdbarch);
497 if (gdbarch_register_name (gdbarch, regnum) == NULL
498 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
499 return 0;
500 if (reggroup == float_reggroup)
501 return float_p && pseudo;
502 if (reggroup == vector_reggroup)
503 return vector_p && pseudo;
504 if (reggroup == general_reggroup)
505 return (!vector_p && !float_p) && pseudo;
506 /* Save the pseudo registers. Need to make certain that any code
507 extracting register values from a saved register cache also uses
508 pseudo registers. */
509 if (reggroup == save_reggroup)
510 return raw_p && pseudo;
511 /* Restore the same pseudo register. */
512 if (reggroup == restore_reggroup)
513 return raw_p && pseudo;
514 return 0;
515 }
516
517 /* Return the groups that a MIPS register can be categorised into.
518 This version is only used if we have a target description which
519 describes real registers (and their groups). */
520
521 static int
522 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
524 {
525 int rawnum = regnum % gdbarch_num_regs (gdbarch);
526 int pseudo = regnum / gdbarch_num_regs (gdbarch);
527 int ret;
528
529 /* Only save, restore, and display the pseudo registers. Need to
530 make certain that any code extracting register values from a
531 saved register cache also uses pseudo registers.
532
533 Note: saving and restoring the pseudo registers is slightly
534 strange; if we have 64 bits, we should save and restore all
535 64 bits. But this is hard and has little benefit. */
536 if (!pseudo)
537 return 0;
538
539 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
540 if (ret != -1)
541 return ret;
542
543 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
544 }
545
546 /* Map the symbol table registers which live in the range [1 *
547 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
548 registers. Take care of alignment and size problems. */
549
550 static void
551 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
552 int cookednum, gdb_byte *buf)
553 {
554 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
555 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
556 && cookednum < 2 * gdbarch_num_regs (gdbarch));
557 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
558 regcache_raw_read (regcache, rawnum, buf);
559 else if (register_size (gdbarch, rawnum) >
560 register_size (gdbarch, cookednum))
561 {
562 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
563 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
564 else
565 {
566 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
567 LONGEST regval;
568 regcache_raw_read_signed (regcache, rawnum, &regval);
569 store_signed_integer (buf, 4, byte_order, regval);
570 }
571 }
572 else
573 internal_error (__FILE__, __LINE__, _("bad register size"));
574 }
575
576 static void
577 mips_pseudo_register_write (struct gdbarch *gdbarch,
578 struct regcache *regcache, int cookednum,
579 const gdb_byte *buf)
580 {
581 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
582 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
583 && cookednum < 2 * gdbarch_num_regs (gdbarch));
584 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
585 regcache_raw_write (regcache, rawnum, buf);
586 else if (register_size (gdbarch, rawnum) >
587 register_size (gdbarch, cookednum))
588 {
589 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
590 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
591 else
592 {
593 /* Sign extend the shortened version of the register prior
594 to placing it in the raw register. This is required for
595 some mips64 parts in order to avoid unpredictable behavior. */
596 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
597 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
598 regcache_raw_write_signed (regcache, rawnum, regval);
599 }
600 }
601 else
602 internal_error (__FILE__, __LINE__, _("bad register size"));
603 }
604
605 /* Table to translate MIPS16 register field to actual register number. */
606 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
607
608 /* Heuristic_proc_start may hunt through the text section for a long
609 time across a 2400 baud serial line. Allows the user to limit this
610 search. */
611
612 static unsigned int heuristic_fence_post = 0;
613
614 /* Number of bytes of storage in the actual machine representation for
615 register N. NOTE: This defines the pseudo register type so need to
616 rebuild the architecture vector. */
617
618 static int mips64_transfers_32bit_regs_p = 0;
619
620 static void
621 set_mips64_transfers_32bit_regs (char *args, int from_tty,
622 struct cmd_list_element *c)
623 {
624 struct gdbarch_info info;
625 gdbarch_info_init (&info);
626 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
627 instead of relying on globals. Doing that would let generic code
628 handle the search for this specific architecture. */
629 if (!gdbarch_update_p (info))
630 {
631 mips64_transfers_32bit_regs_p = 0;
632 error (_("32-bit compatibility mode not supported"));
633 }
634 }
635
636 /* Convert to/from a register and the corresponding memory value. */
637
638 static int
639 mips_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
640 {
641 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
642 && register_size (gdbarch, regnum) == 4
643 && (regnum % gdbarch_num_regs (gdbarch))
644 >= mips_regnum (gdbarch)->fp0
645 && (regnum % gdbarch_num_regs (gdbarch))
646 < mips_regnum (gdbarch)->fp0 + 32
647 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
648 }
649
650 static void
651 mips_register_to_value (struct frame_info *frame, int regnum,
652 struct type *type, gdb_byte *to)
653 {
654 get_frame_register (frame, regnum + 0, to + 4);
655 get_frame_register (frame, regnum + 1, to + 0);
656 }
657
658 static void
659 mips_value_to_register (struct frame_info *frame, int regnum,
660 struct type *type, const gdb_byte *from)
661 {
662 put_frame_register (frame, regnum + 0, from + 4);
663 put_frame_register (frame, regnum + 1, from + 0);
664 }
665
666 /* Return the GDB type object for the "standard" data type of data in
667 register REG. */
668
669 static struct type *
670 mips_register_type (struct gdbarch *gdbarch, int regnum)
671 {
672 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
673 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
674 && (regnum % gdbarch_num_regs (gdbarch))
675 < mips_regnum (gdbarch)->fp0 + 32)
676 {
677 /* The floating-point registers raw, or cooked, always match
678 mips_isa_regsize(), and also map 1:1, byte for byte. */
679 if (mips_isa_regsize (gdbarch) == 4)
680 return builtin_type (gdbarch)->builtin_float;
681 else
682 return builtin_type (gdbarch)->builtin_double;
683 }
684 else if (regnum < gdbarch_num_regs (gdbarch))
685 {
686 /* The raw or ISA registers. These are all sized according to
687 the ISA regsize. */
688 if (mips_isa_regsize (gdbarch) == 4)
689 return builtin_type (gdbarch)->builtin_int32;
690 else
691 return builtin_type (gdbarch)->builtin_int64;
692 }
693 else
694 {
695 /* The cooked or ABI registers. These are sized according to
696 the ABI (with a few complications). */
697 if (regnum >= (gdbarch_num_regs (gdbarch)
698 + mips_regnum (gdbarch)->fp_control_status)
699 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
700 /* The pseudo/cooked view of the embedded registers is always
701 32-bit. The raw view is handled below. */
702 return builtin_type (gdbarch)->builtin_int32;
703 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
704 /* The target, while possibly using a 64-bit register buffer,
705 is only transfering 32-bits of each integer register.
706 Reflect this in the cooked/pseudo (ABI) register value. */
707 return builtin_type (gdbarch)->builtin_int32;
708 else if (mips_abi_regsize (gdbarch) == 4)
709 /* The ABI is restricted to 32-bit registers (the ISA could be
710 32- or 64-bit). */
711 return builtin_type (gdbarch)->builtin_int32;
712 else
713 /* 64-bit ABI. */
714 return builtin_type (gdbarch)->builtin_int64;
715 }
716 }
717
718 /* Return the GDB type for the pseudo register REGNUM, which is the
719 ABI-level view. This function is only called if there is a target
720 description which includes registers, so we know precisely the
721 types of hardware registers. */
722
723 static struct type *
724 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
725 {
726 const int num_regs = gdbarch_num_regs (gdbarch);
727 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
728 int rawnum = regnum % num_regs;
729 struct type *rawtype;
730
731 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
732
733 /* Absent registers are still absent. */
734 rawtype = gdbarch_register_type (gdbarch, rawnum);
735 if (TYPE_LENGTH (rawtype) == 0)
736 return rawtype;
737
738 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
739 /* Present the floating point registers however the hardware did;
740 do not try to convert between FPU layouts. */
741 return rawtype;
742
743 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
744 {
745 /* The pseudo/cooked view of embedded registers is always
746 32-bit, even if the target transfers 64-bit values for them.
747 New targets relying on XML descriptions should only transfer
748 the necessary 32 bits, but older versions of GDB expected 64,
749 so allow the target to provide 64 bits without interfering
750 with the displayed type. */
751 return builtin_type (gdbarch)->builtin_int32;
752 }
753
754 /* Use pointer types for registers if we can. For n32 we can not,
755 since we do not have a 64-bit pointer type. */
756 if (mips_abi_regsize (gdbarch)
757 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
758 {
759 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
760 return builtin_type (gdbarch)->builtin_data_ptr;
761 else if (rawnum == MIPS_EMBED_PC_REGNUM)
762 return builtin_type (gdbarch)->builtin_func_ptr;
763 }
764
765 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
766 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
767 return builtin_type (gdbarch)->builtin_int32;
768
769 /* For all other registers, pass through the hardware type. */
770 return rawtype;
771 }
772
773 /* Should the upper word of 64-bit addresses be zeroed? */
774 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
775
776 static int
777 mips_mask_address_p (struct gdbarch_tdep *tdep)
778 {
779 switch (mask_address_var)
780 {
781 case AUTO_BOOLEAN_TRUE:
782 return 1;
783 case AUTO_BOOLEAN_FALSE:
784 return 0;
785 break;
786 case AUTO_BOOLEAN_AUTO:
787 return tdep->default_mask_address_p;
788 default:
789 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
790 return -1;
791 }
792 }
793
794 static void
795 show_mask_address (struct ui_file *file, int from_tty,
796 struct cmd_list_element *c, const char *value)
797 {
798 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
799
800 deprecated_show_value_hack (file, from_tty, c, value);
801 switch (mask_address_var)
802 {
803 case AUTO_BOOLEAN_TRUE:
804 printf_filtered ("The 32 bit mips address mask is enabled\n");
805 break;
806 case AUTO_BOOLEAN_FALSE:
807 printf_filtered ("The 32 bit mips address mask is disabled\n");
808 break;
809 case AUTO_BOOLEAN_AUTO:
810 printf_filtered
811 ("The 32 bit address mask is set automatically. Currently %s\n",
812 mips_mask_address_p (tdep) ? "enabled" : "disabled");
813 break;
814 default:
815 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
816 break;
817 }
818 }
819
820 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
821
822 int
823 mips_pc_is_mips16 (CORE_ADDR memaddr)
824 {
825 struct minimal_symbol *sym;
826
827 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
828 if (is_mips16_addr (memaddr))
829 return 1;
830
831 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
832 the high bit of the info field. Use this to decide if the function is
833 MIPS16 or normal MIPS. */
834 sym = lookup_minimal_symbol_by_pc (memaddr);
835 if (sym)
836 return msymbol_is_special (sym);
837 else
838 return 0;
839 }
840
841 /* MIPS believes that the PC has a sign extended value. Perhaps the
842 all registers should be sign extended for simplicity? */
843
844 static CORE_ADDR
845 mips_read_pc (struct regcache *regcache)
846 {
847 ULONGEST pc;
848 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
849 regcache_cooked_read_signed (regcache, regnum, &pc);
850 return pc;
851 }
852
853 static CORE_ADDR
854 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
855 {
856 return frame_unwind_register_signed
857 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
858 }
859
860 static CORE_ADDR
861 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
862 {
863 return frame_unwind_register_signed
864 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
865 }
866
867 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
868 dummy frame. The frame ID's base needs to match the TOS value
869 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
870 breakpoint. */
871
872 static struct frame_id
873 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
874 {
875 return frame_id_build
876 (get_frame_register_signed (this_frame,
877 gdbarch_num_regs (gdbarch)
878 + MIPS_SP_REGNUM),
879 get_frame_pc (this_frame));
880 }
881
882 static void
883 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
884 {
885 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
886 regcache_cooked_write_unsigned (regcache, regnum, pc);
887 }
888
889 /* Fetch and return instruction from the specified location. If the PC
890 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
891
892 static ULONGEST
893 mips_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
894 {
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 gdb_byte buf[MIPS_INSN32_SIZE];
897 int instlen;
898 int status;
899
900 if (mips_pc_is_mips16 (addr))
901 {
902 instlen = MIPS_INSN16_SIZE;
903 addr = unmake_mips16_addr (addr);
904 }
905 else
906 instlen = MIPS_INSN32_SIZE;
907 status = target_read_memory (addr, buf, instlen);
908 if (status)
909 memory_error (status, addr);
910 return extract_unsigned_integer (buf, instlen, byte_order);
911 }
912
913 /* These the fields of 32 bit mips instructions */
914 #define mips32_op(x) (x >> 26)
915 #define itype_op(x) (x >> 26)
916 #define itype_rs(x) ((x >> 21) & 0x1f)
917 #define itype_rt(x) ((x >> 16) & 0x1f)
918 #define itype_immediate(x) (x & 0xffff)
919
920 #define jtype_op(x) (x >> 26)
921 #define jtype_target(x) (x & 0x03ffffff)
922
923 #define rtype_op(x) (x >> 26)
924 #define rtype_rs(x) ((x >> 21) & 0x1f)
925 #define rtype_rt(x) ((x >> 16) & 0x1f)
926 #define rtype_rd(x) ((x >> 11) & 0x1f)
927 #define rtype_shamt(x) ((x >> 6) & 0x1f)
928 #define rtype_funct(x) (x & 0x3f)
929
930 static LONGEST
931 mips32_relative_offset (ULONGEST inst)
932 {
933 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
934 }
935
936 /* Determine where to set a single step breakpoint while considering
937 branch prediction. */
938 static CORE_ADDR
939 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
940 {
941 struct gdbarch *gdbarch = get_frame_arch (frame);
942 unsigned long inst;
943 int op;
944 inst = mips_fetch_instruction (gdbarch, pc);
945 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
946 {
947 if (itype_op (inst) >> 2 == 5)
948 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
949 {
950 op = (itype_op (inst) & 0x03);
951 switch (op)
952 {
953 case 0: /* BEQL */
954 goto equal_branch;
955 case 1: /* BNEL */
956 goto neq_branch;
957 case 2: /* BLEZL */
958 goto less_branch;
959 case 3: /* BGTZL */
960 goto greater_branch;
961 default:
962 pc += 4;
963 }
964 }
965 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
966 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
967 {
968 int tf = itype_rt (inst) & 0x01;
969 int cnum = itype_rt (inst) >> 2;
970 int fcrcs =
971 get_frame_register_signed (frame,
972 mips_regnum (get_frame_arch (frame))->
973 fp_control_status);
974 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
975
976 if (((cond >> cnum) & 0x01) == tf)
977 pc += mips32_relative_offset (inst) + 4;
978 else
979 pc += 8;
980 }
981 else
982 pc += 4; /* Not a branch, next instruction is easy */
983 }
984 else
985 { /* This gets way messy */
986
987 /* Further subdivide into SPECIAL, REGIMM and other */
988 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
989 {
990 case 0: /* SPECIAL */
991 op = rtype_funct (inst);
992 switch (op)
993 {
994 case 8: /* JR */
995 case 9: /* JALR */
996 /* Set PC to that address */
997 pc = get_frame_register_signed (frame, rtype_rs (inst));
998 break;
999 case 12: /* SYSCALL */
1000 {
1001 struct gdbarch_tdep *tdep;
1002
1003 tdep = gdbarch_tdep (get_frame_arch (frame));
1004 if (tdep->syscall_next_pc != NULL)
1005 pc = tdep->syscall_next_pc (frame);
1006 else
1007 pc += 4;
1008 }
1009 break;
1010 default:
1011 pc += 4;
1012 }
1013
1014 break; /* end SPECIAL */
1015 case 1: /* REGIMM */
1016 {
1017 op = itype_rt (inst); /* branch condition */
1018 switch (op)
1019 {
1020 case 0: /* BLTZ */
1021 case 2: /* BLTZL */
1022 case 16: /* BLTZAL */
1023 case 18: /* BLTZALL */
1024 less_branch:
1025 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1026 pc += mips32_relative_offset (inst) + 4;
1027 else
1028 pc += 8; /* after the delay slot */
1029 break;
1030 case 1: /* BGEZ */
1031 case 3: /* BGEZL */
1032 case 17: /* BGEZAL */
1033 case 19: /* BGEZALL */
1034 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1035 pc += mips32_relative_offset (inst) + 4;
1036 else
1037 pc += 8; /* after the delay slot */
1038 break;
1039 /* All of the other instructions in the REGIMM category */
1040 default:
1041 pc += 4;
1042 }
1043 }
1044 break; /* end REGIMM */
1045 case 2: /* J */
1046 case 3: /* JAL */
1047 {
1048 unsigned long reg;
1049 reg = jtype_target (inst) << 2;
1050 /* Upper four bits get never changed... */
1051 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1052 }
1053 break;
1054 /* FIXME case JALX : */
1055 {
1056 unsigned long reg;
1057 reg = jtype_target (inst) << 2;
1058 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1059 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1060 }
1061 break; /* The new PC will be alternate mode */
1062 case 4: /* BEQ, BEQL */
1063 equal_branch:
1064 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1065 get_frame_register_signed (frame, itype_rt (inst)))
1066 pc += mips32_relative_offset (inst) + 4;
1067 else
1068 pc += 8;
1069 break;
1070 case 5: /* BNE, BNEL */
1071 neq_branch:
1072 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1073 get_frame_register_signed (frame, itype_rt (inst)))
1074 pc += mips32_relative_offset (inst) + 4;
1075 else
1076 pc += 8;
1077 break;
1078 case 6: /* BLEZ, BLEZL */
1079 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1080 pc += mips32_relative_offset (inst) + 4;
1081 else
1082 pc += 8;
1083 break;
1084 case 7:
1085 default:
1086 greater_branch: /* BGTZ, BGTZL */
1087 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1088 pc += mips32_relative_offset (inst) + 4;
1089 else
1090 pc += 8;
1091 break;
1092 } /* switch */
1093 } /* else */
1094 return pc;
1095 } /* mips32_next_pc */
1096
1097 /* Decoding the next place to set a breakpoint is irregular for the
1098 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1099 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1100 We dont want to set a single step instruction on the extend instruction
1101 either.
1102 */
1103
1104 /* Lots of mips16 instruction formats */
1105 /* Predicting jumps requires itype,ritype,i8type
1106 and their extensions extItype,extritype,extI8type
1107 */
1108 enum mips16_inst_fmts
1109 {
1110 itype, /* 0 immediate 5,10 */
1111 ritype, /* 1 5,3,8 */
1112 rrtype, /* 2 5,3,3,5 */
1113 rritype, /* 3 5,3,3,5 */
1114 rrrtype, /* 4 5,3,3,3,2 */
1115 rriatype, /* 5 5,3,3,1,4 */
1116 shifttype, /* 6 5,3,3,3,2 */
1117 i8type, /* 7 5,3,8 */
1118 i8movtype, /* 8 5,3,3,5 */
1119 i8mov32rtype, /* 9 5,3,5,3 */
1120 i64type, /* 10 5,3,8 */
1121 ri64type, /* 11 5,3,3,5 */
1122 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1123 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1124 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1125 extRRItype, /* 15 5,5,5,5,3,3,5 */
1126 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1127 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1128 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1129 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1130 extRi64type, /* 20 5,6,5,5,3,3,5 */
1131 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1132 };
1133 /* I am heaping all the fields of the formats into one structure and
1134 then, only the fields which are involved in instruction extension */
1135 struct upk_mips16
1136 {
1137 CORE_ADDR offset;
1138 unsigned int regx; /* Function in i8 type */
1139 unsigned int regy;
1140 };
1141
1142
1143 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1144 for the bits which make up the immediate extension. */
1145
1146 static CORE_ADDR
1147 extended_offset (unsigned int extension)
1148 {
1149 CORE_ADDR value;
1150 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1151 value = value << 6;
1152 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1153 value = value << 5;
1154 value |= extension & 0x01f; /* extract 4:0 */
1155 return value;
1156 }
1157
1158 /* Only call this function if you know that this is an extendable
1159 instruction. It won't malfunction, but why make excess remote memory
1160 references? If the immediate operands get sign extended or something,
1161 do it after the extension is performed. */
1162 /* FIXME: Every one of these cases needs to worry about sign extension
1163 when the offset is to be used in relative addressing. */
1164
1165 static unsigned int
1166 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
1167 {
1168 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1169 gdb_byte buf[8];
1170 pc &= 0xfffffffe; /* clear the low order bit */
1171 target_read_memory (pc, buf, 2);
1172 return extract_unsigned_integer (buf, 2, byte_order);
1173 }
1174
1175 static void
1176 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
1177 unsigned int extension,
1178 unsigned int inst,
1179 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1180 {
1181 CORE_ADDR offset;
1182 int regx;
1183 int regy;
1184 switch (insn_format)
1185 {
1186 case itype:
1187 {
1188 CORE_ADDR value;
1189 if (extension)
1190 {
1191 value = extended_offset (extension);
1192 value = value << 11; /* rom for the original value */
1193 value |= inst & 0x7ff; /* eleven bits from instruction */
1194 }
1195 else
1196 {
1197 value = inst & 0x7ff;
1198 /* FIXME : Consider sign extension */
1199 }
1200 offset = value;
1201 regx = -1;
1202 regy = -1;
1203 }
1204 break;
1205 case ritype:
1206 case i8type:
1207 { /* A register identifier and an offset */
1208 /* Most of the fields are the same as I type but the
1209 immediate value is of a different length */
1210 CORE_ADDR value;
1211 if (extension)
1212 {
1213 value = extended_offset (extension);
1214 value = value << 8; /* from the original instruction */
1215 value |= inst & 0xff; /* eleven bits from instruction */
1216 regx = (extension >> 8) & 0x07; /* or i8 funct */
1217 if (value & 0x4000) /* test the sign bit , bit 26 */
1218 {
1219 value &= ~0x3fff; /* remove the sign bit */
1220 value = -value;
1221 }
1222 }
1223 else
1224 {
1225 value = inst & 0xff; /* 8 bits */
1226 regx = (inst >> 8) & 0x07; /* or i8 funct */
1227 /* FIXME: Do sign extension , this format needs it */
1228 if (value & 0x80) /* THIS CONFUSES ME */
1229 {
1230 value &= 0xef; /* remove the sign bit */
1231 value = -value;
1232 }
1233 }
1234 offset = value;
1235 regy = -1;
1236 break;
1237 }
1238 case jalxtype:
1239 {
1240 unsigned long value;
1241 unsigned int nexthalf;
1242 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1243 value = value << 16;
1244 nexthalf = mips_fetch_instruction (gdbarch, pc + 2); /* low bit still set */
1245 value |= nexthalf;
1246 offset = value;
1247 regx = -1;
1248 regy = -1;
1249 break;
1250 }
1251 default:
1252 internal_error (__FILE__, __LINE__, _("bad switch"));
1253 }
1254 upk->offset = offset;
1255 upk->regx = regx;
1256 upk->regy = regy;
1257 }
1258
1259
1260 static CORE_ADDR
1261 add_offset_16 (CORE_ADDR pc, int offset)
1262 {
1263 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1264 }
1265
1266 static CORE_ADDR
1267 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1268 unsigned int extension, unsigned int insn)
1269 {
1270 struct gdbarch *gdbarch = get_frame_arch (frame);
1271 int op = (insn >> 11);
1272 switch (op)
1273 {
1274 case 2: /* Branch */
1275 {
1276 CORE_ADDR offset;
1277 struct upk_mips16 upk;
1278 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
1279 offset = upk.offset;
1280 if (offset & 0x800)
1281 {
1282 offset &= 0xeff;
1283 offset = -offset;
1284 }
1285 pc += (offset << 1) + 2;
1286 break;
1287 }
1288 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1289 {
1290 struct upk_mips16 upk;
1291 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
1292 pc = add_offset_16 (pc, upk.offset);
1293 if ((insn >> 10) & 0x01) /* Exchange mode */
1294 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1295 else
1296 pc |= 0x01;
1297 break;
1298 }
1299 case 4: /* beqz */
1300 {
1301 struct upk_mips16 upk;
1302 int reg;
1303 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1304 reg = get_frame_register_signed (frame, upk.regx);
1305 if (reg == 0)
1306 pc += (upk.offset << 1) + 2;
1307 else
1308 pc += 2;
1309 break;
1310 }
1311 case 5: /* bnez */
1312 {
1313 struct upk_mips16 upk;
1314 int reg;
1315 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
1316 reg = get_frame_register_signed (frame, upk.regx);
1317 if (reg != 0)
1318 pc += (upk.offset << 1) + 2;
1319 else
1320 pc += 2;
1321 break;
1322 }
1323 case 12: /* I8 Formats btez btnez */
1324 {
1325 struct upk_mips16 upk;
1326 int reg;
1327 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
1328 /* upk.regx contains the opcode */
1329 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1330 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1331 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1332 /* pc = add_offset_16(pc,upk.offset) ; */
1333 pc += (upk.offset << 1) + 2;
1334 else
1335 pc += 2;
1336 break;
1337 }
1338 case 29: /* RR Formats JR, JALR, JALR-RA */
1339 {
1340 struct upk_mips16 upk;
1341 /* upk.fmt = rrtype; */
1342 op = insn & 0x1f;
1343 if (op == 0)
1344 {
1345 int reg;
1346 upk.regx = (insn >> 8) & 0x07;
1347 upk.regy = (insn >> 5) & 0x07;
1348 switch (upk.regy)
1349 {
1350 case 0:
1351 reg = upk.regx;
1352 break;
1353 case 1:
1354 reg = 31;
1355 break; /* Function return instruction */
1356 case 2:
1357 reg = upk.regx;
1358 break;
1359 default:
1360 reg = 31;
1361 break; /* BOGUS Guess */
1362 }
1363 pc = get_frame_register_signed (frame, reg);
1364 }
1365 else
1366 pc += 2;
1367 break;
1368 }
1369 case 30:
1370 /* This is an instruction extension. Fetch the real instruction
1371 (which follows the extension) and decode things based on
1372 that. */
1373 {
1374 pc += 2;
1375 pc = extended_mips16_next_pc (frame, pc, insn,
1376 fetch_mips_16 (gdbarch, pc));
1377 break;
1378 }
1379 default:
1380 {
1381 pc += 2;
1382 break;
1383 }
1384 }
1385 return pc;
1386 }
1387
1388 static CORE_ADDR
1389 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1390 {
1391 struct gdbarch *gdbarch = get_frame_arch (frame);
1392 unsigned int insn = fetch_mips_16 (gdbarch, pc);
1393 return extended_mips16_next_pc (frame, pc, 0, insn);
1394 }
1395
1396 /* The mips_next_pc function supports single_step when the remote
1397 target monitor or stub is not developed enough to do a single_step.
1398 It works by decoding the current instruction and predicting where a
1399 branch will go. This isnt hard because all the data is available.
1400 The MIPS32 and MIPS16 variants are quite different. */
1401 static CORE_ADDR
1402 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1403 {
1404 if (is_mips16_addr (pc))
1405 return mips16_next_pc (frame, pc);
1406 else
1407 return mips32_next_pc (frame, pc);
1408 }
1409
1410 struct mips_frame_cache
1411 {
1412 CORE_ADDR base;
1413 struct trad_frame_saved_reg *saved_regs;
1414 };
1415
1416 /* Set a register's saved stack address in temp_saved_regs. If an
1417 address has already been set for this register, do nothing; this
1418 way we will only recognize the first save of a given register in a
1419 function prologue.
1420
1421 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1422 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1423 Strictly speaking, only the second range is used as it is only second
1424 range (the ABI instead of ISA registers) that comes into play when finding
1425 saved registers in a frame. */
1426
1427 static void
1428 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
1429 int regnum, CORE_ADDR offset)
1430 {
1431 if (this_cache != NULL
1432 && this_cache->saved_regs[regnum].addr == -1)
1433 {
1434 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
1435 = offset;
1436 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
1437 = offset;
1438 }
1439 }
1440
1441
1442 /* Fetch the immediate value from a MIPS16 instruction.
1443 If the previous instruction was an EXTEND, use it to extend
1444 the upper bits of the immediate value. This is a helper function
1445 for mips16_scan_prologue. */
1446
1447 static int
1448 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1449 unsigned short inst, /* current instruction */
1450 int nbits, /* number of bits in imm field */
1451 int scale, /* scale factor to be applied to imm */
1452 int is_signed) /* is the imm field signed? */
1453 {
1454 int offset;
1455
1456 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1457 {
1458 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1459 if (offset & 0x8000) /* check for negative extend */
1460 offset = 0 - (0x10000 - (offset & 0xffff));
1461 return offset | (inst & 0x1f);
1462 }
1463 else
1464 {
1465 int max_imm = 1 << nbits;
1466 int mask = max_imm - 1;
1467 int sign_bit = max_imm >> 1;
1468
1469 offset = inst & mask;
1470 if (is_signed && (offset & sign_bit))
1471 offset = 0 - (max_imm - offset);
1472 return offset * scale;
1473 }
1474 }
1475
1476
1477 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1478 the associated FRAME_CACHE if not null.
1479 Return the address of the first instruction past the prologue. */
1480
1481 static CORE_ADDR
1482 mips16_scan_prologue (struct gdbarch *gdbarch,
1483 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1484 struct frame_info *this_frame,
1485 struct mips_frame_cache *this_cache)
1486 {
1487 CORE_ADDR cur_pc;
1488 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1489 CORE_ADDR sp;
1490 long frame_offset = 0; /* Size of stack frame. */
1491 long frame_adjust = 0; /* Offset of FP from SP. */
1492 int frame_reg = MIPS_SP_REGNUM;
1493 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1494 unsigned inst = 0; /* current instruction */
1495 unsigned entry_inst = 0; /* the entry instruction */
1496 unsigned save_inst = 0; /* the save instruction */
1497 int reg, offset;
1498
1499 int extend_bytes = 0;
1500 int prev_extend_bytes;
1501 CORE_ADDR end_prologue_addr = 0;
1502
1503 /* Can be called when there's no process, and hence when there's no
1504 THIS_FRAME. */
1505 if (this_frame != NULL)
1506 sp = get_frame_register_signed (this_frame,
1507 gdbarch_num_regs (gdbarch)
1508 + MIPS_SP_REGNUM);
1509 else
1510 sp = 0;
1511
1512 if (limit_pc > start_pc + 200)
1513 limit_pc = start_pc + 200;
1514
1515 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1516 {
1517 /* Save the previous instruction. If it's an EXTEND, we'll extract
1518 the immediate offset extension from it in mips16_get_imm. */
1519 prev_inst = inst;
1520
1521 /* Fetch and decode the instruction. */
1522 inst = (unsigned short) mips_fetch_instruction (gdbarch, cur_pc);
1523
1524 /* Normally we ignore extend instructions. However, if it is
1525 not followed by a valid prologue instruction, then this
1526 instruction is not part of the prologue either. We must
1527 remember in this case to adjust the end_prologue_addr back
1528 over the extend. */
1529 if ((inst & 0xf800) == 0xf000) /* extend */
1530 {
1531 extend_bytes = MIPS_INSN16_SIZE;
1532 continue;
1533 }
1534
1535 prev_extend_bytes = extend_bytes;
1536 extend_bytes = 0;
1537
1538 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1539 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1540 {
1541 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1542 if (offset < 0) /* negative stack adjustment? */
1543 frame_offset -= offset;
1544 else
1545 /* Exit loop if a positive stack adjustment is found, which
1546 usually means that the stack cleanup code in the function
1547 epilogue is reached. */
1548 break;
1549 }
1550 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1551 {
1552 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1553 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1554 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1555 }
1556 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1557 {
1558 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1559 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1560 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1561 }
1562 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1563 {
1564 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1565 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1566 }
1567 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1568 {
1569 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1570 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1571 }
1572 else if (inst == 0x673d) /* move $s1, $sp */
1573 {
1574 frame_addr = sp;
1575 frame_reg = 17;
1576 }
1577 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1578 {
1579 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1580 frame_addr = sp + offset;
1581 frame_reg = 17;
1582 frame_adjust = offset;
1583 }
1584 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1585 {
1586 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1587 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1588 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1589 }
1590 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1591 {
1592 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1593 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1594 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
1595 }
1596 else if ((inst & 0xf81f) == 0xe809
1597 && (inst & 0x700) != 0x700) /* entry */
1598 entry_inst = inst; /* save for later processing */
1599 else if ((inst & 0xff80) == 0x6480) /* save */
1600 {
1601 save_inst = inst; /* save for later processing */
1602 if (prev_extend_bytes) /* extend */
1603 save_inst |= prev_inst << 16;
1604 }
1605 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1606 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1607 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1608 {
1609 /* This instruction is part of the prologue, but we don't
1610 need to do anything special to handle it. */
1611 }
1612 else
1613 {
1614 /* This instruction is not an instruction typically found
1615 in a prologue, so we must have reached the end of the
1616 prologue. */
1617 if (end_prologue_addr == 0)
1618 end_prologue_addr = cur_pc - prev_extend_bytes;
1619 }
1620 }
1621
1622 /* The entry instruction is typically the first instruction in a function,
1623 and it stores registers at offsets relative to the value of the old SP
1624 (before the prologue). But the value of the sp parameter to this
1625 function is the new SP (after the prologue has been executed). So we
1626 can't calculate those offsets until we've seen the entire prologue,
1627 and can calculate what the old SP must have been. */
1628 if (entry_inst != 0)
1629 {
1630 int areg_count = (entry_inst >> 8) & 7;
1631 int sreg_count = (entry_inst >> 6) & 3;
1632
1633 /* The entry instruction always subtracts 32 from the SP. */
1634 frame_offset += 32;
1635
1636 /* Now we can calculate what the SP must have been at the
1637 start of the function prologue. */
1638 sp += frame_offset;
1639
1640 /* Check if a0-a3 were saved in the caller's argument save area. */
1641 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1642 {
1643 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1644 offset += mips_abi_regsize (gdbarch);
1645 }
1646
1647 /* Check if the ra register was pushed on the stack. */
1648 offset = -4;
1649 if (entry_inst & 0x20)
1650 {
1651 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1652 offset -= mips_abi_regsize (gdbarch);
1653 }
1654
1655 /* Check if the s0 and s1 registers were pushed on the stack. */
1656 for (reg = 16; reg < sreg_count + 16; reg++)
1657 {
1658 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1659 offset -= mips_abi_regsize (gdbarch);
1660 }
1661 }
1662
1663 /* The SAVE instruction is similar to ENTRY, except that defined by the
1664 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
1665 size of the frame is specified as an immediate field of instruction
1666 and an extended variation exists which lets additional registers and
1667 frame space to be specified. The instruction always treats registers
1668 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
1669 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
1670 {
1671 static int args_table[16] = {
1672 0, 0, 0, 0, 1, 1, 1, 1,
1673 2, 2, 2, 0, 3, 3, 4, -1,
1674 };
1675 static int astatic_table[16] = {
1676 0, 1, 2, 3, 0, 1, 2, 3,
1677 0, 1, 2, 4, 0, 1, 0, -1,
1678 };
1679 int aregs = (save_inst >> 16) & 0xf;
1680 int xsregs = (save_inst >> 24) & 0x7;
1681 int args = args_table[aregs];
1682 int astatic = astatic_table[aregs];
1683 long frame_size;
1684
1685 if (args < 0)
1686 {
1687 warning (_("Invalid number of argument registers encoded in SAVE."));
1688 args = 0;
1689 }
1690 if (astatic < 0)
1691 {
1692 warning (_("Invalid number of static registers encoded in SAVE."));
1693 astatic = 0;
1694 }
1695
1696 /* For standard SAVE the frame size of 0 means 128. */
1697 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
1698 if (frame_size == 0 && (save_inst >> 16) == 0)
1699 frame_size = 16;
1700 frame_size *= 8;
1701 frame_offset += frame_size;
1702
1703 /* Now we can calculate what the SP must have been at the
1704 start of the function prologue. */
1705 sp += frame_offset;
1706
1707 /* Check if A0-A3 were saved in the caller's argument save area. */
1708 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
1709 {
1710 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1711 offset += mips_abi_regsize (gdbarch);
1712 }
1713
1714 offset = -4;
1715
1716 /* Check if the RA register was pushed on the stack. */
1717 if (save_inst & 0x40)
1718 {
1719 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
1720 offset -= mips_abi_regsize (gdbarch);
1721 }
1722
1723 /* Check if the S8 register was pushed on the stack. */
1724 if (xsregs > 6)
1725 {
1726 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
1727 offset -= mips_abi_regsize (gdbarch);
1728 xsregs--;
1729 }
1730 /* Check if S2-S7 were pushed on the stack. */
1731 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
1732 {
1733 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1734 offset -= mips_abi_regsize (gdbarch);
1735 }
1736
1737 /* Check if the S1 register was pushed on the stack. */
1738 if (save_inst & 0x10)
1739 {
1740 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
1741 offset -= mips_abi_regsize (gdbarch);
1742 }
1743 /* Check if the S0 register was pushed on the stack. */
1744 if (save_inst & 0x20)
1745 {
1746 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
1747 offset -= mips_abi_regsize (gdbarch);
1748 }
1749
1750 /* Check if A0-A3 were pushed on the stack. */
1751 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
1752 {
1753 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
1754 offset -= mips_abi_regsize (gdbarch);
1755 }
1756 }
1757
1758 if (this_cache != NULL)
1759 {
1760 this_cache->base =
1761 (get_frame_register_signed (this_frame,
1762 gdbarch_num_regs (gdbarch) + frame_reg)
1763 + frame_offset - frame_adjust);
1764 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1765 be able to get rid of the assignment below, evetually. But it's
1766 still needed for now. */
1767 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1768 + mips_regnum (gdbarch)->pc]
1769 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
1770 }
1771
1772 /* If we didn't reach the end of the prologue when scanning the function
1773 instructions, then set end_prologue_addr to the address of the
1774 instruction immediately after the last one we scanned. */
1775 if (end_prologue_addr == 0)
1776 end_prologue_addr = cur_pc;
1777
1778 return end_prologue_addr;
1779 }
1780
1781 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1782 Procedures that use the 32-bit instruction set are handled by the
1783 mips_insn32 unwinder. */
1784
1785 static struct mips_frame_cache *
1786 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
1787 {
1788 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1789 struct mips_frame_cache *cache;
1790
1791 if ((*this_cache) != NULL)
1792 return (*this_cache);
1793 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1794 (*this_cache) = cache;
1795 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1796
1797 /* Analyze the function prologue. */
1798 {
1799 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
1800 CORE_ADDR start_addr;
1801
1802 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1803 if (start_addr == 0)
1804 start_addr = heuristic_proc_start (gdbarch, pc);
1805 /* We can't analyze the prologue if we couldn't find the begining
1806 of the function. */
1807 if (start_addr == 0)
1808 return cache;
1809
1810 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
1811 }
1812
1813 /* gdbarch_sp_regnum contains the value and not the address. */
1814 trad_frame_set_value (cache->saved_regs,
1815 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
1816 cache->base);
1817
1818 return (*this_cache);
1819 }
1820
1821 static void
1822 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
1823 struct frame_id *this_id)
1824 {
1825 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1826 this_cache);
1827 /* This marks the outermost frame. */
1828 if (info->base == 0)
1829 return;
1830 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
1831 }
1832
1833 static struct value *
1834 mips_insn16_frame_prev_register (struct frame_info *this_frame,
1835 void **this_cache, int regnum)
1836 {
1837 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1838 this_cache);
1839 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1840 }
1841
1842 static int
1843 mips_insn16_frame_sniffer (const struct frame_unwind *self,
1844 struct frame_info *this_frame, void **this_cache)
1845 {
1846 CORE_ADDR pc = get_frame_pc (this_frame);
1847 if (mips_pc_is_mips16 (pc))
1848 return 1;
1849 return 0;
1850 }
1851
1852 static const struct frame_unwind mips_insn16_frame_unwind =
1853 {
1854 NORMAL_FRAME,
1855 mips_insn16_frame_this_id,
1856 mips_insn16_frame_prev_register,
1857 NULL,
1858 mips_insn16_frame_sniffer
1859 };
1860
1861 static CORE_ADDR
1862 mips_insn16_frame_base_address (struct frame_info *this_frame,
1863 void **this_cache)
1864 {
1865 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
1866 this_cache);
1867 return info->base;
1868 }
1869
1870 static const struct frame_base mips_insn16_frame_base =
1871 {
1872 &mips_insn16_frame_unwind,
1873 mips_insn16_frame_base_address,
1874 mips_insn16_frame_base_address,
1875 mips_insn16_frame_base_address
1876 };
1877
1878 static const struct frame_base *
1879 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
1880 {
1881 CORE_ADDR pc = get_frame_pc (this_frame);
1882 if (mips_pc_is_mips16 (pc))
1883 return &mips_insn16_frame_base;
1884 else
1885 return NULL;
1886 }
1887
1888 /* Mark all the registers as unset in the saved_regs array
1889 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1890
1891 static void
1892 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
1893 {
1894 if (this_cache == NULL || this_cache->saved_regs == NULL)
1895 return;
1896
1897 {
1898 const int num_regs = gdbarch_num_regs (gdbarch);
1899 int i;
1900
1901 for (i = 0; i < num_regs; i++)
1902 {
1903 this_cache->saved_regs[i].addr = -1;
1904 }
1905 }
1906 }
1907
1908 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1909 the associated FRAME_CACHE if not null.
1910 Return the address of the first instruction past the prologue. */
1911
1912 static CORE_ADDR
1913 mips32_scan_prologue (struct gdbarch *gdbarch,
1914 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1915 struct frame_info *this_frame,
1916 struct mips_frame_cache *this_cache)
1917 {
1918 CORE_ADDR cur_pc;
1919 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1920 CORE_ADDR sp;
1921 long frame_offset;
1922 int frame_reg = MIPS_SP_REGNUM;
1923
1924 CORE_ADDR end_prologue_addr = 0;
1925 int seen_sp_adjust = 0;
1926 int load_immediate_bytes = 0;
1927 int in_delay_slot = 0;
1928 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
1929
1930 /* Can be called when there's no process, and hence when there's no
1931 THIS_FRAME. */
1932 if (this_frame != NULL)
1933 sp = get_frame_register_signed (this_frame,
1934 gdbarch_num_regs (gdbarch)
1935 + MIPS_SP_REGNUM);
1936 else
1937 sp = 0;
1938
1939 if (limit_pc > start_pc + 200)
1940 limit_pc = start_pc + 200;
1941
1942 restart:
1943
1944 frame_offset = 0;
1945 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1946 {
1947 unsigned long inst, high_word, low_word;
1948 int reg;
1949
1950 /* Fetch the instruction. */
1951 inst = (unsigned long) mips_fetch_instruction (gdbarch, cur_pc);
1952
1953 /* Save some code by pre-extracting some useful fields. */
1954 high_word = (inst >> 16) & 0xffff;
1955 low_word = inst & 0xffff;
1956 reg = high_word & 0x1f;
1957
1958 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1959 || high_word == 0x23bd /* addi $sp,$sp,-i */
1960 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1961 {
1962 if (low_word & 0x8000) /* negative stack adjustment? */
1963 frame_offset += 0x10000 - low_word;
1964 else
1965 /* Exit loop if a positive stack adjustment is found, which
1966 usually means that the stack cleanup code in the function
1967 epilogue is reached. */
1968 break;
1969 seen_sp_adjust = 1;
1970 }
1971 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1972 && !regsize_is_64_bits)
1973 {
1974 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
1975 }
1976 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1977 && regsize_is_64_bits)
1978 {
1979 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1980 set_reg_offset (gdbarch, this_cache, reg, sp + low_word);
1981 }
1982 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1983 {
1984 /* Old gcc frame, r30 is virtual frame pointer. */
1985 if ((long) low_word != frame_offset)
1986 frame_addr = sp + low_word;
1987 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
1988 {
1989 unsigned alloca_adjust;
1990
1991 frame_reg = 30;
1992 frame_addr = get_frame_register_signed
1993 (this_frame, gdbarch_num_regs (gdbarch) + 30);
1994
1995 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1996 if (alloca_adjust > 0)
1997 {
1998 /* FP > SP + frame_size. This may be because of
1999 an alloca or somethings similar. Fix sp to
2000 "pre-alloca" value, and try again. */
2001 sp += alloca_adjust;
2002 /* Need to reset the status of all registers. Otherwise,
2003 we will hit a guard that prevents the new address
2004 for each register to be recomputed during the second
2005 pass. */
2006 reset_saved_regs (gdbarch, this_cache);
2007 goto restart;
2008 }
2009 }
2010 }
2011 /* move $30,$sp. With different versions of gas this will be either
2012 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2013 Accept any one of these. */
2014 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2015 {
2016 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2017 if (this_frame && frame_reg == MIPS_SP_REGNUM)
2018 {
2019 unsigned alloca_adjust;
2020
2021 frame_reg = 30;
2022 frame_addr = get_frame_register_signed
2023 (this_frame, gdbarch_num_regs (gdbarch) + 30);
2024
2025 alloca_adjust = (unsigned) (frame_addr - sp);
2026 if (alloca_adjust > 0)
2027 {
2028 /* FP > SP + frame_size. This may be because of
2029 an alloca or somethings similar. Fix sp to
2030 "pre-alloca" value, and try again. */
2031 sp = frame_addr;
2032 /* Need to reset the status of all registers. Otherwise,
2033 we will hit a guard that prevents the new address
2034 for each register to be recomputed during the second
2035 pass. */
2036 reset_saved_regs (gdbarch, this_cache);
2037 goto restart;
2038 }
2039 }
2040 }
2041 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
2042 && !regsize_is_64_bits)
2043 {
2044 set_reg_offset (gdbarch, this_cache, reg, frame_addr + low_word);
2045 }
2046 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
2047 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
2048 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
2049 || high_word == 0x3c1c /* lui $gp,n */
2050 || high_word == 0x279c /* addiu $gp,$gp,n */
2051 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
2052 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
2053 )
2054 {
2055 /* These instructions are part of the prologue, but we don't
2056 need to do anything special to handle them. */
2057 }
2058 /* The instructions below load $at or $t0 with an immediate
2059 value in preparation for a stack adjustment via
2060 subu $sp,$sp,[$at,$t0]. These instructions could also
2061 initialize a local variable, so we accept them only before
2062 a stack adjustment instruction was seen. */
2063 else if (!seen_sp_adjust
2064 && (high_word == 0x3c01 /* lui $at,n */
2065 || high_word == 0x3c08 /* lui $t0,n */
2066 || high_word == 0x3421 /* ori $at,$at,n */
2067 || high_word == 0x3508 /* ori $t0,$t0,n */
2068 || high_word == 0x3401 /* ori $at,$zero,n */
2069 || high_word == 0x3408 /* ori $t0,$zero,n */
2070 ))
2071 {
2072 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2073 }
2074 else
2075 {
2076 /* This instruction is not an instruction typically found
2077 in a prologue, so we must have reached the end of the
2078 prologue. */
2079 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2080 loop now? Why would we need to continue scanning the function
2081 instructions? */
2082 if (end_prologue_addr == 0)
2083 end_prologue_addr = cur_pc;
2084
2085 /* Check for branches and jumps. For now, only jump to
2086 register are caught (i.e. returns). */
2087 if ((itype_op (inst) & 0x07) == 0 && rtype_funct (inst) == 8)
2088 in_delay_slot = 1;
2089 }
2090
2091 /* If the previous instruction was a jump, we must have reached
2092 the end of the prologue by now. Stop scanning so that we do
2093 not go past the function return. */
2094 if (in_delay_slot)
2095 break;
2096 }
2097
2098 if (this_cache != NULL)
2099 {
2100 this_cache->base =
2101 (get_frame_register_signed (this_frame,
2102 gdbarch_num_regs (gdbarch) + frame_reg)
2103 + frame_offset);
2104 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2105 this assignment below, eventually. But it's still needed
2106 for now. */
2107 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2108 + mips_regnum (gdbarch)->pc]
2109 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2110 + MIPS_RA_REGNUM];
2111 }
2112
2113 /* If we didn't reach the end of the prologue when scanning the function
2114 instructions, then set end_prologue_addr to the address of the
2115 instruction immediately after the last one we scanned. */
2116 /* brobecker/2004-10-10: I don't think this would ever happen, but
2117 we may as well be careful and do our best if we have a null
2118 end_prologue_addr. */
2119 if (end_prologue_addr == 0)
2120 end_prologue_addr = cur_pc;
2121
2122 /* In a frameless function, we might have incorrectly
2123 skipped some load immediate instructions. Undo the skipping
2124 if the load immediate was not followed by a stack adjustment. */
2125 if (load_immediate_bytes && !seen_sp_adjust)
2126 end_prologue_addr -= load_immediate_bytes;
2127
2128 return end_prologue_addr;
2129 }
2130
2131 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2132 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2133 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2134 unwinder. */
2135
2136 static struct mips_frame_cache *
2137 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
2138 {
2139 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2140 struct mips_frame_cache *cache;
2141
2142 if ((*this_cache) != NULL)
2143 return (*this_cache);
2144
2145 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2146 (*this_cache) = cache;
2147 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2148
2149 /* Analyze the function prologue. */
2150 {
2151 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2152 CORE_ADDR start_addr;
2153
2154 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2155 if (start_addr == 0)
2156 start_addr = heuristic_proc_start (gdbarch, pc);
2157 /* We can't analyze the prologue if we couldn't find the begining
2158 of the function. */
2159 if (start_addr == 0)
2160 return cache;
2161
2162 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame, *this_cache);
2163 }
2164
2165 /* gdbarch_sp_regnum contains the value and not the address. */
2166 trad_frame_set_value (cache->saved_regs,
2167 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2168 cache->base);
2169
2170 return (*this_cache);
2171 }
2172
2173 static void
2174 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
2175 struct frame_id *this_id)
2176 {
2177 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2178 this_cache);
2179 /* This marks the outermost frame. */
2180 if (info->base == 0)
2181 return;
2182 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2183 }
2184
2185 static struct value *
2186 mips_insn32_frame_prev_register (struct frame_info *this_frame,
2187 void **this_cache, int regnum)
2188 {
2189 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2190 this_cache);
2191 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2192 }
2193
2194 static int
2195 mips_insn32_frame_sniffer (const struct frame_unwind *self,
2196 struct frame_info *this_frame, void **this_cache)
2197 {
2198 CORE_ADDR pc = get_frame_pc (this_frame);
2199 if (! mips_pc_is_mips16 (pc))
2200 return 1;
2201 return 0;
2202 }
2203
2204 static const struct frame_unwind mips_insn32_frame_unwind =
2205 {
2206 NORMAL_FRAME,
2207 mips_insn32_frame_this_id,
2208 mips_insn32_frame_prev_register,
2209 NULL,
2210 mips_insn32_frame_sniffer
2211 };
2212
2213 static CORE_ADDR
2214 mips_insn32_frame_base_address (struct frame_info *this_frame,
2215 void **this_cache)
2216 {
2217 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
2218 this_cache);
2219 return info->base;
2220 }
2221
2222 static const struct frame_base mips_insn32_frame_base =
2223 {
2224 &mips_insn32_frame_unwind,
2225 mips_insn32_frame_base_address,
2226 mips_insn32_frame_base_address,
2227 mips_insn32_frame_base_address
2228 };
2229
2230 static const struct frame_base *
2231 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
2232 {
2233 CORE_ADDR pc = get_frame_pc (this_frame);
2234 if (! mips_pc_is_mips16 (pc))
2235 return &mips_insn32_frame_base;
2236 else
2237 return NULL;
2238 }
2239
2240 static struct trad_frame_cache *
2241 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2242 {
2243 CORE_ADDR pc;
2244 CORE_ADDR start_addr;
2245 CORE_ADDR stack_addr;
2246 struct trad_frame_cache *this_trad_cache;
2247 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2248 int num_regs = gdbarch_num_regs (gdbarch);
2249
2250 if ((*this_cache) != NULL)
2251 return (*this_cache);
2252 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2253 (*this_cache) = this_trad_cache;
2254
2255 /* The return address is in the link register. */
2256 trad_frame_set_reg_realreg (this_trad_cache,
2257 gdbarch_pc_regnum (gdbarch),
2258 num_regs + MIPS_RA_REGNUM);
2259
2260 /* Frame ID, since it's a frameless / stackless function, no stack
2261 space is allocated and SP on entry is the current SP. */
2262 pc = get_frame_pc (this_frame);
2263 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2264 stack_addr = get_frame_register_signed (this_frame,
2265 num_regs + MIPS_SP_REGNUM);
2266 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2267
2268 /* Assume that the frame's base is the same as the
2269 stack-pointer. */
2270 trad_frame_set_this_base (this_trad_cache, stack_addr);
2271
2272 return this_trad_cache;
2273 }
2274
2275 static void
2276 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2277 struct frame_id *this_id)
2278 {
2279 struct trad_frame_cache *this_trad_cache
2280 = mips_stub_frame_cache (this_frame, this_cache);
2281 trad_frame_get_id (this_trad_cache, this_id);
2282 }
2283
2284 static struct value *
2285 mips_stub_frame_prev_register (struct frame_info *this_frame,
2286 void **this_cache, int regnum)
2287 {
2288 struct trad_frame_cache *this_trad_cache
2289 = mips_stub_frame_cache (this_frame, this_cache);
2290 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2291 }
2292
2293 static int
2294 mips_stub_frame_sniffer (const struct frame_unwind *self,
2295 struct frame_info *this_frame, void **this_cache)
2296 {
2297 gdb_byte dummy[4];
2298 struct obj_section *s;
2299 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2300 struct minimal_symbol *msym;
2301
2302 /* Use the stub unwinder for unreadable code. */
2303 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2304 return 1;
2305
2306 if (in_plt_section (pc, NULL))
2307 return 1;
2308
2309 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2310 s = find_pc_section (pc);
2311
2312 if (s != NULL
2313 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2314 ".MIPS.stubs") == 0)
2315 return 1;
2316
2317 /* Calling a PIC function from a non-PIC function passes through a
2318 stub. The stub for foo is named ".pic.foo". */
2319 msym = lookup_minimal_symbol_by_pc (pc);
2320 if (msym != NULL
2321 && SYMBOL_LINKAGE_NAME (msym) != NULL
2322 && strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) == 0)
2323 return 1;
2324
2325 return 0;
2326 }
2327
2328 static const struct frame_unwind mips_stub_frame_unwind =
2329 {
2330 NORMAL_FRAME,
2331 mips_stub_frame_this_id,
2332 mips_stub_frame_prev_register,
2333 NULL,
2334 mips_stub_frame_sniffer
2335 };
2336
2337 static CORE_ADDR
2338 mips_stub_frame_base_address (struct frame_info *this_frame,
2339 void **this_cache)
2340 {
2341 struct trad_frame_cache *this_trad_cache
2342 = mips_stub_frame_cache (this_frame, this_cache);
2343 return trad_frame_get_this_base (this_trad_cache);
2344 }
2345
2346 static const struct frame_base mips_stub_frame_base =
2347 {
2348 &mips_stub_frame_unwind,
2349 mips_stub_frame_base_address,
2350 mips_stub_frame_base_address,
2351 mips_stub_frame_base_address
2352 };
2353
2354 static const struct frame_base *
2355 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
2356 {
2357 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
2358 return &mips_stub_frame_base;
2359 else
2360 return NULL;
2361 }
2362
2363 /* mips_addr_bits_remove - remove useless address bits */
2364
2365 static CORE_ADDR
2366 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
2367 {
2368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2369 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2370 /* This hack is a work-around for existing boards using PMON, the
2371 simulator, and any other 64-bit targets that doesn't have true
2372 64-bit addressing. On these targets, the upper 32 bits of
2373 addresses are ignored by the hardware. Thus, the PC or SP are
2374 likely to have been sign extended to all 1s by instruction
2375 sequences that load 32-bit addresses. For example, a typical
2376 piece of code that loads an address is this:
2377
2378 lui $r2, <upper 16 bits>
2379 ori $r2, <lower 16 bits>
2380
2381 But the lui sign-extends the value such that the upper 32 bits
2382 may be all 1s. The workaround is simply to mask off these
2383 bits. In the future, gcc may be changed to support true 64-bit
2384 addressing, and this masking will have to be disabled. */
2385 return addr &= 0xffffffffUL;
2386 else
2387 return addr;
2388 }
2389
2390 /* Instructions used during single-stepping of atomic sequences. */
2391 #define LL_OPCODE 0x30
2392 #define LLD_OPCODE 0x34
2393 #define SC_OPCODE 0x38
2394 #define SCD_OPCODE 0x3c
2395
2396 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
2397 instruction and ending with a SC/SCD instruction. If such a sequence
2398 is found, attempt to step through it. A breakpoint is placed at the end of
2399 the sequence. */
2400
2401 static int
2402 deal_with_atomic_sequence (struct gdbarch *gdbarch,
2403 struct address_space *aspace, CORE_ADDR pc)
2404 {
2405 CORE_ADDR breaks[2] = {-1, -1};
2406 CORE_ADDR loc = pc;
2407 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
2408 unsigned long insn;
2409 int insn_count;
2410 int index;
2411 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2412 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2413
2414 if (pc & 0x01)
2415 return 0;
2416
2417 insn = mips_fetch_instruction (gdbarch, loc);
2418 /* Assume all atomic sequences start with a ll/lld instruction. */
2419 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
2420 return 0;
2421
2422 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
2423 instructions. */
2424 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2425 {
2426 int is_branch = 0;
2427 loc += MIPS_INSN32_SIZE;
2428 insn = mips_fetch_instruction (gdbarch, loc);
2429
2430 /* Assume that there is at most one branch in the atomic
2431 sequence. If a branch is found, put a breakpoint in its
2432 destination address. */
2433 switch (itype_op (insn))
2434 {
2435 case 0: /* SPECIAL */
2436 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
2437 return 0; /* fallback to the standard single-step code. */
2438 break;
2439 case 1: /* REGIMM */
2440 is_branch = ((itype_rt (insn) & 0xc0) == 0); /* B{LT,GE}Z* */
2441 break;
2442 case 2: /* J */
2443 case 3: /* JAL */
2444 return 0; /* fallback to the standard single-step code. */
2445 case 4: /* BEQ */
2446 case 5: /* BNE */
2447 case 6: /* BLEZ */
2448 case 7: /* BGTZ */
2449 case 20: /* BEQL */
2450 case 21: /* BNEL */
2451 case 22: /* BLEZL */
2452 case 23: /* BGTTL */
2453 is_branch = 1;
2454 break;
2455 case 17: /* COP1 */
2456 case 18: /* COP2 */
2457 case 19: /* COP3 */
2458 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
2459 break;
2460 }
2461 if (is_branch)
2462 {
2463 branch_bp = loc + mips32_relative_offset (insn) + 4;
2464 if (last_breakpoint >= 1)
2465 return 0; /* More than one branch found, fallback to the
2466 standard single-step code. */
2467 breaks[1] = branch_bp;
2468 last_breakpoint++;
2469 }
2470
2471 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
2472 break;
2473 }
2474
2475 /* Assume that the atomic sequence ends with a sc/scd instruction. */
2476 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
2477 return 0;
2478
2479 loc += MIPS_INSN32_SIZE;
2480
2481 /* Insert a breakpoint right after the end of the atomic sequence. */
2482 breaks[0] = loc;
2483
2484 /* Check for duplicated breakpoints. Check also for a breakpoint
2485 placed (branch instruction's destination) in the atomic sequence */
2486 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
2487 last_breakpoint = 0;
2488
2489 /* Effectively inserts the breakpoints. */
2490 for (index = 0; index <= last_breakpoint; index++)
2491 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
2492
2493 return 1;
2494 }
2495
2496 /* mips_software_single_step() is called just before we want to resume
2497 the inferior, if we want to single-step it but there is no hardware
2498 or kernel single-step support (MIPS on GNU/Linux for example). We find
2499 the target of the coming instruction and breakpoint it. */
2500
2501 int
2502 mips_software_single_step (struct frame_info *frame)
2503 {
2504 struct gdbarch *gdbarch = get_frame_arch (frame);
2505 struct address_space *aspace = get_frame_address_space (frame);
2506 CORE_ADDR pc, next_pc;
2507
2508 pc = get_frame_pc (frame);
2509 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
2510 return 1;
2511
2512 next_pc = mips_next_pc (frame, pc);
2513
2514 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2515 return 1;
2516 }
2517
2518 /* Test whether the PC points to the return instruction at the
2519 end of a function. */
2520
2521 static int
2522 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
2523 {
2524 if (mips_pc_is_mips16 (pc))
2525 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2526 generates a "jr $ra"; other times it generates code to load
2527 the return address from the stack to an accessible register (such
2528 as $a3), then a "jr" using that register. This second case
2529 is almost impossible to distinguish from an indirect jump
2530 used for switch statements, so we don't even try. */
2531 return mips_fetch_instruction (gdbarch, pc) == 0xe820; /* jr $ra */
2532 else
2533 return mips_fetch_instruction (gdbarch, pc) == 0x3e00008; /* jr $ra */
2534 }
2535
2536
2537 /* This fencepost looks highly suspicious to me. Removing it also
2538 seems suspicious as it could affect remote debugging across serial
2539 lines. */
2540
2541 static CORE_ADDR
2542 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
2543 {
2544 CORE_ADDR start_pc;
2545 CORE_ADDR fence;
2546 int instlen;
2547 int seen_adjsp = 0;
2548 struct inferior *inf;
2549
2550 pc = gdbarch_addr_bits_remove (gdbarch, pc);
2551 start_pc = pc;
2552 fence = start_pc - heuristic_fence_post;
2553 if (start_pc == 0)
2554 return 0;
2555
2556 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2557 fence = VM_MIN_ADDRESS;
2558
2559 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2560
2561 inf = current_inferior ();
2562
2563 /* search back for previous return */
2564 for (start_pc -= instlen;; start_pc -= instlen)
2565 if (start_pc < fence)
2566 {
2567 /* It's not clear to me why we reach this point when
2568 stop_soon, but with this test, at least we
2569 don't print out warnings for every child forked (eg, on
2570 decstation). 22apr93 rich@cygnus.com. */
2571 if (inf->control.stop_soon == NO_STOP_QUIETLY)
2572 {
2573 static int blurb_printed = 0;
2574
2575 warning (_("GDB can't find the start of the function at %s."),
2576 paddress (gdbarch, pc));
2577
2578 if (!blurb_printed)
2579 {
2580 /* This actually happens frequently in embedded
2581 development, when you first connect to a board
2582 and your stack pointer and pc are nowhere in
2583 particular. This message needs to give people
2584 in that situation enough information to
2585 determine that it's no big deal. */
2586 printf_filtered ("\n\
2587 GDB is unable to find the start of the function at %s\n\
2588 and thus can't determine the size of that function's stack frame.\n\
2589 This means that GDB may be unable to access that stack frame, or\n\
2590 the frames below it.\n\
2591 This problem is most likely caused by an invalid program counter or\n\
2592 stack pointer.\n\
2593 However, if you think GDB should simply search farther back\n\
2594 from %s for code which looks like the beginning of a\n\
2595 function, you can increase the range of the search using the `set\n\
2596 heuristic-fence-post' command.\n",
2597 paddress (gdbarch, pc), paddress (gdbarch, pc));
2598 blurb_printed = 1;
2599 }
2600 }
2601
2602 return 0;
2603 }
2604 else if (mips_pc_is_mips16 (start_pc))
2605 {
2606 unsigned short inst;
2607
2608 /* On MIPS16, any one of the following is likely to be the
2609 start of a function:
2610 extend save
2611 save
2612 entry
2613 addiu sp,-n
2614 daddiu sp,-n
2615 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2616 inst = mips_fetch_instruction (gdbarch, start_pc);
2617 if ((inst & 0xff80) == 0x6480) /* save */
2618 {
2619 if (start_pc - instlen >= fence)
2620 {
2621 inst = mips_fetch_instruction (gdbarch, start_pc - instlen);
2622 if ((inst & 0xf800) == 0xf000) /* extend */
2623 start_pc -= instlen;
2624 }
2625 break;
2626 }
2627 else if (((inst & 0xf81f) == 0xe809
2628 && (inst & 0x700) != 0x700) /* entry */
2629 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2630 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2631 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2632 break;
2633 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2634 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2635 seen_adjsp = 1;
2636 else
2637 seen_adjsp = 0;
2638 }
2639 else if (mips_about_to_return (gdbarch, start_pc))
2640 {
2641 /* Skip return and its delay slot. */
2642 start_pc += 2 * MIPS_INSN32_SIZE;
2643 break;
2644 }
2645
2646 return start_pc;
2647 }
2648
2649 struct mips_objfile_private
2650 {
2651 bfd_size_type size;
2652 char *contents;
2653 };
2654
2655 /* According to the current ABI, should the type be passed in a
2656 floating-point register (assuming that there is space)? When there
2657 is no FPU, FP are not even considered as possible candidates for
2658 FP registers and, consequently this returns false - forces FP
2659 arguments into integer registers. */
2660
2661 static int
2662 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
2663 struct type *arg_type)
2664 {
2665 return ((typecode == TYPE_CODE_FLT
2666 || (MIPS_EABI (gdbarch)
2667 && (typecode == TYPE_CODE_STRUCT
2668 || typecode == TYPE_CODE_UNION)
2669 && TYPE_NFIELDS (arg_type) == 1
2670 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2671 == TYPE_CODE_FLT))
2672 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
2673 }
2674
2675 /* On o32, argument passing in GPRs depends on the alignment of the type being
2676 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2677
2678 static int
2679 mips_type_needs_double_align (struct type *type)
2680 {
2681 enum type_code typecode = TYPE_CODE (type);
2682
2683 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2684 return 1;
2685 else if (typecode == TYPE_CODE_STRUCT)
2686 {
2687 if (TYPE_NFIELDS (type) < 1)
2688 return 0;
2689 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2690 }
2691 else if (typecode == TYPE_CODE_UNION)
2692 {
2693 int i, n;
2694
2695 n = TYPE_NFIELDS (type);
2696 for (i = 0; i < n; i++)
2697 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2698 return 1;
2699 return 0;
2700 }
2701 return 0;
2702 }
2703
2704 /* Adjust the address downward (direction of stack growth) so that it
2705 is correctly aligned for a new stack frame. */
2706 static CORE_ADDR
2707 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2708 {
2709 return align_down (addr, 16);
2710 }
2711
2712 static CORE_ADDR
2713 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2714 struct regcache *regcache, CORE_ADDR bp_addr,
2715 int nargs, struct value **args, CORE_ADDR sp,
2716 int struct_return, CORE_ADDR struct_addr)
2717 {
2718 int argreg;
2719 int float_argreg;
2720 int argnum;
2721 int len = 0;
2722 int stack_offset = 0;
2723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2724 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2725 CORE_ADDR func_addr = find_function_addr (function, NULL);
2726 int regsize = mips_abi_regsize (gdbarch);
2727
2728 /* For shared libraries, "t9" needs to point at the function
2729 address. */
2730 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2731
2732 /* Set the return address register to point to the entry point of
2733 the program, where a breakpoint lies in wait. */
2734 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2735
2736 /* First ensure that the stack and structure return address (if any)
2737 are properly aligned. The stack has to be at least 64-bit
2738 aligned even on 32-bit machines, because doubles must be 64-bit
2739 aligned. For n32 and n64, stack frames need to be 128-bit
2740 aligned, so we round to this widest known alignment. */
2741
2742 sp = align_down (sp, 16);
2743 struct_addr = align_down (struct_addr, 16);
2744
2745 /* Now make space on the stack for the args. We allocate more
2746 than necessary for EABI, because the first few arguments are
2747 passed in registers, but that's OK. */
2748 for (argnum = 0; argnum < nargs; argnum++)
2749 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2750 sp -= align_up (len, 16);
2751
2752 if (mips_debug)
2753 fprintf_unfiltered (gdb_stdlog,
2754 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
2755 paddress (gdbarch, sp), (long) align_up (len, 16));
2756
2757 /* Initialize the integer and float register pointers. */
2758 argreg = MIPS_A0_REGNUM;
2759 float_argreg = mips_fpa0_regnum (gdbarch);
2760
2761 /* The struct_return pointer occupies the first parameter-passing reg. */
2762 if (struct_return)
2763 {
2764 if (mips_debug)
2765 fprintf_unfiltered (gdb_stdlog,
2766 "mips_eabi_push_dummy_call: struct_return reg=%d %s\n",
2767 argreg, paddress (gdbarch, struct_addr));
2768 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2769 }
2770
2771 /* Now load as many as possible of the first arguments into
2772 registers, and push the rest onto the stack. Loop thru args
2773 from first to last. */
2774 for (argnum = 0; argnum < nargs; argnum++)
2775 {
2776 const gdb_byte *val;
2777 gdb_byte valbuf[MAX_REGISTER_SIZE];
2778 struct value *arg = args[argnum];
2779 struct type *arg_type = check_typedef (value_type (arg));
2780 int len = TYPE_LENGTH (arg_type);
2781 enum type_code typecode = TYPE_CODE (arg_type);
2782
2783 if (mips_debug)
2784 fprintf_unfiltered (gdb_stdlog,
2785 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2786 argnum + 1, len, (int) typecode);
2787
2788 /* The EABI passes structures that do not fit in a register by
2789 reference. */
2790 if (len > regsize
2791 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2792 {
2793 store_unsigned_integer (valbuf, regsize, byte_order,
2794 value_address (arg));
2795 typecode = TYPE_CODE_PTR;
2796 len = regsize;
2797 val = valbuf;
2798 if (mips_debug)
2799 fprintf_unfiltered (gdb_stdlog, " push");
2800 }
2801 else
2802 val = value_contents (arg);
2803
2804 /* 32-bit ABIs always start floating point arguments in an
2805 even-numbered floating point register. Round the FP register
2806 up before the check to see if there are any FP registers
2807 left. Non MIPS_EABI targets also pass the FP in the integer
2808 registers so also round up normal registers. */
2809 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
2810 {
2811 if ((float_argreg & 1))
2812 float_argreg++;
2813 }
2814
2815 /* Floating point arguments passed in registers have to be
2816 treated specially. On 32-bit architectures, doubles
2817 are passed in register pairs; the even register gets
2818 the low word, and the odd register gets the high word.
2819 On non-EABI processors, the first two floating point arguments are
2820 also copied to general registers, because MIPS16 functions
2821 don't use float registers for arguments. This duplication of
2822 arguments in general registers can't hurt non-MIPS16 functions
2823 because those registers are normally skipped. */
2824 /* MIPS_EABI squeezes a struct that contains a single floating
2825 point value into an FP register instead of pushing it onto the
2826 stack. */
2827 if (fp_register_arg_p (gdbarch, typecode, arg_type)
2828 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
2829 {
2830 /* EABI32 will pass doubles in consecutive registers, even on
2831 64-bit cores. At one time, we used to check the size of
2832 `float_argreg' to determine whether or not to pass doubles
2833 in consecutive registers, but this is not sufficient for
2834 making the ABI determination. */
2835 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2836 {
2837 int low_offset = gdbarch_byte_order (gdbarch)
2838 == BFD_ENDIAN_BIG ? 4 : 0;
2839 long regval;
2840
2841 /* Write the low word of the double to the even register(s). */
2842 regval = extract_signed_integer (val + low_offset,
2843 4, byte_order);
2844 if (mips_debug)
2845 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2846 float_argreg, phex (regval, 4));
2847 regcache_cooked_write_signed (regcache, float_argreg++, regval);
2848
2849 /* Write the high word of the double to the odd register(s). */
2850 regval = extract_signed_integer (val + 4 - low_offset,
2851 4, byte_order);
2852 if (mips_debug)
2853 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2854 float_argreg, phex (regval, 4));
2855 regcache_cooked_write_signed (regcache, float_argreg++, regval);
2856 }
2857 else
2858 {
2859 /* This is a floating point value that fits entirely
2860 in a single register. */
2861 /* On 32 bit ABI's the float_argreg is further adjusted
2862 above to ensure that it is even register aligned. */
2863 LONGEST regval = extract_signed_integer (val, len, byte_order);
2864 if (mips_debug)
2865 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2866 float_argreg, phex (regval, len));
2867 regcache_cooked_write_signed (regcache, float_argreg++, regval);
2868 }
2869 }
2870 else
2871 {
2872 /* Copy the argument to general registers or the stack in
2873 register-sized pieces. Large arguments are split between
2874 registers and stack. */
2875 /* Note: structs whose size is not a multiple of regsize
2876 are treated specially: Irix cc passes
2877 them in registers where gcc sometimes puts them on the
2878 stack. For maximum compatibility, we will put them in
2879 both places. */
2880 int odd_sized_struct = (len > regsize && len % regsize != 0);
2881
2882 /* Note: Floating-point values that didn't fit into an FP
2883 register are only written to memory. */
2884 while (len > 0)
2885 {
2886 /* Remember if the argument was written to the stack. */
2887 int stack_used_p = 0;
2888 int partial_len = (len < regsize ? len : regsize);
2889
2890 if (mips_debug)
2891 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2892 partial_len);
2893
2894 /* Write this portion of the argument to the stack. */
2895 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
2896 || odd_sized_struct
2897 || fp_register_arg_p (gdbarch, typecode, arg_type))
2898 {
2899 /* Should shorter than int integer values be
2900 promoted to int before being stored? */
2901 int longword_offset = 0;
2902 CORE_ADDR addr;
2903 stack_used_p = 1;
2904 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2905 {
2906 if (regsize == 8
2907 && (typecode == TYPE_CODE_INT
2908 || typecode == TYPE_CODE_PTR
2909 || typecode == TYPE_CODE_FLT) && len <= 4)
2910 longword_offset = regsize - len;
2911 else if ((typecode == TYPE_CODE_STRUCT
2912 || typecode == TYPE_CODE_UNION)
2913 && TYPE_LENGTH (arg_type) < regsize)
2914 longword_offset = regsize - len;
2915 }
2916
2917 if (mips_debug)
2918 {
2919 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
2920 paddress (gdbarch, stack_offset));
2921 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
2922 paddress (gdbarch, longword_offset));
2923 }
2924
2925 addr = sp + stack_offset + longword_offset;
2926
2927 if (mips_debug)
2928 {
2929 int i;
2930 fprintf_unfiltered (gdb_stdlog, " @%s ",
2931 paddress (gdbarch, addr));
2932 for (i = 0; i < partial_len; i++)
2933 {
2934 fprintf_unfiltered (gdb_stdlog, "%02x",
2935 val[i] & 0xff);
2936 }
2937 }
2938 write_memory (addr, val, partial_len);
2939 }
2940
2941 /* Note!!! This is NOT an else clause. Odd sized
2942 structs may go thru BOTH paths. Floating point
2943 arguments will not. */
2944 /* Write this portion of the argument to a general
2945 purpose register. */
2946 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
2947 && !fp_register_arg_p (gdbarch, typecode, arg_type))
2948 {
2949 LONGEST regval =
2950 extract_signed_integer (val, partial_len, byte_order);
2951
2952 if (mips_debug)
2953 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2954 argreg,
2955 phex (regval, regsize));
2956 regcache_cooked_write_signed (regcache, argreg, regval);
2957 argreg++;
2958 }
2959
2960 len -= partial_len;
2961 val += partial_len;
2962
2963 /* Compute the the offset into the stack at which we
2964 will copy the next parameter.
2965
2966 In the new EABI (and the NABI32), the stack_offset
2967 only needs to be adjusted when it has been used. */
2968
2969 if (stack_used_p)
2970 stack_offset += align_up (partial_len, regsize);
2971 }
2972 }
2973 if (mips_debug)
2974 fprintf_unfiltered (gdb_stdlog, "\n");
2975 }
2976
2977 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2978
2979 /* Return adjusted stack pointer. */
2980 return sp;
2981 }
2982
2983 /* Determine the return value convention being used. */
2984
2985 static enum return_value_convention
2986 mips_eabi_return_value (struct gdbarch *gdbarch, struct type *func_type,
2987 struct type *type, struct regcache *regcache,
2988 gdb_byte *readbuf, const gdb_byte *writebuf)
2989 {
2990 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2991 int fp_return_type = 0;
2992 int offset, regnum, xfer;
2993
2994 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2995 return RETURN_VALUE_STRUCT_CONVENTION;
2996
2997 /* Floating point type? */
2998 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
2999 {
3000 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3001 fp_return_type = 1;
3002 /* Structs with a single field of float type
3003 are returned in a floating point register. */
3004 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
3005 || TYPE_CODE (type) == TYPE_CODE_UNION)
3006 && TYPE_NFIELDS (type) == 1)
3007 {
3008 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
3009
3010 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
3011 fp_return_type = 1;
3012 }
3013 }
3014
3015 if (fp_return_type)
3016 {
3017 /* A floating-point value belongs in the least significant part
3018 of FP0/FP1. */
3019 if (mips_debug)
3020 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3021 regnum = mips_regnum (gdbarch)->fp0;
3022 }
3023 else
3024 {
3025 /* An integer value goes in V0/V1. */
3026 if (mips_debug)
3027 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
3028 regnum = MIPS_V0_REGNUM;
3029 }
3030 for (offset = 0;
3031 offset < TYPE_LENGTH (type);
3032 offset += mips_abi_regsize (gdbarch), regnum++)
3033 {
3034 xfer = mips_abi_regsize (gdbarch);
3035 if (offset + xfer > TYPE_LENGTH (type))
3036 xfer = TYPE_LENGTH (type) - offset;
3037 mips_xfer_register (gdbarch, regcache,
3038 gdbarch_num_regs (gdbarch) + regnum, xfer,
3039 gdbarch_byte_order (gdbarch), readbuf, writebuf,
3040 offset);
3041 }
3042
3043 return RETURN_VALUE_REGISTER_CONVENTION;
3044 }
3045
3046
3047 /* N32/N64 ABI stuff. */
3048
3049 /* Search for a naturally aligned double at OFFSET inside a struct
3050 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
3051 registers. */
3052
3053 static int
3054 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
3055 int offset)
3056 {
3057 int i;
3058
3059 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
3060 return 0;
3061
3062 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
3063 return 0;
3064
3065 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
3066 return 0;
3067
3068 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
3069 {
3070 int pos;
3071 struct type *field_type;
3072
3073 /* We're only looking at normal fields. */
3074 if (field_is_static (&TYPE_FIELD (arg_type, i))
3075 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
3076 continue;
3077
3078 /* If we have gone past the offset, there is no double to pass. */
3079 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
3080 if (pos > offset)
3081 return 0;
3082
3083 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
3084
3085 /* If this field is entirely before the requested offset, go
3086 on to the next one. */
3087 if (pos + TYPE_LENGTH (field_type) <= offset)
3088 continue;
3089
3090 /* If this is our special aligned double, we can stop. */
3091 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
3092 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
3093 return 1;
3094
3095 /* This field starts at or before the requested offset, and
3096 overlaps it. If it is a structure, recurse inwards. */
3097 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
3098 }
3099
3100 return 0;
3101 }
3102
3103 static CORE_ADDR
3104 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3105 struct regcache *regcache, CORE_ADDR bp_addr,
3106 int nargs, struct value **args, CORE_ADDR sp,
3107 int struct_return, CORE_ADDR struct_addr)
3108 {
3109 int argreg;
3110 int float_argreg;
3111 int argnum;
3112 int len = 0;
3113 int stack_offset = 0;
3114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3115 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3116 CORE_ADDR func_addr = find_function_addr (function, NULL);
3117
3118 /* For shared libraries, "t9" needs to point at the function
3119 address. */
3120 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3121
3122 /* Set the return address register to point to the entry point of
3123 the program, where a breakpoint lies in wait. */
3124 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3125
3126 /* First ensure that the stack and structure return address (if any)
3127 are properly aligned. The stack has to be at least 64-bit
3128 aligned even on 32-bit machines, because doubles must be 64-bit
3129 aligned. For n32 and n64, stack frames need to be 128-bit
3130 aligned, so we round to this widest known alignment. */
3131
3132 sp = align_down (sp, 16);
3133 struct_addr = align_down (struct_addr, 16);
3134
3135 /* Now make space on the stack for the args. */
3136 for (argnum = 0; argnum < nargs; argnum++)
3137 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
3138 sp -= align_up (len, 16);
3139
3140 if (mips_debug)
3141 fprintf_unfiltered (gdb_stdlog,
3142 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
3143 paddress (gdbarch, sp), (long) align_up (len, 16));
3144
3145 /* Initialize the integer and float register pointers. */
3146 argreg = MIPS_A0_REGNUM;
3147 float_argreg = mips_fpa0_regnum (gdbarch);
3148
3149 /* The struct_return pointer occupies the first parameter-passing reg. */
3150 if (struct_return)
3151 {
3152 if (mips_debug)
3153 fprintf_unfiltered (gdb_stdlog,
3154 "mips_n32n64_push_dummy_call: struct_return reg=%d %s\n",
3155 argreg, paddress (gdbarch, struct_addr));
3156 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3157 }
3158
3159 /* Now load as many as possible of the first arguments into
3160 registers, and push the rest onto the stack. Loop thru args
3161 from first to last. */
3162 for (argnum = 0; argnum < nargs; argnum++)
3163 {
3164 const gdb_byte *val;
3165 struct value *arg = args[argnum];
3166 struct type *arg_type = check_typedef (value_type (arg));
3167 int len = TYPE_LENGTH (arg_type);
3168 enum type_code typecode = TYPE_CODE (arg_type);
3169
3170 if (mips_debug)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3173 argnum + 1, len, (int) typecode);
3174
3175 val = value_contents (arg);
3176
3177 /* A 128-bit long double value requires an even-odd pair of
3178 floating-point registers. */
3179 if (len == 16
3180 && fp_register_arg_p (gdbarch, typecode, arg_type)
3181 && (float_argreg & 1))
3182 {
3183 float_argreg++;
3184 argreg++;
3185 }
3186
3187 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3188 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3189 {
3190 /* This is a floating point value that fits entirely
3191 in a single register or a pair of registers. */
3192 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3193 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
3194 if (mips_debug)
3195 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3196 float_argreg, phex (regval, reglen));
3197 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3198
3199 if (mips_debug)
3200 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3201 argreg, phex (regval, reglen));
3202 regcache_cooked_write_unsigned (regcache, argreg, regval);
3203 float_argreg++;
3204 argreg++;
3205 if (len == 16)
3206 {
3207 regval = extract_unsigned_integer (val + reglen,
3208 reglen, byte_order);
3209 if (mips_debug)
3210 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3211 float_argreg, phex (regval, reglen));
3212 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
3213
3214 if (mips_debug)
3215 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3216 argreg, phex (regval, reglen));
3217 regcache_cooked_write_unsigned (regcache, argreg, regval);
3218 float_argreg++;
3219 argreg++;
3220 }
3221 }
3222 else
3223 {
3224 /* Copy the argument to general registers or the stack in
3225 register-sized pieces. Large arguments are split between
3226 registers and stack. */
3227 /* For N32/N64, structs, unions, or other composite types are
3228 treated as a sequence of doublewords, and are passed in integer
3229 or floating point registers as though they were simple scalar
3230 parameters to the extent that they fit, with any excess on the
3231 stack packed according to the normal memory layout of the
3232 object.
3233 The caller does not reserve space for the register arguments;
3234 the callee is responsible for reserving it if required. */
3235 /* Note: Floating-point values that didn't fit into an FP
3236 register are only written to memory. */
3237 while (len > 0)
3238 {
3239 /* Remember if the argument was written to the stack. */
3240 int stack_used_p = 0;
3241 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3242
3243 if (mips_debug)
3244 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3245 partial_len);
3246
3247 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3248 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
3249
3250 /* Write this portion of the argument to the stack. */
3251 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
3252 {
3253 /* Should shorter than int integer values be
3254 promoted to int before being stored? */
3255 int longword_offset = 0;
3256 CORE_ADDR addr;
3257 stack_used_p = 1;
3258 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3259 {
3260 if ((typecode == TYPE_CODE_INT
3261 || typecode == TYPE_CODE_PTR)
3262 && len <= 4)
3263 longword_offset = MIPS64_REGSIZE - len;
3264 }
3265
3266 if (mips_debug)
3267 {
3268 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3269 paddress (gdbarch, stack_offset));
3270 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3271 paddress (gdbarch, longword_offset));
3272 }
3273
3274 addr = sp + stack_offset + longword_offset;
3275
3276 if (mips_debug)
3277 {
3278 int i;
3279 fprintf_unfiltered (gdb_stdlog, " @%s ",
3280 paddress (gdbarch, addr));
3281 for (i = 0; i < partial_len; i++)
3282 {
3283 fprintf_unfiltered (gdb_stdlog, "%02x",
3284 val[i] & 0xff);
3285 }
3286 }
3287 write_memory (addr, val, partial_len);
3288 }
3289
3290 /* Note!!! This is NOT an else clause. Odd sized
3291 structs may go thru BOTH paths. */
3292 /* Write this portion of the argument to a general
3293 purpose register. */
3294 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3295 {
3296 LONGEST regval;
3297
3298 /* Sign extend pointers, 32-bit integers and signed
3299 16-bit and 8-bit integers; everything else is taken
3300 as is. */
3301
3302 if ((partial_len == 4
3303 && (typecode == TYPE_CODE_PTR
3304 || typecode == TYPE_CODE_INT))
3305 || (partial_len < 4
3306 && typecode == TYPE_CODE_INT
3307 && !TYPE_UNSIGNED (arg_type)))
3308 regval = extract_signed_integer (val, partial_len,
3309 byte_order);
3310 else
3311 regval = extract_unsigned_integer (val, partial_len,
3312 byte_order);
3313
3314 /* A non-floating-point argument being passed in a
3315 general register. If a struct or union, and if
3316 the remaining length is smaller than the register
3317 size, we have to adjust the register value on
3318 big endian targets.
3319
3320 It does not seem to be necessary to do the
3321 same for integral types. */
3322
3323 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3324 && partial_len < MIPS64_REGSIZE
3325 && (typecode == TYPE_CODE_STRUCT
3326 || typecode == TYPE_CODE_UNION))
3327 regval <<= ((MIPS64_REGSIZE - partial_len)
3328 * TARGET_CHAR_BIT);
3329
3330 if (mips_debug)
3331 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3332 argreg,
3333 phex (regval, MIPS64_REGSIZE));
3334 regcache_cooked_write_unsigned (regcache, argreg, regval);
3335
3336 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
3337 TYPE_LENGTH (arg_type) - len))
3338 {
3339 if (mips_debug)
3340 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3341 float_argreg,
3342 phex (regval, MIPS64_REGSIZE));
3343 regcache_cooked_write_unsigned (regcache, float_argreg,
3344 regval);
3345 }
3346
3347 float_argreg++;
3348 argreg++;
3349 }
3350
3351 len -= partial_len;
3352 val += partial_len;
3353
3354 /* Compute the the offset into the stack at which we
3355 will copy the next parameter.
3356
3357 In N32 (N64?), the stack_offset only needs to be
3358 adjusted when it has been used. */
3359
3360 if (stack_used_p)
3361 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3362 }
3363 }
3364 if (mips_debug)
3365 fprintf_unfiltered (gdb_stdlog, "\n");
3366 }
3367
3368 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3369
3370 /* Return adjusted stack pointer. */
3371 return sp;
3372 }
3373
3374 static enum return_value_convention
3375 mips_n32n64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3376 struct type *type, struct regcache *regcache,
3377 gdb_byte *readbuf, const gdb_byte *writebuf)
3378 {
3379 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3380
3381 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3382
3383 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3384 if needed), as appropriate for the type. Composite results (struct,
3385 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3386 following rules:
3387
3388 * A struct with only one or two floating point fields is returned in $f0
3389 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3390 case.
3391
3392 * Any other composite results of at most 128 bits are returned in
3393 $2 (first 64 bits) and $3 (remainder, if necessary).
3394
3395 * Larger composite results are handled by converting the function to a
3396 procedure with an implicit first parameter, which is a pointer to an area
3397 reserved by the caller to receive the result. [The o32-bit ABI requires
3398 that all composite results be handled by conversion to implicit first
3399 parameters. The MIPS/SGI Fortran implementation has always made a
3400 specific exception to return COMPLEX results in the floating point
3401 registers.] */
3402
3403 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3404 return RETURN_VALUE_STRUCT_CONVENTION;
3405 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3406 && TYPE_LENGTH (type) == 16
3407 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3408 {
3409 /* A 128-bit floating-point value fills both $f0 and $f2. The
3410 two registers are used in the same as memory order, so the
3411 eight bytes with the lower memory address are in $f0. */
3412 if (mips_debug)
3413 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3414 mips_xfer_register (gdbarch, regcache,
3415 gdbarch_num_regs (gdbarch)
3416 + mips_regnum (gdbarch)->fp0,
3417 8, gdbarch_byte_order (gdbarch),
3418 readbuf, writebuf, 0);
3419 mips_xfer_register (gdbarch, regcache,
3420 gdbarch_num_regs (gdbarch)
3421 + mips_regnum (gdbarch)->fp0 + 2,
3422 8, gdbarch_byte_order (gdbarch),
3423 readbuf ? readbuf + 8 : readbuf,
3424 writebuf ? writebuf + 8 : writebuf, 0);
3425 return RETURN_VALUE_REGISTER_CONVENTION;
3426 }
3427 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3428 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3429 {
3430 /* A single or double floating-point value that fits in FP0. */
3431 if (mips_debug)
3432 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3433 mips_xfer_register (gdbarch, regcache,
3434 gdbarch_num_regs (gdbarch)
3435 + mips_regnum (gdbarch)->fp0,
3436 TYPE_LENGTH (type),
3437 gdbarch_byte_order (gdbarch),
3438 readbuf, writebuf, 0);
3439 return RETURN_VALUE_REGISTER_CONVENTION;
3440 }
3441 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3442 && TYPE_NFIELDS (type) <= 2
3443 && TYPE_NFIELDS (type) >= 1
3444 && ((TYPE_NFIELDS (type) == 1
3445 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3446 == TYPE_CODE_FLT))
3447 || (TYPE_NFIELDS (type) == 2
3448 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3449 == TYPE_CODE_FLT)
3450 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3451 == TYPE_CODE_FLT))))
3452 {
3453 /* A struct that contains one or two floats. Each value is part
3454 in the least significant part of their floating point
3455 register (or GPR, for soft float). */
3456 int regnum;
3457 int field;
3458 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
3459 ? mips_regnum (gdbarch)->fp0
3460 : MIPS_V0_REGNUM);
3461 field < TYPE_NFIELDS (type); field++, regnum += 2)
3462 {
3463 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3464 / TARGET_CHAR_BIT);
3465 if (mips_debug)
3466 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3467 offset);
3468 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
3469 {
3470 /* A 16-byte long double field goes in two consecutive
3471 registers. */
3472 mips_xfer_register (gdbarch, regcache,
3473 gdbarch_num_regs (gdbarch) + regnum,
3474 8,
3475 gdbarch_byte_order (gdbarch),
3476 readbuf, writebuf, offset);
3477 mips_xfer_register (gdbarch, regcache,
3478 gdbarch_num_regs (gdbarch) + regnum + 1,
3479 8,
3480 gdbarch_byte_order (gdbarch),
3481 readbuf, writebuf, offset + 8);
3482 }
3483 else
3484 mips_xfer_register (gdbarch, regcache,
3485 gdbarch_num_regs (gdbarch) + regnum,
3486 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3487 gdbarch_byte_order (gdbarch),
3488 readbuf, writebuf, offset);
3489 }
3490 return RETURN_VALUE_REGISTER_CONVENTION;
3491 }
3492 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3493 || TYPE_CODE (type) == TYPE_CODE_UNION
3494 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3495 {
3496 /* A composite type. Extract the left justified value,
3497 regardless of the byte order. I.e. DO NOT USE
3498 mips_xfer_lower. */
3499 int offset;
3500 int regnum;
3501 for (offset = 0, regnum = MIPS_V0_REGNUM;
3502 offset < TYPE_LENGTH (type);
3503 offset += register_size (gdbarch, regnum), regnum++)
3504 {
3505 int xfer = register_size (gdbarch, regnum);
3506 if (offset + xfer > TYPE_LENGTH (type))
3507 xfer = TYPE_LENGTH (type) - offset;
3508 if (mips_debug)
3509 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3510 offset, xfer, regnum);
3511 mips_xfer_register (gdbarch, regcache,
3512 gdbarch_num_regs (gdbarch) + regnum,
3513 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3514 offset);
3515 }
3516 return RETURN_VALUE_REGISTER_CONVENTION;
3517 }
3518 else
3519 {
3520 /* A scalar extract each part but least-significant-byte
3521 justified. */
3522 int offset;
3523 int regnum;
3524 for (offset = 0, regnum = MIPS_V0_REGNUM;
3525 offset < TYPE_LENGTH (type);
3526 offset += register_size (gdbarch, regnum), regnum++)
3527 {
3528 int xfer = register_size (gdbarch, regnum);
3529 if (offset + xfer > TYPE_LENGTH (type))
3530 xfer = TYPE_LENGTH (type) - offset;
3531 if (mips_debug)
3532 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3533 offset, xfer, regnum);
3534 mips_xfer_register (gdbarch, regcache,
3535 gdbarch_num_regs (gdbarch) + regnum,
3536 xfer, gdbarch_byte_order (gdbarch),
3537 readbuf, writebuf, offset);
3538 }
3539 return RETURN_VALUE_REGISTER_CONVENTION;
3540 }
3541 }
3542
3543 /* O32 ABI stuff. */
3544
3545 static CORE_ADDR
3546 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3547 struct regcache *regcache, CORE_ADDR bp_addr,
3548 int nargs, struct value **args, CORE_ADDR sp,
3549 int struct_return, CORE_ADDR struct_addr)
3550 {
3551 int argreg;
3552 int float_argreg;
3553 int argnum;
3554 int len = 0;
3555 int stack_offset = 0;
3556 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3558 CORE_ADDR func_addr = find_function_addr (function, NULL);
3559
3560 /* For shared libraries, "t9" needs to point at the function
3561 address. */
3562 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3563
3564 /* Set the return address register to point to the entry point of
3565 the program, where a breakpoint lies in wait. */
3566 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3567
3568 /* First ensure that the stack and structure return address (if any)
3569 are properly aligned. The stack has to be at least 64-bit
3570 aligned even on 32-bit machines, because doubles must be 64-bit
3571 aligned. For n32 and n64, stack frames need to be 128-bit
3572 aligned, so we round to this widest known alignment. */
3573
3574 sp = align_down (sp, 16);
3575 struct_addr = align_down (struct_addr, 16);
3576
3577 /* Now make space on the stack for the args. */
3578 for (argnum = 0; argnum < nargs; argnum++)
3579 {
3580 struct type *arg_type = check_typedef (value_type (args[argnum]));
3581 int arglen = TYPE_LENGTH (arg_type);
3582
3583 /* Align to double-word if necessary. */
3584 if (mips_type_needs_double_align (arg_type))
3585 len = align_up (len, MIPS32_REGSIZE * 2);
3586 /* Allocate space on the stack. */
3587 len += align_up (arglen, MIPS32_REGSIZE);
3588 }
3589 sp -= align_up (len, 16);
3590
3591 if (mips_debug)
3592 fprintf_unfiltered (gdb_stdlog,
3593 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
3594 paddress (gdbarch, sp), (long) align_up (len, 16));
3595
3596 /* Initialize the integer and float register pointers. */
3597 argreg = MIPS_A0_REGNUM;
3598 float_argreg = mips_fpa0_regnum (gdbarch);
3599
3600 /* The struct_return pointer occupies the first parameter-passing reg. */
3601 if (struct_return)
3602 {
3603 if (mips_debug)
3604 fprintf_unfiltered (gdb_stdlog,
3605 "mips_o32_push_dummy_call: struct_return reg=%d %s\n",
3606 argreg, paddress (gdbarch, struct_addr));
3607 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3608 stack_offset += MIPS32_REGSIZE;
3609 }
3610
3611 /* Now load as many as possible of the first arguments into
3612 registers, and push the rest onto the stack. Loop thru args
3613 from first to last. */
3614 for (argnum = 0; argnum < nargs; argnum++)
3615 {
3616 const gdb_byte *val;
3617 struct value *arg = args[argnum];
3618 struct type *arg_type = check_typedef (value_type (arg));
3619 int len = TYPE_LENGTH (arg_type);
3620 enum type_code typecode = TYPE_CODE (arg_type);
3621
3622 if (mips_debug)
3623 fprintf_unfiltered (gdb_stdlog,
3624 "mips_o32_push_dummy_call: %d len=%d type=%d",
3625 argnum + 1, len, (int) typecode);
3626
3627 val = value_contents (arg);
3628
3629 /* 32-bit ABIs always start floating point arguments in an
3630 even-numbered floating point register. Round the FP register
3631 up before the check to see if there are any FP registers
3632 left. O32/O64 targets also pass the FP in the integer
3633 registers so also round up normal registers. */
3634 if (fp_register_arg_p (gdbarch, typecode, arg_type))
3635 {
3636 if ((float_argreg & 1))
3637 float_argreg++;
3638 }
3639
3640 /* Floating point arguments passed in registers have to be
3641 treated specially. On 32-bit architectures, doubles
3642 are passed in register pairs; the even register gets
3643 the low word, and the odd register gets the high word.
3644 On O32/O64, the first two floating point arguments are
3645 also copied to general registers, because MIPS16 functions
3646 don't use float registers for arguments. This duplication of
3647 arguments in general registers can't hurt non-MIPS16 functions
3648 because those registers are normally skipped. */
3649
3650 if (fp_register_arg_p (gdbarch, typecode, arg_type)
3651 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
3652 {
3653 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3654 {
3655 int low_offset = gdbarch_byte_order (gdbarch)
3656 == BFD_ENDIAN_BIG ? 4 : 0;
3657 unsigned long regval;
3658
3659 /* Write the low word of the double to the even register(s). */
3660 regval = extract_unsigned_integer (val + low_offset,
3661 4, byte_order);
3662 if (mips_debug)
3663 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3664 float_argreg, phex (regval, 4));
3665 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3666 if (mips_debug)
3667 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3668 argreg, phex (regval, 4));
3669 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3670
3671 /* Write the high word of the double to the odd register(s). */
3672 regval = extract_unsigned_integer (val + 4 - low_offset,
3673 4, byte_order);
3674 if (mips_debug)
3675 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3676 float_argreg, phex (regval, 4));
3677 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3678
3679 if (mips_debug)
3680 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3681 argreg, phex (regval, 4));
3682 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3683 }
3684 else
3685 {
3686 /* This is a floating point value that fits entirely
3687 in a single register. */
3688 /* On 32 bit ABI's the float_argreg is further adjusted
3689 above to ensure that it is even register aligned. */
3690 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
3691 if (mips_debug)
3692 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3693 float_argreg, phex (regval, len));
3694 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3695 /* Although two FP registers are reserved for each
3696 argument, only one corresponding integer register is
3697 reserved. */
3698 if (mips_debug)
3699 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3700 argreg, phex (regval, len));
3701 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3702 }
3703 /* Reserve space for the FP register. */
3704 stack_offset += align_up (len, MIPS32_REGSIZE);
3705 }
3706 else
3707 {
3708 /* Copy the argument to general registers or the stack in
3709 register-sized pieces. Large arguments are split between
3710 registers and stack. */
3711 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3712 are treated specially: Irix cc passes
3713 them in registers where gcc sometimes puts them on the
3714 stack. For maximum compatibility, we will put them in
3715 both places. */
3716 int odd_sized_struct = (len > MIPS32_REGSIZE
3717 && len % MIPS32_REGSIZE != 0);
3718 /* Structures should be aligned to eight bytes (even arg registers)
3719 on MIPS_ABI_O32, if their first member has double precision. */
3720 if (mips_type_needs_double_align (arg_type))
3721 {
3722 if ((argreg & 1))
3723 {
3724 argreg++;
3725 stack_offset += MIPS32_REGSIZE;
3726 }
3727 }
3728 while (len > 0)
3729 {
3730 /* Remember if the argument was written to the stack. */
3731 int stack_used_p = 0;
3732 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3733
3734 if (mips_debug)
3735 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3736 partial_len);
3737
3738 /* Write this portion of the argument to the stack. */
3739 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
3740 || odd_sized_struct)
3741 {
3742 /* Should shorter than int integer values be
3743 promoted to int before being stored? */
3744 int longword_offset = 0;
3745 CORE_ADDR addr;
3746 stack_used_p = 1;
3747
3748 if (mips_debug)
3749 {
3750 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
3751 paddress (gdbarch, stack_offset));
3752 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
3753 paddress (gdbarch, longword_offset));
3754 }
3755
3756 addr = sp + stack_offset + longword_offset;
3757
3758 if (mips_debug)
3759 {
3760 int i;
3761 fprintf_unfiltered (gdb_stdlog, " @%s ",
3762 paddress (gdbarch, addr));
3763 for (i = 0; i < partial_len; i++)
3764 {
3765 fprintf_unfiltered (gdb_stdlog, "%02x",
3766 val[i] & 0xff);
3767 }
3768 }
3769 write_memory (addr, val, partial_len);
3770 }
3771
3772 /* Note!!! This is NOT an else clause. Odd sized
3773 structs may go thru BOTH paths. */
3774 /* Write this portion of the argument to a general
3775 purpose register. */
3776 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
3777 {
3778 LONGEST regval = extract_signed_integer (val, partial_len,
3779 byte_order);
3780 /* Value may need to be sign extended, because
3781 mips_isa_regsize() != mips_abi_regsize(). */
3782
3783 /* A non-floating-point argument being passed in a
3784 general register. If a struct or union, and if
3785 the remaining length is smaller than the register
3786 size, we have to adjust the register value on
3787 big endian targets.
3788
3789 It does not seem to be necessary to do the
3790 same for integral types.
3791
3792 Also don't do this adjustment on O64 binaries.
3793
3794 cagney/2001-07-23: gdb/179: Also, GCC, when
3795 outputting LE O32 with sizeof (struct) <
3796 mips_abi_regsize(), generates a left shift
3797 as part of storing the argument in a register
3798 (the left shift isn't generated when
3799 sizeof (struct) >= mips_abi_regsize()). Since
3800 it is quite possible that this is GCC
3801 contradicting the LE/O32 ABI, GDB has not been
3802 adjusted to accommodate this. Either someone
3803 needs to demonstrate that the LE/O32 ABI
3804 specifies such a left shift OR this new ABI gets
3805 identified as such and GDB gets tweaked
3806 accordingly. */
3807
3808 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3809 && partial_len < MIPS32_REGSIZE
3810 && (typecode == TYPE_CODE_STRUCT
3811 || typecode == TYPE_CODE_UNION))
3812 regval <<= ((MIPS32_REGSIZE - partial_len)
3813 * TARGET_CHAR_BIT);
3814
3815 if (mips_debug)
3816 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3817 argreg,
3818 phex (regval, MIPS32_REGSIZE));
3819 regcache_cooked_write_unsigned (regcache, argreg, regval);
3820 argreg++;
3821
3822 /* Prevent subsequent floating point arguments from
3823 being passed in floating point registers. */
3824 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
3825 }
3826
3827 len -= partial_len;
3828 val += partial_len;
3829
3830 /* Compute the the offset into the stack at which we
3831 will copy the next parameter.
3832
3833 In older ABIs, the caller reserved space for
3834 registers that contained arguments. This was loosely
3835 refered to as their "home". Consequently, space is
3836 always allocated. */
3837
3838 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3839 }
3840 }
3841 if (mips_debug)
3842 fprintf_unfiltered (gdb_stdlog, "\n");
3843 }
3844
3845 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3846
3847 /* Return adjusted stack pointer. */
3848 return sp;
3849 }
3850
3851 static enum return_value_convention
3852 mips_o32_return_value (struct gdbarch *gdbarch, struct type *func_type,
3853 struct type *type, struct regcache *regcache,
3854 gdb_byte *readbuf, const gdb_byte *writebuf)
3855 {
3856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3857
3858 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3859 || TYPE_CODE (type) == TYPE_CODE_UNION
3860 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3861 return RETURN_VALUE_STRUCT_CONVENTION;
3862 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3863 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3864 {
3865 /* A single-precision floating-point value. It fits in the
3866 least significant part of FP0. */
3867 if (mips_debug)
3868 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3869 mips_xfer_register (gdbarch, regcache,
3870 gdbarch_num_regs (gdbarch)
3871 + mips_regnum (gdbarch)->fp0,
3872 TYPE_LENGTH (type),
3873 gdbarch_byte_order (gdbarch),
3874 readbuf, writebuf, 0);
3875 return RETURN_VALUE_REGISTER_CONVENTION;
3876 }
3877 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3878 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3879 {
3880 /* A double-precision floating-point value. The most
3881 significant part goes in FP1, and the least significant in
3882 FP0. */
3883 if (mips_debug)
3884 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3885 switch (gdbarch_byte_order (gdbarch))
3886 {
3887 case BFD_ENDIAN_LITTLE:
3888 mips_xfer_register (gdbarch, regcache,
3889 gdbarch_num_regs (gdbarch)
3890 + mips_regnum (gdbarch)->fp0 +
3891 0, 4, gdbarch_byte_order (gdbarch),
3892 readbuf, writebuf, 0);
3893 mips_xfer_register (gdbarch, regcache,
3894 gdbarch_num_regs (gdbarch)
3895 + mips_regnum (gdbarch)->fp0 + 1,
3896 4, gdbarch_byte_order (gdbarch),
3897 readbuf, writebuf, 4);
3898 break;
3899 case BFD_ENDIAN_BIG:
3900 mips_xfer_register (gdbarch, regcache,
3901 gdbarch_num_regs (gdbarch)
3902 + mips_regnum (gdbarch)->fp0 + 1,
3903 4, gdbarch_byte_order (gdbarch),
3904 readbuf, writebuf, 0);
3905 mips_xfer_register (gdbarch, regcache,
3906 gdbarch_num_regs (gdbarch)
3907 + mips_regnum (gdbarch)->fp0 + 0,
3908 4, gdbarch_byte_order (gdbarch),
3909 readbuf, writebuf, 4);
3910 break;
3911 default:
3912 internal_error (__FILE__, __LINE__, _("bad switch"));
3913 }
3914 return RETURN_VALUE_REGISTER_CONVENTION;
3915 }
3916 #if 0
3917 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3918 && TYPE_NFIELDS (type) <= 2
3919 && TYPE_NFIELDS (type) >= 1
3920 && ((TYPE_NFIELDS (type) == 1
3921 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3922 == TYPE_CODE_FLT))
3923 || (TYPE_NFIELDS (type) == 2
3924 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3925 == TYPE_CODE_FLT)
3926 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3927 == TYPE_CODE_FLT)))
3928 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3929 {
3930 /* A struct that contains one or two floats. Each value is part
3931 in the least significant part of their floating point
3932 register.. */
3933 gdb_byte reg[MAX_REGISTER_SIZE];
3934 int regnum;
3935 int field;
3936 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
3937 field < TYPE_NFIELDS (type); field++, regnum += 2)
3938 {
3939 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3940 / TARGET_CHAR_BIT);
3941 if (mips_debug)
3942 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3943 offset);
3944 mips_xfer_register (gdbarch, regcache,
3945 gdbarch_num_regs (gdbarch) + regnum,
3946 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3947 gdbarch_byte_order (gdbarch),
3948 readbuf, writebuf, offset);
3949 }
3950 return RETURN_VALUE_REGISTER_CONVENTION;
3951 }
3952 #endif
3953 #if 0
3954 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3955 || TYPE_CODE (type) == TYPE_CODE_UNION)
3956 {
3957 /* A structure or union. Extract the left justified value,
3958 regardless of the byte order. I.e. DO NOT USE
3959 mips_xfer_lower. */
3960 int offset;
3961 int regnum;
3962 for (offset = 0, regnum = MIPS_V0_REGNUM;
3963 offset < TYPE_LENGTH (type);
3964 offset += register_size (gdbarch, regnum), regnum++)
3965 {
3966 int xfer = register_size (gdbarch, regnum);
3967 if (offset + xfer > TYPE_LENGTH (type))
3968 xfer = TYPE_LENGTH (type) - offset;
3969 if (mips_debug)
3970 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3971 offset, xfer, regnum);
3972 mips_xfer_register (gdbarch, regcache,
3973 gdbarch_num_regs (gdbarch) + regnum, xfer,
3974 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3975 }
3976 return RETURN_VALUE_REGISTER_CONVENTION;
3977 }
3978 #endif
3979 else
3980 {
3981 /* A scalar extract each part but least-significant-byte
3982 justified. o32 thinks registers are 4 byte, regardless of
3983 the ISA. */
3984 int offset;
3985 int regnum;
3986 for (offset = 0, regnum = MIPS_V0_REGNUM;
3987 offset < TYPE_LENGTH (type);
3988 offset += MIPS32_REGSIZE, regnum++)
3989 {
3990 int xfer = MIPS32_REGSIZE;
3991 if (offset + xfer > TYPE_LENGTH (type))
3992 xfer = TYPE_LENGTH (type) - offset;
3993 if (mips_debug)
3994 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3995 offset, xfer, regnum);
3996 mips_xfer_register (gdbarch, regcache,
3997 gdbarch_num_regs (gdbarch) + regnum, xfer,
3998 gdbarch_byte_order (gdbarch),
3999 readbuf, writebuf, offset);
4000 }
4001 return RETURN_VALUE_REGISTER_CONVENTION;
4002 }
4003 }
4004
4005 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
4006 ABI. */
4007
4008 static CORE_ADDR
4009 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4010 struct regcache *regcache, CORE_ADDR bp_addr,
4011 int nargs,
4012 struct value **args, CORE_ADDR sp,
4013 int struct_return, CORE_ADDR struct_addr)
4014 {
4015 int argreg;
4016 int float_argreg;
4017 int argnum;
4018 int len = 0;
4019 int stack_offset = 0;
4020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4022 CORE_ADDR func_addr = find_function_addr (function, NULL);
4023
4024 /* For shared libraries, "t9" needs to point at the function
4025 address. */
4026 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4027
4028 /* Set the return address register to point to the entry point of
4029 the program, where a breakpoint lies in wait. */
4030 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4031
4032 /* First ensure that the stack and structure return address (if any)
4033 are properly aligned. The stack has to be at least 64-bit
4034 aligned even on 32-bit machines, because doubles must be 64-bit
4035 aligned. For n32 and n64, stack frames need to be 128-bit
4036 aligned, so we round to this widest known alignment. */
4037
4038 sp = align_down (sp, 16);
4039 struct_addr = align_down (struct_addr, 16);
4040
4041 /* Now make space on the stack for the args. */
4042 for (argnum = 0; argnum < nargs; argnum++)
4043 {
4044 struct type *arg_type = check_typedef (value_type (args[argnum]));
4045 int arglen = TYPE_LENGTH (arg_type);
4046
4047 /* Allocate space on the stack. */
4048 len += align_up (arglen, MIPS64_REGSIZE);
4049 }
4050 sp -= align_up (len, 16);
4051
4052 if (mips_debug)
4053 fprintf_unfiltered (gdb_stdlog,
4054 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
4055 paddress (gdbarch, sp), (long) align_up (len, 16));
4056
4057 /* Initialize the integer and float register pointers. */
4058 argreg = MIPS_A0_REGNUM;
4059 float_argreg = mips_fpa0_regnum (gdbarch);
4060
4061 /* The struct_return pointer occupies the first parameter-passing reg. */
4062 if (struct_return)
4063 {
4064 if (mips_debug)
4065 fprintf_unfiltered (gdb_stdlog,
4066 "mips_o64_push_dummy_call: struct_return reg=%d %s\n",
4067 argreg, paddress (gdbarch, struct_addr));
4068 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4069 stack_offset += MIPS64_REGSIZE;
4070 }
4071
4072 /* Now load as many as possible of the first arguments into
4073 registers, and push the rest onto the stack. Loop thru args
4074 from first to last. */
4075 for (argnum = 0; argnum < nargs; argnum++)
4076 {
4077 const gdb_byte *val;
4078 struct value *arg = args[argnum];
4079 struct type *arg_type = check_typedef (value_type (arg));
4080 int len = TYPE_LENGTH (arg_type);
4081 enum type_code typecode = TYPE_CODE (arg_type);
4082
4083 if (mips_debug)
4084 fprintf_unfiltered (gdb_stdlog,
4085 "mips_o64_push_dummy_call: %d len=%d type=%d",
4086 argnum + 1, len, (int) typecode);
4087
4088 val = value_contents (arg);
4089
4090 /* Floating point arguments passed in registers have to be
4091 treated specially. On 32-bit architectures, doubles
4092 are passed in register pairs; the even register gets
4093 the low word, and the odd register gets the high word.
4094 On O32/O64, the first two floating point arguments are
4095 also copied to general registers, because MIPS16 functions
4096 don't use float registers for arguments. This duplication of
4097 arguments in general registers can't hurt non-MIPS16 functions
4098 because those registers are normally skipped. */
4099
4100 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4101 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4102 {
4103 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
4104 if (mips_debug)
4105 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4106 float_argreg, phex (regval, len));
4107 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
4108 if (mips_debug)
4109 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4110 argreg, phex (regval, len));
4111 regcache_cooked_write_unsigned (regcache, argreg, regval);
4112 argreg++;
4113 /* Reserve space for the FP register. */
4114 stack_offset += align_up (len, MIPS64_REGSIZE);
4115 }
4116 else
4117 {
4118 /* Copy the argument to general registers or the stack in
4119 register-sized pieces. Large arguments are split between
4120 registers and stack. */
4121 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
4122 are treated specially: Irix cc passes them in registers
4123 where gcc sometimes puts them on the stack. For maximum
4124 compatibility, we will put them in both places. */
4125 int odd_sized_struct = (len > MIPS64_REGSIZE
4126 && len % MIPS64_REGSIZE != 0);
4127 while (len > 0)
4128 {
4129 /* Remember if the argument was written to the stack. */
4130 int stack_used_p = 0;
4131 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4132
4133 if (mips_debug)
4134 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4135 partial_len);
4136
4137 /* Write this portion of the argument to the stack. */
4138 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4139 || odd_sized_struct)
4140 {
4141 /* Should shorter than int integer values be
4142 promoted to int before being stored? */
4143 int longword_offset = 0;
4144 CORE_ADDR addr;
4145 stack_used_p = 1;
4146 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4147 {
4148 if ((typecode == TYPE_CODE_INT
4149 || typecode == TYPE_CODE_PTR
4150 || typecode == TYPE_CODE_FLT)
4151 && len <= 4)
4152 longword_offset = MIPS64_REGSIZE - len;
4153 }
4154
4155 if (mips_debug)
4156 {
4157 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4158 paddress (gdbarch, stack_offset));
4159 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4160 paddress (gdbarch, longword_offset));
4161 }
4162
4163 addr = sp + stack_offset + longword_offset;
4164
4165 if (mips_debug)
4166 {
4167 int i;
4168 fprintf_unfiltered (gdb_stdlog, " @%s ",
4169 paddress (gdbarch, addr));
4170 for (i = 0; i < partial_len; i++)
4171 {
4172 fprintf_unfiltered (gdb_stdlog, "%02x",
4173 val[i] & 0xff);
4174 }
4175 }
4176 write_memory (addr, val, partial_len);
4177 }
4178
4179 /* Note!!! This is NOT an else clause. Odd sized
4180 structs may go thru BOTH paths. */
4181 /* Write this portion of the argument to a general
4182 purpose register. */
4183 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4184 {
4185 LONGEST regval = extract_signed_integer (val, partial_len,
4186 byte_order);
4187 /* Value may need to be sign extended, because
4188 mips_isa_regsize() != mips_abi_regsize(). */
4189
4190 /* A non-floating-point argument being passed in a
4191 general register. If a struct or union, and if
4192 the remaining length is smaller than the register
4193 size, we have to adjust the register value on
4194 big endian targets.
4195
4196 It does not seem to be necessary to do the
4197 same for integral types. */
4198
4199 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
4200 && partial_len < MIPS64_REGSIZE
4201 && (typecode == TYPE_CODE_STRUCT
4202 || typecode == TYPE_CODE_UNION))
4203 regval <<= ((MIPS64_REGSIZE - partial_len)
4204 * TARGET_CHAR_BIT);
4205
4206 if (mips_debug)
4207 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4208 argreg,
4209 phex (regval, MIPS64_REGSIZE));
4210 regcache_cooked_write_unsigned (regcache, argreg, regval);
4211 argreg++;
4212
4213 /* Prevent subsequent floating point arguments from
4214 being passed in floating point registers. */
4215 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
4216 }
4217
4218 len -= partial_len;
4219 val += partial_len;
4220
4221 /* Compute the the offset into the stack at which we
4222 will copy the next parameter.
4223
4224 In older ABIs, the caller reserved space for
4225 registers that contained arguments. This was loosely
4226 refered to as their "home". Consequently, space is
4227 always allocated. */
4228
4229 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
4230 }
4231 }
4232 if (mips_debug)
4233 fprintf_unfiltered (gdb_stdlog, "\n");
4234 }
4235
4236 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4237
4238 /* Return adjusted stack pointer. */
4239 return sp;
4240 }
4241
4242 static enum return_value_convention
4243 mips_o64_return_value (struct gdbarch *gdbarch, struct type *func_type,
4244 struct type *type, struct regcache *regcache,
4245 gdb_byte *readbuf, const gdb_byte *writebuf)
4246 {
4247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4248
4249 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4250 || TYPE_CODE (type) == TYPE_CODE_UNION
4251 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
4252 return RETURN_VALUE_STRUCT_CONVENTION;
4253 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
4254 {
4255 /* A floating-point value. It fits in the least significant
4256 part of FP0. */
4257 if (mips_debug)
4258 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4259 mips_xfer_register (gdbarch, regcache,
4260 gdbarch_num_regs (gdbarch)
4261 + mips_regnum (gdbarch)->fp0,
4262 TYPE_LENGTH (type),
4263 gdbarch_byte_order (gdbarch),
4264 readbuf, writebuf, 0);
4265 return RETURN_VALUE_REGISTER_CONVENTION;
4266 }
4267 else
4268 {
4269 /* A scalar extract each part but least-significant-byte
4270 justified. */
4271 int offset;
4272 int regnum;
4273 for (offset = 0, regnum = MIPS_V0_REGNUM;
4274 offset < TYPE_LENGTH (type);
4275 offset += MIPS64_REGSIZE, regnum++)
4276 {
4277 int xfer = MIPS64_REGSIZE;
4278 if (offset + xfer > TYPE_LENGTH (type))
4279 xfer = TYPE_LENGTH (type) - offset;
4280 if (mips_debug)
4281 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4282 offset, xfer, regnum);
4283 mips_xfer_register (gdbarch, regcache,
4284 gdbarch_num_regs (gdbarch) + regnum,
4285 xfer, gdbarch_byte_order (gdbarch),
4286 readbuf, writebuf, offset);
4287 }
4288 return RETURN_VALUE_REGISTER_CONVENTION;
4289 }
4290 }
4291
4292 /* Floating point register management.
4293
4294 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
4295 64bit operations, these early MIPS cpus treat fp register pairs
4296 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
4297 registers and offer a compatibility mode that emulates the MIPS2 fp
4298 model. When operating in MIPS2 fp compat mode, later cpu's split
4299 double precision floats into two 32-bit chunks and store them in
4300 consecutive fp regs. To display 64-bit floats stored in this
4301 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4302 Throw in user-configurable endianness and you have a real mess.
4303
4304 The way this works is:
4305 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4306 double-precision value will be split across two logical registers.
4307 The lower-numbered logical register will hold the low-order bits,
4308 regardless of the processor's endianness.
4309 - If we are on a 64-bit processor, and we are looking for a
4310 single-precision value, it will be in the low ordered bits
4311 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4312 save slot in memory.
4313 - If we are in 64-bit mode, everything is straightforward.
4314
4315 Note that this code only deals with "live" registers at the top of the
4316 stack. We will attempt to deal with saved registers later, when
4317 the raw/cooked register interface is in place. (We need a general
4318 interface that can deal with dynamic saved register sizes -- fp
4319 regs could be 32 bits wide in one frame and 64 on the frame above
4320 and below). */
4321
4322 /* Copy a 32-bit single-precision value from the current frame
4323 into rare_buffer. */
4324
4325 static void
4326 mips_read_fp_register_single (struct frame_info *frame, int regno,
4327 gdb_byte *rare_buffer)
4328 {
4329 struct gdbarch *gdbarch = get_frame_arch (frame);
4330 int raw_size = register_size (gdbarch, regno);
4331 gdb_byte *raw_buffer = alloca (raw_size);
4332
4333 if (!frame_register_read (frame, regno, raw_buffer))
4334 error (_("can't read register %d (%s)"),
4335 regno, gdbarch_register_name (gdbarch, regno));
4336 if (raw_size == 8)
4337 {
4338 /* We have a 64-bit value for this register. Find the low-order
4339 32 bits. */
4340 int offset;
4341
4342 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4343 offset = 4;
4344 else
4345 offset = 0;
4346
4347 memcpy (rare_buffer, raw_buffer + offset, 4);
4348 }
4349 else
4350 {
4351 memcpy (rare_buffer, raw_buffer, 4);
4352 }
4353 }
4354
4355 /* Copy a 64-bit double-precision value from the current frame into
4356 rare_buffer. This may include getting half of it from the next
4357 register. */
4358
4359 static void
4360 mips_read_fp_register_double (struct frame_info *frame, int regno,
4361 gdb_byte *rare_buffer)
4362 {
4363 struct gdbarch *gdbarch = get_frame_arch (frame);
4364 int raw_size = register_size (gdbarch, regno);
4365
4366 if (raw_size == 8 && !mips2_fp_compat (frame))
4367 {
4368 /* We have a 64-bit value for this register, and we should use
4369 all 64 bits. */
4370 if (!frame_register_read (frame, regno, rare_buffer))
4371 error (_("can't read register %d (%s)"),
4372 regno, gdbarch_register_name (gdbarch, regno));
4373 }
4374 else
4375 {
4376 int rawnum = regno % gdbarch_num_regs (gdbarch);
4377
4378 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
4379 internal_error (__FILE__, __LINE__,
4380 _("mips_read_fp_register_double: bad access to "
4381 "odd-numbered FP register"));
4382
4383 /* mips_read_fp_register_single will find the correct 32 bits from
4384 each register. */
4385 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4386 {
4387 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4388 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4389 }
4390 else
4391 {
4392 mips_read_fp_register_single (frame, regno, rare_buffer);
4393 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4394 }
4395 }
4396 }
4397
4398 static void
4399 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4400 int regnum)
4401 { /* do values for FP (float) regs */
4402 struct gdbarch *gdbarch = get_frame_arch (frame);
4403 gdb_byte *raw_buffer;
4404 double doub, flt1; /* doubles extracted from raw hex data */
4405 int inv1, inv2;
4406
4407 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
4408
4409 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
4410 fprintf_filtered (file, "%*s",
4411 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
4412 "");
4413
4414 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4415 {
4416 struct value_print_options opts;
4417
4418 /* 4-byte registers: Print hex and floating. Also print even
4419 numbered registers as doubles. */
4420 mips_read_fp_register_single (frame, regnum, raw_buffer);
4421 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float, raw_buffer, &inv1);
4422
4423 get_formatted_print_options (&opts, 'x');
4424 print_scalar_formatted (raw_buffer,
4425 builtin_type (gdbarch)->builtin_uint32,
4426 &opts, 'w', file);
4427
4428 fprintf_filtered (file, " flt: ");
4429 if (inv1)
4430 fprintf_filtered (file, " <invalid float> ");
4431 else
4432 fprintf_filtered (file, "%-17.9g", flt1);
4433
4434 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
4435 {
4436 mips_read_fp_register_double (frame, regnum, raw_buffer);
4437 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4438 raw_buffer, &inv2);
4439
4440 fprintf_filtered (file, " dbl: ");
4441 if (inv2)
4442 fprintf_filtered (file, "<invalid double>");
4443 else
4444 fprintf_filtered (file, "%-24.17g", doub);
4445 }
4446 }
4447 else
4448 {
4449 struct value_print_options opts;
4450
4451 /* Eight byte registers: print each one as hex, float and double. */
4452 mips_read_fp_register_single (frame, regnum, raw_buffer);
4453 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
4454 raw_buffer, &inv1);
4455
4456 mips_read_fp_register_double (frame, regnum, raw_buffer);
4457 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
4458 raw_buffer, &inv2);
4459
4460 get_formatted_print_options (&opts, 'x');
4461 print_scalar_formatted (raw_buffer,
4462 builtin_type (gdbarch)->builtin_uint64,
4463 &opts, 'g', file);
4464
4465 fprintf_filtered (file, " flt: ");
4466 if (inv1)
4467 fprintf_filtered (file, "<invalid float>");
4468 else
4469 fprintf_filtered (file, "%-17.9g", flt1);
4470
4471 fprintf_filtered (file, " dbl: ");
4472 if (inv2)
4473 fprintf_filtered (file, "<invalid double>");
4474 else
4475 fprintf_filtered (file, "%-24.17g", doub);
4476 }
4477 }
4478
4479 static void
4480 mips_print_register (struct ui_file *file, struct frame_info *frame,
4481 int regnum)
4482 {
4483 struct gdbarch *gdbarch = get_frame_arch (frame);
4484 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4485 int offset;
4486 struct value_print_options opts;
4487
4488 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4489 {
4490 mips_print_fp_register (file, frame, regnum);
4491 return;
4492 }
4493
4494 /* Get the data in raw format. */
4495 if (!frame_register_read (frame, regnum, raw_buffer))
4496 {
4497 fprintf_filtered (file, "%s: [Invalid]",
4498 gdbarch_register_name (gdbarch, regnum));
4499 return;
4500 }
4501
4502 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
4503
4504 /* The problem with printing numeric register names (r26, etc.) is that
4505 the user can't use them on input. Probably the best solution is to
4506 fix it so that either the numeric or the funky (a2, etc.) names
4507 are accepted on input. */
4508 if (regnum < MIPS_NUMREGS)
4509 fprintf_filtered (file, "(r%d): ", regnum);
4510 else
4511 fprintf_filtered (file, ": ");
4512
4513 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4514 offset =
4515 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4516 else
4517 offset = 0;
4518
4519 get_formatted_print_options (&opts, 'x');
4520 print_scalar_formatted (raw_buffer + offset,
4521 register_type (gdbarch, regnum), &opts, 0,
4522 file);
4523 }
4524
4525 /* Replacement for generic do_registers_info.
4526 Print regs in pretty columns. */
4527
4528 static int
4529 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4530 int regnum)
4531 {
4532 fprintf_filtered (file, " ");
4533 mips_print_fp_register (file, frame, regnum);
4534 fprintf_filtered (file, "\n");
4535 return regnum + 1;
4536 }
4537
4538
4539 /* Print a row's worth of GP (int) registers, with name labels above */
4540
4541 static int
4542 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4543 int start_regnum)
4544 {
4545 struct gdbarch *gdbarch = get_frame_arch (frame);
4546 /* do values for GP (int) regs */
4547 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4548 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4549 int col, byte;
4550 int regnum;
4551
4552 /* For GP registers, we print a separate row of names above the vals */
4553 for (col = 0, regnum = start_regnum;
4554 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4555 + gdbarch_num_pseudo_regs (gdbarch);
4556 regnum++)
4557 {
4558 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4559 continue; /* unused register */
4560 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4561 TYPE_CODE_FLT)
4562 break; /* end the row: reached FP register */
4563 /* Large registers are handled separately. */
4564 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4565 {
4566 if (col > 0)
4567 break; /* End the row before this register. */
4568
4569 /* Print this register on a row by itself. */
4570 mips_print_register (file, frame, regnum);
4571 fprintf_filtered (file, "\n");
4572 return regnum + 1;
4573 }
4574 if (col == 0)
4575 fprintf_filtered (file, " ");
4576 fprintf_filtered (file,
4577 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4578 gdbarch_register_name (gdbarch, regnum));
4579 col++;
4580 }
4581
4582 if (col == 0)
4583 return regnum;
4584
4585 /* print the R0 to R31 names */
4586 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
4587 fprintf_filtered (file, "\n R%-4d",
4588 start_regnum % gdbarch_num_regs (gdbarch));
4589 else
4590 fprintf_filtered (file, "\n ");
4591
4592 /* now print the values in hex, 4 or 8 to the row */
4593 for (col = 0, regnum = start_regnum;
4594 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4595 + gdbarch_num_pseudo_regs (gdbarch);
4596 regnum++)
4597 {
4598 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4599 continue; /* unused register */
4600 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4601 TYPE_CODE_FLT)
4602 break; /* end row: reached FP register */
4603 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4604 break; /* End row: large register. */
4605
4606 /* OK: get the data in raw format. */
4607 if (!frame_register_read (frame, regnum, raw_buffer))
4608 error (_("can't read register %d (%s)"),
4609 regnum, gdbarch_register_name (gdbarch, regnum));
4610 /* pad small registers */
4611 for (byte = 0;
4612 byte < (mips_abi_regsize (gdbarch)
4613 - register_size (gdbarch, regnum)); byte++)
4614 printf_filtered (" ");
4615 /* Now print the register value in hex, endian order. */
4616 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4617 for (byte =
4618 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4619 byte < register_size (gdbarch, regnum); byte++)
4620 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4621 else
4622 for (byte = register_size (gdbarch, regnum) - 1;
4623 byte >= 0; byte--)
4624 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4625 fprintf_filtered (file, " ");
4626 col++;
4627 }
4628 if (col > 0) /* ie. if we actually printed anything... */
4629 fprintf_filtered (file, "\n");
4630
4631 return regnum;
4632 }
4633
4634 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4635
4636 static void
4637 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4638 struct frame_info *frame, int regnum, int all)
4639 {
4640 if (regnum != -1) /* do one specified register */
4641 {
4642 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4643 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
4644 error (_("Not a valid register for the current processor type"));
4645
4646 mips_print_register (file, frame, regnum);
4647 fprintf_filtered (file, "\n");
4648 }
4649 else
4650 /* do all (or most) registers */
4651 {
4652 regnum = gdbarch_num_regs (gdbarch);
4653 while (regnum < gdbarch_num_regs (gdbarch)
4654 + gdbarch_num_pseudo_regs (gdbarch))
4655 {
4656 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4657 TYPE_CODE_FLT)
4658 {
4659 if (all) /* true for "INFO ALL-REGISTERS" command */
4660 regnum = print_fp_register_row (file, frame, regnum);
4661 else
4662 regnum += MIPS_NUMREGS; /* skip floating point regs */
4663 }
4664 else
4665 regnum = print_gp_register_row (file, frame, regnum);
4666 }
4667 }
4668 }
4669
4670 /* Is this a branch with a delay slot? */
4671
4672 static int
4673 is_delayed (unsigned long insn)
4674 {
4675 int i;
4676 for (i = 0; i < NUMOPCODES; ++i)
4677 if (mips_opcodes[i].pinfo != INSN_MACRO
4678 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4679 break;
4680 return (i < NUMOPCODES
4681 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4682 | INSN_COND_BRANCH_DELAY
4683 | INSN_COND_BRANCH_LIKELY)));
4684 }
4685
4686 static int
4687 mips_single_step_through_delay (struct gdbarch *gdbarch,
4688 struct frame_info *frame)
4689 {
4690 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4691 CORE_ADDR pc = get_frame_pc (frame);
4692 gdb_byte buf[MIPS_INSN32_SIZE];
4693
4694 /* There is no branch delay slot on MIPS16. */
4695 if (mips_pc_is_mips16 (pc))
4696 return 0;
4697
4698 if (!breakpoint_here_p (get_frame_address_space (frame), pc + 4))
4699 return 0;
4700
4701 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4702 /* If error reading memory, guess that it is not a delayed
4703 branch. */
4704 return 0;
4705 return is_delayed (extract_unsigned_integer (buf, sizeof buf, byte_order));
4706 }
4707
4708 /* To skip prologues, I use this predicate. Returns either PC itself
4709 if the code at PC does not look like a function prologue; otherwise
4710 returns an address that (if we're lucky) follows the prologue. If
4711 LENIENT, then we must skip everything which is involved in setting
4712 up the frame (it's OK to skip more, just so long as we don't skip
4713 anything which might clobber the registers which are being saved.
4714 We must skip more in the case where part of the prologue is in the
4715 delay slot of a non-prologue instruction). */
4716
4717 static CORE_ADDR
4718 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4719 {
4720 CORE_ADDR limit_pc;
4721 CORE_ADDR func_addr;
4722
4723 /* See if we can determine the end of the prologue via the symbol table.
4724 If so, then return either PC, or the PC after the prologue, whichever
4725 is greater. */
4726 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4727 {
4728 CORE_ADDR post_prologue_pc
4729 = skip_prologue_using_sal (gdbarch, func_addr);
4730 if (post_prologue_pc != 0)
4731 return max (pc, post_prologue_pc);
4732 }
4733
4734 /* Can't determine prologue from the symbol table, need to examine
4735 instructions. */
4736
4737 /* Find an upper limit on the function prologue using the debug
4738 information. If the debug information could not be used to provide
4739 that bound, then use an arbitrary large number as the upper bound. */
4740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4741 if (limit_pc == 0)
4742 limit_pc = pc + 100; /* Magic. */
4743
4744 if (mips_pc_is_mips16 (pc))
4745 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4746 else
4747 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
4748 }
4749
4750 /* Check whether the PC is in a function epilogue (32-bit version).
4751 This is a helper function for mips_in_function_epilogue_p. */
4752 static int
4753 mips32_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4754 {
4755 CORE_ADDR func_addr = 0, func_end = 0;
4756
4757 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4758 {
4759 /* The MIPS epilogue is max. 12 bytes long. */
4760 CORE_ADDR addr = func_end - 12;
4761
4762 if (addr < func_addr + 4)
4763 addr = func_addr + 4;
4764 if (pc < addr)
4765 return 0;
4766
4767 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4768 {
4769 unsigned long high_word;
4770 unsigned long inst;
4771
4772 inst = mips_fetch_instruction (gdbarch, pc);
4773 high_word = (inst >> 16) & 0xffff;
4774
4775 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4776 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4777 && inst != 0x03e00008 /* jr $ra */
4778 && inst != 0x00000000) /* nop */
4779 return 0;
4780 }
4781
4782 return 1;
4783 }
4784
4785 return 0;
4786 }
4787
4788 /* Check whether the PC is in a function epilogue (16-bit version).
4789 This is a helper function for mips_in_function_epilogue_p. */
4790 static int
4791 mips16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4792 {
4793 CORE_ADDR func_addr = 0, func_end = 0;
4794
4795 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4796 {
4797 /* The MIPS epilogue is max. 12 bytes long. */
4798 CORE_ADDR addr = func_end - 12;
4799
4800 if (addr < func_addr + 4)
4801 addr = func_addr + 4;
4802 if (pc < addr)
4803 return 0;
4804
4805 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4806 {
4807 unsigned short inst;
4808
4809 inst = mips_fetch_instruction (gdbarch, pc);
4810
4811 if ((inst & 0xf800) == 0xf000) /* extend */
4812 continue;
4813
4814 if (inst != 0x6300 /* addiu $sp,offset */
4815 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4816 && inst != 0xe820 /* jr $ra */
4817 && inst != 0xe8a0 /* jrc $ra */
4818 && inst != 0x6500) /* nop */
4819 return 0;
4820 }
4821
4822 return 1;
4823 }
4824
4825 return 0;
4826 }
4827
4828 /* The epilogue is defined here as the area at the end of a function,
4829 after an instruction which destroys the function's stack frame. */
4830 static int
4831 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4832 {
4833 if (mips_pc_is_mips16 (pc))
4834 return mips16_in_function_epilogue_p (gdbarch, pc);
4835 else
4836 return mips32_in_function_epilogue_p (gdbarch, pc);
4837 }
4838
4839 /* Root of all "set mips "/"show mips " commands. This will eventually be
4840 used for all MIPS-specific commands. */
4841
4842 static void
4843 show_mips_command (char *args, int from_tty)
4844 {
4845 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4846 }
4847
4848 static void
4849 set_mips_command (char *args, int from_tty)
4850 {
4851 printf_unfiltered
4852 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4853 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4854 }
4855
4856 /* Commands to show/set the MIPS FPU type. */
4857
4858 static void
4859 show_mipsfpu_command (char *args, int from_tty)
4860 {
4861 char *fpu;
4862
4863 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
4864 {
4865 printf_unfiltered
4866 ("The MIPS floating-point coprocessor is unknown "
4867 "because the current architecture is not MIPS.\n");
4868 return;
4869 }
4870
4871 switch (MIPS_FPU_TYPE (target_gdbarch))
4872 {
4873 case MIPS_FPU_SINGLE:
4874 fpu = "single-precision";
4875 break;
4876 case MIPS_FPU_DOUBLE:
4877 fpu = "double-precision";
4878 break;
4879 case MIPS_FPU_NONE:
4880 fpu = "absent (none)";
4881 break;
4882 default:
4883 internal_error (__FILE__, __LINE__, _("bad switch"));
4884 }
4885 if (mips_fpu_type_auto)
4886 printf_unfiltered
4887 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4888 fpu);
4889 else
4890 printf_unfiltered
4891 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4892 }
4893
4894
4895 static void
4896 set_mipsfpu_command (char *args, int from_tty)
4897 {
4898 printf_unfiltered
4899 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4900 show_mipsfpu_command (args, from_tty);
4901 }
4902
4903 static void
4904 set_mipsfpu_single_command (char *args, int from_tty)
4905 {
4906 struct gdbarch_info info;
4907 gdbarch_info_init (&info);
4908 mips_fpu_type = MIPS_FPU_SINGLE;
4909 mips_fpu_type_auto = 0;
4910 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4911 instead of relying on globals. Doing that would let generic code
4912 handle the search for this specific architecture. */
4913 if (!gdbarch_update_p (info))
4914 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4915 }
4916
4917 static void
4918 set_mipsfpu_double_command (char *args, int from_tty)
4919 {
4920 struct gdbarch_info info;
4921 gdbarch_info_init (&info);
4922 mips_fpu_type = MIPS_FPU_DOUBLE;
4923 mips_fpu_type_auto = 0;
4924 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4925 instead of relying on globals. Doing that would let generic code
4926 handle the search for this specific architecture. */
4927 if (!gdbarch_update_p (info))
4928 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4929 }
4930
4931 static void
4932 set_mipsfpu_none_command (char *args, int from_tty)
4933 {
4934 struct gdbarch_info info;
4935 gdbarch_info_init (&info);
4936 mips_fpu_type = MIPS_FPU_NONE;
4937 mips_fpu_type_auto = 0;
4938 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4939 instead of relying on globals. Doing that would let generic code
4940 handle the search for this specific architecture. */
4941 if (!gdbarch_update_p (info))
4942 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4943 }
4944
4945 static void
4946 set_mipsfpu_auto_command (char *args, int from_tty)
4947 {
4948 mips_fpu_type_auto = 1;
4949 }
4950
4951 /* Attempt to identify the particular processor model by reading the
4952 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4953 the relevant processor still exists (it dates back to '94) and
4954 secondly this is not the way to do this. The processor type should
4955 be set by forcing an architecture change. */
4956
4957 void
4958 deprecated_mips_set_processor_regs_hack (void)
4959 {
4960 struct regcache *regcache = get_current_regcache ();
4961 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4963 ULONGEST prid;
4964
4965 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
4966 if ((prid & ~0xf) == 0x700)
4967 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4968 }
4969
4970 /* Just like reinit_frame_cache, but with the right arguments to be
4971 callable as an sfunc. */
4972
4973 static void
4974 reinit_frame_cache_sfunc (char *args, int from_tty,
4975 struct cmd_list_element *c)
4976 {
4977 reinit_frame_cache ();
4978 }
4979
4980 static int
4981 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4982 {
4983 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4984 disassembler needs to be able to locally determine the ISA, and
4985 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4986 work. */
4987 if (mips_pc_is_mips16 (memaddr))
4988 info->mach = bfd_mach_mips16;
4989
4990 /* Round down the instruction address to the appropriate boundary. */
4991 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4992
4993 /* Set the disassembler options. */
4994 if (!info->disassembler_options)
4995 /* This string is not recognized explicitly by the disassembler,
4996 but it tells the disassembler to not try to guess the ABI from
4997 the bfd elf headers, such that, if the user overrides the ABI
4998 of a program linked as NewABI, the disassembly will follow the
4999 register naming conventions specified by the user. */
5000 info->disassembler_options = "gpr-names=32";
5001
5002 /* Call the appropriate disassembler based on the target endian-ness. */
5003 if (info->endian == BFD_ENDIAN_BIG)
5004 return print_insn_big_mips (memaddr, info);
5005 else
5006 return print_insn_little_mips (memaddr, info);
5007 }
5008
5009 static int
5010 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
5011 {
5012 /* Set up the disassembler info, so that we get the right
5013 register names from libopcodes. */
5014 info->disassembler_options = "gpr-names=n32";
5015 info->flavour = bfd_target_elf_flavour;
5016
5017 return gdb_print_insn_mips (memaddr, info);
5018 }
5019
5020 static int
5021 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
5022 {
5023 /* Set up the disassembler info, so that we get the right
5024 register names from libopcodes. */
5025 info->disassembler_options = "gpr-names=64";
5026 info->flavour = bfd_target_elf_flavour;
5027
5028 return gdb_print_insn_mips (memaddr, info);
5029 }
5030
5031 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
5032 counter value to determine whether a 16- or 32-bit breakpoint should be used.
5033 It returns a pointer to a string of bytes that encode a breakpoint
5034 instruction, stores the length of the string to *lenptr, and adjusts pc (if
5035 necessary) to point to the actual memory location where the breakpoint
5036 should be inserted. */
5037
5038 static const gdb_byte *
5039 mips_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
5040 {
5041 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5042 {
5043 if (mips_pc_is_mips16 (*pcptr))
5044 {
5045 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
5046 *pcptr = unmake_mips16_addr (*pcptr);
5047 *lenptr = sizeof (mips16_big_breakpoint);
5048 return mips16_big_breakpoint;
5049 }
5050 else
5051 {
5052 /* The IDT board uses an unusual breakpoint value, and
5053 sometimes gets confused when it sees the usual MIPS
5054 breakpoint instruction. */
5055 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
5056 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
5057 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
5058 /* Likewise, IRIX appears to expect a different breakpoint,
5059 although this is not apparent until you try to use pthreads. */
5060 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
5061
5062 *lenptr = sizeof (big_breakpoint);
5063
5064 if (strcmp (target_shortname, "mips") == 0)
5065 return idt_big_breakpoint;
5066 else if (strcmp (target_shortname, "ddb") == 0
5067 || strcmp (target_shortname, "pmon") == 0
5068 || strcmp (target_shortname, "lsi") == 0)
5069 return pmon_big_breakpoint;
5070 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
5071 return irix_big_breakpoint;
5072 else
5073 return big_breakpoint;
5074 }
5075 }
5076 else
5077 {
5078 if (mips_pc_is_mips16 (*pcptr))
5079 {
5080 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
5081 *pcptr = unmake_mips16_addr (*pcptr);
5082 *lenptr = sizeof (mips16_little_breakpoint);
5083 return mips16_little_breakpoint;
5084 }
5085 else
5086 {
5087 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
5088 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
5089 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
5090
5091 *lenptr = sizeof (little_breakpoint);
5092
5093 if (strcmp (target_shortname, "mips") == 0)
5094 return idt_little_breakpoint;
5095 else if (strcmp (target_shortname, "ddb") == 0
5096 || strcmp (target_shortname, "pmon") == 0
5097 || strcmp (target_shortname, "lsi") == 0)
5098 return pmon_little_breakpoint;
5099 else
5100 return little_breakpoint;
5101 }
5102 }
5103 }
5104
5105 /* If PC is in a mips16 call or return stub, return the address of the target
5106 PC, which is either the callee or the caller. There are several
5107 cases which must be handled:
5108
5109 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5110 target PC is in $31 ($ra).
5111 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5112 and the target PC is in $2.
5113 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5114 before the jal instruction, this is effectively a call stub
5115 and the the target PC is in $2. Otherwise this is effectively
5116 a return stub and the target PC is in $18.
5117
5118 See the source code for the stubs in gcc/config/mips/mips16.S for
5119 gory details. */
5120
5121 static CORE_ADDR
5122 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5123 {
5124 struct gdbarch *gdbarch = get_frame_arch (frame);
5125 char *name;
5126 CORE_ADDR start_addr;
5127
5128 /* Find the starting address and name of the function containing the PC. */
5129 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5130 return 0;
5131
5132 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5133 target PC is in $31 ($ra). */
5134 if (strcmp (name, "__mips16_ret_sf") == 0
5135 || strcmp (name, "__mips16_ret_df") == 0)
5136 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
5137
5138 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5139 {
5140 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5141 and the target PC is in $2. */
5142 if (name[19] >= '0' && name[19] <= '9')
5143 return get_frame_register_signed (frame, 2);
5144
5145 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5146 before the jal instruction, this is effectively a call stub
5147 and the the target PC is in $2. Otherwise this is effectively
5148 a return stub and the target PC is in $18. */
5149 else if (name[19] == 's' || name[19] == 'd')
5150 {
5151 if (pc == start_addr)
5152 {
5153 /* Check if the target of the stub is a compiler-generated
5154 stub. Such a stub for a function bar might have a name
5155 like __fn_stub_bar, and might look like this:
5156 mfc1 $4,$f13
5157 mfc1 $5,$f12
5158 mfc1 $6,$f15
5159 mfc1 $7,$f14
5160 la $1,bar (becomes a lui/addiu pair)
5161 jr $1
5162 So scan down to the lui/addi and extract the target
5163 address from those two instructions. */
5164
5165 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
5166 ULONGEST inst;
5167 int i;
5168
5169 /* See if the name of the target function is __fn_stub_*. */
5170 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
5171 0)
5172 return target_pc;
5173 if (strncmp (name, "__fn_stub_", 10) != 0
5174 && strcmp (name, "etext") != 0
5175 && strcmp (name, "_etext") != 0)
5176 return target_pc;
5177
5178 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5179 The limit on the search is arbitrarily set to 20
5180 instructions. FIXME. */
5181 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
5182 {
5183 inst = mips_fetch_instruction (gdbarch, target_pc);
5184 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5185 pc = (inst << 16) & 0xffff0000; /* high word */
5186 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5187 return pc | (inst & 0xffff); /* low word */
5188 }
5189
5190 /* Couldn't find the lui/addui pair, so return stub address. */
5191 return target_pc;
5192 }
5193 else
5194 /* This is the 'return' part of a call stub. The return
5195 address is in $r18. */
5196 return get_frame_register_signed (frame, 18);
5197 }
5198 }
5199 return 0; /* not a stub */
5200 }
5201
5202 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
5203 PC of the stub target. The stub just loads $t9 and jumps to it,
5204 so that $t9 has the correct value at function entry. */
5205
5206 static CORE_ADDR
5207 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5208 {
5209 struct gdbarch *gdbarch = get_frame_arch (frame);
5210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5211 struct minimal_symbol *msym;
5212 int i;
5213 gdb_byte stub_code[16];
5214 int32_t stub_words[4];
5215
5216 /* The stub for foo is named ".pic.foo", and is either two
5217 instructions inserted before foo or a three instruction sequence
5218 which jumps to foo. */
5219 msym = lookup_minimal_symbol_by_pc (pc);
5220 if (msym == NULL
5221 || SYMBOL_VALUE_ADDRESS (msym) != pc
5222 || SYMBOL_LINKAGE_NAME (msym) == NULL
5223 || strncmp (SYMBOL_LINKAGE_NAME (msym), ".pic.", 5) != 0)
5224 return 0;
5225
5226 /* A two-instruction header. */
5227 if (MSYMBOL_SIZE (msym) == 8)
5228 return pc + 8;
5229
5230 /* A three-instruction (plus delay slot) trampoline. */
5231 if (MSYMBOL_SIZE (msym) == 16)
5232 {
5233 if (target_read_memory (pc, stub_code, 16) != 0)
5234 return 0;
5235 for (i = 0; i < 4; i++)
5236 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
5237 4, byte_order);
5238
5239 /* A stub contains these instructions:
5240 lui t9, %hi(target)
5241 j target
5242 addiu t9, t9, %lo(target)
5243 nop
5244
5245 This works even for N64, since stubs are only generated with
5246 -msym32. */
5247 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
5248 && (stub_words[1] & 0xfc000000U) == 0x08000000
5249 && (stub_words[2] & 0xffff0000U) == 0x27390000
5250 && stub_words[3] == 0x00000000)
5251 return (((stub_words[0] & 0x0000ffff) << 16)
5252 + (stub_words[2] & 0x0000ffff));
5253 }
5254
5255 /* Not a recognized stub. */
5256 return 0;
5257 }
5258
5259 static CORE_ADDR
5260 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
5261 {
5262 CORE_ADDR target_pc;
5263
5264 target_pc = mips_skip_mips16_trampoline_code (frame, pc);
5265 if (target_pc)
5266 return target_pc;
5267
5268 target_pc = find_solib_trampoline_target (frame, pc);
5269 if (target_pc)
5270 return target_pc;
5271
5272 target_pc = mips_skip_pic_trampoline_code (frame, pc);
5273 if (target_pc)
5274 return target_pc;
5275
5276 return 0;
5277 }
5278
5279 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5280 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5281
5282 static int
5283 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
5284 {
5285 int regnum;
5286 if (num >= 0 && num < 32)
5287 regnum = num;
5288 else if (num >= 38 && num < 70)
5289 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
5290 else if (num == 70)
5291 regnum = mips_regnum (gdbarch)->hi;
5292 else if (num == 71)
5293 regnum = mips_regnum (gdbarch)->lo;
5294 else
5295 /* This will hopefully (eventually) provoke a warning. Should
5296 we be calling complaint() here? */
5297 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5298 return gdbarch_num_regs (gdbarch) + regnum;
5299 }
5300
5301
5302 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5303 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
5304
5305 static int
5306 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
5307 {
5308 int regnum;
5309 if (num >= 0 && num < 32)
5310 regnum = num;
5311 else if (num >= 32 && num < 64)
5312 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
5313 else if (num == 64)
5314 regnum = mips_regnum (gdbarch)->hi;
5315 else if (num == 65)
5316 regnum = mips_regnum (gdbarch)->lo;
5317 else
5318 /* This will hopefully (eventually) provoke a warning. Should we
5319 be calling complaint() here? */
5320 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
5321 return gdbarch_num_regs (gdbarch) + regnum;
5322 }
5323
5324 static int
5325 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
5326 {
5327 /* Only makes sense to supply raw registers. */
5328 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
5329 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5330 decide if it is valid. Should instead define a standard sim/gdb
5331 register numbering scheme. */
5332 if (gdbarch_register_name (gdbarch,
5333 gdbarch_num_regs (gdbarch) + regnum) != NULL
5334 && gdbarch_register_name (gdbarch,
5335 gdbarch_num_regs (gdbarch) + regnum)[0] != '\0')
5336 return regnum;
5337 else
5338 return LEGACY_SIM_REGNO_IGNORE;
5339 }
5340
5341
5342 /* Convert an integer into an address. Extracting the value signed
5343 guarantees a correctly sign extended address. */
5344
5345 static CORE_ADDR
5346 mips_integer_to_address (struct gdbarch *gdbarch,
5347 struct type *type, const gdb_byte *buf)
5348 {
5349 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5350 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
5351 }
5352
5353 /* Dummy virtual frame pointer method. This is no more or less accurate
5354 than most other architectures; we just need to be explicit about it,
5355 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
5356 an assertion failure. */
5357
5358 static void
5359 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
5360 CORE_ADDR pc, int *reg, LONGEST *offset)
5361 {
5362 *reg = MIPS_SP_REGNUM;
5363 *offset = 0;
5364 }
5365
5366 static void
5367 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5368 {
5369 enum mips_abi *abip = (enum mips_abi *) obj;
5370 const char *name = bfd_get_section_name (abfd, sect);
5371
5372 if (*abip != MIPS_ABI_UNKNOWN)
5373 return;
5374
5375 if (strncmp (name, ".mdebug.", 8) != 0)
5376 return;
5377
5378 if (strcmp (name, ".mdebug.abi32") == 0)
5379 *abip = MIPS_ABI_O32;
5380 else if (strcmp (name, ".mdebug.abiN32") == 0)
5381 *abip = MIPS_ABI_N32;
5382 else if (strcmp (name, ".mdebug.abi64") == 0)
5383 *abip = MIPS_ABI_N64;
5384 else if (strcmp (name, ".mdebug.abiO64") == 0)
5385 *abip = MIPS_ABI_O64;
5386 else if (strcmp (name, ".mdebug.eabi32") == 0)
5387 *abip = MIPS_ABI_EABI32;
5388 else if (strcmp (name, ".mdebug.eabi64") == 0)
5389 *abip = MIPS_ABI_EABI64;
5390 else
5391 warning (_("unsupported ABI %s."), name + 8);
5392 }
5393
5394 static void
5395 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
5396 {
5397 int *lbp = (int *) obj;
5398 const char *name = bfd_get_section_name (abfd, sect);
5399
5400 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
5401 *lbp = 32;
5402 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
5403 *lbp = 64;
5404 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
5405 warning (_("unrecognized .gcc_compiled_longXX"));
5406 }
5407
5408 static enum mips_abi
5409 global_mips_abi (void)
5410 {
5411 int i;
5412
5413 for (i = 0; mips_abi_strings[i] != NULL; i++)
5414 if (mips_abi_strings[i] == mips_abi_string)
5415 return (enum mips_abi) i;
5416
5417 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
5418 }
5419
5420 static void
5421 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
5422 {
5423 /* If the size matches the set of 32-bit or 64-bit integer registers,
5424 assume that's what we've got. */
5425 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5426 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5427
5428 /* If the size matches the full set of registers GDB traditionally
5429 knows about, including floating point, for either 32-bit or
5430 64-bit, assume that's what we've got. */
5431 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5432 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5433
5434 /* Otherwise we don't have a useful guess. */
5435 }
5436
5437 static struct value *
5438 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5439 {
5440 const int *reg_p = baton;
5441 return value_of_register (*reg_p, frame);
5442 }
5443
5444 static struct gdbarch *
5445 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5446 {
5447 struct gdbarch *gdbarch;
5448 struct gdbarch_tdep *tdep;
5449 int elf_flags;
5450 enum mips_abi mips_abi, found_abi, wanted_abi;
5451 int i, num_regs;
5452 enum mips_fpu_type fpu_type;
5453 struct tdesc_arch_data *tdesc_data = NULL;
5454 int elf_fpu_type = 0;
5455
5456 /* Check any target description for validity. */
5457 if (tdesc_has_registers (info.target_desc))
5458 {
5459 static const char *const mips_gprs[] = {
5460 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5461 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5462 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5463 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5464 };
5465 static const char *const mips_fprs[] = {
5466 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5467 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5468 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5469 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5470 };
5471
5472 const struct tdesc_feature *feature;
5473 int valid_p;
5474
5475 feature = tdesc_find_feature (info.target_desc,
5476 "org.gnu.gdb.mips.cpu");
5477 if (feature == NULL)
5478 return NULL;
5479
5480 tdesc_data = tdesc_data_alloc ();
5481
5482 valid_p = 1;
5483 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5484 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5485 mips_gprs[i]);
5486
5487
5488 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5489 MIPS_EMBED_LO_REGNUM, "lo");
5490 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5491 MIPS_EMBED_HI_REGNUM, "hi");
5492 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5493 MIPS_EMBED_PC_REGNUM, "pc");
5494
5495 if (!valid_p)
5496 {
5497 tdesc_data_cleanup (tdesc_data);
5498 return NULL;
5499 }
5500
5501 feature = tdesc_find_feature (info.target_desc,
5502 "org.gnu.gdb.mips.cp0");
5503 if (feature == NULL)
5504 {
5505 tdesc_data_cleanup (tdesc_data);
5506 return NULL;
5507 }
5508
5509 valid_p = 1;
5510 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5511 MIPS_EMBED_BADVADDR_REGNUM,
5512 "badvaddr");
5513 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5514 MIPS_PS_REGNUM, "status");
5515 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5516 MIPS_EMBED_CAUSE_REGNUM, "cause");
5517
5518 if (!valid_p)
5519 {
5520 tdesc_data_cleanup (tdesc_data);
5521 return NULL;
5522 }
5523
5524 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5525 backend is not prepared for that, though. */
5526 feature = tdesc_find_feature (info.target_desc,
5527 "org.gnu.gdb.mips.fpu");
5528 if (feature == NULL)
5529 {
5530 tdesc_data_cleanup (tdesc_data);
5531 return NULL;
5532 }
5533
5534 valid_p = 1;
5535 for (i = 0; i < 32; i++)
5536 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5537 i + MIPS_EMBED_FP0_REGNUM,
5538 mips_fprs[i]);
5539
5540 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5541 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5542 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5543 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5544
5545 if (!valid_p)
5546 {
5547 tdesc_data_cleanup (tdesc_data);
5548 return NULL;
5549 }
5550
5551 /* It would be nice to detect an attempt to use a 64-bit ABI
5552 when only 32-bit registers are provided. */
5553 }
5554
5555 /* First of all, extract the elf_flags, if available. */
5556 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5557 elf_flags = elf_elfheader (info.abfd)->e_flags;
5558 else if (arches != NULL)
5559 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5560 else
5561 elf_flags = 0;
5562 if (gdbarch_debug)
5563 fprintf_unfiltered (gdb_stdlog,
5564 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5565
5566 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5567 switch ((elf_flags & EF_MIPS_ABI))
5568 {
5569 case E_MIPS_ABI_O32:
5570 found_abi = MIPS_ABI_O32;
5571 break;
5572 case E_MIPS_ABI_O64:
5573 found_abi = MIPS_ABI_O64;
5574 break;
5575 case E_MIPS_ABI_EABI32:
5576 found_abi = MIPS_ABI_EABI32;
5577 break;
5578 case E_MIPS_ABI_EABI64:
5579 found_abi = MIPS_ABI_EABI64;
5580 break;
5581 default:
5582 if ((elf_flags & EF_MIPS_ABI2))
5583 found_abi = MIPS_ABI_N32;
5584 else
5585 found_abi = MIPS_ABI_UNKNOWN;
5586 break;
5587 }
5588
5589 /* GCC creates a pseudo-section whose name describes the ABI. */
5590 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5591 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5592
5593 /* If we have no useful BFD information, use the ABI from the last
5594 MIPS architecture (if there is one). */
5595 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5596 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5597
5598 /* Try the architecture for any hint of the correct ABI. */
5599 if (found_abi == MIPS_ABI_UNKNOWN
5600 && info.bfd_arch_info != NULL
5601 && info.bfd_arch_info->arch == bfd_arch_mips)
5602 {
5603 switch (info.bfd_arch_info->mach)
5604 {
5605 case bfd_mach_mips3900:
5606 found_abi = MIPS_ABI_EABI32;
5607 break;
5608 case bfd_mach_mips4100:
5609 case bfd_mach_mips5000:
5610 found_abi = MIPS_ABI_EABI64;
5611 break;
5612 case bfd_mach_mips8000:
5613 case bfd_mach_mips10000:
5614 /* On Irix, ELF64 executables use the N64 ABI. The
5615 pseudo-sections which describe the ABI aren't present
5616 on IRIX. (Even for executables created by gcc.) */
5617 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5618 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5619 found_abi = MIPS_ABI_N64;
5620 else
5621 found_abi = MIPS_ABI_N32;
5622 break;
5623 }
5624 }
5625
5626 /* Default 64-bit objects to N64 instead of O32. */
5627 if (found_abi == MIPS_ABI_UNKNOWN
5628 && info.abfd != NULL
5629 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5630 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5631 found_abi = MIPS_ABI_N64;
5632
5633 if (gdbarch_debug)
5634 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5635 found_abi);
5636
5637 /* What has the user specified from the command line? */
5638 wanted_abi = global_mips_abi ();
5639 if (gdbarch_debug)
5640 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5641 wanted_abi);
5642
5643 /* Now that we have found what the ABI for this binary would be,
5644 check whether the user is overriding it. */
5645 if (wanted_abi != MIPS_ABI_UNKNOWN)
5646 mips_abi = wanted_abi;
5647 else if (found_abi != MIPS_ABI_UNKNOWN)
5648 mips_abi = found_abi;
5649 else
5650 mips_abi = MIPS_ABI_O32;
5651 if (gdbarch_debug)
5652 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5653 mips_abi);
5654
5655 /* Also used when doing an architecture lookup. */
5656 if (gdbarch_debug)
5657 fprintf_unfiltered (gdb_stdlog,
5658 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5659 mips64_transfers_32bit_regs_p);
5660
5661 /* Determine the MIPS FPU type. */
5662 #ifdef HAVE_ELF
5663 if (info.abfd
5664 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5665 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5666 Tag_GNU_MIPS_ABI_FP);
5667 #endif /* HAVE_ELF */
5668
5669 if (!mips_fpu_type_auto)
5670 fpu_type = mips_fpu_type;
5671 else if (elf_fpu_type != 0)
5672 {
5673 switch (elf_fpu_type)
5674 {
5675 case 1:
5676 fpu_type = MIPS_FPU_DOUBLE;
5677 break;
5678 case 2:
5679 fpu_type = MIPS_FPU_SINGLE;
5680 break;
5681 case 3:
5682 default:
5683 /* Soft float or unknown. */
5684 fpu_type = MIPS_FPU_NONE;
5685 break;
5686 }
5687 }
5688 else if (info.bfd_arch_info != NULL
5689 && info.bfd_arch_info->arch == bfd_arch_mips)
5690 switch (info.bfd_arch_info->mach)
5691 {
5692 case bfd_mach_mips3900:
5693 case bfd_mach_mips4100:
5694 case bfd_mach_mips4111:
5695 case bfd_mach_mips4120:
5696 fpu_type = MIPS_FPU_NONE;
5697 break;
5698 case bfd_mach_mips4650:
5699 fpu_type = MIPS_FPU_SINGLE;
5700 break;
5701 default:
5702 fpu_type = MIPS_FPU_DOUBLE;
5703 break;
5704 }
5705 else if (arches != NULL)
5706 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5707 else
5708 fpu_type = MIPS_FPU_DOUBLE;
5709 if (gdbarch_debug)
5710 fprintf_unfiltered (gdb_stdlog,
5711 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5712
5713 /* Check for blatant incompatibilities. */
5714
5715 /* If we have only 32-bit registers, then we can't debug a 64-bit
5716 ABI. */
5717 if (info.target_desc
5718 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5719 && mips_abi != MIPS_ABI_EABI32
5720 && mips_abi != MIPS_ABI_O32)
5721 {
5722 if (tdesc_data != NULL)
5723 tdesc_data_cleanup (tdesc_data);
5724 return NULL;
5725 }
5726
5727 /* try to find a pre-existing architecture */
5728 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5729 arches != NULL;
5730 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5731 {
5732 /* MIPS needs to be pedantic about which ABI the object is
5733 using. */
5734 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5735 continue;
5736 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5737 continue;
5738 /* Need to be pedantic about which register virtual size is
5739 used. */
5740 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5741 != mips64_transfers_32bit_regs_p)
5742 continue;
5743 /* Be pedantic about which FPU is selected. */
5744 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5745 continue;
5746
5747 if (tdesc_data != NULL)
5748 tdesc_data_cleanup (tdesc_data);
5749 return arches->gdbarch;
5750 }
5751
5752 /* Need a new architecture. Fill in a target specific vector. */
5753 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5754 gdbarch = gdbarch_alloc (&info, tdep);
5755 tdep->elf_flags = elf_flags;
5756 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5757 tdep->found_abi = found_abi;
5758 tdep->mips_abi = mips_abi;
5759 tdep->mips_fpu_type = fpu_type;
5760 tdep->register_size_valid_p = 0;
5761 tdep->register_size = 0;
5762 tdep->gregset = NULL;
5763 tdep->gregset64 = NULL;
5764 tdep->fpregset = NULL;
5765 tdep->fpregset64 = NULL;
5766
5767 if (info.target_desc)
5768 {
5769 /* Some useful properties can be inferred from the target. */
5770 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5771 {
5772 tdep->register_size_valid_p = 1;
5773 tdep->register_size = 4;
5774 }
5775 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5776 {
5777 tdep->register_size_valid_p = 1;
5778 tdep->register_size = 8;
5779 }
5780 }
5781
5782 /* Initially set everything according to the default ABI/ISA. */
5783 set_gdbarch_short_bit (gdbarch, 16);
5784 set_gdbarch_int_bit (gdbarch, 32);
5785 set_gdbarch_float_bit (gdbarch, 32);
5786 set_gdbarch_double_bit (gdbarch, 64);
5787 set_gdbarch_long_double_bit (gdbarch, 64);
5788 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5789 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5790 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5791
5792 set_gdbarch_elf_make_msymbol_special (gdbarch,
5793 mips_elf_make_msymbol_special);
5794
5795 /* Fill in the OS dependant register numbers and names. */
5796 {
5797 const char **reg_names;
5798 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5799 struct mips_regnum);
5800 if (tdesc_has_registers (info.target_desc))
5801 {
5802 regnum->lo = MIPS_EMBED_LO_REGNUM;
5803 regnum->hi = MIPS_EMBED_HI_REGNUM;
5804 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5805 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5806 regnum->pc = MIPS_EMBED_PC_REGNUM;
5807 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5808 regnum->fp_control_status = 70;
5809 regnum->fp_implementation_revision = 71;
5810 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5811 reg_names = NULL;
5812 }
5813 else if (info.osabi == GDB_OSABI_IRIX)
5814 {
5815 regnum->fp0 = 32;
5816 regnum->pc = 64;
5817 regnum->cause = 65;
5818 regnum->badvaddr = 66;
5819 regnum->hi = 67;
5820 regnum->lo = 68;
5821 regnum->fp_control_status = 69;
5822 regnum->fp_implementation_revision = 70;
5823 num_regs = 71;
5824 reg_names = mips_irix_reg_names;
5825 }
5826 else
5827 {
5828 regnum->lo = MIPS_EMBED_LO_REGNUM;
5829 regnum->hi = MIPS_EMBED_HI_REGNUM;
5830 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5831 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5832 regnum->pc = MIPS_EMBED_PC_REGNUM;
5833 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5834 regnum->fp_control_status = 70;
5835 regnum->fp_implementation_revision = 71;
5836 num_regs = 90;
5837 if (info.bfd_arch_info != NULL
5838 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5839 reg_names = mips_tx39_reg_names;
5840 else
5841 reg_names = mips_generic_reg_names;
5842 }
5843 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5844 replaced by gdbarch_read_pc? */
5845 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5846 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5847 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5848 set_gdbarch_num_regs (gdbarch, num_regs);
5849 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5850 set_gdbarch_register_name (gdbarch, mips_register_name);
5851 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
5852 tdep->mips_processor_reg_names = reg_names;
5853 tdep->regnum = regnum;
5854 }
5855
5856 switch (mips_abi)
5857 {
5858 case MIPS_ABI_O32:
5859 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5860 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5861 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5862 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5863 tdep->default_mask_address_p = 0;
5864 set_gdbarch_long_bit (gdbarch, 32);
5865 set_gdbarch_ptr_bit (gdbarch, 32);
5866 set_gdbarch_long_long_bit (gdbarch, 64);
5867 break;
5868 case MIPS_ABI_O64:
5869 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5870 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5871 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5872 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5873 tdep->default_mask_address_p = 0;
5874 set_gdbarch_long_bit (gdbarch, 32);
5875 set_gdbarch_ptr_bit (gdbarch, 32);
5876 set_gdbarch_long_long_bit (gdbarch, 64);
5877 break;
5878 case MIPS_ABI_EABI32:
5879 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5880 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5881 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5882 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5883 tdep->default_mask_address_p = 0;
5884 set_gdbarch_long_bit (gdbarch, 32);
5885 set_gdbarch_ptr_bit (gdbarch, 32);
5886 set_gdbarch_long_long_bit (gdbarch, 64);
5887 break;
5888 case MIPS_ABI_EABI64:
5889 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5890 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5891 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5892 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5893 tdep->default_mask_address_p = 0;
5894 set_gdbarch_long_bit (gdbarch, 64);
5895 set_gdbarch_ptr_bit (gdbarch, 64);
5896 set_gdbarch_long_long_bit (gdbarch, 64);
5897 break;
5898 case MIPS_ABI_N32:
5899 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5900 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5901 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5902 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5903 tdep->default_mask_address_p = 0;
5904 set_gdbarch_long_bit (gdbarch, 32);
5905 set_gdbarch_ptr_bit (gdbarch, 32);
5906 set_gdbarch_long_long_bit (gdbarch, 64);
5907 set_gdbarch_long_double_bit (gdbarch, 128);
5908 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5909 break;
5910 case MIPS_ABI_N64:
5911 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5912 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5913 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5914 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5915 tdep->default_mask_address_p = 0;
5916 set_gdbarch_long_bit (gdbarch, 64);
5917 set_gdbarch_ptr_bit (gdbarch, 64);
5918 set_gdbarch_long_long_bit (gdbarch, 64);
5919 set_gdbarch_long_double_bit (gdbarch, 128);
5920 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
5921 break;
5922 default:
5923 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5924 }
5925
5926 /* GCC creates a pseudo-section whose name specifies the size of
5927 longs, since -mlong32 or -mlong64 may be used independent of
5928 other options. How those options affect pointer sizes is ABI and
5929 architecture dependent, so use them to override the default sizes
5930 set by the ABI. This table shows the relationship between ABI,
5931 -mlongXX, and size of pointers:
5932
5933 ABI -mlongXX ptr bits
5934 --- -------- --------
5935 o32 32 32
5936 o32 64 32
5937 n32 32 32
5938 n32 64 64
5939 o64 32 32
5940 o64 64 64
5941 n64 32 32
5942 n64 64 64
5943 eabi32 32 32
5944 eabi32 64 32
5945 eabi64 32 32
5946 eabi64 64 64
5947
5948 Note that for o32 and eabi32, pointers are always 32 bits
5949 regardless of any -mlongXX option. For all others, pointers and
5950 longs are the same, as set by -mlongXX or set by defaults.
5951 */
5952
5953 if (info.abfd != NULL)
5954 {
5955 int long_bit = 0;
5956
5957 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5958 if (long_bit)
5959 {
5960 set_gdbarch_long_bit (gdbarch, long_bit);
5961 switch (mips_abi)
5962 {
5963 case MIPS_ABI_O32:
5964 case MIPS_ABI_EABI32:
5965 break;
5966 case MIPS_ABI_N32:
5967 case MIPS_ABI_O64:
5968 case MIPS_ABI_N64:
5969 case MIPS_ABI_EABI64:
5970 set_gdbarch_ptr_bit (gdbarch, long_bit);
5971 break;
5972 default:
5973 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5974 }
5975 }
5976 }
5977
5978 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5979 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5980 comment:
5981
5982 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5983 flag in object files because to do so would make it impossible to
5984 link with libraries compiled without "-gp32". This is
5985 unnecessarily restrictive.
5986
5987 We could solve this problem by adding "-gp32" multilibs to gcc,
5988 but to set this flag before gcc is built with such multilibs will
5989 break too many systems.''
5990
5991 But even more unhelpfully, the default linker output target for
5992 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5993 for 64-bit programs - you need to change the ABI to change this,
5994 and not all gcc targets support that currently. Therefore using
5995 this flag to detect 32-bit mode would do the wrong thing given
5996 the current gcc - it would make GDB treat these 64-bit programs
5997 as 32-bit programs by default. */
5998
5999 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6000 set_gdbarch_write_pc (gdbarch, mips_write_pc);
6001
6002 /* Add/remove bits from an address. The MIPS needs be careful to
6003 ensure that all 32 bit addresses are sign extended to 64 bits. */
6004 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6005
6006 /* Unwind the frame. */
6007 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
6008 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
6009 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
6010
6011 /* Map debug register numbers onto internal register numbers. */
6012 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6013 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
6014 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6015 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
6016 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6017 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6018
6019 /* MIPS version of CALL_DUMMY */
6020
6021 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6022 replaced by a command, and all targets will default to on stack
6023 (regardless of the stack's execute status). */
6024 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6025 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6026
6027 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
6028 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
6029 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
6030
6031 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6032 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6033
6034 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6035
6036 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
6037
6038 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6039 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6040 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6041
6042 set_gdbarch_register_type (gdbarch, mips_register_type);
6043
6044 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6045
6046 if (mips_abi == MIPS_ABI_N32)
6047 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
6048 else if (mips_abi == MIPS_ABI_N64)
6049 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
6050 else
6051 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6052
6053 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
6054 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
6055 need to all be folded into the target vector. Since they are
6056 being used as guards for target_stopped_by_watchpoint, why not have
6057 target_stopped_by_watchpoint return the type of watchpoint that the code
6058 is sitting on? */
6059 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6060
6061 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
6062
6063 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
6064
6065 /* Virtual tables. */
6066 set_gdbarch_vbit_in_delta (gdbarch, 1);
6067
6068 mips_register_g_packet_guesses (gdbarch);
6069
6070 /* Hook in OS ABI-specific overrides, if they have been registered. */
6071 info.tdep_info = (void *) tdesc_data;
6072 gdbarch_init_osabi (info, gdbarch);
6073
6074 /* Unwind the frame. */
6075 dwarf2_append_unwinders (gdbarch);
6076 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
6077 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
6078 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
6079 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
6080 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
6081 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
6082 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
6083
6084 if (tdesc_data)
6085 {
6086 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
6087 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
6088
6089 /* Override the normal target description methods to handle our
6090 dual real and pseudo registers. */
6091 set_gdbarch_register_name (gdbarch, mips_register_name);
6092 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
6093
6094 num_regs = gdbarch_num_regs (gdbarch);
6095 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
6096 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
6097 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
6098 }
6099
6100 /* Add ABI-specific aliases for the registers. */
6101 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
6102 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
6103 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
6104 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
6105 else
6106 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
6107 user_reg_add (gdbarch, mips_o32_aliases[i].name,
6108 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
6109
6110 /* Add some other standard aliases. */
6111 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
6112 user_reg_add (gdbarch, mips_register_aliases[i].name,
6113 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
6114
6115 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
6116 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
6117 value_of_mips_user_reg,
6118 &mips_numeric_register_aliases[i].regnum);
6119
6120 return gdbarch;
6121 }
6122
6123 static void
6124 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
6125 {
6126 struct gdbarch_info info;
6127
6128 /* Force the architecture to update, and (if it's a MIPS architecture)
6129 mips_gdbarch_init will take care of the rest. */
6130 gdbarch_info_init (&info);
6131 gdbarch_update_p (info);
6132 }
6133
6134 /* Print out which MIPS ABI is in use. */
6135
6136 static void
6137 show_mips_abi (struct ui_file *file,
6138 int from_tty,
6139 struct cmd_list_element *ignored_cmd,
6140 const char *ignored_value)
6141 {
6142 if (gdbarch_bfd_arch_info (target_gdbarch)->arch != bfd_arch_mips)
6143 fprintf_filtered
6144 (file,
6145 "The MIPS ABI is unknown because the current architecture "
6146 "is not MIPS.\n");
6147 else
6148 {
6149 enum mips_abi global_abi = global_mips_abi ();
6150 enum mips_abi actual_abi = mips_abi (target_gdbarch);
6151 const char *actual_abi_str = mips_abi_strings[actual_abi];
6152
6153 if (global_abi == MIPS_ABI_UNKNOWN)
6154 fprintf_filtered
6155 (file,
6156 "The MIPS ABI is set automatically (currently \"%s\").\n",
6157 actual_abi_str);
6158 else if (global_abi == actual_abi)
6159 fprintf_filtered
6160 (file,
6161 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6162 actual_abi_str);
6163 else
6164 {
6165 /* Probably shouldn't happen... */
6166 fprintf_filtered
6167 (file,
6168 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6169 actual_abi_str, mips_abi_strings[global_abi]);
6170 }
6171 }
6172 }
6173
6174 static void
6175 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
6176 {
6177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6178 if (tdep != NULL)
6179 {
6180 int ef_mips_arch;
6181 int ef_mips_32bitmode;
6182 /* Determine the ISA. */
6183 switch (tdep->elf_flags & EF_MIPS_ARCH)
6184 {
6185 case E_MIPS_ARCH_1:
6186 ef_mips_arch = 1;
6187 break;
6188 case E_MIPS_ARCH_2:
6189 ef_mips_arch = 2;
6190 break;
6191 case E_MIPS_ARCH_3:
6192 ef_mips_arch = 3;
6193 break;
6194 case E_MIPS_ARCH_4:
6195 ef_mips_arch = 4;
6196 break;
6197 default:
6198 ef_mips_arch = 0;
6199 break;
6200 }
6201 /* Determine the size of a pointer. */
6202 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6205 tdep->elf_flags);
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6208 ef_mips_32bitmode);
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: ef_mips_arch = %d\n",
6211 ef_mips_arch);
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6214 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
6215 fprintf_unfiltered (file,
6216 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6217 mips_mask_address_p (tdep),
6218 tdep->default_mask_address_p);
6219 }
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6222 MIPS_DEFAULT_FPU_TYPE,
6223 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6224 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6225 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6226 : "???"));
6227 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
6228 MIPS_EABI (gdbarch));
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6231 MIPS_FPU_TYPE (gdbarch),
6232 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
6233 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
6234 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
6235 : "???"));
6236 }
6237
6238 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6239
6240 void
6241 _initialize_mips_tdep (void)
6242 {
6243 static struct cmd_list_element *mipsfpulist = NULL;
6244 struct cmd_list_element *c;
6245
6246 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
6247 if (MIPS_ABI_LAST + 1
6248 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6249 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
6250
6251 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6252
6253 mips_pdr_data = register_objfile_data ();
6254
6255 /* Create feature sets with the appropriate properties. The values
6256 are not important. */
6257 mips_tdesc_gp32 = allocate_target_description ();
6258 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
6259
6260 mips_tdesc_gp64 = allocate_target_description ();
6261 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
6262
6263 /* Add root prefix command for all "set mips"/"show mips" commands */
6264 add_prefix_cmd ("mips", no_class, set_mips_command,
6265 _("Various MIPS specific commands."),
6266 &setmipscmdlist, "set mips ", 0, &setlist);
6267
6268 add_prefix_cmd ("mips", no_class, show_mips_command,
6269 _("Various MIPS specific commands."),
6270 &showmipscmdlist, "show mips ", 0, &showlist);
6271
6272 /* Allow the user to override the ABI. */
6273 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
6274 &mips_abi_string, _("\
6275 Set the MIPS ABI used by this program."), _("\
6276 Show the MIPS ABI used by this program."), _("\
6277 This option can be set to one of:\n\
6278 auto - the default ABI associated with the current binary\n\
6279 o32\n\
6280 o64\n\
6281 n32\n\
6282 n64\n\
6283 eabi32\n\
6284 eabi64"),
6285 mips_abi_update,
6286 show_mips_abi,
6287 &setmipscmdlist, &showmipscmdlist);
6288
6289 /* Let the user turn off floating point and set the fence post for
6290 heuristic_proc_start. */
6291
6292 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6293 _("Set use of MIPS floating-point coprocessor."),
6294 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6295 add_cmd ("single", class_support, set_mipsfpu_single_command,
6296 _("Select single-precision MIPS floating-point coprocessor."),
6297 &mipsfpulist);
6298 add_cmd ("double", class_support, set_mipsfpu_double_command,
6299 _("Select double-precision MIPS floating-point coprocessor."),
6300 &mipsfpulist);
6301 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6302 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6303 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6304 add_cmd ("none", class_support, set_mipsfpu_none_command,
6305 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
6306 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6307 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6308 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6309 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6310 _("Select MIPS floating-point coprocessor automatically."),
6311 &mipsfpulist);
6312 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6313 _("Show current use of MIPS floating-point coprocessor target."),
6314 &showlist);
6315
6316 /* We really would like to have both "0" and "unlimited" work, but
6317 command.c doesn't deal with that. So make it a var_zinteger
6318 because the user can always use "999999" or some such for unlimited. */
6319 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
6320 &heuristic_fence_post, _("\
6321 Set the distance searched for the start of a function."), _("\
6322 Show the distance searched for the start of a function."), _("\
6323 If you are debugging a stripped executable, GDB needs to search through the\n\
6324 program for the start of a function. This command sets the distance of the\n\
6325 search. The only need to set it is when debugging a stripped executable."),
6326 reinit_frame_cache_sfunc,
6327 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
6328 &setlist, &showlist);
6329
6330 /* Allow the user to control whether the upper bits of 64-bit
6331 addresses should be zeroed. */
6332 add_setshow_auto_boolean_cmd ("mask-address", no_class,
6333 &mask_address_var, _("\
6334 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
6335 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
6336 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
6337 allow GDB to determine the correct value."),
6338 NULL, show_mask_address,
6339 &setmipscmdlist, &showmipscmdlist);
6340
6341 /* Allow the user to control the size of 32 bit registers within the
6342 raw remote packet. */
6343 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6344 &mips64_transfers_32bit_regs_p, _("\
6345 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6346 _("\
6347 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
6348 _("\
6349 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6350 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6351 64 bits for others. Use \"off\" to disable compatibility mode"),
6352 set_mips64_transfers_32bit_regs,
6353 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
6354 &setlist, &showlist);
6355
6356 /* Debug this files internals. */
6357 add_setshow_zinteger_cmd ("mips", class_maintenance,
6358 &mips_debug, _("\
6359 Set mips debugging."), _("\
6360 Show mips debugging."), _("\
6361 When non-zero, mips specific debugging is enabled."),
6362 NULL,
6363 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
6364 &setdebuglist, &showdebuglist);
6365 }
This page took 0.201606 seconds and 4 git commands to generate.