2003-11-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50 #include "sim-regno.h"
51 #include "dis-asm.h"
52
53 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
54 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
55
56 /* A useful bit in the CP0 status register (PS_REGNUM). */
57 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58 #define ST0_FR (1 << 26)
59
60 /* The sizes of floating point registers. */
61
62 enum
63 {
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66 };
67
68
69 static const char *mips_abi_string;
70
71 static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
75 "n64",
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80 };
81
82 struct frame_extra_info
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
87
88 /* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
92 static const char size_auto[] = "auto";
93 static const char size_32[] = "32";
94 static const char size_64[] = "64";
95
96 static const char *size_enums[] = {
97 size_auto,
98 size_32,
99 size_64,
100 0
101 };
102
103 /* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int mips_default_saved_regsize;
135 int mips_fp_register_double;
136 int mips_default_stack_argsize;
137 int default_mask_address_p;
138 /* Is the target using 64-bit raw integer registers but only
139 storing a left-aligned 32-bit value in each? */
140 int mips64_transfers_32bit_regs_p;
141 /* Indexes for various registers. IRIX and embedded have
142 different values. This contains the "public" fields. Don't
143 add any that do not need to be public. */
144 const struct mips_regnum *regnum;
145 /* Register names table for the current register set. */
146 const char **mips_processor_reg_names;
147 };
148
149 const struct mips_regnum *
150 mips_regnum (struct gdbarch *gdbarch)
151 {
152 return gdbarch_tdep (gdbarch)->regnum;
153 }
154
155 static int
156 mips_fpa0_regnum (struct gdbarch *gdbarch)
157 {
158 return mips_regnum (gdbarch)->fp0 + 12;
159 }
160
161 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
162 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
163
164 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
165
166 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
167
168 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
169
170 /* Return the currently configured (or set) saved register size. */
171
172 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
173
174 static const char *mips_saved_regsize_string = size_auto;
175
176 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
177
178 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
179 functions to test, set, or clear bit 0 of addresses. */
180
181 static CORE_ADDR
182 is_mips16_addr (CORE_ADDR addr)
183 {
184 return ((addr) & 1);
185 }
186
187 static CORE_ADDR
188 make_mips16_addr (CORE_ADDR addr)
189 {
190 return ((addr) | 1);
191 }
192
193 static CORE_ADDR
194 unmake_mips16_addr (CORE_ADDR addr)
195 {
196 return ((addr) & ~1);
197 }
198
199 /* Return the contents of register REGNUM as a signed integer. */
200
201 static LONGEST
202 read_signed_register (int regnum)
203 {
204 void *buf = alloca (register_size (current_gdbarch, regnum));
205 deprecated_read_register_gen (regnum, buf);
206 return (extract_signed_integer (buf, register_size (current_gdbarch, regnum)));
207 }
208
209 static LONGEST
210 read_signed_register_pid (int regnum, ptid_t ptid)
211 {
212 ptid_t save_ptid;
213 LONGEST retval;
214
215 if (ptid_equal (ptid, inferior_ptid))
216 return read_signed_register (regnum);
217
218 save_ptid = inferior_ptid;
219
220 inferior_ptid = ptid;
221
222 retval = read_signed_register (regnum);
223
224 inferior_ptid = save_ptid;
225
226 return retval;
227 }
228
229 /* Return the MIPS ABI associated with GDBARCH. */
230 enum mips_abi
231 mips_abi (struct gdbarch *gdbarch)
232 {
233 return gdbarch_tdep (gdbarch)->mips_abi;
234 }
235
236 int
237 mips_regsize (struct gdbarch *gdbarch)
238 {
239 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
240 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
241 }
242
243 static unsigned int
244 mips_saved_regsize (void)
245 {
246 if (mips_saved_regsize_string == size_auto)
247 return MIPS_DEFAULT_SAVED_REGSIZE;
248 else if (mips_saved_regsize_string == size_64)
249 return 8;
250 else /* if (mips_saved_regsize_string == size_32) */
251 return 4;
252 }
253
254 /* Functions for setting and testing a bit in a minimal symbol that
255 marks it as 16-bit function. The MSB of the minimal symbol's
256 "info" field is used for this purpose.
257
258 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
259 i.e. refers to a 16-bit function, and sets a "special" bit in a
260 minimal symbol to mark it as a 16-bit function
261
262 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
263
264 static void
265 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
266 {
267 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
268 {
269 MSYMBOL_INFO (msym) = (char *)
270 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
271 SYMBOL_VALUE_ADDRESS (msym) |= 1;
272 }
273 }
274
275 static int
276 msymbol_is_special (struct minimal_symbol *msym)
277 {
278 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
279 }
280
281 /* XFER a value from the big/little/left end of the register.
282 Depending on the size of the value it might occupy the entire
283 register or just part of it. Make an allowance for this, aligning
284 things accordingly. */
285
286 static void
287 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
288 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
289 int buf_offset)
290 {
291 bfd_byte reg[MAX_REGISTER_SIZE];
292 int reg_offset = 0;
293 gdb_assert (reg_num >= NUM_REGS);
294 /* Need to transfer the left or right part of the register, based on
295 the targets byte order. */
296 switch (endian)
297 {
298 case BFD_ENDIAN_BIG:
299 reg_offset = register_size (current_gdbarch, reg_num) - length;
300 break;
301 case BFD_ENDIAN_LITTLE:
302 reg_offset = 0;
303 break;
304 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
305 reg_offset = 0;
306 break;
307 default:
308 internal_error (__FILE__, __LINE__, "bad switch");
309 }
310 if (mips_debug)
311 fprintf_unfiltered (gdb_stderr,
312 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
313 reg_num, reg_offset, buf_offset, length);
314 if (mips_debug && out != NULL)
315 {
316 int i;
317 fprintf_unfiltered (gdb_stdlog, "out ");
318 for (i = 0; i < length; i++)
319 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
320 }
321 if (in != NULL)
322 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
323 if (out != NULL)
324 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
325 if (mips_debug && in != NULL)
326 {
327 int i;
328 fprintf_unfiltered (gdb_stdlog, "in ");
329 for (i = 0; i < length; i++)
330 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
331 }
332 if (mips_debug)
333 fprintf_unfiltered (gdb_stdlog, "\n");
334 }
335
336 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
337 compatiblity mode. A return value of 1 means that we have
338 physical 64-bit registers, but should treat them as 32-bit registers. */
339
340 static int
341 mips2_fp_compat (void)
342 {
343 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
344 meaningful. */
345 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 4)
346 return 0;
347
348 #if 0
349 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
350 in all the places we deal with FP registers. PR gdb/413. */
351 /* Otherwise check the FR bit in the status register - it controls
352 the FP compatiblity mode. If it is clear we are in compatibility
353 mode. */
354 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
355 return 1;
356 #endif
357
358 return 0;
359 }
360
361 /* Indicate that the ABI makes use of double-precision registers
362 provided by the FPU (rather than combining pairs of registers to
363 form double-precision values). See also MIPS_FPU_TYPE. */
364 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
365
366 /* The amount of space reserved on the stack for registers. This is
367 different to MIPS_SAVED_REGSIZE as it determines the alignment of
368 data allocated after the registers have run out. */
369
370 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
371
372 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
373
374 static const char *mips_stack_argsize_string = size_auto;
375
376 static unsigned int
377 mips_stack_argsize (void)
378 {
379 if (mips_stack_argsize_string == size_auto)
380 return MIPS_DEFAULT_STACK_ARGSIZE;
381 else if (mips_stack_argsize_string == size_64)
382 return 8;
383 else /* if (mips_stack_argsize_string == size_32) */
384 return 4;
385 }
386
387 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
388
389 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
390
391 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
392 struct frame_info *, int);
393
394 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
395
396 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
397
398 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
399
400 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
401 struct frame_info *next_frame,
402 int cur_frame);
403
404 static CORE_ADDR after_prologue (CORE_ADDR pc,
405 mips_extra_func_info_t proc_desc);
406
407 static struct type *mips_float_register_type (void);
408 static struct type *mips_double_register_type (void);
409
410 /* The list of available "set mips " and "show mips " commands */
411
412 static struct cmd_list_element *setmipscmdlist = NULL;
413 static struct cmd_list_element *showmipscmdlist = NULL;
414
415 /* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the followign tables. */
418
419 enum { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
420
421 /* Generic MIPS. */
422
423 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
424 "sr", "lo", "hi", "bad", "cause","pc",
425 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
426 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
427 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
428 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
429 "fsr", "fir", ""/*"fp"*/, "",
430 "", "", "", "", "", "", "", "",
431 "", "", "", "", "", "", "", "",
432 };
433
434 /* Names of IDT R3041 registers. */
435
436 static const char *mips_r3041_reg_names[] = {
437 "sr", "lo", "hi", "bad", "cause","pc",
438 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
439 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
440 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
441 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
442 "fsr", "fir", "",/*"fp"*/ "",
443 "", "", "bus", "ccfg", "", "", "", "",
444 "", "", "port", "cmp", "", "", "epc", "prid",
445 };
446
447 /* Names of tx39 registers. */
448
449 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
450 "sr", "lo", "hi", "bad", "cause","pc",
451 "", "", "", "", "", "", "", "",
452 "", "", "", "", "", "", "", "",
453 "", "", "", "", "", "", "", "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "",
456 "", "", "", "", "", "", "", "",
457 "", "", "config", "cache", "debug", "depc", "epc", ""
458 };
459
460 /* Names of IRIX registers. */
461 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
467 };
468
469
470 /* Return the name of the register corresponding to REGNO. */
471 static const char *
472 mips_register_name (int regno)
473 {
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
475 /* GPR names for all ABIs other than n32/n64. */
476 static char *mips_gpr_names[] = {
477 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
478 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
479 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
480 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
481 };
482
483 /* GPR names for n32 and n64 ABIs. */
484 static char *mips_n32_n64_gpr_names[] = {
485 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
486 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
487 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
488 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
489 };
490
491 enum mips_abi abi = mips_abi (current_gdbarch);
492
493 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
494 don't make the raw register names visible. */
495 int rawnum = regno % NUM_REGS;
496 if (regno < NUM_REGS)
497 return "";
498
499 /* The MIPS integer registers are always mapped from 0 to 31. The
500 names of the registers (which reflects the conventions regarding
501 register use) vary depending on the ABI. */
502 if (0 <= rawnum && rawnum < 32)
503 {
504 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
505 return mips_n32_n64_gpr_names[rawnum];
506 else
507 return mips_gpr_names[rawnum];
508 }
509 else if (32 <= rawnum && rawnum < NUM_REGS)
510 {
511 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
512 return tdep->mips_processor_reg_names[rawnum - 32];
513 }
514 else
515 internal_error (__FILE__, __LINE__,
516 "mips_register_name: bad register number %d", rawnum);
517 }
518
519 /* Return the groups that a MIPS register can be categorised into. */
520
521 static int
522 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
523 struct reggroup *reggroup)
524 {
525 int vector_p;
526 int float_p;
527 int raw_p;
528 int rawnum = regnum % NUM_REGS;
529 int pseudo = regnum / NUM_REGS;
530 if (reggroup == all_reggroup)
531 return pseudo;
532 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
533 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
534 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
535 (gdbarch), as not all architectures are multi-arch. */
536 raw_p = rawnum < NUM_REGS;
537 if (REGISTER_NAME (regnum) == NULL
538 || REGISTER_NAME (regnum)[0] == '\0')
539 return 0;
540 if (reggroup == float_reggroup)
541 return float_p && pseudo;
542 if (reggroup == vector_reggroup)
543 return vector_p && pseudo;
544 if (reggroup == general_reggroup)
545 return (!vector_p && !float_p) && pseudo;
546 /* Save the pseudo registers. Need to make certain that any code
547 extracting register values from a saved register cache also uses
548 pseudo registers. */
549 if (reggroup == save_reggroup)
550 return raw_p && pseudo;
551 /* Restore the same pseudo register. */
552 if (reggroup == restore_reggroup)
553 return raw_p && pseudo;
554 return 0;
555 }
556
557 /* Map the symbol table registers which live in the range [1 *
558 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
559 registers. */
560
561 static void
562 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
563 int cookednum, void *buf)
564 {
565 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
566 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
567 }
568
569 static void
570 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, const void *buf)
572 {
573 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
574 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
575 }
576
577 /* Table to translate MIPS16 register field to actual register number. */
578 static int mips16_to_32_reg[8] =
579 {16, 17, 2, 3, 4, 5, 6, 7};
580
581 /* Heuristic_proc_start may hunt through the text section for a long
582 time across a 2400 baud serial line. Allows the user to limit this
583 search. */
584
585 static unsigned int heuristic_fence_post = 0;
586
587 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
588 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
589 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
590 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
591 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
592 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
593 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
594 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
595 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
596 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
597 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
598 this will corrupt pdr.iline. Fortunately we don't use it. */
599 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
600 #define _PROC_MAGIC_ 0x0F0F0F0F
601 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
602 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
603
604 struct linked_proc_info
605 {
606 struct mips_extra_func_info info;
607 struct linked_proc_info *next;
608 }
609 *linked_proc_desc_table = NULL;
610
611 /* Number of bytes of storage in the actual machine representation for
612 register N. NOTE: This defines the pseudo register type so need to
613 rebuild the architecture vector. */
614
615 static int mips64_transfers_32bit_regs_p = 0;
616
617 static void
618 set_mips64_transfers_32bit_regs (char *args, int from_tty,
619 struct cmd_list_element *c)
620 {
621 struct gdbarch_info info;
622 gdbarch_info_init (&info);
623 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
624 instead of relying on globals. Doing that would let generic code
625 handle the search for this specific architecture. */
626 if (!gdbarch_update_p (info))
627 {
628 mips64_transfers_32bit_regs_p = 0;
629 error ("32-bit compatibility mode not supported");
630 }
631 }
632
633 /* Convert between RAW and VIRTUAL registers. The RAW register size
634 defines the remote-gdb packet. */
635
636 static int
637 mips_register_convertible (int reg_nr)
638 {
639 if (gdbarch_tdep (current_gdbarch)->mips64_transfers_32bit_regs_p)
640 return 0;
641 else
642 return (register_size (current_gdbarch, reg_nr) > register_size (current_gdbarch, reg_nr));
643 }
644
645 static void
646 mips_register_convert_to_virtual (int n, struct type *virtual_type,
647 char *raw_buf, char *virt_buf)
648 {
649 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
650 memcpy (virt_buf,
651 raw_buf + (register_size (current_gdbarch, n) - TYPE_LENGTH (virtual_type)),
652 TYPE_LENGTH (virtual_type));
653 else
654 memcpy (virt_buf,
655 raw_buf,
656 TYPE_LENGTH (virtual_type));
657 }
658
659 static void
660 mips_register_convert_to_raw (struct type *virtual_type, int n,
661 const char *virt_buf, char *raw_buf)
662 {
663 memset (raw_buf, 0, register_size (current_gdbarch, n));
664 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
665 memcpy (raw_buf + (register_size (current_gdbarch, n) - TYPE_LENGTH (virtual_type)),
666 virt_buf,
667 TYPE_LENGTH (virtual_type));
668 else
669 memcpy (raw_buf,
670 virt_buf,
671 TYPE_LENGTH (virtual_type));
672 }
673
674 static int
675 mips_convert_register_p (int regnum, struct type *type)
676 {
677 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
678 && register_size (current_gdbarch, regnum) == 4
679 && (regnum) >= mips_regnum (current_gdbarch)->fp0 && (regnum) < mips_regnum (current_gdbarch)->fp0 + 32
680 && TYPE_CODE(type) == TYPE_CODE_FLT
681 && TYPE_LENGTH(type) == 8);
682 }
683
684 static void
685 mips_register_to_value (struct frame_info *frame, int regnum,
686 struct type *type, void *to)
687 {
688 get_frame_register (frame, regnum + 0, (char *) to + 4);
689 get_frame_register (frame, regnum + 1, (char *) to + 0);
690 }
691
692 static void
693 mips_value_to_register (struct frame_info *frame, int regnum,
694 struct type *type, const void *from)
695 {
696 put_frame_register (frame, regnum + 0, (const char *) from + 4);
697 put_frame_register (frame, regnum + 1, (const char *) from + 0);
698 }
699
700 /* Return the GDB type object for the "standard" data type of data in
701 register REG. */
702
703 static struct type *
704 mips_register_type (struct gdbarch *gdbarch, int regnum)
705 {
706 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
707 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
708 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
709 {
710 /* The floating-point registers raw, or cooked, always match
711 mips_regsize(), and also map 1:1, byte for byte. */
712 switch (gdbarch_byte_order (gdbarch))
713 {
714 case BFD_ENDIAN_BIG:
715 if (mips_regsize (gdbarch) == 4)
716 return builtin_type_ieee_single_big;
717 else
718 return builtin_type_ieee_double_big;
719 case BFD_ENDIAN_LITTLE:
720 if (mips_regsize (gdbarch) == 4)
721 return builtin_type_ieee_single_little;
722 else
723 return builtin_type_ieee_double_little;
724 case BFD_ENDIAN_UNKNOWN:
725 default:
726 internal_error (__FILE__, __LINE__, "bad switch");
727 }
728 }
729 else if (regnum >= (NUM_REGS + mips_regnum (current_gdbarch)->fp_control_status)
730 && regnum <= NUM_REGS + LAST_EMBED_REGNUM)
731 /* The pseudo/cooked view of the embedded registers is always
732 32-bit. The raw view is handled below. */
733 return builtin_type_int32;
734 else if (regnum >= NUM_REGS && mips_regsize (gdbarch)
735 && gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
736 /* The target, while using a 64-bit register buffer, is only
737 transfering 32-bits of each integer register. Reflect this in
738 the cooked/pseudo register value. */
739 return builtin_type_int32;
740 else if (mips_regsize (gdbarch) == 8)
741 /* 64-bit ISA. */
742 return builtin_type_int64;
743 else
744 /* 32-bit ISA. */
745 return builtin_type_int32;
746 }
747
748 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
749
750 static CORE_ADDR
751 mips_read_sp (void)
752 {
753 return read_signed_register (SP_REGNUM);
754 }
755
756 /* Should the upper word of 64-bit addresses be zeroed? */
757 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
758
759 static int
760 mips_mask_address_p (void)
761 {
762 switch (mask_address_var)
763 {
764 case AUTO_BOOLEAN_TRUE:
765 return 1;
766 case AUTO_BOOLEAN_FALSE:
767 return 0;
768 break;
769 case AUTO_BOOLEAN_AUTO:
770 return MIPS_DEFAULT_MASK_ADDRESS_P;
771 default:
772 internal_error (__FILE__, __LINE__,
773 "mips_mask_address_p: bad switch");
774 return -1;
775 }
776 }
777
778 static void
779 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
780 {
781 switch (mask_address_var)
782 {
783 case AUTO_BOOLEAN_TRUE:
784 printf_filtered ("The 32 bit mips address mask is enabled\n");
785 break;
786 case AUTO_BOOLEAN_FALSE:
787 printf_filtered ("The 32 bit mips address mask is disabled\n");
788 break;
789 case AUTO_BOOLEAN_AUTO:
790 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
791 mips_mask_address_p () ? "enabled" : "disabled");
792 break;
793 default:
794 internal_error (__FILE__, __LINE__,
795 "show_mask_address: bad switch");
796 break;
797 }
798 }
799
800 /* Should call_function allocate stack space for a struct return? */
801
802 static int
803 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
804 {
805 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
806 }
807
808 /* Should call_function pass struct by reference?
809 For each architecture, structs are passed either by
810 value or by reference, depending on their size. */
811
812 static int
813 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
814 {
815 enum type_code typecode = TYPE_CODE (check_typedef (type));
816 int len = TYPE_LENGTH (check_typedef (type));
817
818 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
819 return (len > MIPS_SAVED_REGSIZE);
820
821 return 0;
822 }
823
824 static int
825 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
826 {
827 return 0; /* Assumption: N32/N64 never passes struct by ref. */
828 }
829
830 static int
831 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
832 {
833 return 0; /* Assumption: O32/O64 never passes struct by ref. */
834 }
835
836 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
837
838 static int
839 pc_is_mips16 (bfd_vma memaddr)
840 {
841 struct minimal_symbol *sym;
842
843 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
844 if (is_mips16_addr (memaddr))
845 return 1;
846
847 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
848 the high bit of the info field. Use this to decide if the function is
849 MIPS16 or normal MIPS. */
850 sym = lookup_minimal_symbol_by_pc (memaddr);
851 if (sym)
852 return msymbol_is_special (sym);
853 else
854 return 0;
855 }
856
857 /* MIPS believes that the PC has a sign extended value. Perhaphs the
858 all registers should be sign extended for simplicity? */
859
860 static CORE_ADDR
861 mips_read_pc (ptid_t ptid)
862 {
863 return read_signed_register_pid (PC_REGNUM, ptid);
864 }
865
866 /* This returns the PC of the first inst after the prologue. If we can't
867 find the prologue, then return 0. */
868
869 static CORE_ADDR
870 after_prologue (CORE_ADDR pc,
871 mips_extra_func_info_t proc_desc)
872 {
873 struct symtab_and_line sal;
874 CORE_ADDR func_addr, func_end;
875
876 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
877 to read the stack pointer from the current machine state, because
878 the current machine state has nothing to do with the information
879 we need from the proc_desc; and the process may or may not exist
880 right now. */
881 if (!proc_desc)
882 proc_desc = find_proc_desc (pc, NULL, 0);
883
884 if (proc_desc)
885 {
886 /* If function is frameless, then we need to do it the hard way. I
887 strongly suspect that frameless always means prologueless... */
888 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
889 && PROC_FRAME_OFFSET (proc_desc) == 0)
890 return 0;
891 }
892
893 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
894 return 0; /* Unknown */
895
896 sal = find_pc_line (func_addr, 0);
897
898 if (sal.end < func_end)
899 return sal.end;
900
901 /* The line after the prologue is after the end of the function. In this
902 case, tell the caller to find the prologue the hard way. */
903
904 return 0;
905 }
906
907 /* Decode a MIPS32 instruction that saves a register in the stack, and
908 set the appropriate bit in the general register mask or float register mask
909 to indicate which register is saved. This is a helper function
910 for mips_find_saved_regs. */
911
912 static void
913 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
914 unsigned long *float_mask)
915 {
916 int reg;
917
918 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
919 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
920 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
921 {
922 /* It might be possible to use the instruction to
923 find the offset, rather than the code below which
924 is based on things being in a certain order in the
925 frame, but figuring out what the instruction's offset
926 is relative to might be a little tricky. */
927 reg = (inst & 0x001f0000) >> 16;
928 *gen_mask |= (1 << reg);
929 }
930 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
931 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
932 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
933
934 {
935 reg = ((inst & 0x001f0000) >> 16);
936 *float_mask |= (1 << reg);
937 }
938 }
939
940 /* Decode a MIPS16 instruction that saves a register in the stack, and
941 set the appropriate bit in the general register or float register mask
942 to indicate which register is saved. This is a helper function
943 for mips_find_saved_regs. */
944
945 static void
946 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
947 {
948 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
949 {
950 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
951 *gen_mask |= (1 << reg);
952 }
953 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
954 {
955 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
956 *gen_mask |= (1 << reg);
957 }
958 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
959 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
960 *gen_mask |= (1 << RA_REGNUM);
961 }
962
963
964 /* Fetch and return instruction from the specified location. If the PC
965 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
966
967 static t_inst
968 mips_fetch_instruction (CORE_ADDR addr)
969 {
970 char buf[MIPS_INSTLEN];
971 int instlen;
972 int status;
973
974 if (pc_is_mips16 (addr))
975 {
976 instlen = MIPS16_INSTLEN;
977 addr = unmake_mips16_addr (addr);
978 }
979 else
980 instlen = MIPS_INSTLEN;
981 status = read_memory_nobpt (addr, buf, instlen);
982 if (status)
983 memory_error (status, addr);
984 return extract_unsigned_integer (buf, instlen);
985 }
986
987
988 /* These the fields of 32 bit mips instructions */
989 #define mips32_op(x) (x >> 26)
990 #define itype_op(x) (x >> 26)
991 #define itype_rs(x) ((x >> 21) & 0x1f)
992 #define itype_rt(x) ((x >> 16) & 0x1f)
993 #define itype_immediate(x) (x & 0xffff)
994
995 #define jtype_op(x) (x >> 26)
996 #define jtype_target(x) (x & 0x03ffffff)
997
998 #define rtype_op(x) (x >> 26)
999 #define rtype_rs(x) ((x >> 21) & 0x1f)
1000 #define rtype_rt(x) ((x >> 16) & 0x1f)
1001 #define rtype_rd(x) ((x >> 11) & 0x1f)
1002 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1003 #define rtype_funct(x) (x & 0x3f)
1004
1005 static CORE_ADDR
1006 mips32_relative_offset (unsigned long inst)
1007 {
1008 long x;
1009 x = itype_immediate (inst);
1010 if (x & 0x8000) /* sign bit set */
1011 {
1012 x |= 0xffff0000; /* sign extension */
1013 }
1014 x = x << 2;
1015 return x;
1016 }
1017
1018 /* Determine whate to set a single step breakpoint while considering
1019 branch prediction */
1020 static CORE_ADDR
1021 mips32_next_pc (CORE_ADDR pc)
1022 {
1023 unsigned long inst;
1024 int op;
1025 inst = mips_fetch_instruction (pc);
1026 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1027 {
1028 if (itype_op (inst) >> 2 == 5)
1029 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1030 {
1031 op = (itype_op (inst) & 0x03);
1032 switch (op)
1033 {
1034 case 0: /* BEQL */
1035 goto equal_branch;
1036 case 1: /* BNEL */
1037 goto neq_branch;
1038 case 2: /* BLEZL */
1039 goto less_branch;
1040 case 3: /* BGTZ */
1041 goto greater_branch;
1042 default:
1043 pc += 4;
1044 }
1045 }
1046 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1047 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1048 {
1049 int tf = itype_rt (inst) & 0x01;
1050 int cnum = itype_rt (inst) >> 2;
1051 int fcrcs = read_signed_register (mips_regnum (current_gdbarch)->fp_control_status);
1052 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1053
1054 if (((cond >> cnum) & 0x01) == tf)
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 }
1059 else
1060 pc += 4; /* Not a branch, next instruction is easy */
1061 }
1062 else
1063 { /* This gets way messy */
1064
1065 /* Further subdivide into SPECIAL, REGIMM and other */
1066 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1067 {
1068 case 0: /* SPECIAL */
1069 op = rtype_funct (inst);
1070 switch (op)
1071 {
1072 case 8: /* JR */
1073 case 9: /* JALR */
1074 /* Set PC to that address */
1075 pc = read_signed_register (rtype_rs (inst));
1076 break;
1077 default:
1078 pc += 4;
1079 }
1080
1081 break; /* end SPECIAL */
1082 case 1: /* REGIMM */
1083 {
1084 op = itype_rt (inst); /* branch condition */
1085 switch (op)
1086 {
1087 case 0: /* BLTZ */
1088 case 2: /* BLTZL */
1089 case 16: /* BLTZAL */
1090 case 18: /* BLTZALL */
1091 less_branch:
1092 if (read_signed_register (itype_rs (inst)) < 0)
1093 pc += mips32_relative_offset (inst) + 4;
1094 else
1095 pc += 8; /* after the delay slot */
1096 break;
1097 case 1: /* BGEZ */
1098 case 3: /* BGEZL */
1099 case 17: /* BGEZAL */
1100 case 19: /* BGEZALL */
1101 greater_equal_branch:
1102 if (read_signed_register (itype_rs (inst)) >= 0)
1103 pc += mips32_relative_offset (inst) + 4;
1104 else
1105 pc += 8; /* after the delay slot */
1106 break;
1107 /* All of the other instructions in the REGIMM category */
1108 default:
1109 pc += 4;
1110 }
1111 }
1112 break; /* end REGIMM */
1113 case 2: /* J */
1114 case 3: /* JAL */
1115 {
1116 unsigned long reg;
1117 reg = jtype_target (inst) << 2;
1118 /* Upper four bits get never changed... */
1119 pc = reg + ((pc + 4) & 0xf0000000);
1120 }
1121 break;
1122 /* FIXME case JALX : */
1123 {
1124 unsigned long reg;
1125 reg = jtype_target (inst) << 2;
1126 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1127 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1128 }
1129 break; /* The new PC will be alternate mode */
1130 case 4: /* BEQ, BEQL */
1131 equal_branch:
1132 if (read_signed_register (itype_rs (inst)) ==
1133 read_signed_register (itype_rt (inst)))
1134 pc += mips32_relative_offset (inst) + 4;
1135 else
1136 pc += 8;
1137 break;
1138 case 5: /* BNE, BNEL */
1139 neq_branch:
1140 if (read_signed_register (itype_rs (inst)) !=
1141 read_signed_register (itype_rt (inst)))
1142 pc += mips32_relative_offset (inst) + 4;
1143 else
1144 pc += 8;
1145 break;
1146 case 6: /* BLEZ, BLEZL */
1147 less_zero_branch:
1148 if (read_signed_register (itype_rs (inst) <= 0))
1149 pc += mips32_relative_offset (inst) + 4;
1150 else
1151 pc += 8;
1152 break;
1153 case 7:
1154 default:
1155 greater_branch: /* BGTZ, BGTZL */
1156 if (read_signed_register (itype_rs (inst) > 0))
1157 pc += mips32_relative_offset (inst) + 4;
1158 else
1159 pc += 8;
1160 break;
1161 } /* switch */
1162 } /* else */
1163 return pc;
1164 } /* mips32_next_pc */
1165
1166 /* Decoding the next place to set a breakpoint is irregular for the
1167 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1168 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1169 We dont want to set a single step instruction on the extend instruction
1170 either.
1171 */
1172
1173 /* Lots of mips16 instruction formats */
1174 /* Predicting jumps requires itype,ritype,i8type
1175 and their extensions extItype,extritype,extI8type
1176 */
1177 enum mips16_inst_fmts
1178 {
1179 itype, /* 0 immediate 5,10 */
1180 ritype, /* 1 5,3,8 */
1181 rrtype, /* 2 5,3,3,5 */
1182 rritype, /* 3 5,3,3,5 */
1183 rrrtype, /* 4 5,3,3,3,2 */
1184 rriatype, /* 5 5,3,3,1,4 */
1185 shifttype, /* 6 5,3,3,3,2 */
1186 i8type, /* 7 5,3,8 */
1187 i8movtype, /* 8 5,3,3,5 */
1188 i8mov32rtype, /* 9 5,3,5,3 */
1189 i64type, /* 10 5,3,8 */
1190 ri64type, /* 11 5,3,3,5 */
1191 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1192 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1193 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1194 extRRItype, /* 15 5,5,5,5,3,3,5 */
1195 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1196 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1197 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1198 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1199 extRi64type, /* 20 5,6,5,5,3,3,5 */
1200 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1201 };
1202 /* I am heaping all the fields of the formats into one structure and
1203 then, only the fields which are involved in instruction extension */
1204 struct upk_mips16
1205 {
1206 CORE_ADDR offset;
1207 unsigned int regx; /* Function in i8 type */
1208 unsigned int regy;
1209 };
1210
1211
1212 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1213 for the bits which make up the immediatate extension. */
1214
1215 static CORE_ADDR
1216 extended_offset (unsigned int extension)
1217 {
1218 CORE_ADDR value;
1219 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1220 value = value << 6;
1221 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1222 value = value << 5;
1223 value |= extension & 0x01f; /* extract 4:0 */
1224 return value;
1225 }
1226
1227 /* Only call this function if you know that this is an extendable
1228 instruction, It wont malfunction, but why make excess remote memory references?
1229 If the immediate operands get sign extended or somthing, do it after
1230 the extension is performed.
1231 */
1232 /* FIXME: Every one of these cases needs to worry about sign extension
1233 when the offset is to be used in relative addressing */
1234
1235
1236 static unsigned int
1237 fetch_mips_16 (CORE_ADDR pc)
1238 {
1239 char buf[8];
1240 pc &= 0xfffffffe; /* clear the low order bit */
1241 target_read_memory (pc, buf, 2);
1242 return extract_unsigned_integer (buf, 2);
1243 }
1244
1245 static void
1246 unpack_mips16 (CORE_ADDR pc,
1247 unsigned int extension,
1248 unsigned int inst,
1249 enum mips16_inst_fmts insn_format,
1250 struct upk_mips16 *upk)
1251 {
1252 CORE_ADDR offset;
1253 int regx;
1254 int regy;
1255 switch (insn_format)
1256 {
1257 case itype:
1258 {
1259 CORE_ADDR value;
1260 if (extension)
1261 {
1262 value = extended_offset (extension);
1263 value = value << 11; /* rom for the original value */
1264 value |= inst & 0x7ff; /* eleven bits from instruction */
1265 }
1266 else
1267 {
1268 value = inst & 0x7ff;
1269 /* FIXME : Consider sign extension */
1270 }
1271 offset = value;
1272 regx = -1;
1273 regy = -1;
1274 }
1275 break;
1276 case ritype:
1277 case i8type:
1278 { /* A register identifier and an offset */
1279 /* Most of the fields are the same as I type but the
1280 immediate value is of a different length */
1281 CORE_ADDR value;
1282 if (extension)
1283 {
1284 value = extended_offset (extension);
1285 value = value << 8; /* from the original instruction */
1286 value |= inst & 0xff; /* eleven bits from instruction */
1287 regx = (extension >> 8) & 0x07; /* or i8 funct */
1288 if (value & 0x4000) /* test the sign bit , bit 26 */
1289 {
1290 value &= ~0x3fff; /* remove the sign bit */
1291 value = -value;
1292 }
1293 }
1294 else
1295 {
1296 value = inst & 0xff; /* 8 bits */
1297 regx = (inst >> 8) & 0x07; /* or i8 funct */
1298 /* FIXME: Do sign extension , this format needs it */
1299 if (value & 0x80) /* THIS CONFUSES ME */
1300 {
1301 value &= 0xef; /* remove the sign bit */
1302 value = -value;
1303 }
1304 }
1305 offset = value;
1306 regy = -1;
1307 break;
1308 }
1309 case jalxtype:
1310 {
1311 unsigned long value;
1312 unsigned int nexthalf;
1313 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1314 value = value << 16;
1315 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1316 value |= nexthalf;
1317 offset = value;
1318 regx = -1;
1319 regy = -1;
1320 break;
1321 }
1322 default:
1323 internal_error (__FILE__, __LINE__,
1324 "bad switch");
1325 }
1326 upk->offset = offset;
1327 upk->regx = regx;
1328 upk->regy = regy;
1329 }
1330
1331
1332 static CORE_ADDR
1333 add_offset_16 (CORE_ADDR pc, int offset)
1334 {
1335 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1336 }
1337
1338 static CORE_ADDR
1339 extended_mips16_next_pc (CORE_ADDR pc,
1340 unsigned int extension,
1341 unsigned int insn)
1342 {
1343 int op = (insn >> 11);
1344 switch (op)
1345 {
1346 case 2: /* Branch */
1347 {
1348 CORE_ADDR offset;
1349 struct upk_mips16 upk;
1350 unpack_mips16 (pc, extension, insn, itype, &upk);
1351 offset = upk.offset;
1352 if (offset & 0x800)
1353 {
1354 offset &= 0xeff;
1355 offset = -offset;
1356 }
1357 pc += (offset << 1) + 2;
1358 break;
1359 }
1360 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1361 {
1362 struct upk_mips16 upk;
1363 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1364 pc = add_offset_16 (pc, upk.offset);
1365 if ((insn >> 10) & 0x01) /* Exchange mode */
1366 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1367 else
1368 pc |= 0x01;
1369 break;
1370 }
1371 case 4: /* beqz */
1372 {
1373 struct upk_mips16 upk;
1374 int reg;
1375 unpack_mips16 (pc, extension, insn, ritype, &upk);
1376 reg = read_signed_register (upk.regx);
1377 if (reg == 0)
1378 pc += (upk.offset << 1) + 2;
1379 else
1380 pc += 2;
1381 break;
1382 }
1383 case 5: /* bnez */
1384 {
1385 struct upk_mips16 upk;
1386 int reg;
1387 unpack_mips16 (pc, extension, insn, ritype, &upk);
1388 reg = read_signed_register (upk.regx);
1389 if (reg != 0)
1390 pc += (upk.offset << 1) + 2;
1391 else
1392 pc += 2;
1393 break;
1394 }
1395 case 12: /* I8 Formats btez btnez */
1396 {
1397 struct upk_mips16 upk;
1398 int reg;
1399 unpack_mips16 (pc, extension, insn, i8type, &upk);
1400 /* upk.regx contains the opcode */
1401 reg = read_signed_register (24); /* Test register is 24 */
1402 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1403 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1404 /* pc = add_offset_16(pc,upk.offset) ; */
1405 pc += (upk.offset << 1) + 2;
1406 else
1407 pc += 2;
1408 break;
1409 }
1410 case 29: /* RR Formats JR, JALR, JALR-RA */
1411 {
1412 struct upk_mips16 upk;
1413 /* upk.fmt = rrtype; */
1414 op = insn & 0x1f;
1415 if (op == 0)
1416 {
1417 int reg;
1418 upk.regx = (insn >> 8) & 0x07;
1419 upk.regy = (insn >> 5) & 0x07;
1420 switch (upk.regy)
1421 {
1422 case 0:
1423 reg = upk.regx;
1424 break;
1425 case 1:
1426 reg = 31;
1427 break; /* Function return instruction */
1428 case 2:
1429 reg = upk.regx;
1430 break;
1431 default:
1432 reg = 31;
1433 break; /* BOGUS Guess */
1434 }
1435 pc = read_signed_register (reg);
1436 }
1437 else
1438 pc += 2;
1439 break;
1440 }
1441 case 30:
1442 /* This is an instruction extension. Fetch the real instruction
1443 (which follows the extension) and decode things based on
1444 that. */
1445 {
1446 pc += 2;
1447 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1448 break;
1449 }
1450 default:
1451 {
1452 pc += 2;
1453 break;
1454 }
1455 }
1456 return pc;
1457 }
1458
1459 static CORE_ADDR
1460 mips16_next_pc (CORE_ADDR pc)
1461 {
1462 unsigned int insn = fetch_mips_16 (pc);
1463 return extended_mips16_next_pc (pc, 0, insn);
1464 }
1465
1466 /* The mips_next_pc function supports single_step when the remote
1467 target monitor or stub is not developed enough to do a single_step.
1468 It works by decoding the current instruction and predicting where a
1469 branch will go. This isnt hard because all the data is available.
1470 The MIPS32 and MIPS16 variants are quite different */
1471 CORE_ADDR
1472 mips_next_pc (CORE_ADDR pc)
1473 {
1474 if (pc & 0x01)
1475 return mips16_next_pc (pc);
1476 else
1477 return mips32_next_pc (pc);
1478 }
1479
1480 /* Set up the 'saved_regs' array. This is a data structure containing
1481 the addresses on the stack where each register has been saved, for
1482 each stack frame. Registers that have not been saved will have
1483 zero here. The stack pointer register is special: rather than the
1484 address where the stack register has been saved,
1485 saved_regs[SP_REGNUM] will have the actual value of the previous
1486 frame's stack register. */
1487
1488 static void
1489 mips_find_saved_regs (struct frame_info *fci)
1490 {
1491 int ireg;
1492 /* r0 bit means kernel trap */
1493 int kernel_trap;
1494 /* What registers have been saved? Bitmasks. */
1495 unsigned long gen_mask, float_mask;
1496 mips_extra_func_info_t proc_desc;
1497 t_inst inst;
1498 CORE_ADDR *saved_regs;
1499
1500 if (deprecated_get_frame_saved_regs (fci) != NULL)
1501 return;
1502 saved_regs = frame_saved_regs_zalloc (fci);
1503
1504 /* If it is the frame for sigtramp, the saved registers are located
1505 in a sigcontext structure somewhere on the stack. If the stack
1506 layout for sigtramp changes we might have to change these
1507 constants and the companion fixup_sigtramp in mdebugread.c */
1508 #ifndef SIGFRAME_BASE
1509 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1510 above the sigtramp frame. */
1511 #define SIGFRAME_BASE mips_regsize (current_gdbarch)
1512 /* FIXME! Are these correct?? */
1513 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * mips_regsize (current_gdbarch))
1514 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * mips_regsize (current_gdbarch))
1515 #define SIGFRAME_FPREGSAVE_OFF \
1516 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * mips_regsize (current_gdbarch) + 3 * mips_regsize (current_gdbarch))
1517 #endif
1518 #ifndef SIGFRAME_REG_SIZE
1519 /* FIXME! Is this correct?? */
1520 #define SIGFRAME_REG_SIZE mips_regsize (current_gdbarch)
1521 #endif
1522 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1523 {
1524 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1525 {
1526 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1527 + ireg * SIGFRAME_REG_SIZE);
1528 set_reg_offset (saved_regs, ireg, reg_position);
1529 }
1530 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1531 {
1532 CORE_ADDR reg_position = (get_frame_base (fci)
1533 + SIGFRAME_FPREGSAVE_OFF
1534 + ireg * SIGFRAME_REG_SIZE);
1535 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
1536 }
1537
1538 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1539 /* SP_REGNUM, contains the value and not the address. */
1540 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1541 return;
1542 }
1543
1544 proc_desc = get_frame_extra_info (fci)->proc_desc;
1545 if (proc_desc == NULL)
1546 /* I'm not sure how/whether this can happen. Normally when we
1547 can't find a proc_desc, we "synthesize" one using
1548 heuristic_proc_desc and set the saved_regs right away. */
1549 return;
1550
1551 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1552 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1553 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1554
1555 if (/* In any frame other than the innermost or a frame interrupted
1556 by a signal, we assume that all registers have been saved.
1557 This assumes that all register saves in a function happen
1558 before the first function call. */
1559 (get_next_frame (fci) == NULL
1560 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1561
1562 /* In a dummy frame we know exactly where things are saved. */
1563 && !PROC_DESC_IS_DUMMY (proc_desc)
1564
1565 /* Don't bother unless we are inside a function prologue.
1566 Outside the prologue, we know where everything is. */
1567
1568 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1569
1570 /* Not sure exactly what kernel_trap means, but if it means the
1571 kernel saves the registers without a prologue doing it, we
1572 better not examine the prologue to see whether registers
1573 have been saved yet. */
1574 && !kernel_trap)
1575 {
1576 /* We need to figure out whether the registers that the
1577 proc_desc claims are saved have been saved yet. */
1578
1579 CORE_ADDR addr;
1580
1581 /* Bitmasks; set if we have found a save for the register. */
1582 unsigned long gen_save_found = 0;
1583 unsigned long float_save_found = 0;
1584 int instlen;
1585
1586 /* If the address is odd, assume this is MIPS16 code. */
1587 addr = PROC_LOW_ADDR (proc_desc);
1588 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1589
1590 /* Scan through this function's instructions preceding the
1591 current PC, and look for those that save registers. */
1592 while (addr < get_frame_pc (fci))
1593 {
1594 inst = mips_fetch_instruction (addr);
1595 if (pc_is_mips16 (addr))
1596 mips16_decode_reg_save (inst, &gen_save_found);
1597 else
1598 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1599 addr += instlen;
1600 }
1601 gen_mask = gen_save_found;
1602 float_mask = float_save_found;
1603 }
1604
1605 /* Fill in the offsets for the registers which gen_mask says were
1606 saved. */
1607 {
1608 CORE_ADDR reg_position = (get_frame_base (fci)
1609 + PROC_REG_OFFSET (proc_desc));
1610 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1611 if (gen_mask & 0x80000000)
1612 {
1613 set_reg_offset (saved_regs, ireg, reg_position);
1614 reg_position -= MIPS_SAVED_REGSIZE;
1615 }
1616 }
1617
1618 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1619 order of that normally used by gcc. Therefore, we have to fetch
1620 the first instruction of the function, and if it's an entry
1621 instruction that saves $s0 or $s1, correct their saved addresses. */
1622 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1623 {
1624 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1625 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1626 /* entry */
1627 {
1628 int reg;
1629 int sreg_count = (inst >> 6) & 3;
1630
1631 /* Check if the ra register was pushed on the stack. */
1632 CORE_ADDR reg_position = (get_frame_base (fci)
1633 + PROC_REG_OFFSET (proc_desc));
1634 if (inst & 0x20)
1635 reg_position -= MIPS_SAVED_REGSIZE;
1636
1637 /* Check if the s0 and s1 registers were pushed on the
1638 stack. */
1639 for (reg = 16; reg < sreg_count + 16; reg++)
1640 {
1641 set_reg_offset (saved_regs, reg, reg_position);
1642 reg_position -= MIPS_SAVED_REGSIZE;
1643 }
1644 }
1645 }
1646
1647 /* Fill in the offsets for the registers which float_mask says were
1648 saved. */
1649 {
1650 CORE_ADDR reg_position = (get_frame_base (fci)
1651 + PROC_FREG_OFFSET (proc_desc));
1652
1653 /* Fill in the offsets for the float registers which float_mask
1654 says were saved. */
1655 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1656 if (float_mask & 0x80000000)
1657 {
1658 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1659 {
1660 /* On a big endian 32 bit ABI, floating point registers
1661 are paired to form doubles such that the most
1662 significant part is in $f[N+1] and the least
1663 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1664 registers are also spilled as a pair and stored as a
1665 double.
1666
1667 When little-endian the least significant part is
1668 stored first leading to the memory order $f[N] and
1669 then $f[N+1].
1670
1671 Unfortunately, when big-endian the most significant
1672 part of the double is stored first, and the least
1673 significant is stored second. This leads to the
1674 registers being ordered in memory as firt $f[N+1] and
1675 then $f[N].
1676
1677 For the big-endian case make certain that the
1678 addresses point at the correct (swapped) locations
1679 $f[N] and $f[N+1] pair (keep in mind that
1680 reg_position is decremented each time through the
1681 loop). */
1682 if ((ireg & 1))
1683 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
1684 reg_position - MIPS_SAVED_REGSIZE);
1685 else
1686 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg,
1687 reg_position + MIPS_SAVED_REGSIZE);
1688 }
1689 else
1690 set_reg_offset (saved_regs, mips_regnum (current_gdbarch)->fp0 + ireg, reg_position);
1691 reg_position -= MIPS_SAVED_REGSIZE;
1692 }
1693
1694 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1695 }
1696
1697 /* SP_REGNUM, contains the value and not the address. */
1698 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1699 }
1700
1701 static CORE_ADDR
1702 read_next_frame_reg (struct frame_info *fi, int regno)
1703 {
1704 /* Always a pseudo. */
1705 gdb_assert (regno >= NUM_REGS);
1706 if (fi == NULL)
1707 {
1708 LONGEST val;
1709 regcache_cooked_read_signed (current_regcache, regno, &val);
1710 return val;
1711 }
1712 else if ((regno % NUM_REGS) == SP_REGNUM)
1713 /* The SP_REGNUM is special, its value is stored in saved_regs.
1714 In fact, it is so special that it can even only be fetched
1715 using a raw register number! Once this code as been converted
1716 to frame-unwind the problem goes away. */
1717 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1718 else
1719 return frame_unwind_register_signed (fi, regno);
1720
1721 }
1722
1723 /* mips_addr_bits_remove - remove useless address bits */
1724
1725 static CORE_ADDR
1726 mips_addr_bits_remove (CORE_ADDR addr)
1727 {
1728 if (mips_mask_address_p ()
1729 && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
1730 /* This hack is a work-around for existing boards using PMON, the
1731 simulator, and any other 64-bit targets that doesn't have true
1732 64-bit addressing. On these targets, the upper 32 bits of
1733 addresses are ignored by the hardware. Thus, the PC or SP are
1734 likely to have been sign extended to all 1s by instruction
1735 sequences that load 32-bit addresses. For example, a typical
1736 piece of code that loads an address is this:
1737
1738 lui $r2, <upper 16 bits>
1739 ori $r2, <lower 16 bits>
1740
1741 But the lui sign-extends the value such that the upper 32 bits
1742 may be all 1s. The workaround is simply to mask off these
1743 bits. In the future, gcc may be changed to support true 64-bit
1744 addressing, and this masking will have to be disabled. */
1745 return addr &= 0xffffffffUL;
1746 else
1747 return addr;
1748 }
1749
1750 /* mips_software_single_step() is called just before we want to resume
1751 the inferior, if we want to single-step it but there is no hardware
1752 or kernel single-step support (MIPS on GNU/Linux for example). We find
1753 the target of the coming instruction and breakpoint it.
1754
1755 single_step is also called just after the inferior stops. If we had
1756 set up a simulated single-step, we undo our damage. */
1757
1758 void
1759 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1760 {
1761 static CORE_ADDR next_pc;
1762 typedef char binsn_quantum[BREAKPOINT_MAX];
1763 static binsn_quantum break_mem;
1764 CORE_ADDR pc;
1765
1766 if (insert_breakpoints_p)
1767 {
1768 pc = read_register (PC_REGNUM);
1769 next_pc = mips_next_pc (pc);
1770
1771 target_insert_breakpoint (next_pc, break_mem);
1772 }
1773 else
1774 target_remove_breakpoint (next_pc, break_mem);
1775 }
1776
1777 static CORE_ADDR
1778 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1779 {
1780 CORE_ADDR pc, tmp;
1781
1782 pc = ((fromleaf)
1783 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1784 : get_next_frame (prev)
1785 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1786 : read_pc ());
1787 tmp = SKIP_TRAMPOLINE_CODE (pc);
1788 return tmp ? tmp : pc;
1789 }
1790
1791
1792 static CORE_ADDR
1793 mips_frame_saved_pc (struct frame_info *frame)
1794 {
1795 CORE_ADDR saved_pc;
1796
1797 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1798 {
1799 LONGEST tmp;
1800 /* Always unwind the cooked PC register value. */
1801 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
1802 saved_pc = tmp;
1803 }
1804 else
1805 {
1806 mips_extra_func_info_t proc_desc
1807 = get_frame_extra_info (frame)->proc_desc;
1808 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1809 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1810 else
1811 {
1812 /* We have to get the saved pc from the sigcontext if it is
1813 a signal handler frame. */
1814 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1815 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1816 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1817 }
1818 }
1819 return ADDR_BITS_REMOVE (saved_pc);
1820 }
1821
1822 static struct mips_extra_func_info temp_proc_desc;
1823
1824 /* This hack will go away once the get_prev_frame() code has been
1825 modified to set the frame's type first. That is BEFORE init extra
1826 frame info et.al. is called. This is because it will become
1827 possible to skip the init extra info call for sigtramp and dummy
1828 frames. */
1829 static CORE_ADDR *temp_saved_regs;
1830
1831 /* Set a register's saved stack address in temp_saved_regs. If an
1832 address has already been set for this register, do nothing; this
1833 way we will only recognize the first save of a given register in a
1834 function prologue.
1835
1836 For simplicity, save the address in both [0 .. NUM_REGS) and
1837 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1838 is used as it is only second range (the ABI instead of ISA
1839 registers) that comes into play when finding saved registers in a
1840 frame. */
1841
1842 static void
1843 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1844 {
1845 if (saved_regs[regno] == 0)
1846 {
1847 saved_regs[regno + 0 * NUM_REGS] = offset;
1848 saved_regs[regno + 1 * NUM_REGS] = offset;
1849 }
1850 }
1851
1852
1853 /* Test whether the PC points to the return instruction at the
1854 end of a function. */
1855
1856 static int
1857 mips_about_to_return (CORE_ADDR pc)
1858 {
1859 if (pc_is_mips16 (pc))
1860 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1861 generates a "jr $ra"; other times it generates code to load
1862 the return address from the stack to an accessible register (such
1863 as $a3), then a "jr" using that register. This second case
1864 is almost impossible to distinguish from an indirect jump
1865 used for switch statements, so we don't even try. */
1866 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1867 else
1868 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1869 }
1870
1871
1872 /* This fencepost looks highly suspicious to me. Removing it also
1873 seems suspicious as it could affect remote debugging across serial
1874 lines. */
1875
1876 static CORE_ADDR
1877 heuristic_proc_start (CORE_ADDR pc)
1878 {
1879 CORE_ADDR start_pc;
1880 CORE_ADDR fence;
1881 int instlen;
1882 int seen_adjsp = 0;
1883
1884 pc = ADDR_BITS_REMOVE (pc);
1885 start_pc = pc;
1886 fence = start_pc - heuristic_fence_post;
1887 if (start_pc == 0)
1888 return 0;
1889
1890 if (heuristic_fence_post == UINT_MAX
1891 || fence < VM_MIN_ADDRESS)
1892 fence = VM_MIN_ADDRESS;
1893
1894 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1895
1896 /* search back for previous return */
1897 for (start_pc -= instlen;; start_pc -= instlen)
1898 if (start_pc < fence)
1899 {
1900 /* It's not clear to me why we reach this point when
1901 stop_soon, but with this test, at least we
1902 don't print out warnings for every child forked (eg, on
1903 decstation). 22apr93 rich@cygnus.com. */
1904 if (stop_soon == NO_STOP_QUIETLY)
1905 {
1906 static int blurb_printed = 0;
1907
1908 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1909 paddr_nz (pc));
1910
1911 if (!blurb_printed)
1912 {
1913 /* This actually happens frequently in embedded
1914 development, when you first connect to a board
1915 and your stack pointer and pc are nowhere in
1916 particular. This message needs to give people
1917 in that situation enough information to
1918 determine that it's no big deal. */
1919 printf_filtered ("\n\
1920 GDB is unable to find the start of the function at 0x%s\n\
1921 and thus can't determine the size of that function's stack frame.\n\
1922 This means that GDB may be unable to access that stack frame, or\n\
1923 the frames below it.\n\
1924 This problem is most likely caused by an invalid program counter or\n\
1925 stack pointer.\n\
1926 However, if you think GDB should simply search farther back\n\
1927 from 0x%s for code which looks like the beginning of a\n\
1928 function, you can increase the range of the search using the `set\n\
1929 heuristic-fence-post' command.\n",
1930 paddr_nz (pc), paddr_nz (pc));
1931 blurb_printed = 1;
1932 }
1933 }
1934
1935 return 0;
1936 }
1937 else if (pc_is_mips16 (start_pc))
1938 {
1939 unsigned short inst;
1940
1941 /* On MIPS16, any one of the following is likely to be the
1942 start of a function:
1943 entry
1944 addiu sp,-n
1945 daddiu sp,-n
1946 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1947 inst = mips_fetch_instruction (start_pc);
1948 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1949 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1950 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1951 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1952 break;
1953 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1954 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1955 seen_adjsp = 1;
1956 else
1957 seen_adjsp = 0;
1958 }
1959 else if (mips_about_to_return (start_pc))
1960 {
1961 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1962 break;
1963 }
1964
1965 return start_pc;
1966 }
1967
1968 /* Fetch the immediate value from a MIPS16 instruction.
1969 If the previous instruction was an EXTEND, use it to extend
1970 the upper bits of the immediate value. This is a helper function
1971 for mips16_heuristic_proc_desc. */
1972
1973 static int
1974 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1975 unsigned short inst, /* current instruction */
1976 int nbits, /* number of bits in imm field */
1977 int scale, /* scale factor to be applied to imm */
1978 int is_signed) /* is the imm field signed? */
1979 {
1980 int offset;
1981
1982 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1983 {
1984 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1985 if (offset & 0x8000) /* check for negative extend */
1986 offset = 0 - (0x10000 - (offset & 0xffff));
1987 return offset | (inst & 0x1f);
1988 }
1989 else
1990 {
1991 int max_imm = 1 << nbits;
1992 int mask = max_imm - 1;
1993 int sign_bit = max_imm >> 1;
1994
1995 offset = inst & mask;
1996 if (is_signed && (offset & sign_bit))
1997 offset = 0 - (max_imm - offset);
1998 return offset * scale;
1999 }
2000 }
2001
2002
2003 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2004 stream from start_pc to limit_pc. */
2005
2006 static void
2007 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2008 struct frame_info *next_frame, CORE_ADDR sp)
2009 {
2010 CORE_ADDR cur_pc;
2011 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2012 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2013 unsigned inst = 0; /* current instruction */
2014 unsigned entry_inst = 0; /* the entry instruction */
2015 int reg, offset;
2016
2017 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2018 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2019
2020 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2021 {
2022 /* Save the previous instruction. If it's an EXTEND, we'll extract
2023 the immediate offset extension from it in mips16_get_imm. */
2024 prev_inst = inst;
2025
2026 /* Fetch and decode the instruction. */
2027 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2028 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2029 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2030 {
2031 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2032 if (offset < 0) /* negative stack adjustment? */
2033 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2034 else
2035 /* Exit loop if a positive stack adjustment is found, which
2036 usually means that the stack cleanup code in the function
2037 epilogue is reached. */
2038 break;
2039 }
2040 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2041 {
2042 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2043 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2044 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2045 set_reg_offset (temp_saved_regs, reg, sp + offset);
2046 }
2047 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2048 {
2049 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2050 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2051 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2052 set_reg_offset (temp_saved_regs, reg, sp + offset);
2053 }
2054 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2055 {
2056 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2057 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2058 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2059 }
2060 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2061 {
2062 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2063 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2064 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2065 }
2066 else if (inst == 0x673d) /* move $s1, $sp */
2067 {
2068 frame_addr = sp;
2069 PROC_FRAME_REG (&temp_proc_desc) = 17;
2070 }
2071 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2072 {
2073 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2074 frame_addr = sp + offset;
2075 PROC_FRAME_REG (&temp_proc_desc) = 17;
2076 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2077 }
2078 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2079 {
2080 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2081 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2082 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2083 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2084 }
2085 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2086 {
2087 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2088 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2089 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2090 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2091 }
2092 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2093 entry_inst = inst; /* save for later processing */
2094 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2095 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2096 }
2097
2098 /* The entry instruction is typically the first instruction in a function,
2099 and it stores registers at offsets relative to the value of the old SP
2100 (before the prologue). But the value of the sp parameter to this
2101 function is the new SP (after the prologue has been executed). So we
2102 can't calculate those offsets until we've seen the entire prologue,
2103 and can calculate what the old SP must have been. */
2104 if (entry_inst != 0)
2105 {
2106 int areg_count = (entry_inst >> 8) & 7;
2107 int sreg_count = (entry_inst >> 6) & 3;
2108
2109 /* The entry instruction always subtracts 32 from the SP. */
2110 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2111
2112 /* Now we can calculate what the SP must have been at the
2113 start of the function prologue. */
2114 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2115
2116 /* Check if a0-a3 were saved in the caller's argument save area. */
2117 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2118 {
2119 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2120 set_reg_offset (temp_saved_regs, reg, sp + offset);
2121 offset += MIPS_SAVED_REGSIZE;
2122 }
2123
2124 /* Check if the ra register was pushed on the stack. */
2125 offset = -4;
2126 if (entry_inst & 0x20)
2127 {
2128 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2129 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2130 offset -= MIPS_SAVED_REGSIZE;
2131 }
2132
2133 /* Check if the s0 and s1 registers were pushed on the stack. */
2134 for (reg = 16; reg < sreg_count + 16; reg++)
2135 {
2136 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2137 set_reg_offset (temp_saved_regs, reg, sp + offset);
2138 offset -= MIPS_SAVED_REGSIZE;
2139 }
2140 }
2141 }
2142
2143 static void
2144 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2145 struct frame_info *next_frame, CORE_ADDR sp)
2146 {
2147 CORE_ADDR cur_pc;
2148 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2149 restart:
2150 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2151 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2152 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2153 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2154 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2155 {
2156 unsigned long inst, high_word, low_word;
2157 int reg;
2158
2159 /* Fetch the instruction. */
2160 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2161
2162 /* Save some code by pre-extracting some useful fields. */
2163 high_word = (inst >> 16) & 0xffff;
2164 low_word = inst & 0xffff;
2165 reg = high_word & 0x1f;
2166
2167 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2168 || high_word == 0x23bd /* addi $sp,$sp,-i */
2169 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2170 {
2171 if (low_word & 0x8000) /* negative stack adjustment? */
2172 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2173 else
2174 /* Exit loop if a positive stack adjustment is found, which
2175 usually means that the stack cleanup code in the function
2176 epilogue is reached. */
2177 break;
2178 }
2179 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2180 {
2181 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2182 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2183 }
2184 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2185 {
2186 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2187 but the register size used is only 32 bits. Make the address
2188 for the saved register point to the lower 32 bits. */
2189 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2190 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - mips_regsize (current_gdbarch));
2191 }
2192 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2193 {
2194 /* Old gcc frame, r30 is virtual frame pointer. */
2195 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2196 frame_addr = sp + low_word;
2197 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2198 {
2199 unsigned alloca_adjust;
2200 PROC_FRAME_REG (&temp_proc_desc) = 30;
2201 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2202 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2203 if (alloca_adjust > 0)
2204 {
2205 /* FP > SP + frame_size. This may be because
2206 * of an alloca or somethings similar.
2207 * Fix sp to "pre-alloca" value, and try again.
2208 */
2209 sp += alloca_adjust;
2210 goto restart;
2211 }
2212 }
2213 }
2214 /* move $30,$sp. With different versions of gas this will be either
2215 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2216 Accept any one of these. */
2217 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2218 {
2219 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2220 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2221 {
2222 unsigned alloca_adjust;
2223 PROC_FRAME_REG (&temp_proc_desc) = 30;
2224 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2225 alloca_adjust = (unsigned) (frame_addr - sp);
2226 if (alloca_adjust > 0)
2227 {
2228 /* FP > SP + frame_size. This may be because
2229 * of an alloca or somethings similar.
2230 * Fix sp to "pre-alloca" value, and try again.
2231 */
2232 sp += alloca_adjust;
2233 goto restart;
2234 }
2235 }
2236 }
2237 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2238 {
2239 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2240 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2241 }
2242 }
2243 }
2244
2245 static mips_extra_func_info_t
2246 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2247 struct frame_info *next_frame, int cur_frame)
2248 {
2249 CORE_ADDR sp;
2250
2251 if (cur_frame)
2252 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2253 else
2254 sp = 0;
2255
2256 if (start_pc == 0)
2257 return NULL;
2258 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2259 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2260 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2261 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2262 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2263 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2264
2265 if (start_pc + 200 < limit_pc)
2266 limit_pc = start_pc + 200;
2267 if (pc_is_mips16 (start_pc))
2268 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2269 else
2270 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2271 return &temp_proc_desc;
2272 }
2273
2274 struct mips_objfile_private
2275 {
2276 bfd_size_type size;
2277 char *contents;
2278 };
2279
2280 /* Global used to communicate between non_heuristic_proc_desc and
2281 compare_pdr_entries within qsort (). */
2282 static bfd *the_bfd;
2283
2284 static int
2285 compare_pdr_entries (const void *a, const void *b)
2286 {
2287 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2288 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2289
2290 if (lhs < rhs)
2291 return -1;
2292 else if (lhs == rhs)
2293 return 0;
2294 else
2295 return 1;
2296 }
2297
2298 static mips_extra_func_info_t
2299 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2300 {
2301 CORE_ADDR startaddr;
2302 mips_extra_func_info_t proc_desc;
2303 struct block *b = block_for_pc (pc);
2304 struct symbol *sym;
2305 struct obj_section *sec;
2306 struct mips_objfile_private *priv;
2307
2308 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2309 return NULL;
2310
2311 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2312 if (addrptr)
2313 *addrptr = startaddr;
2314
2315 priv = NULL;
2316
2317 sec = find_pc_section (pc);
2318 if (sec != NULL)
2319 {
2320 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2321
2322 /* Search the ".pdr" section generated by GAS. This includes most of
2323 the information normally found in ECOFF PDRs. */
2324
2325 the_bfd = sec->objfile->obfd;
2326 if (priv == NULL
2327 && (the_bfd->format == bfd_object
2328 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2329 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2330 {
2331 /* Right now GAS only outputs the address as a four-byte sequence.
2332 This means that we should not bother with this method on 64-bit
2333 targets (until that is fixed). */
2334
2335 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2336 sizeof (struct mips_objfile_private));
2337 priv->size = 0;
2338 sec->objfile->obj_private = priv;
2339 }
2340 else if (priv == NULL)
2341 {
2342 asection *bfdsec;
2343
2344 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2345 sizeof (struct mips_objfile_private));
2346
2347 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2348 if (bfdsec != NULL)
2349 {
2350 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2351 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2352 priv->size);
2353 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2354 priv->contents, 0, priv->size);
2355
2356 /* In general, the .pdr section is sorted. However, in the
2357 presence of multiple code sections (and other corner cases)
2358 it can become unsorted. Sort it so that we can use a faster
2359 binary search. */
2360 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2361 }
2362 else
2363 priv->size = 0;
2364
2365 sec->objfile->obj_private = priv;
2366 }
2367 the_bfd = NULL;
2368
2369 if (priv->size != 0)
2370 {
2371 int low, mid, high;
2372 char *ptr;
2373
2374 low = 0;
2375 high = priv->size / 32;
2376
2377 do
2378 {
2379 CORE_ADDR pdr_pc;
2380
2381 mid = (low + high) / 2;
2382
2383 ptr = priv->contents + mid * 32;
2384 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2385 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2386 SECT_OFF_TEXT (sec->objfile));
2387 if (pdr_pc == startaddr)
2388 break;
2389 if (pdr_pc > startaddr)
2390 high = mid;
2391 else
2392 low = mid + 1;
2393 }
2394 while (low != high);
2395
2396 if (low != high)
2397 {
2398 struct symbol *sym = find_pc_function (pc);
2399
2400 /* Fill in what we need of the proc_desc. */
2401 proc_desc = (mips_extra_func_info_t)
2402 obstack_alloc (&sec->objfile->psymbol_obstack,
2403 sizeof (struct mips_extra_func_info));
2404 PROC_LOW_ADDR (proc_desc) = startaddr;
2405
2406 /* Only used for dummy frames. */
2407 PROC_HIGH_ADDR (proc_desc) = 0;
2408
2409 PROC_FRAME_OFFSET (proc_desc)
2410 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2411 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2412 ptr + 24);
2413 PROC_FRAME_ADJUST (proc_desc) = 0;
2414 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2415 ptr + 4);
2416 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2417 ptr + 12);
2418 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2419 ptr + 8);
2420 PROC_FREG_OFFSET (proc_desc)
2421 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2422 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2423 ptr + 28);
2424 proc_desc->pdr.isym = (long) sym;
2425
2426 return proc_desc;
2427 }
2428 }
2429 }
2430
2431 if (b == NULL)
2432 return NULL;
2433
2434 if (startaddr > BLOCK_START (b))
2435 {
2436 /* This is the "pathological" case referred to in a comment in
2437 print_frame_info. It might be better to move this check into
2438 symbol reading. */
2439 return NULL;
2440 }
2441
2442 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2443
2444 /* If we never found a PDR for this function in symbol reading, then
2445 examine prologues to find the information. */
2446 if (sym)
2447 {
2448 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2449 if (PROC_FRAME_REG (proc_desc) == -1)
2450 return NULL;
2451 else
2452 return proc_desc;
2453 }
2454 else
2455 return NULL;
2456 }
2457
2458
2459 static mips_extra_func_info_t
2460 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2461 {
2462 mips_extra_func_info_t proc_desc;
2463 CORE_ADDR startaddr = 0;
2464
2465 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2466
2467 if (proc_desc)
2468 {
2469 /* IF this is the topmost frame AND
2470 * (this proc does not have debugging information OR
2471 * the PC is in the procedure prologue)
2472 * THEN create a "heuristic" proc_desc (by analyzing
2473 * the actual code) to replace the "official" proc_desc.
2474 */
2475 if (next_frame == NULL)
2476 {
2477 struct symtab_and_line val;
2478 struct symbol *proc_symbol =
2479 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2480
2481 if (proc_symbol)
2482 {
2483 val = find_pc_line (BLOCK_START
2484 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2485 0);
2486 val.pc = val.end ? val.end : pc;
2487 }
2488 if (!proc_symbol || pc < val.pc)
2489 {
2490 mips_extra_func_info_t found_heuristic =
2491 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2492 pc, next_frame, cur_frame);
2493 if (found_heuristic)
2494 proc_desc = found_heuristic;
2495 }
2496 }
2497 }
2498 else
2499 {
2500 /* Is linked_proc_desc_table really necessary? It only seems to be used
2501 by procedure call dummys. However, the procedures being called ought
2502 to have their own proc_descs, and even if they don't,
2503 heuristic_proc_desc knows how to create them! */
2504
2505 struct linked_proc_info *link;
2506
2507 for (link = linked_proc_desc_table; link; link = link->next)
2508 if (PROC_LOW_ADDR (&link->info) <= pc
2509 && PROC_HIGH_ADDR (&link->info) > pc)
2510 return &link->info;
2511
2512 if (startaddr == 0)
2513 startaddr = heuristic_proc_start (pc);
2514
2515 proc_desc =
2516 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2517 }
2518 return proc_desc;
2519 }
2520
2521 static CORE_ADDR
2522 get_frame_pointer (struct frame_info *frame,
2523 mips_extra_func_info_t proc_desc)
2524 {
2525 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2526 + PROC_FRAME_OFFSET (proc_desc)
2527 - PROC_FRAME_ADJUST (proc_desc));
2528 }
2529
2530 static mips_extra_func_info_t cached_proc_desc;
2531
2532 static CORE_ADDR
2533 mips_frame_chain (struct frame_info *frame)
2534 {
2535 mips_extra_func_info_t proc_desc;
2536 CORE_ADDR tmp;
2537 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2538
2539 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
2540 return 0;
2541
2542 /* Check if the PC is inside a call stub. If it is, fetch the
2543 PC of the caller of that stub. */
2544 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2545 saved_pc = tmp;
2546
2547 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2548 {
2549 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2550 is well, frame->frame the bottom of the current frame will
2551 contain that value. */
2552 return get_frame_base (frame);
2553 }
2554
2555 /* Look up the procedure descriptor for this PC. */
2556 proc_desc = find_proc_desc (saved_pc, frame, 1);
2557 if (!proc_desc)
2558 return 0;
2559
2560 cached_proc_desc = proc_desc;
2561
2562 /* If no frame pointer and frame size is zero, we must be at end
2563 of stack (or otherwise hosed). If we don't check frame size,
2564 we loop forever if we see a zero size frame. */
2565 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2566 && PROC_FRAME_OFFSET (proc_desc) == 0
2567 /* The previous frame from a sigtramp frame might be frameless
2568 and have frame size zero. */
2569 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2570 /* For a generic dummy frame, let get_frame_pointer() unwind a
2571 register value saved as part of the dummy frame call. */
2572 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2573 return 0;
2574 else
2575 return get_frame_pointer (frame, proc_desc);
2576 }
2577
2578 static void
2579 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2580 {
2581 int regnum;
2582 mips_extra_func_info_t proc_desc;
2583
2584 if (get_frame_type (fci) == DUMMY_FRAME)
2585 return;
2586
2587 /* Use proc_desc calculated in frame_chain. When there is no
2588 next frame, i.e, get_next_frame (fci) == NULL, we call
2589 find_proc_desc () to calculate it, passing an explicit
2590 NULL as the frame parameter. */
2591 proc_desc =
2592 get_next_frame (fci)
2593 ? cached_proc_desc
2594 : find_proc_desc (get_frame_pc (fci),
2595 NULL /* i.e, get_next_frame (fci) */,
2596 1);
2597
2598 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2599
2600 deprecated_set_frame_saved_regs_hack (fci, NULL);
2601 get_frame_extra_info (fci)->proc_desc =
2602 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2603 if (proc_desc)
2604 {
2605 /* Fixup frame-pointer - only needed for top frame */
2606 /* This may not be quite right, if proc has a real frame register.
2607 Get the value of the frame relative sp, procedure might have been
2608 interrupted by a signal at it's very start. */
2609 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2610 && !PROC_DESC_IS_DUMMY (proc_desc))
2611 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2612 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2613 /* Do not ``fix'' fci->frame. It will have the value of the
2614 generic dummy frame's top-of-stack (since the draft
2615 fci->frame is obtained by returning the unwound stack
2616 pointer) and that is what we want. That way the fci->frame
2617 value will match the top-of-stack value that was saved as
2618 part of the dummy frames data. */
2619 /* Do nothing. */;
2620 else
2621 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2622
2623 if (proc_desc == &temp_proc_desc)
2624 {
2625 char *name;
2626
2627 /* Do not set the saved registers for a sigtramp frame,
2628 mips_find_saved_registers will do that for us. We can't
2629 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2630 yet set. */
2631 /* FIXME: cagney/2002-11-18: This problem will go away once
2632 frame.c:get_prev_frame() is modified to set the frame's
2633 type before calling functions like this. */
2634 find_pc_partial_function (get_frame_pc (fci), &name,
2635 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2636 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2637 {
2638 frame_saved_regs_zalloc (fci);
2639 /* Set value of previous frame's stack pointer.
2640 Remember that saved_regs[SP_REGNUM] is special in
2641 that it contains the value of the stack pointer
2642 register. The other saved_regs values are addresses
2643 (in the inferior) at which a given register's value
2644 may be found. */
2645 set_reg_offset (temp_saved_regs, SP_REGNUM,
2646 get_frame_base (fci));
2647 set_reg_offset (temp_saved_regs, PC_REGNUM,
2648 temp_saved_regs[RA_REGNUM]);
2649 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
2650 SIZEOF_FRAME_SAVED_REGS);
2651 }
2652 }
2653
2654 /* hack: if argument regs are saved, guess these contain args */
2655 /* assume we can't tell how many args for now */
2656 get_frame_extra_info (fci)->num_args = -1;
2657 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2658 {
2659 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2660 {
2661 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2662 break;
2663 }
2664 }
2665 }
2666 }
2667
2668 /* MIPS stack frames are almost impenetrable. When execution stops,
2669 we basically have to look at symbol information for the function
2670 that we stopped in, which tells us *which* register (if any) is
2671 the base of the frame pointer, and what offset from that register
2672 the frame itself is at.
2673
2674 This presents a problem when trying to examine a stack in memory
2675 (that isn't executing at the moment), using the "frame" command. We
2676 don't have a PC, nor do we have any registers except SP.
2677
2678 This routine takes two arguments, SP and PC, and tries to make the
2679 cached frames look as if these two arguments defined a frame on the
2680 cache. This allows the rest of info frame to extract the important
2681 arguments without difficulty. */
2682
2683 struct frame_info *
2684 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2685 {
2686 if (argc != 2)
2687 error ("MIPS frame specifications require two arguments: sp and pc");
2688
2689 return create_new_frame (argv[0], argv[1]);
2690 }
2691
2692 /* According to the current ABI, should the type be passed in a
2693 floating-point register (assuming that there is space)? When there
2694 is no FPU, FP are not even considered as possibile candidates for
2695 FP registers and, consequently this returns false - forces FP
2696 arguments into integer registers. */
2697
2698 static int
2699 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2700 {
2701 return ((typecode == TYPE_CODE_FLT
2702 || (MIPS_EABI
2703 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2704 && TYPE_NFIELDS (arg_type) == 1
2705 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2706 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2707 }
2708
2709 /* On o32, argument passing in GPRs depends on the alignment of the type being
2710 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2711
2712 static int
2713 mips_type_needs_double_align (struct type *type)
2714 {
2715 enum type_code typecode = TYPE_CODE (type);
2716
2717 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2718 return 1;
2719 else if (typecode == TYPE_CODE_STRUCT)
2720 {
2721 if (TYPE_NFIELDS (type) < 1)
2722 return 0;
2723 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2724 }
2725 else if (typecode == TYPE_CODE_UNION)
2726 {
2727 int i, n;
2728
2729 n = TYPE_NFIELDS (type);
2730 for (i = 0; i < n; i++)
2731 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2732 return 1;
2733 return 0;
2734 }
2735 return 0;
2736 }
2737
2738 /* Adjust the address downward (direction of stack growth) so that it
2739 is correctly aligned for a new stack frame. */
2740 static CORE_ADDR
2741 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2742 {
2743 return align_down (addr, 16);
2744 }
2745
2746 static CORE_ADDR
2747 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2748 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2749 struct value **args, CORE_ADDR sp, int struct_return,
2750 CORE_ADDR struct_addr)
2751 {
2752 int argreg;
2753 int float_argreg;
2754 int argnum;
2755 int len = 0;
2756 int stack_offset = 0;
2757
2758 /* For shared libraries, "t9" needs to point at the function
2759 address. */
2760 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2761
2762 /* Set the return address register to point to the entry point of
2763 the program, where a breakpoint lies in wait. */
2764 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2765
2766 /* First ensure that the stack and structure return address (if any)
2767 are properly aligned. The stack has to be at least 64-bit
2768 aligned even on 32-bit machines, because doubles must be 64-bit
2769 aligned. For n32 and n64, stack frames need to be 128-bit
2770 aligned, so we round to this widest known alignment. */
2771
2772 sp = align_down (sp, 16);
2773 struct_addr = align_down (struct_addr, 16);
2774
2775 /* Now make space on the stack for the args. We allocate more
2776 than necessary for EABI, because the first few arguments are
2777 passed in registers, but that's OK. */
2778 for (argnum = 0; argnum < nargs; argnum++)
2779 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2780 MIPS_STACK_ARGSIZE);
2781 sp -= align_up (len, 16);
2782
2783 if (mips_debug)
2784 fprintf_unfiltered (gdb_stdlog,
2785 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2786 paddr_nz (sp), (long) align_up (len, 16));
2787
2788 /* Initialize the integer and float register pointers. */
2789 argreg = A0_REGNUM;
2790 float_argreg = mips_fpa0_regnum (current_gdbarch);
2791
2792 /* The struct_return pointer occupies the first parameter-passing reg. */
2793 if (struct_return)
2794 {
2795 if (mips_debug)
2796 fprintf_unfiltered (gdb_stdlog,
2797 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2798 argreg, paddr_nz (struct_addr));
2799 write_register (argreg++, struct_addr);
2800 }
2801
2802 /* Now load as many as possible of the first arguments into
2803 registers, and push the rest onto the stack. Loop thru args
2804 from first to last. */
2805 for (argnum = 0; argnum < nargs; argnum++)
2806 {
2807 char *val;
2808 char valbuf[MAX_REGISTER_SIZE];
2809 struct value *arg = args[argnum];
2810 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2811 int len = TYPE_LENGTH (arg_type);
2812 enum type_code typecode = TYPE_CODE (arg_type);
2813
2814 if (mips_debug)
2815 fprintf_unfiltered (gdb_stdlog,
2816 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2817 argnum + 1, len, (int) typecode);
2818
2819 /* The EABI passes structures that do not fit in a register by
2820 reference. */
2821 if (len > MIPS_SAVED_REGSIZE
2822 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2823 {
2824 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2825 typecode = TYPE_CODE_PTR;
2826 len = MIPS_SAVED_REGSIZE;
2827 val = valbuf;
2828 if (mips_debug)
2829 fprintf_unfiltered (gdb_stdlog, " push");
2830 }
2831 else
2832 val = (char *) VALUE_CONTENTS (arg);
2833
2834 /* 32-bit ABIs always start floating point arguments in an
2835 even-numbered floating point register. Round the FP register
2836 up before the check to see if there are any FP registers
2837 left. Non MIPS_EABI targets also pass the FP in the integer
2838 registers so also round up normal registers. */
2839 if (!FP_REGISTER_DOUBLE
2840 && fp_register_arg_p (typecode, arg_type))
2841 {
2842 if ((float_argreg & 1))
2843 float_argreg++;
2844 }
2845
2846 /* Floating point arguments passed in registers have to be
2847 treated specially. On 32-bit architectures, doubles
2848 are passed in register pairs; the even register gets
2849 the low word, and the odd register gets the high word.
2850 On non-EABI processors, the first two floating point arguments are
2851 also copied to general registers, because MIPS16 functions
2852 don't use float registers for arguments. This duplication of
2853 arguments in general registers can't hurt non-MIPS16 functions
2854 because those registers are normally skipped. */
2855 /* MIPS_EABI squeezes a struct that contains a single floating
2856 point value into an FP register instead of pushing it onto the
2857 stack. */
2858 if (fp_register_arg_p (typecode, arg_type)
2859 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2860 {
2861 if (!FP_REGISTER_DOUBLE && len == 8)
2862 {
2863 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2864 unsigned long regval;
2865
2866 /* Write the low word of the double to the even register(s). */
2867 regval = extract_unsigned_integer (val + low_offset, 4);
2868 if (mips_debug)
2869 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2870 float_argreg, phex (regval, 4));
2871 write_register (float_argreg++, regval);
2872
2873 /* Write the high word of the double to the odd register(s). */
2874 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2875 if (mips_debug)
2876 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2877 float_argreg, phex (regval, 4));
2878 write_register (float_argreg++, regval);
2879 }
2880 else
2881 {
2882 /* This is a floating point value that fits entirely
2883 in a single register. */
2884 /* On 32 bit ABI's the float_argreg is further adjusted
2885 above to ensure that it is even register aligned. */
2886 LONGEST regval = extract_unsigned_integer (val, len);
2887 if (mips_debug)
2888 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2889 float_argreg, phex (regval, len));
2890 write_register (float_argreg++, regval);
2891 }
2892 }
2893 else
2894 {
2895 /* Copy the argument to general registers or the stack in
2896 register-sized pieces. Large arguments are split between
2897 registers and stack. */
2898 /* Note: structs whose size is not a multiple of
2899 mips_regsize() are treated specially: Irix cc passes them
2900 in registers where gcc sometimes puts them on the stack.
2901 For maximum compatibility, we will put them in both
2902 places. */
2903 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2904 (len % MIPS_SAVED_REGSIZE != 0));
2905
2906 /* Note: Floating-point values that didn't fit into an FP
2907 register are only written to memory. */
2908 while (len > 0)
2909 {
2910 /* Remember if the argument was written to the stack. */
2911 int stack_used_p = 0;
2912 int partial_len =
2913 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2914
2915 if (mips_debug)
2916 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2917 partial_len);
2918
2919 /* Write this portion of the argument to the stack. */
2920 if (argreg > MIPS_LAST_ARG_REGNUM
2921 || odd_sized_struct
2922 || fp_register_arg_p (typecode, arg_type))
2923 {
2924 /* Should shorter than int integer values be
2925 promoted to int before being stored? */
2926 int longword_offset = 0;
2927 CORE_ADDR addr;
2928 stack_used_p = 1;
2929 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2930 {
2931 if (MIPS_STACK_ARGSIZE == 8 &&
2932 (typecode == TYPE_CODE_INT ||
2933 typecode == TYPE_CODE_PTR ||
2934 typecode == TYPE_CODE_FLT) && len <= 4)
2935 longword_offset = MIPS_STACK_ARGSIZE - len;
2936 else if ((typecode == TYPE_CODE_STRUCT ||
2937 typecode == TYPE_CODE_UNION) &&
2938 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2939 longword_offset = MIPS_STACK_ARGSIZE - len;
2940 }
2941
2942 if (mips_debug)
2943 {
2944 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2945 paddr_nz (stack_offset));
2946 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2947 paddr_nz (longword_offset));
2948 }
2949
2950 addr = sp + stack_offset + longword_offset;
2951
2952 if (mips_debug)
2953 {
2954 int i;
2955 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2956 paddr_nz (addr));
2957 for (i = 0; i < partial_len; i++)
2958 {
2959 fprintf_unfiltered (gdb_stdlog, "%02x",
2960 val[i] & 0xff);
2961 }
2962 }
2963 write_memory (addr, val, partial_len);
2964 }
2965
2966 /* Note!!! This is NOT an else clause. Odd sized
2967 structs may go thru BOTH paths. Floating point
2968 arguments will not. */
2969 /* Write this portion of the argument to a general
2970 purpose register. */
2971 if (argreg <= MIPS_LAST_ARG_REGNUM
2972 && !fp_register_arg_p (typecode, arg_type))
2973 {
2974 LONGEST regval = extract_unsigned_integer (val, partial_len);
2975
2976 if (mips_debug)
2977 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2978 argreg,
2979 phex (regval, MIPS_SAVED_REGSIZE));
2980 write_register (argreg, regval);
2981 argreg++;
2982 }
2983
2984 len -= partial_len;
2985 val += partial_len;
2986
2987 /* Compute the the offset into the stack at which we
2988 will copy the next parameter.
2989
2990 In the new EABI (and the NABI32), the stack_offset
2991 only needs to be adjusted when it has been used. */
2992
2993 if (stack_used_p)
2994 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
2995 }
2996 }
2997 if (mips_debug)
2998 fprintf_unfiltered (gdb_stdlog, "\n");
2999 }
3000
3001 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3002
3003 /* Return adjusted stack pointer. */
3004 return sp;
3005 }
3006
3007 /* N32/N64 version of push_dummy_call. */
3008
3009 static CORE_ADDR
3010 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3011 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3012 struct value **args, CORE_ADDR sp, int struct_return,
3013 CORE_ADDR struct_addr)
3014 {
3015 int argreg;
3016 int float_argreg;
3017 int argnum;
3018 int len = 0;
3019 int stack_offset = 0;
3020
3021 /* For shared libraries, "t9" needs to point at the function
3022 address. */
3023 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3024
3025 /* Set the return address register to point to the entry point of
3026 the program, where a breakpoint lies in wait. */
3027 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3028
3029 /* First ensure that the stack and structure return address (if any)
3030 are properly aligned. The stack has to be at least 64-bit
3031 aligned even on 32-bit machines, because doubles must be 64-bit
3032 aligned. For n32 and n64, stack frames need to be 128-bit
3033 aligned, so we round to this widest known alignment. */
3034
3035 sp = align_down (sp, 16);
3036 struct_addr = align_down (struct_addr, 16);
3037
3038 /* Now make space on the stack for the args. */
3039 for (argnum = 0; argnum < nargs; argnum++)
3040 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3041 MIPS_STACK_ARGSIZE);
3042 sp -= align_up (len, 16);
3043
3044 if (mips_debug)
3045 fprintf_unfiltered (gdb_stdlog,
3046 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3047 paddr_nz (sp), (long) align_up (len, 16));
3048
3049 /* Initialize the integer and float register pointers. */
3050 argreg = A0_REGNUM;
3051 float_argreg = mips_fpa0_regnum (current_gdbarch);
3052
3053 /* The struct_return pointer occupies the first parameter-passing reg. */
3054 if (struct_return)
3055 {
3056 if (mips_debug)
3057 fprintf_unfiltered (gdb_stdlog,
3058 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3059 argreg, paddr_nz (struct_addr));
3060 write_register (argreg++, struct_addr);
3061 }
3062
3063 /* Now load as many as possible of the first arguments into
3064 registers, and push the rest onto the stack. Loop thru args
3065 from first to last. */
3066 for (argnum = 0; argnum < nargs; argnum++)
3067 {
3068 char *val;
3069 char valbuf[MAX_REGISTER_SIZE];
3070 struct value *arg = args[argnum];
3071 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3072 int len = TYPE_LENGTH (arg_type);
3073 enum type_code typecode = TYPE_CODE (arg_type);
3074
3075 if (mips_debug)
3076 fprintf_unfiltered (gdb_stdlog,
3077 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3078 argnum + 1, len, (int) typecode);
3079
3080 val = (char *) VALUE_CONTENTS (arg);
3081
3082 if (fp_register_arg_p (typecode, arg_type)
3083 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3084 {
3085 /* This is a floating point value that fits entirely
3086 in a single register. */
3087 /* On 32 bit ABI's the float_argreg is further adjusted
3088 above to ensure that it is even register aligned. */
3089 LONGEST regval = extract_unsigned_integer (val, len);
3090 if (mips_debug)
3091 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3092 float_argreg, phex (regval, len));
3093 write_register (float_argreg++, regval);
3094
3095 if (mips_debug)
3096 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3097 argreg, phex (regval, len));
3098 write_register (argreg, regval);
3099 argreg += 1;
3100 }
3101 else
3102 {
3103 /* Copy the argument to general registers or the stack in
3104 register-sized pieces. Large arguments are split between
3105 registers and stack. */
3106 /* Note: structs whose size is not a multiple of
3107 mips_regsize() are treated specially: Irix cc passes them
3108 in registers where gcc sometimes puts them on the stack.
3109 For maximum compatibility, we will put them in both
3110 places. */
3111 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3112 (len % MIPS_SAVED_REGSIZE != 0));
3113 /* Note: Floating-point values that didn't fit into an FP
3114 register are only written to memory. */
3115 while (len > 0)
3116 {
3117 /* Rememer if the argument was written to the stack. */
3118 int stack_used_p = 0;
3119 int partial_len = len < MIPS_SAVED_REGSIZE ?
3120 len : MIPS_SAVED_REGSIZE;
3121
3122 if (mips_debug)
3123 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3124 partial_len);
3125
3126 /* Write this portion of the argument to the stack. */
3127 if (argreg > MIPS_LAST_ARG_REGNUM
3128 || odd_sized_struct
3129 || fp_register_arg_p (typecode, arg_type))
3130 {
3131 /* Should shorter than int integer values be
3132 promoted to int before being stored? */
3133 int longword_offset = 0;
3134 CORE_ADDR addr;
3135 stack_used_p = 1;
3136 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3137 {
3138 if (MIPS_STACK_ARGSIZE == 8 &&
3139 (typecode == TYPE_CODE_INT ||
3140 typecode == TYPE_CODE_PTR ||
3141 typecode == TYPE_CODE_FLT) && len <= 4)
3142 longword_offset = MIPS_STACK_ARGSIZE - len;
3143 }
3144
3145 if (mips_debug)
3146 {
3147 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3148 paddr_nz (stack_offset));
3149 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3150 paddr_nz (longword_offset));
3151 }
3152
3153 addr = sp + stack_offset + longword_offset;
3154
3155 if (mips_debug)
3156 {
3157 int i;
3158 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3159 paddr_nz (addr));
3160 for (i = 0; i < partial_len; i++)
3161 {
3162 fprintf_unfiltered (gdb_stdlog, "%02x",
3163 val[i] & 0xff);
3164 }
3165 }
3166 write_memory (addr, val, partial_len);
3167 }
3168
3169 /* Note!!! This is NOT an else clause. Odd sized
3170 structs may go thru BOTH paths. Floating point
3171 arguments will not. */
3172 /* Write this portion of the argument to a general
3173 purpose register. */
3174 if (argreg <= MIPS_LAST_ARG_REGNUM
3175 && !fp_register_arg_p (typecode, arg_type))
3176 {
3177 LONGEST regval = extract_unsigned_integer (val, partial_len);
3178
3179 /* A non-floating-point argument being passed in a
3180 general register. If a struct or union, and if
3181 the remaining length is smaller than the register
3182 size, we have to adjust the register value on
3183 big endian targets.
3184
3185 It does not seem to be necessary to do the
3186 same for integral types.
3187
3188 cagney/2001-07-23: gdb/179: Also, GCC, when
3189 outputting LE O32 with sizeof (struct) <
3190 MIPS_SAVED_REGSIZE, generates a left shift as
3191 part of storing the argument in a register a
3192 register (the left shift isn't generated when
3193 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3194 is quite possible that this is GCC contradicting
3195 the LE/O32 ABI, GDB has not been adjusted to
3196 accommodate this. Either someone needs to
3197 demonstrate that the LE/O32 ABI specifies such a
3198 left shift OR this new ABI gets identified as
3199 such and GDB gets tweaked accordingly. */
3200
3201 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3202 && partial_len < MIPS_SAVED_REGSIZE
3203 && (typecode == TYPE_CODE_STRUCT ||
3204 typecode == TYPE_CODE_UNION))
3205 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3206 TARGET_CHAR_BIT);
3207
3208 if (mips_debug)
3209 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3210 argreg,
3211 phex (regval, MIPS_SAVED_REGSIZE));
3212 write_register (argreg, regval);
3213 argreg++;
3214 }
3215
3216 len -= partial_len;
3217 val += partial_len;
3218
3219 /* Compute the the offset into the stack at which we
3220 will copy the next parameter.
3221
3222 In N32 (N64?), the stack_offset only needs to be
3223 adjusted when it has been used. */
3224
3225 if (stack_used_p)
3226 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3227 }
3228 }
3229 if (mips_debug)
3230 fprintf_unfiltered (gdb_stdlog, "\n");
3231 }
3232
3233 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3234
3235 /* Return adjusted stack pointer. */
3236 return sp;
3237 }
3238
3239 /* O32 version of push_dummy_call. */
3240
3241 static CORE_ADDR
3242 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3243 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3244 struct value **args, CORE_ADDR sp, int struct_return,
3245 CORE_ADDR struct_addr)
3246 {
3247 int argreg;
3248 int float_argreg;
3249 int argnum;
3250 int len = 0;
3251 int stack_offset = 0;
3252
3253 /* For shared libraries, "t9" needs to point at the function
3254 address. */
3255 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3256
3257 /* Set the return address register to point to the entry point of
3258 the program, where a breakpoint lies in wait. */
3259 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3260
3261 /* First ensure that the stack and structure return address (if any)
3262 are properly aligned. The stack has to be at least 64-bit
3263 aligned even on 32-bit machines, because doubles must be 64-bit
3264 aligned. For n32 and n64, stack frames need to be 128-bit
3265 aligned, so we round to this widest known alignment. */
3266
3267 sp = align_down (sp, 16);
3268 struct_addr = align_down (struct_addr, 16);
3269
3270 /* Now make space on the stack for the args. */
3271 for (argnum = 0; argnum < nargs; argnum++)
3272 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3273 MIPS_STACK_ARGSIZE);
3274 sp -= align_up (len, 16);
3275
3276 if (mips_debug)
3277 fprintf_unfiltered (gdb_stdlog,
3278 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3279 paddr_nz (sp), (long) align_up (len, 16));
3280
3281 /* Initialize the integer and float register pointers. */
3282 argreg = A0_REGNUM;
3283 float_argreg = mips_fpa0_regnum (current_gdbarch);
3284
3285 /* The struct_return pointer occupies the first parameter-passing reg. */
3286 if (struct_return)
3287 {
3288 if (mips_debug)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3291 argreg, paddr_nz (struct_addr));
3292 write_register (argreg++, struct_addr);
3293 stack_offset += MIPS_STACK_ARGSIZE;
3294 }
3295
3296 /* Now load as many as possible of the first arguments into
3297 registers, and push the rest onto the stack. Loop thru args
3298 from first to last. */
3299 for (argnum = 0; argnum < nargs; argnum++)
3300 {
3301 char *val;
3302 char valbuf[MAX_REGISTER_SIZE];
3303 struct value *arg = args[argnum];
3304 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3305 int len = TYPE_LENGTH (arg_type);
3306 enum type_code typecode = TYPE_CODE (arg_type);
3307
3308 if (mips_debug)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "mips_o32_push_dummy_call: %d len=%d type=%d",
3311 argnum + 1, len, (int) typecode);
3312
3313 val = (char *) VALUE_CONTENTS (arg);
3314
3315 /* 32-bit ABIs always start floating point arguments in an
3316 even-numbered floating point register. Round the FP register
3317 up before the check to see if there are any FP registers
3318 left. O32/O64 targets also pass the FP in the integer
3319 registers so also round up normal registers. */
3320 if (!FP_REGISTER_DOUBLE
3321 && fp_register_arg_p (typecode, arg_type))
3322 {
3323 if ((float_argreg & 1))
3324 float_argreg++;
3325 }
3326
3327 /* Floating point arguments passed in registers have to be
3328 treated specially. On 32-bit architectures, doubles
3329 are passed in register pairs; the even register gets
3330 the low word, and the odd register gets the high word.
3331 On O32/O64, the first two floating point arguments are
3332 also copied to general registers, because MIPS16 functions
3333 don't use float registers for arguments. This duplication of
3334 arguments in general registers can't hurt non-MIPS16 functions
3335 because those registers are normally skipped. */
3336
3337 if (fp_register_arg_p (typecode, arg_type)
3338 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3339 {
3340 if (!FP_REGISTER_DOUBLE && len == 8)
3341 {
3342 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3343 unsigned long regval;
3344
3345 /* Write the low word of the double to the even register(s). */
3346 regval = extract_unsigned_integer (val + low_offset, 4);
3347 if (mips_debug)
3348 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3349 float_argreg, phex (regval, 4));
3350 write_register (float_argreg++, regval);
3351 if (mips_debug)
3352 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3353 argreg, phex (regval, 4));
3354 write_register (argreg++, regval);
3355
3356 /* Write the high word of the double to the odd register(s). */
3357 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3358 if (mips_debug)
3359 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3360 float_argreg, phex (regval, 4));
3361 write_register (float_argreg++, regval);
3362
3363 if (mips_debug)
3364 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3365 argreg, phex (regval, 4));
3366 write_register (argreg++, regval);
3367 }
3368 else
3369 {
3370 /* This is a floating point value that fits entirely
3371 in a single register. */
3372 /* On 32 bit ABI's the float_argreg is further adjusted
3373 above to ensure that it is even register aligned. */
3374 LONGEST regval = extract_unsigned_integer (val, len);
3375 if (mips_debug)
3376 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3377 float_argreg, phex (regval, len));
3378 write_register (float_argreg++, regval);
3379 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3380 registers for each argument. The below is (my
3381 guess) to ensure that the corresponding integer
3382 register has reserved the same space. */
3383 if (mips_debug)
3384 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3385 argreg, phex (regval, len));
3386 write_register (argreg, regval);
3387 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3388 }
3389 /* Reserve space for the FP register. */
3390 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3391 }
3392 else
3393 {
3394 /* Copy the argument to general registers or the stack in
3395 register-sized pieces. Large arguments are split between
3396 registers and stack. */
3397 /* Note: structs whose size is not a multiple of
3398 mips_regsize() are treated specially: Irix cc passes them
3399 in registers where gcc sometimes puts them on the stack.
3400 For maximum compatibility, we will put them in both
3401 places. */
3402 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3403 (len % MIPS_SAVED_REGSIZE != 0));
3404 /* Structures should be aligned to eight bytes (even arg registers)
3405 on MIPS_ABI_O32, if their first member has double precision. */
3406 if (MIPS_SAVED_REGSIZE < 8
3407 && mips_type_needs_double_align (arg_type))
3408 {
3409 if ((argreg & 1))
3410 argreg++;
3411 }
3412 /* Note: Floating-point values that didn't fit into an FP
3413 register are only written to memory. */
3414 while (len > 0)
3415 {
3416 /* Remember if the argument was written to the stack. */
3417 int stack_used_p = 0;
3418 int partial_len =
3419 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3420
3421 if (mips_debug)
3422 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3423 partial_len);
3424
3425 /* Write this portion of the argument to the stack. */
3426 if (argreg > MIPS_LAST_ARG_REGNUM
3427 || odd_sized_struct
3428 || fp_register_arg_p (typecode, arg_type))
3429 {
3430 /* Should shorter than int integer values be
3431 promoted to int before being stored? */
3432 int longword_offset = 0;
3433 CORE_ADDR addr;
3434 stack_used_p = 1;
3435 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3436 {
3437 if (MIPS_STACK_ARGSIZE == 8 &&
3438 (typecode == TYPE_CODE_INT ||
3439 typecode == TYPE_CODE_PTR ||
3440 typecode == TYPE_CODE_FLT) && len <= 4)
3441 longword_offset = MIPS_STACK_ARGSIZE - len;
3442 }
3443
3444 if (mips_debug)
3445 {
3446 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3447 paddr_nz (stack_offset));
3448 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3449 paddr_nz (longword_offset));
3450 }
3451
3452 addr = sp + stack_offset + longword_offset;
3453
3454 if (mips_debug)
3455 {
3456 int i;
3457 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3458 paddr_nz (addr));
3459 for (i = 0; i < partial_len; i++)
3460 {
3461 fprintf_unfiltered (gdb_stdlog, "%02x",
3462 val[i] & 0xff);
3463 }
3464 }
3465 write_memory (addr, val, partial_len);
3466 }
3467
3468 /* Note!!! This is NOT an else clause. Odd sized
3469 structs may go thru BOTH paths. Floating point
3470 arguments will not. */
3471 /* Write this portion of the argument to a general
3472 purpose register. */
3473 if (argreg <= MIPS_LAST_ARG_REGNUM
3474 && !fp_register_arg_p (typecode, arg_type))
3475 {
3476 LONGEST regval = extract_signed_integer (val, partial_len);
3477 /* Value may need to be sign extended, because
3478 mips_regsize() != MIPS_SAVED_REGSIZE. */
3479
3480 /* A non-floating-point argument being passed in a
3481 general register. If a struct or union, and if
3482 the remaining length is smaller than the register
3483 size, we have to adjust the register value on
3484 big endian targets.
3485
3486 It does not seem to be necessary to do the
3487 same for integral types.
3488
3489 Also don't do this adjustment on O64 binaries.
3490
3491 cagney/2001-07-23: gdb/179: Also, GCC, when
3492 outputting LE O32 with sizeof (struct) <
3493 MIPS_SAVED_REGSIZE, generates a left shift as
3494 part of storing the argument in a register a
3495 register (the left shift isn't generated when
3496 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3497 is quite possible that this is GCC contradicting
3498 the LE/O32 ABI, GDB has not been adjusted to
3499 accommodate this. Either someone needs to
3500 demonstrate that the LE/O32 ABI specifies such a
3501 left shift OR this new ABI gets identified as
3502 such and GDB gets tweaked accordingly. */
3503
3504 if (MIPS_SAVED_REGSIZE < 8
3505 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3506 && partial_len < MIPS_SAVED_REGSIZE
3507 && (typecode == TYPE_CODE_STRUCT ||
3508 typecode == TYPE_CODE_UNION))
3509 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3510 TARGET_CHAR_BIT);
3511
3512 if (mips_debug)
3513 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3514 argreg,
3515 phex (regval, MIPS_SAVED_REGSIZE));
3516 write_register (argreg, regval);
3517 argreg++;
3518
3519 /* Prevent subsequent floating point arguments from
3520 being passed in floating point registers. */
3521 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3522 }
3523
3524 len -= partial_len;
3525 val += partial_len;
3526
3527 /* Compute the the offset into the stack at which we
3528 will copy the next parameter.
3529
3530 In older ABIs, the caller reserved space for
3531 registers that contained arguments. This was loosely
3532 refered to as their "home". Consequently, space is
3533 always allocated. */
3534
3535 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3536 }
3537 }
3538 if (mips_debug)
3539 fprintf_unfiltered (gdb_stdlog, "\n");
3540 }
3541
3542 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3543
3544 /* Return adjusted stack pointer. */
3545 return sp;
3546 }
3547
3548 /* O64 version of push_dummy_call. */
3549
3550 static CORE_ADDR
3551 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3552 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3553 struct value **args, CORE_ADDR sp, int struct_return,
3554 CORE_ADDR struct_addr)
3555 {
3556 int argreg;
3557 int float_argreg;
3558 int argnum;
3559 int len = 0;
3560 int stack_offset = 0;
3561
3562 /* For shared libraries, "t9" needs to point at the function
3563 address. */
3564 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3565
3566 /* Set the return address register to point to the entry point of
3567 the program, where a breakpoint lies in wait. */
3568 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3569
3570 /* First ensure that the stack and structure return address (if any)
3571 are properly aligned. The stack has to be at least 64-bit
3572 aligned even on 32-bit machines, because doubles must be 64-bit
3573 aligned. For n32 and n64, stack frames need to be 128-bit
3574 aligned, so we round to this widest known alignment. */
3575
3576 sp = align_down (sp, 16);
3577 struct_addr = align_down (struct_addr, 16);
3578
3579 /* Now make space on the stack for the args. */
3580 for (argnum = 0; argnum < nargs; argnum++)
3581 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3582 MIPS_STACK_ARGSIZE);
3583 sp -= align_up (len, 16);
3584
3585 if (mips_debug)
3586 fprintf_unfiltered (gdb_stdlog,
3587 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3588 paddr_nz (sp), (long) align_up (len, 16));
3589
3590 /* Initialize the integer and float register pointers. */
3591 argreg = A0_REGNUM;
3592 float_argreg = mips_fpa0_regnum (current_gdbarch);
3593
3594 /* The struct_return pointer occupies the first parameter-passing reg. */
3595 if (struct_return)
3596 {
3597 if (mips_debug)
3598 fprintf_unfiltered (gdb_stdlog,
3599 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3600 argreg, paddr_nz (struct_addr));
3601 write_register (argreg++, struct_addr);
3602 stack_offset += MIPS_STACK_ARGSIZE;
3603 }
3604
3605 /* Now load as many as possible of the first arguments into
3606 registers, and push the rest onto the stack. Loop thru args
3607 from first to last. */
3608 for (argnum = 0; argnum < nargs; argnum++)
3609 {
3610 char *val;
3611 char valbuf[MAX_REGISTER_SIZE];
3612 struct value *arg = args[argnum];
3613 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3614 int len = TYPE_LENGTH (arg_type);
3615 enum type_code typecode = TYPE_CODE (arg_type);
3616
3617 if (mips_debug)
3618 fprintf_unfiltered (gdb_stdlog,
3619 "mips_o64_push_dummy_call: %d len=%d type=%d",
3620 argnum + 1, len, (int) typecode);
3621
3622 val = (char *) VALUE_CONTENTS (arg);
3623
3624 /* 32-bit ABIs always start floating point arguments in an
3625 even-numbered floating point register. Round the FP register
3626 up before the check to see if there are any FP registers
3627 left. O32/O64 targets also pass the FP in the integer
3628 registers so also round up normal registers. */
3629 if (!FP_REGISTER_DOUBLE
3630 && fp_register_arg_p (typecode, arg_type))
3631 {
3632 if ((float_argreg & 1))
3633 float_argreg++;
3634 }
3635
3636 /* Floating point arguments passed in registers have to be
3637 treated specially. On 32-bit architectures, doubles
3638 are passed in register pairs; the even register gets
3639 the low word, and the odd register gets the high word.
3640 On O32/O64, the first two floating point arguments are
3641 also copied to general registers, because MIPS16 functions
3642 don't use float registers for arguments. This duplication of
3643 arguments in general registers can't hurt non-MIPS16 functions
3644 because those registers are normally skipped. */
3645
3646 if (fp_register_arg_p (typecode, arg_type)
3647 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3648 {
3649 if (!FP_REGISTER_DOUBLE && len == 8)
3650 {
3651 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3652 unsigned long regval;
3653
3654 /* Write the low word of the double to the even register(s). */
3655 regval = extract_unsigned_integer (val + low_offset, 4);
3656 if (mips_debug)
3657 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3658 float_argreg, phex (regval, 4));
3659 write_register (float_argreg++, regval);
3660 if (mips_debug)
3661 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3662 argreg, phex (regval, 4));
3663 write_register (argreg++, regval);
3664
3665 /* Write the high word of the double to the odd register(s). */
3666 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3667 if (mips_debug)
3668 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3669 float_argreg, phex (regval, 4));
3670 write_register (float_argreg++, regval);
3671
3672 if (mips_debug)
3673 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3674 argreg, phex (regval, 4));
3675 write_register (argreg++, regval);
3676 }
3677 else
3678 {
3679 /* This is a floating point value that fits entirely
3680 in a single register. */
3681 /* On 32 bit ABI's the float_argreg is further adjusted
3682 above to ensure that it is even register aligned. */
3683 LONGEST regval = extract_unsigned_integer (val, len);
3684 if (mips_debug)
3685 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3686 float_argreg, phex (regval, len));
3687 write_register (float_argreg++, regval);
3688 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3689 registers for each argument. The below is (my
3690 guess) to ensure that the corresponding integer
3691 register has reserved the same space. */
3692 if (mips_debug)
3693 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3694 argreg, phex (regval, len));
3695 write_register (argreg, regval);
3696 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3697 }
3698 /* Reserve space for the FP register. */
3699 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3700 }
3701 else
3702 {
3703 /* Copy the argument to general registers or the stack in
3704 register-sized pieces. Large arguments are split between
3705 registers and stack. */
3706 /* Note: structs whose size is not a multiple of
3707 mips_regsize() are treated specially: Irix cc passes them
3708 in registers where gcc sometimes puts them on the stack.
3709 For maximum compatibility, we will put them in both
3710 places. */
3711 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3712 (len % MIPS_SAVED_REGSIZE != 0));
3713 /* Structures should be aligned to eight bytes (even arg registers)
3714 on MIPS_ABI_O32, if their first member has double precision. */
3715 if (MIPS_SAVED_REGSIZE < 8
3716 && mips_type_needs_double_align (arg_type))
3717 {
3718 if ((argreg & 1))
3719 argreg++;
3720 }
3721 /* Note: Floating-point values that didn't fit into an FP
3722 register are only written to memory. */
3723 while (len > 0)
3724 {
3725 /* Remember if the argument was written to the stack. */
3726 int stack_used_p = 0;
3727 int partial_len =
3728 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3729
3730 if (mips_debug)
3731 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3732 partial_len);
3733
3734 /* Write this portion of the argument to the stack. */
3735 if (argreg > MIPS_LAST_ARG_REGNUM
3736 || odd_sized_struct
3737 || fp_register_arg_p (typecode, arg_type))
3738 {
3739 /* Should shorter than int integer values be
3740 promoted to int before being stored? */
3741 int longword_offset = 0;
3742 CORE_ADDR addr;
3743 stack_used_p = 1;
3744 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3745 {
3746 if (MIPS_STACK_ARGSIZE == 8 &&
3747 (typecode == TYPE_CODE_INT ||
3748 typecode == TYPE_CODE_PTR ||
3749 typecode == TYPE_CODE_FLT) && len <= 4)
3750 longword_offset = MIPS_STACK_ARGSIZE - len;
3751 }
3752
3753 if (mips_debug)
3754 {
3755 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3756 paddr_nz (stack_offset));
3757 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3758 paddr_nz (longword_offset));
3759 }
3760
3761 addr = sp + stack_offset + longword_offset;
3762
3763 if (mips_debug)
3764 {
3765 int i;
3766 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3767 paddr_nz (addr));
3768 for (i = 0; i < partial_len; i++)
3769 {
3770 fprintf_unfiltered (gdb_stdlog, "%02x",
3771 val[i] & 0xff);
3772 }
3773 }
3774 write_memory (addr, val, partial_len);
3775 }
3776
3777 /* Note!!! This is NOT an else clause. Odd sized
3778 structs may go thru BOTH paths. Floating point
3779 arguments will not. */
3780 /* Write this portion of the argument to a general
3781 purpose register. */
3782 if (argreg <= MIPS_LAST_ARG_REGNUM
3783 && !fp_register_arg_p (typecode, arg_type))
3784 {
3785 LONGEST regval = extract_signed_integer (val, partial_len);
3786 /* Value may need to be sign extended, because
3787 mips_regsize() != MIPS_SAVED_REGSIZE. */
3788
3789 /* A non-floating-point argument being passed in a
3790 general register. If a struct or union, and if
3791 the remaining length is smaller than the register
3792 size, we have to adjust the register value on
3793 big endian targets.
3794
3795 It does not seem to be necessary to do the
3796 same for integral types.
3797
3798 Also don't do this adjustment on O64 binaries.
3799
3800 cagney/2001-07-23: gdb/179: Also, GCC, when
3801 outputting LE O32 with sizeof (struct) <
3802 MIPS_SAVED_REGSIZE, generates a left shift as
3803 part of storing the argument in a register a
3804 register (the left shift isn't generated when
3805 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3806 is quite possible that this is GCC contradicting
3807 the LE/O32 ABI, GDB has not been adjusted to
3808 accommodate this. Either someone needs to
3809 demonstrate that the LE/O32 ABI specifies such a
3810 left shift OR this new ABI gets identified as
3811 such and GDB gets tweaked accordingly. */
3812
3813 if (MIPS_SAVED_REGSIZE < 8
3814 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3815 && partial_len < MIPS_SAVED_REGSIZE
3816 && (typecode == TYPE_CODE_STRUCT ||
3817 typecode == TYPE_CODE_UNION))
3818 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3819 TARGET_CHAR_BIT);
3820
3821 if (mips_debug)
3822 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3823 argreg,
3824 phex (regval, MIPS_SAVED_REGSIZE));
3825 write_register (argreg, regval);
3826 argreg++;
3827
3828 /* Prevent subsequent floating point arguments from
3829 being passed in floating point registers. */
3830 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3831 }
3832
3833 len -= partial_len;
3834 val += partial_len;
3835
3836 /* Compute the the offset into the stack at which we
3837 will copy the next parameter.
3838
3839 In older ABIs, the caller reserved space for
3840 registers that contained arguments. This was loosely
3841 refered to as their "home". Consequently, space is
3842 always allocated. */
3843
3844 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3845 }
3846 }
3847 if (mips_debug)
3848 fprintf_unfiltered (gdb_stdlog, "\n");
3849 }
3850
3851 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3852
3853 /* Return adjusted stack pointer. */
3854 return sp;
3855 }
3856
3857 static void
3858 mips_pop_frame (void)
3859 {
3860 int regnum;
3861 struct frame_info *frame = get_current_frame ();
3862 CORE_ADDR new_sp = get_frame_base (frame);
3863 mips_extra_func_info_t proc_desc;
3864
3865 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3866 {
3867 generic_pop_dummy_frame ();
3868 flush_cached_frames ();
3869 return;
3870 }
3871
3872 proc_desc = get_frame_extra_info (frame)->proc_desc;
3873 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3874 mips_find_saved_regs (frame);
3875 for (regnum = 0; regnum < NUM_REGS; regnum++)
3876 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3877 && deprecated_get_frame_saved_regs (frame)[regnum])
3878 {
3879 /* Floating point registers must not be sign extended,
3880 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3881
3882 if (mips_regnum (current_gdbarch)->fp0 <= regnum && regnum < mips_regnum (current_gdbarch)->fp0 + 32)
3883 write_register (regnum,
3884 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3885 MIPS_SAVED_REGSIZE));
3886 else
3887 write_register (regnum,
3888 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3889 MIPS_SAVED_REGSIZE));
3890 }
3891
3892 write_register (SP_REGNUM, new_sp);
3893 flush_cached_frames ();
3894
3895 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3896 {
3897 struct linked_proc_info *pi_ptr, *prev_ptr;
3898
3899 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3900 pi_ptr != NULL;
3901 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3902 {
3903 if (&pi_ptr->info == proc_desc)
3904 break;
3905 }
3906
3907 if (pi_ptr == NULL)
3908 error ("Can't locate dummy extra frame info\n");
3909
3910 if (prev_ptr != NULL)
3911 prev_ptr->next = pi_ptr->next;
3912 else
3913 linked_proc_desc_table = pi_ptr->next;
3914
3915 xfree (pi_ptr);
3916
3917 write_register (mips_regnum (current_gdbarch)->hi,
3918 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3919 MIPS_SAVED_REGSIZE));
3920 write_register (mips_regnum (current_gdbarch)->lo,
3921 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3922 MIPS_SAVED_REGSIZE));
3923 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3924 write_register (mips_regnum (current_gdbarch)->fp_control_status,
3925 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3926 MIPS_SAVED_REGSIZE));
3927 }
3928 }
3929
3930 /* Floating point register management.
3931
3932 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3933 64bit operations, these early MIPS cpus treat fp register pairs
3934 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3935 registers and offer a compatibility mode that emulates the MIPS2 fp
3936 model. When operating in MIPS2 fp compat mode, later cpu's split
3937 double precision floats into two 32-bit chunks and store them in
3938 consecutive fp regs. To display 64-bit floats stored in this
3939 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3940 Throw in user-configurable endianness and you have a real mess.
3941
3942 The way this works is:
3943 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3944 double-precision value will be split across two logical registers.
3945 The lower-numbered logical register will hold the low-order bits,
3946 regardless of the processor's endianness.
3947 - If we are on a 64-bit processor, and we are looking for a
3948 single-precision value, it will be in the low ordered bits
3949 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3950 save slot in memory.
3951 - If we are in 64-bit mode, everything is straightforward.
3952
3953 Note that this code only deals with "live" registers at the top of the
3954 stack. We will attempt to deal with saved registers later, when
3955 the raw/cooked register interface is in place. (We need a general
3956 interface that can deal with dynamic saved register sizes -- fp
3957 regs could be 32 bits wide in one frame and 64 on the frame above
3958 and below). */
3959
3960 static struct type *
3961 mips_float_register_type (void)
3962 {
3963 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3964 return builtin_type_ieee_single_big;
3965 else
3966 return builtin_type_ieee_single_little;
3967 }
3968
3969 static struct type *
3970 mips_double_register_type (void)
3971 {
3972 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3973 return builtin_type_ieee_double_big;
3974 else
3975 return builtin_type_ieee_double_little;
3976 }
3977
3978 /* Copy a 32-bit single-precision value from the current frame
3979 into rare_buffer. */
3980
3981 static void
3982 mips_read_fp_register_single (struct frame_info *frame, int regno,
3983 char *rare_buffer)
3984 {
3985 int raw_size = register_size (current_gdbarch, regno);
3986 char *raw_buffer = alloca (raw_size);
3987
3988 if (!frame_register_read (frame, regno, raw_buffer))
3989 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3990 if (raw_size == 8)
3991 {
3992 /* We have a 64-bit value for this register. Find the low-order
3993 32 bits. */
3994 int offset;
3995
3996 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3997 offset = 4;
3998 else
3999 offset = 0;
4000
4001 memcpy (rare_buffer, raw_buffer + offset, 4);
4002 }
4003 else
4004 {
4005 memcpy (rare_buffer, raw_buffer, 4);
4006 }
4007 }
4008
4009 /* Copy a 64-bit double-precision value from the current frame into
4010 rare_buffer. This may include getting half of it from the next
4011 register. */
4012
4013 static void
4014 mips_read_fp_register_double (struct frame_info *frame, int regno,
4015 char *rare_buffer)
4016 {
4017 int raw_size = register_size (current_gdbarch, regno);
4018
4019 if (raw_size == 8 && !mips2_fp_compat ())
4020 {
4021 /* We have a 64-bit value for this register, and we should use
4022 all 64 bits. */
4023 if (!frame_register_read (frame, regno, rare_buffer))
4024 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4025 }
4026 else
4027 {
4028 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
4029 internal_error (__FILE__, __LINE__,
4030 "mips_read_fp_register_double: bad access to "
4031 "odd-numbered FP register");
4032
4033 /* mips_read_fp_register_single will find the correct 32 bits from
4034 each register. */
4035 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4036 {
4037 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4038 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4039 }
4040 else
4041 {
4042 mips_read_fp_register_single (frame, regno, rare_buffer);
4043 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4044 }
4045 }
4046 }
4047
4048 static void
4049 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4050 int regnum)
4051 { /* do values for FP (float) regs */
4052 char *raw_buffer;
4053 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4054 int inv1, inv2, namelen;
4055
4056 raw_buffer = (char *) alloca (2 * register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0));
4057
4058 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4059 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4060 "");
4061
4062 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
4063 {
4064 /* 4-byte registers: Print hex and floating. Also print even
4065 numbered registers as doubles. */
4066 mips_read_fp_register_single (frame, regnum, raw_buffer);
4067 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4068
4069 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4070
4071 fprintf_filtered (file, " flt: ");
4072 if (inv1)
4073 fprintf_filtered (file, " <invalid float> ");
4074 else
4075 fprintf_filtered (file, "%-17.9g", flt1);
4076
4077 if (regnum % 2 == 0)
4078 {
4079 mips_read_fp_register_double (frame, regnum, raw_buffer);
4080 doub = unpack_double (mips_double_register_type (), raw_buffer,
4081 &inv2);
4082
4083 fprintf_filtered (file, " dbl: ");
4084 if (inv2)
4085 fprintf_filtered (file, "<invalid double>");
4086 else
4087 fprintf_filtered (file, "%-24.17g", doub);
4088 }
4089 }
4090 else
4091 {
4092 /* Eight byte registers: print each one as hex, float and double. */
4093 mips_read_fp_register_single (frame, regnum, raw_buffer);
4094 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4095
4096 mips_read_fp_register_double (frame, regnum, raw_buffer);
4097 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4098
4099
4100 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4101
4102 fprintf_filtered (file, " flt: ");
4103 if (inv1)
4104 fprintf_filtered (file, "<invalid float>");
4105 else
4106 fprintf_filtered (file, "%-17.9g", flt1);
4107
4108 fprintf_filtered (file, " dbl: ");
4109 if (inv2)
4110 fprintf_filtered (file, "<invalid double>");
4111 else
4112 fprintf_filtered (file, "%-24.17g", doub);
4113 }
4114 }
4115
4116 static void
4117 mips_print_register (struct ui_file *file, struct frame_info *frame,
4118 int regnum, int all)
4119 {
4120 struct gdbarch *gdbarch = get_frame_arch (frame);
4121 char raw_buffer[MAX_REGISTER_SIZE];
4122 int offset;
4123
4124 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4125 {
4126 mips_print_fp_register (file, frame, regnum);
4127 return;
4128 }
4129
4130 /* Get the data in raw format. */
4131 if (!frame_register_read (frame, regnum, raw_buffer))
4132 {
4133 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4134 return;
4135 }
4136
4137 fputs_filtered (REGISTER_NAME (regnum), file);
4138
4139 /* The problem with printing numeric register names (r26, etc.) is that
4140 the user can't use them on input. Probably the best solution is to
4141 fix it so that either the numeric or the funky (a2, etc.) names
4142 are accepted on input. */
4143 if (regnum < MIPS_NUMREGS)
4144 fprintf_filtered (file, "(r%d): ", regnum);
4145 else
4146 fprintf_filtered (file, ": ");
4147
4148 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4149 offset = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4150 else
4151 offset = 0;
4152
4153 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4154 'x', 0, file);
4155 }
4156
4157 /* Replacement for generic do_registers_info.
4158 Print regs in pretty columns. */
4159
4160 static int
4161 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4162 int regnum)
4163 {
4164 fprintf_filtered (file, " ");
4165 mips_print_fp_register (file, frame, regnum);
4166 fprintf_filtered (file, "\n");
4167 return regnum + 1;
4168 }
4169
4170
4171 /* Print a row's worth of GP (int) registers, with name labels above */
4172
4173 static int
4174 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4175 int start_regnum)
4176 {
4177 struct gdbarch *gdbarch = get_frame_arch (frame);
4178 /* do values for GP (int) regs */
4179 char raw_buffer[MAX_REGISTER_SIZE];
4180 int ncols = (mips_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4181 int col, byte;
4182 int regnum;
4183
4184 /* For GP registers, we print a separate row of names above the vals */
4185 fprintf_filtered (file, " ");
4186 for (col = 0, regnum = start_regnum;
4187 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4188 regnum++)
4189 {
4190 if (*REGISTER_NAME (regnum) == '\0')
4191 continue; /* unused register */
4192 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4193 break; /* end the row: reached FP register */
4194 fprintf_filtered (file, mips_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4195 REGISTER_NAME (regnum));
4196 col++;
4197 }
4198 /* print the R0 to R31 names */
4199 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4200 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4201 else
4202 fprintf_filtered (file, "\n ");
4203
4204 /* now print the values in hex, 4 or 8 to the row */
4205 for (col = 0, regnum = start_regnum;
4206 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4207 regnum++)
4208 {
4209 if (*REGISTER_NAME (regnum) == '\0')
4210 continue; /* unused register */
4211 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4212 break; /* end row: reached FP register */
4213 /* OK: get the data in raw format. */
4214 if (!frame_register_read (frame, regnum, raw_buffer))
4215 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4216 /* pad small registers */
4217 for (byte = 0;
4218 byte < (mips_regsize (current_gdbarch)
4219 - register_size (current_gdbarch, regnum));
4220 byte++)
4221 printf_filtered (" ");
4222 /* Now print the register value in hex, endian order. */
4223 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4224 for (byte = register_size (current_gdbarch, regnum) - register_size (current_gdbarch, regnum);
4225 byte < register_size (current_gdbarch, regnum);
4226 byte++)
4227 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4228 else
4229 for (byte = register_size (current_gdbarch, regnum) - 1;
4230 byte >= 0;
4231 byte--)
4232 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4233 fprintf_filtered (file, " ");
4234 col++;
4235 }
4236 if (col > 0) /* ie. if we actually printed anything... */
4237 fprintf_filtered (file, "\n");
4238
4239 return regnum;
4240 }
4241
4242 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4243
4244 static void
4245 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4246 struct frame_info *frame, int regnum, int all)
4247 {
4248 if (regnum != -1) /* do one specified register */
4249 {
4250 gdb_assert (regnum >= NUM_REGS);
4251 if (*(REGISTER_NAME (regnum)) == '\0')
4252 error ("Not a valid register for the current processor type");
4253
4254 mips_print_register (file, frame, regnum, 0);
4255 fprintf_filtered (file, "\n");
4256 }
4257 else
4258 /* do all (or most) registers */
4259 {
4260 regnum = NUM_REGS;
4261 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4262 {
4263 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4264 {
4265 if (all) /* true for "INFO ALL-REGISTERS" command */
4266 regnum = print_fp_register_row (file, frame, regnum);
4267 else
4268 regnum += MIPS_NUMREGS; /* skip floating point regs */
4269 }
4270 else
4271 regnum = print_gp_register_row (file, frame, regnum);
4272 }
4273 }
4274 }
4275
4276 /* Is this a branch with a delay slot? */
4277
4278 static int is_delayed (unsigned long);
4279
4280 static int
4281 is_delayed (unsigned long insn)
4282 {
4283 int i;
4284 for (i = 0; i < NUMOPCODES; ++i)
4285 if (mips_opcodes[i].pinfo != INSN_MACRO
4286 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4287 break;
4288 return (i < NUMOPCODES
4289 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4290 | INSN_COND_BRANCH_DELAY
4291 | INSN_COND_BRANCH_LIKELY)));
4292 }
4293
4294 int
4295 mips_step_skips_delay (CORE_ADDR pc)
4296 {
4297 char buf[MIPS_INSTLEN];
4298
4299 /* There is no branch delay slot on MIPS16. */
4300 if (pc_is_mips16 (pc))
4301 return 0;
4302
4303 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4304 /* If error reading memory, guess that it is not a delayed branch. */
4305 return 0;
4306 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4307 }
4308
4309
4310 /* Given PC at the function's start address, attempt to find the
4311 prologue end using SAL information. Return zero if the skip fails.
4312
4313 A non-optimized prologue traditionally has one SAL for the function
4314 and a second for the function body. A single line function has
4315 them both pointing at the same line.
4316
4317 An optimized prologue is similar but the prologue may contain
4318 instructions (SALs) from the instruction body. Need to skip those
4319 while not getting into the function body.
4320
4321 The functions end point and an increasing SAL line are used as
4322 indicators of the prologue's endpoint.
4323
4324 This code is based on the function refine_prologue_limit (versions
4325 found in both ia64 and ppc). */
4326
4327 static CORE_ADDR
4328 skip_prologue_using_sal (CORE_ADDR func_addr)
4329 {
4330 struct symtab_and_line prologue_sal;
4331 CORE_ADDR start_pc;
4332 CORE_ADDR end_pc;
4333
4334 /* Get an initial range for the function. */
4335 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4336 start_pc += FUNCTION_START_OFFSET;
4337
4338 prologue_sal = find_pc_line (start_pc, 0);
4339 if (prologue_sal.line != 0)
4340 {
4341 while (prologue_sal.end < end_pc)
4342 {
4343 struct symtab_and_line sal;
4344
4345 sal = find_pc_line (prologue_sal.end, 0);
4346 if (sal.line == 0)
4347 break;
4348 /* Assume that a consecutive SAL for the same (or larger)
4349 line mark the prologue -> body transition. */
4350 if (sal.line >= prologue_sal.line)
4351 break;
4352 /* The case in which compiler's optimizer/scheduler has
4353 moved instructions into the prologue. We look ahead in
4354 the function looking for address ranges whose
4355 corresponding line number is less the first one that we
4356 found for the function. This is more conservative then
4357 refine_prologue_limit which scans a large number of SALs
4358 looking for any in the prologue */
4359 prologue_sal = sal;
4360 }
4361 }
4362 return prologue_sal.end;
4363 }
4364
4365 /* Skip the PC past function prologue instructions (32-bit version).
4366 This is a helper function for mips_skip_prologue. */
4367
4368 static CORE_ADDR
4369 mips32_skip_prologue (CORE_ADDR pc)
4370 {
4371 t_inst inst;
4372 CORE_ADDR end_pc;
4373 int seen_sp_adjust = 0;
4374 int load_immediate_bytes = 0;
4375
4376 /* Find an upper bound on the prologue. */
4377 end_pc = skip_prologue_using_sal (pc);
4378 if (end_pc == 0)
4379 end_pc = pc + 100; /* Magic. */
4380
4381 /* Skip the typical prologue instructions. These are the stack adjustment
4382 instruction and the instructions that save registers on the stack
4383 or in the gcc frame. */
4384 for (; pc < end_pc; pc += MIPS_INSTLEN)
4385 {
4386 unsigned long high_word;
4387
4388 inst = mips_fetch_instruction (pc);
4389 high_word = (inst >> 16) & 0xffff;
4390
4391 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4392 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4393 seen_sp_adjust = 1;
4394 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4395 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4396 seen_sp_adjust = 1;
4397 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4398 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4399 && (inst & 0x001F0000)) /* reg != $zero */
4400 continue;
4401
4402 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4403 continue;
4404 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4405 /* sx reg,n($s8) */
4406 continue; /* reg != $zero */
4407
4408 /* move $s8,$sp. With different versions of gas this will be either
4409 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4410 Accept any one of these. */
4411 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4412 continue;
4413
4414 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4415 continue;
4416 else if (high_word == 0x3c1c) /* lui $gp,n */
4417 continue;
4418 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4419 continue;
4420 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4421 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4422 continue;
4423 /* The following instructions load $at or $t0 with an immediate
4424 value in preparation for a stack adjustment via
4425 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4426 a local variable, so we accept them only before a stack adjustment
4427 instruction was seen. */
4428 else if (!seen_sp_adjust)
4429 {
4430 if (high_word == 0x3c01 || /* lui $at,n */
4431 high_word == 0x3c08) /* lui $t0,n */
4432 {
4433 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4434 continue;
4435 }
4436 else if (high_word == 0x3421 || /* ori $at,$at,n */
4437 high_word == 0x3508 || /* ori $t0,$t0,n */
4438 high_word == 0x3401 || /* ori $at,$zero,n */
4439 high_word == 0x3408) /* ori $t0,$zero,n */
4440 {
4441 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4442 continue;
4443 }
4444 else
4445 break;
4446 }
4447 else
4448 break;
4449 }
4450
4451 /* In a frameless function, we might have incorrectly
4452 skipped some load immediate instructions. Undo the skipping
4453 if the load immediate was not followed by a stack adjustment. */
4454 if (load_immediate_bytes && !seen_sp_adjust)
4455 pc -= load_immediate_bytes;
4456 return pc;
4457 }
4458
4459 /* Skip the PC past function prologue instructions (16-bit version).
4460 This is a helper function for mips_skip_prologue. */
4461
4462 static CORE_ADDR
4463 mips16_skip_prologue (CORE_ADDR pc)
4464 {
4465 CORE_ADDR end_pc;
4466 int extend_bytes = 0;
4467 int prev_extend_bytes;
4468
4469 /* Table of instructions likely to be found in a function prologue. */
4470 static struct
4471 {
4472 unsigned short inst;
4473 unsigned short mask;
4474 }
4475 table[] =
4476 {
4477 {
4478 0x6300, 0xff00
4479 }
4480 , /* addiu $sp,offset */
4481 {
4482 0xfb00, 0xff00
4483 }
4484 , /* daddiu $sp,offset */
4485 {
4486 0xd000, 0xf800
4487 }
4488 , /* sw reg,n($sp) */
4489 {
4490 0xf900, 0xff00
4491 }
4492 , /* sd reg,n($sp) */
4493 {
4494 0x6200, 0xff00
4495 }
4496 , /* sw $ra,n($sp) */
4497 {
4498 0xfa00, 0xff00
4499 }
4500 , /* sd $ra,n($sp) */
4501 {
4502 0x673d, 0xffff
4503 }
4504 , /* move $s1,sp */
4505 {
4506 0xd980, 0xff80
4507 }
4508 , /* sw $a0-$a3,n($s1) */
4509 {
4510 0x6704, 0xff1c
4511 }
4512 , /* move reg,$a0-$a3 */
4513 {
4514 0xe809, 0xf81f
4515 }
4516 , /* entry pseudo-op */
4517 {
4518 0x0100, 0xff00
4519 }
4520 , /* addiu $s1,$sp,n */
4521 {
4522 0, 0
4523 } /* end of table marker */
4524 };
4525
4526 /* Find an upper bound on the prologue. */
4527 end_pc = skip_prologue_using_sal (pc);
4528 if (end_pc == 0)
4529 end_pc = pc + 100; /* Magic. */
4530
4531 /* Skip the typical prologue instructions. These are the stack adjustment
4532 instruction and the instructions that save registers on the stack
4533 or in the gcc frame. */
4534 for (; pc < end_pc; pc += MIPS16_INSTLEN)
4535 {
4536 unsigned short inst;
4537 int i;
4538
4539 inst = mips_fetch_instruction (pc);
4540
4541 /* Normally we ignore an extend instruction. However, if it is
4542 not followed by a valid prologue instruction, we must adjust
4543 the pc back over the extend so that it won't be considered
4544 part of the prologue. */
4545 if ((inst & 0xf800) == 0xf000) /* extend */
4546 {
4547 extend_bytes = MIPS16_INSTLEN;
4548 continue;
4549 }
4550 prev_extend_bytes = extend_bytes;
4551 extend_bytes = 0;
4552
4553 /* Check for other valid prologue instructions besides extend. */
4554 for (i = 0; table[i].mask != 0; i++)
4555 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4556 break;
4557 if (table[i].mask != 0) /* it was in table? */
4558 continue; /* ignore it */
4559 else
4560 /* non-prologue */
4561 {
4562 /* Return the current pc, adjusted backwards by 2 if
4563 the previous instruction was an extend. */
4564 return pc - prev_extend_bytes;
4565 }
4566 }
4567 return pc;
4568 }
4569
4570 /* To skip prologues, I use this predicate. Returns either PC itself
4571 if the code at PC does not look like a function prologue; otherwise
4572 returns an address that (if we're lucky) follows the prologue. If
4573 LENIENT, then we must skip everything which is involved in setting
4574 up the frame (it's OK to skip more, just so long as we don't skip
4575 anything which might clobber the registers which are being saved.
4576 We must skip more in the case where part of the prologue is in the
4577 delay slot of a non-prologue instruction). */
4578
4579 static CORE_ADDR
4580 mips_skip_prologue (CORE_ADDR pc)
4581 {
4582 /* See if we can determine the end of the prologue via the symbol table.
4583 If so, then return either PC, or the PC after the prologue, whichever
4584 is greater. */
4585
4586 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4587
4588 if (post_prologue_pc != 0)
4589 return max (pc, post_prologue_pc);
4590
4591 /* Can't determine prologue from the symbol table, need to examine
4592 instructions. */
4593
4594 if (pc_is_mips16 (pc))
4595 return mips16_skip_prologue (pc);
4596 else
4597 return mips32_skip_prologue (pc);
4598 }
4599
4600 /* Determine how a return value is stored within the MIPS register
4601 file, given the return type `valtype'. */
4602
4603 struct return_value_word
4604 {
4605 int len;
4606 int reg;
4607 int reg_offset;
4608 int buf_offset;
4609 };
4610
4611 static void
4612 return_value_location (struct type *valtype,
4613 struct return_value_word *hi,
4614 struct return_value_word *lo)
4615 {
4616 int len = TYPE_LENGTH (valtype);
4617
4618 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4619 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4620 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4621 {
4622 if (!FP_REGISTER_DOUBLE && len == 8)
4623 {
4624 /* We need to break a 64bit float in two 32 bit halves and
4625 spread them across a floating-point register pair. */
4626 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4627 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4628 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4629 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8)
4630 ? 4 : 0);
4631 hi->reg_offset = lo->reg_offset;
4632 lo->reg = mips_regnum (current_gdbarch)->fp0 + 0;
4633 hi->reg = mips_regnum (current_gdbarch)->fp0 + 1;
4634 lo->len = 4;
4635 hi->len = 4;
4636 }
4637 else
4638 {
4639 /* The floating point value fits in a single floating-point
4640 register. */
4641 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4642 && register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) == 8
4643 && len == 4)
4644 ? 4 : 0);
4645 lo->reg = mips_regnum (current_gdbarch)->fp0;
4646 lo->len = len;
4647 lo->buf_offset = 0;
4648 hi->len = 0;
4649 hi->reg_offset = 0;
4650 hi->buf_offset = 0;
4651 hi->reg = 0;
4652 }
4653 }
4654 else
4655 {
4656 /* Locate a result possibly spread across two registers. */
4657 int regnum = 2;
4658 lo->reg = regnum + 0;
4659 hi->reg = regnum + 1;
4660 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4661 && len < MIPS_SAVED_REGSIZE)
4662 {
4663 /* "un-left-justify" the value in the low register */
4664 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4665 lo->len = len;
4666 hi->reg_offset = 0;
4667 hi->len = 0;
4668 }
4669 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4670 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4671 && len < MIPS_SAVED_REGSIZE * 2
4672 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4673 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4674 {
4675 /* "un-left-justify" the value spread across two registers. */
4676 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4677 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4678 hi->reg_offset = 0;
4679 hi->len = len - lo->len;
4680 }
4681 else
4682 {
4683 /* Only perform a partial copy of the second register. */
4684 lo->reg_offset = 0;
4685 hi->reg_offset = 0;
4686 if (len > MIPS_SAVED_REGSIZE)
4687 {
4688 lo->len = MIPS_SAVED_REGSIZE;
4689 hi->len = len - MIPS_SAVED_REGSIZE;
4690 }
4691 else
4692 {
4693 lo->len = len;
4694 hi->len = 0;
4695 }
4696 }
4697 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4698 && register_size (current_gdbarch, regnum) == 8
4699 && MIPS_SAVED_REGSIZE == 4)
4700 {
4701 /* Account for the fact that only the least-signficant part
4702 of the register is being used */
4703 lo->reg_offset += 4;
4704 hi->reg_offset += 4;
4705 }
4706 lo->buf_offset = 0;
4707 hi->buf_offset = lo->len;
4708 }
4709 }
4710
4711 /* Given a return value in `regbuf' with a type `valtype', extract and
4712 copy its value into `valbuf'. */
4713
4714 static void
4715 mips_eabi_extract_return_value (struct type *valtype,
4716 char regbuf[],
4717 char *valbuf)
4718 {
4719 struct return_value_word lo;
4720 struct return_value_word hi;
4721 return_value_location (valtype, &hi, &lo);
4722
4723 memcpy (valbuf + lo.buf_offset,
4724 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4725 lo.len);
4726
4727 if (hi.len > 0)
4728 memcpy (valbuf + hi.buf_offset,
4729 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4730 hi.len);
4731 }
4732
4733 static void
4734 mips_o64_extract_return_value (struct type *valtype,
4735 char regbuf[],
4736 char *valbuf)
4737 {
4738 struct return_value_word lo;
4739 struct return_value_word hi;
4740 return_value_location (valtype, &hi, &lo);
4741
4742 memcpy (valbuf + lo.buf_offset,
4743 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4744 lo.len);
4745
4746 if (hi.len > 0)
4747 memcpy (valbuf + hi.buf_offset,
4748 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4749 hi.len);
4750 }
4751
4752 /* Given a return value in `valbuf' with a type `valtype', write it's
4753 value into the appropriate register. */
4754
4755 static void
4756 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4757 {
4758 char raw_buffer[MAX_REGISTER_SIZE];
4759 struct return_value_word lo;
4760 struct return_value_word hi;
4761 return_value_location (valtype, &hi, &lo);
4762
4763 memset (raw_buffer, 0, sizeof (raw_buffer));
4764 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4765 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4766 register_size (current_gdbarch, lo.reg));
4767
4768 if (hi.len > 0)
4769 {
4770 memset (raw_buffer, 0, sizeof (raw_buffer));
4771 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4772 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4773 register_size (current_gdbarch, hi.reg));
4774 }
4775 }
4776
4777 static void
4778 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4779 {
4780 char raw_buffer[MAX_REGISTER_SIZE];
4781 struct return_value_word lo;
4782 struct return_value_word hi;
4783 return_value_location (valtype, &hi, &lo);
4784
4785 memset (raw_buffer, 0, sizeof (raw_buffer));
4786 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4787 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4788 register_size (current_gdbarch, lo.reg));
4789
4790 if (hi.len > 0)
4791 {
4792 memset (raw_buffer, 0, sizeof (raw_buffer));
4793 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4794 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4795 register_size (current_gdbarch, hi.reg));
4796 }
4797 }
4798
4799 /* O32 ABI stuff. */
4800
4801 static enum return_value_convention
4802 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
4803 struct regcache *regcache,
4804 void *readbuf, const void *writebuf)
4805 {
4806 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4807
4808 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4809 || TYPE_CODE (type)== TYPE_CODE_UNION
4810 || TYPE_CODE (type)== TYPE_CODE_ARRAY)
4811 return RETURN_VALUE_STRUCT_CONVENTION;
4812 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4813 && TYPE_LENGTH (type) == 4
4814 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4815 {
4816 /* A single-precision floating-point value. It fits in the
4817 least significant part of FP0. */
4818 if (mips_debug)
4819 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4820 mips_xfer_register (regcache,
4821 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4822 TYPE_LENGTH (type),
4823 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4824 return RETURN_VALUE_REGISTER_CONVENTION;
4825 }
4826 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4827 && TYPE_LENGTH (type) == 8
4828 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4829 {
4830 /* A double-precision floating-point value. The most
4831 significant part goes in FP1, and the least significant in
4832 FP0. */
4833 if (mips_debug)
4834 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4835 switch (TARGET_BYTE_ORDER)
4836 {
4837 case BFD_ENDIAN_LITTLE:
4838 mips_xfer_register (regcache,
4839 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4840 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4841 mips_xfer_register (regcache,
4842 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4843 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
4844 break;
4845 case BFD_ENDIAN_BIG:
4846 mips_xfer_register (regcache,
4847 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 1,
4848 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4849 mips_xfer_register (regcache,
4850 NUM_REGS + mips_regnum (current_gdbarch)->fp0 + 0,
4851 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
4852 break;
4853 default:
4854 internal_error (__FILE__, __LINE__, "bad switch");
4855 }
4856 return RETURN_VALUE_REGISTER_CONVENTION;
4857 }
4858 #if 0
4859 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4860 && TYPE_NFIELDS (type) <= 2
4861 && TYPE_NFIELDS (type) >= 1
4862 && ((TYPE_NFIELDS (type) == 1
4863 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4864 == TYPE_CODE_FLT))
4865 || (TYPE_NFIELDS (type) == 2
4866 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4867 == TYPE_CODE_FLT)
4868 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4869 == TYPE_CODE_FLT)))
4870 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4871 {
4872 /* A struct that contains one or two floats. Each value is part
4873 in the least significant part of their floating point
4874 register.. */
4875 bfd_byte reg[MAX_REGISTER_SIZE];
4876 int regnum;
4877 int field;
4878 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
4879 field < TYPE_NFIELDS (type);
4880 field++, regnum += 2)
4881 {
4882 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4883 / TARGET_CHAR_BIT);
4884 if (mips_debug)
4885 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4886 mips_xfer_register (regcache, NUM_REGS + regnum,
4887 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4888 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4889 }
4890 return RETURN_VALUE_REGISTER_CONVENTION;
4891 }
4892 #endif
4893 #if 0
4894 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4895 || TYPE_CODE (type) == TYPE_CODE_UNION)
4896 {
4897 /* A structure or union. Extract the left justified value,
4898 regardless of the byte order. I.e. DO NOT USE
4899 mips_xfer_lower. */
4900 int offset;
4901 int regnum;
4902 for (offset = 0, regnum = V0_REGNUM;
4903 offset < TYPE_LENGTH (type);
4904 offset += register_size (current_gdbarch, regnum), regnum++)
4905 {
4906 int xfer = register_size (current_gdbarch, regnum);
4907 if (offset + xfer > TYPE_LENGTH (type))
4908 xfer = TYPE_LENGTH (type) - offset;
4909 if (mips_debug)
4910 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4911 offset, xfer, regnum);
4912 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4913 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
4914 }
4915 return RETURN_VALUE_REGISTER_CONVENTION;
4916 }
4917 #endif
4918 else
4919 {
4920 /* A scalar extract each part but least-significant-byte
4921 justified. o32 thinks registers are 4 byte, regardless of
4922 the ISA. mips_stack_argsize controls this. */
4923 int offset;
4924 int regnum;
4925 for (offset = 0, regnum = V0_REGNUM;
4926 offset < TYPE_LENGTH (type);
4927 offset += mips_stack_argsize (), regnum++)
4928 {
4929 int xfer = mips_stack_argsize ();
4930 int pos = 0;
4931 if (offset + xfer > TYPE_LENGTH (type))
4932 xfer = TYPE_LENGTH (type) - offset;
4933 if (mips_debug)
4934 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4935 offset, xfer, regnum);
4936 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4937 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4938 }
4939 return RETURN_VALUE_REGISTER_CONVENTION;
4940 }
4941 }
4942
4943 /* N32/N44 ABI stuff. */
4944
4945 static enum return_value_convention
4946 mips_n32n64_return_value (struct gdbarch *gdbarch,
4947 struct type *type, struct regcache *regcache,
4948 void *readbuf, const void *writebuf)
4949 {
4950 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4951 if (TYPE_CODE (type)== TYPE_CODE_STRUCT
4952 || TYPE_CODE (type)== TYPE_CODE_UNION
4953 || TYPE_CODE (type)== TYPE_CODE_ARRAY
4954 || TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE)
4955 return RETURN_VALUE_STRUCT_CONVENTION;
4956 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4957 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4958 {
4959 /* A floating-point value belongs in the least significant part
4960 of FP0. */
4961 if (mips_debug)
4962 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4963 mips_xfer_register (regcache,
4964 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
4965 TYPE_LENGTH (type),
4966 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
4967 return RETURN_VALUE_REGISTER_CONVENTION;
4968 }
4969 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4970 && TYPE_NFIELDS (type) <= 2
4971 && TYPE_NFIELDS (type) >= 1
4972 && ((TYPE_NFIELDS (type) == 1
4973 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4974 == TYPE_CODE_FLT))
4975 || (TYPE_NFIELDS (type) == 2
4976 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4977 == TYPE_CODE_FLT)
4978 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4979 == TYPE_CODE_FLT)))
4980 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4981 {
4982 /* A struct that contains one or two floats. Each value is part
4983 in the least significant part of their floating point
4984 register.. */
4985 bfd_byte reg[MAX_REGISTER_SIZE];
4986 int regnum;
4987 int field;
4988 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
4989 field < TYPE_NFIELDS (type);
4990 field++, regnum += 2)
4991 {
4992 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4993 / TARGET_CHAR_BIT);
4994 if (mips_debug)
4995 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4996 mips_xfer_register (regcache, NUM_REGS + regnum,
4997 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4998 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
4999 }
5000 return RETURN_VALUE_REGISTER_CONVENTION;
5001 }
5002 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5003 || TYPE_CODE (type) == TYPE_CODE_UNION)
5004 {
5005 /* A structure or union. Extract the left justified value,
5006 regardless of the byte order. I.e. DO NOT USE
5007 mips_xfer_lower. */
5008 int offset;
5009 int regnum;
5010 for (offset = 0, regnum = V0_REGNUM;
5011 offset < TYPE_LENGTH (type);
5012 offset += register_size (current_gdbarch, regnum), regnum++)
5013 {
5014 int xfer = register_size (current_gdbarch, regnum);
5015 if (offset + xfer > TYPE_LENGTH (type))
5016 xfer = TYPE_LENGTH (type) - offset;
5017 if (mips_debug)
5018 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5019 offset, xfer, regnum);
5020 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5021 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5022 }
5023 return RETURN_VALUE_REGISTER_CONVENTION;
5024 }
5025 else
5026 {
5027 /* A scalar extract each part but least-significant-byte
5028 justified. */
5029 int offset;
5030 int regnum;
5031 for (offset = 0, regnum = V0_REGNUM;
5032 offset < TYPE_LENGTH (type);
5033 offset += register_size (current_gdbarch, regnum), regnum++)
5034 {
5035 int xfer = register_size (current_gdbarch, regnum);
5036 int pos = 0;
5037 if (offset + xfer > TYPE_LENGTH (type))
5038 xfer = TYPE_LENGTH (type) - offset;
5039 if (mips_debug)
5040 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5041 offset, xfer, regnum);
5042 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5043 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
5044 }
5045 return RETURN_VALUE_REGISTER_CONVENTION;
5046 }
5047 }
5048
5049 static CORE_ADDR
5050 mips_extract_struct_value_address (struct regcache *regcache)
5051 {
5052 /* FIXME: This will only work at random. The caller passes the
5053 struct_return address in V0, but it is not preserved. It may
5054 still be there, or this may be a random value. */
5055 LONGEST val;
5056
5057 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5058 return val;
5059 }
5060
5061 /* Exported procedure: Is PC in the signal trampoline code */
5062
5063 static int
5064 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5065 {
5066 if (sigtramp_address == 0)
5067 fixup_sigtramp ();
5068 return (pc >= sigtramp_address && pc < sigtramp_end);
5069 }
5070
5071 /* Root of all "set mips "/"show mips " commands. This will eventually be
5072 used for all MIPS-specific commands. */
5073
5074 static void
5075 show_mips_command (char *args, int from_tty)
5076 {
5077 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5078 }
5079
5080 static void
5081 set_mips_command (char *args, int from_tty)
5082 {
5083 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5084 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5085 }
5086
5087 /* Commands to show/set the MIPS FPU type. */
5088
5089 static void
5090 show_mipsfpu_command (char *args, int from_tty)
5091 {
5092 char *fpu;
5093 switch (MIPS_FPU_TYPE)
5094 {
5095 case MIPS_FPU_SINGLE:
5096 fpu = "single-precision";
5097 break;
5098 case MIPS_FPU_DOUBLE:
5099 fpu = "double-precision";
5100 break;
5101 case MIPS_FPU_NONE:
5102 fpu = "absent (none)";
5103 break;
5104 default:
5105 internal_error (__FILE__, __LINE__, "bad switch");
5106 }
5107 if (mips_fpu_type_auto)
5108 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5109 fpu);
5110 else
5111 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5112 fpu);
5113 }
5114
5115
5116 static void
5117 set_mipsfpu_command (char *args, int from_tty)
5118 {
5119 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5120 show_mipsfpu_command (args, from_tty);
5121 }
5122
5123 static void
5124 set_mipsfpu_single_command (char *args, int from_tty)
5125 {
5126 mips_fpu_type = MIPS_FPU_SINGLE;
5127 mips_fpu_type_auto = 0;
5128 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5129 }
5130
5131 static void
5132 set_mipsfpu_double_command (char *args, int from_tty)
5133 {
5134 mips_fpu_type = MIPS_FPU_DOUBLE;
5135 mips_fpu_type_auto = 0;
5136 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5137 }
5138
5139 static void
5140 set_mipsfpu_none_command (char *args, int from_tty)
5141 {
5142 mips_fpu_type = MIPS_FPU_NONE;
5143 mips_fpu_type_auto = 0;
5144 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5145 }
5146
5147 static void
5148 set_mipsfpu_auto_command (char *args, int from_tty)
5149 {
5150 mips_fpu_type_auto = 1;
5151 }
5152
5153 /* Attempt to identify the particular processor model by reading the
5154 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
5155 the relevant processor still exists (it dates back to '94) and
5156 secondly this is not the way to do this. The processor type should
5157 be set by forcing an architecture change. */
5158
5159 void
5160 deprecated_mips_set_processor_regs_hack (void)
5161 {
5162 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5163 CORE_ADDR prid;
5164
5165 prid = read_register (PRID_REGNUM);
5166
5167 if ((prid & ~0xf) == 0x700)
5168 tdep->mips_processor_reg_names = mips_r3041_reg_names;
5169 }
5170
5171 /* Just like reinit_frame_cache, but with the right arguments to be
5172 callable as an sfunc. */
5173
5174 static void
5175 reinit_frame_cache_sfunc (char *args, int from_tty,
5176 struct cmd_list_element *c)
5177 {
5178 reinit_frame_cache ();
5179 }
5180
5181 static int
5182 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5183 {
5184 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5185 mips_extra_func_info_t proc_desc;
5186
5187 /* Search for the function containing this address. Set the low bit
5188 of the address when searching, in case we were given an even address
5189 that is the start of a 16-bit function. If we didn't do this,
5190 the search would fail because the symbol table says the function
5191 starts at an odd address, i.e. 1 byte past the given address. */
5192 memaddr = ADDR_BITS_REMOVE (memaddr);
5193 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5194
5195 /* Make an attempt to determine if this is a 16-bit function. If
5196 the procedure descriptor exists and the address therein is odd,
5197 it's definitely a 16-bit function. Otherwise, we have to just
5198 guess that if the address passed in is odd, it's 16-bits. */
5199 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5200 disassembler needs to be able to locally determine the ISA, and
5201 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5202 work. */
5203 if (proc_desc)
5204 {
5205 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5206 info->mach = bfd_mach_mips16;
5207 }
5208 else
5209 {
5210 if (pc_is_mips16 (memaddr))
5211 info->mach = bfd_mach_mips16;
5212 }
5213
5214 /* Round down the instruction address to the appropriate boundary. */
5215 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5216
5217 /* Set the disassembler options. */
5218 if (tdep->mips_abi == MIPS_ABI_N32
5219 || tdep->mips_abi == MIPS_ABI_N64)
5220 {
5221 /* Set up the disassembler info, so that we get the right
5222 register names from libopcodes. */
5223 if (tdep->mips_abi == MIPS_ABI_N32)
5224 info->disassembler_options = "gpr-names=n32";
5225 else
5226 info->disassembler_options = "gpr-names=64";
5227 info->flavour = bfd_target_elf_flavour;
5228 }
5229 else
5230 /* This string is not recognized explicitly by the disassembler,
5231 but it tells the disassembler to not try to guess the ABI from
5232 the bfd elf headers, such that, if the user overrides the ABI
5233 of a program linked as NewABI, the disassembly will follow the
5234 register naming conventions specified by the user. */
5235 info->disassembler_options = "gpr-names=32";
5236
5237 /* Call the appropriate disassembler based on the target endian-ness. */
5238 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5239 return print_insn_big_mips (memaddr, info);
5240 else
5241 return print_insn_little_mips (memaddr, info);
5242 }
5243
5244 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5245 counter value to determine whether a 16- or 32-bit breakpoint should be
5246 used. It returns a pointer to a string of bytes that encode a breakpoint
5247 instruction, stores the length of the string to *lenptr, and adjusts pc
5248 (if necessary) to point to the actual memory location where the
5249 breakpoint should be inserted. */
5250
5251 static const unsigned char *
5252 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5253 {
5254 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5255 {
5256 if (pc_is_mips16 (*pcptr))
5257 {
5258 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5259 *pcptr = unmake_mips16_addr (*pcptr);
5260 *lenptr = sizeof (mips16_big_breakpoint);
5261 return mips16_big_breakpoint;
5262 }
5263 else
5264 {
5265 /* The IDT board uses an unusual breakpoint value, and
5266 sometimes gets confused when it sees the usual MIPS
5267 breakpoint instruction. */
5268 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5269 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5270 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5271
5272 *lenptr = sizeof (big_breakpoint);
5273
5274 if (strcmp (target_shortname, "mips") == 0)
5275 return idt_big_breakpoint;
5276 else if (strcmp (target_shortname, "ddb") == 0
5277 || strcmp (target_shortname, "pmon") == 0
5278 || strcmp (target_shortname, "lsi") == 0)
5279 return pmon_big_breakpoint;
5280 else
5281 return big_breakpoint;
5282 }
5283 }
5284 else
5285 {
5286 if (pc_is_mips16 (*pcptr))
5287 {
5288 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5289 *pcptr = unmake_mips16_addr (*pcptr);
5290 *lenptr = sizeof (mips16_little_breakpoint);
5291 return mips16_little_breakpoint;
5292 }
5293 else
5294 {
5295 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5296 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5297 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5298
5299 *lenptr = sizeof (little_breakpoint);
5300
5301 if (strcmp (target_shortname, "mips") == 0)
5302 return idt_little_breakpoint;
5303 else if (strcmp (target_shortname, "ddb") == 0
5304 || strcmp (target_shortname, "pmon") == 0
5305 || strcmp (target_shortname, "lsi") == 0)
5306 return pmon_little_breakpoint;
5307 else
5308 return little_breakpoint;
5309 }
5310 }
5311 }
5312
5313 /* If PC is in a mips16 call or return stub, return the address of the target
5314 PC, which is either the callee or the caller. There are several
5315 cases which must be handled:
5316
5317 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5318 target PC is in $31 ($ra).
5319 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5320 and the target PC is in $2.
5321 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5322 before the jal instruction, this is effectively a call stub
5323 and the the target PC is in $2. Otherwise this is effectively
5324 a return stub and the target PC is in $18.
5325
5326 See the source code for the stubs in gcc/config/mips/mips16.S for
5327 gory details.
5328
5329 This function implements the SKIP_TRAMPOLINE_CODE macro.
5330 */
5331
5332 static CORE_ADDR
5333 mips_skip_stub (CORE_ADDR pc)
5334 {
5335 char *name;
5336 CORE_ADDR start_addr;
5337
5338 /* Find the starting address and name of the function containing the PC. */
5339 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5340 return 0;
5341
5342 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5343 target PC is in $31 ($ra). */
5344 if (strcmp (name, "__mips16_ret_sf") == 0
5345 || strcmp (name, "__mips16_ret_df") == 0)
5346 return read_signed_register (RA_REGNUM);
5347
5348 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5349 {
5350 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5351 and the target PC is in $2. */
5352 if (name[19] >= '0' && name[19] <= '9')
5353 return read_signed_register (2);
5354
5355 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5356 before the jal instruction, this is effectively a call stub
5357 and the the target PC is in $2. Otherwise this is effectively
5358 a return stub and the target PC is in $18. */
5359 else if (name[19] == 's' || name[19] == 'd')
5360 {
5361 if (pc == start_addr)
5362 {
5363 /* Check if the target of the stub is a compiler-generated
5364 stub. Such a stub for a function bar might have a name
5365 like __fn_stub_bar, and might look like this:
5366 mfc1 $4,$f13
5367 mfc1 $5,$f12
5368 mfc1 $6,$f15
5369 mfc1 $7,$f14
5370 la $1,bar (becomes a lui/addiu pair)
5371 jr $1
5372 So scan down to the lui/addi and extract the target
5373 address from those two instructions. */
5374
5375 CORE_ADDR target_pc = read_signed_register (2);
5376 t_inst inst;
5377 int i;
5378
5379 /* See if the name of the target function is __fn_stub_*. */
5380 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5381 return target_pc;
5382 if (strncmp (name, "__fn_stub_", 10) != 0
5383 && strcmp (name, "etext") != 0
5384 && strcmp (name, "_etext") != 0)
5385 return target_pc;
5386
5387 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5388 The limit on the search is arbitrarily set to 20
5389 instructions. FIXME. */
5390 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5391 {
5392 inst = mips_fetch_instruction (target_pc);
5393 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5394 pc = (inst << 16) & 0xffff0000; /* high word */
5395 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5396 return pc | (inst & 0xffff); /* low word */
5397 }
5398
5399 /* Couldn't find the lui/addui pair, so return stub address. */
5400 return target_pc;
5401 }
5402 else
5403 /* This is the 'return' part of a call stub. The return
5404 address is in $r18. */
5405 return read_signed_register (18);
5406 }
5407 }
5408 return 0; /* not a stub */
5409 }
5410
5411
5412 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5413 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5414
5415 static int
5416 mips_in_call_stub (CORE_ADDR pc, char *name)
5417 {
5418 CORE_ADDR start_addr;
5419
5420 /* Find the starting address of the function containing the PC. If the
5421 caller didn't give us a name, look it up at the same time. */
5422 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5423 return 0;
5424
5425 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5426 {
5427 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5428 if (name[19] >= '0' && name[19] <= '9')
5429 return 1;
5430 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5431 before the jal instruction, this is effectively a call stub. */
5432 else if (name[19] == 's' || name[19] == 'd')
5433 return pc == start_addr;
5434 }
5435
5436 return 0; /* not a stub */
5437 }
5438
5439
5440 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5441 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5442
5443 static int
5444 mips_in_return_stub (CORE_ADDR pc, char *name)
5445 {
5446 CORE_ADDR start_addr;
5447
5448 /* Find the starting address of the function containing the PC. */
5449 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5450 return 0;
5451
5452 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5453 if (strcmp (name, "__mips16_ret_sf") == 0
5454 || strcmp (name, "__mips16_ret_df") == 0)
5455 return 1;
5456
5457 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5458 i.e. after the jal instruction, this is effectively a return stub. */
5459 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5460 && (name[19] == 's' || name[19] == 'd')
5461 && pc != start_addr)
5462 return 1;
5463
5464 return 0; /* not a stub */
5465 }
5466
5467
5468 /* Return non-zero if the PC is in a library helper function that should
5469 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5470
5471 int
5472 mips_ignore_helper (CORE_ADDR pc)
5473 {
5474 char *name;
5475
5476 /* Find the starting address and name of the function containing the PC. */
5477 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5478 return 0;
5479
5480 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5481 that we want to ignore. */
5482 return (strcmp (name, "__mips16_ret_sf") == 0
5483 || strcmp (name, "__mips16_ret_df") == 0);
5484 }
5485
5486
5487 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5488 the register stored on the stack (32) is different to its real raw
5489 size (64). The below ensures that registers are fetched from the
5490 stack using their ABI size and then stored into the RAW_BUFFER
5491 using their raw size.
5492
5493 The alternative to adding this function would be to add an ABI
5494 macro - REGISTER_STACK_SIZE(). */
5495
5496 static void
5497 mips_get_saved_register (char *raw_buffer,
5498 int *optimizedp,
5499 CORE_ADDR *addrp,
5500 struct frame_info *frame,
5501 int regnum,
5502 enum lval_type *lvalp)
5503 {
5504 CORE_ADDR addrx;
5505 enum lval_type lvalx;
5506 int optimizedx;
5507 int realnumx;
5508
5509 /* Always a pseudo. */
5510 gdb_assert (regnum >= NUM_REGS);
5511
5512 /* Make certain that all needed parameters are present. */
5513 if (addrp == NULL)
5514 addrp = &addrx;
5515 if (lvalp == NULL)
5516 lvalp = &lvalx;
5517 if (optimizedp == NULL)
5518 optimizedp = &optimizedx;
5519
5520 if ((regnum % NUM_REGS) == SP_REGNUM)
5521 /* The SP_REGNUM is special, its value is stored in saved_regs.
5522 In fact, it is so special that it can even only be fetched
5523 using a raw register number! Once this code as been converted
5524 to frame-unwind the problem goes away. */
5525 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5526 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5527 &realnumx, raw_buffer);
5528 else
5529 /* Get it from the next frame. */
5530 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5531 regnum, optimizedp, lvalp, addrp,
5532 &realnumx, raw_buffer);
5533 }
5534
5535 /* Immediately after a function call, return the saved pc.
5536 Can't always go through the frames for this because on some machines
5537 the new frame is not set up until the new function executes
5538 some instructions. */
5539
5540 static CORE_ADDR
5541 mips_saved_pc_after_call (struct frame_info *frame)
5542 {
5543 return read_signed_register (RA_REGNUM);
5544 }
5545
5546
5547 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5548 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5549
5550 static int
5551 mips_stab_reg_to_regnum (int num)
5552 {
5553 int regnum;
5554 if (num >= 0 && num < 32)
5555 regnum = num;
5556 else if (num >= 38 && num < 70)
5557 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
5558 else if (num == 70)
5559 regnum = mips_regnum (current_gdbarch)->hi;
5560 else if (num == 71)
5561 regnum = mips_regnum (current_gdbarch)->lo;
5562 else
5563 /* This will hopefully (eventually) provoke a warning. Should
5564 we be calling complaint() here? */
5565 return NUM_REGS + NUM_PSEUDO_REGS;
5566 return NUM_REGS + regnum;
5567 }
5568
5569
5570 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5571 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5572
5573 static int
5574 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5575 {
5576 int regnum;
5577 if (num >= 0 && num < 32)
5578 regnum = num;
5579 else if (num >= 32 && num < 64)
5580 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
5581 else if (num == 64)
5582 regnum = mips_regnum (current_gdbarch)->hi;
5583 else if (num == 65)
5584 regnum = mips_regnum (current_gdbarch)->lo;
5585 else
5586 /* This will hopefully (eventually) provoke a warning. Should we
5587 be calling complaint() here? */
5588 return NUM_REGS + NUM_PSEUDO_REGS;
5589 return NUM_REGS + regnum;
5590 }
5591
5592 static int
5593 mips_register_sim_regno (int regnum)
5594 {
5595 /* Only makes sense to supply raw registers. */
5596 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5597 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5598 decide if it is valid. Should instead define a standard sim/gdb
5599 register numbering scheme. */
5600 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5601 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5602 return regnum;
5603 else
5604 return LEGACY_SIM_REGNO_IGNORE;
5605 }
5606
5607
5608 /* Convert an integer into an address. By first converting the value
5609 into a pointer and then extracting it signed, the address is
5610 guarenteed to be correctly sign extended. */
5611
5612 static CORE_ADDR
5613 mips_integer_to_address (struct type *type, void *buf)
5614 {
5615 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5616 LONGEST val = unpack_long (type, buf);
5617 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5618 return extract_signed_integer (tmp,
5619 TYPE_LENGTH (builtin_type_void_data_ptr));
5620 }
5621
5622 static void
5623 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5624 {
5625 enum mips_abi *abip = (enum mips_abi *) obj;
5626 const char *name = bfd_get_section_name (abfd, sect);
5627
5628 if (*abip != MIPS_ABI_UNKNOWN)
5629 return;
5630
5631 if (strncmp (name, ".mdebug.", 8) != 0)
5632 return;
5633
5634 if (strcmp (name, ".mdebug.abi32") == 0)
5635 *abip = MIPS_ABI_O32;
5636 else if (strcmp (name, ".mdebug.abiN32") == 0)
5637 *abip = MIPS_ABI_N32;
5638 else if (strcmp (name, ".mdebug.abi64") == 0)
5639 *abip = MIPS_ABI_N64;
5640 else if (strcmp (name, ".mdebug.abiO64") == 0)
5641 *abip = MIPS_ABI_O64;
5642 else if (strcmp (name, ".mdebug.eabi32") == 0)
5643 *abip = MIPS_ABI_EABI32;
5644 else if (strcmp (name, ".mdebug.eabi64") == 0)
5645 *abip = MIPS_ABI_EABI64;
5646 else
5647 warning ("unsupported ABI %s.", name + 8);
5648 }
5649
5650 static enum mips_abi
5651 global_mips_abi (void)
5652 {
5653 int i;
5654
5655 for (i = 0; mips_abi_strings[i] != NULL; i++)
5656 if (mips_abi_strings[i] == mips_abi_string)
5657 return (enum mips_abi) i;
5658
5659 internal_error (__FILE__, __LINE__,
5660 "unknown ABI string");
5661 }
5662
5663 static struct gdbarch *
5664 mips_gdbarch_init (struct gdbarch_info info,
5665 struct gdbarch_list *arches)
5666 {
5667 struct gdbarch *gdbarch;
5668 struct gdbarch_tdep *tdep;
5669 int elf_flags;
5670 enum mips_abi mips_abi, found_abi, wanted_abi;
5671 int num_regs;
5672
5673 elf_flags = 0;
5674
5675 if (info.abfd)
5676 {
5677 /* First of all, extract the elf_flags, if available. */
5678 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5679 elf_flags = elf_elfheader (info.abfd)->e_flags;
5680 }
5681
5682 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5683 switch ((elf_flags & EF_MIPS_ABI))
5684 {
5685 case E_MIPS_ABI_O32:
5686 mips_abi = MIPS_ABI_O32;
5687 break;
5688 case E_MIPS_ABI_O64:
5689 mips_abi = MIPS_ABI_O64;
5690 break;
5691 case E_MIPS_ABI_EABI32:
5692 mips_abi = MIPS_ABI_EABI32;
5693 break;
5694 case E_MIPS_ABI_EABI64:
5695 mips_abi = MIPS_ABI_EABI64;
5696 break;
5697 default:
5698 if ((elf_flags & EF_MIPS_ABI2))
5699 mips_abi = MIPS_ABI_N32;
5700 else
5701 mips_abi = MIPS_ABI_UNKNOWN;
5702 break;
5703 }
5704
5705 /* GCC creates a pseudo-section whose name describes the ABI. */
5706 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5707 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5708
5709 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5710 Use the ABI from the last architecture if there is one. */
5711 if (info.abfd == NULL && arches != NULL)
5712 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5713
5714 /* Try the architecture for any hint of the correct ABI. */
5715 if (mips_abi == MIPS_ABI_UNKNOWN
5716 && info.bfd_arch_info != NULL
5717 && info.bfd_arch_info->arch == bfd_arch_mips)
5718 {
5719 switch (info.bfd_arch_info->mach)
5720 {
5721 case bfd_mach_mips3900:
5722 mips_abi = MIPS_ABI_EABI32;
5723 break;
5724 case bfd_mach_mips4100:
5725 case bfd_mach_mips5000:
5726 mips_abi = MIPS_ABI_EABI64;
5727 break;
5728 case bfd_mach_mips8000:
5729 case bfd_mach_mips10000:
5730 /* On Irix, ELF64 executables use the N64 ABI. The
5731 pseudo-sections which describe the ABI aren't present
5732 on IRIX. (Even for executables created by gcc.) */
5733 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5734 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5735 mips_abi = MIPS_ABI_N64;
5736 else
5737 mips_abi = MIPS_ABI_N32;
5738 break;
5739 }
5740 }
5741
5742 if (mips_abi == MIPS_ABI_UNKNOWN)
5743 mips_abi = MIPS_ABI_O32;
5744
5745 /* Now that we have found what the ABI for this binary would be,
5746 check whether the user is overriding it. */
5747 found_abi = mips_abi;
5748 wanted_abi = global_mips_abi ();
5749 if (wanted_abi != MIPS_ABI_UNKNOWN)
5750 mips_abi = wanted_abi;
5751
5752 if (gdbarch_debug)
5753 {
5754 fprintf_unfiltered (gdb_stdlog,
5755 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5756 elf_flags);
5757 fprintf_unfiltered (gdb_stdlog,
5758 "mips_gdbarch_init: mips_abi = %d\n",
5759 mips_abi);
5760 fprintf_unfiltered (gdb_stdlog,
5761 "mips_gdbarch_init: found_mips_abi = %d\n",
5762 found_abi);
5763 }
5764
5765 /* try to find a pre-existing architecture */
5766 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5767 arches != NULL;
5768 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5769 {
5770 /* MIPS needs to be pedantic about which ABI the object is
5771 using. */
5772 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5773 continue;
5774 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5775 continue;
5776 /* Need to be pedantic about which register virtual size is
5777 used. */
5778 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5779 != mips64_transfers_32bit_regs_p)
5780 continue;
5781 return arches->gdbarch;
5782 }
5783
5784 /* Need a new architecture. Fill in a target specific vector. */
5785 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5786 gdbarch = gdbarch_alloc (&info, tdep);
5787 tdep->elf_flags = elf_flags;
5788 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5789
5790 /* Initially set everything according to the default ABI/ISA. */
5791 set_gdbarch_short_bit (gdbarch, 16);
5792 set_gdbarch_int_bit (gdbarch, 32);
5793 set_gdbarch_float_bit (gdbarch, 32);
5794 set_gdbarch_double_bit (gdbarch, 64);
5795 set_gdbarch_long_double_bit (gdbarch, 64);
5796 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5797 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5798 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5799 tdep->found_abi = found_abi;
5800 tdep->mips_abi = mips_abi;
5801
5802 set_gdbarch_elf_make_msymbol_special (gdbarch,
5803 mips_elf_make_msymbol_special);
5804
5805 /* Fill in the OS dependant register numbers. */
5806 {
5807 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5808 struct mips_regnum);
5809 tdep->regnum = regnum;
5810 if (info.osabi == GDB_OSABI_IRIX)
5811 {
5812 regnum->fp0 = 32;
5813 regnum->pc = 64;
5814 regnum->cause = 65;
5815 regnum->badvaddr = 66;
5816 regnum->hi = 67;
5817 regnum->lo = 68;
5818 regnum->fp_control_status = 69;
5819 regnum->fp_implementation_revision = 70;
5820 num_regs = 71;
5821 }
5822 else
5823 {
5824 regnum->lo = MIPS_EMBED_LO_REGNUM;
5825 regnum->hi = MIPS_EMBED_HI_REGNUM;
5826 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5827 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5828 regnum->pc = MIPS_EMBED_PC_REGNUM;
5829 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5830 regnum->fp_control_status = 70;
5831 regnum->fp_implementation_revision = 71;
5832 num_regs = 90;
5833 }
5834 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
5835 replaced by read_pc? */
5836 set_gdbarch_pc_regnum (gdbarch, regnum->pc);
5837 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5838 set_gdbarch_num_regs (gdbarch, num_regs);
5839 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5840 }
5841
5842 switch (mips_abi)
5843 {
5844 case MIPS_ABI_O32:
5845 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5846 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5847 tdep->mips_default_saved_regsize = 4;
5848 tdep->mips_default_stack_argsize = 4;
5849 tdep->mips_fp_register_double = 0;
5850 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5851 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5852 tdep->default_mask_address_p = 0;
5853 set_gdbarch_long_bit (gdbarch, 32);
5854 set_gdbarch_ptr_bit (gdbarch, 32);
5855 set_gdbarch_long_long_bit (gdbarch, 64);
5856 set_gdbarch_deprecated_reg_struct_has_addr
5857 (gdbarch, mips_o32_reg_struct_has_addr);
5858 break;
5859 case MIPS_ABI_O64:
5860 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5861 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5862 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5863 tdep->mips_default_saved_regsize = 8;
5864 tdep->mips_default_stack_argsize = 8;
5865 tdep->mips_fp_register_double = 1;
5866 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5867 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5868 tdep->default_mask_address_p = 0;
5869 set_gdbarch_long_bit (gdbarch, 32);
5870 set_gdbarch_ptr_bit (gdbarch, 32);
5871 set_gdbarch_long_long_bit (gdbarch, 64);
5872 set_gdbarch_deprecated_reg_struct_has_addr
5873 (gdbarch, mips_o32_reg_struct_has_addr);
5874 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5875 break;
5876 case MIPS_ABI_EABI32:
5877 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5878 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5879 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5880 tdep->mips_default_saved_regsize = 4;
5881 tdep->mips_default_stack_argsize = 4;
5882 tdep->mips_fp_register_double = 0;
5883 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5884 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5885 tdep->default_mask_address_p = 0;
5886 set_gdbarch_long_bit (gdbarch, 32);
5887 set_gdbarch_ptr_bit (gdbarch, 32);
5888 set_gdbarch_long_long_bit (gdbarch, 64);
5889 set_gdbarch_deprecated_reg_struct_has_addr
5890 (gdbarch, mips_eabi_reg_struct_has_addr);
5891 set_gdbarch_use_struct_convention (gdbarch,
5892 mips_eabi_use_struct_convention);
5893 break;
5894 case MIPS_ABI_EABI64:
5895 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5896 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5897 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5898 tdep->mips_default_saved_regsize = 8;
5899 tdep->mips_default_stack_argsize = 8;
5900 tdep->mips_fp_register_double = 1;
5901 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5902 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5903 tdep->default_mask_address_p = 0;
5904 set_gdbarch_long_bit (gdbarch, 64);
5905 set_gdbarch_ptr_bit (gdbarch, 64);
5906 set_gdbarch_long_long_bit (gdbarch, 64);
5907 set_gdbarch_deprecated_reg_struct_has_addr
5908 (gdbarch, mips_eabi_reg_struct_has_addr);
5909 set_gdbarch_use_struct_convention (gdbarch,
5910 mips_eabi_use_struct_convention);
5911 break;
5912 case MIPS_ABI_N32:
5913 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5914 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5915 tdep->mips_default_saved_regsize = 8;
5916 tdep->mips_default_stack_argsize = 8;
5917 tdep->mips_fp_register_double = 1;
5918 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5919 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5920 tdep->default_mask_address_p = 0;
5921 set_gdbarch_long_bit (gdbarch, 32);
5922 set_gdbarch_ptr_bit (gdbarch, 32);
5923 set_gdbarch_long_long_bit (gdbarch, 64);
5924 set_gdbarch_deprecated_reg_struct_has_addr
5925 (gdbarch, mips_n32n64_reg_struct_has_addr);
5926 break;
5927 case MIPS_ABI_N64:
5928 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5929 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5930 tdep->mips_default_saved_regsize = 8;
5931 tdep->mips_default_stack_argsize = 8;
5932 tdep->mips_fp_register_double = 1;
5933 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5934 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5935 tdep->default_mask_address_p = 0;
5936 set_gdbarch_long_bit (gdbarch, 64);
5937 set_gdbarch_ptr_bit (gdbarch, 64);
5938 set_gdbarch_long_long_bit (gdbarch, 64);
5939 set_gdbarch_deprecated_reg_struct_has_addr
5940 (gdbarch, mips_n32n64_reg_struct_has_addr);
5941 break;
5942 default:
5943 internal_error (__FILE__, __LINE__,
5944 "unknown ABI in switch");
5945 }
5946
5947 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5948 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5949 comment:
5950
5951 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5952 flag in object files because to do so would make it impossible to
5953 link with libraries compiled without "-gp32". This is
5954 unnecessarily restrictive.
5955
5956 We could solve this problem by adding "-gp32" multilibs to gcc,
5957 but to set this flag before gcc is built with such multilibs will
5958 break too many systems.''
5959
5960 But even more unhelpfully, the default linker output target for
5961 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5962 for 64-bit programs - you need to change the ABI to change this,
5963 and not all gcc targets support that currently. Therefore using
5964 this flag to detect 32-bit mode would do the wrong thing given
5965 the current gcc - it would make GDB treat these 64-bit programs
5966 as 32-bit programs by default. */
5967
5968 /* enable/disable the MIPS FPU */
5969 if (!mips_fpu_type_auto)
5970 tdep->mips_fpu_type = mips_fpu_type;
5971 else if (info.bfd_arch_info != NULL
5972 && info.bfd_arch_info->arch == bfd_arch_mips)
5973 switch (info.bfd_arch_info->mach)
5974 {
5975 case bfd_mach_mips3900:
5976 case bfd_mach_mips4100:
5977 case bfd_mach_mips4111:
5978 tdep->mips_fpu_type = MIPS_FPU_NONE;
5979 break;
5980 case bfd_mach_mips4650:
5981 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5982 break;
5983 default:
5984 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5985 break;
5986 }
5987 else
5988 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5989
5990 /* MIPS version of register names. */
5991 set_gdbarch_register_name (gdbarch, mips_register_name);
5992 if (info.osabi == GDB_OSABI_IRIX)
5993 tdep->mips_processor_reg_names = mips_irix_reg_names;
5994 else if (info.bfd_arch_info != NULL && info.bfd_arch_info->mach == bfd_mach_mips3900)
5995 tdep->mips_processor_reg_names = mips_tx39_reg_names;
5996 else
5997 tdep->mips_processor_reg_names = mips_generic_reg_names;
5998 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5999 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
6000 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
6001 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6002
6003 /* Add/remove bits from an address. The MIPS needs be careful to
6004 ensure that all 32 bit addresses are sign extended to 64 bits. */
6005 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6006
6007 /* There's a mess in stack frame creation. See comments in
6008 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6009 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
6010
6011 /* Map debug register numbers onto internal register numbers. */
6012 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6013 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6014 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6015 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6016 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6017
6018 /* Initialize a frame */
6019 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
6020 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6021
6022 /* MIPS version of CALL_DUMMY */
6023
6024 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6025 replaced by a command, and all targets will default to on stack
6026 (regardless of the stack's execute status). */
6027 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6028 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6029 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6030 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6031 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6032 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6033 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
6034
6035 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6036 set_gdbarch_frameless_function_invocation (gdbarch,
6037 generic_frameless_function_invocation_not);
6038 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6039 set_gdbarch_frame_args_skip (gdbarch, 0);
6040
6041 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6042
6043 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6044 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6045 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6046
6047 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6048 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6049
6050 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6051 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6052 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6053
6054 set_gdbarch_function_start_offset (gdbarch, 0);
6055
6056 set_gdbarch_register_type (gdbarch, mips_register_type);
6057
6058 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6059 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6060
6061 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6062
6063 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6064 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6065 need to all be folded into the target vector. Since they are
6066 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6067 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6068 is sitting on? */
6069 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6070
6071 /* Hook in OS ABI-specific overrides, if they have been registered. */
6072 gdbarch_init_osabi (info, gdbarch);
6073
6074 set_gdbarch_extract_struct_value_address (gdbarch,
6075 mips_extract_struct_value_address);
6076
6077 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6078
6079 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6080 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6081
6082 return gdbarch;
6083 }
6084
6085 static void
6086 mips_abi_update (char *ignore_args, int from_tty,
6087 struct cmd_list_element *c)
6088 {
6089 struct gdbarch_info info;
6090
6091 /* Force the architecture to update, and (if it's a MIPS architecture)
6092 mips_gdbarch_init will take care of the rest. */
6093 gdbarch_info_init (&info);
6094 gdbarch_update_p (info);
6095 }
6096
6097 /* Print out which MIPS ABI is in use. */
6098
6099 static void
6100 show_mips_abi (char *ignore_args, int from_tty)
6101 {
6102 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6103 printf_filtered (
6104 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6105 else
6106 {
6107 enum mips_abi global_abi = global_mips_abi ();
6108 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6109 const char *actual_abi_str = mips_abi_strings[actual_abi];
6110
6111 if (global_abi == MIPS_ABI_UNKNOWN)
6112 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6113 actual_abi_str);
6114 else if (global_abi == actual_abi)
6115 printf_filtered (
6116 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6117 actual_abi_str);
6118 else
6119 {
6120 /* Probably shouldn't happen... */
6121 printf_filtered (
6122 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6123 actual_abi_str,
6124 mips_abi_strings[global_abi]);
6125 }
6126 }
6127 }
6128
6129 static void
6130 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6131 {
6132 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6133 if (tdep != NULL)
6134 {
6135 int ef_mips_arch;
6136 int ef_mips_32bitmode;
6137 /* determine the ISA */
6138 switch (tdep->elf_flags & EF_MIPS_ARCH)
6139 {
6140 case E_MIPS_ARCH_1:
6141 ef_mips_arch = 1;
6142 break;
6143 case E_MIPS_ARCH_2:
6144 ef_mips_arch = 2;
6145 break;
6146 case E_MIPS_ARCH_3:
6147 ef_mips_arch = 3;
6148 break;
6149 case E_MIPS_ARCH_4:
6150 ef_mips_arch = 4;
6151 break;
6152 default:
6153 ef_mips_arch = 0;
6154 break;
6155 }
6156 /* determine the size of a pointer */
6157 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6158 fprintf_unfiltered (file,
6159 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6160 tdep->elf_flags);
6161 fprintf_unfiltered (file,
6162 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6163 ef_mips_32bitmode);
6164 fprintf_unfiltered (file,
6165 "mips_dump_tdep: ef_mips_arch = %d\n",
6166 ef_mips_arch);
6167 fprintf_unfiltered (file,
6168 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6169 tdep->mips_abi,
6170 mips_abi_strings[tdep->mips_abi]);
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6173 mips_mask_address_p (),
6174 tdep->default_mask_address_p);
6175 }
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6178 FP_REGISTER_DOUBLE);
6179 fprintf_unfiltered (file,
6180 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6181 MIPS_DEFAULT_FPU_TYPE,
6182 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6183 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6184 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6185 : "???"));
6186 fprintf_unfiltered (file,
6187 "mips_dump_tdep: MIPS_EABI = %d\n",
6188 MIPS_EABI);
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6191 MIPS_FPU_TYPE,
6192 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6193 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6194 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6195 : "???"));
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6198 MIPS_DEFAULT_SAVED_REGSIZE);
6199 fprintf_unfiltered (file,
6200 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6201 FP_REGISTER_DOUBLE);
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6204 MIPS_DEFAULT_STACK_ARGSIZE);
6205 fprintf_unfiltered (file,
6206 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6207 MIPS_STACK_ARGSIZE);
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: A0_REGNUM = %d\n",
6210 A0_REGNUM);
6211 fprintf_unfiltered (file,
6212 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6213 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6216 XSTRING (ATTACH_DETACH));
6217 fprintf_unfiltered (file,
6218 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6219 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6222 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6225 FIRST_EMBED_REGNUM);
6226 fprintf_unfiltered (file,
6227 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6228 XSTRING (IGNORE_HELPER_CALL (PC)));
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6231 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6234 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6237 LAST_EMBED_REGNUM);
6238 #ifdef MACHINE_CPROC_FP_OFFSET
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6241 MACHINE_CPROC_FP_OFFSET);
6242 #endif
6243 #ifdef MACHINE_CPROC_PC_OFFSET
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6246 MACHINE_CPROC_PC_OFFSET);
6247 #endif
6248 #ifdef MACHINE_CPROC_SP_OFFSET
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6251 MACHINE_CPROC_SP_OFFSET);
6252 #endif
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6255 MIPS16_INSTLEN);
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6262 MIPS_INSTLEN);
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6265 MIPS_LAST_ARG_REGNUM,
6266 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6269 MIPS_NUMREGS);
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6272 MIPS_SAVED_REGSIZE);
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: PRID_REGNUM = %d\n",
6275 PRID_REGNUM);
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: PROC_PC_REG = function?\n");
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: PS_REGNUM = %d\n",
6302 PS_REGNUM);
6303 fprintf_unfiltered (file,
6304 "mips_dump_tdep: RA_REGNUM = %d\n",
6305 RA_REGNUM);
6306 #ifdef SAVED_BYTES
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: SAVED_BYTES = %d\n",
6309 SAVED_BYTES);
6310 #endif
6311 #ifdef SAVED_FP
6312 fprintf_unfiltered (file,
6313 "mips_dump_tdep: SAVED_FP = %d\n",
6314 SAVED_FP);
6315 #endif
6316 #ifdef SAVED_PC
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: SAVED_PC = %d\n",
6319 SAVED_PC);
6320 #endif
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6323 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6328 SIGFRAME_BASE);
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6331 SIGFRAME_FPREGSAVE_OFF);
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6334 SIGFRAME_PC_OFF);
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6337 SIGFRAME_REGSAVE_OFF);
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6340 SIGFRAME_REG_SIZE);
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6343 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6346 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6349 SOFTWARE_SINGLE_STEP_P ());
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6352 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6353 #ifdef STACK_END_ADDR
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6356 STACK_END_ADDR);
6357 #endif
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6360 XSTRING (STEP_SKIPS_DELAY (PC)));
6361 fprintf_unfiltered (file,
6362 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6363 STEP_SKIPS_DELAY_P);
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6366 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: T9_REGNUM = %d\n",
6369 T9_REGNUM);
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6374 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6377 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6378 #ifdef TRACE_CLEAR
6379 fprintf_unfiltered (file,
6380 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6381 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6382 #endif
6383 #ifdef TRACE_FLAVOR
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6386 TRACE_FLAVOR);
6387 #endif
6388 #ifdef TRACE_FLAVOR_SIZE
6389 fprintf_unfiltered (file,
6390 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6391 TRACE_FLAVOR_SIZE);
6392 #endif
6393 #ifdef TRACE_SET
6394 fprintf_unfiltered (file,
6395 "mips_dump_tdep: TRACE_SET # %s\n",
6396 XSTRING (TRACE_SET (X,STATE)));
6397 #endif
6398 #ifdef UNUSED_REGNUM
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6401 UNUSED_REGNUM);
6402 #endif
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: V0_REGNUM = %d\n",
6405 V0_REGNUM);
6406 fprintf_unfiltered (file,
6407 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6408 (long) VM_MIN_ADDRESS);
6409 fprintf_unfiltered (file,
6410 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6411 ZERO_REGNUM);
6412 fprintf_unfiltered (file,
6413 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6414 _PROC_MAGIC_);
6415 }
6416
6417 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6418
6419 void
6420 _initialize_mips_tdep (void)
6421 {
6422 static struct cmd_list_element *mipsfpulist = NULL;
6423 struct cmd_list_element *c;
6424
6425 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6426 if (MIPS_ABI_LAST + 1
6427 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6428 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6429
6430 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6431
6432 /* Add root prefix command for all "set mips"/"show mips" commands */
6433 add_prefix_cmd ("mips", no_class, set_mips_command,
6434 "Various MIPS specific commands.",
6435 &setmipscmdlist, "set mips ", 0, &setlist);
6436
6437 add_prefix_cmd ("mips", no_class, show_mips_command,
6438 "Various MIPS specific commands.",
6439 &showmipscmdlist, "show mips ", 0, &showlist);
6440
6441 /* Allow the user to override the saved register size. */
6442 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6443 class_obscure,
6444 size_enums,
6445 &mips_saved_regsize_string, "\
6446 Set size of general purpose registers saved on the stack.\n\
6447 This option can be set to one of:\n\
6448 32 - Force GDB to treat saved GP registers as 32-bit\n\
6449 64 - Force GDB to treat saved GP registers as 64-bit\n\
6450 auto - Allow GDB to use the target's default setting or autodetect the\n\
6451 saved GP register size from information contained in the executable.\n\
6452 (default: auto)",
6453 &setmipscmdlist),
6454 &showmipscmdlist);
6455
6456 /* Allow the user to override the argument stack size. */
6457 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6458 class_obscure,
6459 size_enums,
6460 &mips_stack_argsize_string, "\
6461 Set the amount of stack space reserved for each argument.\n\
6462 This option can be set to one of:\n\
6463 32 - Force GDB to allocate 32-bit chunks per argument\n\
6464 64 - Force GDB to allocate 64-bit chunks per argument\n\
6465 auto - Allow GDB to determine the correct setting from the current\n\
6466 target and executable (default)",
6467 &setmipscmdlist),
6468 &showmipscmdlist);
6469
6470 /* Allow the user to override the ABI. */
6471 c = add_set_enum_cmd
6472 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6473 "Set the ABI used by this program.\n"
6474 "This option can be set to one of:\n"
6475 " auto - the default ABI associated with the current binary\n"
6476 " o32\n"
6477 " o64\n"
6478 " n32\n"
6479 " n64\n"
6480 " eabi32\n"
6481 " eabi64",
6482 &setmipscmdlist);
6483 set_cmd_sfunc (c, mips_abi_update);
6484 add_cmd ("abi", class_obscure, show_mips_abi,
6485 "Show ABI in use by MIPS target", &showmipscmdlist);
6486
6487 /* Let the user turn off floating point and set the fence post for
6488 heuristic_proc_start. */
6489
6490 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6491 "Set use of MIPS floating-point coprocessor.",
6492 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6493 add_cmd ("single", class_support, set_mipsfpu_single_command,
6494 "Select single-precision MIPS floating-point coprocessor.",
6495 &mipsfpulist);
6496 add_cmd ("double", class_support, set_mipsfpu_double_command,
6497 "Select double-precision MIPS floating-point coprocessor.",
6498 &mipsfpulist);
6499 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6500 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6501 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6502 add_cmd ("none", class_support, set_mipsfpu_none_command,
6503 "Select no MIPS floating-point coprocessor.",
6504 &mipsfpulist);
6505 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6506 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6507 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6508 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6509 "Select MIPS floating-point coprocessor automatically.",
6510 &mipsfpulist);
6511 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6512 "Show current use of MIPS floating-point coprocessor target.",
6513 &showlist);
6514
6515 /* We really would like to have both "0" and "unlimited" work, but
6516 command.c doesn't deal with that. So make it a var_zinteger
6517 because the user can always use "999999" or some such for unlimited. */
6518 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6519 (char *) &heuristic_fence_post,
6520 "\
6521 Set the distance searched for the start of a function.\n\
6522 If you are debugging a stripped executable, GDB needs to search through the\n\
6523 program for the start of a function. This command sets the distance of the\n\
6524 search. The only need to set it is when debugging a stripped executable.",
6525 &setlist);
6526 /* We need to throw away the frame cache when we set this, since it
6527 might change our ability to get backtraces. */
6528 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6529 add_show_from_set (c, &showlist);
6530
6531 /* Allow the user to control whether the upper bits of 64-bit
6532 addresses should be zeroed. */
6533 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6534 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6535 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6536 allow GDB to determine the correct value.\n", "\
6537 Show zeroing of upper 32 bits of 64-bit addresses.",
6538 NULL, show_mask_address,
6539 &setmipscmdlist, &showmipscmdlist);
6540
6541 /* Allow the user to control the size of 32 bit registers within the
6542 raw remote packet. */
6543 add_setshow_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
6544 var_boolean, &mips64_transfers_32bit_regs_p, "\
6545 Set compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6546 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6547 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6548 64 bits for others. Use \"off\" to disable compatibility mode", "\
6549 Show compatibility with 64-bit MIPS targets that transfer 32-bit quantities.\n\
6550 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6551 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6552 64 bits for others. Use \"off\" to disable compatibility mode",
6553 set_mips64_transfers_32bit_regs, NULL,
6554 &setlist, &showlist);
6555
6556 /* Debug this files internals. */
6557 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6558 &mips_debug, "Set mips debugging.\n\
6559 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6560 &showdebuglist);
6561 }
This page took 0.316955 seconds and 4 git commands to generate.