Use std::vector for traceframe_info::tvars
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include <algorithm>
59
60 static const struct objfile_data *mips_pdr_data;
61
62 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
63
64 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
65 ULONGEST inst);
66 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
67 static int mips16_instruction_has_delay_slot (unsigned short inst,
68 int mustbe32);
69
70 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
71 CORE_ADDR addr);
72 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
73 CORE_ADDR addr, int mustbe32);
74 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
75 CORE_ADDR addr, int mustbe32);
76
77 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
78 struct frame_info *, const char *);
79
80 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
81 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
82 #define ST0_FR (1 << 26)
83
84 /* The sizes of floating point registers. */
85
86 enum
87 {
88 MIPS_FPU_SINGLE_REGSIZE = 4,
89 MIPS_FPU_DOUBLE_REGSIZE = 8
90 };
91
92 enum
93 {
94 MIPS32_REGSIZE = 4,
95 MIPS64_REGSIZE = 8
96 };
97
98 static const char *mips_abi_string;
99
100 static const char *const mips_abi_strings[] = {
101 "auto",
102 "n32",
103 "o32",
104 "n64",
105 "o64",
106 "eabi32",
107 "eabi64",
108 NULL
109 };
110
111 /* Enum describing the different kinds of breakpoints. */
112
113 enum mips_breakpoint_kind
114 {
115 /* 16-bit MIPS16 mode breakpoint. */
116 MIPS_BP_KIND_MIPS16 = 2,
117
118 /* 16-bit microMIPS mode breakpoint. */
119 MIPS_BP_KIND_MICROMIPS16 = 3,
120
121 /* 32-bit standard MIPS mode breakpoint. */
122 MIPS_BP_KIND_MIPS32 = 4,
123
124 /* 32-bit microMIPS mode breakpoint. */
125 MIPS_BP_KIND_MICROMIPS32 = 5,
126 };
127
128 /* For backwards compatibility we default to MIPS16. This flag is
129 overridden as soon as unambiguous ELF file flags tell us the
130 compressed ISA encoding used. */
131 static const char mips_compression_mips16[] = "mips16";
132 static const char mips_compression_micromips[] = "micromips";
133 static const char *const mips_compression_strings[] =
134 {
135 mips_compression_mips16,
136 mips_compression_micromips,
137 NULL
138 };
139
140 static const char *mips_compression_string = mips_compression_mips16;
141
142 /* The standard register names, and all the valid aliases for them. */
143 struct register_alias
144 {
145 const char *name;
146 int regnum;
147 };
148
149 /* Aliases for o32 and most other ABIs. */
150 const struct register_alias mips_o32_aliases[] = {
151 { "ta0", 12 },
152 { "ta1", 13 },
153 { "ta2", 14 },
154 { "ta3", 15 }
155 };
156
157 /* Aliases for n32 and n64. */
158 const struct register_alias mips_n32_n64_aliases[] = {
159 { "ta0", 8 },
160 { "ta1", 9 },
161 { "ta2", 10 },
162 { "ta3", 11 }
163 };
164
165 /* Aliases for ABI-independent registers. */
166 const struct register_alias mips_register_aliases[] = {
167 /* The architecture manuals specify these ABI-independent names for
168 the GPRs. */
169 #define R(n) { "r" #n, n }
170 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
171 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
172 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
173 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
174 #undef R
175
176 /* k0 and k1 are sometimes called these instead (for "kernel
177 temp"). */
178 { "kt0", 26 },
179 { "kt1", 27 },
180
181 /* This is the traditional GDB name for the CP0 status register. */
182 { "sr", MIPS_PS_REGNUM },
183
184 /* This is the traditional GDB name for the CP0 BadVAddr register. */
185 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
186
187 /* This is the traditional GDB name for the FCSR. */
188 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
189 };
190
191 const struct register_alias mips_numeric_register_aliases[] = {
192 #define R(n) { #n, n }
193 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
194 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
195 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
196 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
197 #undef R
198 };
199
200 #ifndef MIPS_DEFAULT_FPU_TYPE
201 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
202 #endif
203 static int mips_fpu_type_auto = 1;
204 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
205
206 static unsigned int mips_debug = 0;
207
208 /* Properties (for struct target_desc) describing the g/G packet
209 layout. */
210 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
211 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
212
213 struct target_desc *mips_tdesc_gp32;
214 struct target_desc *mips_tdesc_gp64;
215
216 const struct mips_regnum *
217 mips_regnum (struct gdbarch *gdbarch)
218 {
219 return gdbarch_tdep (gdbarch)->regnum;
220 }
221
222 static int
223 mips_fpa0_regnum (struct gdbarch *gdbarch)
224 {
225 return mips_regnum (gdbarch)->fp0 + 12;
226 }
227
228 /* Return 1 if REGNUM refers to a floating-point general register, raw
229 or cooked. Otherwise return 0. */
230
231 static int
232 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
233 {
234 int rawnum = regnum % gdbarch_num_regs (gdbarch);
235
236 return (rawnum >= mips_regnum (gdbarch)->fp0
237 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
238 }
239
240 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
241 == MIPS_ABI_EABI32 \
242 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
243
244 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
245 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
246
247 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
248 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
249
250 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
251
252 /* Return the MIPS ABI associated with GDBARCH. */
253 enum mips_abi
254 mips_abi (struct gdbarch *gdbarch)
255 {
256 return gdbarch_tdep (gdbarch)->mips_abi;
257 }
258
259 int
260 mips_isa_regsize (struct gdbarch *gdbarch)
261 {
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263
264 /* If we know how big the registers are, use that size. */
265 if (tdep->register_size_valid_p)
266 return tdep->register_size;
267
268 /* Fall back to the previous behavior. */
269 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
270 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
271 }
272
273 /* Max saved register size. */
274 #define MAX_MIPS_ABI_REGSIZE 8
275
276 /* Return the currently configured (or set) saved register size. */
277
278 unsigned int
279 mips_abi_regsize (struct gdbarch *gdbarch)
280 {
281 switch (mips_abi (gdbarch))
282 {
283 case MIPS_ABI_EABI32:
284 case MIPS_ABI_O32:
285 return 4;
286 case MIPS_ABI_N32:
287 case MIPS_ABI_N64:
288 case MIPS_ABI_O64:
289 case MIPS_ABI_EABI64:
290 return 8;
291 case MIPS_ABI_UNKNOWN:
292 case MIPS_ABI_LAST:
293 default:
294 internal_error (__FILE__, __LINE__, _("bad switch"));
295 }
296 }
297
298 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
299 are some functions to handle addresses associated with compressed
300 code including but not limited to testing, setting, or clearing
301 bit 0 of such addresses. */
302
303 /* Return one iff compressed code is the MIPS16 instruction set. */
304
305 static int
306 is_mips16_isa (struct gdbarch *gdbarch)
307 {
308 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
309 }
310
311 /* Return one iff compressed code is the microMIPS instruction set. */
312
313 static int
314 is_micromips_isa (struct gdbarch *gdbarch)
315 {
316 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
317 }
318
319 /* Return one iff ADDR denotes compressed code. */
320
321 static int
322 is_compact_addr (CORE_ADDR addr)
323 {
324 return ((addr) & 1);
325 }
326
327 /* Return one iff ADDR denotes standard ISA code. */
328
329 static int
330 is_mips_addr (CORE_ADDR addr)
331 {
332 return !is_compact_addr (addr);
333 }
334
335 /* Return one iff ADDR denotes MIPS16 code. */
336
337 static int
338 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
339 {
340 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
341 }
342
343 /* Return one iff ADDR denotes microMIPS code. */
344
345 static int
346 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
347 {
348 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
349 }
350
351 /* Strip the ISA (compression) bit off from ADDR. */
352
353 static CORE_ADDR
354 unmake_compact_addr (CORE_ADDR addr)
355 {
356 return ((addr) & ~(CORE_ADDR) 1);
357 }
358
359 /* Add the ISA (compression) bit to ADDR. */
360
361 static CORE_ADDR
362 make_compact_addr (CORE_ADDR addr)
363 {
364 return ((addr) | (CORE_ADDR) 1);
365 }
366
367 /* Extern version of unmake_compact_addr; we use a separate function
368 so that unmake_compact_addr can be inlined throughout this file. */
369
370 CORE_ADDR
371 mips_unmake_compact_addr (CORE_ADDR addr)
372 {
373 return unmake_compact_addr (addr);
374 }
375
376 /* Functions for setting and testing a bit in a minimal symbol that
377 marks it as MIPS16 or microMIPS function. The MSB of the minimal
378 symbol's "info" field is used for this purpose.
379
380 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
381 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
382 one of the "special" bits in a minimal symbol to mark it accordingly.
383 The test checks an ELF-private flag that is valid for true function
384 symbols only; for synthetic symbols such as for PLT stubs that have
385 no ELF-private part at all the MIPS BFD backend arranges for this
386 information to be carried in the asymbol's udata field instead.
387
388 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
389 in a minimal symbol. */
390
391 static void
392 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
393 {
394 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
395 unsigned char st_other;
396
397 if ((sym->flags & BSF_SYNTHETIC) == 0)
398 st_other = elfsym->internal_elf_sym.st_other;
399 else if ((sym->flags & BSF_FUNCTION) != 0)
400 st_other = sym->udata.i;
401 else
402 return;
403
404 if (ELF_ST_IS_MICROMIPS (st_other))
405 {
406 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
407 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
408 }
409 else if (ELF_ST_IS_MIPS16 (st_other))
410 {
411 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
412 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
413 }
414 }
415
416 /* Return one iff MSYM refers to standard ISA code. */
417
418 static int
419 msymbol_is_mips (struct minimal_symbol *msym)
420 {
421 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
422 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
423 }
424
425 /* Return one iff MSYM refers to MIPS16 code. */
426
427 static int
428 msymbol_is_mips16 (struct minimal_symbol *msym)
429 {
430 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
431 }
432
433 /* Return one iff MSYM refers to microMIPS code. */
434
435 static int
436 msymbol_is_micromips (struct minimal_symbol *msym)
437 {
438 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
439 }
440
441 /* Set the ISA bit in the main symbol too, complementing the corresponding
442 minimal symbol setting and reflecting the run-time value of the symbol.
443 The need for comes from the ISA bit having been cleared as code in
444 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
445 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
446 of symbols referring to compressed code different in GDB to the values
447 used by actual code. That in turn makes them evaluate incorrectly in
448 expressions, producing results different to what the same expressions
449 yield when compiled into the program being debugged. */
450
451 static void
452 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
453 {
454 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
455 {
456 /* We are in symbol reading so it is OK to cast away constness. */
457 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
458 CORE_ADDR compact_block_start;
459 struct bound_minimal_symbol msym;
460
461 compact_block_start = BLOCK_START (block) | 1;
462 msym = lookup_minimal_symbol_by_pc (compact_block_start);
463 if (msym.minsym && !msymbol_is_mips (msym.minsym))
464 {
465 BLOCK_START (block) = compact_block_start;
466 }
467 }
468 }
469
470 /* XFER a value from the big/little/left end of the register.
471 Depending on the size of the value it might occupy the entire
472 register or just part of it. Make an allowance for this, aligning
473 things accordingly. */
474
475 static void
476 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
477 int reg_num, int length,
478 enum bfd_endian endian, gdb_byte *in,
479 const gdb_byte *out, int buf_offset)
480 {
481 int reg_offset = 0;
482
483 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
484 /* Need to transfer the left or right part of the register, based on
485 the targets byte order. */
486 switch (endian)
487 {
488 case BFD_ENDIAN_BIG:
489 reg_offset = register_size (gdbarch, reg_num) - length;
490 break;
491 case BFD_ENDIAN_LITTLE:
492 reg_offset = 0;
493 break;
494 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
495 reg_offset = 0;
496 break;
497 default:
498 internal_error (__FILE__, __LINE__, _("bad switch"));
499 }
500 if (mips_debug)
501 fprintf_unfiltered (gdb_stderr,
502 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
503 reg_num, reg_offset, buf_offset, length);
504 if (mips_debug && out != NULL)
505 {
506 int i;
507 fprintf_unfiltered (gdb_stdlog, "out ");
508 for (i = 0; i < length; i++)
509 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
510 }
511 if (in != NULL)
512 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
513 in + buf_offset);
514 if (out != NULL)
515 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
516 out + buf_offset);
517 if (mips_debug && in != NULL)
518 {
519 int i;
520 fprintf_unfiltered (gdb_stdlog, "in ");
521 for (i = 0; i < length; i++)
522 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
523 }
524 if (mips_debug)
525 fprintf_unfiltered (gdb_stdlog, "\n");
526 }
527
528 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
529 compatiblity mode. A return value of 1 means that we have
530 physical 64-bit registers, but should treat them as 32-bit registers. */
531
532 static int
533 mips2_fp_compat (struct frame_info *frame)
534 {
535 struct gdbarch *gdbarch = get_frame_arch (frame);
536 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
537 meaningful. */
538 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
539 return 0;
540
541 #if 0
542 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
543 in all the places we deal with FP registers. PR gdb/413. */
544 /* Otherwise check the FR bit in the status register - it controls
545 the FP compatiblity mode. If it is clear we are in compatibility
546 mode. */
547 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
548 return 1;
549 #endif
550
551 return 0;
552 }
553
554 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
555
556 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
557
558 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
559
560 /* The list of available "set mips " and "show mips " commands. */
561
562 static struct cmd_list_element *setmipscmdlist = NULL;
563 static struct cmd_list_element *showmipscmdlist = NULL;
564
565 /* Integer registers 0 thru 31 are handled explicitly by
566 mips_register_name(). Processor specific registers 32 and above
567 are listed in the following tables. */
568
569 enum
570 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
571
572 /* Generic MIPS. */
573
574 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
575 "sr", "lo", "hi", "bad", "cause", "pc",
576 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
577 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
578 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
579 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
580 "fsr", "fir",
581 };
582
583 /* Names of tx39 registers. */
584
585 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
586 "sr", "lo", "hi", "bad", "cause", "pc",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "", "", "", "", "",
589 "", "", "", "", "", "", "", "",
590 "", "", "", "", "", "", "", "",
591 "", "", "", "",
592 "", "", "", "", "", "", "", "",
593 "", "", "config", "cache", "debug", "depc", "epc",
594 };
595
596 /* Names of registers with Linux kernels. */
597 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
598 "sr", "lo", "hi", "bad", "cause", "pc",
599 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
600 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
601 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
602 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
603 "fsr", "fir"
604 };
605
606
607 /* Return the name of the register corresponding to REGNO. */
608 static const char *
609 mips_register_name (struct gdbarch *gdbarch, int regno)
610 {
611 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
612 /* GPR names for all ABIs other than n32/n64. */
613 static const char *mips_gpr_names[] = {
614 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
615 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
616 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
617 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
618 };
619
620 /* GPR names for n32 and n64 ABIs. */
621 static const char *mips_n32_n64_gpr_names[] = {
622 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
623 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
624 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
625 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
626 };
627
628 enum mips_abi abi = mips_abi (gdbarch);
629
630 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
631 but then don't make the raw register names visible. This (upper)
632 range of user visible register numbers are the pseudo-registers.
633
634 This approach was adopted accommodate the following scenario:
635 It is possible to debug a 64-bit device using a 32-bit
636 programming model. In such instances, the raw registers are
637 configured to be 64-bits wide, while the pseudo registers are
638 configured to be 32-bits wide. The registers that the user
639 sees - the pseudo registers - match the users expectations
640 given the programming model being used. */
641 int rawnum = regno % gdbarch_num_regs (gdbarch);
642 if (regno < gdbarch_num_regs (gdbarch))
643 return "";
644
645 /* The MIPS integer registers are always mapped from 0 to 31. The
646 names of the registers (which reflects the conventions regarding
647 register use) vary depending on the ABI. */
648 if (0 <= rawnum && rawnum < 32)
649 {
650 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
651 return mips_n32_n64_gpr_names[rawnum];
652 else
653 return mips_gpr_names[rawnum];
654 }
655 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
656 return tdesc_register_name (gdbarch, rawnum);
657 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
658 {
659 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
660 if (tdep->mips_processor_reg_names[rawnum - 32])
661 return tdep->mips_processor_reg_names[rawnum - 32];
662 return "";
663 }
664 else
665 internal_error (__FILE__, __LINE__,
666 _("mips_register_name: bad register number %d"), rawnum);
667 }
668
669 /* Return the groups that a MIPS register can be categorised into. */
670
671 static int
672 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
673 struct reggroup *reggroup)
674 {
675 int vector_p;
676 int float_p;
677 int raw_p;
678 int rawnum = regnum % gdbarch_num_regs (gdbarch);
679 int pseudo = regnum / gdbarch_num_regs (gdbarch);
680 if (reggroup == all_reggroup)
681 return pseudo;
682 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
683 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
684 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
685 (gdbarch), as not all architectures are multi-arch. */
686 raw_p = rawnum < gdbarch_num_regs (gdbarch);
687 if (gdbarch_register_name (gdbarch, regnum) == NULL
688 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
689 return 0;
690 if (reggroup == float_reggroup)
691 return float_p && pseudo;
692 if (reggroup == vector_reggroup)
693 return vector_p && pseudo;
694 if (reggroup == general_reggroup)
695 return (!vector_p && !float_p) && pseudo;
696 /* Save the pseudo registers. Need to make certain that any code
697 extracting register values from a saved register cache also uses
698 pseudo registers. */
699 if (reggroup == save_reggroup)
700 return raw_p && pseudo;
701 /* Restore the same pseudo register. */
702 if (reggroup == restore_reggroup)
703 return raw_p && pseudo;
704 return 0;
705 }
706
707 /* Return the groups that a MIPS register can be categorised into.
708 This version is only used if we have a target description which
709 describes real registers (and their groups). */
710
711 static int
712 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
713 struct reggroup *reggroup)
714 {
715 int rawnum = regnum % gdbarch_num_regs (gdbarch);
716 int pseudo = regnum / gdbarch_num_regs (gdbarch);
717 int ret;
718
719 /* Only save, restore, and display the pseudo registers. Need to
720 make certain that any code extracting register values from a
721 saved register cache also uses pseudo registers.
722
723 Note: saving and restoring the pseudo registers is slightly
724 strange; if we have 64 bits, we should save and restore all
725 64 bits. But this is hard and has little benefit. */
726 if (!pseudo)
727 return 0;
728
729 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
730 if (ret != -1)
731 return ret;
732
733 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
734 }
735
736 /* Map the symbol table registers which live in the range [1 *
737 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
738 registers. Take care of alignment and size problems. */
739
740 static enum register_status
741 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
742 int cookednum, gdb_byte *buf)
743 {
744 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
745 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
746 && cookednum < 2 * gdbarch_num_regs (gdbarch));
747 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
748 return regcache_raw_read (regcache, rawnum, buf);
749 else if (register_size (gdbarch, rawnum) >
750 register_size (gdbarch, cookednum))
751 {
752 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
753 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
754 else
755 {
756 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
757 LONGEST regval;
758 enum register_status status;
759
760 status = regcache_raw_read_signed (regcache, rawnum, &regval);
761 if (status == REG_VALID)
762 store_signed_integer (buf, 4, byte_order, regval);
763 return status;
764 }
765 }
766 else
767 internal_error (__FILE__, __LINE__, _("bad register size"));
768 }
769
770 static void
771 mips_pseudo_register_write (struct gdbarch *gdbarch,
772 struct regcache *regcache, int cookednum,
773 const gdb_byte *buf)
774 {
775 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
776 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
777 && cookednum < 2 * gdbarch_num_regs (gdbarch));
778 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
779 regcache_raw_write (regcache, rawnum, buf);
780 else if (register_size (gdbarch, rawnum) >
781 register_size (gdbarch, cookednum))
782 {
783 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
784 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
785 else
786 {
787 /* Sign extend the shortened version of the register prior
788 to placing it in the raw register. This is required for
789 some mips64 parts in order to avoid unpredictable behavior. */
790 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
791 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
792 regcache_raw_write_signed (regcache, rawnum, regval);
793 }
794 }
795 else
796 internal_error (__FILE__, __LINE__, _("bad register size"));
797 }
798
799 static int
800 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
801 struct agent_expr *ax, int reg)
802 {
803 int rawnum = reg % gdbarch_num_regs (gdbarch);
804 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
805 && reg < 2 * gdbarch_num_regs (gdbarch));
806
807 ax_reg_mask (ax, rawnum);
808
809 return 0;
810 }
811
812 static int
813 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
814 struct agent_expr *ax, int reg)
815 {
816 int rawnum = reg % gdbarch_num_regs (gdbarch);
817 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
818 && reg < 2 * gdbarch_num_regs (gdbarch));
819 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
820 {
821 ax_reg (ax, rawnum);
822
823 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
824 {
825 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
826 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
827 {
828 ax_const_l (ax, 32);
829 ax_simple (ax, aop_lsh);
830 }
831 ax_const_l (ax, 32);
832 ax_simple (ax, aop_rsh_signed);
833 }
834 }
835 else
836 internal_error (__FILE__, __LINE__, _("bad register size"));
837
838 return 0;
839 }
840
841 /* Table to translate 3-bit register field to actual register number. */
842 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
843
844 /* Heuristic_proc_start may hunt through the text section for a long
845 time across a 2400 baud serial line. Allows the user to limit this
846 search. */
847
848 static int heuristic_fence_post = 0;
849
850 /* Number of bytes of storage in the actual machine representation for
851 register N. NOTE: This defines the pseudo register type so need to
852 rebuild the architecture vector. */
853
854 static int mips64_transfers_32bit_regs_p = 0;
855
856 static void
857 set_mips64_transfers_32bit_regs (char *args, int from_tty,
858 struct cmd_list_element *c)
859 {
860 struct gdbarch_info info;
861 gdbarch_info_init (&info);
862 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
863 instead of relying on globals. Doing that would let generic code
864 handle the search for this specific architecture. */
865 if (!gdbarch_update_p (info))
866 {
867 mips64_transfers_32bit_regs_p = 0;
868 error (_("32-bit compatibility mode not supported"));
869 }
870 }
871
872 /* Convert to/from a register and the corresponding memory value. */
873
874 /* This predicate tests for the case of an 8 byte floating point
875 value that is being transferred to or from a pair of floating point
876 registers each of which are (or are considered to be) only 4 bytes
877 wide. */
878 static int
879 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
880 struct type *type)
881 {
882 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
883 && register_size (gdbarch, regnum) == 4
884 && mips_float_register_p (gdbarch, regnum)
885 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
886 }
887
888 /* This predicate tests for the case of a value of less than 8
889 bytes in width that is being transfered to or from an 8 byte
890 general purpose register. */
891 static int
892 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
893 struct type *type)
894 {
895 int num_regs = gdbarch_num_regs (gdbarch);
896
897 return (register_size (gdbarch, regnum) == 8
898 && regnum % num_regs > 0 && regnum % num_regs < 32
899 && TYPE_LENGTH (type) < 8);
900 }
901
902 static int
903 mips_convert_register_p (struct gdbarch *gdbarch,
904 int regnum, struct type *type)
905 {
906 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
907 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
908 }
909
910 static int
911 mips_register_to_value (struct frame_info *frame, int regnum,
912 struct type *type, gdb_byte *to,
913 int *optimizedp, int *unavailablep)
914 {
915 struct gdbarch *gdbarch = get_frame_arch (frame);
916
917 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
918 {
919 get_frame_register (frame, regnum + 0, to + 4);
920 get_frame_register (frame, regnum + 1, to + 0);
921
922 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
923 optimizedp, unavailablep))
924 return 0;
925
926 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
927 optimizedp, unavailablep))
928 return 0;
929 *optimizedp = *unavailablep = 0;
930 return 1;
931 }
932 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
933 {
934 int len = TYPE_LENGTH (type);
935 CORE_ADDR offset;
936
937 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
938 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
939 optimizedp, unavailablep))
940 return 0;
941
942 *optimizedp = *unavailablep = 0;
943 return 1;
944 }
945 else
946 {
947 internal_error (__FILE__, __LINE__,
948 _("mips_register_to_value: unrecognized case"));
949 }
950 }
951
952 static void
953 mips_value_to_register (struct frame_info *frame, int regnum,
954 struct type *type, const gdb_byte *from)
955 {
956 struct gdbarch *gdbarch = get_frame_arch (frame);
957
958 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
959 {
960 put_frame_register (frame, regnum + 0, from + 4);
961 put_frame_register (frame, regnum + 1, from + 0);
962 }
963 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
964 {
965 gdb_byte fill[8];
966 int len = TYPE_LENGTH (type);
967
968 /* Sign extend values, irrespective of type, that are stored to
969 a 64-bit general purpose register. (32-bit unsigned values
970 are stored as signed quantities within a 64-bit register.
971 When performing an operation, in compiled code, that combines
972 a 32-bit unsigned value with a signed 64-bit value, a type
973 conversion is first performed that zeroes out the high 32 bits.) */
974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
975 {
976 if (from[0] & 0x80)
977 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
978 else
979 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
980 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
981 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
982 }
983 else
984 {
985 if (from[len-1] & 0x80)
986 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
987 else
988 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
989 put_frame_register_bytes (frame, regnum, 0, len, from);
990 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
991 }
992 }
993 else
994 {
995 internal_error (__FILE__, __LINE__,
996 _("mips_value_to_register: unrecognized case"));
997 }
998 }
999
1000 /* Return the GDB type object for the "standard" data type of data in
1001 register REG. */
1002
1003 static struct type *
1004 mips_register_type (struct gdbarch *gdbarch, int regnum)
1005 {
1006 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1007 if (mips_float_register_p (gdbarch, regnum))
1008 {
1009 /* The floating-point registers raw, or cooked, always match
1010 mips_isa_regsize(), and also map 1:1, byte for byte. */
1011 if (mips_isa_regsize (gdbarch) == 4)
1012 return builtin_type (gdbarch)->builtin_float;
1013 else
1014 return builtin_type (gdbarch)->builtin_double;
1015 }
1016 else if (regnum < gdbarch_num_regs (gdbarch))
1017 {
1018 /* The raw or ISA registers. These are all sized according to
1019 the ISA regsize. */
1020 if (mips_isa_regsize (gdbarch) == 4)
1021 return builtin_type (gdbarch)->builtin_int32;
1022 else
1023 return builtin_type (gdbarch)->builtin_int64;
1024 }
1025 else
1026 {
1027 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1028
1029 /* The cooked or ABI registers. These are sized according to
1030 the ABI (with a few complications). */
1031 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1032 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1033 return builtin_type (gdbarch)->builtin_int32;
1034 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1035 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1036 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1037 /* The pseudo/cooked view of the embedded registers is always
1038 32-bit. The raw view is handled below. */
1039 return builtin_type (gdbarch)->builtin_int32;
1040 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1041 /* The target, while possibly using a 64-bit register buffer,
1042 is only transfering 32-bits of each integer register.
1043 Reflect this in the cooked/pseudo (ABI) register value. */
1044 return builtin_type (gdbarch)->builtin_int32;
1045 else if (mips_abi_regsize (gdbarch) == 4)
1046 /* The ABI is restricted to 32-bit registers (the ISA could be
1047 32- or 64-bit). */
1048 return builtin_type (gdbarch)->builtin_int32;
1049 else
1050 /* 64-bit ABI. */
1051 return builtin_type (gdbarch)->builtin_int64;
1052 }
1053 }
1054
1055 /* Return the GDB type for the pseudo register REGNUM, which is the
1056 ABI-level view. This function is only called if there is a target
1057 description which includes registers, so we know precisely the
1058 types of hardware registers. */
1059
1060 static struct type *
1061 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1062 {
1063 const int num_regs = gdbarch_num_regs (gdbarch);
1064 int rawnum = regnum % num_regs;
1065 struct type *rawtype;
1066
1067 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1068
1069 /* Absent registers are still absent. */
1070 rawtype = gdbarch_register_type (gdbarch, rawnum);
1071 if (TYPE_LENGTH (rawtype) == 0)
1072 return rawtype;
1073
1074 /* Present the floating point registers however the hardware did;
1075 do not try to convert between FPU layouts. */
1076 if (mips_float_register_p (gdbarch, rawnum))
1077 return rawtype;
1078
1079 /* Floating-point control registers are always 32-bit even though for
1080 backwards compatibility reasons 64-bit targets will transfer them
1081 as 64-bit quantities even if using XML descriptions. */
1082 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1083 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1084 return builtin_type (gdbarch)->builtin_int32;
1085
1086 /* Use pointer types for registers if we can. For n32 we can not,
1087 since we do not have a 64-bit pointer type. */
1088 if (mips_abi_regsize (gdbarch)
1089 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1090 {
1091 if (rawnum == MIPS_SP_REGNUM
1092 || rawnum == mips_regnum (gdbarch)->badvaddr)
1093 return builtin_type (gdbarch)->builtin_data_ptr;
1094 else if (rawnum == mips_regnum (gdbarch)->pc)
1095 return builtin_type (gdbarch)->builtin_func_ptr;
1096 }
1097
1098 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1099 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1100 || rawnum == mips_regnum (gdbarch)->lo
1101 || rawnum == mips_regnum (gdbarch)->hi
1102 || rawnum == mips_regnum (gdbarch)->badvaddr
1103 || rawnum == mips_regnum (gdbarch)->cause
1104 || rawnum == mips_regnum (gdbarch)->pc
1105 || (mips_regnum (gdbarch)->dspacc != -1
1106 && rawnum >= mips_regnum (gdbarch)->dspacc
1107 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1108 return builtin_type (gdbarch)->builtin_int32;
1109
1110 /* The pseudo/cooked view of embedded registers is always
1111 32-bit, even if the target transfers 64-bit values for them.
1112 New targets relying on XML descriptions should only transfer
1113 the necessary 32 bits, but older versions of GDB expected 64,
1114 so allow the target to provide 64 bits without interfering
1115 with the displayed type. */
1116 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1117 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1118 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1119 return builtin_type (gdbarch)->builtin_int32;
1120
1121 /* For all other registers, pass through the hardware type. */
1122 return rawtype;
1123 }
1124
1125 /* Should the upper word of 64-bit addresses be zeroed? */
1126 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1127
1128 static int
1129 mips_mask_address_p (struct gdbarch_tdep *tdep)
1130 {
1131 switch (mask_address_var)
1132 {
1133 case AUTO_BOOLEAN_TRUE:
1134 return 1;
1135 case AUTO_BOOLEAN_FALSE:
1136 return 0;
1137 break;
1138 case AUTO_BOOLEAN_AUTO:
1139 return tdep->default_mask_address_p;
1140 default:
1141 internal_error (__FILE__, __LINE__,
1142 _("mips_mask_address_p: bad switch"));
1143 return -1;
1144 }
1145 }
1146
1147 static void
1148 show_mask_address (struct ui_file *file, int from_tty,
1149 struct cmd_list_element *c, const char *value)
1150 {
1151 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1152
1153 deprecated_show_value_hack (file, from_tty, c, value);
1154 switch (mask_address_var)
1155 {
1156 case AUTO_BOOLEAN_TRUE:
1157 printf_filtered ("The 32 bit mips address mask is enabled\n");
1158 break;
1159 case AUTO_BOOLEAN_FALSE:
1160 printf_filtered ("The 32 bit mips address mask is disabled\n");
1161 break;
1162 case AUTO_BOOLEAN_AUTO:
1163 printf_filtered
1164 ("The 32 bit address mask is set automatically. Currently %s\n",
1165 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1166 break;
1167 default:
1168 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1169 break;
1170 }
1171 }
1172
1173 /* Tell if the program counter value in MEMADDR is in a standard ISA
1174 function. */
1175
1176 int
1177 mips_pc_is_mips (CORE_ADDR memaddr)
1178 {
1179 struct bound_minimal_symbol sym;
1180
1181 /* Flags indicating that this is a MIPS16 or microMIPS function is
1182 stored by elfread.c in the high bit of the info field. Use this
1183 to decide if the function is standard MIPS. Otherwise if bit 0
1184 of the address is clear, then this is a standard MIPS function. */
1185 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1186 if (sym.minsym)
1187 return msymbol_is_mips (sym.minsym);
1188 else
1189 return is_mips_addr (memaddr);
1190 }
1191
1192 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1193
1194 int
1195 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1196 {
1197 struct bound_minimal_symbol sym;
1198
1199 /* A flag indicating that this is a MIPS16 function is stored by
1200 elfread.c in the high bit of the info field. Use this to decide
1201 if the function is MIPS16. Otherwise if bit 0 of the address is
1202 set, then ELF file flags will tell if this is a MIPS16 function. */
1203 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1204 if (sym.minsym)
1205 return msymbol_is_mips16 (sym.minsym);
1206 else
1207 return is_mips16_addr (gdbarch, memaddr);
1208 }
1209
1210 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1211
1212 int
1213 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1214 {
1215 struct bound_minimal_symbol sym;
1216
1217 /* A flag indicating that this is a microMIPS function is stored by
1218 elfread.c in the high bit of the info field. Use this to decide
1219 if the function is microMIPS. Otherwise if bit 0 of the address
1220 is set, then ELF file flags will tell if this is a microMIPS
1221 function. */
1222 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1223 if (sym.minsym)
1224 return msymbol_is_micromips (sym.minsym);
1225 else
1226 return is_micromips_addr (gdbarch, memaddr);
1227 }
1228
1229 /* Tell the ISA type of the function the program counter value in MEMADDR
1230 is in. */
1231
1232 static enum mips_isa
1233 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1234 {
1235 struct bound_minimal_symbol sym;
1236
1237 /* A flag indicating that this is a MIPS16 or a microMIPS function
1238 is stored by elfread.c in the high bit of the info field. Use
1239 this to decide if the function is MIPS16 or microMIPS or normal
1240 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1241 flags will tell if this is a MIPS16 or a microMIPS function. */
1242 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1243 if (sym.minsym)
1244 {
1245 if (msymbol_is_micromips (sym.minsym))
1246 return ISA_MICROMIPS;
1247 else if (msymbol_is_mips16 (sym.minsym))
1248 return ISA_MIPS16;
1249 else
1250 return ISA_MIPS;
1251 }
1252 else
1253 {
1254 if (is_mips_addr (memaddr))
1255 return ISA_MIPS;
1256 else if (is_micromips_addr (gdbarch, memaddr))
1257 return ISA_MICROMIPS;
1258 else
1259 return ISA_MIPS16;
1260 }
1261 }
1262
1263 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1264 The need for comes from the ISA bit having been cleared, making
1265 addresses in FDE, range records, etc. referring to compressed code
1266 different to those in line information, the symbol table and finally
1267 the PC register. That in turn confuses many operations. */
1268
1269 static CORE_ADDR
1270 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1271 {
1272 pc = unmake_compact_addr (pc);
1273 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1274 }
1275
1276 /* Recalculate the line record requested so that the resulting PC has
1277 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1278 this adjustment comes from some records associated with compressed
1279 code having the ISA bit cleared, most notably at function prologue
1280 ends. The ISA bit is in this context retrieved from the minimal
1281 symbol covering the address requested, which in turn has been
1282 constructed from the binary's symbol table rather than DWARF-2
1283 information. The correct setting of the ISA bit is required for
1284 breakpoint addresses to correctly match against the stop PC.
1285
1286 As line entries can specify relative address adjustments we need to
1287 keep track of the absolute value of the last line address recorded
1288 in line information, so that we can calculate the actual address to
1289 apply the ISA bit adjustment to. We use PC for this tracking and
1290 keep the original address there.
1291
1292 As such relative address adjustments can be odd within compressed
1293 code we need to keep track of the last line address with the ISA
1294 bit adjustment applied too, as the original address may or may not
1295 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1296 the adjusted address there.
1297
1298 For relative address adjustments we then use these variables to
1299 calculate the address intended by line information, which will be
1300 PC-relative, and return an updated adjustment carrying ISA bit
1301 information, which will be ADJ_PC-relative. For absolute address
1302 adjustments we just return the same address that we store in ADJ_PC
1303 too.
1304
1305 As the first line entry can be relative to an implied address value
1306 of 0 we need to have the initial address set up that we store in PC
1307 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1308 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1309
1310 static CORE_ADDR
1311 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1312 {
1313 static CORE_ADDR adj_pc;
1314 static CORE_ADDR pc;
1315 CORE_ADDR isa_pc;
1316
1317 pc = rel ? pc + addr : addr;
1318 isa_pc = mips_adjust_dwarf2_addr (pc);
1319 addr = rel ? isa_pc - adj_pc : isa_pc;
1320 adj_pc = isa_pc;
1321 return addr;
1322 }
1323
1324 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1325
1326 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1327 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1328 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1329 static const char mips_str_call_stub[] = "__call_stub_";
1330 static const char mips_str_fn_stub[] = "__fn_stub_";
1331
1332 /* This is used as a PIC thunk prefix. */
1333
1334 static const char mips_str_pic[] = ".pic.";
1335
1336 /* Return non-zero if the PC is inside a call thunk (aka stub or
1337 trampoline) that should be treated as a temporary frame. */
1338
1339 static int
1340 mips_in_frame_stub (CORE_ADDR pc)
1341 {
1342 CORE_ADDR start_addr;
1343 const char *name;
1344
1345 /* Find the starting address of the function containing the PC. */
1346 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1347 return 0;
1348
1349 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1350 if (startswith (name, mips_str_mips16_call_stub))
1351 return 1;
1352 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1353 if (startswith (name, mips_str_call_stub))
1354 return 1;
1355 /* If the PC is in __fn_stub_*, this is a call stub. */
1356 if (startswith (name, mips_str_fn_stub))
1357 return 1;
1358
1359 return 0; /* Not a stub. */
1360 }
1361
1362 /* MIPS believes that the PC has a sign extended value. Perhaps the
1363 all registers should be sign extended for simplicity? */
1364
1365 static CORE_ADDR
1366 mips_read_pc (struct regcache *regcache)
1367 {
1368 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1369 LONGEST pc;
1370
1371 regcache_cooked_read_signed (regcache, regnum, &pc);
1372 return pc;
1373 }
1374
1375 static CORE_ADDR
1376 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1377 {
1378 CORE_ADDR pc;
1379
1380 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1381 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1382 intermediate frames. In this case we can get the caller's address
1383 from $ra, or if $ra contains an address within a thunk as well, then
1384 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1385 and thus the caller's address is in $s2. */
1386 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1387 {
1388 pc = frame_unwind_register_signed
1389 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1390 if (mips_in_frame_stub (pc))
1391 pc = frame_unwind_register_signed
1392 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1393 }
1394 return pc;
1395 }
1396
1397 static CORE_ADDR
1398 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1399 {
1400 return frame_unwind_register_signed
1401 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1402 }
1403
1404 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1405 dummy frame. The frame ID's base needs to match the TOS value
1406 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1407 breakpoint. */
1408
1409 static struct frame_id
1410 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1411 {
1412 return frame_id_build
1413 (get_frame_register_signed (this_frame,
1414 gdbarch_num_regs (gdbarch)
1415 + MIPS_SP_REGNUM),
1416 get_frame_pc (this_frame));
1417 }
1418
1419 /* Implement the "write_pc" gdbarch method. */
1420
1421 void
1422 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1423 {
1424 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1425
1426 regcache_cooked_write_unsigned (regcache, regnum, pc);
1427 }
1428
1429 /* Fetch and return instruction from the specified location. Handle
1430 MIPS16/microMIPS as appropriate. */
1431
1432 static ULONGEST
1433 mips_fetch_instruction (struct gdbarch *gdbarch,
1434 enum mips_isa isa, CORE_ADDR addr, int *errp)
1435 {
1436 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1437 gdb_byte buf[MIPS_INSN32_SIZE];
1438 int instlen;
1439 int err;
1440
1441 switch (isa)
1442 {
1443 case ISA_MICROMIPS:
1444 case ISA_MIPS16:
1445 instlen = MIPS_INSN16_SIZE;
1446 addr = unmake_compact_addr (addr);
1447 break;
1448 case ISA_MIPS:
1449 instlen = MIPS_INSN32_SIZE;
1450 break;
1451 default:
1452 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1453 break;
1454 }
1455 err = target_read_memory (addr, buf, instlen);
1456 if (errp != NULL)
1457 *errp = err;
1458 if (err != 0)
1459 {
1460 if (errp == NULL)
1461 memory_error (TARGET_XFER_E_IO, addr);
1462 return 0;
1463 }
1464 return extract_unsigned_integer (buf, instlen, byte_order);
1465 }
1466
1467 /* These are the fields of 32 bit mips instructions. */
1468 #define mips32_op(x) (x >> 26)
1469 #define itype_op(x) (x >> 26)
1470 #define itype_rs(x) ((x >> 21) & 0x1f)
1471 #define itype_rt(x) ((x >> 16) & 0x1f)
1472 #define itype_immediate(x) (x & 0xffff)
1473
1474 #define jtype_op(x) (x >> 26)
1475 #define jtype_target(x) (x & 0x03ffffff)
1476
1477 #define rtype_op(x) (x >> 26)
1478 #define rtype_rs(x) ((x >> 21) & 0x1f)
1479 #define rtype_rt(x) ((x >> 16) & 0x1f)
1480 #define rtype_rd(x) ((x >> 11) & 0x1f)
1481 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1482 #define rtype_funct(x) (x & 0x3f)
1483
1484 /* MicroMIPS instruction fields. */
1485 #define micromips_op(x) ((x) >> 10)
1486
1487 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1488 bit and the size respectively of the field extracted. */
1489 #define b0s4_imm(x) ((x) & 0xf)
1490 #define b0s5_imm(x) ((x) & 0x1f)
1491 #define b0s5_reg(x) ((x) & 0x1f)
1492 #define b0s7_imm(x) ((x) & 0x7f)
1493 #define b0s10_imm(x) ((x) & 0x3ff)
1494 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1495 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1496 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1497 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1498 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1499 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1500 #define b6s4_op(x) (((x) >> 6) & 0xf)
1501 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1502
1503 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1504 respectively of the field extracted. */
1505 #define b0s6_op(x) ((x) & 0x3f)
1506 #define b0s11_op(x) ((x) & 0x7ff)
1507 #define b0s12_imm(x) ((x) & 0xfff)
1508 #define b0s16_imm(x) ((x) & 0xffff)
1509 #define b0s26_imm(x) ((x) & 0x3ffffff)
1510 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1511 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1512 #define b12s4_op(x) (((x) >> 12) & 0xf)
1513
1514 /* Return the size in bytes of the instruction INSN encoded in the ISA
1515 instruction set. */
1516
1517 static int
1518 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1519 {
1520 switch (isa)
1521 {
1522 case ISA_MICROMIPS:
1523 if ((micromips_op (insn) & 0x4) == 0x4
1524 || (micromips_op (insn) & 0x7) == 0x0)
1525 return 2 * MIPS_INSN16_SIZE;
1526 else
1527 return MIPS_INSN16_SIZE;
1528 case ISA_MIPS16:
1529 if ((insn & 0xf800) == 0xf000)
1530 return 2 * MIPS_INSN16_SIZE;
1531 else
1532 return MIPS_INSN16_SIZE;
1533 case ISA_MIPS:
1534 return MIPS_INSN32_SIZE;
1535 }
1536 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1537 }
1538
1539 static LONGEST
1540 mips32_relative_offset (ULONGEST inst)
1541 {
1542 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1543 }
1544
1545 /* Determine the address of the next instruction executed after the INST
1546 floating condition branch instruction at PC. COUNT specifies the
1547 number of the floating condition bits tested by the branch. */
1548
1549 static CORE_ADDR
1550 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1551 ULONGEST inst, CORE_ADDR pc, int count)
1552 {
1553 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1554 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1555 int tf = itype_rt (inst) & 1;
1556 int mask = (1 << count) - 1;
1557 ULONGEST fcs;
1558 int cond;
1559
1560 if (fcsr == -1)
1561 /* No way to handle; it'll most likely trap anyway. */
1562 return pc;
1563
1564 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1565 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1566
1567 if (((cond >> cnum) & mask) != mask * !tf)
1568 pc += mips32_relative_offset (inst);
1569 else
1570 pc += 4;
1571
1572 return pc;
1573 }
1574
1575 /* Return nonzero if the gdbarch is an Octeon series. */
1576
1577 static int
1578 is_octeon (struct gdbarch *gdbarch)
1579 {
1580 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1581
1582 return (info->mach == bfd_mach_mips_octeon
1583 || info->mach == bfd_mach_mips_octeonp
1584 || info->mach == bfd_mach_mips_octeon2);
1585 }
1586
1587 /* Return true if the OP represents the Octeon's BBIT instruction. */
1588
1589 static int
1590 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1591 {
1592 if (!is_octeon (gdbarch))
1593 return 0;
1594 /* BBIT0 is encoded as LWC2: 110 010. */
1595 /* BBIT032 is encoded as LDC2: 110 110. */
1596 /* BBIT1 is encoded as SWC2: 111 010. */
1597 /* BBIT132 is encoded as SDC2: 111 110. */
1598 if (op == 50 || op == 54 || op == 58 || op == 62)
1599 return 1;
1600 return 0;
1601 }
1602
1603
1604 /* Determine where to set a single step breakpoint while considering
1605 branch prediction. */
1606
1607 static CORE_ADDR
1608 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1609 {
1610 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1611 unsigned long inst;
1612 int op;
1613 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1614 op = itype_op (inst);
1615 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1616 instruction. */
1617 {
1618 if (op >> 2 == 5)
1619 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1620 {
1621 switch (op & 0x03)
1622 {
1623 case 0: /* BEQL */
1624 goto equal_branch;
1625 case 1: /* BNEL */
1626 goto neq_branch;
1627 case 2: /* BLEZL */
1628 goto less_branch;
1629 case 3: /* BGTZL */
1630 goto greater_branch;
1631 default:
1632 pc += 4;
1633 }
1634 }
1635 else if (op == 17 && itype_rs (inst) == 8)
1636 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1637 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1638 else if (op == 17 && itype_rs (inst) == 9
1639 && (itype_rt (inst) & 2) == 0)
1640 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1641 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1642 else if (op == 17 && itype_rs (inst) == 10
1643 && (itype_rt (inst) & 2) == 0)
1644 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1645 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1646 else if (op == 29)
1647 /* JALX: 011101 */
1648 /* The new PC will be alternate mode. */
1649 {
1650 unsigned long reg;
1651
1652 reg = jtype_target (inst) << 2;
1653 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1654 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1655 }
1656 else if (is_octeon_bbit_op (op, gdbarch))
1657 {
1658 int bit, branch_if;
1659
1660 branch_if = op == 58 || op == 62;
1661 bit = itype_rt (inst);
1662
1663 /* Take into account the *32 instructions. */
1664 if (op == 54 || op == 62)
1665 bit += 32;
1666
1667 if (((regcache_raw_get_signed (regcache,
1668 itype_rs (inst)) >> bit) & 1)
1669 == branch_if)
1670 pc += mips32_relative_offset (inst) + 4;
1671 else
1672 pc += 8; /* After the delay slot. */
1673 }
1674
1675 else
1676 pc += 4; /* Not a branch, next instruction is easy. */
1677 }
1678 else
1679 { /* This gets way messy. */
1680
1681 /* Further subdivide into SPECIAL, REGIMM and other. */
1682 switch (op & 0x07) /* Extract bits 28,27,26. */
1683 {
1684 case 0: /* SPECIAL */
1685 op = rtype_funct (inst);
1686 switch (op)
1687 {
1688 case 8: /* JR */
1689 case 9: /* JALR */
1690 /* Set PC to that address. */
1691 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1692 break;
1693 case 12: /* SYSCALL */
1694 {
1695 struct gdbarch_tdep *tdep;
1696
1697 tdep = gdbarch_tdep (gdbarch);
1698 if (tdep->syscall_next_pc != NULL)
1699 pc = tdep->syscall_next_pc (get_current_frame ());
1700 else
1701 pc += 4;
1702 }
1703 break;
1704 default:
1705 pc += 4;
1706 }
1707
1708 break; /* end SPECIAL */
1709 case 1: /* REGIMM */
1710 {
1711 op = itype_rt (inst); /* branch condition */
1712 switch (op)
1713 {
1714 case 0: /* BLTZ */
1715 case 2: /* BLTZL */
1716 case 16: /* BLTZAL */
1717 case 18: /* BLTZALL */
1718 less_branch:
1719 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1720 pc += mips32_relative_offset (inst) + 4;
1721 else
1722 pc += 8; /* after the delay slot */
1723 break;
1724 case 1: /* BGEZ */
1725 case 3: /* BGEZL */
1726 case 17: /* BGEZAL */
1727 case 19: /* BGEZALL */
1728 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1729 pc += mips32_relative_offset (inst) + 4;
1730 else
1731 pc += 8; /* after the delay slot */
1732 break;
1733 case 0x1c: /* BPOSGE32 */
1734 case 0x1e: /* BPOSGE64 */
1735 pc += 4;
1736 if (itype_rs (inst) == 0)
1737 {
1738 unsigned int pos = (op & 2) ? 64 : 32;
1739 int dspctl = mips_regnum (gdbarch)->dspctl;
1740
1741 if (dspctl == -1)
1742 /* No way to handle; it'll most likely trap anyway. */
1743 break;
1744
1745 if ((regcache_raw_get_unsigned (regcache,
1746 dspctl) & 0x7f) >= pos)
1747 pc += mips32_relative_offset (inst);
1748 else
1749 pc += 4;
1750 }
1751 break;
1752 /* All of the other instructions in the REGIMM category */
1753 default:
1754 pc += 4;
1755 }
1756 }
1757 break; /* end REGIMM */
1758 case 2: /* J */
1759 case 3: /* JAL */
1760 {
1761 unsigned long reg;
1762 reg = jtype_target (inst) << 2;
1763 /* Upper four bits get never changed... */
1764 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1765 }
1766 break;
1767 case 4: /* BEQ, BEQL */
1768 equal_branch:
1769 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1770 regcache_raw_get_signed (regcache, itype_rt (inst)))
1771 pc += mips32_relative_offset (inst) + 4;
1772 else
1773 pc += 8;
1774 break;
1775 case 5: /* BNE, BNEL */
1776 neq_branch:
1777 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1778 regcache_raw_get_signed (regcache, itype_rt (inst)))
1779 pc += mips32_relative_offset (inst) + 4;
1780 else
1781 pc += 8;
1782 break;
1783 case 6: /* BLEZ, BLEZL */
1784 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1785 pc += mips32_relative_offset (inst) + 4;
1786 else
1787 pc += 8;
1788 break;
1789 case 7:
1790 default:
1791 greater_branch: /* BGTZ, BGTZL */
1792 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1793 pc += mips32_relative_offset (inst) + 4;
1794 else
1795 pc += 8;
1796 break;
1797 } /* switch */
1798 } /* else */
1799 return pc;
1800 } /* mips32_next_pc */
1801
1802 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1803 INSN. */
1804
1805 static LONGEST
1806 micromips_relative_offset7 (ULONGEST insn)
1807 {
1808 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1809 }
1810
1811 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1812 INSN. */
1813
1814 static LONGEST
1815 micromips_relative_offset10 (ULONGEST insn)
1816 {
1817 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1818 }
1819
1820 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1821 INSN. */
1822
1823 static LONGEST
1824 micromips_relative_offset16 (ULONGEST insn)
1825 {
1826 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1827 }
1828
1829 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1830
1831 static int
1832 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1833 {
1834 ULONGEST insn;
1835
1836 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1837 return mips_insn_size (ISA_MICROMIPS, insn);
1838 }
1839
1840 /* Calculate the address of the next microMIPS instruction to execute
1841 after the INSN coprocessor 1 conditional branch instruction at the
1842 address PC. COUNT denotes the number of coprocessor condition bits
1843 examined by the branch. */
1844
1845 static CORE_ADDR
1846 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1847 ULONGEST insn, CORE_ADDR pc, int count)
1848 {
1849 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1850 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1851 int tf = b5s5_op (insn >> 16) & 1;
1852 int mask = (1 << count) - 1;
1853 ULONGEST fcs;
1854 int cond;
1855
1856 if (fcsr == -1)
1857 /* No way to handle; it'll most likely trap anyway. */
1858 return pc;
1859
1860 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1861 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1862
1863 if (((cond >> cnum) & mask) != mask * !tf)
1864 pc += micromips_relative_offset16 (insn);
1865 else
1866 pc += micromips_pc_insn_size (gdbarch, pc);
1867
1868 return pc;
1869 }
1870
1871 /* Calculate the address of the next microMIPS instruction to execute
1872 after the instruction at the address PC. */
1873
1874 static CORE_ADDR
1875 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1876 {
1877 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1878 ULONGEST insn;
1879
1880 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1881 pc += MIPS_INSN16_SIZE;
1882 switch (mips_insn_size (ISA_MICROMIPS, insn))
1883 {
1884 /* 32-bit instructions. */
1885 case 2 * MIPS_INSN16_SIZE:
1886 insn <<= 16;
1887 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1888 pc += MIPS_INSN16_SIZE;
1889 switch (micromips_op (insn >> 16))
1890 {
1891 case 0x00: /* POOL32A: bits 000000 */
1892 if (b0s6_op (insn) == 0x3c
1893 /* POOL32Axf: bits 000000 ... 111100 */
1894 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1895 /* JALR, JALR.HB: 000000 000x111100 111100 */
1896 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1897 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
1898 break;
1899
1900 case 0x10: /* POOL32I: bits 010000 */
1901 switch (b5s5_op (insn >> 16))
1902 {
1903 case 0x00: /* BLTZ: bits 010000 00000 */
1904 case 0x01: /* BLTZAL: bits 010000 00001 */
1905 case 0x11: /* BLTZALS: bits 010000 10001 */
1906 if (regcache_raw_get_signed (regcache,
1907 b0s5_reg (insn >> 16)) < 0)
1908 pc += micromips_relative_offset16 (insn);
1909 else
1910 pc += micromips_pc_insn_size (gdbarch, pc);
1911 break;
1912
1913 case 0x02: /* BGEZ: bits 010000 00010 */
1914 case 0x03: /* BGEZAL: bits 010000 00011 */
1915 case 0x13: /* BGEZALS: bits 010000 10011 */
1916 if (regcache_raw_get_signed (regcache,
1917 b0s5_reg (insn >> 16)) >= 0)
1918 pc += micromips_relative_offset16 (insn);
1919 else
1920 pc += micromips_pc_insn_size (gdbarch, pc);
1921 break;
1922
1923 case 0x04: /* BLEZ: bits 010000 00100 */
1924 if (regcache_raw_get_signed (regcache,
1925 b0s5_reg (insn >> 16)) <= 0)
1926 pc += micromips_relative_offset16 (insn);
1927 else
1928 pc += micromips_pc_insn_size (gdbarch, pc);
1929 break;
1930
1931 case 0x05: /* BNEZC: bits 010000 00101 */
1932 if (regcache_raw_get_signed (regcache,
1933 b0s5_reg (insn >> 16)) != 0)
1934 pc += micromips_relative_offset16 (insn);
1935 break;
1936
1937 case 0x06: /* BGTZ: bits 010000 00110 */
1938 if (regcache_raw_get_signed (regcache,
1939 b0s5_reg (insn >> 16)) > 0)
1940 pc += micromips_relative_offset16 (insn);
1941 else
1942 pc += micromips_pc_insn_size (gdbarch, pc);
1943 break;
1944
1945 case 0x07: /* BEQZC: bits 010000 00111 */
1946 if (regcache_raw_get_signed (regcache,
1947 b0s5_reg (insn >> 16)) == 0)
1948 pc += micromips_relative_offset16 (insn);
1949 break;
1950
1951 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1952 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1953 if (((insn >> 16) & 0x3) == 0x0)
1954 /* BC2F, BC2T: don't know how to handle these. */
1955 break;
1956 break;
1957
1958 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1959 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1960 {
1961 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1962 int dspctl = mips_regnum (gdbarch)->dspctl;
1963
1964 if (dspctl == -1)
1965 /* No way to handle; it'll most likely trap anyway. */
1966 break;
1967
1968 if ((regcache_raw_get_unsigned (regcache,
1969 dspctl) & 0x7f) >= pos)
1970 pc += micromips_relative_offset16 (insn);
1971 else
1972 pc += micromips_pc_insn_size (gdbarch, pc);
1973 }
1974 break;
1975
1976 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1977 /* BC1ANY2F: bits 010000 11100 xxx01 */
1978 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1979 /* BC1ANY2T: bits 010000 11101 xxx01 */
1980 if (((insn >> 16) & 0x2) == 0x0)
1981 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
1982 ((insn >> 16) & 0x1) + 1);
1983 break;
1984
1985 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1986 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1987 if (((insn >> 16) & 0x3) == 0x1)
1988 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
1989 break;
1990 }
1991 break;
1992
1993 case 0x1d: /* JALS: bits 011101 */
1994 case 0x35: /* J: bits 110101 */
1995 case 0x3d: /* JAL: bits 111101 */
1996 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1997 break;
1998
1999 case 0x25: /* BEQ: bits 100101 */
2000 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2001 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2002 pc += micromips_relative_offset16 (insn);
2003 else
2004 pc += micromips_pc_insn_size (gdbarch, pc);
2005 break;
2006
2007 case 0x2d: /* BNE: bits 101101 */
2008 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2009 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2010 pc += micromips_relative_offset16 (insn);
2011 else
2012 pc += micromips_pc_insn_size (gdbarch, pc);
2013 break;
2014
2015 case 0x3c: /* JALX: bits 111100 */
2016 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2017 break;
2018 }
2019 break;
2020
2021 /* 16-bit instructions. */
2022 case MIPS_INSN16_SIZE:
2023 switch (micromips_op (insn))
2024 {
2025 case 0x11: /* POOL16C: bits 010001 */
2026 if ((b5s5_op (insn) & 0x1c) == 0xc)
2027 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2028 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2029 else if (b5s5_op (insn) == 0x18)
2030 /* JRADDIUSP: bits 010001 11000 */
2031 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2032 break;
2033
2034 case 0x23: /* BEQZ16: bits 100011 */
2035 {
2036 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2037
2038 if (regcache_raw_get_signed (regcache, rs) == 0)
2039 pc += micromips_relative_offset7 (insn);
2040 else
2041 pc += micromips_pc_insn_size (gdbarch, pc);
2042 }
2043 break;
2044
2045 case 0x2b: /* BNEZ16: bits 101011 */
2046 {
2047 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2048
2049 if (regcache_raw_get_signed (regcache, rs) != 0)
2050 pc += micromips_relative_offset7 (insn);
2051 else
2052 pc += micromips_pc_insn_size (gdbarch, pc);
2053 }
2054 break;
2055
2056 case 0x33: /* B16: bits 110011 */
2057 pc += micromips_relative_offset10 (insn);
2058 break;
2059 }
2060 break;
2061 }
2062
2063 return pc;
2064 }
2065
2066 /* Decoding the next place to set a breakpoint is irregular for the
2067 mips 16 variant, but fortunately, there fewer instructions. We have
2068 to cope ith extensions for 16 bit instructions and a pair of actual
2069 32 bit instructions. We dont want to set a single step instruction
2070 on the extend instruction either. */
2071
2072 /* Lots of mips16 instruction formats */
2073 /* Predicting jumps requires itype,ritype,i8type
2074 and their extensions extItype,extritype,extI8type. */
2075 enum mips16_inst_fmts
2076 {
2077 itype, /* 0 immediate 5,10 */
2078 ritype, /* 1 5,3,8 */
2079 rrtype, /* 2 5,3,3,5 */
2080 rritype, /* 3 5,3,3,5 */
2081 rrrtype, /* 4 5,3,3,3,2 */
2082 rriatype, /* 5 5,3,3,1,4 */
2083 shifttype, /* 6 5,3,3,3,2 */
2084 i8type, /* 7 5,3,8 */
2085 i8movtype, /* 8 5,3,3,5 */
2086 i8mov32rtype, /* 9 5,3,5,3 */
2087 i64type, /* 10 5,3,8 */
2088 ri64type, /* 11 5,3,3,5 */
2089 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2090 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2091 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2092 extRRItype, /* 15 5,5,5,5,3,3,5 */
2093 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2094 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2095 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2096 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2097 extRi64type, /* 20 5,6,5,5,3,3,5 */
2098 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2099 };
2100 /* I am heaping all the fields of the formats into one structure and
2101 then, only the fields which are involved in instruction extension. */
2102 struct upk_mips16
2103 {
2104 CORE_ADDR offset;
2105 unsigned int regx; /* Function in i8 type. */
2106 unsigned int regy;
2107 };
2108
2109
2110 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2111 for the bits which make up the immediate extension. */
2112
2113 static CORE_ADDR
2114 extended_offset (unsigned int extension)
2115 {
2116 CORE_ADDR value;
2117
2118 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2119 value = value << 6;
2120 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2121 value = value << 5;
2122 value |= extension & 0x1f; /* Extract 4:0. */
2123
2124 return value;
2125 }
2126
2127 /* Only call this function if you know that this is an extendable
2128 instruction. It won't malfunction, but why make excess remote memory
2129 references? If the immediate operands get sign extended or something,
2130 do it after the extension is performed. */
2131 /* FIXME: Every one of these cases needs to worry about sign extension
2132 when the offset is to be used in relative addressing. */
2133
2134 static unsigned int
2135 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2136 {
2137 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2138 gdb_byte buf[8];
2139
2140 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2141 target_read_memory (pc, buf, 2);
2142 return extract_unsigned_integer (buf, 2, byte_order);
2143 }
2144
2145 static void
2146 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2147 unsigned int extension,
2148 unsigned int inst,
2149 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2150 {
2151 CORE_ADDR offset;
2152 int regx;
2153 int regy;
2154 switch (insn_format)
2155 {
2156 case itype:
2157 {
2158 CORE_ADDR value;
2159 if (extension)
2160 {
2161 value = extended_offset ((extension << 16) | inst);
2162 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2163 }
2164 else
2165 {
2166 value = inst & 0x7ff;
2167 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2168 }
2169 offset = value;
2170 regx = -1;
2171 regy = -1;
2172 }
2173 break;
2174 case ritype:
2175 case i8type:
2176 { /* A register identifier and an offset. */
2177 /* Most of the fields are the same as I type but the
2178 immediate value is of a different length. */
2179 CORE_ADDR value;
2180 if (extension)
2181 {
2182 value = extended_offset ((extension << 16) | inst);
2183 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2184 }
2185 else
2186 {
2187 value = inst & 0xff; /* 8 bits */
2188 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2189 }
2190 offset = value;
2191 regx = (inst >> 8) & 0x07; /* i8 funct */
2192 regy = -1;
2193 break;
2194 }
2195 case jalxtype:
2196 {
2197 unsigned long value;
2198 unsigned int nexthalf;
2199 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2200 value = value << 16;
2201 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2202 /* Low bit still set. */
2203 value |= nexthalf;
2204 offset = value;
2205 regx = -1;
2206 regy = -1;
2207 break;
2208 }
2209 default:
2210 internal_error (__FILE__, __LINE__, _("bad switch"));
2211 }
2212 upk->offset = offset;
2213 upk->regx = regx;
2214 upk->regy = regy;
2215 }
2216
2217
2218 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2219 and having a signed 16-bit OFFSET. */
2220
2221 static CORE_ADDR
2222 add_offset_16 (CORE_ADDR pc, int offset)
2223 {
2224 return pc + (offset << 1) + 2;
2225 }
2226
2227 static CORE_ADDR
2228 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2229 unsigned int extension, unsigned int insn)
2230 {
2231 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2232 int op = (insn >> 11);
2233 switch (op)
2234 {
2235 case 2: /* Branch */
2236 {
2237 struct upk_mips16 upk;
2238 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2239 pc = add_offset_16 (pc, upk.offset);
2240 break;
2241 }
2242 case 3: /* JAL , JALX - Watch out, these are 32 bit
2243 instructions. */
2244 {
2245 struct upk_mips16 upk;
2246 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2247 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2248 if ((insn >> 10) & 0x01) /* Exchange mode */
2249 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2250 else
2251 pc |= 0x01;
2252 break;
2253 }
2254 case 4: /* beqz */
2255 {
2256 struct upk_mips16 upk;
2257 int reg;
2258 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2259 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2260 if (reg == 0)
2261 pc = add_offset_16 (pc, upk.offset);
2262 else
2263 pc += 2;
2264 break;
2265 }
2266 case 5: /* bnez */
2267 {
2268 struct upk_mips16 upk;
2269 int reg;
2270 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2271 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2272 if (reg != 0)
2273 pc = add_offset_16 (pc, upk.offset);
2274 else
2275 pc += 2;
2276 break;
2277 }
2278 case 12: /* I8 Formats btez btnez */
2279 {
2280 struct upk_mips16 upk;
2281 int reg;
2282 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2283 /* upk.regx contains the opcode */
2284 /* Test register is 24 */
2285 reg = regcache_raw_get_signed (regcache, 24);
2286 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2287 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2288 pc = add_offset_16 (pc, upk.offset);
2289 else
2290 pc += 2;
2291 break;
2292 }
2293 case 29: /* RR Formats JR, JALR, JALR-RA */
2294 {
2295 struct upk_mips16 upk;
2296 /* upk.fmt = rrtype; */
2297 op = insn & 0x1f;
2298 if (op == 0)
2299 {
2300 int reg;
2301 upk.regx = (insn >> 8) & 0x07;
2302 upk.regy = (insn >> 5) & 0x07;
2303 if ((upk.regy & 1) == 0)
2304 reg = mips_reg3_to_reg[upk.regx];
2305 else
2306 reg = 31; /* Function return instruction. */
2307 pc = regcache_raw_get_signed (regcache, reg);
2308 }
2309 else
2310 pc += 2;
2311 break;
2312 }
2313 case 30:
2314 /* This is an instruction extension. Fetch the real instruction
2315 (which follows the extension) and decode things based on
2316 that. */
2317 {
2318 pc += 2;
2319 pc = extended_mips16_next_pc (regcache, pc, insn,
2320 fetch_mips_16 (gdbarch, pc));
2321 break;
2322 }
2323 default:
2324 {
2325 pc += 2;
2326 break;
2327 }
2328 }
2329 return pc;
2330 }
2331
2332 static CORE_ADDR
2333 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2334 {
2335 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2336 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2337 return extended_mips16_next_pc (regcache, pc, 0, insn);
2338 }
2339
2340 /* The mips_next_pc function supports single_step when the remote
2341 target monitor or stub is not developed enough to do a single_step.
2342 It works by decoding the current instruction and predicting where a
2343 branch will go. This isn't hard because all the data is available.
2344 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2345 static CORE_ADDR
2346 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2347 {
2348 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2349
2350 if (mips_pc_is_mips16 (gdbarch, pc))
2351 return mips16_next_pc (regcache, pc);
2352 else if (mips_pc_is_micromips (gdbarch, pc))
2353 return micromips_next_pc (regcache, pc);
2354 else
2355 return mips32_next_pc (regcache, pc);
2356 }
2357
2358 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2359 or jump. */
2360
2361 static int
2362 mips16_instruction_is_compact_branch (unsigned short insn)
2363 {
2364 switch (insn & 0xf800)
2365 {
2366 case 0xe800:
2367 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2368 case 0x6000:
2369 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2370 case 0x2800: /* BNEZ */
2371 case 0x2000: /* BEQZ */
2372 case 0x1000: /* B */
2373 return 1;
2374 default:
2375 return 0;
2376 }
2377 }
2378
2379 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2380 or jump. */
2381
2382 static int
2383 micromips_instruction_is_compact_branch (unsigned short insn)
2384 {
2385 switch (micromips_op (insn))
2386 {
2387 case 0x11: /* POOL16C: bits 010001 */
2388 return (b5s5_op (insn) == 0x18
2389 /* JRADDIUSP: bits 010001 11000 */
2390 || b5s5_op (insn) == 0xd);
2391 /* JRC: bits 010011 01101 */
2392 case 0x10: /* POOL32I: bits 010000 */
2393 return (b5s5_op (insn) & 0x1d) == 0x5;
2394 /* BEQZC/BNEZC: bits 010000 001x1 */
2395 default:
2396 return 0;
2397 }
2398 }
2399
2400 struct mips_frame_cache
2401 {
2402 CORE_ADDR base;
2403 struct trad_frame_saved_reg *saved_regs;
2404 };
2405
2406 /* Set a register's saved stack address in temp_saved_regs. If an
2407 address has already been set for this register, do nothing; this
2408 way we will only recognize the first save of a given register in a
2409 function prologue.
2410
2411 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2412 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2413 Strictly speaking, only the second range is used as it is only second
2414 range (the ABI instead of ISA registers) that comes into play when finding
2415 saved registers in a frame. */
2416
2417 static void
2418 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2419 int regnum, CORE_ADDR offset)
2420 {
2421 if (this_cache != NULL
2422 && this_cache->saved_regs[regnum].addr == -1)
2423 {
2424 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2425 = offset;
2426 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2427 = offset;
2428 }
2429 }
2430
2431
2432 /* Fetch the immediate value from a MIPS16 instruction.
2433 If the previous instruction was an EXTEND, use it to extend
2434 the upper bits of the immediate value. This is a helper function
2435 for mips16_scan_prologue. */
2436
2437 static int
2438 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2439 unsigned short inst, /* current instruction */
2440 int nbits, /* number of bits in imm field */
2441 int scale, /* scale factor to be applied to imm */
2442 int is_signed) /* is the imm field signed? */
2443 {
2444 int offset;
2445
2446 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2447 {
2448 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2449 if (offset & 0x8000) /* check for negative extend */
2450 offset = 0 - (0x10000 - (offset & 0xffff));
2451 return offset | (inst & 0x1f);
2452 }
2453 else
2454 {
2455 int max_imm = 1 << nbits;
2456 int mask = max_imm - 1;
2457 int sign_bit = max_imm >> 1;
2458
2459 offset = inst & mask;
2460 if (is_signed && (offset & sign_bit))
2461 offset = 0 - (max_imm - offset);
2462 return offset * scale;
2463 }
2464 }
2465
2466
2467 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2468 the associated FRAME_CACHE if not null.
2469 Return the address of the first instruction past the prologue. */
2470
2471 static CORE_ADDR
2472 mips16_scan_prologue (struct gdbarch *gdbarch,
2473 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2474 struct frame_info *this_frame,
2475 struct mips_frame_cache *this_cache)
2476 {
2477 int prev_non_prologue_insn = 0;
2478 int this_non_prologue_insn;
2479 int non_prologue_insns = 0;
2480 CORE_ADDR prev_pc;
2481 CORE_ADDR cur_pc;
2482 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2483 CORE_ADDR sp;
2484 long frame_offset = 0; /* Size of stack frame. */
2485 long frame_adjust = 0; /* Offset of FP from SP. */
2486 int frame_reg = MIPS_SP_REGNUM;
2487 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2488 unsigned inst = 0; /* current instruction */
2489 unsigned entry_inst = 0; /* the entry instruction */
2490 unsigned save_inst = 0; /* the save instruction */
2491 int prev_delay_slot = 0;
2492 int in_delay_slot;
2493 int reg, offset;
2494
2495 int extend_bytes = 0;
2496 int prev_extend_bytes = 0;
2497 CORE_ADDR end_prologue_addr;
2498
2499 /* Can be called when there's no process, and hence when there's no
2500 THIS_FRAME. */
2501 if (this_frame != NULL)
2502 sp = get_frame_register_signed (this_frame,
2503 gdbarch_num_regs (gdbarch)
2504 + MIPS_SP_REGNUM);
2505 else
2506 sp = 0;
2507
2508 if (limit_pc > start_pc + 200)
2509 limit_pc = start_pc + 200;
2510 prev_pc = start_pc;
2511
2512 /* Permit at most one non-prologue non-control-transfer instruction
2513 in the middle which may have been reordered by the compiler for
2514 optimisation. */
2515 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2516 {
2517 this_non_prologue_insn = 0;
2518 in_delay_slot = 0;
2519
2520 /* Save the previous instruction. If it's an EXTEND, we'll extract
2521 the immediate offset extension from it in mips16_get_imm. */
2522 prev_inst = inst;
2523
2524 /* Fetch and decode the instruction. */
2525 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2526 cur_pc, NULL);
2527
2528 /* Normally we ignore extend instructions. However, if it is
2529 not followed by a valid prologue instruction, then this
2530 instruction is not part of the prologue either. We must
2531 remember in this case to adjust the end_prologue_addr back
2532 over the extend. */
2533 if ((inst & 0xf800) == 0xf000) /* extend */
2534 {
2535 extend_bytes = MIPS_INSN16_SIZE;
2536 continue;
2537 }
2538
2539 prev_extend_bytes = extend_bytes;
2540 extend_bytes = 0;
2541
2542 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2543 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2544 {
2545 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2546 if (offset < 0) /* Negative stack adjustment? */
2547 frame_offset -= offset;
2548 else
2549 /* Exit loop if a positive stack adjustment is found, which
2550 usually means that the stack cleanup code in the function
2551 epilogue is reached. */
2552 break;
2553 }
2554 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2555 {
2556 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2557 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2558 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2559 }
2560 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2561 {
2562 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2563 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2564 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2565 }
2566 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2567 {
2568 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2569 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2570 }
2571 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2572 {
2573 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2574 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2575 }
2576 else if (inst == 0x673d) /* move $s1, $sp */
2577 {
2578 frame_addr = sp;
2579 frame_reg = 17;
2580 }
2581 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2582 {
2583 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2584 frame_addr = sp + offset;
2585 frame_reg = 17;
2586 frame_adjust = offset;
2587 }
2588 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2589 {
2590 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2591 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2592 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2593 }
2594 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2595 {
2596 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2597 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2598 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2599 }
2600 else if ((inst & 0xf81f) == 0xe809
2601 && (inst & 0x700) != 0x700) /* entry */
2602 entry_inst = inst; /* Save for later processing. */
2603 else if ((inst & 0xff80) == 0x6480) /* save */
2604 {
2605 save_inst = inst; /* Save for later processing. */
2606 if (prev_extend_bytes) /* extend */
2607 save_inst |= prev_inst << 16;
2608 }
2609 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2610 {
2611 /* This instruction is part of the prologue, but we don't
2612 need to do anything special to handle it. */
2613 }
2614 else if (mips16_instruction_has_delay_slot (inst, 0))
2615 /* JAL/JALR/JALX/JR */
2616 {
2617 /* The instruction in the delay slot can be a part
2618 of the prologue, so move forward once more. */
2619 in_delay_slot = 1;
2620 if (mips16_instruction_has_delay_slot (inst, 1))
2621 /* JAL/JALX */
2622 {
2623 prev_extend_bytes = MIPS_INSN16_SIZE;
2624 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2625 }
2626 }
2627 else
2628 {
2629 this_non_prologue_insn = 1;
2630 }
2631
2632 non_prologue_insns += this_non_prologue_insn;
2633
2634 /* A jump or branch, or enough non-prologue insns seen? If so,
2635 then we must have reached the end of the prologue by now. */
2636 if (prev_delay_slot || non_prologue_insns > 1
2637 || mips16_instruction_is_compact_branch (inst))
2638 break;
2639
2640 prev_non_prologue_insn = this_non_prologue_insn;
2641 prev_delay_slot = in_delay_slot;
2642 prev_pc = cur_pc - prev_extend_bytes;
2643 }
2644
2645 /* The entry instruction is typically the first instruction in a function,
2646 and it stores registers at offsets relative to the value of the old SP
2647 (before the prologue). But the value of the sp parameter to this
2648 function is the new SP (after the prologue has been executed). So we
2649 can't calculate those offsets until we've seen the entire prologue,
2650 and can calculate what the old SP must have been. */
2651 if (entry_inst != 0)
2652 {
2653 int areg_count = (entry_inst >> 8) & 7;
2654 int sreg_count = (entry_inst >> 6) & 3;
2655
2656 /* The entry instruction always subtracts 32 from the SP. */
2657 frame_offset += 32;
2658
2659 /* Now we can calculate what the SP must have been at the
2660 start of the function prologue. */
2661 sp += frame_offset;
2662
2663 /* Check if a0-a3 were saved in the caller's argument save area. */
2664 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2665 {
2666 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2667 offset += mips_abi_regsize (gdbarch);
2668 }
2669
2670 /* Check if the ra register was pushed on the stack. */
2671 offset = -4;
2672 if (entry_inst & 0x20)
2673 {
2674 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2675 offset -= mips_abi_regsize (gdbarch);
2676 }
2677
2678 /* Check if the s0 and s1 registers were pushed on the stack. */
2679 for (reg = 16; reg < sreg_count + 16; reg++)
2680 {
2681 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2682 offset -= mips_abi_regsize (gdbarch);
2683 }
2684 }
2685
2686 /* The SAVE instruction is similar to ENTRY, except that defined by the
2687 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2688 size of the frame is specified as an immediate field of instruction
2689 and an extended variation exists which lets additional registers and
2690 frame space to be specified. The instruction always treats registers
2691 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2692 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2693 {
2694 static int args_table[16] = {
2695 0, 0, 0, 0, 1, 1, 1, 1,
2696 2, 2, 2, 0, 3, 3, 4, -1,
2697 };
2698 static int astatic_table[16] = {
2699 0, 1, 2, 3, 0, 1, 2, 3,
2700 0, 1, 2, 4, 0, 1, 0, -1,
2701 };
2702 int aregs = (save_inst >> 16) & 0xf;
2703 int xsregs = (save_inst >> 24) & 0x7;
2704 int args = args_table[aregs];
2705 int astatic = astatic_table[aregs];
2706 long frame_size;
2707
2708 if (args < 0)
2709 {
2710 warning (_("Invalid number of argument registers encoded in SAVE."));
2711 args = 0;
2712 }
2713 if (astatic < 0)
2714 {
2715 warning (_("Invalid number of static registers encoded in SAVE."));
2716 astatic = 0;
2717 }
2718
2719 /* For standard SAVE the frame size of 0 means 128. */
2720 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2721 if (frame_size == 0 && (save_inst >> 16) == 0)
2722 frame_size = 16;
2723 frame_size *= 8;
2724 frame_offset += frame_size;
2725
2726 /* Now we can calculate what the SP must have been at the
2727 start of the function prologue. */
2728 sp += frame_offset;
2729
2730 /* Check if A0-A3 were saved in the caller's argument save area. */
2731 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2732 {
2733 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2734 offset += mips_abi_regsize (gdbarch);
2735 }
2736
2737 offset = -4;
2738
2739 /* Check if the RA register was pushed on the stack. */
2740 if (save_inst & 0x40)
2741 {
2742 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2743 offset -= mips_abi_regsize (gdbarch);
2744 }
2745
2746 /* Check if the S8 register was pushed on the stack. */
2747 if (xsregs > 6)
2748 {
2749 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2750 offset -= mips_abi_regsize (gdbarch);
2751 xsregs--;
2752 }
2753 /* Check if S2-S7 were pushed on the stack. */
2754 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2755 {
2756 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2757 offset -= mips_abi_regsize (gdbarch);
2758 }
2759
2760 /* Check if the S1 register was pushed on the stack. */
2761 if (save_inst & 0x10)
2762 {
2763 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2764 offset -= mips_abi_regsize (gdbarch);
2765 }
2766 /* Check if the S0 register was pushed on the stack. */
2767 if (save_inst & 0x20)
2768 {
2769 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2770 offset -= mips_abi_regsize (gdbarch);
2771 }
2772
2773 /* Check if A0-A3 were pushed on the stack. */
2774 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2775 {
2776 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2777 offset -= mips_abi_regsize (gdbarch);
2778 }
2779 }
2780
2781 if (this_cache != NULL)
2782 {
2783 this_cache->base =
2784 (get_frame_register_signed (this_frame,
2785 gdbarch_num_regs (gdbarch) + frame_reg)
2786 + frame_offset - frame_adjust);
2787 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2788 be able to get rid of the assignment below, evetually. But it's
2789 still needed for now. */
2790 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2791 + mips_regnum (gdbarch)->pc]
2792 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2793 }
2794
2795 /* Set end_prologue_addr to the address of the instruction immediately
2796 after the last one we scanned. Unless the last one looked like a
2797 non-prologue instruction (and we looked ahead), in which case use
2798 its address instead. */
2799 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2800 ? prev_pc : cur_pc - prev_extend_bytes);
2801
2802 return end_prologue_addr;
2803 }
2804
2805 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2806 Procedures that use the 32-bit instruction set are handled by the
2807 mips_insn32 unwinder. */
2808
2809 static struct mips_frame_cache *
2810 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2811 {
2812 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2813 struct mips_frame_cache *cache;
2814
2815 if ((*this_cache) != NULL)
2816 return (struct mips_frame_cache *) (*this_cache);
2817 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2818 (*this_cache) = cache;
2819 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2820
2821 /* Analyze the function prologue. */
2822 {
2823 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2824 CORE_ADDR start_addr;
2825
2826 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2827 if (start_addr == 0)
2828 start_addr = heuristic_proc_start (gdbarch, pc);
2829 /* We can't analyze the prologue if we couldn't find the begining
2830 of the function. */
2831 if (start_addr == 0)
2832 return cache;
2833
2834 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2835 (struct mips_frame_cache *) *this_cache);
2836 }
2837
2838 /* gdbarch_sp_regnum contains the value and not the address. */
2839 trad_frame_set_value (cache->saved_regs,
2840 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2841 cache->base);
2842
2843 return (struct mips_frame_cache *) (*this_cache);
2844 }
2845
2846 static void
2847 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2848 struct frame_id *this_id)
2849 {
2850 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2851 this_cache);
2852 /* This marks the outermost frame. */
2853 if (info->base == 0)
2854 return;
2855 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2856 }
2857
2858 static struct value *
2859 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2860 void **this_cache, int regnum)
2861 {
2862 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2863 this_cache);
2864 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2865 }
2866
2867 static int
2868 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2869 struct frame_info *this_frame, void **this_cache)
2870 {
2871 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2872 CORE_ADDR pc = get_frame_pc (this_frame);
2873 if (mips_pc_is_mips16 (gdbarch, pc))
2874 return 1;
2875 return 0;
2876 }
2877
2878 static const struct frame_unwind mips_insn16_frame_unwind =
2879 {
2880 NORMAL_FRAME,
2881 default_frame_unwind_stop_reason,
2882 mips_insn16_frame_this_id,
2883 mips_insn16_frame_prev_register,
2884 NULL,
2885 mips_insn16_frame_sniffer
2886 };
2887
2888 static CORE_ADDR
2889 mips_insn16_frame_base_address (struct frame_info *this_frame,
2890 void **this_cache)
2891 {
2892 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2893 this_cache);
2894 return info->base;
2895 }
2896
2897 static const struct frame_base mips_insn16_frame_base =
2898 {
2899 &mips_insn16_frame_unwind,
2900 mips_insn16_frame_base_address,
2901 mips_insn16_frame_base_address,
2902 mips_insn16_frame_base_address
2903 };
2904
2905 static const struct frame_base *
2906 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2907 {
2908 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2909 CORE_ADDR pc = get_frame_pc (this_frame);
2910 if (mips_pc_is_mips16 (gdbarch, pc))
2911 return &mips_insn16_frame_base;
2912 else
2913 return NULL;
2914 }
2915
2916 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2917 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2918 interpreted directly, and then multiplied by 4. */
2919
2920 static int
2921 micromips_decode_imm9 (int imm)
2922 {
2923 imm = (imm ^ 0x100) - 0x100;
2924 if (imm > -3 && imm < 2)
2925 imm ^= 0x100;
2926 return imm << 2;
2927 }
2928
2929 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2930 the address of the first instruction past the prologue. */
2931
2932 static CORE_ADDR
2933 micromips_scan_prologue (struct gdbarch *gdbarch,
2934 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2935 struct frame_info *this_frame,
2936 struct mips_frame_cache *this_cache)
2937 {
2938 CORE_ADDR end_prologue_addr;
2939 int prev_non_prologue_insn = 0;
2940 int frame_reg = MIPS_SP_REGNUM;
2941 int this_non_prologue_insn;
2942 int non_prologue_insns = 0;
2943 long frame_offset = 0; /* Size of stack frame. */
2944 long frame_adjust = 0; /* Offset of FP from SP. */
2945 int prev_delay_slot = 0;
2946 int in_delay_slot;
2947 CORE_ADDR prev_pc;
2948 CORE_ADDR cur_pc;
2949 ULONGEST insn; /* current instruction */
2950 CORE_ADDR sp;
2951 long offset;
2952 long sp_adj;
2953 long v1_off = 0; /* The assumption is LUI will replace it. */
2954 int reglist;
2955 int breg;
2956 int dreg;
2957 int sreg;
2958 int treg;
2959 int loc;
2960 int op;
2961 int s;
2962 int i;
2963
2964 /* Can be called when there's no process, and hence when there's no
2965 THIS_FRAME. */
2966 if (this_frame != NULL)
2967 sp = get_frame_register_signed (this_frame,
2968 gdbarch_num_regs (gdbarch)
2969 + MIPS_SP_REGNUM);
2970 else
2971 sp = 0;
2972
2973 if (limit_pc > start_pc + 200)
2974 limit_pc = start_pc + 200;
2975 prev_pc = start_pc;
2976
2977 /* Permit at most one non-prologue non-control-transfer instruction
2978 in the middle which may have been reordered by the compiler for
2979 optimisation. */
2980 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2981 {
2982 this_non_prologue_insn = 0;
2983 in_delay_slot = 0;
2984 sp_adj = 0;
2985 loc = 0;
2986 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2987 loc += MIPS_INSN16_SIZE;
2988 switch (mips_insn_size (ISA_MICROMIPS, insn))
2989 {
2990 /* 32-bit instructions. */
2991 case 2 * MIPS_INSN16_SIZE:
2992 insn <<= 16;
2993 insn |= mips_fetch_instruction (gdbarch,
2994 ISA_MICROMIPS, cur_pc + loc, NULL);
2995 loc += MIPS_INSN16_SIZE;
2996 switch (micromips_op (insn >> 16))
2997 {
2998 /* Record $sp/$fp adjustment. */
2999 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3000 case 0x0: /* POOL32A: bits 000000 */
3001 case 0x16: /* POOL32S: bits 010110 */
3002 op = b0s11_op (insn);
3003 sreg = b0s5_reg (insn >> 16);
3004 treg = b5s5_reg (insn >> 16);
3005 dreg = b11s5_reg (insn);
3006 if (op == 0x1d0
3007 /* SUBU: bits 000000 00111010000 */
3008 /* DSUBU: bits 010110 00111010000 */
3009 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3010 && treg == 3)
3011 /* (D)SUBU $sp, $v1 */
3012 sp_adj = v1_off;
3013 else if (op != 0x150
3014 /* ADDU: bits 000000 00101010000 */
3015 /* DADDU: bits 010110 00101010000 */
3016 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3017 this_non_prologue_insn = 1;
3018 break;
3019
3020 case 0x8: /* POOL32B: bits 001000 */
3021 op = b12s4_op (insn);
3022 breg = b0s5_reg (insn >> 16);
3023 reglist = sreg = b5s5_reg (insn >> 16);
3024 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3025 if ((op == 0x9 || op == 0xc)
3026 /* SWP: bits 001000 1001 */
3027 /* SDP: bits 001000 1100 */
3028 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3029 /* S[DW]P reg,offset($sp) */
3030 {
3031 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3032 set_reg_offset (gdbarch, this_cache,
3033 sreg, sp + offset);
3034 set_reg_offset (gdbarch, this_cache,
3035 sreg + 1, sp + offset + s);
3036 }
3037 else if ((op == 0xd || op == 0xf)
3038 /* SWM: bits 001000 1101 */
3039 /* SDM: bits 001000 1111 */
3040 && breg == MIPS_SP_REGNUM
3041 /* SWM reglist,offset($sp) */
3042 && ((reglist >= 1 && reglist <= 9)
3043 || (reglist >= 16 && reglist <= 25)))
3044 {
3045 int sreglist = std::min(reglist & 0xf, 8);
3046
3047 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3048 for (i = 0; i < sreglist; i++)
3049 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3050 if ((reglist & 0xf) > 8)
3051 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3052 if ((reglist & 0x10) == 0x10)
3053 set_reg_offset (gdbarch, this_cache,
3054 MIPS_RA_REGNUM, sp + s * i++);
3055 }
3056 else
3057 this_non_prologue_insn = 1;
3058 break;
3059
3060 /* Record $sp/$fp adjustment. */
3061 /* Discard (D)ADDIU $gp used for PIC code. */
3062 case 0xc: /* ADDIU: bits 001100 */
3063 case 0x17: /* DADDIU: bits 010111 */
3064 sreg = b0s5_reg (insn >> 16);
3065 dreg = b5s5_reg (insn >> 16);
3066 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3067 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3068 /* (D)ADDIU $sp, imm */
3069 sp_adj = offset;
3070 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3071 /* (D)ADDIU $fp, $sp, imm */
3072 {
3073 frame_adjust = offset;
3074 frame_reg = 30;
3075 }
3076 else if (sreg != 28 || dreg != 28)
3077 /* (D)ADDIU $gp, imm */
3078 this_non_prologue_insn = 1;
3079 break;
3080
3081 /* LUI $v1 is used for larger $sp adjustments. */
3082 /* Discard LUI $gp used for PIC code. */
3083 case 0x10: /* POOL32I: bits 010000 */
3084 if (b5s5_op (insn >> 16) == 0xd
3085 /* LUI: bits 010000 001101 */
3086 && b0s5_reg (insn >> 16) == 3)
3087 /* LUI $v1, imm */
3088 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3089 else if (b5s5_op (insn >> 16) != 0xd
3090 /* LUI: bits 010000 001101 */
3091 || b0s5_reg (insn >> 16) != 28)
3092 /* LUI $gp, imm */
3093 this_non_prologue_insn = 1;
3094 break;
3095
3096 /* ORI $v1 is used for larger $sp adjustments. */
3097 case 0x14: /* ORI: bits 010100 */
3098 sreg = b0s5_reg (insn >> 16);
3099 dreg = b5s5_reg (insn >> 16);
3100 if (sreg == 3 && dreg == 3)
3101 /* ORI $v1, imm */
3102 v1_off |= b0s16_imm (insn);
3103 else
3104 this_non_prologue_insn = 1;
3105 break;
3106
3107 case 0x26: /* SWC1: bits 100110 */
3108 case 0x2e: /* SDC1: bits 101110 */
3109 breg = b0s5_reg (insn >> 16);
3110 if (breg != MIPS_SP_REGNUM)
3111 /* S[DW]C1 reg,offset($sp) */
3112 this_non_prologue_insn = 1;
3113 break;
3114
3115 case 0x36: /* SD: bits 110110 */
3116 case 0x3e: /* SW: bits 111110 */
3117 breg = b0s5_reg (insn >> 16);
3118 sreg = b5s5_reg (insn >> 16);
3119 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3120 if (breg == MIPS_SP_REGNUM)
3121 /* S[DW] reg,offset($sp) */
3122 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3123 else
3124 this_non_prologue_insn = 1;
3125 break;
3126
3127 default:
3128 /* The instruction in the delay slot can be a part
3129 of the prologue, so move forward once more. */
3130 if (micromips_instruction_has_delay_slot (insn, 0))
3131 in_delay_slot = 1;
3132 else
3133 this_non_prologue_insn = 1;
3134 break;
3135 }
3136 insn >>= 16;
3137 break;
3138
3139 /* 16-bit instructions. */
3140 case MIPS_INSN16_SIZE:
3141 switch (micromips_op (insn))
3142 {
3143 case 0x3: /* MOVE: bits 000011 */
3144 sreg = b0s5_reg (insn);
3145 dreg = b5s5_reg (insn);
3146 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3147 /* MOVE $fp, $sp */
3148 frame_reg = 30;
3149 else if ((sreg & 0x1c) != 0x4)
3150 /* MOVE reg, $a0-$a3 */
3151 this_non_prologue_insn = 1;
3152 break;
3153
3154 case 0x11: /* POOL16C: bits 010001 */
3155 if (b6s4_op (insn) == 0x5)
3156 /* SWM: bits 010001 0101 */
3157 {
3158 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3159 reglist = b4s2_regl (insn);
3160 for (i = 0; i <= reglist; i++)
3161 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3162 set_reg_offset (gdbarch, this_cache,
3163 MIPS_RA_REGNUM, sp + 4 * i++);
3164 }
3165 else
3166 this_non_prologue_insn = 1;
3167 break;
3168
3169 case 0x13: /* POOL16D: bits 010011 */
3170 if ((insn & 0x1) == 0x1)
3171 /* ADDIUSP: bits 010011 1 */
3172 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3173 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3174 /* ADDIUS5: bits 010011 0 */
3175 /* ADDIUS5 $sp, imm */
3176 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3177 else
3178 this_non_prologue_insn = 1;
3179 break;
3180
3181 case 0x32: /* SWSP: bits 110010 */
3182 offset = b0s5_imm (insn) << 2;
3183 sreg = b5s5_reg (insn);
3184 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3185 break;
3186
3187 default:
3188 /* The instruction in the delay slot can be a part
3189 of the prologue, so move forward once more. */
3190 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3191 in_delay_slot = 1;
3192 else
3193 this_non_prologue_insn = 1;
3194 break;
3195 }
3196 break;
3197 }
3198 if (sp_adj < 0)
3199 frame_offset -= sp_adj;
3200
3201 non_prologue_insns += this_non_prologue_insn;
3202
3203 /* A jump or branch, enough non-prologue insns seen or positive
3204 stack adjustment? If so, then we must have reached the end
3205 of the prologue by now. */
3206 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3207 || micromips_instruction_is_compact_branch (insn))
3208 break;
3209
3210 prev_non_prologue_insn = this_non_prologue_insn;
3211 prev_delay_slot = in_delay_slot;
3212 prev_pc = cur_pc;
3213 }
3214
3215 if (this_cache != NULL)
3216 {
3217 this_cache->base =
3218 (get_frame_register_signed (this_frame,
3219 gdbarch_num_regs (gdbarch) + frame_reg)
3220 + frame_offset - frame_adjust);
3221 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3222 be able to get rid of the assignment below, evetually. But it's
3223 still needed for now. */
3224 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3225 + mips_regnum (gdbarch)->pc]
3226 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3227 }
3228
3229 /* Set end_prologue_addr to the address of the instruction immediately
3230 after the last one we scanned. Unless the last one looked like a
3231 non-prologue instruction (and we looked ahead), in which case use
3232 its address instead. */
3233 end_prologue_addr
3234 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3235
3236 return end_prologue_addr;
3237 }
3238
3239 /* Heuristic unwinder for procedures using microMIPS instructions.
3240 Procedures that use the 32-bit instruction set are handled by the
3241 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3242
3243 static struct mips_frame_cache *
3244 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3245 {
3246 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3247 struct mips_frame_cache *cache;
3248
3249 if ((*this_cache) != NULL)
3250 return (struct mips_frame_cache *) (*this_cache);
3251
3252 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3253 (*this_cache) = cache;
3254 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3255
3256 /* Analyze the function prologue. */
3257 {
3258 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3259 CORE_ADDR start_addr;
3260
3261 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3262 if (start_addr == 0)
3263 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3264 /* We can't analyze the prologue if we couldn't find the begining
3265 of the function. */
3266 if (start_addr == 0)
3267 return cache;
3268
3269 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3270 (struct mips_frame_cache *) *this_cache);
3271 }
3272
3273 /* gdbarch_sp_regnum contains the value and not the address. */
3274 trad_frame_set_value (cache->saved_regs,
3275 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3276 cache->base);
3277
3278 return (struct mips_frame_cache *) (*this_cache);
3279 }
3280
3281 static void
3282 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3283 struct frame_id *this_id)
3284 {
3285 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3286 this_cache);
3287 /* This marks the outermost frame. */
3288 if (info->base == 0)
3289 return;
3290 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3291 }
3292
3293 static struct value *
3294 mips_micro_frame_prev_register (struct frame_info *this_frame,
3295 void **this_cache, int regnum)
3296 {
3297 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3298 this_cache);
3299 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3300 }
3301
3302 static int
3303 mips_micro_frame_sniffer (const struct frame_unwind *self,
3304 struct frame_info *this_frame, void **this_cache)
3305 {
3306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3307 CORE_ADDR pc = get_frame_pc (this_frame);
3308
3309 if (mips_pc_is_micromips (gdbarch, pc))
3310 return 1;
3311 return 0;
3312 }
3313
3314 static const struct frame_unwind mips_micro_frame_unwind =
3315 {
3316 NORMAL_FRAME,
3317 default_frame_unwind_stop_reason,
3318 mips_micro_frame_this_id,
3319 mips_micro_frame_prev_register,
3320 NULL,
3321 mips_micro_frame_sniffer
3322 };
3323
3324 static CORE_ADDR
3325 mips_micro_frame_base_address (struct frame_info *this_frame,
3326 void **this_cache)
3327 {
3328 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3329 this_cache);
3330 return info->base;
3331 }
3332
3333 static const struct frame_base mips_micro_frame_base =
3334 {
3335 &mips_micro_frame_unwind,
3336 mips_micro_frame_base_address,
3337 mips_micro_frame_base_address,
3338 mips_micro_frame_base_address
3339 };
3340
3341 static const struct frame_base *
3342 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3343 {
3344 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3345 CORE_ADDR pc = get_frame_pc (this_frame);
3346
3347 if (mips_pc_is_micromips (gdbarch, pc))
3348 return &mips_micro_frame_base;
3349 else
3350 return NULL;
3351 }
3352
3353 /* Mark all the registers as unset in the saved_regs array
3354 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3355
3356 static void
3357 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3358 {
3359 if (this_cache == NULL || this_cache->saved_regs == NULL)
3360 return;
3361
3362 {
3363 const int num_regs = gdbarch_num_regs (gdbarch);
3364 int i;
3365
3366 for (i = 0; i < num_regs; i++)
3367 {
3368 this_cache->saved_regs[i].addr = -1;
3369 }
3370 }
3371 }
3372
3373 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3374 the associated FRAME_CACHE if not null.
3375 Return the address of the first instruction past the prologue. */
3376
3377 static CORE_ADDR
3378 mips32_scan_prologue (struct gdbarch *gdbarch,
3379 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3380 struct frame_info *this_frame,
3381 struct mips_frame_cache *this_cache)
3382 {
3383 int prev_non_prologue_insn;
3384 int this_non_prologue_insn;
3385 int non_prologue_insns;
3386 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3387 frame-pointer. */
3388 int prev_delay_slot;
3389 CORE_ADDR prev_pc;
3390 CORE_ADDR cur_pc;
3391 CORE_ADDR sp;
3392 long frame_offset;
3393 int frame_reg = MIPS_SP_REGNUM;
3394
3395 CORE_ADDR end_prologue_addr;
3396 int seen_sp_adjust = 0;
3397 int load_immediate_bytes = 0;
3398 int in_delay_slot;
3399 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3400
3401 /* Can be called when there's no process, and hence when there's no
3402 THIS_FRAME. */
3403 if (this_frame != NULL)
3404 sp = get_frame_register_signed (this_frame,
3405 gdbarch_num_regs (gdbarch)
3406 + MIPS_SP_REGNUM);
3407 else
3408 sp = 0;
3409
3410 if (limit_pc > start_pc + 200)
3411 limit_pc = start_pc + 200;
3412
3413 restart:
3414 prev_non_prologue_insn = 0;
3415 non_prologue_insns = 0;
3416 prev_delay_slot = 0;
3417 prev_pc = start_pc;
3418
3419 /* Permit at most one non-prologue non-control-transfer instruction
3420 in the middle which may have been reordered by the compiler for
3421 optimisation. */
3422 frame_offset = 0;
3423 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3424 {
3425 unsigned long inst, high_word;
3426 long offset;
3427 int reg;
3428
3429 this_non_prologue_insn = 0;
3430 in_delay_slot = 0;
3431
3432 /* Fetch the instruction. */
3433 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3434 cur_pc, NULL);
3435
3436 /* Save some code by pre-extracting some useful fields. */
3437 high_word = (inst >> 16) & 0xffff;
3438 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3439 reg = high_word & 0x1f;
3440
3441 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3442 || high_word == 0x23bd /* addi $sp,$sp,-i */
3443 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3444 {
3445 if (offset < 0) /* Negative stack adjustment? */
3446 frame_offset -= offset;
3447 else
3448 /* Exit loop if a positive stack adjustment is found, which
3449 usually means that the stack cleanup code in the function
3450 epilogue is reached. */
3451 break;
3452 seen_sp_adjust = 1;
3453 }
3454 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3455 && !regsize_is_64_bits)
3456 {
3457 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3458 }
3459 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3460 && regsize_is_64_bits)
3461 {
3462 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3463 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3464 }
3465 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3466 {
3467 /* Old gcc frame, r30 is virtual frame pointer. */
3468 if (offset != frame_offset)
3469 frame_addr = sp + offset;
3470 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3471 {
3472 unsigned alloca_adjust;
3473
3474 frame_reg = 30;
3475 frame_addr = get_frame_register_signed
3476 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3477 frame_offset = 0;
3478
3479 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3480 if (alloca_adjust > 0)
3481 {
3482 /* FP > SP + frame_size. This may be because of
3483 an alloca or somethings similar. Fix sp to
3484 "pre-alloca" value, and try again. */
3485 sp += alloca_adjust;
3486 /* Need to reset the status of all registers. Otherwise,
3487 we will hit a guard that prevents the new address
3488 for each register to be recomputed during the second
3489 pass. */
3490 reset_saved_regs (gdbarch, this_cache);
3491 goto restart;
3492 }
3493 }
3494 }
3495 /* move $30,$sp. With different versions of gas this will be either
3496 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3497 Accept any one of these. */
3498 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3499 {
3500 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3501 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3502 {
3503 unsigned alloca_adjust;
3504
3505 frame_reg = 30;
3506 frame_addr = get_frame_register_signed
3507 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3508
3509 alloca_adjust = (unsigned) (frame_addr - sp);
3510 if (alloca_adjust > 0)
3511 {
3512 /* FP > SP + frame_size. This may be because of
3513 an alloca or somethings similar. Fix sp to
3514 "pre-alloca" value, and try again. */
3515 sp = frame_addr;
3516 /* Need to reset the status of all registers. Otherwise,
3517 we will hit a guard that prevents the new address
3518 for each register to be recomputed during the second
3519 pass. */
3520 reset_saved_regs (gdbarch, this_cache);
3521 goto restart;
3522 }
3523 }
3524 }
3525 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3526 && !regsize_is_64_bits)
3527 {
3528 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3529 }
3530 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3531 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3532 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3533 || high_word == 0x3c1c /* lui $gp,n */
3534 || high_word == 0x279c /* addiu $gp,$gp,n */
3535 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3536 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3537 )
3538 {
3539 /* These instructions are part of the prologue, but we don't
3540 need to do anything special to handle them. */
3541 }
3542 /* The instructions below load $at or $t0 with an immediate
3543 value in preparation for a stack adjustment via
3544 subu $sp,$sp,[$at,$t0]. These instructions could also
3545 initialize a local variable, so we accept them only before
3546 a stack adjustment instruction was seen. */
3547 else if (!seen_sp_adjust
3548 && !prev_delay_slot
3549 && (high_word == 0x3c01 /* lui $at,n */
3550 || high_word == 0x3c08 /* lui $t0,n */
3551 || high_word == 0x3421 /* ori $at,$at,n */
3552 || high_word == 0x3508 /* ori $t0,$t0,n */
3553 || high_word == 0x3401 /* ori $at,$zero,n */
3554 || high_word == 0x3408 /* ori $t0,$zero,n */
3555 ))
3556 {
3557 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3558 }
3559 /* Check for branches and jumps. The instruction in the delay
3560 slot can be a part of the prologue, so move forward once more. */
3561 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3562 {
3563 in_delay_slot = 1;
3564 }
3565 /* This instruction is not an instruction typically found
3566 in a prologue, so we must have reached the end of the
3567 prologue. */
3568 else
3569 {
3570 this_non_prologue_insn = 1;
3571 }
3572
3573 non_prologue_insns += this_non_prologue_insn;
3574
3575 /* A jump or branch, or enough non-prologue insns seen? If so,
3576 then we must have reached the end of the prologue by now. */
3577 if (prev_delay_slot || non_prologue_insns > 1)
3578 break;
3579
3580 prev_non_prologue_insn = this_non_prologue_insn;
3581 prev_delay_slot = in_delay_slot;
3582 prev_pc = cur_pc;
3583 }
3584
3585 if (this_cache != NULL)
3586 {
3587 this_cache->base =
3588 (get_frame_register_signed (this_frame,
3589 gdbarch_num_regs (gdbarch) + frame_reg)
3590 + frame_offset);
3591 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3592 this assignment below, eventually. But it's still needed
3593 for now. */
3594 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3595 + mips_regnum (gdbarch)->pc]
3596 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3597 + MIPS_RA_REGNUM];
3598 }
3599
3600 /* Set end_prologue_addr to the address of the instruction immediately
3601 after the last one we scanned. Unless the last one looked like a
3602 non-prologue instruction (and we looked ahead), in which case use
3603 its address instead. */
3604 end_prologue_addr
3605 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3606
3607 /* In a frameless function, we might have incorrectly
3608 skipped some load immediate instructions. Undo the skipping
3609 if the load immediate was not followed by a stack adjustment. */
3610 if (load_immediate_bytes && !seen_sp_adjust)
3611 end_prologue_addr -= load_immediate_bytes;
3612
3613 return end_prologue_addr;
3614 }
3615
3616 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3617 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3618 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3619 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3620
3621 static struct mips_frame_cache *
3622 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3623 {
3624 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3625 struct mips_frame_cache *cache;
3626
3627 if ((*this_cache) != NULL)
3628 return (struct mips_frame_cache *) (*this_cache);
3629
3630 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3631 (*this_cache) = cache;
3632 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3633
3634 /* Analyze the function prologue. */
3635 {
3636 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3637 CORE_ADDR start_addr;
3638
3639 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3640 if (start_addr == 0)
3641 start_addr = heuristic_proc_start (gdbarch, pc);
3642 /* We can't analyze the prologue if we couldn't find the begining
3643 of the function. */
3644 if (start_addr == 0)
3645 return cache;
3646
3647 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3648 (struct mips_frame_cache *) *this_cache);
3649 }
3650
3651 /* gdbarch_sp_regnum contains the value and not the address. */
3652 trad_frame_set_value (cache->saved_regs,
3653 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3654 cache->base);
3655
3656 return (struct mips_frame_cache *) (*this_cache);
3657 }
3658
3659 static void
3660 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3661 struct frame_id *this_id)
3662 {
3663 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3664 this_cache);
3665 /* This marks the outermost frame. */
3666 if (info->base == 0)
3667 return;
3668 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3669 }
3670
3671 static struct value *
3672 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3673 void **this_cache, int regnum)
3674 {
3675 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3676 this_cache);
3677 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3678 }
3679
3680 static int
3681 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3682 struct frame_info *this_frame, void **this_cache)
3683 {
3684 CORE_ADDR pc = get_frame_pc (this_frame);
3685 if (mips_pc_is_mips (pc))
3686 return 1;
3687 return 0;
3688 }
3689
3690 static const struct frame_unwind mips_insn32_frame_unwind =
3691 {
3692 NORMAL_FRAME,
3693 default_frame_unwind_stop_reason,
3694 mips_insn32_frame_this_id,
3695 mips_insn32_frame_prev_register,
3696 NULL,
3697 mips_insn32_frame_sniffer
3698 };
3699
3700 static CORE_ADDR
3701 mips_insn32_frame_base_address (struct frame_info *this_frame,
3702 void **this_cache)
3703 {
3704 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3705 this_cache);
3706 return info->base;
3707 }
3708
3709 static const struct frame_base mips_insn32_frame_base =
3710 {
3711 &mips_insn32_frame_unwind,
3712 mips_insn32_frame_base_address,
3713 mips_insn32_frame_base_address,
3714 mips_insn32_frame_base_address
3715 };
3716
3717 static const struct frame_base *
3718 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3719 {
3720 CORE_ADDR pc = get_frame_pc (this_frame);
3721 if (mips_pc_is_mips (pc))
3722 return &mips_insn32_frame_base;
3723 else
3724 return NULL;
3725 }
3726
3727 static struct trad_frame_cache *
3728 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3729 {
3730 CORE_ADDR pc;
3731 CORE_ADDR start_addr;
3732 CORE_ADDR stack_addr;
3733 struct trad_frame_cache *this_trad_cache;
3734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3735 int num_regs = gdbarch_num_regs (gdbarch);
3736
3737 if ((*this_cache) != NULL)
3738 return (struct trad_frame_cache *) (*this_cache);
3739 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3740 (*this_cache) = this_trad_cache;
3741
3742 /* The return address is in the link register. */
3743 trad_frame_set_reg_realreg (this_trad_cache,
3744 gdbarch_pc_regnum (gdbarch),
3745 num_regs + MIPS_RA_REGNUM);
3746
3747 /* Frame ID, since it's a frameless / stackless function, no stack
3748 space is allocated and SP on entry is the current SP. */
3749 pc = get_frame_pc (this_frame);
3750 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3751 stack_addr = get_frame_register_signed (this_frame,
3752 num_regs + MIPS_SP_REGNUM);
3753 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3754
3755 /* Assume that the frame's base is the same as the
3756 stack-pointer. */
3757 trad_frame_set_this_base (this_trad_cache, stack_addr);
3758
3759 return this_trad_cache;
3760 }
3761
3762 static void
3763 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3764 struct frame_id *this_id)
3765 {
3766 struct trad_frame_cache *this_trad_cache
3767 = mips_stub_frame_cache (this_frame, this_cache);
3768 trad_frame_get_id (this_trad_cache, this_id);
3769 }
3770
3771 static struct value *
3772 mips_stub_frame_prev_register (struct frame_info *this_frame,
3773 void **this_cache, int regnum)
3774 {
3775 struct trad_frame_cache *this_trad_cache
3776 = mips_stub_frame_cache (this_frame, this_cache);
3777 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3778 }
3779
3780 static int
3781 mips_stub_frame_sniffer (const struct frame_unwind *self,
3782 struct frame_info *this_frame, void **this_cache)
3783 {
3784 gdb_byte dummy[4];
3785 struct obj_section *s;
3786 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3787 struct bound_minimal_symbol msym;
3788
3789 /* Use the stub unwinder for unreadable code. */
3790 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3791 return 1;
3792
3793 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3794 return 1;
3795
3796 /* Calling a PIC function from a non-PIC function passes through a
3797 stub. The stub for foo is named ".pic.foo". */
3798 msym = lookup_minimal_symbol_by_pc (pc);
3799 if (msym.minsym != NULL
3800 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3801 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3802 return 1;
3803
3804 return 0;
3805 }
3806
3807 static const struct frame_unwind mips_stub_frame_unwind =
3808 {
3809 NORMAL_FRAME,
3810 default_frame_unwind_stop_reason,
3811 mips_stub_frame_this_id,
3812 mips_stub_frame_prev_register,
3813 NULL,
3814 mips_stub_frame_sniffer
3815 };
3816
3817 static CORE_ADDR
3818 mips_stub_frame_base_address (struct frame_info *this_frame,
3819 void **this_cache)
3820 {
3821 struct trad_frame_cache *this_trad_cache
3822 = mips_stub_frame_cache (this_frame, this_cache);
3823 return trad_frame_get_this_base (this_trad_cache);
3824 }
3825
3826 static const struct frame_base mips_stub_frame_base =
3827 {
3828 &mips_stub_frame_unwind,
3829 mips_stub_frame_base_address,
3830 mips_stub_frame_base_address,
3831 mips_stub_frame_base_address
3832 };
3833
3834 static const struct frame_base *
3835 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3836 {
3837 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3838 return &mips_stub_frame_base;
3839 else
3840 return NULL;
3841 }
3842
3843 /* mips_addr_bits_remove - remove useless address bits */
3844
3845 static CORE_ADDR
3846 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3847 {
3848 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3849
3850 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3851 /* This hack is a work-around for existing boards using PMON, the
3852 simulator, and any other 64-bit targets that doesn't have true
3853 64-bit addressing. On these targets, the upper 32 bits of
3854 addresses are ignored by the hardware. Thus, the PC or SP are
3855 likely to have been sign extended to all 1s by instruction
3856 sequences that load 32-bit addresses. For example, a typical
3857 piece of code that loads an address is this:
3858
3859 lui $r2, <upper 16 bits>
3860 ori $r2, <lower 16 bits>
3861
3862 But the lui sign-extends the value such that the upper 32 bits
3863 may be all 1s. The workaround is simply to mask off these
3864 bits. In the future, gcc may be changed to support true 64-bit
3865 addressing, and this masking will have to be disabled. */
3866 return addr &= 0xffffffffUL;
3867 else
3868 return addr;
3869 }
3870
3871
3872 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3873 instruction and ending with a SC/SCD instruction. If such a sequence
3874 is found, attempt to step through it. A breakpoint is placed at the end of
3875 the sequence. */
3876
3877 /* Instructions used during single-stepping of atomic sequences, standard
3878 ISA version. */
3879 #define LL_OPCODE 0x30
3880 #define LLD_OPCODE 0x34
3881 #define SC_OPCODE 0x38
3882 #define SCD_OPCODE 0x3c
3883
3884 static std::vector<CORE_ADDR>
3885 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3886 {
3887 CORE_ADDR breaks[2] = {-1, -1};
3888 CORE_ADDR loc = pc;
3889 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3890 ULONGEST insn;
3891 int insn_count;
3892 int index;
3893 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3894 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3895
3896 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3897 /* Assume all atomic sequences start with a ll/lld instruction. */
3898 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3899 return {};
3900
3901 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3902 instructions. */
3903 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3904 {
3905 int is_branch = 0;
3906 loc += MIPS_INSN32_SIZE;
3907 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3908
3909 /* Assume that there is at most one branch in the atomic
3910 sequence. If a branch is found, put a breakpoint in its
3911 destination address. */
3912 switch (itype_op (insn))
3913 {
3914 case 0: /* SPECIAL */
3915 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3916 return {}; /* fallback to the standard single-step code. */
3917 break;
3918 case 1: /* REGIMM */
3919 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3920 || ((itype_rt (insn) & 0x1e) == 0
3921 && itype_rs (insn) == 0)); /* BPOSGE* */
3922 break;
3923 case 2: /* J */
3924 case 3: /* JAL */
3925 return {}; /* fallback to the standard single-step code. */
3926 case 4: /* BEQ */
3927 case 5: /* BNE */
3928 case 6: /* BLEZ */
3929 case 7: /* BGTZ */
3930 case 20: /* BEQL */
3931 case 21: /* BNEL */
3932 case 22: /* BLEZL */
3933 case 23: /* BGTTL */
3934 is_branch = 1;
3935 break;
3936 case 17: /* COP1 */
3937 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3938 && (itype_rt (insn) & 0x2) == 0);
3939 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3940 break;
3941 /* Fall through. */
3942 case 18: /* COP2 */
3943 case 19: /* COP3 */
3944 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3945 break;
3946 }
3947 if (is_branch)
3948 {
3949 branch_bp = loc + mips32_relative_offset (insn) + 4;
3950 if (last_breakpoint >= 1)
3951 return {}; /* More than one branch found, fallback to the
3952 standard single-step code. */
3953 breaks[1] = branch_bp;
3954 last_breakpoint++;
3955 }
3956
3957 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3958 break;
3959 }
3960
3961 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3962 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3963 return {};
3964
3965 loc += MIPS_INSN32_SIZE;
3966
3967 /* Insert a breakpoint right after the end of the atomic sequence. */
3968 breaks[0] = loc;
3969
3970 /* Check for duplicated breakpoints. Check also for a breakpoint
3971 placed (branch instruction's destination) in the atomic sequence. */
3972 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3973 last_breakpoint = 0;
3974
3975 std::vector<CORE_ADDR> next_pcs;
3976
3977 /* Effectively inserts the breakpoints. */
3978 for (index = 0; index <= last_breakpoint; index++)
3979 next_pcs.push_back (breaks[index]);
3980
3981 return next_pcs;
3982 }
3983
3984 static std::vector<CORE_ADDR>
3985 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3986 CORE_ADDR pc)
3987 {
3988 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3989 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3990 CORE_ADDR breaks[2] = {-1, -1};
3991 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3992 destination. */
3993 CORE_ADDR loc = pc;
3994 int sc_found = 0;
3995 ULONGEST insn;
3996 int insn_count;
3997 int index;
3998
3999 /* Assume all atomic sequences start with a ll/lld instruction. */
4000 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4001 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4002 return {};
4003 loc += MIPS_INSN16_SIZE;
4004 insn <<= 16;
4005 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4006 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4007 return {};
4008 loc += MIPS_INSN16_SIZE;
4009
4010 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4011 that no atomic sequence is longer than "atomic_sequence_length"
4012 instructions. */
4013 for (insn_count = 0;
4014 !sc_found && insn_count < atomic_sequence_length;
4015 ++insn_count)
4016 {
4017 int is_branch = 0;
4018
4019 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4020 loc += MIPS_INSN16_SIZE;
4021
4022 /* Assume that there is at most one conditional branch in the
4023 atomic sequence. If a branch is found, put a breakpoint in
4024 its destination address. */
4025 switch (mips_insn_size (ISA_MICROMIPS, insn))
4026 {
4027 /* 32-bit instructions. */
4028 case 2 * MIPS_INSN16_SIZE:
4029 switch (micromips_op (insn))
4030 {
4031 case 0x10: /* POOL32I: bits 010000 */
4032 if ((b5s5_op (insn) & 0x18) != 0x0
4033 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4034 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4035 && (b5s5_op (insn) & 0x1d) != 0x11
4036 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4037 && ((b5s5_op (insn) & 0x1e) != 0x14
4038 || (insn & 0x3) != 0x0)
4039 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4040 && (b5s5_op (insn) & 0x1e) != 0x1a
4041 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4042 && ((b5s5_op (insn) & 0x1e) != 0x1c
4043 || (insn & 0x3) != 0x0)
4044 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4045 && ((b5s5_op (insn) & 0x1c) != 0x1c
4046 || (insn & 0x3) != 0x1))
4047 /* BC1ANY*: bits 010000 111xx xxx01 */
4048 break;
4049 /* Fall through. */
4050
4051 case 0x25: /* BEQ: bits 100101 */
4052 case 0x2d: /* BNE: bits 101101 */
4053 insn <<= 16;
4054 insn |= mips_fetch_instruction (gdbarch,
4055 ISA_MICROMIPS, loc, NULL);
4056 branch_bp = (loc + MIPS_INSN16_SIZE
4057 + micromips_relative_offset16 (insn));
4058 is_branch = 1;
4059 break;
4060
4061 case 0x00: /* POOL32A: bits 000000 */
4062 insn <<= 16;
4063 insn |= mips_fetch_instruction (gdbarch,
4064 ISA_MICROMIPS, loc, NULL);
4065 if (b0s6_op (insn) != 0x3c
4066 /* POOL32Axf: bits 000000 ... 111100 */
4067 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4068 /* JALR, JALR.HB: 000000 000x111100 111100 */
4069 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4070 break;
4071 /* Fall through. */
4072
4073 case 0x1d: /* JALS: bits 011101 */
4074 case 0x35: /* J: bits 110101 */
4075 case 0x3d: /* JAL: bits 111101 */
4076 case 0x3c: /* JALX: bits 111100 */
4077 return {}; /* Fall back to the standard single-step code. */
4078
4079 case 0x18: /* POOL32C: bits 011000 */
4080 if ((b12s4_op (insn) & 0xb) == 0xb)
4081 /* SC, SCD: bits 011000 1x11 */
4082 sc_found = 1;
4083 break;
4084 }
4085 loc += MIPS_INSN16_SIZE;
4086 break;
4087
4088 /* 16-bit instructions. */
4089 case MIPS_INSN16_SIZE:
4090 switch (micromips_op (insn))
4091 {
4092 case 0x23: /* BEQZ16: bits 100011 */
4093 case 0x2b: /* BNEZ16: bits 101011 */
4094 branch_bp = loc + micromips_relative_offset7 (insn);
4095 is_branch = 1;
4096 break;
4097
4098 case 0x11: /* POOL16C: bits 010001 */
4099 if ((b5s5_op (insn) & 0x1c) != 0xc
4100 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4101 && b5s5_op (insn) != 0x18)
4102 /* JRADDIUSP: bits 010001 11000 */
4103 break;
4104 return {}; /* Fall back to the standard single-step code. */
4105
4106 case 0x33: /* B16: bits 110011 */
4107 return {}; /* Fall back to the standard single-step code. */
4108 }
4109 break;
4110 }
4111 if (is_branch)
4112 {
4113 if (last_breakpoint >= 1)
4114 return {}; /* More than one branch found, fallback to the
4115 standard single-step code. */
4116 breaks[1] = branch_bp;
4117 last_breakpoint++;
4118 }
4119 }
4120 if (!sc_found)
4121 return {};
4122
4123 /* Insert a breakpoint right after the end of the atomic sequence. */
4124 breaks[0] = loc;
4125
4126 /* Check for duplicated breakpoints. Check also for a breakpoint
4127 placed (branch instruction's destination) in the atomic sequence */
4128 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4129 last_breakpoint = 0;
4130
4131 std::vector<CORE_ADDR> next_pcs;
4132
4133 /* Effectively inserts the breakpoints. */
4134 for (index = 0; index <= last_breakpoint; index++)
4135 next_pcs.push_back (breaks[index]);
4136
4137 return next_pcs;
4138 }
4139
4140 static std::vector<CORE_ADDR>
4141 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4142 {
4143 if (mips_pc_is_mips (pc))
4144 return mips_deal_with_atomic_sequence (gdbarch, pc);
4145 else if (mips_pc_is_micromips (gdbarch, pc))
4146 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4147 else
4148 return {};
4149 }
4150
4151 /* mips_software_single_step() is called just before we want to resume
4152 the inferior, if we want to single-step it but there is no hardware
4153 or kernel single-step support (MIPS on GNU/Linux for example). We find
4154 the target of the coming instruction and breakpoint it. */
4155
4156 std::vector<CORE_ADDR>
4157 mips_software_single_step (struct regcache *regcache)
4158 {
4159 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4160 CORE_ADDR pc, next_pc;
4161
4162 pc = regcache_read_pc (regcache);
4163 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4164
4165 if (!next_pcs.empty ())
4166 return next_pcs;
4167
4168 next_pc = mips_next_pc (regcache, pc);
4169
4170 return {next_pc};
4171 }
4172
4173 /* Test whether the PC points to the return instruction at the
4174 end of a function. */
4175
4176 static int
4177 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4178 {
4179 ULONGEST insn;
4180 ULONGEST hint;
4181
4182 /* This used to check for MIPS16, but this piece of code is never
4183 called for MIPS16 functions. And likewise microMIPS ones. */
4184 gdb_assert (mips_pc_is_mips (pc));
4185
4186 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4187 hint = 0x7c0;
4188 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4189 }
4190
4191
4192 /* This fencepost looks highly suspicious to me. Removing it also
4193 seems suspicious as it could affect remote debugging across serial
4194 lines. */
4195
4196 static CORE_ADDR
4197 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4198 {
4199 CORE_ADDR start_pc;
4200 CORE_ADDR fence;
4201 int instlen;
4202 int seen_adjsp = 0;
4203 struct inferior *inf;
4204
4205 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4206 start_pc = pc;
4207 fence = start_pc - heuristic_fence_post;
4208 if (start_pc == 0)
4209 return 0;
4210
4211 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4212 fence = VM_MIN_ADDRESS;
4213
4214 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4215
4216 inf = current_inferior ();
4217
4218 /* Search back for previous return. */
4219 for (start_pc -= instlen;; start_pc -= instlen)
4220 if (start_pc < fence)
4221 {
4222 /* It's not clear to me why we reach this point when
4223 stop_soon, but with this test, at least we
4224 don't print out warnings for every child forked (eg, on
4225 decstation). 22apr93 rich@cygnus.com. */
4226 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4227 {
4228 static int blurb_printed = 0;
4229
4230 warning (_("GDB can't find the start of the function at %s."),
4231 paddress (gdbarch, pc));
4232
4233 if (!blurb_printed)
4234 {
4235 /* This actually happens frequently in embedded
4236 development, when you first connect to a board
4237 and your stack pointer and pc are nowhere in
4238 particular. This message needs to give people
4239 in that situation enough information to
4240 determine that it's no big deal. */
4241 printf_filtered ("\n\
4242 GDB is unable to find the start of the function at %s\n\
4243 and thus can't determine the size of that function's stack frame.\n\
4244 This means that GDB may be unable to access that stack frame, or\n\
4245 the frames below it.\n\
4246 This problem is most likely caused by an invalid program counter or\n\
4247 stack pointer.\n\
4248 However, if you think GDB should simply search farther back\n\
4249 from %s for code which looks like the beginning of a\n\
4250 function, you can increase the range of the search using the `set\n\
4251 heuristic-fence-post' command.\n",
4252 paddress (gdbarch, pc), paddress (gdbarch, pc));
4253 blurb_printed = 1;
4254 }
4255 }
4256
4257 return 0;
4258 }
4259 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4260 {
4261 unsigned short inst;
4262
4263 /* On MIPS16, any one of the following is likely to be the
4264 start of a function:
4265 extend save
4266 save
4267 entry
4268 addiu sp,-n
4269 daddiu sp,-n
4270 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4271 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4272 if ((inst & 0xff80) == 0x6480) /* save */
4273 {
4274 if (start_pc - instlen >= fence)
4275 {
4276 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4277 start_pc - instlen, NULL);
4278 if ((inst & 0xf800) == 0xf000) /* extend */
4279 start_pc -= instlen;
4280 }
4281 break;
4282 }
4283 else if (((inst & 0xf81f) == 0xe809
4284 && (inst & 0x700) != 0x700) /* entry */
4285 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4286 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4287 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4288 break;
4289 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4290 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4291 seen_adjsp = 1;
4292 else
4293 seen_adjsp = 0;
4294 }
4295 else if (mips_pc_is_micromips (gdbarch, start_pc))
4296 {
4297 ULONGEST insn;
4298 int stop = 0;
4299 long offset;
4300 int dreg;
4301 int sreg;
4302
4303 /* On microMIPS, any one of the following is likely to be the
4304 start of a function:
4305 ADDIUSP -imm
4306 (D)ADDIU $sp, -imm
4307 LUI $gp, imm */
4308 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4309 switch (micromips_op (insn))
4310 {
4311 case 0xc: /* ADDIU: bits 001100 */
4312 case 0x17: /* DADDIU: bits 010111 */
4313 sreg = b0s5_reg (insn);
4314 dreg = b5s5_reg (insn);
4315 insn <<= 16;
4316 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4317 pc + MIPS_INSN16_SIZE, NULL);
4318 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4319 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4320 /* (D)ADDIU $sp, imm */
4321 && offset < 0)
4322 stop = 1;
4323 break;
4324
4325 case 0x10: /* POOL32I: bits 010000 */
4326 if (b5s5_op (insn) == 0xd
4327 /* LUI: bits 010000 001101 */
4328 && b0s5_reg (insn >> 16) == 28)
4329 /* LUI $gp, imm */
4330 stop = 1;
4331 break;
4332
4333 case 0x13: /* POOL16D: bits 010011 */
4334 if ((insn & 0x1) == 0x1)
4335 /* ADDIUSP: bits 010011 1 */
4336 {
4337 offset = micromips_decode_imm9 (b1s9_imm (insn));
4338 if (offset < 0)
4339 /* ADDIUSP -imm */
4340 stop = 1;
4341 }
4342 else
4343 /* ADDIUS5: bits 010011 0 */
4344 {
4345 dreg = b5s5_reg (insn);
4346 offset = (b1s4_imm (insn) ^ 8) - 8;
4347 if (dreg == MIPS_SP_REGNUM && offset < 0)
4348 /* ADDIUS5 $sp, -imm */
4349 stop = 1;
4350 }
4351 break;
4352 }
4353 if (stop)
4354 break;
4355 }
4356 else if (mips_about_to_return (gdbarch, start_pc))
4357 {
4358 /* Skip return and its delay slot. */
4359 start_pc += 2 * MIPS_INSN32_SIZE;
4360 break;
4361 }
4362
4363 return start_pc;
4364 }
4365
4366 struct mips_objfile_private
4367 {
4368 bfd_size_type size;
4369 char *contents;
4370 };
4371
4372 /* According to the current ABI, should the type be passed in a
4373 floating-point register (assuming that there is space)? When there
4374 is no FPU, FP are not even considered as possible candidates for
4375 FP registers and, consequently this returns false - forces FP
4376 arguments into integer registers. */
4377
4378 static int
4379 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4380 struct type *arg_type)
4381 {
4382 return ((typecode == TYPE_CODE_FLT
4383 || (MIPS_EABI (gdbarch)
4384 && (typecode == TYPE_CODE_STRUCT
4385 || typecode == TYPE_CODE_UNION)
4386 && TYPE_NFIELDS (arg_type) == 1
4387 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4388 == TYPE_CODE_FLT))
4389 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4390 }
4391
4392 /* On o32, argument passing in GPRs depends on the alignment of the type being
4393 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4394
4395 static int
4396 mips_type_needs_double_align (struct type *type)
4397 {
4398 enum type_code typecode = TYPE_CODE (type);
4399
4400 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4401 return 1;
4402 else if (typecode == TYPE_CODE_STRUCT)
4403 {
4404 if (TYPE_NFIELDS (type) < 1)
4405 return 0;
4406 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4407 }
4408 else if (typecode == TYPE_CODE_UNION)
4409 {
4410 int i, n;
4411
4412 n = TYPE_NFIELDS (type);
4413 for (i = 0; i < n; i++)
4414 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4415 return 1;
4416 return 0;
4417 }
4418 return 0;
4419 }
4420
4421 /* Adjust the address downward (direction of stack growth) so that it
4422 is correctly aligned for a new stack frame. */
4423 static CORE_ADDR
4424 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4425 {
4426 return align_down (addr, 16);
4427 }
4428
4429 /* Implement the "push_dummy_code" gdbarch method. */
4430
4431 static CORE_ADDR
4432 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4433 CORE_ADDR funaddr, struct value **args,
4434 int nargs, struct type *value_type,
4435 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4436 struct regcache *regcache)
4437 {
4438 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4439 CORE_ADDR nop_addr;
4440 CORE_ADDR bp_slot;
4441
4442 /* Reserve enough room on the stack for our breakpoint instruction. */
4443 bp_slot = sp - sizeof (nop_insn);
4444
4445 /* Return to microMIPS mode if calling microMIPS code to avoid
4446 triggering an address error exception on processors that only
4447 support microMIPS execution. */
4448 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4449 ? make_compact_addr (bp_slot) : bp_slot);
4450
4451 /* The breakpoint layer automatically adjusts the address of
4452 breakpoints inserted in a branch delay slot. With enough
4453 bad luck, the 4 bytes located just before our breakpoint
4454 instruction could look like a branch instruction, and thus
4455 trigger the adjustement, and break the function call entirely.
4456 So, we reserve those 4 bytes and write a nop instruction
4457 to prevent that from happening. */
4458 nop_addr = bp_slot - sizeof (nop_insn);
4459 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4460 sp = mips_frame_align (gdbarch, nop_addr);
4461
4462 /* Inferior resumes at the function entry point. */
4463 *real_pc = funaddr;
4464
4465 return sp;
4466 }
4467
4468 static CORE_ADDR
4469 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4470 struct regcache *regcache, CORE_ADDR bp_addr,
4471 int nargs, struct value **args, CORE_ADDR sp,
4472 int struct_return, CORE_ADDR struct_addr)
4473 {
4474 int argreg;
4475 int float_argreg;
4476 int argnum;
4477 int len = 0;
4478 int stack_offset = 0;
4479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4480 CORE_ADDR func_addr = find_function_addr (function, NULL);
4481 int abi_regsize = mips_abi_regsize (gdbarch);
4482
4483 /* For shared libraries, "t9" needs to point at the function
4484 address. */
4485 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4486
4487 /* Set the return address register to point to the entry point of
4488 the program, where a breakpoint lies in wait. */
4489 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4490
4491 /* First ensure that the stack and structure return address (if any)
4492 are properly aligned. The stack has to be at least 64-bit
4493 aligned even on 32-bit machines, because doubles must be 64-bit
4494 aligned. For n32 and n64, stack frames need to be 128-bit
4495 aligned, so we round to this widest known alignment. */
4496
4497 sp = align_down (sp, 16);
4498 struct_addr = align_down (struct_addr, 16);
4499
4500 /* Now make space on the stack for the args. We allocate more
4501 than necessary for EABI, because the first few arguments are
4502 passed in registers, but that's OK. */
4503 for (argnum = 0; argnum < nargs; argnum++)
4504 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4505 sp -= align_up (len, 16);
4506
4507 if (mips_debug)
4508 fprintf_unfiltered (gdb_stdlog,
4509 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4510 paddress (gdbarch, sp), (long) align_up (len, 16));
4511
4512 /* Initialize the integer and float register pointers. */
4513 argreg = MIPS_A0_REGNUM;
4514 float_argreg = mips_fpa0_regnum (gdbarch);
4515
4516 /* The struct_return pointer occupies the first parameter-passing reg. */
4517 if (struct_return)
4518 {
4519 if (mips_debug)
4520 fprintf_unfiltered (gdb_stdlog,
4521 "mips_eabi_push_dummy_call: "
4522 "struct_return reg=%d %s\n",
4523 argreg, paddress (gdbarch, struct_addr));
4524 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4525 }
4526
4527 /* Now load as many as possible of the first arguments into
4528 registers, and push the rest onto the stack. Loop thru args
4529 from first to last. */
4530 for (argnum = 0; argnum < nargs; argnum++)
4531 {
4532 const gdb_byte *val;
4533 /* This holds the address of structures that are passed by
4534 reference. */
4535 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
4536 struct value *arg = args[argnum];
4537 struct type *arg_type = check_typedef (value_type (arg));
4538 int len = TYPE_LENGTH (arg_type);
4539 enum type_code typecode = TYPE_CODE (arg_type);
4540
4541 if (mips_debug)
4542 fprintf_unfiltered (gdb_stdlog,
4543 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4544 argnum + 1, len, (int) typecode);
4545
4546 /* The EABI passes structures that do not fit in a register by
4547 reference. */
4548 if (len > abi_regsize
4549 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4550 {
4551 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4552 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
4553 value_address (arg));
4554 typecode = TYPE_CODE_PTR;
4555 len = abi_regsize;
4556 val = ref_valbuf;
4557 if (mips_debug)
4558 fprintf_unfiltered (gdb_stdlog, " push");
4559 }
4560 else
4561 val = value_contents (arg);
4562
4563 /* 32-bit ABIs always start floating point arguments in an
4564 even-numbered floating point register. Round the FP register
4565 up before the check to see if there are any FP registers
4566 left. Non MIPS_EABI targets also pass the FP in the integer
4567 registers so also round up normal registers. */
4568 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4569 {
4570 if ((float_argreg & 1))
4571 float_argreg++;
4572 }
4573
4574 /* Floating point arguments passed in registers have to be
4575 treated specially. On 32-bit architectures, doubles
4576 are passed in register pairs; the even register gets
4577 the low word, and the odd register gets the high word.
4578 On non-EABI processors, the first two floating point arguments are
4579 also copied to general registers, because MIPS16 functions
4580 don't use float registers for arguments. This duplication of
4581 arguments in general registers can't hurt non-MIPS16 functions
4582 because those registers are normally skipped. */
4583 /* MIPS_EABI squeezes a struct that contains a single floating
4584 point value into an FP register instead of pushing it onto the
4585 stack. */
4586 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4587 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4588 {
4589 /* EABI32 will pass doubles in consecutive registers, even on
4590 64-bit cores. At one time, we used to check the size of
4591 `float_argreg' to determine whether or not to pass doubles
4592 in consecutive registers, but this is not sufficient for
4593 making the ABI determination. */
4594 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4595 {
4596 int low_offset = gdbarch_byte_order (gdbarch)
4597 == BFD_ENDIAN_BIG ? 4 : 0;
4598 long regval;
4599
4600 /* Write the low word of the double to the even register(s). */
4601 regval = extract_signed_integer (val + low_offset,
4602 4, byte_order);
4603 if (mips_debug)
4604 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4605 float_argreg, phex (regval, 4));
4606 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4607
4608 /* Write the high word of the double to the odd register(s). */
4609 regval = extract_signed_integer (val + 4 - low_offset,
4610 4, byte_order);
4611 if (mips_debug)
4612 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4613 float_argreg, phex (regval, 4));
4614 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4615 }
4616 else
4617 {
4618 /* This is a floating point value that fits entirely
4619 in a single register. */
4620 /* On 32 bit ABI's the float_argreg is further adjusted
4621 above to ensure that it is even register aligned. */
4622 LONGEST regval = extract_signed_integer (val, len, byte_order);
4623 if (mips_debug)
4624 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4625 float_argreg, phex (regval, len));
4626 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4627 }
4628 }
4629 else
4630 {
4631 /* Copy the argument to general registers or the stack in
4632 register-sized pieces. Large arguments are split between
4633 registers and stack. */
4634 /* Note: structs whose size is not a multiple of abi_regsize
4635 are treated specially: Irix cc passes
4636 them in registers where gcc sometimes puts them on the
4637 stack. For maximum compatibility, we will put them in
4638 both places. */
4639 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
4640
4641 /* Note: Floating-point values that didn't fit into an FP
4642 register are only written to memory. */
4643 while (len > 0)
4644 {
4645 /* Remember if the argument was written to the stack. */
4646 int stack_used_p = 0;
4647 int partial_len = (len < abi_regsize ? len : abi_regsize);
4648
4649 if (mips_debug)
4650 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4651 partial_len);
4652
4653 /* Write this portion of the argument to the stack. */
4654 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4655 || odd_sized_struct
4656 || fp_register_arg_p (gdbarch, typecode, arg_type))
4657 {
4658 /* Should shorter than int integer values be
4659 promoted to int before being stored? */
4660 int longword_offset = 0;
4661 CORE_ADDR addr;
4662 stack_used_p = 1;
4663 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4664 {
4665 if (abi_regsize == 8
4666 && (typecode == TYPE_CODE_INT
4667 || typecode == TYPE_CODE_PTR
4668 || typecode == TYPE_CODE_FLT) && len <= 4)
4669 longword_offset = abi_regsize - len;
4670 else if ((typecode == TYPE_CODE_STRUCT
4671 || typecode == TYPE_CODE_UNION)
4672 && TYPE_LENGTH (arg_type) < abi_regsize)
4673 longword_offset = abi_regsize - len;
4674 }
4675
4676 if (mips_debug)
4677 {
4678 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4679 paddress (gdbarch, stack_offset));
4680 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4681 paddress (gdbarch, longword_offset));
4682 }
4683
4684 addr = sp + stack_offset + longword_offset;
4685
4686 if (mips_debug)
4687 {
4688 int i;
4689 fprintf_unfiltered (gdb_stdlog, " @%s ",
4690 paddress (gdbarch, addr));
4691 for (i = 0; i < partial_len; i++)
4692 {
4693 fprintf_unfiltered (gdb_stdlog, "%02x",
4694 val[i] & 0xff);
4695 }
4696 }
4697 write_memory (addr, val, partial_len);
4698 }
4699
4700 /* Note!!! This is NOT an else clause. Odd sized
4701 structs may go thru BOTH paths. Floating point
4702 arguments will not. */
4703 /* Write this portion of the argument to a general
4704 purpose register. */
4705 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4706 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4707 {
4708 LONGEST regval =
4709 extract_signed_integer (val, partial_len, byte_order);
4710
4711 if (mips_debug)
4712 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4713 argreg,
4714 phex (regval, abi_regsize));
4715 regcache_cooked_write_signed (regcache, argreg, regval);
4716 argreg++;
4717 }
4718
4719 len -= partial_len;
4720 val += partial_len;
4721
4722 /* Compute the offset into the stack at which we will
4723 copy the next parameter.
4724
4725 In the new EABI (and the NABI32), the stack_offset
4726 only needs to be adjusted when it has been used. */
4727
4728 if (stack_used_p)
4729 stack_offset += align_up (partial_len, abi_regsize);
4730 }
4731 }
4732 if (mips_debug)
4733 fprintf_unfiltered (gdb_stdlog, "\n");
4734 }
4735
4736 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4737
4738 /* Return adjusted stack pointer. */
4739 return sp;
4740 }
4741
4742 /* Determine the return value convention being used. */
4743
4744 static enum return_value_convention
4745 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4746 struct type *type, struct regcache *regcache,
4747 gdb_byte *readbuf, const gdb_byte *writebuf)
4748 {
4749 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4750 int fp_return_type = 0;
4751 int offset, regnum, xfer;
4752
4753 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4754 return RETURN_VALUE_STRUCT_CONVENTION;
4755
4756 /* Floating point type? */
4757 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4758 {
4759 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4760 fp_return_type = 1;
4761 /* Structs with a single field of float type
4762 are returned in a floating point register. */
4763 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4764 || TYPE_CODE (type) == TYPE_CODE_UNION)
4765 && TYPE_NFIELDS (type) == 1)
4766 {
4767 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4768
4769 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4770 fp_return_type = 1;
4771 }
4772 }
4773
4774 if (fp_return_type)
4775 {
4776 /* A floating-point value belongs in the least significant part
4777 of FP0/FP1. */
4778 if (mips_debug)
4779 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4780 regnum = mips_regnum (gdbarch)->fp0;
4781 }
4782 else
4783 {
4784 /* An integer value goes in V0/V1. */
4785 if (mips_debug)
4786 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4787 regnum = MIPS_V0_REGNUM;
4788 }
4789 for (offset = 0;
4790 offset < TYPE_LENGTH (type);
4791 offset += mips_abi_regsize (gdbarch), regnum++)
4792 {
4793 xfer = mips_abi_regsize (gdbarch);
4794 if (offset + xfer > TYPE_LENGTH (type))
4795 xfer = TYPE_LENGTH (type) - offset;
4796 mips_xfer_register (gdbarch, regcache,
4797 gdbarch_num_regs (gdbarch) + regnum, xfer,
4798 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4799 offset);
4800 }
4801
4802 return RETURN_VALUE_REGISTER_CONVENTION;
4803 }
4804
4805
4806 /* N32/N64 ABI stuff. */
4807
4808 /* Search for a naturally aligned double at OFFSET inside a struct
4809 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4810 registers. */
4811
4812 static int
4813 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4814 int offset)
4815 {
4816 int i;
4817
4818 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4819 return 0;
4820
4821 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4822 return 0;
4823
4824 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4825 return 0;
4826
4827 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4828 {
4829 int pos;
4830 struct type *field_type;
4831
4832 /* We're only looking at normal fields. */
4833 if (field_is_static (&TYPE_FIELD (arg_type, i))
4834 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4835 continue;
4836
4837 /* If we have gone past the offset, there is no double to pass. */
4838 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4839 if (pos > offset)
4840 return 0;
4841
4842 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4843
4844 /* If this field is entirely before the requested offset, go
4845 on to the next one. */
4846 if (pos + TYPE_LENGTH (field_type) <= offset)
4847 continue;
4848
4849 /* If this is our special aligned double, we can stop. */
4850 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4851 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4852 return 1;
4853
4854 /* This field starts at or before the requested offset, and
4855 overlaps it. If it is a structure, recurse inwards. */
4856 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4857 }
4858
4859 return 0;
4860 }
4861
4862 static CORE_ADDR
4863 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4864 struct regcache *regcache, CORE_ADDR bp_addr,
4865 int nargs, struct value **args, CORE_ADDR sp,
4866 int struct_return, CORE_ADDR struct_addr)
4867 {
4868 int argreg;
4869 int float_argreg;
4870 int argnum;
4871 int len = 0;
4872 int stack_offset = 0;
4873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4874 CORE_ADDR func_addr = find_function_addr (function, NULL);
4875
4876 /* For shared libraries, "t9" needs to point at the function
4877 address. */
4878 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4879
4880 /* Set the return address register to point to the entry point of
4881 the program, where a breakpoint lies in wait. */
4882 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4883
4884 /* First ensure that the stack and structure return address (if any)
4885 are properly aligned. The stack has to be at least 64-bit
4886 aligned even on 32-bit machines, because doubles must be 64-bit
4887 aligned. For n32 and n64, stack frames need to be 128-bit
4888 aligned, so we round to this widest known alignment. */
4889
4890 sp = align_down (sp, 16);
4891 struct_addr = align_down (struct_addr, 16);
4892
4893 /* Now make space on the stack for the args. */
4894 for (argnum = 0; argnum < nargs; argnum++)
4895 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4896 sp -= align_up (len, 16);
4897
4898 if (mips_debug)
4899 fprintf_unfiltered (gdb_stdlog,
4900 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4901 paddress (gdbarch, sp), (long) align_up (len, 16));
4902
4903 /* Initialize the integer and float register pointers. */
4904 argreg = MIPS_A0_REGNUM;
4905 float_argreg = mips_fpa0_regnum (gdbarch);
4906
4907 /* The struct_return pointer occupies the first parameter-passing reg. */
4908 if (struct_return)
4909 {
4910 if (mips_debug)
4911 fprintf_unfiltered (gdb_stdlog,
4912 "mips_n32n64_push_dummy_call: "
4913 "struct_return reg=%d %s\n",
4914 argreg, paddress (gdbarch, struct_addr));
4915 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4916 }
4917
4918 /* Now load as many as possible of the first arguments into
4919 registers, and push the rest onto the stack. Loop thru args
4920 from first to last. */
4921 for (argnum = 0; argnum < nargs; argnum++)
4922 {
4923 const gdb_byte *val;
4924 struct value *arg = args[argnum];
4925 struct type *arg_type = check_typedef (value_type (arg));
4926 int len = TYPE_LENGTH (arg_type);
4927 enum type_code typecode = TYPE_CODE (arg_type);
4928
4929 if (mips_debug)
4930 fprintf_unfiltered (gdb_stdlog,
4931 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4932 argnum + 1, len, (int) typecode);
4933
4934 val = value_contents (arg);
4935
4936 /* A 128-bit long double value requires an even-odd pair of
4937 floating-point registers. */
4938 if (len == 16
4939 && fp_register_arg_p (gdbarch, typecode, arg_type)
4940 && (float_argreg & 1))
4941 {
4942 float_argreg++;
4943 argreg++;
4944 }
4945
4946 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4947 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4948 {
4949 /* This is a floating point value that fits entirely
4950 in a single register or a pair of registers. */
4951 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4952 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4953 if (mips_debug)
4954 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4955 float_argreg, phex (regval, reglen));
4956 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4957
4958 if (mips_debug)
4959 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4960 argreg, phex (regval, reglen));
4961 regcache_cooked_write_unsigned (regcache, argreg, regval);
4962 float_argreg++;
4963 argreg++;
4964 if (len == 16)
4965 {
4966 regval = extract_unsigned_integer (val + reglen,
4967 reglen, byte_order);
4968 if (mips_debug)
4969 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4970 float_argreg, phex (regval, reglen));
4971 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4972
4973 if (mips_debug)
4974 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4975 argreg, phex (regval, reglen));
4976 regcache_cooked_write_unsigned (regcache, argreg, regval);
4977 float_argreg++;
4978 argreg++;
4979 }
4980 }
4981 else
4982 {
4983 /* Copy the argument to general registers or the stack in
4984 register-sized pieces. Large arguments are split between
4985 registers and stack. */
4986 /* For N32/N64, structs, unions, or other composite types are
4987 treated as a sequence of doublewords, and are passed in integer
4988 or floating point registers as though they were simple scalar
4989 parameters to the extent that they fit, with any excess on the
4990 stack packed according to the normal memory layout of the
4991 object.
4992 The caller does not reserve space for the register arguments;
4993 the callee is responsible for reserving it if required. */
4994 /* Note: Floating-point values that didn't fit into an FP
4995 register are only written to memory. */
4996 while (len > 0)
4997 {
4998 /* Remember if the argument was written to the stack. */
4999 int stack_used_p = 0;
5000 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5001
5002 if (mips_debug)
5003 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5004 partial_len);
5005
5006 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5007 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5008
5009 /* Write this portion of the argument to the stack. */
5010 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5011 {
5012 /* Should shorter than int integer values be
5013 promoted to int before being stored? */
5014 int longword_offset = 0;
5015 CORE_ADDR addr;
5016 stack_used_p = 1;
5017 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5018 {
5019 if ((typecode == TYPE_CODE_INT
5020 || typecode == TYPE_CODE_PTR)
5021 && len <= 4)
5022 longword_offset = MIPS64_REGSIZE - len;
5023 }
5024
5025 if (mips_debug)
5026 {
5027 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5028 paddress (gdbarch, stack_offset));
5029 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5030 paddress (gdbarch, longword_offset));
5031 }
5032
5033 addr = sp + stack_offset + longword_offset;
5034
5035 if (mips_debug)
5036 {
5037 int i;
5038 fprintf_unfiltered (gdb_stdlog, " @%s ",
5039 paddress (gdbarch, addr));
5040 for (i = 0; i < partial_len; i++)
5041 {
5042 fprintf_unfiltered (gdb_stdlog, "%02x",
5043 val[i] & 0xff);
5044 }
5045 }
5046 write_memory (addr, val, partial_len);
5047 }
5048
5049 /* Note!!! This is NOT an else clause. Odd sized
5050 structs may go thru BOTH paths. */
5051 /* Write this portion of the argument to a general
5052 purpose register. */
5053 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5054 {
5055 LONGEST regval;
5056
5057 /* Sign extend pointers, 32-bit integers and signed
5058 16-bit and 8-bit integers; everything else is taken
5059 as is. */
5060
5061 if ((partial_len == 4
5062 && (typecode == TYPE_CODE_PTR
5063 || typecode == TYPE_CODE_INT))
5064 || (partial_len < 4
5065 && typecode == TYPE_CODE_INT
5066 && !TYPE_UNSIGNED (arg_type)))
5067 regval = extract_signed_integer (val, partial_len,
5068 byte_order);
5069 else
5070 regval = extract_unsigned_integer (val, partial_len,
5071 byte_order);
5072
5073 /* A non-floating-point argument being passed in a
5074 general register. If a struct or union, and if
5075 the remaining length is smaller than the register
5076 size, we have to adjust the register value on
5077 big endian targets.
5078
5079 It does not seem to be necessary to do the
5080 same for integral types. */
5081
5082 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5083 && partial_len < MIPS64_REGSIZE
5084 && (typecode == TYPE_CODE_STRUCT
5085 || typecode == TYPE_CODE_UNION))
5086 regval <<= ((MIPS64_REGSIZE - partial_len)
5087 * TARGET_CHAR_BIT);
5088
5089 if (mips_debug)
5090 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5091 argreg,
5092 phex (regval, MIPS64_REGSIZE));
5093 regcache_cooked_write_unsigned (regcache, argreg, regval);
5094
5095 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5096 TYPE_LENGTH (arg_type) - len))
5097 {
5098 if (mips_debug)
5099 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5100 float_argreg,
5101 phex (regval, MIPS64_REGSIZE));
5102 regcache_cooked_write_unsigned (regcache, float_argreg,
5103 regval);
5104 }
5105
5106 float_argreg++;
5107 argreg++;
5108 }
5109
5110 len -= partial_len;
5111 val += partial_len;
5112
5113 /* Compute the offset into the stack at which we will
5114 copy the next parameter.
5115
5116 In N32 (N64?), the stack_offset only needs to be
5117 adjusted when it has been used. */
5118
5119 if (stack_used_p)
5120 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5121 }
5122 }
5123 if (mips_debug)
5124 fprintf_unfiltered (gdb_stdlog, "\n");
5125 }
5126
5127 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5128
5129 /* Return adjusted stack pointer. */
5130 return sp;
5131 }
5132
5133 static enum return_value_convention
5134 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5135 struct type *type, struct regcache *regcache,
5136 gdb_byte *readbuf, const gdb_byte *writebuf)
5137 {
5138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5139
5140 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5141
5142 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5143 if needed), as appropriate for the type. Composite results (struct,
5144 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5145 following rules:
5146
5147 * A struct with only one or two floating point fields is returned in $f0
5148 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5149 case.
5150
5151 * Any other composite results of at most 128 bits are returned in
5152 $2 (first 64 bits) and $3 (remainder, if necessary).
5153
5154 * Larger composite results are handled by converting the function to a
5155 procedure with an implicit first parameter, which is a pointer to an area
5156 reserved by the caller to receive the result. [The o32-bit ABI requires
5157 that all composite results be handled by conversion to implicit first
5158 parameters. The MIPS/SGI Fortran implementation has always made a
5159 specific exception to return COMPLEX results in the floating point
5160 registers.] */
5161
5162 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5163 return RETURN_VALUE_STRUCT_CONVENTION;
5164 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5165 && TYPE_LENGTH (type) == 16
5166 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5167 {
5168 /* A 128-bit floating-point value fills both $f0 and $f2. The
5169 two registers are used in the same as memory order, so the
5170 eight bytes with the lower memory address are in $f0. */
5171 if (mips_debug)
5172 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5173 mips_xfer_register (gdbarch, regcache,
5174 (gdbarch_num_regs (gdbarch)
5175 + mips_regnum (gdbarch)->fp0),
5176 8, gdbarch_byte_order (gdbarch),
5177 readbuf, writebuf, 0);
5178 mips_xfer_register (gdbarch, regcache,
5179 (gdbarch_num_regs (gdbarch)
5180 + mips_regnum (gdbarch)->fp0 + 2),
5181 8, gdbarch_byte_order (gdbarch),
5182 readbuf ? readbuf + 8 : readbuf,
5183 writebuf ? writebuf + 8 : writebuf, 0);
5184 return RETURN_VALUE_REGISTER_CONVENTION;
5185 }
5186 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5187 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5188 {
5189 /* A single or double floating-point value that fits in FP0. */
5190 if (mips_debug)
5191 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5192 mips_xfer_register (gdbarch, regcache,
5193 (gdbarch_num_regs (gdbarch)
5194 + mips_regnum (gdbarch)->fp0),
5195 TYPE_LENGTH (type),
5196 gdbarch_byte_order (gdbarch),
5197 readbuf, writebuf, 0);
5198 return RETURN_VALUE_REGISTER_CONVENTION;
5199 }
5200 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5201 && TYPE_NFIELDS (type) <= 2
5202 && TYPE_NFIELDS (type) >= 1
5203 && ((TYPE_NFIELDS (type) == 1
5204 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5205 == TYPE_CODE_FLT))
5206 || (TYPE_NFIELDS (type) == 2
5207 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5208 == TYPE_CODE_FLT)
5209 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5210 == TYPE_CODE_FLT))))
5211 {
5212 /* A struct that contains one or two floats. Each value is part
5213 in the least significant part of their floating point
5214 register (or GPR, for soft float). */
5215 int regnum;
5216 int field;
5217 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5218 ? mips_regnum (gdbarch)->fp0
5219 : MIPS_V0_REGNUM);
5220 field < TYPE_NFIELDS (type); field++, regnum += 2)
5221 {
5222 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5223 / TARGET_CHAR_BIT);
5224 if (mips_debug)
5225 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5226 offset);
5227 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5228 {
5229 /* A 16-byte long double field goes in two consecutive
5230 registers. */
5231 mips_xfer_register (gdbarch, regcache,
5232 gdbarch_num_regs (gdbarch) + regnum,
5233 8,
5234 gdbarch_byte_order (gdbarch),
5235 readbuf, writebuf, offset);
5236 mips_xfer_register (gdbarch, regcache,
5237 gdbarch_num_regs (gdbarch) + regnum + 1,
5238 8,
5239 gdbarch_byte_order (gdbarch),
5240 readbuf, writebuf, offset + 8);
5241 }
5242 else
5243 mips_xfer_register (gdbarch, regcache,
5244 gdbarch_num_regs (gdbarch) + regnum,
5245 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5246 gdbarch_byte_order (gdbarch),
5247 readbuf, writebuf, offset);
5248 }
5249 return RETURN_VALUE_REGISTER_CONVENTION;
5250 }
5251 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5252 || TYPE_CODE (type) == TYPE_CODE_UNION
5253 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5254 {
5255 /* A composite type. Extract the left justified value,
5256 regardless of the byte order. I.e. DO NOT USE
5257 mips_xfer_lower. */
5258 int offset;
5259 int regnum;
5260 for (offset = 0, regnum = MIPS_V0_REGNUM;
5261 offset < TYPE_LENGTH (type);
5262 offset += register_size (gdbarch, regnum), regnum++)
5263 {
5264 int xfer = register_size (gdbarch, regnum);
5265 if (offset + xfer > TYPE_LENGTH (type))
5266 xfer = TYPE_LENGTH (type) - offset;
5267 if (mips_debug)
5268 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5269 offset, xfer, regnum);
5270 mips_xfer_register (gdbarch, regcache,
5271 gdbarch_num_regs (gdbarch) + regnum,
5272 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5273 offset);
5274 }
5275 return RETURN_VALUE_REGISTER_CONVENTION;
5276 }
5277 else
5278 {
5279 /* A scalar extract each part but least-significant-byte
5280 justified. */
5281 int offset;
5282 int regnum;
5283 for (offset = 0, regnum = MIPS_V0_REGNUM;
5284 offset < TYPE_LENGTH (type);
5285 offset += register_size (gdbarch, regnum), regnum++)
5286 {
5287 int xfer = register_size (gdbarch, regnum);
5288 if (offset + xfer > TYPE_LENGTH (type))
5289 xfer = TYPE_LENGTH (type) - offset;
5290 if (mips_debug)
5291 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5292 offset, xfer, regnum);
5293 mips_xfer_register (gdbarch, regcache,
5294 gdbarch_num_regs (gdbarch) + regnum,
5295 xfer, gdbarch_byte_order (gdbarch),
5296 readbuf, writebuf, offset);
5297 }
5298 return RETURN_VALUE_REGISTER_CONVENTION;
5299 }
5300 }
5301
5302 /* Which registers to use for passing floating-point values between
5303 function calls, one of floating-point, general and both kinds of
5304 registers. O32 and O64 use different register kinds for standard
5305 MIPS and MIPS16 code; to make the handling of cases where we may
5306 not know what kind of code is being used (e.g. no debug information)
5307 easier we sometimes use both kinds. */
5308
5309 enum mips_fval_reg
5310 {
5311 mips_fval_fpr,
5312 mips_fval_gpr,
5313 mips_fval_both
5314 };
5315
5316 /* O32 ABI stuff. */
5317
5318 static CORE_ADDR
5319 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5320 struct regcache *regcache, CORE_ADDR bp_addr,
5321 int nargs, struct value **args, CORE_ADDR sp,
5322 int struct_return, CORE_ADDR struct_addr)
5323 {
5324 int argreg;
5325 int float_argreg;
5326 int argnum;
5327 int len = 0;
5328 int stack_offset = 0;
5329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5330 CORE_ADDR func_addr = find_function_addr (function, NULL);
5331
5332 /* For shared libraries, "t9" needs to point at the function
5333 address. */
5334 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5335
5336 /* Set the return address register to point to the entry point of
5337 the program, where a breakpoint lies in wait. */
5338 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5339
5340 /* First ensure that the stack and structure return address (if any)
5341 are properly aligned. The stack has to be at least 64-bit
5342 aligned even on 32-bit machines, because doubles must be 64-bit
5343 aligned. For n32 and n64, stack frames need to be 128-bit
5344 aligned, so we round to this widest known alignment. */
5345
5346 sp = align_down (sp, 16);
5347 struct_addr = align_down (struct_addr, 16);
5348
5349 /* Now make space on the stack for the args. */
5350 for (argnum = 0; argnum < nargs; argnum++)
5351 {
5352 struct type *arg_type = check_typedef (value_type (args[argnum]));
5353
5354 /* Align to double-word if necessary. */
5355 if (mips_type_needs_double_align (arg_type))
5356 len = align_up (len, MIPS32_REGSIZE * 2);
5357 /* Allocate space on the stack. */
5358 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5359 }
5360 sp -= align_up (len, 16);
5361
5362 if (mips_debug)
5363 fprintf_unfiltered (gdb_stdlog,
5364 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5365 paddress (gdbarch, sp), (long) align_up (len, 16));
5366
5367 /* Initialize the integer and float register pointers. */
5368 argreg = MIPS_A0_REGNUM;
5369 float_argreg = mips_fpa0_regnum (gdbarch);
5370
5371 /* The struct_return pointer occupies the first parameter-passing reg. */
5372 if (struct_return)
5373 {
5374 if (mips_debug)
5375 fprintf_unfiltered (gdb_stdlog,
5376 "mips_o32_push_dummy_call: "
5377 "struct_return reg=%d %s\n",
5378 argreg, paddress (gdbarch, struct_addr));
5379 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5380 stack_offset += MIPS32_REGSIZE;
5381 }
5382
5383 /* Now load as many as possible of the first arguments into
5384 registers, and push the rest onto the stack. Loop thru args
5385 from first to last. */
5386 for (argnum = 0; argnum < nargs; argnum++)
5387 {
5388 const gdb_byte *val;
5389 struct value *arg = args[argnum];
5390 struct type *arg_type = check_typedef (value_type (arg));
5391 int len = TYPE_LENGTH (arg_type);
5392 enum type_code typecode = TYPE_CODE (arg_type);
5393
5394 if (mips_debug)
5395 fprintf_unfiltered (gdb_stdlog,
5396 "mips_o32_push_dummy_call: %d len=%d type=%d",
5397 argnum + 1, len, (int) typecode);
5398
5399 val = value_contents (arg);
5400
5401 /* 32-bit ABIs always start floating point arguments in an
5402 even-numbered floating point register. Round the FP register
5403 up before the check to see if there are any FP registers
5404 left. O32 targets also pass the FP in the integer registers
5405 so also round up normal registers. */
5406 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5407 {
5408 if ((float_argreg & 1))
5409 float_argreg++;
5410 }
5411
5412 /* Floating point arguments passed in registers have to be
5413 treated specially. On 32-bit architectures, doubles are
5414 passed in register pairs; the even FP register gets the
5415 low word, and the odd FP register gets the high word.
5416 On O32, the first two floating point arguments are also
5417 copied to general registers, following their memory order,
5418 because MIPS16 functions don't use float registers for
5419 arguments. This duplication of arguments in general
5420 registers can't hurt non-MIPS16 functions, because those
5421 registers are normally skipped. */
5422
5423 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5424 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5425 {
5426 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5427 {
5428 int freg_offset = gdbarch_byte_order (gdbarch)
5429 == BFD_ENDIAN_BIG ? 1 : 0;
5430 unsigned long regval;
5431
5432 /* First word. */
5433 regval = extract_unsigned_integer (val, 4, byte_order);
5434 if (mips_debug)
5435 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5436 float_argreg + freg_offset,
5437 phex (regval, 4));
5438 regcache_cooked_write_unsigned (regcache,
5439 float_argreg++ + freg_offset,
5440 regval);
5441 if (mips_debug)
5442 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5443 argreg, phex (regval, 4));
5444 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5445
5446 /* Second word. */
5447 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5448 if (mips_debug)
5449 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5450 float_argreg - freg_offset,
5451 phex (regval, 4));
5452 regcache_cooked_write_unsigned (regcache,
5453 float_argreg++ - freg_offset,
5454 regval);
5455 if (mips_debug)
5456 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5457 argreg, phex (regval, 4));
5458 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5459 }
5460 else
5461 {
5462 /* This is a floating point value that fits entirely
5463 in a single register. */
5464 /* On 32 bit ABI's the float_argreg is further adjusted
5465 above to ensure that it is even register aligned. */
5466 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5467 if (mips_debug)
5468 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5469 float_argreg, phex (regval, len));
5470 regcache_cooked_write_unsigned (regcache,
5471 float_argreg++, regval);
5472 /* Although two FP registers are reserved for each
5473 argument, only one corresponding integer register is
5474 reserved. */
5475 if (mips_debug)
5476 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5477 argreg, phex (regval, len));
5478 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5479 }
5480 /* Reserve space for the FP register. */
5481 stack_offset += align_up (len, MIPS32_REGSIZE);
5482 }
5483 else
5484 {
5485 /* Copy the argument to general registers or the stack in
5486 register-sized pieces. Large arguments are split between
5487 registers and stack. */
5488 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5489 are treated specially: Irix cc passes
5490 them in registers where gcc sometimes puts them on the
5491 stack. For maximum compatibility, we will put them in
5492 both places. */
5493 int odd_sized_struct = (len > MIPS32_REGSIZE
5494 && len % MIPS32_REGSIZE != 0);
5495 /* Structures should be aligned to eight bytes (even arg registers)
5496 on MIPS_ABI_O32, if their first member has double precision. */
5497 if (mips_type_needs_double_align (arg_type))
5498 {
5499 if ((argreg & 1))
5500 {
5501 argreg++;
5502 stack_offset += MIPS32_REGSIZE;
5503 }
5504 }
5505 while (len > 0)
5506 {
5507 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5508
5509 if (mips_debug)
5510 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5511 partial_len);
5512
5513 /* Write this portion of the argument to the stack. */
5514 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5515 || odd_sized_struct)
5516 {
5517 /* Should shorter than int integer values be
5518 promoted to int before being stored? */
5519 int longword_offset = 0;
5520 CORE_ADDR addr;
5521
5522 if (mips_debug)
5523 {
5524 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5525 paddress (gdbarch, stack_offset));
5526 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5527 paddress (gdbarch, longword_offset));
5528 }
5529
5530 addr = sp + stack_offset + longword_offset;
5531
5532 if (mips_debug)
5533 {
5534 int i;
5535 fprintf_unfiltered (gdb_stdlog, " @%s ",
5536 paddress (gdbarch, addr));
5537 for (i = 0; i < partial_len; i++)
5538 {
5539 fprintf_unfiltered (gdb_stdlog, "%02x",
5540 val[i] & 0xff);
5541 }
5542 }
5543 write_memory (addr, val, partial_len);
5544 }
5545
5546 /* Note!!! This is NOT an else clause. Odd sized
5547 structs may go thru BOTH paths. */
5548 /* Write this portion of the argument to a general
5549 purpose register. */
5550 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5551 {
5552 LONGEST regval = extract_signed_integer (val, partial_len,
5553 byte_order);
5554 /* Value may need to be sign extended, because
5555 mips_isa_regsize() != mips_abi_regsize(). */
5556
5557 /* A non-floating-point argument being passed in a
5558 general register. If a struct or union, and if
5559 the remaining length is smaller than the register
5560 size, we have to adjust the register value on
5561 big endian targets.
5562
5563 It does not seem to be necessary to do the
5564 same for integral types.
5565
5566 Also don't do this adjustment on O64 binaries.
5567
5568 cagney/2001-07-23: gdb/179: Also, GCC, when
5569 outputting LE O32 with sizeof (struct) <
5570 mips_abi_regsize(), generates a left shift
5571 as part of storing the argument in a register
5572 (the left shift isn't generated when
5573 sizeof (struct) >= mips_abi_regsize()). Since
5574 it is quite possible that this is GCC
5575 contradicting the LE/O32 ABI, GDB has not been
5576 adjusted to accommodate this. Either someone
5577 needs to demonstrate that the LE/O32 ABI
5578 specifies such a left shift OR this new ABI gets
5579 identified as such and GDB gets tweaked
5580 accordingly. */
5581
5582 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5583 && partial_len < MIPS32_REGSIZE
5584 && (typecode == TYPE_CODE_STRUCT
5585 || typecode == TYPE_CODE_UNION))
5586 regval <<= ((MIPS32_REGSIZE - partial_len)
5587 * TARGET_CHAR_BIT);
5588
5589 if (mips_debug)
5590 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5591 argreg,
5592 phex (regval, MIPS32_REGSIZE));
5593 regcache_cooked_write_unsigned (regcache, argreg, regval);
5594 argreg++;
5595
5596 /* Prevent subsequent floating point arguments from
5597 being passed in floating point registers. */
5598 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5599 }
5600
5601 len -= partial_len;
5602 val += partial_len;
5603
5604 /* Compute the offset into the stack at which we will
5605 copy the next parameter.
5606
5607 In older ABIs, the caller reserved space for
5608 registers that contained arguments. This was loosely
5609 refered to as their "home". Consequently, space is
5610 always allocated. */
5611
5612 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5613 }
5614 }
5615 if (mips_debug)
5616 fprintf_unfiltered (gdb_stdlog, "\n");
5617 }
5618
5619 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5620
5621 /* Return adjusted stack pointer. */
5622 return sp;
5623 }
5624
5625 static enum return_value_convention
5626 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5627 struct type *type, struct regcache *regcache,
5628 gdb_byte *readbuf, const gdb_byte *writebuf)
5629 {
5630 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5631 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5632 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5633 enum mips_fval_reg fval_reg;
5634
5635 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5636 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5637 || TYPE_CODE (type) == TYPE_CODE_UNION
5638 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5639 return RETURN_VALUE_STRUCT_CONVENTION;
5640 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5641 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5642 {
5643 /* A single-precision floating-point value. If reading in or copying,
5644 then we get it from/put it to FP0 for standard MIPS code or GPR2
5645 for MIPS16 code. If writing out only, then we put it to both FP0
5646 and GPR2. We do not support reading in with no function known, if
5647 this safety check ever triggers, then we'll have to try harder. */
5648 gdb_assert (function || !readbuf);
5649 if (mips_debug)
5650 switch (fval_reg)
5651 {
5652 case mips_fval_fpr:
5653 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5654 break;
5655 case mips_fval_gpr:
5656 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5657 break;
5658 case mips_fval_both:
5659 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5660 break;
5661 }
5662 if (fval_reg != mips_fval_gpr)
5663 mips_xfer_register (gdbarch, regcache,
5664 (gdbarch_num_regs (gdbarch)
5665 + mips_regnum (gdbarch)->fp0),
5666 TYPE_LENGTH (type),
5667 gdbarch_byte_order (gdbarch),
5668 readbuf, writebuf, 0);
5669 if (fval_reg != mips_fval_fpr)
5670 mips_xfer_register (gdbarch, regcache,
5671 gdbarch_num_regs (gdbarch) + 2,
5672 TYPE_LENGTH (type),
5673 gdbarch_byte_order (gdbarch),
5674 readbuf, writebuf, 0);
5675 return RETURN_VALUE_REGISTER_CONVENTION;
5676 }
5677 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5678 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5679 {
5680 /* A double-precision floating-point value. If reading in or copying,
5681 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5682 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5683 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5684 no function known, if this safety check ever triggers, then we'll
5685 have to try harder. */
5686 gdb_assert (function || !readbuf);
5687 if (mips_debug)
5688 switch (fval_reg)
5689 {
5690 case mips_fval_fpr:
5691 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5692 break;
5693 case mips_fval_gpr:
5694 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5695 break;
5696 case mips_fval_both:
5697 fprintf_unfiltered (gdb_stderr,
5698 "Return float in $fp1/$fp0 and $2/$3\n");
5699 break;
5700 }
5701 if (fval_reg != mips_fval_gpr)
5702 {
5703 /* The most significant part goes in FP1, and the least significant
5704 in FP0. */
5705 switch (gdbarch_byte_order (gdbarch))
5706 {
5707 case BFD_ENDIAN_LITTLE:
5708 mips_xfer_register (gdbarch, regcache,
5709 (gdbarch_num_regs (gdbarch)
5710 + mips_regnum (gdbarch)->fp0 + 0),
5711 4, gdbarch_byte_order (gdbarch),
5712 readbuf, writebuf, 0);
5713 mips_xfer_register (gdbarch, regcache,
5714 (gdbarch_num_regs (gdbarch)
5715 + mips_regnum (gdbarch)->fp0 + 1),
5716 4, gdbarch_byte_order (gdbarch),
5717 readbuf, writebuf, 4);
5718 break;
5719 case BFD_ENDIAN_BIG:
5720 mips_xfer_register (gdbarch, regcache,
5721 (gdbarch_num_regs (gdbarch)
5722 + mips_regnum (gdbarch)->fp0 + 1),
5723 4, gdbarch_byte_order (gdbarch),
5724 readbuf, writebuf, 0);
5725 mips_xfer_register (gdbarch, regcache,
5726 (gdbarch_num_regs (gdbarch)
5727 + mips_regnum (gdbarch)->fp0 + 0),
5728 4, gdbarch_byte_order (gdbarch),
5729 readbuf, writebuf, 4);
5730 break;
5731 default:
5732 internal_error (__FILE__, __LINE__, _("bad switch"));
5733 }
5734 }
5735 if (fval_reg != mips_fval_fpr)
5736 {
5737 /* The two 32-bit parts are always placed in GPR2 and GPR3
5738 following these registers' memory order. */
5739 mips_xfer_register (gdbarch, regcache,
5740 gdbarch_num_regs (gdbarch) + 2,
5741 4, gdbarch_byte_order (gdbarch),
5742 readbuf, writebuf, 0);
5743 mips_xfer_register (gdbarch, regcache,
5744 gdbarch_num_regs (gdbarch) + 3,
5745 4, gdbarch_byte_order (gdbarch),
5746 readbuf, writebuf, 4);
5747 }
5748 return RETURN_VALUE_REGISTER_CONVENTION;
5749 }
5750 #if 0
5751 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5752 && TYPE_NFIELDS (type) <= 2
5753 && TYPE_NFIELDS (type) >= 1
5754 && ((TYPE_NFIELDS (type) == 1
5755 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5756 == TYPE_CODE_FLT))
5757 || (TYPE_NFIELDS (type) == 2
5758 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5759 == TYPE_CODE_FLT)
5760 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5761 == TYPE_CODE_FLT)))
5762 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5763 {
5764 /* A struct that contains one or two floats. Each value is part
5765 in the least significant part of their floating point
5766 register.. */
5767 int regnum;
5768 int field;
5769 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5770 field < TYPE_NFIELDS (type); field++, regnum += 2)
5771 {
5772 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5773 / TARGET_CHAR_BIT);
5774 if (mips_debug)
5775 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5776 offset);
5777 mips_xfer_register (gdbarch, regcache,
5778 gdbarch_num_regs (gdbarch) + regnum,
5779 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5780 gdbarch_byte_order (gdbarch),
5781 readbuf, writebuf, offset);
5782 }
5783 return RETURN_VALUE_REGISTER_CONVENTION;
5784 }
5785 #endif
5786 #if 0
5787 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5788 || TYPE_CODE (type) == TYPE_CODE_UNION)
5789 {
5790 /* A structure or union. Extract the left justified value,
5791 regardless of the byte order. I.e. DO NOT USE
5792 mips_xfer_lower. */
5793 int offset;
5794 int regnum;
5795 for (offset = 0, regnum = MIPS_V0_REGNUM;
5796 offset < TYPE_LENGTH (type);
5797 offset += register_size (gdbarch, regnum), regnum++)
5798 {
5799 int xfer = register_size (gdbarch, regnum);
5800 if (offset + xfer > TYPE_LENGTH (type))
5801 xfer = TYPE_LENGTH (type) - offset;
5802 if (mips_debug)
5803 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5804 offset, xfer, regnum);
5805 mips_xfer_register (gdbarch, regcache,
5806 gdbarch_num_regs (gdbarch) + regnum, xfer,
5807 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5808 }
5809 return RETURN_VALUE_REGISTER_CONVENTION;
5810 }
5811 #endif
5812 else
5813 {
5814 /* A scalar extract each part but least-significant-byte
5815 justified. o32 thinks registers are 4 byte, regardless of
5816 the ISA. */
5817 int offset;
5818 int regnum;
5819 for (offset = 0, regnum = MIPS_V0_REGNUM;
5820 offset < TYPE_LENGTH (type);
5821 offset += MIPS32_REGSIZE, regnum++)
5822 {
5823 int xfer = MIPS32_REGSIZE;
5824 if (offset + xfer > TYPE_LENGTH (type))
5825 xfer = TYPE_LENGTH (type) - offset;
5826 if (mips_debug)
5827 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5828 offset, xfer, regnum);
5829 mips_xfer_register (gdbarch, regcache,
5830 gdbarch_num_regs (gdbarch) + regnum, xfer,
5831 gdbarch_byte_order (gdbarch),
5832 readbuf, writebuf, offset);
5833 }
5834 return RETURN_VALUE_REGISTER_CONVENTION;
5835 }
5836 }
5837
5838 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5839 ABI. */
5840
5841 static CORE_ADDR
5842 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5843 struct regcache *regcache, CORE_ADDR bp_addr,
5844 int nargs,
5845 struct value **args, CORE_ADDR sp,
5846 int struct_return, CORE_ADDR struct_addr)
5847 {
5848 int argreg;
5849 int float_argreg;
5850 int argnum;
5851 int len = 0;
5852 int stack_offset = 0;
5853 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5854 CORE_ADDR func_addr = find_function_addr (function, NULL);
5855
5856 /* For shared libraries, "t9" needs to point at the function
5857 address. */
5858 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5859
5860 /* Set the return address register to point to the entry point of
5861 the program, where a breakpoint lies in wait. */
5862 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5863
5864 /* First ensure that the stack and structure return address (if any)
5865 are properly aligned. The stack has to be at least 64-bit
5866 aligned even on 32-bit machines, because doubles must be 64-bit
5867 aligned. For n32 and n64, stack frames need to be 128-bit
5868 aligned, so we round to this widest known alignment. */
5869
5870 sp = align_down (sp, 16);
5871 struct_addr = align_down (struct_addr, 16);
5872
5873 /* Now make space on the stack for the args. */
5874 for (argnum = 0; argnum < nargs; argnum++)
5875 {
5876 struct type *arg_type = check_typedef (value_type (args[argnum]));
5877
5878 /* Allocate space on the stack. */
5879 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5880 }
5881 sp -= align_up (len, 16);
5882
5883 if (mips_debug)
5884 fprintf_unfiltered (gdb_stdlog,
5885 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5886 paddress (gdbarch, sp), (long) align_up (len, 16));
5887
5888 /* Initialize the integer and float register pointers. */
5889 argreg = MIPS_A0_REGNUM;
5890 float_argreg = mips_fpa0_regnum (gdbarch);
5891
5892 /* The struct_return pointer occupies the first parameter-passing reg. */
5893 if (struct_return)
5894 {
5895 if (mips_debug)
5896 fprintf_unfiltered (gdb_stdlog,
5897 "mips_o64_push_dummy_call: "
5898 "struct_return reg=%d %s\n",
5899 argreg, paddress (gdbarch, struct_addr));
5900 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5901 stack_offset += MIPS64_REGSIZE;
5902 }
5903
5904 /* Now load as many as possible of the first arguments into
5905 registers, and push the rest onto the stack. Loop thru args
5906 from first to last. */
5907 for (argnum = 0; argnum < nargs; argnum++)
5908 {
5909 const gdb_byte *val;
5910 struct value *arg = args[argnum];
5911 struct type *arg_type = check_typedef (value_type (arg));
5912 int len = TYPE_LENGTH (arg_type);
5913 enum type_code typecode = TYPE_CODE (arg_type);
5914
5915 if (mips_debug)
5916 fprintf_unfiltered (gdb_stdlog,
5917 "mips_o64_push_dummy_call: %d len=%d type=%d",
5918 argnum + 1, len, (int) typecode);
5919
5920 val = value_contents (arg);
5921
5922 /* Floating point arguments passed in registers have to be
5923 treated specially. On 32-bit architectures, doubles are
5924 passed in register pairs; the even FP register gets the
5925 low word, and the odd FP register gets the high word.
5926 On O64, the first two floating point arguments are also
5927 copied to general registers, because MIPS16 functions
5928 don't use float registers for arguments. This duplication
5929 of arguments in general registers can't hurt non-MIPS16
5930 functions because those registers are normally skipped. */
5931
5932 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5933 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5934 {
5935 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5936 if (mips_debug)
5937 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5938 float_argreg, phex (regval, len));
5939 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5940 if (mips_debug)
5941 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5942 argreg, phex (regval, len));
5943 regcache_cooked_write_unsigned (regcache, argreg, regval);
5944 argreg++;
5945 /* Reserve space for the FP register. */
5946 stack_offset += align_up (len, MIPS64_REGSIZE);
5947 }
5948 else
5949 {
5950 /* Copy the argument to general registers or the stack in
5951 register-sized pieces. Large arguments are split between
5952 registers and stack. */
5953 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5954 are treated specially: Irix cc passes them in registers
5955 where gcc sometimes puts them on the stack. For maximum
5956 compatibility, we will put them in both places. */
5957 int odd_sized_struct = (len > MIPS64_REGSIZE
5958 && len % MIPS64_REGSIZE != 0);
5959 while (len > 0)
5960 {
5961 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5962
5963 if (mips_debug)
5964 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5965 partial_len);
5966
5967 /* Write this portion of the argument to the stack. */
5968 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5969 || odd_sized_struct)
5970 {
5971 /* Should shorter than int integer values be
5972 promoted to int before being stored? */
5973 int longword_offset = 0;
5974 CORE_ADDR addr;
5975 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5976 {
5977 if ((typecode == TYPE_CODE_INT
5978 || typecode == TYPE_CODE_PTR
5979 || typecode == TYPE_CODE_FLT)
5980 && len <= 4)
5981 longword_offset = MIPS64_REGSIZE - len;
5982 }
5983
5984 if (mips_debug)
5985 {
5986 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5987 paddress (gdbarch, stack_offset));
5988 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5989 paddress (gdbarch, longword_offset));
5990 }
5991
5992 addr = sp + stack_offset + longword_offset;
5993
5994 if (mips_debug)
5995 {
5996 int i;
5997 fprintf_unfiltered (gdb_stdlog, " @%s ",
5998 paddress (gdbarch, addr));
5999 for (i = 0; i < partial_len; i++)
6000 {
6001 fprintf_unfiltered (gdb_stdlog, "%02x",
6002 val[i] & 0xff);
6003 }
6004 }
6005 write_memory (addr, val, partial_len);
6006 }
6007
6008 /* Note!!! This is NOT an else clause. Odd sized
6009 structs may go thru BOTH paths. */
6010 /* Write this portion of the argument to a general
6011 purpose register. */
6012 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6013 {
6014 LONGEST regval = extract_signed_integer (val, partial_len,
6015 byte_order);
6016 /* Value may need to be sign extended, because
6017 mips_isa_regsize() != mips_abi_regsize(). */
6018
6019 /* A non-floating-point argument being passed in a
6020 general register. If a struct or union, and if
6021 the remaining length is smaller than the register
6022 size, we have to adjust the register value on
6023 big endian targets.
6024
6025 It does not seem to be necessary to do the
6026 same for integral types. */
6027
6028 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6029 && partial_len < MIPS64_REGSIZE
6030 && (typecode == TYPE_CODE_STRUCT
6031 || typecode == TYPE_CODE_UNION))
6032 regval <<= ((MIPS64_REGSIZE - partial_len)
6033 * TARGET_CHAR_BIT);
6034
6035 if (mips_debug)
6036 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6037 argreg,
6038 phex (regval, MIPS64_REGSIZE));
6039 regcache_cooked_write_unsigned (regcache, argreg, regval);
6040 argreg++;
6041
6042 /* Prevent subsequent floating point arguments from
6043 being passed in floating point registers. */
6044 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6045 }
6046
6047 len -= partial_len;
6048 val += partial_len;
6049
6050 /* Compute the offset into the stack at which we will
6051 copy the next parameter.
6052
6053 In older ABIs, the caller reserved space for
6054 registers that contained arguments. This was loosely
6055 refered to as their "home". Consequently, space is
6056 always allocated. */
6057
6058 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6059 }
6060 }
6061 if (mips_debug)
6062 fprintf_unfiltered (gdb_stdlog, "\n");
6063 }
6064
6065 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6066
6067 /* Return adjusted stack pointer. */
6068 return sp;
6069 }
6070
6071 static enum return_value_convention
6072 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6073 struct type *type, struct regcache *regcache,
6074 gdb_byte *readbuf, const gdb_byte *writebuf)
6075 {
6076 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6077 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6079 enum mips_fval_reg fval_reg;
6080
6081 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6082 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6083 || TYPE_CODE (type) == TYPE_CODE_UNION
6084 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6085 return RETURN_VALUE_STRUCT_CONVENTION;
6086 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6087 {
6088 /* A floating-point value. If reading in or copying, then we get it
6089 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6090 If writing out only, then we put it to both FP0 and GPR2. We do
6091 not support reading in with no function known, if this safety
6092 check ever triggers, then we'll have to try harder. */
6093 gdb_assert (function || !readbuf);
6094 if (mips_debug)
6095 switch (fval_reg)
6096 {
6097 case mips_fval_fpr:
6098 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6099 break;
6100 case mips_fval_gpr:
6101 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6102 break;
6103 case mips_fval_both:
6104 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6105 break;
6106 }
6107 if (fval_reg != mips_fval_gpr)
6108 mips_xfer_register (gdbarch, regcache,
6109 (gdbarch_num_regs (gdbarch)
6110 + mips_regnum (gdbarch)->fp0),
6111 TYPE_LENGTH (type),
6112 gdbarch_byte_order (gdbarch),
6113 readbuf, writebuf, 0);
6114 if (fval_reg != mips_fval_fpr)
6115 mips_xfer_register (gdbarch, regcache,
6116 gdbarch_num_regs (gdbarch) + 2,
6117 TYPE_LENGTH (type),
6118 gdbarch_byte_order (gdbarch),
6119 readbuf, writebuf, 0);
6120 return RETURN_VALUE_REGISTER_CONVENTION;
6121 }
6122 else
6123 {
6124 /* A scalar extract each part but least-significant-byte
6125 justified. */
6126 int offset;
6127 int regnum;
6128 for (offset = 0, regnum = MIPS_V0_REGNUM;
6129 offset < TYPE_LENGTH (type);
6130 offset += MIPS64_REGSIZE, regnum++)
6131 {
6132 int xfer = MIPS64_REGSIZE;
6133 if (offset + xfer > TYPE_LENGTH (type))
6134 xfer = TYPE_LENGTH (type) - offset;
6135 if (mips_debug)
6136 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6137 offset, xfer, regnum);
6138 mips_xfer_register (gdbarch, regcache,
6139 gdbarch_num_regs (gdbarch) + regnum,
6140 xfer, gdbarch_byte_order (gdbarch),
6141 readbuf, writebuf, offset);
6142 }
6143 return RETURN_VALUE_REGISTER_CONVENTION;
6144 }
6145 }
6146
6147 /* Floating point register management.
6148
6149 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6150 64bit operations, these early MIPS cpus treat fp register pairs
6151 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6152 registers and offer a compatibility mode that emulates the MIPS2 fp
6153 model. When operating in MIPS2 fp compat mode, later cpu's split
6154 double precision floats into two 32-bit chunks and store them in
6155 consecutive fp regs. To display 64-bit floats stored in this
6156 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6157 Throw in user-configurable endianness and you have a real mess.
6158
6159 The way this works is:
6160 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6161 double-precision value will be split across two logical registers.
6162 The lower-numbered logical register will hold the low-order bits,
6163 regardless of the processor's endianness.
6164 - If we are on a 64-bit processor, and we are looking for a
6165 single-precision value, it will be in the low ordered bits
6166 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6167 save slot in memory.
6168 - If we are in 64-bit mode, everything is straightforward.
6169
6170 Note that this code only deals with "live" registers at the top of the
6171 stack. We will attempt to deal with saved registers later, when
6172 the raw/cooked register interface is in place. (We need a general
6173 interface that can deal with dynamic saved register sizes -- fp
6174 regs could be 32 bits wide in one frame and 64 on the frame above
6175 and below). */
6176
6177 /* Copy a 32-bit single-precision value from the current frame
6178 into rare_buffer. */
6179
6180 static void
6181 mips_read_fp_register_single (struct frame_info *frame, int regno,
6182 gdb_byte *rare_buffer)
6183 {
6184 struct gdbarch *gdbarch = get_frame_arch (frame);
6185 int raw_size = register_size (gdbarch, regno);
6186 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6187
6188 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6189 error (_("can't read register %d (%s)"),
6190 regno, gdbarch_register_name (gdbarch, regno));
6191 if (raw_size == 8)
6192 {
6193 /* We have a 64-bit value for this register. Find the low-order
6194 32 bits. */
6195 int offset;
6196
6197 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6198 offset = 4;
6199 else
6200 offset = 0;
6201
6202 memcpy (rare_buffer, raw_buffer + offset, 4);
6203 }
6204 else
6205 {
6206 memcpy (rare_buffer, raw_buffer, 4);
6207 }
6208 }
6209
6210 /* Copy a 64-bit double-precision value from the current frame into
6211 rare_buffer. This may include getting half of it from the next
6212 register. */
6213
6214 static void
6215 mips_read_fp_register_double (struct frame_info *frame, int regno,
6216 gdb_byte *rare_buffer)
6217 {
6218 struct gdbarch *gdbarch = get_frame_arch (frame);
6219 int raw_size = register_size (gdbarch, regno);
6220
6221 if (raw_size == 8 && !mips2_fp_compat (frame))
6222 {
6223 /* We have a 64-bit value for this register, and we should use
6224 all 64 bits. */
6225 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6226 error (_("can't read register %d (%s)"),
6227 regno, gdbarch_register_name (gdbarch, regno));
6228 }
6229 else
6230 {
6231 int rawnum = regno % gdbarch_num_regs (gdbarch);
6232
6233 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6234 internal_error (__FILE__, __LINE__,
6235 _("mips_read_fp_register_double: bad access to "
6236 "odd-numbered FP register"));
6237
6238 /* mips_read_fp_register_single will find the correct 32 bits from
6239 each register. */
6240 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6241 {
6242 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6243 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6244 }
6245 else
6246 {
6247 mips_read_fp_register_single (frame, regno, rare_buffer);
6248 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6249 }
6250 }
6251 }
6252
6253 static void
6254 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6255 int regnum)
6256 { /* Do values for FP (float) regs. */
6257 struct gdbarch *gdbarch = get_frame_arch (frame);
6258 gdb_byte *raw_buffer;
6259 double doub, flt1; /* Doubles extracted from raw hex data. */
6260 int inv1, inv2;
6261
6262 raw_buffer
6263 = ((gdb_byte *)
6264 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6265
6266 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6267 fprintf_filtered (file, "%*s",
6268 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6269 "");
6270
6271 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6272 {
6273 struct value_print_options opts;
6274
6275 /* 4-byte registers: Print hex and floating. Also print even
6276 numbered registers as doubles. */
6277 mips_read_fp_register_single (frame, regnum, raw_buffer);
6278 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6279 raw_buffer, &inv1);
6280
6281 get_formatted_print_options (&opts, 'x');
6282 print_scalar_formatted (raw_buffer,
6283 builtin_type (gdbarch)->builtin_uint32,
6284 &opts, 'w', file);
6285
6286 fprintf_filtered (file, " flt: ");
6287 if (inv1)
6288 fprintf_filtered (file, " <invalid float> ");
6289 else
6290 fprintf_filtered (file, "%-17.9g", flt1);
6291
6292 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6293 {
6294 mips_read_fp_register_double (frame, regnum, raw_buffer);
6295 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6296 raw_buffer, &inv2);
6297
6298 fprintf_filtered (file, " dbl: ");
6299 if (inv2)
6300 fprintf_filtered (file, "<invalid double>");
6301 else
6302 fprintf_filtered (file, "%-24.17g", doub);
6303 }
6304 }
6305 else
6306 {
6307 struct value_print_options opts;
6308
6309 /* Eight byte registers: print each one as hex, float and double. */
6310 mips_read_fp_register_single (frame, regnum, raw_buffer);
6311 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6312 raw_buffer, &inv1);
6313
6314 mips_read_fp_register_double (frame, regnum, raw_buffer);
6315 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6316 raw_buffer, &inv2);
6317
6318 get_formatted_print_options (&opts, 'x');
6319 print_scalar_formatted (raw_buffer,
6320 builtin_type (gdbarch)->builtin_uint64,
6321 &opts, 'g', file);
6322
6323 fprintf_filtered (file, " flt: ");
6324 if (inv1)
6325 fprintf_filtered (file, "<invalid float>");
6326 else
6327 fprintf_filtered (file, "%-17.9g", flt1);
6328
6329 fprintf_filtered (file, " dbl: ");
6330 if (inv2)
6331 fprintf_filtered (file, "<invalid double>");
6332 else
6333 fprintf_filtered (file, "%-24.17g", doub);
6334 }
6335 }
6336
6337 static void
6338 mips_print_register (struct ui_file *file, struct frame_info *frame,
6339 int regnum)
6340 {
6341 struct gdbarch *gdbarch = get_frame_arch (frame);
6342 struct value_print_options opts;
6343 struct value *val;
6344
6345 if (mips_float_register_p (gdbarch, regnum))
6346 {
6347 mips_print_fp_register (file, frame, regnum);
6348 return;
6349 }
6350
6351 val = get_frame_register_value (frame, regnum);
6352
6353 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6354
6355 /* The problem with printing numeric register names (r26, etc.) is that
6356 the user can't use them on input. Probably the best solution is to
6357 fix it so that either the numeric or the funky (a2, etc.) names
6358 are accepted on input. */
6359 if (regnum < MIPS_NUMREGS)
6360 fprintf_filtered (file, "(r%d): ", regnum);
6361 else
6362 fprintf_filtered (file, ": ");
6363
6364 get_formatted_print_options (&opts, 'x');
6365 val_print_scalar_formatted (value_type (val),
6366 value_embedded_offset (val),
6367 val,
6368 &opts, 0, file);
6369 }
6370
6371 /* Print IEEE exception condition bits in FLAGS. */
6372
6373 static void
6374 print_fpu_flags (struct ui_file *file, int flags)
6375 {
6376 if (flags & (1 << 0))
6377 fputs_filtered (" inexact", file);
6378 if (flags & (1 << 1))
6379 fputs_filtered (" uflow", file);
6380 if (flags & (1 << 2))
6381 fputs_filtered (" oflow", file);
6382 if (flags & (1 << 3))
6383 fputs_filtered (" div0", file);
6384 if (flags & (1 << 4))
6385 fputs_filtered (" inval", file);
6386 if (flags & (1 << 5))
6387 fputs_filtered (" unimp", file);
6388 fputc_filtered ('\n', file);
6389 }
6390
6391 /* Print interesting information about the floating point processor
6392 (if present) or emulator. */
6393
6394 static void
6395 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6396 struct frame_info *frame, const char *args)
6397 {
6398 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6399 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6400 ULONGEST fcs = 0;
6401 int i;
6402
6403 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6404 type = MIPS_FPU_NONE;
6405
6406 fprintf_filtered (file, "fpu type: %s\n",
6407 type == MIPS_FPU_DOUBLE ? "double-precision"
6408 : type == MIPS_FPU_SINGLE ? "single-precision"
6409 : "none / unused");
6410
6411 if (type == MIPS_FPU_NONE)
6412 return;
6413
6414 fprintf_filtered (file, "reg size: %d bits\n",
6415 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6416
6417 fputs_filtered ("cond :", file);
6418 if (fcs & (1 << 23))
6419 fputs_filtered (" 0", file);
6420 for (i = 1; i <= 7; i++)
6421 if (fcs & (1 << (24 + i)))
6422 fprintf_filtered (file, " %d", i);
6423 fputc_filtered ('\n', file);
6424
6425 fputs_filtered ("cause :", file);
6426 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6427 fputs ("mask :", stdout);
6428 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6429 fputs ("flags :", stdout);
6430 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6431
6432 fputs_filtered ("rounding: ", file);
6433 switch (fcs & 3)
6434 {
6435 case 0: fputs_filtered ("nearest\n", file); break;
6436 case 1: fputs_filtered ("zero\n", file); break;
6437 case 2: fputs_filtered ("+inf\n", file); break;
6438 case 3: fputs_filtered ("-inf\n", file); break;
6439 }
6440
6441 fputs_filtered ("flush :", file);
6442 if (fcs & (1 << 21))
6443 fputs_filtered (" nearest", file);
6444 if (fcs & (1 << 22))
6445 fputs_filtered (" override", file);
6446 if (fcs & (1 << 24))
6447 fputs_filtered (" zero", file);
6448 if ((fcs & (0xb << 21)) == 0)
6449 fputs_filtered (" no", file);
6450 fputc_filtered ('\n', file);
6451
6452 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6453 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6454 fputc_filtered ('\n', file);
6455
6456 default_print_float_info (gdbarch, file, frame, args);
6457 }
6458
6459 /* Replacement for generic do_registers_info.
6460 Print regs in pretty columns. */
6461
6462 static int
6463 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6464 int regnum)
6465 {
6466 fprintf_filtered (file, " ");
6467 mips_print_fp_register (file, frame, regnum);
6468 fprintf_filtered (file, "\n");
6469 return regnum + 1;
6470 }
6471
6472
6473 /* Print a row's worth of GP (int) registers, with name labels above. */
6474
6475 static int
6476 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6477 int start_regnum)
6478 {
6479 struct gdbarch *gdbarch = get_frame_arch (frame);
6480 /* Do values for GP (int) regs. */
6481 const gdb_byte *raw_buffer;
6482 struct value *value;
6483 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6484 per row. */
6485 int col, byte;
6486 int regnum;
6487
6488 /* For GP registers, we print a separate row of names above the vals. */
6489 for (col = 0, regnum = start_regnum;
6490 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6491 + gdbarch_num_pseudo_regs (gdbarch);
6492 regnum++)
6493 {
6494 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6495 continue; /* unused register */
6496 if (mips_float_register_p (gdbarch, regnum))
6497 break; /* End the row: reached FP register. */
6498 /* Large registers are handled separately. */
6499 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6500 {
6501 if (col > 0)
6502 break; /* End the row before this register. */
6503
6504 /* Print this register on a row by itself. */
6505 mips_print_register (file, frame, regnum);
6506 fprintf_filtered (file, "\n");
6507 return regnum + 1;
6508 }
6509 if (col == 0)
6510 fprintf_filtered (file, " ");
6511 fprintf_filtered (file,
6512 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6513 gdbarch_register_name (gdbarch, regnum));
6514 col++;
6515 }
6516
6517 if (col == 0)
6518 return regnum;
6519
6520 /* Print the R0 to R31 names. */
6521 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6522 fprintf_filtered (file, "\n R%-4d",
6523 start_regnum % gdbarch_num_regs (gdbarch));
6524 else
6525 fprintf_filtered (file, "\n ");
6526
6527 /* Now print the values in hex, 4 or 8 to the row. */
6528 for (col = 0, regnum = start_regnum;
6529 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6530 + gdbarch_num_pseudo_regs (gdbarch);
6531 regnum++)
6532 {
6533 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6534 continue; /* unused register */
6535 if (mips_float_register_p (gdbarch, regnum))
6536 break; /* End row: reached FP register. */
6537 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6538 break; /* End row: large register. */
6539
6540 /* OK: get the data in raw format. */
6541 value = get_frame_register_value (frame, regnum);
6542 if (value_optimized_out (value)
6543 || !value_entirely_available (value))
6544 {
6545 fprintf_filtered (file, "%*s ",
6546 (int) mips_abi_regsize (gdbarch) * 2,
6547 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6548 : "<unavailable>"));
6549 col++;
6550 continue;
6551 }
6552 raw_buffer = value_contents_all (value);
6553 /* pad small registers */
6554 for (byte = 0;
6555 byte < (mips_abi_regsize (gdbarch)
6556 - register_size (gdbarch, regnum)); byte++)
6557 fprintf_filtered (file, " ");
6558 /* Now print the register value in hex, endian order. */
6559 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6560 for (byte =
6561 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6562 byte < register_size (gdbarch, regnum); byte++)
6563 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6564 else
6565 for (byte = register_size (gdbarch, regnum) - 1;
6566 byte >= 0; byte--)
6567 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6568 fprintf_filtered (file, " ");
6569 col++;
6570 }
6571 if (col > 0) /* ie. if we actually printed anything... */
6572 fprintf_filtered (file, "\n");
6573
6574 return regnum;
6575 }
6576
6577 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6578
6579 static void
6580 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6581 struct frame_info *frame, int regnum, int all)
6582 {
6583 if (regnum != -1) /* Do one specified register. */
6584 {
6585 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6586 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6587 error (_("Not a valid register for the current processor type"));
6588
6589 mips_print_register (file, frame, regnum);
6590 fprintf_filtered (file, "\n");
6591 }
6592 else
6593 /* Do all (or most) registers. */
6594 {
6595 regnum = gdbarch_num_regs (gdbarch);
6596 while (regnum < gdbarch_num_regs (gdbarch)
6597 + gdbarch_num_pseudo_regs (gdbarch))
6598 {
6599 if (mips_float_register_p (gdbarch, regnum))
6600 {
6601 if (all) /* True for "INFO ALL-REGISTERS" command. */
6602 regnum = print_fp_register_row (file, frame, regnum);
6603 else
6604 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6605 }
6606 else
6607 regnum = print_gp_register_row (file, frame, regnum);
6608 }
6609 }
6610 }
6611
6612 static int
6613 mips_single_step_through_delay (struct gdbarch *gdbarch,
6614 struct frame_info *frame)
6615 {
6616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6617 CORE_ADDR pc = get_frame_pc (frame);
6618 struct address_space *aspace;
6619 enum mips_isa isa;
6620 ULONGEST insn;
6621 int status;
6622 int size;
6623
6624 if ((mips_pc_is_mips (pc)
6625 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6626 || (mips_pc_is_micromips (gdbarch, pc)
6627 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6628 || (mips_pc_is_mips16 (gdbarch, pc)
6629 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6630 return 0;
6631
6632 isa = mips_pc_isa (gdbarch, pc);
6633 /* _has_delay_slot above will have validated the read. */
6634 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6635 size = mips_insn_size (isa, insn);
6636 aspace = get_frame_address_space (frame);
6637 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6638 }
6639
6640 /* To skip prologues, I use this predicate. Returns either PC itself
6641 if the code at PC does not look like a function prologue; otherwise
6642 returns an address that (if we're lucky) follows the prologue. If
6643 LENIENT, then we must skip everything which is involved in setting
6644 up the frame (it's OK to skip more, just so long as we don't skip
6645 anything which might clobber the registers which are being saved.
6646 We must skip more in the case where part of the prologue is in the
6647 delay slot of a non-prologue instruction). */
6648
6649 static CORE_ADDR
6650 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6651 {
6652 CORE_ADDR limit_pc;
6653 CORE_ADDR func_addr;
6654
6655 /* See if we can determine the end of the prologue via the symbol table.
6656 If so, then return either PC, or the PC after the prologue, whichever
6657 is greater. */
6658 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6659 {
6660 CORE_ADDR post_prologue_pc
6661 = skip_prologue_using_sal (gdbarch, func_addr);
6662 if (post_prologue_pc != 0)
6663 return std::max (pc, post_prologue_pc);
6664 }
6665
6666 /* Can't determine prologue from the symbol table, need to examine
6667 instructions. */
6668
6669 /* Find an upper limit on the function prologue using the debug
6670 information. If the debug information could not be used to provide
6671 that bound, then use an arbitrary large number as the upper bound. */
6672 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6673 if (limit_pc == 0)
6674 limit_pc = pc + 100; /* Magic. */
6675
6676 if (mips_pc_is_mips16 (gdbarch, pc))
6677 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6678 else if (mips_pc_is_micromips (gdbarch, pc))
6679 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6680 else
6681 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6682 }
6683
6684 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6685 This is a helper function for mips_stack_frame_destroyed_p. */
6686
6687 static int
6688 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6689 {
6690 CORE_ADDR func_addr = 0, func_end = 0;
6691
6692 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6693 {
6694 /* The MIPS epilogue is max. 12 bytes long. */
6695 CORE_ADDR addr = func_end - 12;
6696
6697 if (addr < func_addr + 4)
6698 addr = func_addr + 4;
6699 if (pc < addr)
6700 return 0;
6701
6702 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6703 {
6704 unsigned long high_word;
6705 unsigned long inst;
6706
6707 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6708 high_word = (inst >> 16) & 0xffff;
6709
6710 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6711 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6712 && inst != 0x03e00008 /* jr $ra */
6713 && inst != 0x00000000) /* nop */
6714 return 0;
6715 }
6716
6717 return 1;
6718 }
6719
6720 return 0;
6721 }
6722
6723 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6724 This is a helper function for mips_stack_frame_destroyed_p. */
6725
6726 static int
6727 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6728 {
6729 CORE_ADDR func_addr = 0;
6730 CORE_ADDR func_end = 0;
6731 CORE_ADDR addr;
6732 ULONGEST insn;
6733 long offset;
6734 int dreg;
6735 int sreg;
6736 int loc;
6737
6738 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6739 return 0;
6740
6741 /* The microMIPS epilogue is max. 12 bytes long. */
6742 addr = func_end - 12;
6743
6744 if (addr < func_addr + 2)
6745 addr = func_addr + 2;
6746 if (pc < addr)
6747 return 0;
6748
6749 for (; pc < func_end; pc += loc)
6750 {
6751 loc = 0;
6752 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6753 loc += MIPS_INSN16_SIZE;
6754 switch (mips_insn_size (ISA_MICROMIPS, insn))
6755 {
6756 /* 32-bit instructions. */
6757 case 2 * MIPS_INSN16_SIZE:
6758 insn <<= 16;
6759 insn |= mips_fetch_instruction (gdbarch,
6760 ISA_MICROMIPS, pc + loc, NULL);
6761 loc += MIPS_INSN16_SIZE;
6762 switch (micromips_op (insn >> 16))
6763 {
6764 case 0xc: /* ADDIU: bits 001100 */
6765 case 0x17: /* DADDIU: bits 010111 */
6766 sreg = b0s5_reg (insn >> 16);
6767 dreg = b5s5_reg (insn >> 16);
6768 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6769 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6770 /* (D)ADDIU $sp, imm */
6771 && offset >= 0)
6772 break;
6773 return 0;
6774
6775 default:
6776 return 0;
6777 }
6778 break;
6779
6780 /* 16-bit instructions. */
6781 case MIPS_INSN16_SIZE:
6782 switch (micromips_op (insn))
6783 {
6784 case 0x3: /* MOVE: bits 000011 */
6785 sreg = b0s5_reg (insn);
6786 dreg = b5s5_reg (insn);
6787 if (sreg == 0 && dreg == 0)
6788 /* MOVE $zero, $zero aka NOP */
6789 break;
6790 return 0;
6791
6792 case 0x11: /* POOL16C: bits 010001 */
6793 if (b5s5_op (insn) == 0x18
6794 /* JRADDIUSP: bits 010011 11000 */
6795 || (b5s5_op (insn) == 0xd
6796 /* JRC: bits 010011 01101 */
6797 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6798 /* JRC $ra */
6799 break;
6800 return 0;
6801
6802 case 0x13: /* POOL16D: bits 010011 */
6803 offset = micromips_decode_imm9 (b1s9_imm (insn));
6804 if ((insn & 0x1) == 0x1
6805 /* ADDIUSP: bits 010011 1 */
6806 && offset > 0)
6807 break;
6808 return 0;
6809
6810 default:
6811 return 0;
6812 }
6813 }
6814 }
6815
6816 return 1;
6817 }
6818
6819 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6820 This is a helper function for mips_stack_frame_destroyed_p. */
6821
6822 static int
6823 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6824 {
6825 CORE_ADDR func_addr = 0, func_end = 0;
6826
6827 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6828 {
6829 /* The MIPS epilogue is max. 12 bytes long. */
6830 CORE_ADDR addr = func_end - 12;
6831
6832 if (addr < func_addr + 4)
6833 addr = func_addr + 4;
6834 if (pc < addr)
6835 return 0;
6836
6837 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6838 {
6839 unsigned short inst;
6840
6841 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6842
6843 if ((inst & 0xf800) == 0xf000) /* extend */
6844 continue;
6845
6846 if (inst != 0x6300 /* addiu $sp,offset */
6847 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6848 && inst != 0xe820 /* jr $ra */
6849 && inst != 0xe8a0 /* jrc $ra */
6850 && inst != 0x6500) /* nop */
6851 return 0;
6852 }
6853
6854 return 1;
6855 }
6856
6857 return 0;
6858 }
6859
6860 /* Implement the stack_frame_destroyed_p gdbarch method.
6861
6862 The epilogue is defined here as the area at the end of a function,
6863 after an instruction which destroys the function's stack frame. */
6864
6865 static int
6866 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6867 {
6868 if (mips_pc_is_mips16 (gdbarch, pc))
6869 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6870 else if (mips_pc_is_micromips (gdbarch, pc))
6871 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6872 else
6873 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6874 }
6875
6876 /* Root of all "set mips "/"show mips " commands. This will eventually be
6877 used for all MIPS-specific commands. */
6878
6879 static void
6880 show_mips_command (const char *args, int from_tty)
6881 {
6882 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6883 }
6884
6885 static void
6886 set_mips_command (const char *args, int from_tty)
6887 {
6888 printf_unfiltered
6889 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6890 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6891 }
6892
6893 /* Commands to show/set the MIPS FPU type. */
6894
6895 static void
6896 show_mipsfpu_command (const char *args, int from_tty)
6897 {
6898 const char *fpu;
6899
6900 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6901 {
6902 printf_unfiltered
6903 ("The MIPS floating-point coprocessor is unknown "
6904 "because the current architecture is not MIPS.\n");
6905 return;
6906 }
6907
6908 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6909 {
6910 case MIPS_FPU_SINGLE:
6911 fpu = "single-precision";
6912 break;
6913 case MIPS_FPU_DOUBLE:
6914 fpu = "double-precision";
6915 break;
6916 case MIPS_FPU_NONE:
6917 fpu = "absent (none)";
6918 break;
6919 default:
6920 internal_error (__FILE__, __LINE__, _("bad switch"));
6921 }
6922 if (mips_fpu_type_auto)
6923 printf_unfiltered ("The MIPS floating-point coprocessor "
6924 "is set automatically (currently %s)\n",
6925 fpu);
6926 else
6927 printf_unfiltered
6928 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6929 }
6930
6931
6932 static void
6933 set_mipsfpu_command (const char *args, int from_tty)
6934 {
6935 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6936 "\"single\",\"none\" or \"auto\".\n");
6937 show_mipsfpu_command (args, from_tty);
6938 }
6939
6940 static void
6941 set_mipsfpu_single_command (const char *args, int from_tty)
6942 {
6943 struct gdbarch_info info;
6944 gdbarch_info_init (&info);
6945 mips_fpu_type = MIPS_FPU_SINGLE;
6946 mips_fpu_type_auto = 0;
6947 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6948 instead of relying on globals. Doing that would let generic code
6949 handle the search for this specific architecture. */
6950 if (!gdbarch_update_p (info))
6951 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6952 }
6953
6954 static void
6955 set_mipsfpu_double_command (const char *args, int from_tty)
6956 {
6957 struct gdbarch_info info;
6958 gdbarch_info_init (&info);
6959 mips_fpu_type = MIPS_FPU_DOUBLE;
6960 mips_fpu_type_auto = 0;
6961 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6962 instead of relying on globals. Doing that would let generic code
6963 handle the search for this specific architecture. */
6964 if (!gdbarch_update_p (info))
6965 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6966 }
6967
6968 static void
6969 set_mipsfpu_none_command (const char *args, int from_tty)
6970 {
6971 struct gdbarch_info info;
6972 gdbarch_info_init (&info);
6973 mips_fpu_type = MIPS_FPU_NONE;
6974 mips_fpu_type_auto = 0;
6975 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6976 instead of relying on globals. Doing that would let generic code
6977 handle the search for this specific architecture. */
6978 if (!gdbarch_update_p (info))
6979 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6980 }
6981
6982 static void
6983 set_mipsfpu_auto_command (const char *args, int from_tty)
6984 {
6985 mips_fpu_type_auto = 1;
6986 }
6987
6988 /* Just like reinit_frame_cache, but with the right arguments to be
6989 callable as an sfunc. */
6990
6991 static void
6992 reinit_frame_cache_sfunc (char *args, int from_tty,
6993 struct cmd_list_element *c)
6994 {
6995 reinit_frame_cache ();
6996 }
6997
6998 static int
6999 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
7000 {
7001 gdb_disassembler *di
7002 = static_cast<gdb_disassembler *>(info->application_data);
7003 struct gdbarch *gdbarch = di->arch ();
7004
7005 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7006 disassembler needs to be able to locally determine the ISA, and
7007 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7008 work. */
7009 if (mips_pc_is_mips16 (gdbarch, memaddr))
7010 info->mach = bfd_mach_mips16;
7011 else if (mips_pc_is_micromips (gdbarch, memaddr))
7012 info->mach = bfd_mach_mips_micromips;
7013
7014 /* Round down the instruction address to the appropriate boundary. */
7015 memaddr &= (info->mach == bfd_mach_mips16
7016 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7017
7018 /* Set the disassembler options. */
7019 if (!info->disassembler_options)
7020 /* This string is not recognized explicitly by the disassembler,
7021 but it tells the disassembler to not try to guess the ABI from
7022 the bfd elf headers, such that, if the user overrides the ABI
7023 of a program linked as NewABI, the disassembly will follow the
7024 register naming conventions specified by the user. */
7025 info->disassembler_options = "gpr-names=32";
7026
7027 return default_print_insn (memaddr, info);
7028 }
7029
7030 static int
7031 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7032 {
7033 /* Set up the disassembler info, so that we get the right
7034 register names from libopcodes. */
7035 info->disassembler_options = "gpr-names=n32";
7036 info->flavour = bfd_target_elf_flavour;
7037
7038 return gdb_print_insn_mips (memaddr, info);
7039 }
7040
7041 static int
7042 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7043 {
7044 /* Set up the disassembler info, so that we get the right
7045 register names from libopcodes. */
7046 info->disassembler_options = "gpr-names=64";
7047 info->flavour = bfd_target_elf_flavour;
7048
7049 return gdb_print_insn_mips (memaddr, info);
7050 }
7051
7052 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7053
7054 static int
7055 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7056 {
7057 CORE_ADDR pc = *pcptr;
7058
7059 if (mips_pc_is_mips16 (gdbarch, pc))
7060 {
7061 *pcptr = unmake_compact_addr (pc);
7062 return MIPS_BP_KIND_MIPS16;
7063 }
7064 else if (mips_pc_is_micromips (gdbarch, pc))
7065 {
7066 ULONGEST insn;
7067 int status;
7068
7069 *pcptr = unmake_compact_addr (pc);
7070 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7071 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7072 return MIPS_BP_KIND_MICROMIPS16;
7073 else
7074 return MIPS_BP_KIND_MICROMIPS32;
7075 }
7076 else
7077 return MIPS_BP_KIND_MIPS32;
7078 }
7079
7080 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7081
7082 static const gdb_byte *
7083 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7084 {
7085 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7086
7087 switch (kind)
7088 {
7089 case MIPS_BP_KIND_MIPS16:
7090 {
7091 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7092 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7093
7094 *size = 2;
7095 if (byte_order_for_code == BFD_ENDIAN_BIG)
7096 return mips16_big_breakpoint;
7097 else
7098 return mips16_little_breakpoint;
7099 }
7100 case MIPS_BP_KIND_MICROMIPS16:
7101 {
7102 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7103 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7104
7105 *size = 2;
7106
7107 if (byte_order_for_code == BFD_ENDIAN_BIG)
7108 return micromips16_big_breakpoint;
7109 else
7110 return micromips16_little_breakpoint;
7111 }
7112 case MIPS_BP_KIND_MICROMIPS32:
7113 {
7114 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7115 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7116
7117 *size = 4;
7118 if (byte_order_for_code == BFD_ENDIAN_BIG)
7119 return micromips32_big_breakpoint;
7120 else
7121 return micromips32_little_breakpoint;
7122 }
7123 case MIPS_BP_KIND_MIPS32:
7124 {
7125 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7126 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7127
7128 *size = 4;
7129 if (byte_order_for_code == BFD_ENDIAN_BIG)
7130 return big_breakpoint;
7131 else
7132 return little_breakpoint;
7133 }
7134 default:
7135 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7136 };
7137 }
7138
7139 /* Return non-zero if the standard MIPS instruction INST has a branch
7140 delay slot (i.e. it is a jump or branch instruction). This function
7141 is based on mips32_next_pc. */
7142
7143 static int
7144 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7145 {
7146 int op;
7147 int rs;
7148 int rt;
7149
7150 op = itype_op (inst);
7151 if ((inst & 0xe0000000) != 0)
7152 {
7153 rs = itype_rs (inst);
7154 rt = itype_rt (inst);
7155 return (is_octeon_bbit_op (op, gdbarch)
7156 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7157 || op == 29 /* JALX: bits 011101 */
7158 || (op == 17
7159 && (rs == 8
7160 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7161 || (rs == 9 && (rt & 0x2) == 0)
7162 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7163 || (rs == 10 && (rt & 0x2) == 0))));
7164 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7165 }
7166 else
7167 switch (op & 0x07) /* extract bits 28,27,26 */
7168 {
7169 case 0: /* SPECIAL */
7170 op = rtype_funct (inst);
7171 return (op == 8 /* JR */
7172 || op == 9); /* JALR */
7173 break; /* end SPECIAL */
7174 case 1: /* REGIMM */
7175 rs = itype_rs (inst);
7176 rt = itype_rt (inst); /* branch condition */
7177 return ((rt & 0xc) == 0
7178 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7179 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7180 || ((rt & 0x1e) == 0x1c && rs == 0));
7181 /* BPOSGE32, BPOSGE64: bits 1110x */
7182 break; /* end REGIMM */
7183 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7184 return 1;
7185 break;
7186 }
7187 }
7188
7189 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7190 delay slot (i.e. it is a jump or branch instruction). */
7191
7192 static int
7193 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7194 {
7195 ULONGEST insn;
7196 int status;
7197
7198 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7199 if (status)
7200 return 0;
7201
7202 return mips32_instruction_has_delay_slot (gdbarch, insn);
7203 }
7204
7205 /* Return non-zero if the microMIPS instruction INSN, comprising the
7206 16-bit major opcode word in the high 16 bits and any second word
7207 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7208 jump or branch instruction). The instruction must be 32-bit if
7209 MUSTBE32 is set or can be any instruction otherwise. */
7210
7211 static int
7212 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7213 {
7214 ULONGEST major = insn >> 16;
7215
7216 switch (micromips_op (major))
7217 {
7218 /* 16-bit instructions. */
7219 case 0x33: /* B16: bits 110011 */
7220 case 0x2b: /* BNEZ16: bits 101011 */
7221 case 0x23: /* BEQZ16: bits 100011 */
7222 return !mustbe32;
7223 case 0x11: /* POOL16C: bits 010001 */
7224 return (!mustbe32
7225 && ((b5s5_op (major) == 0xc
7226 /* JR16: bits 010001 01100 */
7227 || (b5s5_op (major) & 0x1e) == 0xe)));
7228 /* JALR16, JALRS16: bits 010001 0111x */
7229 /* 32-bit instructions. */
7230 case 0x3d: /* JAL: bits 111101 */
7231 case 0x3c: /* JALX: bits 111100 */
7232 case 0x35: /* J: bits 110101 */
7233 case 0x2d: /* BNE: bits 101101 */
7234 case 0x25: /* BEQ: bits 100101 */
7235 case 0x1d: /* JALS: bits 011101 */
7236 return 1;
7237 case 0x10: /* POOL32I: bits 010000 */
7238 return ((b5s5_op (major) & 0x1c) == 0x0
7239 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7240 || (b5s5_op (major) & 0x1d) == 0x4
7241 /* BLEZ, BGTZ: bits 010000 001x0 */
7242 || (b5s5_op (major) & 0x1d) == 0x11
7243 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7244 || ((b5s5_op (major) & 0x1e) == 0x14
7245 && (major & 0x3) == 0x0)
7246 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7247 || (b5s5_op (major) & 0x1e) == 0x1a
7248 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7249 || ((b5s5_op (major) & 0x1e) == 0x1c
7250 && (major & 0x3) == 0x0)
7251 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7252 || ((b5s5_op (major) & 0x1c) == 0x1c
7253 && (major & 0x3) == 0x1));
7254 /* BC1ANY*: bits 010000 111xx xxx01 */
7255 case 0x0: /* POOL32A: bits 000000 */
7256 return (b0s6_op (insn) == 0x3c
7257 /* POOL32Axf: bits 000000 ... 111100 */
7258 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7259 /* JALR, JALR.HB: 000000 000x111100 111100 */
7260 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7261 default:
7262 return 0;
7263 }
7264 }
7265
7266 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7267 slot (i.e. it is a non-compact jump instruction). The instruction
7268 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7269
7270 static int
7271 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7272 CORE_ADDR addr, int mustbe32)
7273 {
7274 ULONGEST insn;
7275 int status;
7276 int size;
7277
7278 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7279 if (status)
7280 return 0;
7281 size = mips_insn_size (ISA_MICROMIPS, insn);
7282 insn <<= 16;
7283 if (size == 2 * MIPS_INSN16_SIZE)
7284 {
7285 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7286 if (status)
7287 return 0;
7288 }
7289
7290 return micromips_instruction_has_delay_slot (insn, mustbe32);
7291 }
7292
7293 /* Return non-zero if the MIPS16 instruction INST, which must be
7294 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7295 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7296 instruction). This function is based on mips16_next_pc. */
7297
7298 static int
7299 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7300 {
7301 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7302 return !mustbe32;
7303 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7304 }
7305
7306 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7307 slot (i.e. it is a non-compact jump instruction). The instruction
7308 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7309
7310 static int
7311 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7312 CORE_ADDR addr, int mustbe32)
7313 {
7314 unsigned short insn;
7315 int status;
7316
7317 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7318 if (status)
7319 return 0;
7320
7321 return mips16_instruction_has_delay_slot (insn, mustbe32);
7322 }
7323
7324 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7325 This assumes KSSEG exists. */
7326
7327 static CORE_ADDR
7328 mips_segment_boundary (CORE_ADDR bpaddr)
7329 {
7330 CORE_ADDR mask = CORE_ADDR_MAX;
7331 int segsize;
7332
7333 if (sizeof (CORE_ADDR) == 8)
7334 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7335 a compiler warning produced where CORE_ADDR is a 32-bit type even
7336 though in that case this is dead code). */
7337 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7338 {
7339 case 3:
7340 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7341 segsize = 29; /* 32-bit compatibility segment */
7342 else
7343 segsize = 62; /* xkseg */
7344 break;
7345 case 2: /* xkphys */
7346 segsize = 59;
7347 break;
7348 default: /* xksseg (1), xkuseg/kuseg (0) */
7349 segsize = 62;
7350 break;
7351 }
7352 else if (bpaddr & 0x80000000) /* kernel segment */
7353 segsize = 29;
7354 else
7355 segsize = 31; /* user segment */
7356 mask <<= segsize;
7357 return bpaddr & mask;
7358 }
7359
7360 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7361 it backwards if necessary. Return the address of the new location. */
7362
7363 static CORE_ADDR
7364 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7365 {
7366 CORE_ADDR prev_addr;
7367 CORE_ADDR boundary;
7368 CORE_ADDR func_addr;
7369
7370 /* If a breakpoint is set on the instruction in a branch delay slot,
7371 GDB gets confused. When the breakpoint is hit, the PC isn't on
7372 the instruction in the branch delay slot, the PC will point to
7373 the branch instruction. Since the PC doesn't match any known
7374 breakpoints, GDB reports a trap exception.
7375
7376 There are two possible fixes for this problem.
7377
7378 1) When the breakpoint gets hit, see if the BD bit is set in the
7379 Cause register (which indicates the last exception occurred in a
7380 branch delay slot). If the BD bit is set, fix the PC to point to
7381 the instruction in the branch delay slot.
7382
7383 2) When the user sets the breakpoint, don't allow him to set the
7384 breakpoint on the instruction in the branch delay slot. Instead
7385 move the breakpoint to the branch instruction (which will have
7386 the same result).
7387
7388 The problem with the first solution is that if the user then
7389 single-steps the processor, the branch instruction will get
7390 skipped (since GDB thinks the PC is on the instruction in the
7391 branch delay slot).
7392
7393 So, we'll use the second solution. To do this we need to know if
7394 the instruction we're trying to set the breakpoint on is in the
7395 branch delay slot. */
7396
7397 boundary = mips_segment_boundary (bpaddr);
7398
7399 /* Make sure we don't scan back before the beginning of the current
7400 function, since we may fetch constant data or insns that look like
7401 a jump. Of course we might do that anyway if the compiler has
7402 moved constants inline. :-( */
7403 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7404 && func_addr > boundary && func_addr <= bpaddr)
7405 boundary = func_addr;
7406
7407 if (mips_pc_is_mips (bpaddr))
7408 {
7409 if (bpaddr == boundary)
7410 return bpaddr;
7411
7412 /* If the previous instruction has a branch delay slot, we have
7413 to move the breakpoint to the branch instruction. */
7414 prev_addr = bpaddr - 4;
7415 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7416 bpaddr = prev_addr;
7417 }
7418 else
7419 {
7420 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7421 CORE_ADDR addr, jmpaddr;
7422 int i;
7423
7424 boundary = unmake_compact_addr (boundary);
7425
7426 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7427 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7428 so try for that first, then try the 2 byte JALR/JR.
7429 The microMIPS ASE has a whole range of jumps and branches
7430 with delay slots, some of which take 4 bytes and some take
7431 2 bytes, so the idea is the same.
7432 FIXME: We have to assume that bpaddr is not the second half
7433 of an extended instruction. */
7434 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7435 ? micromips_insn_at_pc_has_delay_slot
7436 : mips16_insn_at_pc_has_delay_slot);
7437
7438 jmpaddr = 0;
7439 addr = bpaddr;
7440 for (i = 1; i < 4; i++)
7441 {
7442 if (unmake_compact_addr (addr) == boundary)
7443 break;
7444 addr -= MIPS_INSN16_SIZE;
7445 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7446 /* Looks like a JR/JALR at [target-1], but it could be
7447 the second word of a previous JAL/JALX, so record it
7448 and check back one more. */
7449 jmpaddr = addr;
7450 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7451 {
7452 if (i == 2)
7453 /* Looks like a JAL/JALX at [target-2], but it could also
7454 be the second word of a previous JAL/JALX, record it,
7455 and check back one more. */
7456 jmpaddr = addr;
7457 else
7458 /* Looks like a JAL/JALX at [target-3], so any previously
7459 recorded JAL/JALX or JR/JALR must be wrong, because:
7460
7461 >-3: JAL
7462 -2: JAL-ext (can't be JAL/JALX)
7463 -1: bdslot (can't be JR/JALR)
7464 0: target insn
7465
7466 Of course it could be another JAL-ext which looks
7467 like a JAL, but in that case we'd have broken out
7468 of this loop at [target-2]:
7469
7470 -4: JAL
7471 >-3: JAL-ext
7472 -2: bdslot (can't be jmp)
7473 -1: JR/JALR
7474 0: target insn */
7475 jmpaddr = 0;
7476 }
7477 else
7478 {
7479 /* Not a jump instruction: if we're at [target-1] this
7480 could be the second word of a JAL/JALX, so continue;
7481 otherwise we're done. */
7482 if (i > 1)
7483 break;
7484 }
7485 }
7486
7487 if (jmpaddr)
7488 bpaddr = jmpaddr;
7489 }
7490
7491 return bpaddr;
7492 }
7493
7494 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7495 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7496
7497 static int
7498 mips_is_stub_suffix (const char *suffix, int zero)
7499 {
7500 switch (suffix[0])
7501 {
7502 case '0':
7503 return zero && suffix[1] == '\0';
7504 case '1':
7505 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7506 case '2':
7507 case '5':
7508 case '6':
7509 case '9':
7510 return suffix[1] == '\0';
7511 default:
7512 return 0;
7513 }
7514 }
7515
7516 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7517 call stubs, one of sf, df, sc, or dc. */
7518
7519 static int
7520 mips_is_stub_mode (const char *mode)
7521 {
7522 return ((mode[0] == 's' || mode[0] == 'd')
7523 && (mode[1] == 'f' || mode[1] == 'c'));
7524 }
7525
7526 /* Code at PC is a compiler-generated stub. Such a stub for a function
7527 bar might have a name like __fn_stub_bar, and might look like this:
7528
7529 mfc1 $4, $f13
7530 mfc1 $5, $f12
7531 mfc1 $6, $f15
7532 mfc1 $7, $f14
7533
7534 followed by (or interspersed with):
7535
7536 j bar
7537
7538 or:
7539
7540 lui $25, %hi(bar)
7541 addiu $25, $25, %lo(bar)
7542 jr $25
7543
7544 ($1 may be used in old code; for robustness we accept any register)
7545 or, in PIC code:
7546
7547 lui $28, %hi(_gp_disp)
7548 addiu $28, $28, %lo(_gp_disp)
7549 addu $28, $28, $25
7550 lw $25, %got(bar)
7551 addiu $25, $25, %lo(bar)
7552 jr $25
7553
7554 In the case of a __call_stub_bar stub, the sequence to set up
7555 arguments might look like this:
7556
7557 mtc1 $4, $f13
7558 mtc1 $5, $f12
7559 mtc1 $6, $f15
7560 mtc1 $7, $f14
7561
7562 followed by (or interspersed with) one of the jump sequences above.
7563
7564 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7565 of J or JR, respectively, followed by:
7566
7567 mfc1 $2, $f0
7568 mfc1 $3, $f1
7569 jr $18
7570
7571 We are at the beginning of the stub here, and scan down and extract
7572 the target address from the jump immediate instruction or, if a jump
7573 register instruction is used, from the register referred. Return
7574 the value of PC calculated or 0 if inconclusive.
7575
7576 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7577
7578 static CORE_ADDR
7579 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7580 {
7581 struct gdbarch *gdbarch = get_frame_arch (frame);
7582 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7583 int addrreg = MIPS_ZERO_REGNUM;
7584 CORE_ADDR start_pc = pc;
7585 CORE_ADDR target_pc = 0;
7586 CORE_ADDR addr = 0;
7587 CORE_ADDR gp = 0;
7588 int status = 0;
7589 int i;
7590
7591 for (i = 0;
7592 status == 0 && target_pc == 0 && i < 20;
7593 i++, pc += MIPS_INSN32_SIZE)
7594 {
7595 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7596 CORE_ADDR imm;
7597 int rt;
7598 int rs;
7599 int rd;
7600
7601 switch (itype_op (inst))
7602 {
7603 case 0: /* SPECIAL */
7604 switch (rtype_funct (inst))
7605 {
7606 case 8: /* JR */
7607 case 9: /* JALR */
7608 rs = rtype_rs (inst);
7609 if (rs == MIPS_GP_REGNUM)
7610 target_pc = gp; /* Hmm... */
7611 else if (rs == addrreg)
7612 target_pc = addr;
7613 break;
7614
7615 case 0x21: /* ADDU */
7616 rt = rtype_rt (inst);
7617 rs = rtype_rs (inst);
7618 rd = rtype_rd (inst);
7619 if (rd == MIPS_GP_REGNUM
7620 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7621 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7622 gp += start_pc;
7623 break;
7624 }
7625 break;
7626
7627 case 2: /* J */
7628 case 3: /* JAL */
7629 target_pc = jtype_target (inst) << 2;
7630 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7631 break;
7632
7633 case 9: /* ADDIU */
7634 rt = itype_rt (inst);
7635 rs = itype_rs (inst);
7636 if (rt == rs)
7637 {
7638 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7639 if (rt == MIPS_GP_REGNUM)
7640 gp += imm;
7641 else if (rt == addrreg)
7642 addr += imm;
7643 }
7644 break;
7645
7646 case 0xf: /* LUI */
7647 rt = itype_rt (inst);
7648 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7649 if (rt == MIPS_GP_REGNUM)
7650 gp = imm;
7651 else if (rt != MIPS_ZERO_REGNUM)
7652 {
7653 addrreg = rt;
7654 addr = imm;
7655 }
7656 break;
7657
7658 case 0x23: /* LW */
7659 rt = itype_rt (inst);
7660 rs = itype_rs (inst);
7661 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7662 if (gp != 0 && rs == MIPS_GP_REGNUM)
7663 {
7664 gdb_byte buf[4];
7665
7666 memset (buf, 0, sizeof (buf));
7667 status = target_read_memory (gp + imm, buf, sizeof (buf));
7668 addrreg = rt;
7669 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7670 }
7671 break;
7672 }
7673 }
7674
7675 return target_pc;
7676 }
7677
7678 /* If PC is in a MIPS16 call or return stub, return the address of the
7679 target PC, which is either the callee or the caller. There are several
7680 cases which must be handled:
7681
7682 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7683 and the target PC is in $31 ($ra).
7684 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7685 and the target PC is in $2.
7686 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7687 i.e. before the JALR instruction, this is effectively a call stub
7688 and the target PC is in $2. Otherwise this is effectively
7689 a return stub and the target PC is in $18.
7690 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7691 JAL or JALR instruction, this is effectively a call stub and the
7692 target PC is buried in the instruction stream. Otherwise this
7693 is effectively a return stub and the target PC is in $18.
7694 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7695 stub and the target PC is buried in the instruction stream.
7696
7697 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7698 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7699 gory details. */
7700
7701 static CORE_ADDR
7702 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7703 {
7704 struct gdbarch *gdbarch = get_frame_arch (frame);
7705 CORE_ADDR start_addr;
7706 const char *name;
7707 size_t prefixlen;
7708
7709 /* Find the starting address and name of the function containing the PC. */
7710 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7711 return 0;
7712
7713 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7714 and the target PC is in $31 ($ra). */
7715 prefixlen = strlen (mips_str_mips16_ret_stub);
7716 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7717 && mips_is_stub_mode (name + prefixlen)
7718 && name[prefixlen + 2] == '\0')
7719 return get_frame_register_signed
7720 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7721
7722 /* If the PC is in __mips16_call_stub_*, this is one of the call
7723 call/return stubs. */
7724 prefixlen = strlen (mips_str_mips16_call_stub);
7725 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7726 {
7727 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7728 and the target PC is in $2. */
7729 if (mips_is_stub_suffix (name + prefixlen, 0))
7730 return get_frame_register_signed
7731 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7732
7733 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7734 i.e. before the JALR instruction, this is effectively a call stub
7735 and the target PC is in $2. Otherwise this is effectively
7736 a return stub and the target PC is in $18. */
7737 else if (mips_is_stub_mode (name + prefixlen)
7738 && name[prefixlen + 2] == '_'
7739 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7740 {
7741 if (pc == start_addr)
7742 /* This is the 'call' part of a call stub. The return
7743 address is in $2. */
7744 return get_frame_register_signed
7745 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7746 else
7747 /* This is the 'return' part of a call stub. The return
7748 address is in $18. */
7749 return get_frame_register_signed
7750 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7751 }
7752 else
7753 return 0; /* Not a stub. */
7754 }
7755
7756 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7757 compiler-generated call or call/return stubs. */
7758 if (startswith (name, mips_str_fn_stub)
7759 || startswith (name, mips_str_call_stub))
7760 {
7761 if (pc == start_addr)
7762 /* This is the 'call' part of a call stub. Call this helper
7763 to scan through this code for interesting instructions
7764 and determine the final PC. */
7765 return mips_get_mips16_fn_stub_pc (frame, pc);
7766 else
7767 /* This is the 'return' part of a call stub. The return address
7768 is in $18. */
7769 return get_frame_register_signed
7770 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7771 }
7772
7773 return 0; /* Not a stub. */
7774 }
7775
7776 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7777 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7778
7779 static int
7780 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7781 {
7782 CORE_ADDR start_addr;
7783 size_t prefixlen;
7784
7785 /* Find the starting address of the function containing the PC. */
7786 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7787 return 0;
7788
7789 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7790 the start, i.e. after the JALR instruction, this is effectively
7791 a return stub. */
7792 prefixlen = strlen (mips_str_mips16_call_stub);
7793 if (pc != start_addr
7794 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7795 && mips_is_stub_mode (name + prefixlen)
7796 && name[prefixlen + 2] == '_'
7797 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7798 return 1;
7799
7800 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7801 the JAL or JALR instruction, this is effectively a return stub. */
7802 prefixlen = strlen (mips_str_call_fp_stub);
7803 if (pc != start_addr
7804 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7805 return 1;
7806
7807 /* Consume the .pic. prefix of any PIC stub, this function must return
7808 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7809 or the call stub path will trigger in handle_inferior_event causing
7810 it to go astray. */
7811 prefixlen = strlen (mips_str_pic);
7812 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7813 name += prefixlen;
7814
7815 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7816 prefixlen = strlen (mips_str_mips16_ret_stub);
7817 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7818 && mips_is_stub_mode (name + prefixlen)
7819 && name[prefixlen + 2] == '\0')
7820 return 1;
7821
7822 return 0; /* Not a stub. */
7823 }
7824
7825 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7826 PC of the stub target. The stub just loads $t9 and jumps to it,
7827 so that $t9 has the correct value at function entry. */
7828
7829 static CORE_ADDR
7830 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7831 {
7832 struct gdbarch *gdbarch = get_frame_arch (frame);
7833 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7834 struct bound_minimal_symbol msym;
7835 int i;
7836 gdb_byte stub_code[16];
7837 int32_t stub_words[4];
7838
7839 /* The stub for foo is named ".pic.foo", and is either two
7840 instructions inserted before foo or a three instruction sequence
7841 which jumps to foo. */
7842 msym = lookup_minimal_symbol_by_pc (pc);
7843 if (msym.minsym == NULL
7844 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7845 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7846 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7847 return 0;
7848
7849 /* A two-instruction header. */
7850 if (MSYMBOL_SIZE (msym.minsym) == 8)
7851 return pc + 8;
7852
7853 /* A three-instruction (plus delay slot) trampoline. */
7854 if (MSYMBOL_SIZE (msym.minsym) == 16)
7855 {
7856 if (target_read_memory (pc, stub_code, 16) != 0)
7857 return 0;
7858 for (i = 0; i < 4; i++)
7859 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7860 4, byte_order);
7861
7862 /* A stub contains these instructions:
7863 lui t9, %hi(target)
7864 j target
7865 addiu t9, t9, %lo(target)
7866 nop
7867
7868 This works even for N64, since stubs are only generated with
7869 -msym32. */
7870 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7871 && (stub_words[1] & 0xfc000000U) == 0x08000000
7872 && (stub_words[2] & 0xffff0000U) == 0x27390000
7873 && stub_words[3] == 0x00000000)
7874 return ((((stub_words[0] & 0x0000ffff) << 16)
7875 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7876 }
7877
7878 /* Not a recognized stub. */
7879 return 0;
7880 }
7881
7882 static CORE_ADDR
7883 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7884 {
7885 CORE_ADDR requested_pc = pc;
7886 CORE_ADDR target_pc;
7887 CORE_ADDR new_pc;
7888
7889 do
7890 {
7891 target_pc = pc;
7892
7893 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7894 if (new_pc)
7895 pc = new_pc;
7896
7897 new_pc = find_solib_trampoline_target (frame, pc);
7898 if (new_pc)
7899 pc = new_pc;
7900
7901 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7902 if (new_pc)
7903 pc = new_pc;
7904 }
7905 while (pc != target_pc);
7906
7907 return pc != requested_pc ? pc : 0;
7908 }
7909
7910 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7911 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7912
7913 static int
7914 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7915 {
7916 int regnum;
7917 if (num >= 0 && num < 32)
7918 regnum = num;
7919 else if (num >= 38 && num < 70)
7920 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7921 else if (num == 70)
7922 regnum = mips_regnum (gdbarch)->hi;
7923 else if (num == 71)
7924 regnum = mips_regnum (gdbarch)->lo;
7925 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7926 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7927 else
7928 return -1;
7929 return gdbarch_num_regs (gdbarch) + regnum;
7930 }
7931
7932
7933 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7934 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7935
7936 static int
7937 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7938 {
7939 int regnum;
7940 if (num >= 0 && num < 32)
7941 regnum = num;
7942 else if (num >= 32 && num < 64)
7943 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7944 else if (num == 64)
7945 regnum = mips_regnum (gdbarch)->hi;
7946 else if (num == 65)
7947 regnum = mips_regnum (gdbarch)->lo;
7948 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7949 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7950 else
7951 return -1;
7952 return gdbarch_num_regs (gdbarch) + regnum;
7953 }
7954
7955 static int
7956 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7957 {
7958 /* Only makes sense to supply raw registers. */
7959 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7960 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7961 decide if it is valid. Should instead define a standard sim/gdb
7962 register numbering scheme. */
7963 if (gdbarch_register_name (gdbarch,
7964 gdbarch_num_regs (gdbarch) + regnum) != NULL
7965 && gdbarch_register_name (gdbarch,
7966 gdbarch_num_regs (gdbarch)
7967 + regnum)[0] != '\0')
7968 return regnum;
7969 else
7970 return LEGACY_SIM_REGNO_IGNORE;
7971 }
7972
7973
7974 /* Convert an integer into an address. Extracting the value signed
7975 guarantees a correctly sign extended address. */
7976
7977 static CORE_ADDR
7978 mips_integer_to_address (struct gdbarch *gdbarch,
7979 struct type *type, const gdb_byte *buf)
7980 {
7981 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7982 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7983 }
7984
7985 /* Dummy virtual frame pointer method. This is no more or less accurate
7986 than most other architectures; we just need to be explicit about it,
7987 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7988 an assertion failure. */
7989
7990 static void
7991 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7992 CORE_ADDR pc, int *reg, LONGEST *offset)
7993 {
7994 *reg = MIPS_SP_REGNUM;
7995 *offset = 0;
7996 }
7997
7998 static void
7999 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
8000 {
8001 enum mips_abi *abip = (enum mips_abi *) obj;
8002 const char *name = bfd_get_section_name (abfd, sect);
8003
8004 if (*abip != MIPS_ABI_UNKNOWN)
8005 return;
8006
8007 if (!startswith (name, ".mdebug."))
8008 return;
8009
8010 if (strcmp (name, ".mdebug.abi32") == 0)
8011 *abip = MIPS_ABI_O32;
8012 else if (strcmp (name, ".mdebug.abiN32") == 0)
8013 *abip = MIPS_ABI_N32;
8014 else if (strcmp (name, ".mdebug.abi64") == 0)
8015 *abip = MIPS_ABI_N64;
8016 else if (strcmp (name, ".mdebug.abiO64") == 0)
8017 *abip = MIPS_ABI_O64;
8018 else if (strcmp (name, ".mdebug.eabi32") == 0)
8019 *abip = MIPS_ABI_EABI32;
8020 else if (strcmp (name, ".mdebug.eabi64") == 0)
8021 *abip = MIPS_ABI_EABI64;
8022 else
8023 warning (_("unsupported ABI %s."), name + 8);
8024 }
8025
8026 static void
8027 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8028 {
8029 int *lbp = (int *) obj;
8030 const char *name = bfd_get_section_name (abfd, sect);
8031
8032 if (startswith (name, ".gcc_compiled_long32"))
8033 *lbp = 32;
8034 else if (startswith (name, ".gcc_compiled_long64"))
8035 *lbp = 64;
8036 else if (startswith (name, ".gcc_compiled_long"))
8037 warning (_("unrecognized .gcc_compiled_longXX"));
8038 }
8039
8040 static enum mips_abi
8041 global_mips_abi (void)
8042 {
8043 int i;
8044
8045 for (i = 0; mips_abi_strings[i] != NULL; i++)
8046 if (mips_abi_strings[i] == mips_abi_string)
8047 return (enum mips_abi) i;
8048
8049 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8050 }
8051
8052 /* Return the default compressed instruction set, either of MIPS16
8053 or microMIPS, selected when none could have been determined from
8054 the ELF header of the binary being executed (or no binary has been
8055 selected. */
8056
8057 static enum mips_isa
8058 global_mips_compression (void)
8059 {
8060 int i;
8061
8062 for (i = 0; mips_compression_strings[i] != NULL; i++)
8063 if (mips_compression_strings[i] == mips_compression_string)
8064 return (enum mips_isa) i;
8065
8066 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8067 }
8068
8069 static void
8070 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8071 {
8072 /* If the size matches the set of 32-bit or 64-bit integer registers,
8073 assume that's what we've got. */
8074 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8075 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8076
8077 /* If the size matches the full set of registers GDB traditionally
8078 knows about, including floating point, for either 32-bit or
8079 64-bit, assume that's what we've got. */
8080 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8081 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8082
8083 /* Otherwise we don't have a useful guess. */
8084 }
8085
8086 static struct value *
8087 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8088 {
8089 const int *reg_p = (const int *) baton;
8090 return value_of_register (*reg_p, frame);
8091 }
8092
8093 static struct gdbarch *
8094 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8095 {
8096 struct gdbarch *gdbarch;
8097 struct gdbarch_tdep *tdep;
8098 int elf_flags;
8099 enum mips_abi mips_abi, found_abi, wanted_abi;
8100 int i, num_regs;
8101 enum mips_fpu_type fpu_type;
8102 struct tdesc_arch_data *tdesc_data = NULL;
8103 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8104 const char **reg_names;
8105 struct mips_regnum mips_regnum, *regnum;
8106 enum mips_isa mips_isa;
8107 int dspacc;
8108 int dspctl;
8109
8110 /* Fill in the OS dependent register numbers and names. */
8111 if (info.osabi == GDB_OSABI_LINUX)
8112 {
8113 mips_regnum.fp0 = 38;
8114 mips_regnum.pc = 37;
8115 mips_regnum.cause = 36;
8116 mips_regnum.badvaddr = 35;
8117 mips_regnum.hi = 34;
8118 mips_regnum.lo = 33;
8119 mips_regnum.fp_control_status = 70;
8120 mips_regnum.fp_implementation_revision = 71;
8121 mips_regnum.dspacc = -1;
8122 mips_regnum.dspctl = -1;
8123 dspacc = 72;
8124 dspctl = 78;
8125 num_regs = 90;
8126 reg_names = mips_linux_reg_names;
8127 }
8128 else
8129 {
8130 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8131 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8132 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8133 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8134 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8135 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8136 mips_regnum.fp_control_status = 70;
8137 mips_regnum.fp_implementation_revision = 71;
8138 mips_regnum.dspacc = dspacc = -1;
8139 mips_regnum.dspctl = dspctl = -1;
8140 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8141 if (info.bfd_arch_info != NULL
8142 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8143 reg_names = mips_tx39_reg_names;
8144 else
8145 reg_names = mips_generic_reg_names;
8146 }
8147
8148 /* Check any target description for validity. */
8149 if (tdesc_has_registers (info.target_desc))
8150 {
8151 static const char *const mips_gprs[] = {
8152 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8153 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8154 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8155 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8156 };
8157 static const char *const mips_fprs[] = {
8158 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8159 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8160 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8161 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8162 };
8163
8164 const struct tdesc_feature *feature;
8165 int valid_p;
8166
8167 feature = tdesc_find_feature (info.target_desc,
8168 "org.gnu.gdb.mips.cpu");
8169 if (feature == NULL)
8170 return NULL;
8171
8172 tdesc_data = tdesc_data_alloc ();
8173
8174 valid_p = 1;
8175 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8176 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8177 mips_gprs[i]);
8178
8179
8180 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8181 mips_regnum.lo, "lo");
8182 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8183 mips_regnum.hi, "hi");
8184 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8185 mips_regnum.pc, "pc");
8186
8187 if (!valid_p)
8188 {
8189 tdesc_data_cleanup (tdesc_data);
8190 return NULL;
8191 }
8192
8193 feature = tdesc_find_feature (info.target_desc,
8194 "org.gnu.gdb.mips.cp0");
8195 if (feature == NULL)
8196 {
8197 tdesc_data_cleanup (tdesc_data);
8198 return NULL;
8199 }
8200
8201 valid_p = 1;
8202 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8203 mips_regnum.badvaddr, "badvaddr");
8204 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8205 MIPS_PS_REGNUM, "status");
8206 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8207 mips_regnum.cause, "cause");
8208
8209 if (!valid_p)
8210 {
8211 tdesc_data_cleanup (tdesc_data);
8212 return NULL;
8213 }
8214
8215 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8216 backend is not prepared for that, though. */
8217 feature = tdesc_find_feature (info.target_desc,
8218 "org.gnu.gdb.mips.fpu");
8219 if (feature == NULL)
8220 {
8221 tdesc_data_cleanup (tdesc_data);
8222 return NULL;
8223 }
8224
8225 valid_p = 1;
8226 for (i = 0; i < 32; i++)
8227 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8228 i + mips_regnum.fp0, mips_fprs[i]);
8229
8230 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8231 mips_regnum.fp_control_status,
8232 "fcsr");
8233 valid_p
8234 &= tdesc_numbered_register (feature, tdesc_data,
8235 mips_regnum.fp_implementation_revision,
8236 "fir");
8237
8238 if (!valid_p)
8239 {
8240 tdesc_data_cleanup (tdesc_data);
8241 return NULL;
8242 }
8243
8244 num_regs = mips_regnum.fp_implementation_revision + 1;
8245
8246 if (dspacc >= 0)
8247 {
8248 feature = tdesc_find_feature (info.target_desc,
8249 "org.gnu.gdb.mips.dsp");
8250 /* The DSP registers are optional; it's OK if they are absent. */
8251 if (feature != NULL)
8252 {
8253 i = 0;
8254 valid_p = 1;
8255 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8256 dspacc + i++, "hi1");
8257 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8258 dspacc + i++, "lo1");
8259 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8260 dspacc + i++, "hi2");
8261 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8262 dspacc + i++, "lo2");
8263 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8264 dspacc + i++, "hi3");
8265 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8266 dspacc + i++, "lo3");
8267
8268 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8269 dspctl, "dspctl");
8270
8271 if (!valid_p)
8272 {
8273 tdesc_data_cleanup (tdesc_data);
8274 return NULL;
8275 }
8276
8277 mips_regnum.dspacc = dspacc;
8278 mips_regnum.dspctl = dspctl;
8279
8280 num_regs = mips_regnum.dspctl + 1;
8281 }
8282 }
8283
8284 /* It would be nice to detect an attempt to use a 64-bit ABI
8285 when only 32-bit registers are provided. */
8286 reg_names = NULL;
8287 }
8288
8289 /* First of all, extract the elf_flags, if available. */
8290 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8291 elf_flags = elf_elfheader (info.abfd)->e_flags;
8292 else if (arches != NULL)
8293 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8294 else
8295 elf_flags = 0;
8296 if (gdbarch_debug)
8297 fprintf_unfiltered (gdb_stdlog,
8298 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8299
8300 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8301 switch ((elf_flags & EF_MIPS_ABI))
8302 {
8303 case E_MIPS_ABI_O32:
8304 found_abi = MIPS_ABI_O32;
8305 break;
8306 case E_MIPS_ABI_O64:
8307 found_abi = MIPS_ABI_O64;
8308 break;
8309 case E_MIPS_ABI_EABI32:
8310 found_abi = MIPS_ABI_EABI32;
8311 break;
8312 case E_MIPS_ABI_EABI64:
8313 found_abi = MIPS_ABI_EABI64;
8314 break;
8315 default:
8316 if ((elf_flags & EF_MIPS_ABI2))
8317 found_abi = MIPS_ABI_N32;
8318 else
8319 found_abi = MIPS_ABI_UNKNOWN;
8320 break;
8321 }
8322
8323 /* GCC creates a pseudo-section whose name describes the ABI. */
8324 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8325 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8326
8327 /* If we have no useful BFD information, use the ABI from the last
8328 MIPS architecture (if there is one). */
8329 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8330 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8331
8332 /* Try the architecture for any hint of the correct ABI. */
8333 if (found_abi == MIPS_ABI_UNKNOWN
8334 && info.bfd_arch_info != NULL
8335 && info.bfd_arch_info->arch == bfd_arch_mips)
8336 {
8337 switch (info.bfd_arch_info->mach)
8338 {
8339 case bfd_mach_mips3900:
8340 found_abi = MIPS_ABI_EABI32;
8341 break;
8342 case bfd_mach_mips4100:
8343 case bfd_mach_mips5000:
8344 found_abi = MIPS_ABI_EABI64;
8345 break;
8346 case bfd_mach_mips8000:
8347 case bfd_mach_mips10000:
8348 /* On Irix, ELF64 executables use the N64 ABI. The
8349 pseudo-sections which describe the ABI aren't present
8350 on IRIX. (Even for executables created by gcc.) */
8351 if (info.abfd != NULL
8352 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8353 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8354 found_abi = MIPS_ABI_N64;
8355 else
8356 found_abi = MIPS_ABI_N32;
8357 break;
8358 }
8359 }
8360
8361 /* Default 64-bit objects to N64 instead of O32. */
8362 if (found_abi == MIPS_ABI_UNKNOWN
8363 && info.abfd != NULL
8364 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8365 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8366 found_abi = MIPS_ABI_N64;
8367
8368 if (gdbarch_debug)
8369 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8370 found_abi);
8371
8372 /* What has the user specified from the command line? */
8373 wanted_abi = global_mips_abi ();
8374 if (gdbarch_debug)
8375 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8376 wanted_abi);
8377
8378 /* Now that we have found what the ABI for this binary would be,
8379 check whether the user is overriding it. */
8380 if (wanted_abi != MIPS_ABI_UNKNOWN)
8381 mips_abi = wanted_abi;
8382 else if (found_abi != MIPS_ABI_UNKNOWN)
8383 mips_abi = found_abi;
8384 else
8385 mips_abi = MIPS_ABI_O32;
8386 if (gdbarch_debug)
8387 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8388 mips_abi);
8389
8390 /* Determine the default compressed ISA. */
8391 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8392 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8393 mips_isa = ISA_MICROMIPS;
8394 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8395 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8396 mips_isa = ISA_MIPS16;
8397 else
8398 mips_isa = global_mips_compression ();
8399 mips_compression_string = mips_compression_strings[mips_isa];
8400
8401 /* Also used when doing an architecture lookup. */
8402 if (gdbarch_debug)
8403 fprintf_unfiltered (gdb_stdlog,
8404 "mips_gdbarch_init: "
8405 "mips64_transfers_32bit_regs_p = %d\n",
8406 mips64_transfers_32bit_regs_p);
8407
8408 /* Determine the MIPS FPU type. */
8409 #ifdef HAVE_ELF
8410 if (info.abfd
8411 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8412 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8413 Tag_GNU_MIPS_ABI_FP);
8414 #endif /* HAVE_ELF */
8415
8416 if (!mips_fpu_type_auto)
8417 fpu_type = mips_fpu_type;
8418 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8419 {
8420 switch (elf_fpu_type)
8421 {
8422 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8423 fpu_type = MIPS_FPU_DOUBLE;
8424 break;
8425 case Val_GNU_MIPS_ABI_FP_SINGLE:
8426 fpu_type = MIPS_FPU_SINGLE;
8427 break;
8428 case Val_GNU_MIPS_ABI_FP_SOFT:
8429 default:
8430 /* Soft float or unknown. */
8431 fpu_type = MIPS_FPU_NONE;
8432 break;
8433 }
8434 }
8435 else if (info.bfd_arch_info != NULL
8436 && info.bfd_arch_info->arch == bfd_arch_mips)
8437 switch (info.bfd_arch_info->mach)
8438 {
8439 case bfd_mach_mips3900:
8440 case bfd_mach_mips4100:
8441 case bfd_mach_mips4111:
8442 case bfd_mach_mips4120:
8443 fpu_type = MIPS_FPU_NONE;
8444 break;
8445 case bfd_mach_mips4650:
8446 fpu_type = MIPS_FPU_SINGLE;
8447 break;
8448 default:
8449 fpu_type = MIPS_FPU_DOUBLE;
8450 break;
8451 }
8452 else if (arches != NULL)
8453 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8454 else
8455 fpu_type = MIPS_FPU_DOUBLE;
8456 if (gdbarch_debug)
8457 fprintf_unfiltered (gdb_stdlog,
8458 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8459
8460 /* Check for blatant incompatibilities. */
8461
8462 /* If we have only 32-bit registers, then we can't debug a 64-bit
8463 ABI. */
8464 if (info.target_desc
8465 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8466 && mips_abi != MIPS_ABI_EABI32
8467 && mips_abi != MIPS_ABI_O32)
8468 {
8469 if (tdesc_data != NULL)
8470 tdesc_data_cleanup (tdesc_data);
8471 return NULL;
8472 }
8473
8474 /* Try to find a pre-existing architecture. */
8475 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8476 arches != NULL;
8477 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8478 {
8479 /* MIPS needs to be pedantic about which ABI and the compressed
8480 ISA variation the object is using. */
8481 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8482 continue;
8483 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8484 continue;
8485 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8486 continue;
8487 /* Need to be pedantic about which register virtual size is
8488 used. */
8489 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8490 != mips64_transfers_32bit_regs_p)
8491 continue;
8492 /* Be pedantic about which FPU is selected. */
8493 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8494 continue;
8495
8496 if (tdesc_data != NULL)
8497 tdesc_data_cleanup (tdesc_data);
8498 return arches->gdbarch;
8499 }
8500
8501 /* Need a new architecture. Fill in a target specific vector. */
8502 tdep = XCNEW (struct gdbarch_tdep);
8503 gdbarch = gdbarch_alloc (&info, tdep);
8504 tdep->elf_flags = elf_flags;
8505 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8506 tdep->found_abi = found_abi;
8507 tdep->mips_abi = mips_abi;
8508 tdep->mips_isa = mips_isa;
8509 tdep->mips_fpu_type = fpu_type;
8510 tdep->register_size_valid_p = 0;
8511 tdep->register_size = 0;
8512
8513 if (info.target_desc)
8514 {
8515 /* Some useful properties can be inferred from the target. */
8516 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8517 {
8518 tdep->register_size_valid_p = 1;
8519 tdep->register_size = 4;
8520 }
8521 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8522 {
8523 tdep->register_size_valid_p = 1;
8524 tdep->register_size = 8;
8525 }
8526 }
8527
8528 /* Initially set everything according to the default ABI/ISA. */
8529 set_gdbarch_short_bit (gdbarch, 16);
8530 set_gdbarch_int_bit (gdbarch, 32);
8531 set_gdbarch_float_bit (gdbarch, 32);
8532 set_gdbarch_double_bit (gdbarch, 64);
8533 set_gdbarch_long_double_bit (gdbarch, 64);
8534 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8535 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8536 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8537
8538 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8539 mips_ax_pseudo_register_collect);
8540 set_gdbarch_ax_pseudo_register_push_stack
8541 (gdbarch, mips_ax_pseudo_register_push_stack);
8542
8543 set_gdbarch_elf_make_msymbol_special (gdbarch,
8544 mips_elf_make_msymbol_special);
8545 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8546 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8547 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8548
8549 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8550 *regnum = mips_regnum;
8551 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8552 set_gdbarch_num_regs (gdbarch, num_regs);
8553 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8554 set_gdbarch_register_name (gdbarch, mips_register_name);
8555 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8556 tdep->mips_processor_reg_names = reg_names;
8557 tdep->regnum = regnum;
8558
8559 switch (mips_abi)
8560 {
8561 case MIPS_ABI_O32:
8562 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8563 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8564 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8565 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8566 tdep->default_mask_address_p = 0;
8567 set_gdbarch_long_bit (gdbarch, 32);
8568 set_gdbarch_ptr_bit (gdbarch, 32);
8569 set_gdbarch_long_long_bit (gdbarch, 64);
8570 break;
8571 case MIPS_ABI_O64:
8572 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8573 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8574 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8575 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8576 tdep->default_mask_address_p = 0;
8577 set_gdbarch_long_bit (gdbarch, 32);
8578 set_gdbarch_ptr_bit (gdbarch, 32);
8579 set_gdbarch_long_long_bit (gdbarch, 64);
8580 break;
8581 case MIPS_ABI_EABI32:
8582 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8583 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8584 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8585 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8586 tdep->default_mask_address_p = 0;
8587 set_gdbarch_long_bit (gdbarch, 32);
8588 set_gdbarch_ptr_bit (gdbarch, 32);
8589 set_gdbarch_long_long_bit (gdbarch, 64);
8590 break;
8591 case MIPS_ABI_EABI64:
8592 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8593 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8594 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8595 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8596 tdep->default_mask_address_p = 0;
8597 set_gdbarch_long_bit (gdbarch, 64);
8598 set_gdbarch_ptr_bit (gdbarch, 64);
8599 set_gdbarch_long_long_bit (gdbarch, 64);
8600 break;
8601 case MIPS_ABI_N32:
8602 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8603 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8604 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8605 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8606 tdep->default_mask_address_p = 0;
8607 set_gdbarch_long_bit (gdbarch, 32);
8608 set_gdbarch_ptr_bit (gdbarch, 32);
8609 set_gdbarch_long_long_bit (gdbarch, 64);
8610 set_gdbarch_long_double_bit (gdbarch, 128);
8611 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8612 break;
8613 case MIPS_ABI_N64:
8614 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8615 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8616 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8617 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8618 tdep->default_mask_address_p = 0;
8619 set_gdbarch_long_bit (gdbarch, 64);
8620 set_gdbarch_ptr_bit (gdbarch, 64);
8621 set_gdbarch_long_long_bit (gdbarch, 64);
8622 set_gdbarch_long_double_bit (gdbarch, 128);
8623 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8624 break;
8625 default:
8626 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8627 }
8628
8629 /* GCC creates a pseudo-section whose name specifies the size of
8630 longs, since -mlong32 or -mlong64 may be used independent of
8631 other options. How those options affect pointer sizes is ABI and
8632 architecture dependent, so use them to override the default sizes
8633 set by the ABI. This table shows the relationship between ABI,
8634 -mlongXX, and size of pointers:
8635
8636 ABI -mlongXX ptr bits
8637 --- -------- --------
8638 o32 32 32
8639 o32 64 32
8640 n32 32 32
8641 n32 64 64
8642 o64 32 32
8643 o64 64 64
8644 n64 32 32
8645 n64 64 64
8646 eabi32 32 32
8647 eabi32 64 32
8648 eabi64 32 32
8649 eabi64 64 64
8650
8651 Note that for o32 and eabi32, pointers are always 32 bits
8652 regardless of any -mlongXX option. For all others, pointers and
8653 longs are the same, as set by -mlongXX or set by defaults. */
8654
8655 if (info.abfd != NULL)
8656 {
8657 int long_bit = 0;
8658
8659 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8660 if (long_bit)
8661 {
8662 set_gdbarch_long_bit (gdbarch, long_bit);
8663 switch (mips_abi)
8664 {
8665 case MIPS_ABI_O32:
8666 case MIPS_ABI_EABI32:
8667 break;
8668 case MIPS_ABI_N32:
8669 case MIPS_ABI_O64:
8670 case MIPS_ABI_N64:
8671 case MIPS_ABI_EABI64:
8672 set_gdbarch_ptr_bit (gdbarch, long_bit);
8673 break;
8674 default:
8675 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8676 }
8677 }
8678 }
8679
8680 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8681 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8682 comment:
8683
8684 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8685 flag in object files because to do so would make it impossible to
8686 link with libraries compiled without "-gp32". This is
8687 unnecessarily restrictive.
8688
8689 We could solve this problem by adding "-gp32" multilibs to gcc,
8690 but to set this flag before gcc is built with such multilibs will
8691 break too many systems.''
8692
8693 But even more unhelpfully, the default linker output target for
8694 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8695 for 64-bit programs - you need to change the ABI to change this,
8696 and not all gcc targets support that currently. Therefore using
8697 this flag to detect 32-bit mode would do the wrong thing given
8698 the current gcc - it would make GDB treat these 64-bit programs
8699 as 32-bit programs by default. */
8700
8701 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8702 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8703
8704 /* Add/remove bits from an address. The MIPS needs be careful to
8705 ensure that all 32 bit addresses are sign extended to 64 bits. */
8706 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8707
8708 /* Unwind the frame. */
8709 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8710 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8711 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8712
8713 /* Map debug register numbers onto internal register numbers. */
8714 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8715 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8716 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8717 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8718 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8719 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8720
8721 /* MIPS version of CALL_DUMMY. */
8722
8723 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8724 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8725 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8726
8727 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8728
8729 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8730 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8731 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8732
8733 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8734 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8735 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8736 set_gdbarch_adjust_breakpoint_address (gdbarch,
8737 mips_adjust_breakpoint_address);
8738
8739 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8740
8741 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8742
8743 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8744 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8745 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8746
8747 set_gdbarch_register_type (gdbarch, mips_register_type);
8748
8749 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8750
8751 if (mips_abi == MIPS_ABI_N32)
8752 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8753 else if (mips_abi == MIPS_ABI_N64)
8754 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8755 else
8756 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8757
8758 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8759 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8760 need to all be folded into the target vector. Since they are
8761 being used as guards for target_stopped_by_watchpoint, why not have
8762 target_stopped_by_watchpoint return the type of watchpoint that the code
8763 is sitting on? */
8764 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8765
8766 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8767
8768 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8769 to support MIPS16. This is a bad thing. Make sure not to do it
8770 if we have an OS ABI that actually supports shared libraries, since
8771 shared library support is more important. If we have an OS someday
8772 that supports both shared libraries and MIPS16, we'll have to find
8773 a better place for these.
8774 macro/2012-04-25: But that applies to return trampolines only and
8775 currently no MIPS OS ABI uses shared libraries that have them. */
8776 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8777
8778 set_gdbarch_single_step_through_delay (gdbarch,
8779 mips_single_step_through_delay);
8780
8781 /* Virtual tables. */
8782 set_gdbarch_vbit_in_delta (gdbarch, 1);
8783
8784 mips_register_g_packet_guesses (gdbarch);
8785
8786 /* Hook in OS ABI-specific overrides, if they have been registered. */
8787 info.tdesc_data = tdesc_data;
8788 gdbarch_init_osabi (info, gdbarch);
8789
8790 /* The hook may have adjusted num_regs, fetch the final value and
8791 set pc_regnum and sp_regnum now that it has been fixed. */
8792 num_regs = gdbarch_num_regs (gdbarch);
8793 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8794 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8795
8796 /* Unwind the frame. */
8797 dwarf2_append_unwinders (gdbarch);
8798 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8799 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8800 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8801 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8802 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8803 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8804 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8805 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8806 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8807
8808 if (tdesc_data)
8809 {
8810 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8811 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8812
8813 /* Override the normal target description methods to handle our
8814 dual real and pseudo registers. */
8815 set_gdbarch_register_name (gdbarch, mips_register_name);
8816 set_gdbarch_register_reggroup_p (gdbarch,
8817 mips_tdesc_register_reggroup_p);
8818
8819 num_regs = gdbarch_num_regs (gdbarch);
8820 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8821 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8822 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8823 }
8824
8825 /* Add ABI-specific aliases for the registers. */
8826 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8827 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8828 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8829 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8830 else
8831 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8832 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8833 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8834
8835 /* Add some other standard aliases. */
8836 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8837 user_reg_add (gdbarch, mips_register_aliases[i].name,
8838 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8839
8840 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8841 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8842 value_of_mips_user_reg,
8843 &mips_numeric_register_aliases[i].regnum);
8844
8845 return gdbarch;
8846 }
8847
8848 static void
8849 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8850 {
8851 struct gdbarch_info info;
8852
8853 /* Force the architecture to update, and (if it's a MIPS architecture)
8854 mips_gdbarch_init will take care of the rest. */
8855 gdbarch_info_init (&info);
8856 gdbarch_update_p (info);
8857 }
8858
8859 /* Print out which MIPS ABI is in use. */
8860
8861 static void
8862 show_mips_abi (struct ui_file *file,
8863 int from_tty,
8864 struct cmd_list_element *ignored_cmd,
8865 const char *ignored_value)
8866 {
8867 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8868 fprintf_filtered
8869 (file,
8870 "The MIPS ABI is unknown because the current architecture "
8871 "is not MIPS.\n");
8872 else
8873 {
8874 enum mips_abi global_abi = global_mips_abi ();
8875 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8876 const char *actual_abi_str = mips_abi_strings[actual_abi];
8877
8878 if (global_abi == MIPS_ABI_UNKNOWN)
8879 fprintf_filtered
8880 (file,
8881 "The MIPS ABI is set automatically (currently \"%s\").\n",
8882 actual_abi_str);
8883 else if (global_abi == actual_abi)
8884 fprintf_filtered
8885 (file,
8886 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8887 actual_abi_str);
8888 else
8889 {
8890 /* Probably shouldn't happen... */
8891 fprintf_filtered (file,
8892 "The (auto detected) MIPS ABI \"%s\" is in use "
8893 "even though the user setting was \"%s\".\n",
8894 actual_abi_str, mips_abi_strings[global_abi]);
8895 }
8896 }
8897 }
8898
8899 /* Print out which MIPS compressed ISA encoding is used. */
8900
8901 static void
8902 show_mips_compression (struct ui_file *file, int from_tty,
8903 struct cmd_list_element *c, const char *value)
8904 {
8905 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8906 value);
8907 }
8908
8909 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8910
8911 static const char *
8912 mips_fpu_type_str (enum mips_fpu_type fpu_type)
8913 {
8914 switch (fpu_type)
8915 {
8916 case MIPS_FPU_NONE:
8917 return "none";
8918 case MIPS_FPU_SINGLE:
8919 return "single";
8920 case MIPS_FPU_DOUBLE:
8921 return "double";
8922 default:
8923 return "???";
8924 }
8925 }
8926
8927 static void
8928 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8929 {
8930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8931 if (tdep != NULL)
8932 {
8933 int ef_mips_arch;
8934 int ef_mips_32bitmode;
8935 /* Determine the ISA. */
8936 switch (tdep->elf_flags & EF_MIPS_ARCH)
8937 {
8938 case E_MIPS_ARCH_1:
8939 ef_mips_arch = 1;
8940 break;
8941 case E_MIPS_ARCH_2:
8942 ef_mips_arch = 2;
8943 break;
8944 case E_MIPS_ARCH_3:
8945 ef_mips_arch = 3;
8946 break;
8947 case E_MIPS_ARCH_4:
8948 ef_mips_arch = 4;
8949 break;
8950 default:
8951 ef_mips_arch = 0;
8952 break;
8953 }
8954 /* Determine the size of a pointer. */
8955 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8956 fprintf_unfiltered (file,
8957 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8958 tdep->elf_flags);
8959 fprintf_unfiltered (file,
8960 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8961 ef_mips_32bitmode);
8962 fprintf_unfiltered (file,
8963 "mips_dump_tdep: ef_mips_arch = %d\n",
8964 ef_mips_arch);
8965 fprintf_unfiltered (file,
8966 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8967 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8968 fprintf_unfiltered (file,
8969 "mips_dump_tdep: "
8970 "mips_mask_address_p() %d (default %d)\n",
8971 mips_mask_address_p (tdep),
8972 tdep->default_mask_address_p);
8973 }
8974 fprintf_unfiltered (file,
8975 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8976 MIPS_DEFAULT_FPU_TYPE,
8977 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
8978 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8979 MIPS_EABI (gdbarch));
8980 fprintf_unfiltered (file,
8981 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8982 MIPS_FPU_TYPE (gdbarch),
8983 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
8984 }
8985
8986 void
8987 _initialize_mips_tdep (void)
8988 {
8989 static struct cmd_list_element *mipsfpulist = NULL;
8990 struct cmd_list_element *c;
8991
8992 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8993 if (MIPS_ABI_LAST + 1
8994 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8995 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8996
8997 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8998
8999 mips_pdr_data = register_objfile_data ();
9000
9001 /* Create feature sets with the appropriate properties. The values
9002 are not important. */
9003 mips_tdesc_gp32 = allocate_target_description ();
9004 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
9005
9006 mips_tdesc_gp64 = allocate_target_description ();
9007 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
9008
9009 /* Add root prefix command for all "set mips"/"show mips" commands. */
9010 add_prefix_cmd ("mips", no_class, set_mips_command,
9011 _("Various MIPS specific commands."),
9012 &setmipscmdlist, "set mips ", 0, &setlist);
9013
9014 add_prefix_cmd ("mips", no_class, show_mips_command,
9015 _("Various MIPS specific commands."),
9016 &showmipscmdlist, "show mips ", 0, &showlist);
9017
9018 /* Allow the user to override the ABI. */
9019 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9020 &mips_abi_string, _("\
9021 Set the MIPS ABI used by this program."), _("\
9022 Show the MIPS ABI used by this program."), _("\
9023 This option can be set to one of:\n\
9024 auto - the default ABI associated with the current binary\n\
9025 o32\n\
9026 o64\n\
9027 n32\n\
9028 n64\n\
9029 eabi32\n\
9030 eabi64"),
9031 mips_abi_update,
9032 show_mips_abi,
9033 &setmipscmdlist, &showmipscmdlist);
9034
9035 /* Allow the user to set the ISA to assume for compressed code if ELF
9036 file flags don't tell or there is no program file selected. This
9037 setting is updated whenever unambiguous ELF file flags are interpreted,
9038 and carried over to subsequent sessions. */
9039 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9040 &mips_compression_string, _("\
9041 Set the compressed ISA encoding used by MIPS code."), _("\
9042 Show the compressed ISA encoding used by MIPS code."), _("\
9043 Select the compressed ISA encoding used in functions that have no symbol\n\
9044 information available. The encoding can be set to either of:\n\
9045 mips16\n\
9046 micromips\n\
9047 and is updated automatically from ELF file flags if available."),
9048 mips_abi_update,
9049 show_mips_compression,
9050 &setmipscmdlist, &showmipscmdlist);
9051
9052 /* Let the user turn off floating point and set the fence post for
9053 heuristic_proc_start. */
9054
9055 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9056 _("Set use of MIPS floating-point coprocessor."),
9057 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9058 add_cmd ("single", class_support, set_mipsfpu_single_command,
9059 _("Select single-precision MIPS floating-point coprocessor."),
9060 &mipsfpulist);
9061 add_cmd ("double", class_support, set_mipsfpu_double_command,
9062 _("Select double-precision MIPS floating-point coprocessor."),
9063 &mipsfpulist);
9064 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9065 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9066 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9067 add_cmd ("none", class_support, set_mipsfpu_none_command,
9068 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9069 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9070 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9071 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9072 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9073 _("Select MIPS floating-point coprocessor automatically."),
9074 &mipsfpulist);
9075 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9076 _("Show current use of MIPS floating-point coprocessor target."),
9077 &showlist);
9078
9079 /* We really would like to have both "0" and "unlimited" work, but
9080 command.c doesn't deal with that. So make it a var_zinteger
9081 because the user can always use "999999" or some such for unlimited. */
9082 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9083 &heuristic_fence_post, _("\
9084 Set the distance searched for the start of a function."), _("\
9085 Show the distance searched for the start of a function."), _("\
9086 If you are debugging a stripped executable, GDB needs to search through the\n\
9087 program for the start of a function. This command sets the distance of the\n\
9088 search. The only need to set it is when debugging a stripped executable."),
9089 reinit_frame_cache_sfunc,
9090 NULL, /* FIXME: i18n: The distance searched for
9091 the start of a function is %s. */
9092 &setlist, &showlist);
9093
9094 /* Allow the user to control whether the upper bits of 64-bit
9095 addresses should be zeroed. */
9096 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9097 &mask_address_var, _("\
9098 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9099 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9100 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9101 allow GDB to determine the correct value."),
9102 NULL, show_mask_address,
9103 &setmipscmdlist, &showmipscmdlist);
9104
9105 /* Allow the user to control the size of 32 bit registers within the
9106 raw remote packet. */
9107 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9108 &mips64_transfers_32bit_regs_p, _("\
9109 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9110 _("\
9111 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9112 _("\
9113 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9114 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9115 64 bits for others. Use \"off\" to disable compatibility mode"),
9116 set_mips64_transfers_32bit_regs,
9117 NULL, /* FIXME: i18n: Compatibility with 64-bit
9118 MIPS target that transfers 32-bit
9119 quantities is %s. */
9120 &setlist, &showlist);
9121
9122 /* Debug this files internals. */
9123 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9124 &mips_debug, _("\
9125 Set mips debugging."), _("\
9126 Show mips debugging."), _("\
9127 When non-zero, mips specific debugging is enabled."),
9128 NULL,
9129 NULL, /* FIXME: i18n: Mips debugging is
9130 currently %s. */
9131 &setdebuglist, &showdebuglist);
9132 }
This page took 0.246197 seconds and 4 git commands to generate.