*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43 #include "block.h"
44 #include "reggroups.h"
45 #include "opcode/mips.h"
46 #include "elf/mips.h"
47 #include "elf-bfd.h"
48 #include "symcat.h"
49 #include "sim-regno.h"
50 #include "dis-asm.h"
51 #include "frame-unwind.h"
52 #include "frame-base.h"
53 #include "trad-frame.h"
54 #include "infcall.h"
55 #include "floatformat.h"
56 #include "remote.h"
57 #include "target-descriptions.h"
58 #include "dwarf2-frame.h"
59 #include "user-regs.h"
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
66 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
67 #define ST0_FR (1 << 26)
68
69 /* The sizes of floating point registers. */
70
71 enum
72 {
73 MIPS_FPU_SINGLE_REGSIZE = 4,
74 MIPS_FPU_DOUBLE_REGSIZE = 8
75 };
76
77 enum
78 {
79 MIPS32_REGSIZE = 4,
80 MIPS64_REGSIZE = 8
81 };
82
83 static const char *mips_abi_string;
84
85 static const char *mips_abi_strings[] = {
86 "auto",
87 "n32",
88 "o32",
89 "n64",
90 "o64",
91 "eabi32",
92 "eabi64",
93 NULL
94 };
95
96 /* The standard register names, and all the valid aliases for them. */
97 struct register_alias
98 {
99 const char *name;
100 int regnum;
101 };
102
103 /* Aliases for o32 and most other ABIs. */
104 const struct register_alias mips_o32_aliases[] = {
105 { "ta0", 12 },
106 { "ta1", 13 },
107 { "ta2", 14 },
108 { "ta3", 15 }
109 };
110
111 /* Aliases for n32 and n64. */
112 const struct register_alias mips_n32_n64_aliases[] = {
113 { "ta0", 8 },
114 { "ta1", 9 },
115 { "ta2", 10 },
116 { "ta3", 11 }
117 };
118
119 /* Aliases for ABI-independent registers. */
120 const struct register_alias mips_register_aliases[] = {
121 /* The architecture manuals specify these ABI-independent names for
122 the GPRs. */
123 #define R(n) { "r" #n, n }
124 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
125 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
126 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
127 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
128 #undef R
129
130 /* k0 and k1 are sometimes called these instead (for "kernel
131 temp"). */
132 { "kt0", 26 },
133 { "kt1", 27 },
134
135 /* This is the traditional GDB name for the CP0 status register. */
136 { "sr", MIPS_PS_REGNUM },
137
138 /* This is the traditional GDB name for the CP0 BadVAddr register. */
139 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
140
141 /* This is the traditional GDB name for the FCSR. */
142 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
143 };
144
145 /* Some MIPS boards don't support floating point while others only
146 support single-precision floating-point operations. */
147
148 enum mips_fpu_type
149 {
150 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
151 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
152 MIPS_FPU_NONE /* No floating point. */
153 };
154
155 #ifndef MIPS_DEFAULT_FPU_TYPE
156 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
157 #endif
158 static int mips_fpu_type_auto = 1;
159 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
160
161 static int mips_debug = 0;
162
163 /* Properties (for struct target_desc) describing the g/G packet
164 layout. */
165 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
166 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
167
168 struct target_desc *mips_tdesc_gp32;
169 struct target_desc *mips_tdesc_gp64;
170
171 /* MIPS specific per-architecture information */
172 struct gdbarch_tdep
173 {
174 /* from the elf header */
175 int elf_flags;
176
177 /* mips options */
178 enum mips_abi mips_abi;
179 enum mips_abi found_abi;
180 enum mips_fpu_type mips_fpu_type;
181 int mips_last_arg_regnum;
182 int mips_last_fp_arg_regnum;
183 int default_mask_address_p;
184 /* Is the target using 64-bit raw integer registers but only
185 storing a left-aligned 32-bit value in each? */
186 int mips64_transfers_32bit_regs_p;
187 /* Indexes for various registers. IRIX and embedded have
188 different values. This contains the "public" fields. Don't
189 add any that do not need to be public. */
190 const struct mips_regnum *regnum;
191 /* Register names table for the current register set. */
192 const char **mips_processor_reg_names;
193
194 /* The size of register data available from the target, if known.
195 This doesn't quite obsolete the manual
196 mips64_transfers_32bit_regs_p, since that is documented to force
197 left alignment even for big endian (very strange). */
198 int register_size_valid_p;
199 int register_size;
200 };
201
202 static int
203 n32n64_floatformat_always_valid (const struct floatformat *fmt,
204 const void *from)
205 {
206 return 1;
207 }
208
209 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
210 They are implemented as a pair of 64bit doubles where the high
211 part holds the result of the operation rounded to double, and
212 the low double holds the difference between the exact result and
213 the rounded result. So "high" + "low" contains the result with
214 added precision. Unfortunately, the floatformat structure used
215 by GDB is not powerful enough to describe this format. As a temporary
216 measure, we define a 128bit floatformat that only uses the high part.
217 We lose a bit of precision but that's probably the best we can do
218 for now with the current infrastructure. */
219
220 static const struct floatformat floatformat_n32n64_long_double_big =
221 {
222 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
223 floatformat_intbit_no,
224 "floatformat_n32n64_long_double_big",
225 n32n64_floatformat_always_valid
226 };
227
228 static const struct floatformat *floatformats_n32n64_long[BFD_ENDIAN_UNKNOWN] =
229 {
230 &floatformat_n32n64_long_double_big,
231 &floatformat_n32n64_long_double_big
232 };
233
234 const struct mips_regnum *
235 mips_regnum (struct gdbarch *gdbarch)
236 {
237 return gdbarch_tdep (gdbarch)->regnum;
238 }
239
240 static int
241 mips_fpa0_regnum (struct gdbarch *gdbarch)
242 {
243 return mips_regnum (gdbarch)->fp0 + 12;
244 }
245
246 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
247 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
248
249 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
250
251 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
252
253 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
254
255 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
256 functions to test, set, or clear bit 0 of addresses. */
257
258 static CORE_ADDR
259 is_mips16_addr (CORE_ADDR addr)
260 {
261 return ((addr) & 1);
262 }
263
264 static CORE_ADDR
265 unmake_mips16_addr (CORE_ADDR addr)
266 {
267 return ((addr) & ~(CORE_ADDR) 1);
268 }
269
270 /* Return the MIPS ABI associated with GDBARCH. */
271 enum mips_abi
272 mips_abi (struct gdbarch *gdbarch)
273 {
274 return gdbarch_tdep (gdbarch)->mips_abi;
275 }
276
277 int
278 mips_isa_regsize (struct gdbarch *gdbarch)
279 {
280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
281
282 /* If we know how big the registers are, use that size. */
283 if (tdep->register_size_valid_p)
284 return tdep->register_size;
285
286 /* Fall back to the previous behavior. */
287 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
288 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
289 }
290
291 /* Return the currently configured (or set) saved register size. */
292
293 unsigned int
294 mips_abi_regsize (struct gdbarch *gdbarch)
295 {
296 switch (mips_abi (gdbarch))
297 {
298 case MIPS_ABI_EABI32:
299 case MIPS_ABI_O32:
300 return 4;
301 case MIPS_ABI_N32:
302 case MIPS_ABI_N64:
303 case MIPS_ABI_O64:
304 case MIPS_ABI_EABI64:
305 return 8;
306 case MIPS_ABI_UNKNOWN:
307 case MIPS_ABI_LAST:
308 default:
309 internal_error (__FILE__, __LINE__, _("bad switch"));
310 }
311 }
312
313 /* Functions for setting and testing a bit in a minimal symbol that
314 marks it as 16-bit function. The MSB of the minimal symbol's
315 "info" field is used for this purpose.
316
317 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
318 i.e. refers to a 16-bit function, and sets a "special" bit in a
319 minimal symbol to mark it as a 16-bit function
320
321 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
322
323 static void
324 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
325 {
326 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
327 {
328 MSYMBOL_INFO (msym) = (char *)
329 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
330 SYMBOL_VALUE_ADDRESS (msym) |= 1;
331 }
332 }
333
334 static int
335 msymbol_is_special (struct minimal_symbol *msym)
336 {
337 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
338 }
339
340 /* XFER a value from the big/little/left end of the register.
341 Depending on the size of the value it might occupy the entire
342 register or just part of it. Make an allowance for this, aligning
343 things accordingly. */
344
345 static void
346 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
347 int reg_num, int length,
348 enum bfd_endian endian, gdb_byte *in,
349 const gdb_byte *out, int buf_offset)
350 {
351 int reg_offset = 0;
352
353 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
354 /* Need to transfer the left or right part of the register, based on
355 the targets byte order. */
356 switch (endian)
357 {
358 case BFD_ENDIAN_BIG:
359 reg_offset = register_size (gdbarch, reg_num) - length;
360 break;
361 case BFD_ENDIAN_LITTLE:
362 reg_offset = 0;
363 break;
364 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
365 reg_offset = 0;
366 break;
367 default:
368 internal_error (__FILE__, __LINE__, _("bad switch"));
369 }
370 if (mips_debug)
371 fprintf_unfiltered (gdb_stderr,
372 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
373 reg_num, reg_offset, buf_offset, length);
374 if (mips_debug && out != NULL)
375 {
376 int i;
377 fprintf_unfiltered (gdb_stdlog, "out ");
378 for (i = 0; i < length; i++)
379 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
380 }
381 if (in != NULL)
382 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
383 in + buf_offset);
384 if (out != NULL)
385 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
386 out + buf_offset);
387 if (mips_debug && in != NULL)
388 {
389 int i;
390 fprintf_unfiltered (gdb_stdlog, "in ");
391 for (i = 0; i < length; i++)
392 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
393 }
394 if (mips_debug)
395 fprintf_unfiltered (gdb_stdlog, "\n");
396 }
397
398 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
399 compatiblity mode. A return value of 1 means that we have
400 physical 64-bit registers, but should treat them as 32-bit registers. */
401
402 static int
403 mips2_fp_compat (struct frame_info *frame)
404 {
405 struct gdbarch *gdbarch = get_frame_arch (frame);
406 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
407 meaningful. */
408 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
409 return 0;
410
411 #if 0
412 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
413 in all the places we deal with FP registers. PR gdb/413. */
414 /* Otherwise check the FR bit in the status register - it controls
415 the FP compatiblity mode. If it is clear we are in compatibility
416 mode. */
417 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
418 return 1;
419 #endif
420
421 return 0;
422 }
423
424 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
425
426 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
427
428 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
429
430 static struct type *mips_float_register_type (void);
431 static struct type *mips_double_register_type (void);
432
433 /* The list of available "set mips " and "show mips " commands */
434
435 static struct cmd_list_element *setmipscmdlist = NULL;
436 static struct cmd_list_element *showmipscmdlist = NULL;
437
438 /* Integer registers 0 thru 31 are handled explicitly by
439 mips_register_name(). Processor specific registers 32 and above
440 are listed in the following tables. */
441
442 enum
443 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
444
445 /* Generic MIPS. */
446
447 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
448 "sr", "lo", "hi", "bad", "cause", "pc",
449 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
450 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
451 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
452 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
453 "fsr", "fir", "" /*"fp" */ , "",
454 "", "", "", "", "", "", "", "",
455 "", "", "", "", "", "", "", "",
456 };
457
458 /* Names of IDT R3041 registers. */
459
460 static const char *mips_r3041_reg_names[] = {
461 "sr", "lo", "hi", "bad", "cause", "pc",
462 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
463 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
464 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
465 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
466 "fsr", "fir", "", /*"fp" */ "",
467 "", "", "bus", "ccfg", "", "", "", "",
468 "", "", "port", "cmp", "", "", "epc", "prid",
469 };
470
471 /* Names of tx39 registers. */
472
473 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
474 "sr", "lo", "hi", "bad", "cause", "pc",
475 "", "", "", "", "", "", "", "",
476 "", "", "", "", "", "", "", "",
477 "", "", "", "", "", "", "", "",
478 "", "", "", "", "", "", "", "",
479 "", "", "", "",
480 "", "", "", "", "", "", "", "",
481 "", "", "config", "cache", "debug", "depc", "epc", ""
482 };
483
484 /* Names of IRIX registers. */
485 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
486 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
487 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
488 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
489 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
490 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
491 };
492
493
494 /* Return the name of the register corresponding to REGNO. */
495 static const char *
496 mips_register_name (int regno)
497 {
498 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
499 /* GPR names for all ABIs other than n32/n64. */
500 static char *mips_gpr_names[] = {
501 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
502 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
503 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
504 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
505 };
506
507 /* GPR names for n32 and n64 ABIs. */
508 static char *mips_n32_n64_gpr_names[] = {
509 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
510 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
511 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
512 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
513 };
514
515 enum mips_abi abi = mips_abi (current_gdbarch);
516
517 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
518 but then don't make the raw register names visible. */
519 int rawnum = regno % gdbarch_num_regs (current_gdbarch);
520 if (regno < gdbarch_num_regs (current_gdbarch))
521 return "";
522
523 /* The MIPS integer registers are always mapped from 0 to 31. The
524 names of the registers (which reflects the conventions regarding
525 register use) vary depending on the ABI. */
526 if (0 <= rawnum && rawnum < 32)
527 {
528 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
529 return mips_n32_n64_gpr_names[rawnum];
530 else
531 return mips_gpr_names[rawnum];
532 }
533 else if (tdesc_has_registers (gdbarch_target_desc (current_gdbarch)))
534 return tdesc_register_name (rawnum);
535 else if (32 <= rawnum && rawnum < gdbarch_num_regs (current_gdbarch))
536 {
537 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
538 return tdep->mips_processor_reg_names[rawnum - 32];
539 }
540 else
541 internal_error (__FILE__, __LINE__,
542 _("mips_register_name: bad register number %d"), rawnum);
543 }
544
545 /* Return the groups that a MIPS register can be categorised into. */
546
547 static int
548 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
549 struct reggroup *reggroup)
550 {
551 int vector_p;
552 int float_p;
553 int raw_p;
554 int rawnum = regnum % gdbarch_num_regs (gdbarch);
555 int pseudo = regnum / gdbarch_num_regs (gdbarch);
556 if (reggroup == all_reggroup)
557 return pseudo;
558 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
559 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
560 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
561 (gdbarch), as not all architectures are multi-arch. */
562 raw_p = rawnum < gdbarch_num_regs (gdbarch);
563 if (gdbarch_register_name (gdbarch, regnum) == NULL
564 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
565 return 0;
566 if (reggroup == float_reggroup)
567 return float_p && pseudo;
568 if (reggroup == vector_reggroup)
569 return vector_p && pseudo;
570 if (reggroup == general_reggroup)
571 return (!vector_p && !float_p) && pseudo;
572 /* Save the pseudo registers. Need to make certain that any code
573 extracting register values from a saved register cache also uses
574 pseudo registers. */
575 if (reggroup == save_reggroup)
576 return raw_p && pseudo;
577 /* Restore the same pseudo register. */
578 if (reggroup == restore_reggroup)
579 return raw_p && pseudo;
580 return 0;
581 }
582
583 /* Return the groups that a MIPS register can be categorised into.
584 This version is only used if we have a target description which
585 describes real registers (and their groups). */
586
587 static int
588 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
589 struct reggroup *reggroup)
590 {
591 int rawnum = regnum % gdbarch_num_regs (gdbarch);
592 int pseudo = regnum / gdbarch_num_regs (gdbarch);
593 int ret;
594
595 /* Only save, restore, and display the pseudo registers. Need to
596 make certain that any code extracting register values from a
597 saved register cache also uses pseudo registers.
598
599 Note: saving and restoring the pseudo registers is slightly
600 strange; if we have 64 bits, we should save and restore all
601 64 bits. But this is hard and has little benefit. */
602 if (!pseudo)
603 return 0;
604
605 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
606 if (ret != -1)
607 return ret;
608
609 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
610 }
611
612 /* Map the symbol table registers which live in the range [1 *
613 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
614 registers. Take care of alignment and size problems. */
615
616 static void
617 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
618 int cookednum, gdb_byte *buf)
619 {
620 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
621 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
622 && cookednum < 2 * gdbarch_num_regs (gdbarch));
623 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
624 regcache_raw_read (regcache, rawnum, buf);
625 else if (register_size (gdbarch, rawnum) >
626 register_size (gdbarch, cookednum))
627 {
628 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
629 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
630 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
631 else
632 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
633 }
634 else
635 internal_error (__FILE__, __LINE__, _("bad register size"));
636 }
637
638 static void
639 mips_pseudo_register_write (struct gdbarch *gdbarch,
640 struct regcache *regcache, int cookednum,
641 const gdb_byte *buf)
642 {
643 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
644 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
645 && cookednum < 2 * gdbarch_num_regs (gdbarch));
646 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
647 regcache_raw_write (regcache, rawnum, buf);
648 else if (register_size (gdbarch, rawnum) >
649 register_size (gdbarch, cookednum))
650 {
651 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
652 || gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
653 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
654 else
655 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
656 }
657 else
658 internal_error (__FILE__, __LINE__, _("bad register size"));
659 }
660
661 /* Table to translate MIPS16 register field to actual register number. */
662 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
663
664 /* Heuristic_proc_start may hunt through the text section for a long
665 time across a 2400 baud serial line. Allows the user to limit this
666 search. */
667
668 static unsigned int heuristic_fence_post = 0;
669
670 /* Number of bytes of storage in the actual machine representation for
671 register N. NOTE: This defines the pseudo register type so need to
672 rebuild the architecture vector. */
673
674 static int mips64_transfers_32bit_regs_p = 0;
675
676 static void
677 set_mips64_transfers_32bit_regs (char *args, int from_tty,
678 struct cmd_list_element *c)
679 {
680 struct gdbarch_info info;
681 gdbarch_info_init (&info);
682 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
683 instead of relying on globals. Doing that would let generic code
684 handle the search for this specific architecture. */
685 if (!gdbarch_update_p (info))
686 {
687 mips64_transfers_32bit_regs_p = 0;
688 error (_("32-bit compatibility mode not supported"));
689 }
690 }
691
692 /* Convert to/from a register and the corresponding memory value. */
693
694 static int
695 mips_convert_register_p (int regnum, struct type *type)
696 {
697 return (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
698 && register_size (current_gdbarch, regnum) == 4
699 && (regnum % gdbarch_num_regs (current_gdbarch))
700 >= mips_regnum (current_gdbarch)->fp0
701 && (regnum % gdbarch_num_regs (current_gdbarch))
702 < mips_regnum (current_gdbarch)->fp0 + 32
703 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
704 }
705
706 static void
707 mips_register_to_value (struct frame_info *frame, int regnum,
708 struct type *type, gdb_byte *to)
709 {
710 get_frame_register (frame, regnum + 0, to + 4);
711 get_frame_register (frame, regnum + 1, to + 0);
712 }
713
714 static void
715 mips_value_to_register (struct frame_info *frame, int regnum,
716 struct type *type, const gdb_byte *from)
717 {
718 put_frame_register (frame, regnum + 0, from + 4);
719 put_frame_register (frame, regnum + 1, from + 0);
720 }
721
722 /* Return the GDB type object for the "standard" data type of data in
723 register REG. */
724
725 static struct type *
726 mips_register_type (struct gdbarch *gdbarch, int regnum)
727 {
728 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
729 if ((regnum % gdbarch_num_regs (gdbarch)) >= mips_regnum (gdbarch)->fp0
730 && (regnum % gdbarch_num_regs (gdbarch))
731 < mips_regnum (gdbarch)->fp0 + 32)
732 {
733 /* The floating-point registers raw, or cooked, always match
734 mips_isa_regsize(), and also map 1:1, byte for byte. */
735 if (mips_isa_regsize (gdbarch) == 4)
736 return builtin_type_ieee_single;
737 else
738 return builtin_type_ieee_double;
739 }
740 else if (regnum < gdbarch_num_regs (gdbarch))
741 {
742 /* The raw or ISA registers. These are all sized according to
743 the ISA regsize. */
744 if (mips_isa_regsize (gdbarch) == 4)
745 return builtin_type_int32;
746 else
747 return builtin_type_int64;
748 }
749 else
750 {
751 /* The cooked or ABI registers. These are sized according to
752 the ABI (with a few complications). */
753 if (regnum >= (gdbarch_num_regs (gdbarch)
754 + mips_regnum (gdbarch)->fp_control_status)
755 && regnum <= gdbarch_num_regs (gdbarch) + MIPS_LAST_EMBED_REGNUM)
756 /* The pseudo/cooked view of the embedded registers is always
757 32-bit. The raw view is handled below. */
758 return builtin_type_int32;
759 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
760 /* The target, while possibly using a 64-bit register buffer,
761 is only transfering 32-bits of each integer register.
762 Reflect this in the cooked/pseudo (ABI) register value. */
763 return builtin_type_int32;
764 else if (mips_abi_regsize (gdbarch) == 4)
765 /* The ABI is restricted to 32-bit registers (the ISA could be
766 32- or 64-bit). */
767 return builtin_type_int32;
768 else
769 /* 64-bit ABI. */
770 return builtin_type_int64;
771 }
772 }
773
774 /* Return the GDB type for the pseudo register REGNUM, which is the
775 ABI-level view. This function is only called if there is a target
776 description which includes registers, so we know precisely the
777 types of hardware registers. */
778
779 static struct type *
780 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
781 {
782 const int num_regs = gdbarch_num_regs (gdbarch);
783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
784 int rawnum = regnum % num_regs;
785 struct type *rawtype;
786
787 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
788
789 /* Absent registers are still absent. */
790 rawtype = gdbarch_register_type (gdbarch, rawnum);
791 if (TYPE_LENGTH (rawtype) == 0)
792 return rawtype;
793
794 if (rawnum >= MIPS_EMBED_FP0_REGNUM && rawnum < MIPS_EMBED_FP0_REGNUM + 32)
795 /* Present the floating point registers however the hardware did;
796 do not try to convert between FPU layouts. */
797 return rawtype;
798
799 if (rawnum >= MIPS_EMBED_FP0_REGNUM + 32 && rawnum <= MIPS_LAST_EMBED_REGNUM)
800 {
801 /* The pseudo/cooked view of embedded registers is always
802 32-bit, even if the target transfers 64-bit values for them.
803 New targets relying on XML descriptions should only transfer
804 the necessary 32 bits, but older versions of GDB expected 64,
805 so allow the target to provide 64 bits without interfering
806 with the displayed type. */
807 return builtin_type_int32;
808 }
809
810 /* Use pointer types for registers if we can. For n32 we can not,
811 since we do not have a 64-bit pointer type. */
812 if (mips_abi_regsize (gdbarch) == TYPE_LENGTH (builtin_type_void_data_ptr))
813 {
814 if (rawnum == MIPS_SP_REGNUM || rawnum == MIPS_EMBED_BADVADDR_REGNUM)
815 return builtin_type_void_data_ptr;
816 else if (rawnum == MIPS_EMBED_PC_REGNUM)
817 return builtin_type_void_func_ptr;
818 }
819
820 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
821 && rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_EMBED_PC_REGNUM)
822 return builtin_type_int32;
823
824 /* For all other registers, pass through the hardware type. */
825 return rawtype;
826 }
827
828 /* Should the upper word of 64-bit addresses be zeroed? */
829 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
830
831 static int
832 mips_mask_address_p (struct gdbarch_tdep *tdep)
833 {
834 switch (mask_address_var)
835 {
836 case AUTO_BOOLEAN_TRUE:
837 return 1;
838 case AUTO_BOOLEAN_FALSE:
839 return 0;
840 break;
841 case AUTO_BOOLEAN_AUTO:
842 return tdep->default_mask_address_p;
843 default:
844 internal_error (__FILE__, __LINE__, _("mips_mask_address_p: bad switch"));
845 return -1;
846 }
847 }
848
849 static void
850 show_mask_address (struct ui_file *file, int from_tty,
851 struct cmd_list_element *c, const char *value)
852 {
853 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
854
855 deprecated_show_value_hack (file, from_tty, c, value);
856 switch (mask_address_var)
857 {
858 case AUTO_BOOLEAN_TRUE:
859 printf_filtered ("The 32 bit mips address mask is enabled\n");
860 break;
861 case AUTO_BOOLEAN_FALSE:
862 printf_filtered ("The 32 bit mips address mask is disabled\n");
863 break;
864 case AUTO_BOOLEAN_AUTO:
865 printf_filtered
866 ("The 32 bit address mask is set automatically. Currently %s\n",
867 mips_mask_address_p (tdep) ? "enabled" : "disabled");
868 break;
869 default:
870 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
871 break;
872 }
873 }
874
875 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
876
877 int
878 mips_pc_is_mips16 (CORE_ADDR memaddr)
879 {
880 struct minimal_symbol *sym;
881
882 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
883 if (is_mips16_addr (memaddr))
884 return 1;
885
886 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
887 the high bit of the info field. Use this to decide if the function is
888 MIPS16 or normal MIPS. */
889 sym = lookup_minimal_symbol_by_pc (memaddr);
890 if (sym)
891 return msymbol_is_special (sym);
892 else
893 return 0;
894 }
895
896 /* MIPS believes that the PC has a sign extended value. Perhaps the
897 all registers should be sign extended for simplicity? */
898
899 static CORE_ADDR
900 mips_read_pc (struct regcache *regcache)
901 {
902 ULONGEST pc;
903 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
904 regcache_cooked_read_signed (regcache, regnum, &pc);
905 return pc;
906 }
907
908 static CORE_ADDR
909 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
910 {
911 return frame_unwind_register_signed
912 (next_frame, gdbarch_num_regs (gdbarch) + mips_regnum (gdbarch)->pc);
913 }
914
915 static CORE_ADDR
916 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
917 {
918 return frame_unwind_register_signed
919 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
920 }
921
922 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
923 dummy frame. The frame ID's base needs to match the TOS value
924 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
925 breakpoint. */
926
927 static struct frame_id
928 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
929 {
930 return frame_id_build
931 (frame_unwind_register_signed (next_frame,
932 gdbarch_num_regs (gdbarch)
933 + MIPS_SP_REGNUM),
934 frame_pc_unwind (next_frame));
935 }
936
937 static void
938 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
939 {
940 int regnum = mips_regnum (get_regcache_arch (regcache))->pc;
941 regcache_cooked_write_unsigned (regcache, regnum, pc);
942 }
943
944 /* Fetch and return instruction from the specified location. If the PC
945 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
946
947 static ULONGEST
948 mips_fetch_instruction (CORE_ADDR addr)
949 {
950 gdb_byte buf[MIPS_INSN32_SIZE];
951 int instlen;
952 int status;
953
954 if (mips_pc_is_mips16 (addr))
955 {
956 instlen = MIPS_INSN16_SIZE;
957 addr = unmake_mips16_addr (addr);
958 }
959 else
960 instlen = MIPS_INSN32_SIZE;
961 status = read_memory_nobpt (addr, buf, instlen);
962 if (status)
963 memory_error (status, addr);
964 return extract_unsigned_integer (buf, instlen);
965 }
966
967 /* These the fields of 32 bit mips instructions */
968 #define mips32_op(x) (x >> 26)
969 #define itype_op(x) (x >> 26)
970 #define itype_rs(x) ((x >> 21) & 0x1f)
971 #define itype_rt(x) ((x >> 16) & 0x1f)
972 #define itype_immediate(x) (x & 0xffff)
973
974 #define jtype_op(x) (x >> 26)
975 #define jtype_target(x) (x & 0x03ffffff)
976
977 #define rtype_op(x) (x >> 26)
978 #define rtype_rs(x) ((x >> 21) & 0x1f)
979 #define rtype_rt(x) ((x >> 16) & 0x1f)
980 #define rtype_rd(x) ((x >> 11) & 0x1f)
981 #define rtype_shamt(x) ((x >> 6) & 0x1f)
982 #define rtype_funct(x) (x & 0x3f)
983
984 static LONGEST
985 mips32_relative_offset (ULONGEST inst)
986 {
987 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
988 }
989
990 /* Determine where to set a single step breakpoint while considering
991 branch prediction. */
992 static CORE_ADDR
993 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
994 {
995 unsigned long inst;
996 int op;
997 inst = mips_fetch_instruction (pc);
998 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
999 {
1000 if (itype_op (inst) >> 2 == 5)
1001 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1002 {
1003 op = (itype_op (inst) & 0x03);
1004 switch (op)
1005 {
1006 case 0: /* BEQL */
1007 goto equal_branch;
1008 case 1: /* BNEL */
1009 goto neq_branch;
1010 case 2: /* BLEZL */
1011 goto less_branch;
1012 case 3: /* BGTZL */
1013 goto greater_branch;
1014 default:
1015 pc += 4;
1016 }
1017 }
1018 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1019 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1020 {
1021 int tf = itype_rt (inst) & 0x01;
1022 int cnum = itype_rt (inst) >> 2;
1023 int fcrcs =
1024 get_frame_register_signed (frame,
1025 mips_regnum (get_frame_arch (frame))->
1026 fp_control_status);
1027 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1028
1029 if (((cond >> cnum) & 0x01) == tf)
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 }
1034 else
1035 pc += 4; /* Not a branch, next instruction is easy */
1036 }
1037 else
1038 { /* This gets way messy */
1039
1040 /* Further subdivide into SPECIAL, REGIMM and other */
1041 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1042 {
1043 case 0: /* SPECIAL */
1044 op = rtype_funct (inst);
1045 switch (op)
1046 {
1047 case 8: /* JR */
1048 case 9: /* JALR */
1049 /* Set PC to that address */
1050 pc = get_frame_register_signed (frame, rtype_rs (inst));
1051 break;
1052 default:
1053 pc += 4;
1054 }
1055
1056 break; /* end SPECIAL */
1057 case 1: /* REGIMM */
1058 {
1059 op = itype_rt (inst); /* branch condition */
1060 switch (op)
1061 {
1062 case 0: /* BLTZ */
1063 case 2: /* BLTZL */
1064 case 16: /* BLTZAL */
1065 case 18: /* BLTZALL */
1066 less_branch:
1067 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1068 pc += mips32_relative_offset (inst) + 4;
1069 else
1070 pc += 8; /* after the delay slot */
1071 break;
1072 case 1: /* BGEZ */
1073 case 3: /* BGEZL */
1074 case 17: /* BGEZAL */
1075 case 19: /* BGEZALL */
1076 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1077 pc += mips32_relative_offset (inst) + 4;
1078 else
1079 pc += 8; /* after the delay slot */
1080 break;
1081 /* All of the other instructions in the REGIMM category */
1082 default:
1083 pc += 4;
1084 }
1085 }
1086 break; /* end REGIMM */
1087 case 2: /* J */
1088 case 3: /* JAL */
1089 {
1090 unsigned long reg;
1091 reg = jtype_target (inst) << 2;
1092 /* Upper four bits get never changed... */
1093 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1094 }
1095 break;
1096 /* FIXME case JALX : */
1097 {
1098 unsigned long reg;
1099 reg = jtype_target (inst) << 2;
1100 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + 1; /* yes, +1 */
1101 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1102 }
1103 break; /* The new PC will be alternate mode */
1104 case 4: /* BEQ, BEQL */
1105 equal_branch:
1106 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1107 get_frame_register_signed (frame, itype_rt (inst)))
1108 pc += mips32_relative_offset (inst) + 4;
1109 else
1110 pc += 8;
1111 break;
1112 case 5: /* BNE, BNEL */
1113 neq_branch:
1114 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1115 get_frame_register_signed (frame, itype_rt (inst)))
1116 pc += mips32_relative_offset (inst) + 4;
1117 else
1118 pc += 8;
1119 break;
1120 case 6: /* BLEZ, BLEZL */
1121 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1122 pc += mips32_relative_offset (inst) + 4;
1123 else
1124 pc += 8;
1125 break;
1126 case 7:
1127 default:
1128 greater_branch: /* BGTZ, BGTZL */
1129 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1130 pc += mips32_relative_offset (inst) + 4;
1131 else
1132 pc += 8;
1133 break;
1134 } /* switch */
1135 } /* else */
1136 return pc;
1137 } /* mips32_next_pc */
1138
1139 /* Decoding the next place to set a breakpoint is irregular for the
1140 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1141 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1142 We dont want to set a single step instruction on the extend instruction
1143 either.
1144 */
1145
1146 /* Lots of mips16 instruction formats */
1147 /* Predicting jumps requires itype,ritype,i8type
1148 and their extensions extItype,extritype,extI8type
1149 */
1150 enum mips16_inst_fmts
1151 {
1152 itype, /* 0 immediate 5,10 */
1153 ritype, /* 1 5,3,8 */
1154 rrtype, /* 2 5,3,3,5 */
1155 rritype, /* 3 5,3,3,5 */
1156 rrrtype, /* 4 5,3,3,3,2 */
1157 rriatype, /* 5 5,3,3,1,4 */
1158 shifttype, /* 6 5,3,3,3,2 */
1159 i8type, /* 7 5,3,8 */
1160 i8movtype, /* 8 5,3,3,5 */
1161 i8mov32rtype, /* 9 5,3,5,3 */
1162 i64type, /* 10 5,3,8 */
1163 ri64type, /* 11 5,3,3,5 */
1164 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1165 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1166 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1167 extRRItype, /* 15 5,5,5,5,3,3,5 */
1168 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1169 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1170 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1171 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1172 extRi64type, /* 20 5,6,5,5,3,3,5 */
1173 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1174 };
1175 /* I am heaping all the fields of the formats into one structure and
1176 then, only the fields which are involved in instruction extension */
1177 struct upk_mips16
1178 {
1179 CORE_ADDR offset;
1180 unsigned int regx; /* Function in i8 type */
1181 unsigned int regy;
1182 };
1183
1184
1185 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1186 for the bits which make up the immediatate extension. */
1187
1188 static CORE_ADDR
1189 extended_offset (unsigned int extension)
1190 {
1191 CORE_ADDR value;
1192 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1193 value = value << 6;
1194 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1195 value = value << 5;
1196 value |= extension & 0x01f; /* extract 4:0 */
1197 return value;
1198 }
1199
1200 /* Only call this function if you know that this is an extendable
1201 instruction. It won't malfunction, but why make excess remote memory
1202 references? If the immediate operands get sign extended or something,
1203 do it after the extension is performed. */
1204 /* FIXME: Every one of these cases needs to worry about sign extension
1205 when the offset is to be used in relative addressing. */
1206
1207 static unsigned int
1208 fetch_mips_16 (CORE_ADDR pc)
1209 {
1210 gdb_byte buf[8];
1211 pc &= 0xfffffffe; /* clear the low order bit */
1212 target_read_memory (pc, buf, 2);
1213 return extract_unsigned_integer (buf, 2);
1214 }
1215
1216 static void
1217 unpack_mips16 (CORE_ADDR pc,
1218 unsigned int extension,
1219 unsigned int inst,
1220 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1221 {
1222 CORE_ADDR offset;
1223 int regx;
1224 int regy;
1225 switch (insn_format)
1226 {
1227 case itype:
1228 {
1229 CORE_ADDR value;
1230 if (extension)
1231 {
1232 value = extended_offset (extension);
1233 value = value << 11; /* rom for the original value */
1234 value |= inst & 0x7ff; /* eleven bits from instruction */
1235 }
1236 else
1237 {
1238 value = inst & 0x7ff;
1239 /* FIXME : Consider sign extension */
1240 }
1241 offset = value;
1242 regx = -1;
1243 regy = -1;
1244 }
1245 break;
1246 case ritype:
1247 case i8type:
1248 { /* A register identifier and an offset */
1249 /* Most of the fields are the same as I type but the
1250 immediate value is of a different length */
1251 CORE_ADDR value;
1252 if (extension)
1253 {
1254 value = extended_offset (extension);
1255 value = value << 8; /* from the original instruction */
1256 value |= inst & 0xff; /* eleven bits from instruction */
1257 regx = (extension >> 8) & 0x07; /* or i8 funct */
1258 if (value & 0x4000) /* test the sign bit , bit 26 */
1259 {
1260 value &= ~0x3fff; /* remove the sign bit */
1261 value = -value;
1262 }
1263 }
1264 else
1265 {
1266 value = inst & 0xff; /* 8 bits */
1267 regx = (inst >> 8) & 0x07; /* or i8 funct */
1268 /* FIXME: Do sign extension , this format needs it */
1269 if (value & 0x80) /* THIS CONFUSES ME */
1270 {
1271 value &= 0xef; /* remove the sign bit */
1272 value = -value;
1273 }
1274 }
1275 offset = value;
1276 regy = -1;
1277 break;
1278 }
1279 case jalxtype:
1280 {
1281 unsigned long value;
1282 unsigned int nexthalf;
1283 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1284 value = value << 16;
1285 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1286 value |= nexthalf;
1287 offset = value;
1288 regx = -1;
1289 regy = -1;
1290 break;
1291 }
1292 default:
1293 internal_error (__FILE__, __LINE__, _("bad switch"));
1294 }
1295 upk->offset = offset;
1296 upk->regx = regx;
1297 upk->regy = regy;
1298 }
1299
1300
1301 static CORE_ADDR
1302 add_offset_16 (CORE_ADDR pc, int offset)
1303 {
1304 return ((offset << 2) | ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)));
1305 }
1306
1307 static CORE_ADDR
1308 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
1309 unsigned int extension, unsigned int insn)
1310 {
1311 int op = (insn >> 11);
1312 switch (op)
1313 {
1314 case 2: /* Branch */
1315 {
1316 CORE_ADDR offset;
1317 struct upk_mips16 upk;
1318 unpack_mips16 (pc, extension, insn, itype, &upk);
1319 offset = upk.offset;
1320 if (offset & 0x800)
1321 {
1322 offset &= 0xeff;
1323 offset = -offset;
1324 }
1325 pc += (offset << 1) + 2;
1326 break;
1327 }
1328 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1329 {
1330 struct upk_mips16 upk;
1331 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1332 pc = add_offset_16 (pc, upk.offset);
1333 if ((insn >> 10) & 0x01) /* Exchange mode */
1334 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1335 else
1336 pc |= 0x01;
1337 break;
1338 }
1339 case 4: /* beqz */
1340 {
1341 struct upk_mips16 upk;
1342 int reg;
1343 unpack_mips16 (pc, extension, insn, ritype, &upk);
1344 reg = get_frame_register_signed (frame, upk.regx);
1345 if (reg == 0)
1346 pc += (upk.offset << 1) + 2;
1347 else
1348 pc += 2;
1349 break;
1350 }
1351 case 5: /* bnez */
1352 {
1353 struct upk_mips16 upk;
1354 int reg;
1355 unpack_mips16 (pc, extension, insn, ritype, &upk);
1356 reg = get_frame_register_signed (frame, upk.regx);
1357 if (reg != 0)
1358 pc += (upk.offset << 1) + 2;
1359 else
1360 pc += 2;
1361 break;
1362 }
1363 case 12: /* I8 Formats btez btnez */
1364 {
1365 struct upk_mips16 upk;
1366 int reg;
1367 unpack_mips16 (pc, extension, insn, i8type, &upk);
1368 /* upk.regx contains the opcode */
1369 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
1370 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1371 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1372 /* pc = add_offset_16(pc,upk.offset) ; */
1373 pc += (upk.offset << 1) + 2;
1374 else
1375 pc += 2;
1376 break;
1377 }
1378 case 29: /* RR Formats JR, JALR, JALR-RA */
1379 {
1380 struct upk_mips16 upk;
1381 /* upk.fmt = rrtype; */
1382 op = insn & 0x1f;
1383 if (op == 0)
1384 {
1385 int reg;
1386 upk.regx = (insn >> 8) & 0x07;
1387 upk.regy = (insn >> 5) & 0x07;
1388 switch (upk.regy)
1389 {
1390 case 0:
1391 reg = upk.regx;
1392 break;
1393 case 1:
1394 reg = 31;
1395 break; /* Function return instruction */
1396 case 2:
1397 reg = upk.regx;
1398 break;
1399 default:
1400 reg = 31;
1401 break; /* BOGUS Guess */
1402 }
1403 pc = get_frame_register_signed (frame, reg);
1404 }
1405 else
1406 pc += 2;
1407 break;
1408 }
1409 case 30:
1410 /* This is an instruction extension. Fetch the real instruction
1411 (which follows the extension) and decode things based on
1412 that. */
1413 {
1414 pc += 2;
1415 pc = extended_mips16_next_pc (frame, pc, insn, fetch_mips_16 (pc));
1416 break;
1417 }
1418 default:
1419 {
1420 pc += 2;
1421 break;
1422 }
1423 }
1424 return pc;
1425 }
1426
1427 static CORE_ADDR
1428 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
1429 {
1430 unsigned int insn = fetch_mips_16 (pc);
1431 return extended_mips16_next_pc (frame, pc, 0, insn);
1432 }
1433
1434 /* The mips_next_pc function supports single_step when the remote
1435 target monitor or stub is not developed enough to do a single_step.
1436 It works by decoding the current instruction and predicting where a
1437 branch will go. This isnt hard because all the data is available.
1438 The MIPS32 and MIPS16 variants are quite different. */
1439 static CORE_ADDR
1440 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1441 {
1442 if (is_mips16_addr (pc))
1443 return mips16_next_pc (frame, pc);
1444 else
1445 return mips32_next_pc (frame, pc);
1446 }
1447
1448 struct mips_frame_cache
1449 {
1450 CORE_ADDR base;
1451 struct trad_frame_saved_reg *saved_regs;
1452 };
1453
1454 /* Set a register's saved stack address in temp_saved_regs. If an
1455 address has already been set for this register, do nothing; this
1456 way we will only recognize the first save of a given register in a
1457 function prologue.
1458
1459 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
1460 [gdbarch_num_regs .. 2*gdbarch_num_regs).
1461 Strictly speaking, only the second range is used as it is only second
1462 range (the ABI instead of ISA registers) that comes into play when finding
1463 saved registers in a frame. */
1464
1465 static void
1466 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1467 CORE_ADDR offset)
1468 {
1469 if (this_cache != NULL
1470 && this_cache->saved_regs[regnum].addr == -1)
1471 {
1472 this_cache->saved_regs[regnum
1473 + 0 * gdbarch_num_regs (current_gdbarch)].addr
1474 = offset;
1475 this_cache->saved_regs[regnum
1476 + 1 * gdbarch_num_regs (current_gdbarch)].addr
1477 = offset;
1478 }
1479 }
1480
1481
1482 /* Fetch the immediate value from a MIPS16 instruction.
1483 If the previous instruction was an EXTEND, use it to extend
1484 the upper bits of the immediate value. This is a helper function
1485 for mips16_scan_prologue. */
1486
1487 static int
1488 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1489 unsigned short inst, /* current instruction */
1490 int nbits, /* number of bits in imm field */
1491 int scale, /* scale factor to be applied to imm */
1492 int is_signed) /* is the imm field signed? */
1493 {
1494 int offset;
1495
1496 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1497 {
1498 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1499 if (offset & 0x8000) /* check for negative extend */
1500 offset = 0 - (0x10000 - (offset & 0xffff));
1501 return offset | (inst & 0x1f);
1502 }
1503 else
1504 {
1505 int max_imm = 1 << nbits;
1506 int mask = max_imm - 1;
1507 int sign_bit = max_imm >> 1;
1508
1509 offset = inst & mask;
1510 if (is_signed && (offset & sign_bit))
1511 offset = 0 - (max_imm - offset);
1512 return offset * scale;
1513 }
1514 }
1515
1516
1517 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1518 the associated FRAME_CACHE if not null.
1519 Return the address of the first instruction past the prologue. */
1520
1521 static CORE_ADDR
1522 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1523 struct frame_info *next_frame,
1524 struct mips_frame_cache *this_cache)
1525 {
1526 CORE_ADDR cur_pc;
1527 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1528 CORE_ADDR sp;
1529 long frame_offset = 0; /* Size of stack frame. */
1530 long frame_adjust = 0; /* Offset of FP from SP. */
1531 int frame_reg = MIPS_SP_REGNUM;
1532 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1533 unsigned inst = 0; /* current instruction */
1534 unsigned entry_inst = 0; /* the entry instruction */
1535 int reg, offset;
1536
1537 int extend_bytes = 0;
1538 int prev_extend_bytes;
1539 CORE_ADDR end_prologue_addr = 0;
1540 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1541
1542 /* Can be called when there's no process, and hence when there's no
1543 NEXT_FRAME. */
1544 if (next_frame != NULL)
1545 sp = frame_unwind_register_signed (next_frame,
1546 gdbarch_num_regs (gdbarch)
1547 + MIPS_SP_REGNUM);
1548 else
1549 sp = 0;
1550
1551 if (limit_pc > start_pc + 200)
1552 limit_pc = start_pc + 200;
1553
1554 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1555 {
1556 /* Save the previous instruction. If it's an EXTEND, we'll extract
1557 the immediate offset extension from it in mips16_get_imm. */
1558 prev_inst = inst;
1559
1560 /* Fetch and decode the instruction. */
1561 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1562
1563 /* Normally we ignore extend instructions. However, if it is
1564 not followed by a valid prologue instruction, then this
1565 instruction is not part of the prologue either. We must
1566 remember in this case to adjust the end_prologue_addr back
1567 over the extend. */
1568 if ((inst & 0xf800) == 0xf000) /* extend */
1569 {
1570 extend_bytes = MIPS_INSN16_SIZE;
1571 continue;
1572 }
1573
1574 prev_extend_bytes = extend_bytes;
1575 extend_bytes = 0;
1576
1577 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1578 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1579 {
1580 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1581 if (offset < 0) /* negative stack adjustment? */
1582 frame_offset -= offset;
1583 else
1584 /* Exit loop if a positive stack adjustment is found, which
1585 usually means that the stack cleanup code in the function
1586 epilogue is reached. */
1587 break;
1588 }
1589 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1590 {
1591 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1592 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1593 set_reg_offset (this_cache, reg, sp + offset);
1594 }
1595 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1596 {
1597 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1598 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1599 set_reg_offset (this_cache, reg, sp + offset);
1600 }
1601 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1602 {
1603 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1604 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1605 }
1606 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1607 {
1608 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1609 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1610 }
1611 else if (inst == 0x673d) /* move $s1, $sp */
1612 {
1613 frame_addr = sp;
1614 frame_reg = 17;
1615 }
1616 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1617 {
1618 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1619 frame_addr = sp + offset;
1620 frame_reg = 17;
1621 frame_adjust = offset;
1622 }
1623 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1624 {
1625 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1626 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1627 set_reg_offset (this_cache, reg, frame_addr + offset);
1628 }
1629 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1630 {
1631 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1632 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1633 set_reg_offset (this_cache, reg, frame_addr + offset);
1634 }
1635 else if ((inst & 0xf81f) == 0xe809
1636 && (inst & 0x700) != 0x700) /* entry */
1637 entry_inst = inst; /* save for later processing */
1638 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1639 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1640 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1641 {
1642 /* This instruction is part of the prologue, but we don't
1643 need to do anything special to handle it. */
1644 }
1645 else
1646 {
1647 /* This instruction is not an instruction typically found
1648 in a prologue, so we must have reached the end of the
1649 prologue. */
1650 if (end_prologue_addr == 0)
1651 end_prologue_addr = cur_pc - prev_extend_bytes;
1652 }
1653 }
1654
1655 /* The entry instruction is typically the first instruction in a function,
1656 and it stores registers at offsets relative to the value of the old SP
1657 (before the prologue). But the value of the sp parameter to this
1658 function is the new SP (after the prologue has been executed). So we
1659 can't calculate those offsets until we've seen the entire prologue,
1660 and can calculate what the old SP must have been. */
1661 if (entry_inst != 0)
1662 {
1663 int areg_count = (entry_inst >> 8) & 7;
1664 int sreg_count = (entry_inst >> 6) & 3;
1665
1666 /* The entry instruction always subtracts 32 from the SP. */
1667 frame_offset += 32;
1668
1669 /* Now we can calculate what the SP must have been at the
1670 start of the function prologue. */
1671 sp += frame_offset;
1672
1673 /* Check if a0-a3 were saved in the caller's argument save area. */
1674 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1675 {
1676 set_reg_offset (this_cache, reg, sp + offset);
1677 offset += mips_abi_regsize (gdbarch);
1678 }
1679
1680 /* Check if the ra register was pushed on the stack. */
1681 offset = -4;
1682 if (entry_inst & 0x20)
1683 {
1684 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1685 offset -= mips_abi_regsize (gdbarch);
1686 }
1687
1688 /* Check if the s0 and s1 registers were pushed on the stack. */
1689 for (reg = 16; reg < sreg_count + 16; reg++)
1690 {
1691 set_reg_offset (this_cache, reg, sp + offset);
1692 offset -= mips_abi_regsize (gdbarch);
1693 }
1694 }
1695
1696 if (this_cache != NULL)
1697 {
1698 this_cache->base =
1699 (frame_unwind_register_signed (next_frame,
1700 gdbarch_num_regs (gdbarch) + frame_reg)
1701 + frame_offset - frame_adjust);
1702 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1703 be able to get rid of the assignment below, evetually. But it's
1704 still needed for now. */
1705 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
1706 + mips_regnum (gdbarch)->pc]
1707 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
1708 }
1709
1710 /* If we didn't reach the end of the prologue when scanning the function
1711 instructions, then set end_prologue_addr to the address of the
1712 instruction immediately after the last one we scanned. */
1713 if (end_prologue_addr == 0)
1714 end_prologue_addr = cur_pc;
1715
1716 return end_prologue_addr;
1717 }
1718
1719 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1720 Procedures that use the 32-bit instruction set are handled by the
1721 mips_insn32 unwinder. */
1722
1723 static struct mips_frame_cache *
1724 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1725 {
1726 struct mips_frame_cache *cache;
1727
1728 if ((*this_cache) != NULL)
1729 return (*this_cache);
1730 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1731 (*this_cache) = cache;
1732 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1733
1734 /* Analyze the function prologue. */
1735 {
1736 const CORE_ADDR pc =
1737 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1738 CORE_ADDR start_addr;
1739
1740 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1741 if (start_addr == 0)
1742 start_addr = heuristic_proc_start (pc);
1743 /* We can't analyze the prologue if we couldn't find the begining
1744 of the function. */
1745 if (start_addr == 0)
1746 return cache;
1747
1748 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1749 }
1750
1751 /* gdbarch_sp_regnum contains the value and not the address. */
1752 trad_frame_set_value (cache->saved_regs,
1753 gdbarch_num_regs (get_frame_arch (next_frame))
1754 + MIPS_SP_REGNUM,
1755 cache->base);
1756
1757 return (*this_cache);
1758 }
1759
1760 static void
1761 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1762 struct frame_id *this_id)
1763 {
1764 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1765 this_cache);
1766 (*this_id) = frame_id_build (info->base,
1767 frame_func_unwind (next_frame, NORMAL_FRAME));
1768 }
1769
1770 static void
1771 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1772 void **this_cache,
1773 int regnum, int *optimizedp,
1774 enum lval_type *lvalp, CORE_ADDR *addrp,
1775 int *realnump, gdb_byte *valuep)
1776 {
1777 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1778 this_cache);
1779 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1780 optimizedp, lvalp, addrp, realnump, valuep);
1781 }
1782
1783 static const struct frame_unwind mips_insn16_frame_unwind =
1784 {
1785 NORMAL_FRAME,
1786 mips_insn16_frame_this_id,
1787 mips_insn16_frame_prev_register
1788 };
1789
1790 static const struct frame_unwind *
1791 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1792 {
1793 CORE_ADDR pc = frame_pc_unwind (next_frame);
1794 if (mips_pc_is_mips16 (pc))
1795 return &mips_insn16_frame_unwind;
1796 return NULL;
1797 }
1798
1799 static CORE_ADDR
1800 mips_insn16_frame_base_address (struct frame_info *next_frame,
1801 void **this_cache)
1802 {
1803 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1804 this_cache);
1805 return info->base;
1806 }
1807
1808 static const struct frame_base mips_insn16_frame_base =
1809 {
1810 &mips_insn16_frame_unwind,
1811 mips_insn16_frame_base_address,
1812 mips_insn16_frame_base_address,
1813 mips_insn16_frame_base_address
1814 };
1815
1816 static const struct frame_base *
1817 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1818 {
1819 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1820 return &mips_insn16_frame_base;
1821 else
1822 return NULL;
1823 }
1824
1825 /* Mark all the registers as unset in the saved_regs array
1826 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1827
1828 void
1829 reset_saved_regs (struct mips_frame_cache *this_cache)
1830 {
1831 if (this_cache == NULL || this_cache->saved_regs == NULL)
1832 return;
1833
1834 {
1835 const int num_regs = gdbarch_num_regs (current_gdbarch);
1836 int i;
1837
1838 for (i = 0; i < num_regs; i++)
1839 {
1840 this_cache->saved_regs[i].addr = -1;
1841 }
1842 }
1843 }
1844
1845 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1846 the associated FRAME_CACHE if not null.
1847 Return the address of the first instruction past the prologue. */
1848
1849 static CORE_ADDR
1850 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1851 struct frame_info *next_frame,
1852 struct mips_frame_cache *this_cache)
1853 {
1854 CORE_ADDR cur_pc;
1855 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1856 CORE_ADDR sp;
1857 long frame_offset;
1858 int frame_reg = MIPS_SP_REGNUM;
1859
1860 CORE_ADDR end_prologue_addr = 0;
1861 int seen_sp_adjust = 0;
1862 int load_immediate_bytes = 0;
1863 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1864
1865 /* Can be called when there's no process, and hence when there's no
1866 NEXT_FRAME. */
1867 if (next_frame != NULL)
1868 sp = frame_unwind_register_signed (next_frame,
1869 gdbarch_num_regs (gdbarch)
1870 + MIPS_SP_REGNUM);
1871 else
1872 sp = 0;
1873
1874 if (limit_pc > start_pc + 200)
1875 limit_pc = start_pc + 200;
1876
1877 restart:
1878
1879 frame_offset = 0;
1880 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1881 {
1882 unsigned long inst, high_word, low_word;
1883 int reg;
1884
1885 /* Fetch the instruction. */
1886 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1887
1888 /* Save some code by pre-extracting some useful fields. */
1889 high_word = (inst >> 16) & 0xffff;
1890 low_word = inst & 0xffff;
1891 reg = high_word & 0x1f;
1892
1893 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1894 || high_word == 0x23bd /* addi $sp,$sp,-i */
1895 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1896 {
1897 if (low_word & 0x8000) /* negative stack adjustment? */
1898 frame_offset += 0x10000 - low_word;
1899 else
1900 /* Exit loop if a positive stack adjustment is found, which
1901 usually means that the stack cleanup code in the function
1902 epilogue is reached. */
1903 break;
1904 seen_sp_adjust = 1;
1905 }
1906 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1907 {
1908 set_reg_offset (this_cache, reg, sp + low_word);
1909 }
1910 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1911 {
1912 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1913 set_reg_offset (this_cache, reg, sp + low_word);
1914 }
1915 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1916 {
1917 /* Old gcc frame, r30 is virtual frame pointer. */
1918 if ((long) low_word != frame_offset)
1919 frame_addr = sp + low_word;
1920 else if (next_frame && frame_reg == MIPS_SP_REGNUM)
1921 {
1922 unsigned alloca_adjust;
1923
1924 frame_reg = 30;
1925 frame_addr = frame_unwind_register_signed
1926 (next_frame, gdbarch_num_regs (gdbarch) + 30);
1927
1928 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1929 if (alloca_adjust > 0)
1930 {
1931 /* FP > SP + frame_size. This may be because of
1932 an alloca or somethings similar. Fix sp to
1933 "pre-alloca" value, and try again. */
1934 sp += alloca_adjust;
1935 /* Need to reset the status of all registers. Otherwise,
1936 we will hit a guard that prevents the new address
1937 for each register to be recomputed during the second
1938 pass. */
1939 reset_saved_regs (this_cache);
1940 goto restart;
1941 }
1942 }
1943 }
1944 /* move $30,$sp. With different versions of gas this will be either
1945 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1946 Accept any one of these. */
1947 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1948 {
1949 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1950 if (next_frame && frame_reg == MIPS_SP_REGNUM)
1951 {
1952 unsigned alloca_adjust;
1953
1954 frame_reg = 30;
1955 frame_addr = frame_unwind_register_signed
1956 (next_frame, gdbarch_num_regs (gdbarch) + 30);
1957
1958 alloca_adjust = (unsigned) (frame_addr - sp);
1959 if (alloca_adjust > 0)
1960 {
1961 /* FP > SP + frame_size. This may be because of
1962 an alloca or somethings similar. Fix sp to
1963 "pre-alloca" value, and try again. */
1964 sp = frame_addr;
1965 /* Need to reset the status of all registers. Otherwise,
1966 we will hit a guard that prevents the new address
1967 for each register to be recomputed during the second
1968 pass. */
1969 reset_saved_regs (this_cache);
1970 goto restart;
1971 }
1972 }
1973 }
1974 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1975 {
1976 set_reg_offset (this_cache, reg, frame_addr + low_word);
1977 }
1978 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1979 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1980 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1981 || high_word == 0x3c1c /* lui $gp,n */
1982 || high_word == 0x279c /* addiu $gp,$gp,n */
1983 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1984 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1985 )
1986 {
1987 /* These instructions are part of the prologue, but we don't
1988 need to do anything special to handle them. */
1989 }
1990 /* The instructions below load $at or $t0 with an immediate
1991 value in preparation for a stack adjustment via
1992 subu $sp,$sp,[$at,$t0]. These instructions could also
1993 initialize a local variable, so we accept them only before
1994 a stack adjustment instruction was seen. */
1995 else if (!seen_sp_adjust
1996 && (high_word == 0x3c01 /* lui $at,n */
1997 || high_word == 0x3c08 /* lui $t0,n */
1998 || high_word == 0x3421 /* ori $at,$at,n */
1999 || high_word == 0x3508 /* ori $t0,$t0,n */
2000 || high_word == 0x3401 /* ori $at,$zero,n */
2001 || high_word == 0x3408 /* ori $t0,$zero,n */
2002 ))
2003 {
2004 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
2005 }
2006 else
2007 {
2008 /* This instruction is not an instruction typically found
2009 in a prologue, so we must have reached the end of the
2010 prologue. */
2011 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
2012 loop now? Why would we need to continue scanning the function
2013 instructions? */
2014 if (end_prologue_addr == 0)
2015 end_prologue_addr = cur_pc;
2016 }
2017 }
2018
2019 if (this_cache != NULL)
2020 {
2021 this_cache->base =
2022 (frame_unwind_register_signed (next_frame,
2023 gdbarch_num_regs (gdbarch) + frame_reg)
2024 + frame_offset);
2025 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
2026 this assignment below, eventually. But it's still needed
2027 for now. */
2028 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2029 + mips_regnum (gdbarch)->pc]
2030 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2031 + MIPS_RA_REGNUM];
2032 }
2033
2034 /* If we didn't reach the end of the prologue when scanning the function
2035 instructions, then set end_prologue_addr to the address of the
2036 instruction immediately after the last one we scanned. */
2037 /* brobecker/2004-10-10: I don't think this would ever happen, but
2038 we may as well be careful and do our best if we have a null
2039 end_prologue_addr. */
2040 if (end_prologue_addr == 0)
2041 end_prologue_addr = cur_pc;
2042
2043 /* In a frameless function, we might have incorrectly
2044 skipped some load immediate instructions. Undo the skipping
2045 if the load immediate was not followed by a stack adjustment. */
2046 if (load_immediate_bytes && !seen_sp_adjust)
2047 end_prologue_addr -= load_immediate_bytes;
2048
2049 return end_prologue_addr;
2050 }
2051
2052 /* Heuristic unwinder for procedures using 32-bit instructions (covers
2053 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
2054 instructions (a.k.a. MIPS16) are handled by the mips_insn16
2055 unwinder. */
2056
2057 static struct mips_frame_cache *
2058 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
2059 {
2060 struct mips_frame_cache *cache;
2061
2062 if ((*this_cache) != NULL)
2063 return (*this_cache);
2064
2065 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2066 (*this_cache) = cache;
2067 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2068
2069 /* Analyze the function prologue. */
2070 {
2071 const CORE_ADDR pc =
2072 frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2073 CORE_ADDR start_addr;
2074
2075 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2076 if (start_addr == 0)
2077 start_addr = heuristic_proc_start (pc);
2078 /* We can't analyze the prologue if we couldn't find the begining
2079 of the function. */
2080 if (start_addr == 0)
2081 return cache;
2082
2083 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
2084 }
2085
2086 /* gdbarch_sp_regnum contains the value and not the address. */
2087 trad_frame_set_value (cache->saved_regs,
2088 gdbarch_num_regs (get_frame_arch (next_frame))
2089 + MIPS_SP_REGNUM,
2090 cache->base);
2091
2092 return (*this_cache);
2093 }
2094
2095 static void
2096 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
2097 struct frame_id *this_id)
2098 {
2099 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2100 this_cache);
2101 (*this_id) = frame_id_build (info->base,
2102 frame_func_unwind (next_frame, NORMAL_FRAME));
2103 }
2104
2105 static void
2106 mips_insn32_frame_prev_register (struct frame_info *next_frame,
2107 void **this_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
2110 int *realnump, gdb_byte *valuep)
2111 {
2112 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2113 this_cache);
2114 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2115 optimizedp, lvalp, addrp, realnump, valuep);
2116 }
2117
2118 static const struct frame_unwind mips_insn32_frame_unwind =
2119 {
2120 NORMAL_FRAME,
2121 mips_insn32_frame_this_id,
2122 mips_insn32_frame_prev_register
2123 };
2124
2125 static const struct frame_unwind *
2126 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2127 {
2128 CORE_ADDR pc = frame_pc_unwind (next_frame);
2129 if (! mips_pc_is_mips16 (pc))
2130 return &mips_insn32_frame_unwind;
2131 return NULL;
2132 }
2133
2134 static CORE_ADDR
2135 mips_insn32_frame_base_address (struct frame_info *next_frame,
2136 void **this_cache)
2137 {
2138 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2139 this_cache);
2140 return info->base;
2141 }
2142
2143 static const struct frame_base mips_insn32_frame_base =
2144 {
2145 &mips_insn32_frame_unwind,
2146 mips_insn32_frame_base_address,
2147 mips_insn32_frame_base_address,
2148 mips_insn32_frame_base_address
2149 };
2150
2151 static const struct frame_base *
2152 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2153 {
2154 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2155 return &mips_insn32_frame_base;
2156 else
2157 return NULL;
2158 }
2159
2160 static struct trad_frame_cache *
2161 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2162 {
2163 CORE_ADDR pc;
2164 CORE_ADDR start_addr;
2165 CORE_ADDR stack_addr;
2166 struct trad_frame_cache *this_trad_cache;
2167 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2168
2169 if ((*this_cache) != NULL)
2170 return (*this_cache);
2171 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2172 (*this_cache) = this_trad_cache;
2173
2174 /* The return address is in the link register. */
2175 trad_frame_set_reg_realreg (this_trad_cache,
2176 gdbarch_pc_regnum (gdbarch),
2177 (gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM));
2178
2179 /* Frame ID, since it's a frameless / stackless function, no stack
2180 space is allocated and SP on entry is the current SP. */
2181 pc = frame_pc_unwind (next_frame);
2182 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2183 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2184 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
2185
2186 /* Assume that the frame's base is the same as the
2187 stack-pointer. */
2188 trad_frame_set_this_base (this_trad_cache, stack_addr);
2189
2190 return this_trad_cache;
2191 }
2192
2193 static void
2194 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2195 struct frame_id *this_id)
2196 {
2197 struct trad_frame_cache *this_trad_cache
2198 = mips_stub_frame_cache (next_frame, this_cache);
2199 trad_frame_get_id (this_trad_cache, this_id);
2200 }
2201
2202 static void
2203 mips_stub_frame_prev_register (struct frame_info *next_frame,
2204 void **this_cache,
2205 int regnum, int *optimizedp,
2206 enum lval_type *lvalp, CORE_ADDR *addrp,
2207 int *realnump, gdb_byte *valuep)
2208 {
2209 struct trad_frame_cache *this_trad_cache
2210 = mips_stub_frame_cache (next_frame, this_cache);
2211 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2212 lvalp, addrp, realnump, valuep);
2213 }
2214
2215 static const struct frame_unwind mips_stub_frame_unwind =
2216 {
2217 NORMAL_FRAME,
2218 mips_stub_frame_this_id,
2219 mips_stub_frame_prev_register
2220 };
2221
2222 static const struct frame_unwind *
2223 mips_stub_frame_sniffer (struct frame_info *next_frame)
2224 {
2225 gdb_byte dummy[4];
2226 struct obj_section *s;
2227 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2228
2229 /* Use the stub unwinder for unreadable code. */
2230 if (target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
2231 return &mips_stub_frame_unwind;
2232
2233 if (in_plt_section (pc, NULL))
2234 return &mips_stub_frame_unwind;
2235
2236 /* Binutils for MIPS puts lazy resolution stubs into .MIPS.stubs. */
2237 s = find_pc_section (pc);
2238
2239 if (s != NULL
2240 && strcmp (bfd_get_section_name (s->objfile->obfd, s->the_bfd_section),
2241 ".MIPS.stubs") == 0)
2242 return &mips_stub_frame_unwind;
2243
2244 return NULL;
2245 }
2246
2247 static CORE_ADDR
2248 mips_stub_frame_base_address (struct frame_info *next_frame,
2249 void **this_cache)
2250 {
2251 struct trad_frame_cache *this_trad_cache
2252 = mips_stub_frame_cache (next_frame, this_cache);
2253 return trad_frame_get_this_base (this_trad_cache);
2254 }
2255
2256 static const struct frame_base mips_stub_frame_base =
2257 {
2258 &mips_stub_frame_unwind,
2259 mips_stub_frame_base_address,
2260 mips_stub_frame_base_address,
2261 mips_stub_frame_base_address
2262 };
2263
2264 static const struct frame_base *
2265 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2266 {
2267 if (mips_stub_frame_sniffer (next_frame) != NULL)
2268 return &mips_stub_frame_base;
2269 else
2270 return NULL;
2271 }
2272
2273 /* mips_addr_bits_remove - remove useless address bits */
2274
2275 static CORE_ADDR
2276 mips_addr_bits_remove (CORE_ADDR addr)
2277 {
2278 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2279 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2280 /* This hack is a work-around for existing boards using PMON, the
2281 simulator, and any other 64-bit targets that doesn't have true
2282 64-bit addressing. On these targets, the upper 32 bits of
2283 addresses are ignored by the hardware. Thus, the PC or SP are
2284 likely to have been sign extended to all 1s by instruction
2285 sequences that load 32-bit addresses. For example, a typical
2286 piece of code that loads an address is this:
2287
2288 lui $r2, <upper 16 bits>
2289 ori $r2, <lower 16 bits>
2290
2291 But the lui sign-extends the value such that the upper 32 bits
2292 may be all 1s. The workaround is simply to mask off these
2293 bits. In the future, gcc may be changed to support true 64-bit
2294 addressing, and this masking will have to be disabled. */
2295 return addr &= 0xffffffffUL;
2296 else
2297 return addr;
2298 }
2299
2300 /* mips_software_single_step() is called just before we want to resume
2301 the inferior, if we want to single-step it but there is no hardware
2302 or kernel single-step support (MIPS on GNU/Linux for example). We find
2303 the target of the coming instruction and breakpoint it. */
2304
2305 int
2306 mips_software_single_step (struct frame_info *frame)
2307 {
2308 CORE_ADDR pc, next_pc;
2309
2310 pc = get_frame_pc (frame);
2311 next_pc = mips_next_pc (frame, pc);
2312
2313 insert_single_step_breakpoint (next_pc);
2314 return 1;
2315 }
2316
2317 /* Test whether the PC points to the return instruction at the
2318 end of a function. */
2319
2320 static int
2321 mips_about_to_return (CORE_ADDR pc)
2322 {
2323 if (mips_pc_is_mips16 (pc))
2324 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2325 generates a "jr $ra"; other times it generates code to load
2326 the return address from the stack to an accessible register (such
2327 as $a3), then a "jr" using that register. This second case
2328 is almost impossible to distinguish from an indirect jump
2329 used for switch statements, so we don't even try. */
2330 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2331 else
2332 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2333 }
2334
2335
2336 /* This fencepost looks highly suspicious to me. Removing it also
2337 seems suspicious as it could affect remote debugging across serial
2338 lines. */
2339
2340 static CORE_ADDR
2341 heuristic_proc_start (CORE_ADDR pc)
2342 {
2343 CORE_ADDR start_pc;
2344 CORE_ADDR fence;
2345 int instlen;
2346 int seen_adjsp = 0;
2347
2348 pc = gdbarch_addr_bits_remove (current_gdbarch, pc);
2349 start_pc = pc;
2350 fence = start_pc - heuristic_fence_post;
2351 if (start_pc == 0)
2352 return 0;
2353
2354 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2355 fence = VM_MIN_ADDRESS;
2356
2357 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2358
2359 /* search back for previous return */
2360 for (start_pc -= instlen;; start_pc -= instlen)
2361 if (start_pc < fence)
2362 {
2363 /* It's not clear to me why we reach this point when
2364 stop_soon, but with this test, at least we
2365 don't print out warnings for every child forked (eg, on
2366 decstation). 22apr93 rich@cygnus.com. */
2367 if (stop_soon == NO_STOP_QUIETLY)
2368 {
2369 static int blurb_printed = 0;
2370
2371 warning (_("GDB can't find the start of the function at 0x%s."),
2372 paddr_nz (pc));
2373
2374 if (!blurb_printed)
2375 {
2376 /* This actually happens frequently in embedded
2377 development, when you first connect to a board
2378 and your stack pointer and pc are nowhere in
2379 particular. This message needs to give people
2380 in that situation enough information to
2381 determine that it's no big deal. */
2382 printf_filtered ("\n\
2383 GDB is unable to find the start of the function at 0x%s\n\
2384 and thus can't determine the size of that function's stack frame.\n\
2385 This means that GDB may be unable to access that stack frame, or\n\
2386 the frames below it.\n\
2387 This problem is most likely caused by an invalid program counter or\n\
2388 stack pointer.\n\
2389 However, if you think GDB should simply search farther back\n\
2390 from 0x%s for code which looks like the beginning of a\n\
2391 function, you can increase the range of the search using the `set\n\
2392 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2393 blurb_printed = 1;
2394 }
2395 }
2396
2397 return 0;
2398 }
2399 else if (mips_pc_is_mips16 (start_pc))
2400 {
2401 unsigned short inst;
2402
2403 /* On MIPS16, any one of the following is likely to be the
2404 start of a function:
2405 extend save
2406 save
2407 entry
2408 addiu sp,-n
2409 daddiu sp,-n
2410 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2411 inst = mips_fetch_instruction (start_pc);
2412 if ((inst & 0xff80) == 0x6480) /* save */
2413 {
2414 if (start_pc - instlen >= fence)
2415 {
2416 inst = mips_fetch_instruction (start_pc - instlen);
2417 if ((inst & 0xf800) == 0xf000) /* extend */
2418 start_pc -= instlen;
2419 }
2420 break;
2421 }
2422 else if (((inst & 0xf81f) == 0xe809
2423 && (inst & 0x700) != 0x700) /* entry */
2424 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2425 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2426 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2427 break;
2428 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2429 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2430 seen_adjsp = 1;
2431 else
2432 seen_adjsp = 0;
2433 }
2434 else if (mips_about_to_return (start_pc))
2435 {
2436 /* Skip return and its delay slot. */
2437 start_pc += 2 * MIPS_INSN32_SIZE;
2438 break;
2439 }
2440
2441 return start_pc;
2442 }
2443
2444 struct mips_objfile_private
2445 {
2446 bfd_size_type size;
2447 char *contents;
2448 };
2449
2450 /* According to the current ABI, should the type be passed in a
2451 floating-point register (assuming that there is space)? When there
2452 is no FPU, FP are not even considered as possible candidates for
2453 FP registers and, consequently this returns false - forces FP
2454 arguments into integer registers. */
2455
2456 static int
2457 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2458 {
2459 return ((typecode == TYPE_CODE_FLT
2460 || (MIPS_EABI
2461 && (typecode == TYPE_CODE_STRUCT
2462 || typecode == TYPE_CODE_UNION)
2463 && TYPE_NFIELDS (arg_type) == 1
2464 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
2465 == TYPE_CODE_FLT))
2466 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2467 }
2468
2469 /* On o32, argument passing in GPRs depends on the alignment of the type being
2470 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2471
2472 static int
2473 mips_type_needs_double_align (struct type *type)
2474 {
2475 enum type_code typecode = TYPE_CODE (type);
2476
2477 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2478 return 1;
2479 else if (typecode == TYPE_CODE_STRUCT)
2480 {
2481 if (TYPE_NFIELDS (type) < 1)
2482 return 0;
2483 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2484 }
2485 else if (typecode == TYPE_CODE_UNION)
2486 {
2487 int i, n;
2488
2489 n = TYPE_NFIELDS (type);
2490 for (i = 0; i < n; i++)
2491 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2492 return 1;
2493 return 0;
2494 }
2495 return 0;
2496 }
2497
2498 /* Adjust the address downward (direction of stack growth) so that it
2499 is correctly aligned for a new stack frame. */
2500 static CORE_ADDR
2501 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2502 {
2503 return align_down (addr, 16);
2504 }
2505
2506 static CORE_ADDR
2507 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2508 struct regcache *regcache, CORE_ADDR bp_addr,
2509 int nargs, struct value **args, CORE_ADDR sp,
2510 int struct_return, CORE_ADDR struct_addr)
2511 {
2512 int argreg;
2513 int float_argreg;
2514 int argnum;
2515 int len = 0;
2516 int stack_offset = 0;
2517 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2518 CORE_ADDR func_addr = find_function_addr (function, NULL);
2519 int regsize = mips_abi_regsize (gdbarch);
2520
2521 /* For shared libraries, "t9" needs to point at the function
2522 address. */
2523 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2524
2525 /* Set the return address register to point to the entry point of
2526 the program, where a breakpoint lies in wait. */
2527 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2528
2529 /* First ensure that the stack and structure return address (if any)
2530 are properly aligned. The stack has to be at least 64-bit
2531 aligned even on 32-bit machines, because doubles must be 64-bit
2532 aligned. For n32 and n64, stack frames need to be 128-bit
2533 aligned, so we round to this widest known alignment. */
2534
2535 sp = align_down (sp, 16);
2536 struct_addr = align_down (struct_addr, 16);
2537
2538 /* Now make space on the stack for the args. We allocate more
2539 than necessary for EABI, because the first few arguments are
2540 passed in registers, but that's OK. */
2541 for (argnum = 0; argnum < nargs; argnum++)
2542 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
2543 sp -= align_up (len, 16);
2544
2545 if (mips_debug)
2546 fprintf_unfiltered (gdb_stdlog,
2547 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2548 paddr_nz (sp), (long) align_up (len, 16));
2549
2550 /* Initialize the integer and float register pointers. */
2551 argreg = MIPS_A0_REGNUM;
2552 float_argreg = mips_fpa0_regnum (gdbarch);
2553
2554 /* The struct_return pointer occupies the first parameter-passing reg. */
2555 if (struct_return)
2556 {
2557 if (mips_debug)
2558 fprintf_unfiltered (gdb_stdlog,
2559 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2560 argreg, paddr_nz (struct_addr));
2561 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2562 }
2563
2564 /* Now load as many as possible of the first arguments into
2565 registers, and push the rest onto the stack. Loop thru args
2566 from first to last. */
2567 for (argnum = 0; argnum < nargs; argnum++)
2568 {
2569 const gdb_byte *val;
2570 gdb_byte valbuf[MAX_REGISTER_SIZE];
2571 struct value *arg = args[argnum];
2572 struct type *arg_type = check_typedef (value_type (arg));
2573 int len = TYPE_LENGTH (arg_type);
2574 enum type_code typecode = TYPE_CODE (arg_type);
2575
2576 if (mips_debug)
2577 fprintf_unfiltered (gdb_stdlog,
2578 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2579 argnum + 1, len, (int) typecode);
2580
2581 /* The EABI passes structures that do not fit in a register by
2582 reference. */
2583 if (len > regsize
2584 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2585 {
2586 store_unsigned_integer (valbuf, regsize, VALUE_ADDRESS (arg));
2587 typecode = TYPE_CODE_PTR;
2588 len = regsize;
2589 val = valbuf;
2590 if (mips_debug)
2591 fprintf_unfiltered (gdb_stdlog, " push");
2592 }
2593 else
2594 val = value_contents (arg);
2595
2596 /* 32-bit ABIs always start floating point arguments in an
2597 even-numbered floating point register. Round the FP register
2598 up before the check to see if there are any FP registers
2599 left. Non MIPS_EABI targets also pass the FP in the integer
2600 registers so also round up normal registers. */
2601 if (regsize < 8 && fp_register_arg_p (typecode, arg_type))
2602 {
2603 if ((float_argreg & 1))
2604 float_argreg++;
2605 }
2606
2607 /* Floating point arguments passed in registers have to be
2608 treated specially. On 32-bit architectures, doubles
2609 are passed in register pairs; the even register gets
2610 the low word, and the odd register gets the high word.
2611 On non-EABI processors, the first two floating point arguments are
2612 also copied to general registers, because MIPS16 functions
2613 don't use float registers for arguments. This duplication of
2614 arguments in general registers can't hurt non-MIPS16 functions
2615 because those registers are normally skipped. */
2616 /* MIPS_EABI squeezes a struct that contains a single floating
2617 point value into an FP register instead of pushing it onto the
2618 stack. */
2619 if (fp_register_arg_p (typecode, arg_type)
2620 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2621 {
2622 /* EABI32 will pass doubles in consecutive registers, even on
2623 64-bit cores. At one time, we used to check the size of
2624 `float_argreg' to determine whether or not to pass doubles
2625 in consecutive registers, but this is not sufficient for
2626 making the ABI determination. */
2627 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
2628 {
2629 int low_offset = gdbarch_byte_order (gdbarch)
2630 == BFD_ENDIAN_BIG ? 4 : 0;
2631 unsigned long regval;
2632
2633 /* Write the low word of the double to the even register(s). */
2634 regval = extract_unsigned_integer (val + low_offset, 4);
2635 if (mips_debug)
2636 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2637 float_argreg, phex (regval, 4));
2638 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2639
2640 /* Write the high word of the double to the odd register(s). */
2641 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2642 if (mips_debug)
2643 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2644 float_argreg, phex (regval, 4));
2645 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2646 }
2647 else
2648 {
2649 /* This is a floating point value that fits entirely
2650 in a single register. */
2651 /* On 32 bit ABI's the float_argreg is further adjusted
2652 above to ensure that it is even register aligned. */
2653 LONGEST regval = extract_unsigned_integer (val, len);
2654 if (mips_debug)
2655 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2656 float_argreg, phex (regval, len));
2657 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
2658 }
2659 }
2660 else
2661 {
2662 /* Copy the argument to general registers or the stack in
2663 register-sized pieces. Large arguments are split between
2664 registers and stack. */
2665 /* Note: structs whose size is not a multiple of regsize
2666 are treated specially: Irix cc passes
2667 them in registers where gcc sometimes puts them on the
2668 stack. For maximum compatibility, we will put them in
2669 both places. */
2670 int odd_sized_struct = (len > regsize && len % regsize != 0);
2671
2672 /* Note: Floating-point values that didn't fit into an FP
2673 register are only written to memory. */
2674 while (len > 0)
2675 {
2676 /* Remember if the argument was written to the stack. */
2677 int stack_used_p = 0;
2678 int partial_len = (len < regsize ? len : regsize);
2679
2680 if (mips_debug)
2681 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2682 partial_len);
2683
2684 /* Write this portion of the argument to the stack. */
2685 if (argreg > MIPS_LAST_ARG_REGNUM
2686 || odd_sized_struct
2687 || fp_register_arg_p (typecode, arg_type))
2688 {
2689 /* Should shorter than int integer values be
2690 promoted to int before being stored? */
2691 int longword_offset = 0;
2692 CORE_ADDR addr;
2693 stack_used_p = 1;
2694 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2695 {
2696 if (regsize == 8
2697 && (typecode == TYPE_CODE_INT
2698 || typecode == TYPE_CODE_PTR
2699 || typecode == TYPE_CODE_FLT) && len <= 4)
2700 longword_offset = regsize - len;
2701 else if ((typecode == TYPE_CODE_STRUCT
2702 || typecode == TYPE_CODE_UNION)
2703 && TYPE_LENGTH (arg_type) < regsize)
2704 longword_offset = regsize - len;
2705 }
2706
2707 if (mips_debug)
2708 {
2709 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2710 paddr_nz (stack_offset));
2711 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2712 paddr_nz (longword_offset));
2713 }
2714
2715 addr = sp + stack_offset + longword_offset;
2716
2717 if (mips_debug)
2718 {
2719 int i;
2720 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2721 paddr_nz (addr));
2722 for (i = 0; i < partial_len; i++)
2723 {
2724 fprintf_unfiltered (gdb_stdlog, "%02x",
2725 val[i] & 0xff);
2726 }
2727 }
2728 write_memory (addr, val, partial_len);
2729 }
2730
2731 /* Note!!! This is NOT an else clause. Odd sized
2732 structs may go thru BOTH paths. Floating point
2733 arguments will not. */
2734 /* Write this portion of the argument to a general
2735 purpose register. */
2736 if (argreg <= MIPS_LAST_ARG_REGNUM
2737 && !fp_register_arg_p (typecode, arg_type))
2738 {
2739 LONGEST regval =
2740 extract_unsigned_integer (val, partial_len);
2741
2742 if (mips_debug)
2743 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2744 argreg,
2745 phex (regval, regsize));
2746 regcache_cooked_write_unsigned (regcache, argreg, regval);
2747 argreg++;
2748 }
2749
2750 len -= partial_len;
2751 val += partial_len;
2752
2753 /* Compute the the offset into the stack at which we
2754 will copy the next parameter.
2755
2756 In the new EABI (and the NABI32), the stack_offset
2757 only needs to be adjusted when it has been used. */
2758
2759 if (stack_used_p)
2760 stack_offset += align_up (partial_len, regsize);
2761 }
2762 }
2763 if (mips_debug)
2764 fprintf_unfiltered (gdb_stdlog, "\n");
2765 }
2766
2767 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2768
2769 /* Return adjusted stack pointer. */
2770 return sp;
2771 }
2772
2773 /* Determine the return value convention being used. */
2774
2775 static enum return_value_convention
2776 mips_eabi_return_value (struct gdbarch *gdbarch,
2777 struct type *type, struct regcache *regcache,
2778 gdb_byte *readbuf, const gdb_byte *writebuf)
2779 {
2780 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2781 return RETURN_VALUE_STRUCT_CONVENTION;
2782 if (readbuf)
2783 memset (readbuf, 0, TYPE_LENGTH (type));
2784 return RETURN_VALUE_REGISTER_CONVENTION;
2785 }
2786
2787
2788 /* N32/N64 ABI stuff. */
2789
2790 /* Search for a naturally aligned double at OFFSET inside a struct
2791 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
2792 registers. */
2793
2794 static int
2795 mips_n32n64_fp_arg_chunk_p (struct type *arg_type, int offset)
2796 {
2797 int i;
2798
2799 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
2800 return 0;
2801
2802 if (MIPS_FPU_TYPE != MIPS_FPU_DOUBLE)
2803 return 0;
2804
2805 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
2806 return 0;
2807
2808 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
2809 {
2810 int pos;
2811 struct type *field_type;
2812
2813 /* We're only looking at normal fields. */
2814 if (TYPE_FIELD_STATIC (arg_type, i)
2815 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
2816 continue;
2817
2818 /* If we have gone past the offset, there is no double to pass. */
2819 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
2820 if (pos > offset)
2821 return 0;
2822
2823 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
2824
2825 /* If this field is entirely before the requested offset, go
2826 on to the next one. */
2827 if (pos + TYPE_LENGTH (field_type) <= offset)
2828 continue;
2829
2830 /* If this is our special aligned double, we can stop. */
2831 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
2832 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
2833 return 1;
2834
2835 /* This field starts at or before the requested offset, and
2836 overlaps it. If it is a structure, recurse inwards. */
2837 return mips_n32n64_fp_arg_chunk_p (field_type, offset - pos);
2838 }
2839
2840 return 0;
2841 }
2842
2843 static CORE_ADDR
2844 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2845 struct regcache *regcache, CORE_ADDR bp_addr,
2846 int nargs, struct value **args, CORE_ADDR sp,
2847 int struct_return, CORE_ADDR struct_addr)
2848 {
2849 int argreg;
2850 int float_argreg;
2851 int argnum;
2852 int len = 0;
2853 int stack_offset = 0;
2854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2855 CORE_ADDR func_addr = find_function_addr (function, NULL);
2856
2857 /* For shared libraries, "t9" needs to point at the function
2858 address. */
2859 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2860
2861 /* Set the return address register to point to the entry point of
2862 the program, where a breakpoint lies in wait. */
2863 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2864
2865 /* First ensure that the stack and structure return address (if any)
2866 are properly aligned. The stack has to be at least 64-bit
2867 aligned even on 32-bit machines, because doubles must be 64-bit
2868 aligned. For n32 and n64, stack frames need to be 128-bit
2869 aligned, so we round to this widest known alignment. */
2870
2871 sp = align_down (sp, 16);
2872 struct_addr = align_down (struct_addr, 16);
2873
2874 /* Now make space on the stack for the args. */
2875 for (argnum = 0; argnum < nargs; argnum++)
2876 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
2877 sp -= align_up (len, 16);
2878
2879 if (mips_debug)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2882 paddr_nz (sp), (long) align_up (len, 16));
2883
2884 /* Initialize the integer and float register pointers. */
2885 argreg = MIPS_A0_REGNUM;
2886 float_argreg = mips_fpa0_regnum (gdbarch);
2887
2888 /* The struct_return pointer occupies the first parameter-passing reg. */
2889 if (struct_return)
2890 {
2891 if (mips_debug)
2892 fprintf_unfiltered (gdb_stdlog,
2893 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2894 argreg, paddr_nz (struct_addr));
2895 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
2896 }
2897
2898 /* Now load as many as possible of the first arguments into
2899 registers, and push the rest onto the stack. Loop thru args
2900 from first to last. */
2901 for (argnum = 0; argnum < nargs; argnum++)
2902 {
2903 const gdb_byte *val;
2904 struct value *arg = args[argnum];
2905 struct type *arg_type = check_typedef (value_type (arg));
2906 int len = TYPE_LENGTH (arg_type);
2907 enum type_code typecode = TYPE_CODE (arg_type);
2908
2909 if (mips_debug)
2910 fprintf_unfiltered (gdb_stdlog,
2911 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2912 argnum + 1, len, (int) typecode);
2913
2914 val = value_contents (arg);
2915
2916 if (fp_register_arg_p (typecode, arg_type)
2917 && argreg <= MIPS_LAST_ARG_REGNUM)
2918 {
2919 /* This is a floating point value that fits entirely
2920 in a single register. */
2921 LONGEST regval = extract_unsigned_integer (val, len);
2922 if (mips_debug)
2923 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2924 float_argreg, phex (regval, len));
2925 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
2926
2927 if (mips_debug)
2928 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2929 argreg, phex (regval, len));
2930 regcache_cooked_write_unsigned (regcache, argreg, regval);
2931 float_argreg++;
2932 argreg++;
2933 }
2934 else
2935 {
2936 /* Copy the argument to general registers or the stack in
2937 register-sized pieces. Large arguments are split between
2938 registers and stack. */
2939 /* For N32/N64, structs, unions, or other composite types are
2940 treated as a sequence of doublewords, and are passed in integer
2941 or floating point registers as though they were simple scalar
2942 parameters to the extent that they fit, with any excess on the
2943 stack packed according to the normal memory layout of the
2944 object.
2945 The caller does not reserve space for the register arguments;
2946 the callee is responsible for reserving it if required. */
2947 /* Note: Floating-point values that didn't fit into an FP
2948 register are only written to memory. */
2949 while (len > 0)
2950 {
2951 /* Remember if the argument was written to the stack. */
2952 int stack_used_p = 0;
2953 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
2954
2955 if (mips_debug)
2956 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2957 partial_len);
2958
2959 if (fp_register_arg_p (typecode, arg_type))
2960 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM);
2961
2962 /* Write this portion of the argument to the stack. */
2963 if (argreg > MIPS_LAST_ARG_REGNUM)
2964 {
2965 /* Should shorter than int integer values be
2966 promoted to int before being stored? */
2967 int longword_offset = 0;
2968 CORE_ADDR addr;
2969 stack_used_p = 1;
2970 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2971 {
2972 if ((typecode == TYPE_CODE_INT
2973 || typecode == TYPE_CODE_PTR
2974 || typecode == TYPE_CODE_FLT)
2975 && len <= 4)
2976 longword_offset = MIPS64_REGSIZE - len;
2977 }
2978
2979 if (mips_debug)
2980 {
2981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2982 paddr_nz (stack_offset));
2983 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2984 paddr_nz (longword_offset));
2985 }
2986
2987 addr = sp + stack_offset + longword_offset;
2988
2989 if (mips_debug)
2990 {
2991 int i;
2992 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2993 paddr_nz (addr));
2994 for (i = 0; i < partial_len; i++)
2995 {
2996 fprintf_unfiltered (gdb_stdlog, "%02x",
2997 val[i] & 0xff);
2998 }
2999 }
3000 write_memory (addr, val, partial_len);
3001 }
3002
3003 /* Note!!! This is NOT an else clause. Odd sized
3004 structs may go thru BOTH paths. */
3005 /* Write this portion of the argument to a general
3006 purpose register. */
3007 if (argreg <= MIPS_LAST_ARG_REGNUM)
3008 {
3009 LONGEST regval =
3010 extract_unsigned_integer (val, partial_len);
3011
3012 /* A non-floating-point argument being passed in a
3013 general register. If a struct or union, and if
3014 the remaining length is smaller than the register
3015 size, we have to adjust the register value on
3016 big endian targets.
3017
3018 It does not seem to be necessary to do the
3019 same for integral types. */
3020
3021 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3022 && partial_len < MIPS64_REGSIZE
3023 && (typecode == TYPE_CODE_STRUCT
3024 || typecode == TYPE_CODE_UNION))
3025 regval <<= ((MIPS64_REGSIZE - partial_len)
3026 * TARGET_CHAR_BIT);
3027
3028 if (mips_debug)
3029 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3030 argreg,
3031 phex (regval, MIPS64_REGSIZE));
3032 regcache_cooked_write_unsigned (regcache, argreg, regval);
3033
3034 if (mips_n32n64_fp_arg_chunk_p (arg_type,
3035 TYPE_LENGTH (arg_type) - len))
3036 {
3037 if (mips_debug)
3038 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
3039 float_argreg,
3040 phex (regval, MIPS64_REGSIZE));
3041 regcache_cooked_write_unsigned (regcache, float_argreg,
3042 regval);
3043 }
3044
3045 float_argreg++;
3046 argreg++;
3047 }
3048
3049 len -= partial_len;
3050 val += partial_len;
3051
3052 /* Compute the the offset into the stack at which we
3053 will copy the next parameter.
3054
3055 In N32 (N64?), the stack_offset only needs to be
3056 adjusted when it has been used. */
3057
3058 if (stack_used_p)
3059 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3060 }
3061 }
3062 if (mips_debug)
3063 fprintf_unfiltered (gdb_stdlog, "\n");
3064 }
3065
3066 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3067
3068 /* Return adjusted stack pointer. */
3069 return sp;
3070 }
3071
3072 static enum return_value_convention
3073 mips_n32n64_return_value (struct gdbarch *gdbarch,
3074 struct type *type, struct regcache *regcache,
3075 gdb_byte *readbuf, const gdb_byte *writebuf)
3076 {
3077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3078
3079 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
3080
3081 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
3082 if needed), as appropriate for the type. Composite results (struct,
3083 union, or array) are returned in $2/$f0 and $3/$f2 according to the
3084 following rules:
3085
3086 * A struct with only one or two floating point fields is returned in $f0
3087 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
3088 case.
3089
3090 * Any other struct or union results of at most 128 bits are returned in
3091 $2 (first 64 bits) and $3 (remainder, if necessary).
3092
3093 * Larger composite results are handled by converting the function to a
3094 procedure with an implicit first parameter, which is a pointer to an area
3095 reserved by the caller to receive the result. [The o32-bit ABI requires
3096 that all composite results be handled by conversion to implicit first
3097 parameters. The MIPS/SGI Fortran implementation has always made a
3098 specific exception to return COMPLEX results in the floating point
3099 registers.] */
3100
3101 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
3102 || TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
3103 return RETURN_VALUE_STRUCT_CONVENTION;
3104 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3105 && TYPE_LENGTH (type) == 16
3106 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3107 {
3108 /* A 128-bit floating-point value fills both $f0 and $f2. The
3109 two registers are used in the same as memory order, so the
3110 eight bytes with the lower memory address are in $f0. */
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
3113 mips_xfer_register (gdbarch, regcache,
3114 gdbarch_num_regs (gdbarch)
3115 + mips_regnum (gdbarch)->fp0,
3116 8, gdbarch_byte_order (gdbarch),
3117 readbuf, writebuf, 0);
3118 mips_xfer_register (gdbarch, regcache,
3119 gdbarch_num_regs (gdbarch)
3120 + mips_regnum (gdbarch)->fp0 + 2,
3121 8, gdbarch_byte_order (gdbarch),
3122 readbuf ? readbuf + 8 : readbuf,
3123 writebuf ? writebuf + 8 : writebuf, 0);
3124 return RETURN_VALUE_REGISTER_CONVENTION;
3125 }
3126 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3127 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3128 {
3129 /* A single or double floating-point value that fits in FP0. */
3130 if (mips_debug)
3131 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3132 mips_xfer_register (gdbarch, regcache,
3133 gdbarch_num_regs (gdbarch)
3134 + mips_regnum (gdbarch)->fp0,
3135 TYPE_LENGTH (type),
3136 gdbarch_byte_order (gdbarch),
3137 readbuf, writebuf, 0);
3138 return RETURN_VALUE_REGISTER_CONVENTION;
3139 }
3140 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3141 && TYPE_NFIELDS (type) <= 2
3142 && TYPE_NFIELDS (type) >= 1
3143 && ((TYPE_NFIELDS (type) == 1
3144 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3145 == TYPE_CODE_FLT))
3146 || (TYPE_NFIELDS (type) == 2
3147 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
3148 == TYPE_CODE_FLT)
3149 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
3150 == TYPE_CODE_FLT)))
3151 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3152 {
3153 /* A struct that contains one or two floats. Each value is part
3154 in the least significant part of their floating point
3155 register.. */
3156 int regnum;
3157 int field;
3158 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
3159 field < TYPE_NFIELDS (type); field++, regnum += 2)
3160 {
3161 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3162 / TARGET_CHAR_BIT);
3163 if (mips_debug)
3164 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3165 offset);
3166 mips_xfer_register (gdbarch, regcache,
3167 gdbarch_num_regs (gdbarch) + regnum,
3168 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3169 gdbarch_byte_order (gdbarch),
3170 readbuf, writebuf, offset);
3171 }
3172 return RETURN_VALUE_REGISTER_CONVENTION;
3173 }
3174 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3175 || TYPE_CODE (type) == TYPE_CODE_UNION)
3176 {
3177 /* A structure or union. Extract the left justified value,
3178 regardless of the byte order. I.e. DO NOT USE
3179 mips_xfer_lower. */
3180 int offset;
3181 int regnum;
3182 for (offset = 0, regnum = MIPS_V0_REGNUM;
3183 offset < TYPE_LENGTH (type);
3184 offset += register_size (gdbarch, regnum), regnum++)
3185 {
3186 int xfer = register_size (gdbarch, regnum);
3187 if (offset + xfer > TYPE_LENGTH (type))
3188 xfer = TYPE_LENGTH (type) - offset;
3189 if (mips_debug)
3190 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3191 offset, xfer, regnum);
3192 mips_xfer_register (gdbarch, regcache,
3193 gdbarch_num_regs (gdbarch) + regnum,
3194 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
3195 offset);
3196 }
3197 return RETURN_VALUE_REGISTER_CONVENTION;
3198 }
3199 else
3200 {
3201 /* A scalar extract each part but least-significant-byte
3202 justified. */
3203 int offset;
3204 int regnum;
3205 for (offset = 0, regnum = MIPS_V0_REGNUM;
3206 offset < TYPE_LENGTH (type);
3207 offset += register_size (gdbarch, regnum), regnum++)
3208 {
3209 int xfer = register_size (gdbarch, regnum);
3210 if (offset + xfer > TYPE_LENGTH (type))
3211 xfer = TYPE_LENGTH (type) - offset;
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3214 offset, xfer, regnum);
3215 mips_xfer_register (gdbarch, regcache,
3216 gdbarch_num_regs (gdbarch) + regnum,
3217 xfer, gdbarch_byte_order (gdbarch),
3218 readbuf, writebuf, offset);
3219 }
3220 return RETURN_VALUE_REGISTER_CONVENTION;
3221 }
3222 }
3223
3224 /* O32 ABI stuff. */
3225
3226 static CORE_ADDR
3227 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3228 struct regcache *regcache, CORE_ADDR bp_addr,
3229 int nargs, struct value **args, CORE_ADDR sp,
3230 int struct_return, CORE_ADDR struct_addr)
3231 {
3232 int argreg;
3233 int float_argreg;
3234 int argnum;
3235 int len = 0;
3236 int stack_offset = 0;
3237 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3238 CORE_ADDR func_addr = find_function_addr (function, NULL);
3239
3240 /* For shared libraries, "t9" needs to point at the function
3241 address. */
3242 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3243
3244 /* Set the return address register to point to the entry point of
3245 the program, where a breakpoint lies in wait. */
3246 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3247
3248 /* First ensure that the stack and structure return address (if any)
3249 are properly aligned. The stack has to be at least 64-bit
3250 aligned even on 32-bit machines, because doubles must be 64-bit
3251 aligned. For n32 and n64, stack frames need to be 128-bit
3252 aligned, so we round to this widest known alignment. */
3253
3254 sp = align_down (sp, 16);
3255 struct_addr = align_down (struct_addr, 16);
3256
3257 /* Now make space on the stack for the args. */
3258 for (argnum = 0; argnum < nargs; argnum++)
3259 {
3260 struct type *arg_type = check_typedef (value_type (args[argnum]));
3261 int arglen = TYPE_LENGTH (arg_type);
3262
3263 /* Align to double-word if necessary. */
3264 if (mips_type_needs_double_align (arg_type))
3265 len = align_up (len, MIPS32_REGSIZE * 2);
3266 /* Allocate space on the stack. */
3267 len += align_up (arglen, MIPS32_REGSIZE);
3268 }
3269 sp -= align_up (len, 16);
3270
3271 if (mips_debug)
3272 fprintf_unfiltered (gdb_stdlog,
3273 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3274 paddr_nz (sp), (long) align_up (len, 16));
3275
3276 /* Initialize the integer and float register pointers. */
3277 argreg = MIPS_A0_REGNUM;
3278 float_argreg = mips_fpa0_regnum (gdbarch);
3279
3280 /* The struct_return pointer occupies the first parameter-passing reg. */
3281 if (struct_return)
3282 {
3283 if (mips_debug)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3286 argreg, paddr_nz (struct_addr));
3287 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3288 stack_offset += MIPS32_REGSIZE;
3289 }
3290
3291 /* Now load as many as possible of the first arguments into
3292 registers, and push the rest onto the stack. Loop thru args
3293 from first to last. */
3294 for (argnum = 0; argnum < nargs; argnum++)
3295 {
3296 const gdb_byte *val;
3297 struct value *arg = args[argnum];
3298 struct type *arg_type = check_typedef (value_type (arg));
3299 int len = TYPE_LENGTH (arg_type);
3300 enum type_code typecode = TYPE_CODE (arg_type);
3301
3302 if (mips_debug)
3303 fprintf_unfiltered (gdb_stdlog,
3304 "mips_o32_push_dummy_call: %d len=%d type=%d",
3305 argnum + 1, len, (int) typecode);
3306
3307 val = value_contents (arg);
3308
3309 /* 32-bit ABIs always start floating point arguments in an
3310 even-numbered floating point register. Round the FP register
3311 up before the check to see if there are any FP registers
3312 left. O32/O64 targets also pass the FP in the integer
3313 registers so also round up normal registers. */
3314 if (fp_register_arg_p (typecode, arg_type))
3315 {
3316 if ((float_argreg & 1))
3317 float_argreg++;
3318 }
3319
3320 /* Floating point arguments passed in registers have to be
3321 treated specially. On 32-bit architectures, doubles
3322 are passed in register pairs; the even register gets
3323 the low word, and the odd register gets the high word.
3324 On O32/O64, the first two floating point arguments are
3325 also copied to general registers, because MIPS16 functions
3326 don't use float registers for arguments. This duplication of
3327 arguments in general registers can't hurt non-MIPS16 functions
3328 because those registers are normally skipped. */
3329
3330 if (fp_register_arg_p (typecode, arg_type)
3331 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3332 {
3333 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
3334 {
3335 int low_offset = gdbarch_byte_order (gdbarch)
3336 == BFD_ENDIAN_BIG ? 4 : 0;
3337 unsigned long regval;
3338
3339 /* Write the low word of the double to the even register(s). */
3340 regval = extract_unsigned_integer (val + low_offset, 4);
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3343 float_argreg, phex (regval, 4));
3344 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3345 if (mips_debug)
3346 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3347 argreg, phex (regval, 4));
3348 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3349
3350 /* Write the high word of the double to the odd register(s). */
3351 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3352 if (mips_debug)
3353 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3354 float_argreg, phex (regval, 4));
3355 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3356
3357 if (mips_debug)
3358 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3359 argreg, phex (regval, 4));
3360 regcache_cooked_write_unsigned (regcache, argreg++, regval);
3361 }
3362 else
3363 {
3364 /* This is a floating point value that fits entirely
3365 in a single register. */
3366 /* On 32 bit ABI's the float_argreg is further adjusted
3367 above to ensure that it is even register aligned. */
3368 LONGEST regval = extract_unsigned_integer (val, len);
3369 if (mips_debug)
3370 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3371 float_argreg, phex (regval, len));
3372 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3373 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3374 registers for each argument. The below is (my
3375 guess) to ensure that the corresponding integer
3376 register has reserved the same space. */
3377 if (mips_debug)
3378 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3379 argreg, phex (regval, len));
3380 regcache_cooked_write_unsigned (regcache, argreg, regval);
3381 argreg += 2;
3382 }
3383 /* Reserve space for the FP register. */
3384 stack_offset += align_up (len, MIPS32_REGSIZE);
3385 }
3386 else
3387 {
3388 /* Copy the argument to general registers or the stack in
3389 register-sized pieces. Large arguments are split between
3390 registers and stack. */
3391 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
3392 are treated specially: Irix cc passes
3393 them in registers where gcc sometimes puts them on the
3394 stack. For maximum compatibility, we will put them in
3395 both places. */
3396 int odd_sized_struct = (len > MIPS32_REGSIZE
3397 && len % MIPS32_REGSIZE != 0);
3398 /* Structures should be aligned to eight bytes (even arg registers)
3399 on MIPS_ABI_O32, if their first member has double precision. */
3400 if (mips_type_needs_double_align (arg_type))
3401 {
3402 if ((argreg & 1))
3403 {
3404 argreg++;
3405 stack_offset += MIPS32_REGSIZE;
3406 }
3407 }
3408 while (len > 0)
3409 {
3410 /* Remember if the argument was written to the stack. */
3411 int stack_used_p = 0;
3412 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
3413
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3416 partial_len);
3417
3418 /* Write this portion of the argument to the stack. */
3419 if (argreg > MIPS_LAST_ARG_REGNUM
3420 || odd_sized_struct)
3421 {
3422 /* Should shorter than int integer values be
3423 promoted to int before being stored? */
3424 int longword_offset = 0;
3425 CORE_ADDR addr;
3426 stack_used_p = 1;
3427
3428 if (mips_debug)
3429 {
3430 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3431 paddr_nz (stack_offset));
3432 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3433 paddr_nz (longword_offset));
3434 }
3435
3436 addr = sp + stack_offset + longword_offset;
3437
3438 if (mips_debug)
3439 {
3440 int i;
3441 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3442 paddr_nz (addr));
3443 for (i = 0; i < partial_len; i++)
3444 {
3445 fprintf_unfiltered (gdb_stdlog, "%02x",
3446 val[i] & 0xff);
3447 }
3448 }
3449 write_memory (addr, val, partial_len);
3450 }
3451
3452 /* Note!!! This is NOT an else clause. Odd sized
3453 structs may go thru BOTH paths. */
3454 /* Write this portion of the argument to a general
3455 purpose register. */
3456 if (argreg <= MIPS_LAST_ARG_REGNUM)
3457 {
3458 LONGEST regval = extract_signed_integer (val, partial_len);
3459 /* Value may need to be sign extended, because
3460 mips_isa_regsize() != mips_abi_regsize(). */
3461
3462 /* A non-floating-point argument being passed in a
3463 general register. If a struct or union, and if
3464 the remaining length is smaller than the register
3465 size, we have to adjust the register value on
3466 big endian targets.
3467
3468 It does not seem to be necessary to do the
3469 same for integral types.
3470
3471 Also don't do this adjustment on O64 binaries.
3472
3473 cagney/2001-07-23: gdb/179: Also, GCC, when
3474 outputting LE O32 with sizeof (struct) <
3475 mips_abi_regsize(), generates a left shift
3476 as part of storing the argument in a register
3477 (the left shift isn't generated when
3478 sizeof (struct) >= mips_abi_regsize()). Since
3479 it is quite possible that this is GCC
3480 contradicting the LE/O32 ABI, GDB has not been
3481 adjusted to accommodate this. Either someone
3482 needs to demonstrate that the LE/O32 ABI
3483 specifies such a left shift OR this new ABI gets
3484 identified as such and GDB gets tweaked
3485 accordingly. */
3486
3487 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3488 && partial_len < MIPS32_REGSIZE
3489 && (typecode == TYPE_CODE_STRUCT
3490 || typecode == TYPE_CODE_UNION))
3491 regval <<= ((MIPS32_REGSIZE - partial_len)
3492 * TARGET_CHAR_BIT);
3493
3494 if (mips_debug)
3495 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3496 argreg,
3497 phex (regval, MIPS32_REGSIZE));
3498 regcache_cooked_write_unsigned (regcache, argreg, regval);
3499 argreg++;
3500
3501 /* Prevent subsequent floating point arguments from
3502 being passed in floating point registers. */
3503 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3504 }
3505
3506 len -= partial_len;
3507 val += partial_len;
3508
3509 /* Compute the the offset into the stack at which we
3510 will copy the next parameter.
3511
3512 In older ABIs, the caller reserved space for
3513 registers that contained arguments. This was loosely
3514 refered to as their "home". Consequently, space is
3515 always allocated. */
3516
3517 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
3518 }
3519 }
3520 if (mips_debug)
3521 fprintf_unfiltered (gdb_stdlog, "\n");
3522 }
3523
3524 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3525
3526 /* Return adjusted stack pointer. */
3527 return sp;
3528 }
3529
3530 static enum return_value_convention
3531 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3532 struct regcache *regcache,
3533 gdb_byte *readbuf, const gdb_byte *writebuf)
3534 {
3535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3536
3537 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3538 || TYPE_CODE (type) == TYPE_CODE_UNION
3539 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3540 return RETURN_VALUE_STRUCT_CONVENTION;
3541 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3542 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3543 {
3544 /* A single-precision floating-point value. It fits in the
3545 least significant part of FP0. */
3546 if (mips_debug)
3547 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3548 mips_xfer_register (gdbarch, regcache,
3549 gdbarch_num_regs (gdbarch)
3550 + mips_regnum (gdbarch)->fp0,
3551 TYPE_LENGTH (type),
3552 gdbarch_byte_order (gdbarch),
3553 readbuf, writebuf, 0);
3554 return RETURN_VALUE_REGISTER_CONVENTION;
3555 }
3556 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3557 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3558 {
3559 /* A double-precision floating-point value. The most
3560 significant part goes in FP1, and the least significant in
3561 FP0. */
3562 if (mips_debug)
3563 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3564 switch (gdbarch_byte_order (gdbarch))
3565 {
3566 case BFD_ENDIAN_LITTLE:
3567 mips_xfer_register (gdbarch, regcache,
3568 gdbarch_num_regs (gdbarch)
3569 + mips_regnum (gdbarch)->fp0 +
3570 0, 4, gdbarch_byte_order (gdbarch),
3571 readbuf, writebuf, 0);
3572 mips_xfer_register (gdbarch, regcache,
3573 gdbarch_num_regs (gdbarch)
3574 + mips_regnum (gdbarch)->fp0 + 1,
3575 4, gdbarch_byte_order (gdbarch),
3576 readbuf, writebuf, 4);
3577 break;
3578 case BFD_ENDIAN_BIG:
3579 mips_xfer_register (gdbarch, regcache,
3580 gdbarch_num_regs (gdbarch)
3581 + mips_regnum (gdbarch)->fp0 + 1,
3582 4, gdbarch_byte_order (gdbarch),
3583 readbuf, writebuf, 0);
3584 mips_xfer_register (gdbarch, regcache,
3585 gdbarch_num_regs (gdbarch)
3586 + mips_regnum (gdbarch)->fp0 + 0,
3587 4, gdbarch_byte_order (gdbarch),
3588 readbuf, writebuf, 4);
3589 break;
3590 default:
3591 internal_error (__FILE__, __LINE__, _("bad switch"));
3592 }
3593 return RETURN_VALUE_REGISTER_CONVENTION;
3594 }
3595 #if 0
3596 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3597 && TYPE_NFIELDS (type) <= 2
3598 && TYPE_NFIELDS (type) >= 1
3599 && ((TYPE_NFIELDS (type) == 1
3600 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3601 == TYPE_CODE_FLT))
3602 || (TYPE_NFIELDS (type) == 2
3603 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3604 == TYPE_CODE_FLT)
3605 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3606 == TYPE_CODE_FLT)))
3607 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3608 {
3609 /* A struct that contains one or two floats. Each value is part
3610 in the least significant part of their floating point
3611 register.. */
3612 gdb_byte reg[MAX_REGISTER_SIZE];
3613 int regnum;
3614 int field;
3615 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
3616 field < TYPE_NFIELDS (type); field++, regnum += 2)
3617 {
3618 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3619 / TARGET_CHAR_BIT);
3620 if (mips_debug)
3621 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3622 offset);
3623 mips_xfer_register (gdbarch, regcache,
3624 gdbarch_num_regs (gdbarch) + regnum,
3625 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3626 gdbarch_byte_order (gdbarch),
3627 readbuf, writebuf, offset);
3628 }
3629 return RETURN_VALUE_REGISTER_CONVENTION;
3630 }
3631 #endif
3632 #if 0
3633 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3634 || TYPE_CODE (type) == TYPE_CODE_UNION)
3635 {
3636 /* A structure or union. Extract the left justified value,
3637 regardless of the byte order. I.e. DO NOT USE
3638 mips_xfer_lower. */
3639 int offset;
3640 int regnum;
3641 for (offset = 0, regnum = MIPS_V0_REGNUM;
3642 offset < TYPE_LENGTH (type);
3643 offset += register_size (gdbarch, regnum), regnum++)
3644 {
3645 int xfer = register_size (gdbarch, regnum);
3646 if (offset + xfer > TYPE_LENGTH (type))
3647 xfer = TYPE_LENGTH (type) - offset;
3648 if (mips_debug)
3649 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3650 offset, xfer, regnum);
3651 mips_xfer_register (gdbarch, regcache,
3652 gdbarch_num_regs (gdbarch) + regnum, xfer,
3653 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3654 }
3655 return RETURN_VALUE_REGISTER_CONVENTION;
3656 }
3657 #endif
3658 else
3659 {
3660 /* A scalar extract each part but least-significant-byte
3661 justified. o32 thinks registers are 4 byte, regardless of
3662 the ISA. */
3663 int offset;
3664 int regnum;
3665 for (offset = 0, regnum = MIPS_V0_REGNUM;
3666 offset < TYPE_LENGTH (type);
3667 offset += MIPS32_REGSIZE, regnum++)
3668 {
3669 int xfer = MIPS32_REGSIZE;
3670 if (offset + xfer > TYPE_LENGTH (type))
3671 xfer = TYPE_LENGTH (type) - offset;
3672 if (mips_debug)
3673 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3674 offset, xfer, regnum);
3675 mips_xfer_register (gdbarch, regcache,
3676 gdbarch_num_regs (gdbarch) + regnum, xfer,
3677 gdbarch_byte_order (gdbarch),
3678 readbuf, writebuf, offset);
3679 }
3680 return RETURN_VALUE_REGISTER_CONVENTION;
3681 }
3682 }
3683
3684 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3685 ABI. */
3686
3687 static CORE_ADDR
3688 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3689 struct regcache *regcache, CORE_ADDR bp_addr,
3690 int nargs,
3691 struct value **args, CORE_ADDR sp,
3692 int struct_return, CORE_ADDR struct_addr)
3693 {
3694 int argreg;
3695 int float_argreg;
3696 int argnum;
3697 int len = 0;
3698 int stack_offset = 0;
3699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3700 CORE_ADDR func_addr = find_function_addr (function, NULL);
3701
3702 /* For shared libraries, "t9" needs to point at the function
3703 address. */
3704 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3705
3706 /* Set the return address register to point to the entry point of
3707 the program, where a breakpoint lies in wait. */
3708 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3709
3710 /* First ensure that the stack and structure return address (if any)
3711 are properly aligned. The stack has to be at least 64-bit
3712 aligned even on 32-bit machines, because doubles must be 64-bit
3713 aligned. For n32 and n64, stack frames need to be 128-bit
3714 aligned, so we round to this widest known alignment. */
3715
3716 sp = align_down (sp, 16);
3717 struct_addr = align_down (struct_addr, 16);
3718
3719 /* Now make space on the stack for the args. */
3720 for (argnum = 0; argnum < nargs; argnum++)
3721 {
3722 struct type *arg_type = check_typedef (value_type (args[argnum]));
3723 int arglen = TYPE_LENGTH (arg_type);
3724
3725 /* Allocate space on the stack. */
3726 len += align_up (arglen, MIPS64_REGSIZE);
3727 }
3728 sp -= align_up (len, 16);
3729
3730 if (mips_debug)
3731 fprintf_unfiltered (gdb_stdlog,
3732 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3733 paddr_nz (sp), (long) align_up (len, 16));
3734
3735 /* Initialize the integer and float register pointers. */
3736 argreg = MIPS_A0_REGNUM;
3737 float_argreg = mips_fpa0_regnum (gdbarch);
3738
3739 /* The struct_return pointer occupies the first parameter-passing reg. */
3740 if (struct_return)
3741 {
3742 if (mips_debug)
3743 fprintf_unfiltered (gdb_stdlog,
3744 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3745 argreg, paddr_nz (struct_addr));
3746 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
3747 stack_offset += MIPS64_REGSIZE;
3748 }
3749
3750 /* Now load as many as possible of the first arguments into
3751 registers, and push the rest onto the stack. Loop thru args
3752 from first to last. */
3753 for (argnum = 0; argnum < nargs; argnum++)
3754 {
3755 const gdb_byte *val;
3756 struct value *arg = args[argnum];
3757 struct type *arg_type = check_typedef (value_type (arg));
3758 int len = TYPE_LENGTH (arg_type);
3759 enum type_code typecode = TYPE_CODE (arg_type);
3760
3761 if (mips_debug)
3762 fprintf_unfiltered (gdb_stdlog,
3763 "mips_o64_push_dummy_call: %d len=%d type=%d",
3764 argnum + 1, len, (int) typecode);
3765
3766 val = value_contents (arg);
3767
3768 /* Floating point arguments passed in registers have to be
3769 treated specially. On 32-bit architectures, doubles
3770 are passed in register pairs; the even register gets
3771 the low word, and the odd register gets the high word.
3772 On O32/O64, the first two floating point arguments are
3773 also copied to general registers, because MIPS16 functions
3774 don't use float registers for arguments. This duplication of
3775 arguments in general registers can't hurt non-MIPS16 functions
3776 because those registers are normally skipped. */
3777
3778 if (fp_register_arg_p (typecode, arg_type)
3779 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3780 {
3781 LONGEST regval = extract_unsigned_integer (val, len);
3782 if (mips_debug)
3783 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3784 float_argreg, phex (regval, len));
3785 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
3786 if (mips_debug)
3787 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3788 argreg, phex (regval, len));
3789 regcache_cooked_write_unsigned (regcache, argreg, regval);
3790 argreg++;
3791 /* Reserve space for the FP register. */
3792 stack_offset += align_up (len, MIPS64_REGSIZE);
3793 }
3794 else
3795 {
3796 /* Copy the argument to general registers or the stack in
3797 register-sized pieces. Large arguments are split between
3798 registers and stack. */
3799 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
3800 are treated specially: Irix cc passes them in registers
3801 where gcc sometimes puts them on the stack. For maximum
3802 compatibility, we will put them in both places. */
3803 int odd_sized_struct = (len > MIPS64_REGSIZE
3804 && len % MIPS64_REGSIZE != 0);
3805 while (len > 0)
3806 {
3807 /* Remember if the argument was written to the stack. */
3808 int stack_used_p = 0;
3809 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
3810
3811 if (mips_debug)
3812 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3813 partial_len);
3814
3815 /* Write this portion of the argument to the stack. */
3816 if (argreg > MIPS_LAST_ARG_REGNUM
3817 || odd_sized_struct)
3818 {
3819 /* Should shorter than int integer values be
3820 promoted to int before being stored? */
3821 int longword_offset = 0;
3822 CORE_ADDR addr;
3823 stack_used_p = 1;
3824 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
3825 {
3826 if ((typecode == TYPE_CODE_INT
3827 || typecode == TYPE_CODE_PTR
3828 || typecode == TYPE_CODE_FLT)
3829 && len <= 4)
3830 longword_offset = MIPS64_REGSIZE - len;
3831 }
3832
3833 if (mips_debug)
3834 {
3835 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3836 paddr_nz (stack_offset));
3837 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3838 paddr_nz (longword_offset));
3839 }
3840
3841 addr = sp + stack_offset + longword_offset;
3842
3843 if (mips_debug)
3844 {
3845 int i;
3846 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3847 paddr_nz (addr));
3848 for (i = 0; i < partial_len; i++)
3849 {
3850 fprintf_unfiltered (gdb_stdlog, "%02x",
3851 val[i] & 0xff);
3852 }
3853 }
3854 write_memory (addr, val, partial_len);
3855 }
3856
3857 /* Note!!! This is NOT an else clause. Odd sized
3858 structs may go thru BOTH paths. */
3859 /* Write this portion of the argument to a general
3860 purpose register. */
3861 if (argreg <= MIPS_LAST_ARG_REGNUM)
3862 {
3863 LONGEST regval = extract_signed_integer (val, partial_len);
3864 /* Value may need to be sign extended, because
3865 mips_isa_regsize() != mips_abi_regsize(). */
3866
3867 /* A non-floating-point argument being passed in a
3868 general register. If a struct or union, and if
3869 the remaining length is smaller than the register
3870 size, we have to adjust the register value on
3871 big endian targets.
3872
3873 It does not seem to be necessary to do the
3874 same for integral types. */
3875
3876 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
3877 && partial_len < MIPS64_REGSIZE
3878 && (typecode == TYPE_CODE_STRUCT
3879 || typecode == TYPE_CODE_UNION))
3880 regval <<= ((MIPS64_REGSIZE - partial_len)
3881 * TARGET_CHAR_BIT);
3882
3883 if (mips_debug)
3884 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3885 argreg,
3886 phex (regval, MIPS64_REGSIZE));
3887 regcache_cooked_write_unsigned (regcache, argreg, regval);
3888 argreg++;
3889
3890 /* Prevent subsequent floating point arguments from
3891 being passed in floating point registers. */
3892 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3893 }
3894
3895 len -= partial_len;
3896 val += partial_len;
3897
3898 /* Compute the the offset into the stack at which we
3899 will copy the next parameter.
3900
3901 In older ABIs, the caller reserved space for
3902 registers that contained arguments. This was loosely
3903 refered to as their "home". Consequently, space is
3904 always allocated. */
3905
3906 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
3907 }
3908 }
3909 if (mips_debug)
3910 fprintf_unfiltered (gdb_stdlog, "\n");
3911 }
3912
3913 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3914
3915 /* Return adjusted stack pointer. */
3916 return sp;
3917 }
3918
3919 static enum return_value_convention
3920 mips_o64_return_value (struct gdbarch *gdbarch,
3921 struct type *type, struct regcache *regcache,
3922 gdb_byte *readbuf, const gdb_byte *writebuf)
3923 {
3924 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3925
3926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3927 || TYPE_CODE (type) == TYPE_CODE_UNION
3928 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3929 return RETURN_VALUE_STRUCT_CONVENTION;
3930 else if (fp_register_arg_p (TYPE_CODE (type), type))
3931 {
3932 /* A floating-point value. It fits in the least significant
3933 part of FP0. */
3934 if (mips_debug)
3935 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3936 mips_xfer_register (gdbarch, regcache,
3937 gdbarch_num_regs (gdbarch)
3938 + mips_regnum (gdbarch)->fp0,
3939 TYPE_LENGTH (type),
3940 gdbarch_byte_order (gdbarch),
3941 readbuf, writebuf, 0);
3942 return RETURN_VALUE_REGISTER_CONVENTION;
3943 }
3944 else
3945 {
3946 /* A scalar extract each part but least-significant-byte
3947 justified. */
3948 int offset;
3949 int regnum;
3950 for (offset = 0, regnum = MIPS_V0_REGNUM;
3951 offset < TYPE_LENGTH (type);
3952 offset += MIPS64_REGSIZE, regnum++)
3953 {
3954 int xfer = MIPS64_REGSIZE;
3955 if (offset + xfer > TYPE_LENGTH (type))
3956 xfer = TYPE_LENGTH (type) - offset;
3957 if (mips_debug)
3958 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3959 offset, xfer, regnum);
3960 mips_xfer_register (gdbarch, regcache,
3961 gdbarch_num_regs (gdbarch) + regnum,
3962 xfer, gdbarch_byte_order (gdbarch),
3963 readbuf, writebuf, offset);
3964 }
3965 return RETURN_VALUE_REGISTER_CONVENTION;
3966 }
3967 }
3968
3969 /* Floating point register management.
3970
3971 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3972 64bit operations, these early MIPS cpus treat fp register pairs
3973 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3974 registers and offer a compatibility mode that emulates the MIPS2 fp
3975 model. When operating in MIPS2 fp compat mode, later cpu's split
3976 double precision floats into two 32-bit chunks and store them in
3977 consecutive fp regs. To display 64-bit floats stored in this
3978 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3979 Throw in user-configurable endianness and you have a real mess.
3980
3981 The way this works is:
3982 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3983 double-precision value will be split across two logical registers.
3984 The lower-numbered logical register will hold the low-order bits,
3985 regardless of the processor's endianness.
3986 - If we are on a 64-bit processor, and we are looking for a
3987 single-precision value, it will be in the low ordered bits
3988 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3989 save slot in memory.
3990 - If we are in 64-bit mode, everything is straightforward.
3991
3992 Note that this code only deals with "live" registers at the top of the
3993 stack. We will attempt to deal with saved registers later, when
3994 the raw/cooked register interface is in place. (We need a general
3995 interface that can deal with dynamic saved register sizes -- fp
3996 regs could be 32 bits wide in one frame and 64 on the frame above
3997 and below). */
3998
3999 static struct type *
4000 mips_float_register_type (void)
4001 {
4002 return builtin_type_ieee_single;
4003 }
4004
4005 static struct type *
4006 mips_double_register_type (void)
4007 {
4008 return builtin_type_ieee_double;
4009 }
4010
4011 /* Copy a 32-bit single-precision value from the current frame
4012 into rare_buffer. */
4013
4014 static void
4015 mips_read_fp_register_single (struct frame_info *frame, int regno,
4016 gdb_byte *rare_buffer)
4017 {
4018 struct gdbarch *gdbarch = get_frame_arch (frame);
4019 int raw_size = register_size (gdbarch, regno);
4020 gdb_byte *raw_buffer = alloca (raw_size);
4021
4022 if (!frame_register_read (frame, regno, raw_buffer))
4023 error (_("can't read register %d (%s)"),
4024 regno, gdbarch_register_name (gdbarch, regno));
4025 if (raw_size == 8)
4026 {
4027 /* We have a 64-bit value for this register. Find the low-order
4028 32 bits. */
4029 int offset;
4030
4031 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4032 offset = 4;
4033 else
4034 offset = 0;
4035
4036 memcpy (rare_buffer, raw_buffer + offset, 4);
4037 }
4038 else
4039 {
4040 memcpy (rare_buffer, raw_buffer, 4);
4041 }
4042 }
4043
4044 /* Copy a 64-bit double-precision value from the current frame into
4045 rare_buffer. This may include getting half of it from the next
4046 register. */
4047
4048 static void
4049 mips_read_fp_register_double (struct frame_info *frame, int regno,
4050 gdb_byte *rare_buffer)
4051 {
4052 struct gdbarch *gdbarch = get_frame_arch (frame);
4053 int raw_size = register_size (gdbarch, regno);
4054
4055 if (raw_size == 8 && !mips2_fp_compat (frame))
4056 {
4057 /* We have a 64-bit value for this register, and we should use
4058 all 64 bits. */
4059 if (!frame_register_read (frame, regno, rare_buffer))
4060 error (_("can't read register %d (%s)"),
4061 regno, gdbarch_register_name (gdbarch, regno));
4062 }
4063 else
4064 {
4065 int rawnum = regno % gdbarch_num_regs (gdbarch);
4066
4067 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
4068 internal_error (__FILE__, __LINE__,
4069 _("mips_read_fp_register_double: bad access to "
4070 "odd-numbered FP register"));
4071
4072 /* mips_read_fp_register_single will find the correct 32 bits from
4073 each register. */
4074 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4075 {
4076 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4077 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4078 }
4079 else
4080 {
4081 mips_read_fp_register_single (frame, regno, rare_buffer);
4082 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4083 }
4084 }
4085 }
4086
4087 static void
4088 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4089 int regnum)
4090 { /* do values for FP (float) regs */
4091 struct gdbarch *gdbarch = get_frame_arch (frame);
4092 gdb_byte *raw_buffer;
4093 double doub, flt1; /* doubles extracted from raw hex data */
4094 int inv1, inv2;
4095
4096 raw_buffer = alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0));
4097
4098 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
4099 fprintf_filtered (file, "%*s",
4100 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
4101 "");
4102
4103 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
4104 {
4105 /* 4-byte registers: Print hex and floating. Also print even
4106 numbered registers as doubles. */
4107 mips_read_fp_register_single (frame, regnum, raw_buffer);
4108 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4109
4110 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
4111 file);
4112
4113 fprintf_filtered (file, " flt: ");
4114 if (inv1)
4115 fprintf_filtered (file, " <invalid float> ");
4116 else
4117 fprintf_filtered (file, "%-17.9g", flt1);
4118
4119 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
4120 {
4121 mips_read_fp_register_double (frame, regnum, raw_buffer);
4122 doub = unpack_double (mips_double_register_type (), raw_buffer,
4123 &inv2);
4124
4125 fprintf_filtered (file, " dbl: ");
4126 if (inv2)
4127 fprintf_filtered (file, "<invalid double>");
4128 else
4129 fprintf_filtered (file, "%-24.17g", doub);
4130 }
4131 }
4132 else
4133 {
4134 /* Eight byte registers: print each one as hex, float and double. */
4135 mips_read_fp_register_single (frame, regnum, raw_buffer);
4136 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4137
4138 mips_read_fp_register_double (frame, regnum, raw_buffer);
4139 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4140
4141
4142 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
4143 file);
4144
4145 fprintf_filtered (file, " flt: ");
4146 if (inv1)
4147 fprintf_filtered (file, "<invalid float>");
4148 else
4149 fprintf_filtered (file, "%-17.9g", flt1);
4150
4151 fprintf_filtered (file, " dbl: ");
4152 if (inv2)
4153 fprintf_filtered (file, "<invalid double>");
4154 else
4155 fprintf_filtered (file, "%-24.17g", doub);
4156 }
4157 }
4158
4159 static void
4160 mips_print_register (struct ui_file *file, struct frame_info *frame,
4161 int regnum)
4162 {
4163 struct gdbarch *gdbarch = get_frame_arch (frame);
4164 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4165 int offset;
4166
4167 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4168 {
4169 mips_print_fp_register (file, frame, regnum);
4170 return;
4171 }
4172
4173 /* Get the data in raw format. */
4174 if (!frame_register_read (frame, regnum, raw_buffer))
4175 {
4176 fprintf_filtered (file, "%s: [Invalid]",
4177 gdbarch_register_name (gdbarch, regnum));
4178 return;
4179 }
4180
4181 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
4182
4183 /* The problem with printing numeric register names (r26, etc.) is that
4184 the user can't use them on input. Probably the best solution is to
4185 fix it so that either the numeric or the funky (a2, etc.) names
4186 are accepted on input. */
4187 if (regnum < MIPS_NUMREGS)
4188 fprintf_filtered (file, "(r%d): ", regnum);
4189 else
4190 fprintf_filtered (file, ": ");
4191
4192 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4193 offset =
4194 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4195 else
4196 offset = 0;
4197
4198 print_scalar_formatted (raw_buffer + offset,
4199 register_type (gdbarch, regnum), 'x', 0,
4200 file);
4201 }
4202
4203 /* Replacement for generic do_registers_info.
4204 Print regs in pretty columns. */
4205
4206 static int
4207 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4208 int regnum)
4209 {
4210 fprintf_filtered (file, " ");
4211 mips_print_fp_register (file, frame, regnum);
4212 fprintf_filtered (file, "\n");
4213 return regnum + 1;
4214 }
4215
4216
4217 /* Print a row's worth of GP (int) registers, with name labels above */
4218
4219 static int
4220 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4221 int start_regnum)
4222 {
4223 struct gdbarch *gdbarch = get_frame_arch (frame);
4224 /* do values for GP (int) regs */
4225 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
4226 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4227 int col, byte;
4228 int regnum;
4229
4230 /* For GP registers, we print a separate row of names above the vals */
4231 for (col = 0, regnum = start_regnum;
4232 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4233 + gdbarch_num_pseudo_regs (gdbarch);
4234 regnum++)
4235 {
4236 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4237 continue; /* unused register */
4238 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4239 TYPE_CODE_FLT)
4240 break; /* end the row: reached FP register */
4241 /* Large registers are handled separately. */
4242 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4243 {
4244 if (col > 0)
4245 break; /* End the row before this register. */
4246
4247 /* Print this register on a row by itself. */
4248 mips_print_register (file, frame, regnum);
4249 fprintf_filtered (file, "\n");
4250 return regnum + 1;
4251 }
4252 if (col == 0)
4253 fprintf_filtered (file, " ");
4254 fprintf_filtered (file,
4255 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
4256 gdbarch_register_name (gdbarch, regnum));
4257 col++;
4258 }
4259
4260 if (col == 0)
4261 return regnum;
4262
4263 /* print the R0 to R31 names */
4264 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
4265 fprintf_filtered (file, "\n R%-4d",
4266 start_regnum % gdbarch_num_regs (gdbarch));
4267 else
4268 fprintf_filtered (file, "\n ");
4269
4270 /* now print the values in hex, 4 or 8 to the row */
4271 for (col = 0, regnum = start_regnum;
4272 col < ncols && regnum < gdbarch_num_regs (gdbarch)
4273 + gdbarch_num_pseudo_regs (gdbarch);
4274 regnum++)
4275 {
4276 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
4277 continue; /* unused register */
4278 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4279 TYPE_CODE_FLT)
4280 break; /* end row: reached FP register */
4281 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
4282 break; /* End row: large register. */
4283
4284 /* OK: get the data in raw format. */
4285 if (!frame_register_read (frame, regnum, raw_buffer))
4286 error (_("can't read register %d (%s)"),
4287 regnum, gdbarch_register_name (gdbarch, regnum));
4288 /* pad small registers */
4289 for (byte = 0;
4290 byte < (mips_abi_regsize (gdbarch)
4291 - register_size (gdbarch, regnum)); byte++)
4292 printf_filtered (" ");
4293 /* Now print the register value in hex, endian order. */
4294 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4295 for (byte =
4296 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
4297 byte < register_size (gdbarch, regnum); byte++)
4298 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4299 else
4300 for (byte = register_size (gdbarch, regnum) - 1;
4301 byte >= 0; byte--)
4302 fprintf_filtered (file, "%02x", raw_buffer[byte]);
4303 fprintf_filtered (file, " ");
4304 col++;
4305 }
4306 if (col > 0) /* ie. if we actually printed anything... */
4307 fprintf_filtered (file, "\n");
4308
4309 return regnum;
4310 }
4311
4312 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4313
4314 static void
4315 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4316 struct frame_info *frame, int regnum, int all)
4317 {
4318 if (regnum != -1) /* do one specified register */
4319 {
4320 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
4321 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
4322 error (_("Not a valid register for the current processor type"));
4323
4324 mips_print_register (file, frame, regnum);
4325 fprintf_filtered (file, "\n");
4326 }
4327 else
4328 /* do all (or most) registers */
4329 {
4330 regnum = gdbarch_num_regs (gdbarch);
4331 while (regnum < gdbarch_num_regs (gdbarch)
4332 + gdbarch_num_pseudo_regs (gdbarch))
4333 {
4334 if (TYPE_CODE (register_type (gdbarch, regnum)) ==
4335 TYPE_CODE_FLT)
4336 {
4337 if (all) /* true for "INFO ALL-REGISTERS" command */
4338 regnum = print_fp_register_row (file, frame, regnum);
4339 else
4340 regnum += MIPS_NUMREGS; /* skip floating point regs */
4341 }
4342 else
4343 regnum = print_gp_register_row (file, frame, regnum);
4344 }
4345 }
4346 }
4347
4348 /* Is this a branch with a delay slot? */
4349
4350 static int
4351 is_delayed (unsigned long insn)
4352 {
4353 int i;
4354 for (i = 0; i < NUMOPCODES; ++i)
4355 if (mips_opcodes[i].pinfo != INSN_MACRO
4356 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4357 break;
4358 return (i < NUMOPCODES
4359 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4360 | INSN_COND_BRANCH_DELAY
4361 | INSN_COND_BRANCH_LIKELY)));
4362 }
4363
4364 int
4365 mips_single_step_through_delay (struct gdbarch *gdbarch,
4366 struct frame_info *frame)
4367 {
4368 CORE_ADDR pc = get_frame_pc (frame);
4369 gdb_byte buf[MIPS_INSN32_SIZE];
4370
4371 /* There is no branch delay slot on MIPS16. */
4372 if (mips_pc_is_mips16 (pc))
4373 return 0;
4374
4375 if (!breakpoint_here_p (pc + 4))
4376 return 0;
4377
4378 if (!safe_frame_unwind_memory (frame, pc, buf, sizeof buf))
4379 /* If error reading memory, guess that it is not a delayed
4380 branch. */
4381 return 0;
4382 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4383 }
4384
4385 /* To skip prologues, I use this predicate. Returns either PC itself
4386 if the code at PC does not look like a function prologue; otherwise
4387 returns an address that (if we're lucky) follows the prologue. If
4388 LENIENT, then we must skip everything which is involved in setting
4389 up the frame (it's OK to skip more, just so long as we don't skip
4390 anything which might clobber the registers which are being saved.
4391 We must skip more in the case where part of the prologue is in the
4392 delay slot of a non-prologue instruction). */
4393
4394 static CORE_ADDR
4395 mips_skip_prologue (CORE_ADDR pc)
4396 {
4397 CORE_ADDR limit_pc;
4398 CORE_ADDR func_addr;
4399
4400 /* See if we can determine the end of the prologue via the symbol table.
4401 If so, then return either PC, or the PC after the prologue, whichever
4402 is greater. */
4403 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4404 {
4405 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4406 if (post_prologue_pc != 0)
4407 return max (pc, post_prologue_pc);
4408 }
4409
4410 /* Can't determine prologue from the symbol table, need to examine
4411 instructions. */
4412
4413 /* Find an upper limit on the function prologue using the debug
4414 information. If the debug information could not be used to provide
4415 that bound, then use an arbitrary large number as the upper bound. */
4416 limit_pc = skip_prologue_using_sal (pc);
4417 if (limit_pc == 0)
4418 limit_pc = pc + 100; /* Magic. */
4419
4420 if (mips_pc_is_mips16 (pc))
4421 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4422 else
4423 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4424 }
4425
4426 /* Check whether the PC is in a function epilogue (32-bit version).
4427 This is a helper function for mips_in_function_epilogue_p. */
4428 static int
4429 mips32_in_function_epilogue_p (CORE_ADDR pc)
4430 {
4431 CORE_ADDR func_addr = 0, func_end = 0;
4432
4433 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4434 {
4435 /* The MIPS epilogue is max. 12 bytes long. */
4436 CORE_ADDR addr = func_end - 12;
4437
4438 if (addr < func_addr + 4)
4439 addr = func_addr + 4;
4440 if (pc < addr)
4441 return 0;
4442
4443 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
4444 {
4445 unsigned long high_word;
4446 unsigned long inst;
4447
4448 inst = mips_fetch_instruction (pc);
4449 high_word = (inst >> 16) & 0xffff;
4450
4451 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
4452 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
4453 && inst != 0x03e00008 /* jr $ra */
4454 && inst != 0x00000000) /* nop */
4455 return 0;
4456 }
4457
4458 return 1;
4459 }
4460
4461 return 0;
4462 }
4463
4464 /* Check whether the PC is in a function epilogue (16-bit version).
4465 This is a helper function for mips_in_function_epilogue_p. */
4466 static int
4467 mips16_in_function_epilogue_p (CORE_ADDR pc)
4468 {
4469 CORE_ADDR func_addr = 0, func_end = 0;
4470
4471 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4472 {
4473 /* The MIPS epilogue is max. 12 bytes long. */
4474 CORE_ADDR addr = func_end - 12;
4475
4476 if (addr < func_addr + 4)
4477 addr = func_addr + 4;
4478 if (pc < addr)
4479 return 0;
4480
4481 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
4482 {
4483 unsigned short inst;
4484
4485 inst = mips_fetch_instruction (pc);
4486
4487 if ((inst & 0xf800) == 0xf000) /* extend */
4488 continue;
4489
4490 if (inst != 0x6300 /* addiu $sp,offset */
4491 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
4492 && inst != 0xe820 /* jr $ra */
4493 && inst != 0xe8a0 /* jrc $ra */
4494 && inst != 0x6500) /* nop */
4495 return 0;
4496 }
4497
4498 return 1;
4499 }
4500
4501 return 0;
4502 }
4503
4504 /* The epilogue is defined here as the area at the end of a function,
4505 after an instruction which destroys the function's stack frame. */
4506 static int
4507 mips_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
4508 {
4509 if (mips_pc_is_mips16 (pc))
4510 return mips16_in_function_epilogue_p (pc);
4511 else
4512 return mips32_in_function_epilogue_p (pc);
4513 }
4514
4515 /* Root of all "set mips "/"show mips " commands. This will eventually be
4516 used for all MIPS-specific commands. */
4517
4518 static void
4519 show_mips_command (char *args, int from_tty)
4520 {
4521 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4522 }
4523
4524 static void
4525 set_mips_command (char *args, int from_tty)
4526 {
4527 printf_unfiltered
4528 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4529 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4530 }
4531
4532 /* Commands to show/set the MIPS FPU type. */
4533
4534 static void
4535 show_mipsfpu_command (char *args, int from_tty)
4536 {
4537 char *fpu;
4538 switch (MIPS_FPU_TYPE)
4539 {
4540 case MIPS_FPU_SINGLE:
4541 fpu = "single-precision";
4542 break;
4543 case MIPS_FPU_DOUBLE:
4544 fpu = "double-precision";
4545 break;
4546 case MIPS_FPU_NONE:
4547 fpu = "absent (none)";
4548 break;
4549 default:
4550 internal_error (__FILE__, __LINE__, _("bad switch"));
4551 }
4552 if (mips_fpu_type_auto)
4553 printf_unfiltered
4554 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4555 fpu);
4556 else
4557 printf_unfiltered
4558 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4559 }
4560
4561
4562 static void
4563 set_mipsfpu_command (char *args, int from_tty)
4564 {
4565 printf_unfiltered
4566 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4567 show_mipsfpu_command (args, from_tty);
4568 }
4569
4570 static void
4571 set_mipsfpu_single_command (char *args, int from_tty)
4572 {
4573 struct gdbarch_info info;
4574 gdbarch_info_init (&info);
4575 mips_fpu_type = MIPS_FPU_SINGLE;
4576 mips_fpu_type_auto = 0;
4577 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4578 instead of relying on globals. Doing that would let generic code
4579 handle the search for this specific architecture. */
4580 if (!gdbarch_update_p (info))
4581 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4582 }
4583
4584 static void
4585 set_mipsfpu_double_command (char *args, int from_tty)
4586 {
4587 struct gdbarch_info info;
4588 gdbarch_info_init (&info);
4589 mips_fpu_type = MIPS_FPU_DOUBLE;
4590 mips_fpu_type_auto = 0;
4591 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4592 instead of relying on globals. Doing that would let generic code
4593 handle the search for this specific architecture. */
4594 if (!gdbarch_update_p (info))
4595 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4596 }
4597
4598 static void
4599 set_mipsfpu_none_command (char *args, int from_tty)
4600 {
4601 struct gdbarch_info info;
4602 gdbarch_info_init (&info);
4603 mips_fpu_type = MIPS_FPU_NONE;
4604 mips_fpu_type_auto = 0;
4605 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4606 instead of relying on globals. Doing that would let generic code
4607 handle the search for this specific architecture. */
4608 if (!gdbarch_update_p (info))
4609 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
4610 }
4611
4612 static void
4613 set_mipsfpu_auto_command (char *args, int from_tty)
4614 {
4615 mips_fpu_type_auto = 1;
4616 }
4617
4618 /* Attempt to identify the particular processor model by reading the
4619 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4620 the relevant processor still exists (it dates back to '94) and
4621 secondly this is not the way to do this. The processor type should
4622 be set by forcing an architecture change. */
4623
4624 void
4625 deprecated_mips_set_processor_regs_hack (void)
4626 {
4627 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4628 ULONGEST prid;
4629
4630 regcache_cooked_read_unsigned (get_current_regcache (),
4631 MIPS_PRID_REGNUM, &prid);
4632 if ((prid & ~0xf) == 0x700)
4633 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4634 }
4635
4636 /* Just like reinit_frame_cache, but with the right arguments to be
4637 callable as an sfunc. */
4638
4639 static void
4640 reinit_frame_cache_sfunc (char *args, int from_tty,
4641 struct cmd_list_element *c)
4642 {
4643 reinit_frame_cache ();
4644 }
4645
4646 static int
4647 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4648 {
4649 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4650
4651 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4652 disassembler needs to be able to locally determine the ISA, and
4653 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4654 work. */
4655 if (mips_pc_is_mips16 (memaddr))
4656 info->mach = bfd_mach_mips16;
4657
4658 /* Round down the instruction address to the appropriate boundary. */
4659 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4660
4661 /* Set the disassembler options. */
4662 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4663 {
4664 /* Set up the disassembler info, so that we get the right
4665 register names from libopcodes. */
4666 if (tdep->mips_abi == MIPS_ABI_N32)
4667 info->disassembler_options = "gpr-names=n32";
4668 else
4669 info->disassembler_options = "gpr-names=64";
4670 info->flavour = bfd_target_elf_flavour;
4671 }
4672 else
4673 /* This string is not recognized explicitly by the disassembler,
4674 but it tells the disassembler to not try to guess the ABI from
4675 the bfd elf headers, such that, if the user overrides the ABI
4676 of a program linked as NewABI, the disassembly will follow the
4677 register naming conventions specified by the user. */
4678 info->disassembler_options = "gpr-names=32";
4679
4680 /* Call the appropriate disassembler based on the target endian-ness. */
4681 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4682 return print_insn_big_mips (memaddr, info);
4683 else
4684 return print_insn_little_mips (memaddr, info);
4685 }
4686
4687 /* This function implements gdbarch_breakpoint_from_pc. It uses the program
4688 counter value to determine whether a 16- or 32-bit breakpoint should be used.
4689 It returns a pointer to a string of bytes that encode a breakpoint
4690 instruction, stores the length of the string to *lenptr, and adjusts pc (if
4691 necessary) to point to the actual memory location where the breakpoint
4692 should be inserted. */
4693
4694 static const gdb_byte *
4695 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4696 {
4697 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
4698 {
4699 if (mips_pc_is_mips16 (*pcptr))
4700 {
4701 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4702 *pcptr = unmake_mips16_addr (*pcptr);
4703 *lenptr = sizeof (mips16_big_breakpoint);
4704 return mips16_big_breakpoint;
4705 }
4706 else
4707 {
4708 /* The IDT board uses an unusual breakpoint value, and
4709 sometimes gets confused when it sees the usual MIPS
4710 breakpoint instruction. */
4711 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
4712 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4713 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4714
4715 *lenptr = sizeof (big_breakpoint);
4716
4717 if (strcmp (target_shortname, "mips") == 0)
4718 return idt_big_breakpoint;
4719 else if (strcmp (target_shortname, "ddb") == 0
4720 || strcmp (target_shortname, "pmon") == 0
4721 || strcmp (target_shortname, "lsi") == 0)
4722 return pmon_big_breakpoint;
4723 else
4724 return big_breakpoint;
4725 }
4726 }
4727 else
4728 {
4729 if (mips_pc_is_mips16 (*pcptr))
4730 {
4731 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4732 *pcptr = unmake_mips16_addr (*pcptr);
4733 *lenptr = sizeof (mips16_little_breakpoint);
4734 return mips16_little_breakpoint;
4735 }
4736 else
4737 {
4738 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4739 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4740 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4741
4742 *lenptr = sizeof (little_breakpoint);
4743
4744 if (strcmp (target_shortname, "mips") == 0)
4745 return idt_little_breakpoint;
4746 else if (strcmp (target_shortname, "ddb") == 0
4747 || strcmp (target_shortname, "pmon") == 0
4748 || strcmp (target_shortname, "lsi") == 0)
4749 return pmon_little_breakpoint;
4750 else
4751 return little_breakpoint;
4752 }
4753 }
4754 }
4755
4756 /* If PC is in a mips16 call or return stub, return the address of the target
4757 PC, which is either the callee or the caller. There are several
4758 cases which must be handled:
4759
4760 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4761 target PC is in $31 ($ra).
4762 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4763 and the target PC is in $2.
4764 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4765 before the jal instruction, this is effectively a call stub
4766 and the the target PC is in $2. Otherwise this is effectively
4767 a return stub and the target PC is in $18.
4768
4769 See the source code for the stubs in gcc/config/mips/mips16.S for
4770 gory details. */
4771
4772 static CORE_ADDR
4773 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
4774 {
4775 char *name;
4776 CORE_ADDR start_addr;
4777
4778 /* Find the starting address and name of the function containing the PC. */
4779 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4780 return 0;
4781
4782 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4783 target PC is in $31 ($ra). */
4784 if (strcmp (name, "__mips16_ret_sf") == 0
4785 || strcmp (name, "__mips16_ret_df") == 0)
4786 return get_frame_register_signed (frame, MIPS_RA_REGNUM);
4787
4788 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4789 {
4790 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4791 and the target PC is in $2. */
4792 if (name[19] >= '0' && name[19] <= '9')
4793 return get_frame_register_signed (frame, 2);
4794
4795 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4796 before the jal instruction, this is effectively a call stub
4797 and the the target PC is in $2. Otherwise this is effectively
4798 a return stub and the target PC is in $18. */
4799 else if (name[19] == 's' || name[19] == 'd')
4800 {
4801 if (pc == start_addr)
4802 {
4803 /* Check if the target of the stub is a compiler-generated
4804 stub. Such a stub for a function bar might have a name
4805 like __fn_stub_bar, and might look like this:
4806 mfc1 $4,$f13
4807 mfc1 $5,$f12
4808 mfc1 $6,$f15
4809 mfc1 $7,$f14
4810 la $1,bar (becomes a lui/addiu pair)
4811 jr $1
4812 So scan down to the lui/addi and extract the target
4813 address from those two instructions. */
4814
4815 CORE_ADDR target_pc = get_frame_register_signed (frame, 2);
4816 ULONGEST inst;
4817 int i;
4818
4819 /* See if the name of the target function is __fn_stub_*. */
4820 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4821 0)
4822 return target_pc;
4823 if (strncmp (name, "__fn_stub_", 10) != 0
4824 && strcmp (name, "etext") != 0
4825 && strcmp (name, "_etext") != 0)
4826 return target_pc;
4827
4828 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4829 The limit on the search is arbitrarily set to 20
4830 instructions. FIXME. */
4831 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4832 {
4833 inst = mips_fetch_instruction (target_pc);
4834 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4835 pc = (inst << 16) & 0xffff0000; /* high word */
4836 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4837 return pc | (inst & 0xffff); /* low word */
4838 }
4839
4840 /* Couldn't find the lui/addui pair, so return stub address. */
4841 return target_pc;
4842 }
4843 else
4844 /* This is the 'return' part of a call stub. The return
4845 address is in $r18. */
4846 return get_frame_register_signed (frame, 18);
4847 }
4848 }
4849 return 0; /* not a stub */
4850 }
4851
4852 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4853 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4854
4855 static int
4856 mips_stab_reg_to_regnum (int num)
4857 {
4858 int regnum;
4859 if (num >= 0 && num < 32)
4860 regnum = num;
4861 else if (num >= 38 && num < 70)
4862 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4863 else if (num == 70)
4864 regnum = mips_regnum (current_gdbarch)->hi;
4865 else if (num == 71)
4866 regnum = mips_regnum (current_gdbarch)->lo;
4867 else
4868 /* This will hopefully (eventually) provoke a warning. Should
4869 we be calling complaint() here? */
4870 return gdbarch_num_regs (current_gdbarch)
4871 + gdbarch_num_pseudo_regs (current_gdbarch);
4872 return gdbarch_num_regs (current_gdbarch) + regnum;
4873 }
4874
4875
4876 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4877 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
4878
4879 static int
4880 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4881 {
4882 int regnum;
4883 if (num >= 0 && num < 32)
4884 regnum = num;
4885 else if (num >= 32 && num < 64)
4886 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4887 else if (num == 64)
4888 regnum = mips_regnum (current_gdbarch)->hi;
4889 else if (num == 65)
4890 regnum = mips_regnum (current_gdbarch)->lo;
4891 else
4892 /* This will hopefully (eventually) provoke a warning. Should we
4893 be calling complaint() here? */
4894 return gdbarch_num_regs (current_gdbarch)
4895 + gdbarch_num_pseudo_regs (current_gdbarch);
4896 return gdbarch_num_regs (current_gdbarch) + regnum;
4897 }
4898
4899 static int
4900 mips_register_sim_regno (int regnum)
4901 {
4902 /* Only makes sense to supply raw registers. */
4903 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch));
4904 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4905 decide if it is valid. Should instead define a standard sim/gdb
4906 register numbering scheme. */
4907 if (gdbarch_register_name (current_gdbarch,
4908 gdbarch_num_regs
4909 (current_gdbarch) + regnum) != NULL
4910 && gdbarch_register_name (current_gdbarch,
4911 gdbarch_num_regs
4912 (current_gdbarch) + regnum)[0] != '\0')
4913 return regnum;
4914 else
4915 return LEGACY_SIM_REGNO_IGNORE;
4916 }
4917
4918
4919 /* Convert an integer into an address. Extracting the value signed
4920 guarantees a correctly sign extended address. */
4921
4922 static CORE_ADDR
4923 mips_integer_to_address (struct gdbarch *gdbarch,
4924 struct type *type, const gdb_byte *buf)
4925 {
4926 return (CORE_ADDR) extract_signed_integer (buf, TYPE_LENGTH (type));
4927 }
4928
4929 /* Dummy virtual frame pointer method. This is no more or less accurate
4930 than most other architectures; we just need to be explicit about it,
4931 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
4932 an assertion failure. */
4933
4934 static void
4935 mips_virtual_frame_pointer (CORE_ADDR pc, int *reg, LONGEST *offset)
4936 {
4937 *reg = MIPS_SP_REGNUM;
4938 *offset = 0;
4939 }
4940
4941 static void
4942 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4943 {
4944 enum mips_abi *abip = (enum mips_abi *) obj;
4945 const char *name = bfd_get_section_name (abfd, sect);
4946
4947 if (*abip != MIPS_ABI_UNKNOWN)
4948 return;
4949
4950 if (strncmp (name, ".mdebug.", 8) != 0)
4951 return;
4952
4953 if (strcmp (name, ".mdebug.abi32") == 0)
4954 *abip = MIPS_ABI_O32;
4955 else if (strcmp (name, ".mdebug.abiN32") == 0)
4956 *abip = MIPS_ABI_N32;
4957 else if (strcmp (name, ".mdebug.abi64") == 0)
4958 *abip = MIPS_ABI_N64;
4959 else if (strcmp (name, ".mdebug.abiO64") == 0)
4960 *abip = MIPS_ABI_O64;
4961 else if (strcmp (name, ".mdebug.eabi32") == 0)
4962 *abip = MIPS_ABI_EABI32;
4963 else if (strcmp (name, ".mdebug.eabi64") == 0)
4964 *abip = MIPS_ABI_EABI64;
4965 else
4966 warning (_("unsupported ABI %s."), name + 8);
4967 }
4968
4969 static void
4970 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
4971 {
4972 int *lbp = (int *) obj;
4973 const char *name = bfd_get_section_name (abfd, sect);
4974
4975 if (strncmp (name, ".gcc_compiled_long32", 20) == 0)
4976 *lbp = 32;
4977 else if (strncmp (name, ".gcc_compiled_long64", 20) == 0)
4978 *lbp = 64;
4979 else if (strncmp (name, ".gcc_compiled_long", 18) == 0)
4980 warning (_("unrecognized .gcc_compiled_longXX"));
4981 }
4982
4983 static enum mips_abi
4984 global_mips_abi (void)
4985 {
4986 int i;
4987
4988 for (i = 0; mips_abi_strings[i] != NULL; i++)
4989 if (mips_abi_strings[i] == mips_abi_string)
4990 return (enum mips_abi) i;
4991
4992 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
4993 }
4994
4995 static void
4996 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
4997 {
4998 /* If the size matches the set of 32-bit or 64-bit integer registers,
4999 assume that's what we've got. */
5000 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
5001 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
5002
5003 /* If the size matches the full set of registers GDB traditionally
5004 knows about, including floating point, for either 32-bit or
5005 64-bit, assume that's what we've got. */
5006 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
5007 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
5008
5009 /* Otherwise we don't have a useful guess. */
5010 }
5011
5012 static struct value *
5013 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
5014 {
5015 const int *reg_p = baton;
5016 return value_of_register (*reg_p, frame);
5017 }
5018
5019 static struct gdbarch *
5020 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5021 {
5022 struct gdbarch *gdbarch;
5023 struct gdbarch_tdep *tdep;
5024 int elf_flags;
5025 enum mips_abi mips_abi, found_abi, wanted_abi;
5026 int i, num_regs;
5027 enum mips_fpu_type fpu_type;
5028 struct tdesc_arch_data *tdesc_data = NULL;
5029 int elf_fpu_type = 0;
5030
5031 /* Check any target description for validity. */
5032 if (tdesc_has_registers (info.target_desc))
5033 {
5034 static const char *const mips_gprs[] = {
5035 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5036 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5037 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5038 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5039 };
5040 static const char *const mips_fprs[] = {
5041 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5042 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5043 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5044 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
5045 };
5046
5047 const struct tdesc_feature *feature;
5048 int valid_p;
5049
5050 feature = tdesc_find_feature (info.target_desc,
5051 "org.gnu.gdb.mips.cpu");
5052 if (feature == NULL)
5053 return NULL;
5054
5055 tdesc_data = tdesc_data_alloc ();
5056
5057 valid_p = 1;
5058 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
5059 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
5060 mips_gprs[i]);
5061
5062
5063 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5064 MIPS_EMBED_LO_REGNUM, "lo");
5065 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5066 MIPS_EMBED_HI_REGNUM, "hi");
5067 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5068 MIPS_EMBED_PC_REGNUM, "pc");
5069
5070 if (!valid_p)
5071 {
5072 tdesc_data_cleanup (tdesc_data);
5073 return NULL;
5074 }
5075
5076 feature = tdesc_find_feature (info.target_desc,
5077 "org.gnu.gdb.mips.cp0");
5078 if (feature == NULL)
5079 {
5080 tdesc_data_cleanup (tdesc_data);
5081 return NULL;
5082 }
5083
5084 valid_p = 1;
5085 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5086 MIPS_EMBED_BADVADDR_REGNUM,
5087 "badvaddr");
5088 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5089 MIPS_PS_REGNUM, "status");
5090 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5091 MIPS_EMBED_CAUSE_REGNUM, "cause");
5092
5093 if (!valid_p)
5094 {
5095 tdesc_data_cleanup (tdesc_data);
5096 return NULL;
5097 }
5098
5099 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
5100 backend is not prepared for that, though. */
5101 feature = tdesc_find_feature (info.target_desc,
5102 "org.gnu.gdb.mips.fpu");
5103 if (feature == NULL)
5104 {
5105 tdesc_data_cleanup (tdesc_data);
5106 return NULL;
5107 }
5108
5109 valid_p = 1;
5110 for (i = 0; i < 32; i++)
5111 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5112 i + MIPS_EMBED_FP0_REGNUM,
5113 mips_fprs[i]);
5114
5115 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5116 MIPS_EMBED_FP0_REGNUM + 32, "fcsr");
5117 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5118 MIPS_EMBED_FP0_REGNUM + 33, "fir");
5119
5120 if (!valid_p)
5121 {
5122 tdesc_data_cleanup (tdesc_data);
5123 return NULL;
5124 }
5125
5126 /* It would be nice to detect an attempt to use a 64-bit ABI
5127 when only 32-bit registers are provided. */
5128 }
5129
5130 /* First of all, extract the elf_flags, if available. */
5131 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5132 elf_flags = elf_elfheader (info.abfd)->e_flags;
5133 else if (arches != NULL)
5134 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
5135 else
5136 elf_flags = 0;
5137 if (gdbarch_debug)
5138 fprintf_unfiltered (gdb_stdlog,
5139 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
5140
5141 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5142 switch ((elf_flags & EF_MIPS_ABI))
5143 {
5144 case E_MIPS_ABI_O32:
5145 found_abi = MIPS_ABI_O32;
5146 break;
5147 case E_MIPS_ABI_O64:
5148 found_abi = MIPS_ABI_O64;
5149 break;
5150 case E_MIPS_ABI_EABI32:
5151 found_abi = MIPS_ABI_EABI32;
5152 break;
5153 case E_MIPS_ABI_EABI64:
5154 found_abi = MIPS_ABI_EABI64;
5155 break;
5156 default:
5157 if ((elf_flags & EF_MIPS_ABI2))
5158 found_abi = MIPS_ABI_N32;
5159 else
5160 found_abi = MIPS_ABI_UNKNOWN;
5161 break;
5162 }
5163
5164 /* GCC creates a pseudo-section whose name describes the ABI. */
5165 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5166 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
5167
5168 /* If we have no useful BFD information, use the ABI from the last
5169 MIPS architecture (if there is one). */
5170 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
5171 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5172
5173 /* Try the architecture for any hint of the correct ABI. */
5174 if (found_abi == MIPS_ABI_UNKNOWN
5175 && info.bfd_arch_info != NULL
5176 && info.bfd_arch_info->arch == bfd_arch_mips)
5177 {
5178 switch (info.bfd_arch_info->mach)
5179 {
5180 case bfd_mach_mips3900:
5181 found_abi = MIPS_ABI_EABI32;
5182 break;
5183 case bfd_mach_mips4100:
5184 case bfd_mach_mips5000:
5185 found_abi = MIPS_ABI_EABI64;
5186 break;
5187 case bfd_mach_mips8000:
5188 case bfd_mach_mips10000:
5189 /* On Irix, ELF64 executables use the N64 ABI. The
5190 pseudo-sections which describe the ABI aren't present
5191 on IRIX. (Even for executables created by gcc.) */
5192 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5193 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5194 found_abi = MIPS_ABI_N64;
5195 else
5196 found_abi = MIPS_ABI_N32;
5197 break;
5198 }
5199 }
5200
5201 /* Default 64-bit objects to N64 instead of O32. */
5202 if (found_abi == MIPS_ABI_UNKNOWN
5203 && info.abfd != NULL
5204 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5205 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5206 found_abi = MIPS_ABI_N64;
5207
5208 if (gdbarch_debug)
5209 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
5210 found_abi);
5211
5212 /* What has the user specified from the command line? */
5213 wanted_abi = global_mips_abi ();
5214 if (gdbarch_debug)
5215 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
5216 wanted_abi);
5217
5218 /* Now that we have found what the ABI for this binary would be,
5219 check whether the user is overriding it. */
5220 if (wanted_abi != MIPS_ABI_UNKNOWN)
5221 mips_abi = wanted_abi;
5222 else if (found_abi != MIPS_ABI_UNKNOWN)
5223 mips_abi = found_abi;
5224 else
5225 mips_abi = MIPS_ABI_O32;
5226 if (gdbarch_debug)
5227 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
5228 mips_abi);
5229
5230 /* Also used when doing an architecture lookup. */
5231 if (gdbarch_debug)
5232 fprintf_unfiltered (gdb_stdlog,
5233 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
5234 mips64_transfers_32bit_regs_p);
5235
5236 /* Determine the MIPS FPU type. */
5237 #ifdef HAVE_ELF
5238 if (info.abfd
5239 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5240 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5241 Tag_GNU_MIPS_ABI_FP);
5242 #endif /* HAVE_ELF */
5243
5244 if (!mips_fpu_type_auto)
5245 fpu_type = mips_fpu_type;
5246 else if (elf_fpu_type != 0)
5247 {
5248 switch (elf_fpu_type)
5249 {
5250 case 1:
5251 fpu_type = MIPS_FPU_DOUBLE;
5252 break;
5253 case 2:
5254 fpu_type = MIPS_FPU_SINGLE;
5255 break;
5256 case 3:
5257 default:
5258 /* Soft float or unknown. */
5259 fpu_type = MIPS_FPU_NONE;
5260 break;
5261 }
5262 }
5263 else if (info.bfd_arch_info != NULL
5264 && info.bfd_arch_info->arch == bfd_arch_mips)
5265 switch (info.bfd_arch_info->mach)
5266 {
5267 case bfd_mach_mips3900:
5268 case bfd_mach_mips4100:
5269 case bfd_mach_mips4111:
5270 case bfd_mach_mips4120:
5271 fpu_type = MIPS_FPU_NONE;
5272 break;
5273 case bfd_mach_mips4650:
5274 fpu_type = MIPS_FPU_SINGLE;
5275 break;
5276 default:
5277 fpu_type = MIPS_FPU_DOUBLE;
5278 break;
5279 }
5280 else if (arches != NULL)
5281 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
5282 else
5283 fpu_type = MIPS_FPU_DOUBLE;
5284 if (gdbarch_debug)
5285 fprintf_unfiltered (gdb_stdlog,
5286 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
5287
5288 /* Check for blatant incompatibilities. */
5289
5290 /* If we have only 32-bit registers, then we can't debug a 64-bit
5291 ABI. */
5292 if (info.target_desc
5293 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
5294 && mips_abi != MIPS_ABI_EABI32
5295 && mips_abi != MIPS_ABI_O32)
5296 {
5297 if (tdesc_data != NULL)
5298 tdesc_data_cleanup (tdesc_data);
5299 return NULL;
5300 }
5301
5302 /* try to find a pre-existing architecture */
5303 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5304 arches != NULL;
5305 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5306 {
5307 /* MIPS needs to be pedantic about which ABI the object is
5308 using. */
5309 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5310 continue;
5311 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5312 continue;
5313 /* Need to be pedantic about which register virtual size is
5314 used. */
5315 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
5316 != mips64_transfers_32bit_regs_p)
5317 continue;
5318 /* Be pedantic about which FPU is selected. */
5319 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
5320 continue;
5321
5322 if (tdesc_data != NULL)
5323 tdesc_data_cleanup (tdesc_data);
5324 return arches->gdbarch;
5325 }
5326
5327 /* Need a new architecture. Fill in a target specific vector. */
5328 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5329 gdbarch = gdbarch_alloc (&info, tdep);
5330 tdep->elf_flags = elf_flags;
5331 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
5332 tdep->found_abi = found_abi;
5333 tdep->mips_abi = mips_abi;
5334 tdep->mips_fpu_type = fpu_type;
5335 tdep->register_size_valid_p = 0;
5336 tdep->register_size = 0;
5337
5338 if (info.target_desc)
5339 {
5340 /* Some useful properties can be inferred from the target. */
5341 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
5342 {
5343 tdep->register_size_valid_p = 1;
5344 tdep->register_size = 4;
5345 }
5346 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
5347 {
5348 tdep->register_size_valid_p = 1;
5349 tdep->register_size = 8;
5350 }
5351 }
5352
5353 /* Initially set everything according to the default ABI/ISA. */
5354 set_gdbarch_short_bit (gdbarch, 16);
5355 set_gdbarch_int_bit (gdbarch, 32);
5356 set_gdbarch_float_bit (gdbarch, 32);
5357 set_gdbarch_double_bit (gdbarch, 64);
5358 set_gdbarch_long_double_bit (gdbarch, 64);
5359 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5360 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5361 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5362
5363 set_gdbarch_elf_make_msymbol_special (gdbarch,
5364 mips_elf_make_msymbol_special);
5365
5366 /* Fill in the OS dependant register numbers and names. */
5367 {
5368 const char **reg_names;
5369 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
5370 struct mips_regnum);
5371 if (tdesc_has_registers (info.target_desc))
5372 {
5373 regnum->lo = MIPS_EMBED_LO_REGNUM;
5374 regnum->hi = MIPS_EMBED_HI_REGNUM;
5375 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5376 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5377 regnum->pc = MIPS_EMBED_PC_REGNUM;
5378 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5379 regnum->fp_control_status = 70;
5380 regnum->fp_implementation_revision = 71;
5381 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
5382 reg_names = NULL;
5383 }
5384 else if (info.osabi == GDB_OSABI_IRIX)
5385 {
5386 regnum->fp0 = 32;
5387 regnum->pc = 64;
5388 regnum->cause = 65;
5389 regnum->badvaddr = 66;
5390 regnum->hi = 67;
5391 regnum->lo = 68;
5392 regnum->fp_control_status = 69;
5393 regnum->fp_implementation_revision = 70;
5394 num_regs = 71;
5395 reg_names = mips_irix_reg_names;
5396 }
5397 else
5398 {
5399 regnum->lo = MIPS_EMBED_LO_REGNUM;
5400 regnum->hi = MIPS_EMBED_HI_REGNUM;
5401 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
5402 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
5403 regnum->pc = MIPS_EMBED_PC_REGNUM;
5404 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
5405 regnum->fp_control_status = 70;
5406 regnum->fp_implementation_revision = 71;
5407 num_regs = 90;
5408 if (info.bfd_arch_info != NULL
5409 && info.bfd_arch_info->mach == bfd_mach_mips3900)
5410 reg_names = mips_tx39_reg_names;
5411 else
5412 reg_names = mips_generic_reg_names;
5413 }
5414 /* FIXME: cagney/2003-11-15: For MIPS, hasn't gdbarch_pc_regnum been
5415 replaced by read_pc? */
5416 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
5417 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5418 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
5419 set_gdbarch_num_regs (gdbarch, num_regs);
5420 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5421 set_gdbarch_register_name (gdbarch, mips_register_name);
5422 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
5423 tdep->mips_processor_reg_names = reg_names;
5424 tdep->regnum = regnum;
5425 }
5426
5427 switch (mips_abi)
5428 {
5429 case MIPS_ABI_O32:
5430 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5431 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
5432 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5433 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5434 tdep->default_mask_address_p = 0;
5435 set_gdbarch_long_bit (gdbarch, 32);
5436 set_gdbarch_ptr_bit (gdbarch, 32);
5437 set_gdbarch_long_long_bit (gdbarch, 64);
5438 break;
5439 case MIPS_ABI_O64:
5440 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5441 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
5442 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
5443 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
5444 tdep->default_mask_address_p = 0;
5445 set_gdbarch_long_bit (gdbarch, 32);
5446 set_gdbarch_ptr_bit (gdbarch, 32);
5447 set_gdbarch_long_long_bit (gdbarch, 64);
5448 break;
5449 case MIPS_ABI_EABI32:
5450 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5451 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5452 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5453 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5454 tdep->default_mask_address_p = 0;
5455 set_gdbarch_long_bit (gdbarch, 32);
5456 set_gdbarch_ptr_bit (gdbarch, 32);
5457 set_gdbarch_long_long_bit (gdbarch, 64);
5458 break;
5459 case MIPS_ABI_EABI64:
5460 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5461 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
5462 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5463 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5464 tdep->default_mask_address_p = 0;
5465 set_gdbarch_long_bit (gdbarch, 64);
5466 set_gdbarch_ptr_bit (gdbarch, 64);
5467 set_gdbarch_long_long_bit (gdbarch, 64);
5468 break;
5469 case MIPS_ABI_N32:
5470 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5471 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5472 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5473 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5474 tdep->default_mask_address_p = 0;
5475 set_gdbarch_long_bit (gdbarch, 32);
5476 set_gdbarch_ptr_bit (gdbarch, 32);
5477 set_gdbarch_long_long_bit (gdbarch, 64);
5478 set_gdbarch_long_double_bit (gdbarch, 128);
5479 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5480 break;
5481 case MIPS_ABI_N64:
5482 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5483 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5484 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5485 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5486 tdep->default_mask_address_p = 0;
5487 set_gdbarch_long_bit (gdbarch, 64);
5488 set_gdbarch_ptr_bit (gdbarch, 64);
5489 set_gdbarch_long_long_bit (gdbarch, 64);
5490 set_gdbarch_long_double_bit (gdbarch, 128);
5491 set_gdbarch_long_double_format (gdbarch, floatformats_n32n64_long);
5492 break;
5493 default:
5494 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5495 }
5496
5497 /* GCC creates a pseudo-section whose name specifies the size of
5498 longs, since -mlong32 or -mlong64 may be used independent of
5499 other options. How those options affect pointer sizes is ABI and
5500 architecture dependent, so use them to override the default sizes
5501 set by the ABI. This table shows the relationship between ABI,
5502 -mlongXX, and size of pointers:
5503
5504 ABI -mlongXX ptr bits
5505 --- -------- --------
5506 o32 32 32
5507 o32 64 32
5508 n32 32 32
5509 n32 64 64
5510 o64 32 32
5511 o64 64 64
5512 n64 32 32
5513 n64 64 64
5514 eabi32 32 32
5515 eabi32 64 32
5516 eabi64 32 32
5517 eabi64 64 64
5518
5519 Note that for o32 and eabi32, pointers are always 32 bits
5520 regardless of any -mlongXX option. For all others, pointers and
5521 longs are the same, as set by -mlongXX or set by defaults.
5522 */
5523
5524 if (info.abfd != NULL)
5525 {
5526 int long_bit = 0;
5527
5528 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
5529 if (long_bit)
5530 {
5531 set_gdbarch_long_bit (gdbarch, long_bit);
5532 switch (mips_abi)
5533 {
5534 case MIPS_ABI_O32:
5535 case MIPS_ABI_EABI32:
5536 break;
5537 case MIPS_ABI_N32:
5538 case MIPS_ABI_O64:
5539 case MIPS_ABI_N64:
5540 case MIPS_ABI_EABI64:
5541 set_gdbarch_ptr_bit (gdbarch, long_bit);
5542 break;
5543 default:
5544 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
5545 }
5546 }
5547 }
5548
5549 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5550 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5551 comment:
5552
5553 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5554 flag in object files because to do so would make it impossible to
5555 link with libraries compiled without "-gp32". This is
5556 unnecessarily restrictive.
5557
5558 We could solve this problem by adding "-gp32" multilibs to gcc,
5559 but to set this flag before gcc is built with such multilibs will
5560 break too many systems.''
5561
5562 But even more unhelpfully, the default linker output target for
5563 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5564 for 64-bit programs - you need to change the ABI to change this,
5565 and not all gcc targets support that currently. Therefore using
5566 this flag to detect 32-bit mode would do the wrong thing given
5567 the current gcc - it would make GDB treat these 64-bit programs
5568 as 32-bit programs by default. */
5569
5570 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5571 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5572
5573 /* Add/remove bits from an address. The MIPS needs be careful to
5574 ensure that all 32 bit addresses are sign extended to 64 bits. */
5575 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5576
5577 /* Unwind the frame. */
5578 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5579 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
5580 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5581
5582 /* Map debug register numbers onto internal register numbers. */
5583 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5584 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5585 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5586 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5587 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5588 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5589 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5590 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5591
5592 /* MIPS version of CALL_DUMMY */
5593
5594 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5595 replaced by a command, and all targets will default to on stack
5596 (regardless of the stack's execute status). */
5597 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5598 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5599
5600 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5601 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5602 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5603
5604 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5605 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5606
5607 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5608
5609 set_gdbarch_in_function_epilogue_p (gdbarch, mips_in_function_epilogue_p);
5610
5611 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5612 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5613 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5614
5615 set_gdbarch_register_type (gdbarch, mips_register_type);
5616
5617 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5618
5619 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5620
5621 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5622 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5623 need to all be folded into the target vector. Since they are
5624 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5625 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5626 is sitting on? */
5627 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5628
5629 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5630
5631 set_gdbarch_single_step_through_delay (gdbarch, mips_single_step_through_delay);
5632
5633 /* Virtual tables. */
5634 set_gdbarch_vbit_in_delta (gdbarch, 1);
5635
5636 mips_register_g_packet_guesses (gdbarch);
5637
5638 /* Hook in OS ABI-specific overrides, if they have been registered. */
5639 info.tdep_info = (void *) tdesc_data;
5640 gdbarch_init_osabi (info, gdbarch);
5641
5642 /* Unwind the frame. */
5643 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
5644 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5645 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5646 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5647 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
5648 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5649 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5650 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5651
5652 if (tdesc_data)
5653 {
5654 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
5655 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
5656
5657 /* Override the normal target description methods to handle our
5658 dual real and pseudo registers. */
5659 set_gdbarch_register_name (gdbarch, mips_register_name);
5660 set_gdbarch_register_reggroup_p (gdbarch, mips_tdesc_register_reggroup_p);
5661
5662 num_regs = gdbarch_num_regs (gdbarch);
5663 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5664 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
5665 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
5666 }
5667
5668 /* Add ABI-specific aliases for the registers. */
5669 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5670 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
5671 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
5672 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
5673 else
5674 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
5675 user_reg_add (gdbarch, mips_o32_aliases[i].name,
5676 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
5677
5678 /* Add some other standard aliases. */
5679 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
5680 user_reg_add (gdbarch, mips_register_aliases[i].name,
5681 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
5682
5683 return gdbarch;
5684 }
5685
5686 static void
5687 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5688 {
5689 struct gdbarch_info info;
5690
5691 /* Force the architecture to update, and (if it's a MIPS architecture)
5692 mips_gdbarch_init will take care of the rest. */
5693 gdbarch_info_init (&info);
5694 gdbarch_update_p (info);
5695 }
5696
5697 /* Print out which MIPS ABI is in use. */
5698
5699 static void
5700 show_mips_abi (struct ui_file *file,
5701 int from_tty,
5702 struct cmd_list_element *ignored_cmd,
5703 const char *ignored_value)
5704 {
5705 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5706 fprintf_filtered
5707 (file,
5708 "The MIPS ABI is unknown because the current architecture "
5709 "is not MIPS.\n");
5710 else
5711 {
5712 enum mips_abi global_abi = global_mips_abi ();
5713 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5714 const char *actual_abi_str = mips_abi_strings[actual_abi];
5715
5716 if (global_abi == MIPS_ABI_UNKNOWN)
5717 fprintf_filtered
5718 (file,
5719 "The MIPS ABI is set automatically (currently \"%s\").\n",
5720 actual_abi_str);
5721 else if (global_abi == actual_abi)
5722 fprintf_filtered
5723 (file,
5724 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5725 actual_abi_str);
5726 else
5727 {
5728 /* Probably shouldn't happen... */
5729 fprintf_filtered
5730 (file,
5731 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5732 actual_abi_str, mips_abi_strings[global_abi]);
5733 }
5734 }
5735 }
5736
5737 static void
5738 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
5739 {
5740 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5741 if (tdep != NULL)
5742 {
5743 int ef_mips_arch;
5744 int ef_mips_32bitmode;
5745 /* Determine the ISA. */
5746 switch (tdep->elf_flags & EF_MIPS_ARCH)
5747 {
5748 case E_MIPS_ARCH_1:
5749 ef_mips_arch = 1;
5750 break;
5751 case E_MIPS_ARCH_2:
5752 ef_mips_arch = 2;
5753 break;
5754 case E_MIPS_ARCH_3:
5755 ef_mips_arch = 3;
5756 break;
5757 case E_MIPS_ARCH_4:
5758 ef_mips_arch = 4;
5759 break;
5760 default:
5761 ef_mips_arch = 0;
5762 break;
5763 }
5764 /* Determine the size of a pointer. */
5765 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5766 fprintf_unfiltered (file,
5767 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5768 tdep->elf_flags);
5769 fprintf_unfiltered (file,
5770 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5771 ef_mips_32bitmode);
5772 fprintf_unfiltered (file,
5773 "mips_dump_tdep: ef_mips_arch = %d\n",
5774 ef_mips_arch);
5775 fprintf_unfiltered (file,
5776 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5777 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5778 fprintf_unfiltered (file,
5779 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5780 mips_mask_address_p (tdep),
5781 tdep->default_mask_address_p);
5782 }
5783 fprintf_unfiltered (file,
5784 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5785 MIPS_DEFAULT_FPU_TYPE,
5786 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5787 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5788 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5789 : "???"));
5790 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5791 fprintf_unfiltered (file,
5792 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5793 MIPS_FPU_TYPE,
5794 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5795 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5796 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5797 : "???"));
5798 }
5799
5800 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5801
5802 void
5803 _initialize_mips_tdep (void)
5804 {
5805 static struct cmd_list_element *mipsfpulist = NULL;
5806 struct cmd_list_element *c;
5807
5808 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5809 if (MIPS_ABI_LAST + 1
5810 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5811 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
5812
5813 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5814
5815 mips_pdr_data = register_objfile_data ();
5816
5817 /* Create feature sets with the appropriate properties. The values
5818 are not important. */
5819 mips_tdesc_gp32 = allocate_target_description ();
5820 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
5821
5822 mips_tdesc_gp64 = allocate_target_description ();
5823 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
5824
5825 /* Add root prefix command for all "set mips"/"show mips" commands */
5826 add_prefix_cmd ("mips", no_class, set_mips_command,
5827 _("Various MIPS specific commands."),
5828 &setmipscmdlist, "set mips ", 0, &setlist);
5829
5830 add_prefix_cmd ("mips", no_class, show_mips_command,
5831 _("Various MIPS specific commands."),
5832 &showmipscmdlist, "show mips ", 0, &showlist);
5833
5834 /* Allow the user to override the ABI. */
5835 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
5836 &mips_abi_string, _("\
5837 Set the MIPS ABI used by this program."), _("\
5838 Show the MIPS ABI used by this program."), _("\
5839 This option can be set to one of:\n\
5840 auto - the default ABI associated with the current binary\n\
5841 o32\n\
5842 o64\n\
5843 n32\n\
5844 n64\n\
5845 eabi32\n\
5846 eabi64"),
5847 mips_abi_update,
5848 show_mips_abi,
5849 &setmipscmdlist, &showmipscmdlist);
5850
5851 /* Let the user turn off floating point and set the fence post for
5852 heuristic_proc_start. */
5853
5854 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5855 _("Set use of MIPS floating-point coprocessor."),
5856 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5857 add_cmd ("single", class_support, set_mipsfpu_single_command,
5858 _("Select single-precision MIPS floating-point coprocessor."),
5859 &mipsfpulist);
5860 add_cmd ("double", class_support, set_mipsfpu_double_command,
5861 _("Select double-precision MIPS floating-point coprocessor."),
5862 &mipsfpulist);
5863 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5864 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5865 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5866 add_cmd ("none", class_support, set_mipsfpu_none_command,
5867 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
5868 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5869 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5870 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5871 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5872 _("Select MIPS floating-point coprocessor automatically."),
5873 &mipsfpulist);
5874 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5875 _("Show current use of MIPS floating-point coprocessor target."),
5876 &showlist);
5877
5878 /* We really would like to have both "0" and "unlimited" work, but
5879 command.c doesn't deal with that. So make it a var_zinteger
5880 because the user can always use "999999" or some such for unlimited. */
5881 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5882 &heuristic_fence_post, _("\
5883 Set the distance searched for the start of a function."), _("\
5884 Show the distance searched for the start of a function."), _("\
5885 If you are debugging a stripped executable, GDB needs to search through the\n\
5886 program for the start of a function. This command sets the distance of the\n\
5887 search. The only need to set it is when debugging a stripped executable."),
5888 reinit_frame_cache_sfunc,
5889 NULL, /* FIXME: i18n: The distance searched for the start of a function is %s. */
5890 &setlist, &showlist);
5891
5892 /* Allow the user to control whether the upper bits of 64-bit
5893 addresses should be zeroed. */
5894 add_setshow_auto_boolean_cmd ("mask-address", no_class,
5895 &mask_address_var, _("\
5896 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
5897 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
5898 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5899 allow GDB to determine the correct value."),
5900 NULL, show_mask_address,
5901 &setmipscmdlist, &showmipscmdlist);
5902
5903 /* Allow the user to control the size of 32 bit registers within the
5904 raw remote packet. */
5905 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5906 &mips64_transfers_32bit_regs_p, _("\
5907 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5908 _("\
5909 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
5910 _("\
5911 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5912 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5913 64 bits for others. Use \"off\" to disable compatibility mode"),
5914 set_mips64_transfers_32bit_regs,
5915 NULL, /* FIXME: i18n: Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s. */
5916 &setlist, &showlist);
5917
5918 /* Debug this files internals. */
5919 add_setshow_zinteger_cmd ("mips", class_maintenance,
5920 &mips_debug, _("\
5921 Set mips debugging."), _("\
5922 Show mips debugging."), _("\
5923 When non-zero, mips specific debugging is enabled."),
5924 NULL,
5925 NULL, /* FIXME: i18n: Mips debugging is currently %s. */
5926 &setdebuglist, &showdebuglist);
5927 }
This page took 0.153569 seconds and 4 git commands to generate.