[AArch64] Print spaces after commas in addresses
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "frame-unwind.h"
48 #include "frame-base.h"
49 #include "trad-frame.h"
50 #include "infcall.h"
51 #include "floatformat.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include <algorithm>
59
60 static const struct objfile_data *mips_pdr_data;
61
62 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
63
64 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
65 ULONGEST inst);
66 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
67 static int mips16_instruction_has_delay_slot (unsigned short inst,
68 int mustbe32);
69
70 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
71 CORE_ADDR addr);
72 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
73 CORE_ADDR addr, int mustbe32);
74 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
75 CORE_ADDR addr, int mustbe32);
76
77 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
78 struct frame_info *, const char *);
79
80 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
81 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
82 #define ST0_FR (1 << 26)
83
84 /* The sizes of floating point registers. */
85
86 enum
87 {
88 MIPS_FPU_SINGLE_REGSIZE = 4,
89 MIPS_FPU_DOUBLE_REGSIZE = 8
90 };
91
92 enum
93 {
94 MIPS32_REGSIZE = 4,
95 MIPS64_REGSIZE = 8
96 };
97
98 static const char *mips_abi_string;
99
100 static const char *const mips_abi_strings[] = {
101 "auto",
102 "n32",
103 "o32",
104 "n64",
105 "o64",
106 "eabi32",
107 "eabi64",
108 NULL
109 };
110
111 /* For backwards compatibility we default to MIPS16. This flag is
112 overridden as soon as unambiguous ELF file flags tell us the
113 compressed ISA encoding used. */
114 static const char mips_compression_mips16[] = "mips16";
115 static const char mips_compression_micromips[] = "micromips";
116 static const char *const mips_compression_strings[] =
117 {
118 mips_compression_mips16,
119 mips_compression_micromips,
120 NULL
121 };
122
123 static const char *mips_compression_string = mips_compression_mips16;
124
125 /* The standard register names, and all the valid aliases for them. */
126 struct register_alias
127 {
128 const char *name;
129 int regnum;
130 };
131
132 /* Aliases for o32 and most other ABIs. */
133 const struct register_alias mips_o32_aliases[] = {
134 { "ta0", 12 },
135 { "ta1", 13 },
136 { "ta2", 14 },
137 { "ta3", 15 }
138 };
139
140 /* Aliases for n32 and n64. */
141 const struct register_alias mips_n32_n64_aliases[] = {
142 { "ta0", 8 },
143 { "ta1", 9 },
144 { "ta2", 10 },
145 { "ta3", 11 }
146 };
147
148 /* Aliases for ABI-independent registers. */
149 const struct register_alias mips_register_aliases[] = {
150 /* The architecture manuals specify these ABI-independent names for
151 the GPRs. */
152 #define R(n) { "r" #n, n }
153 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
154 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
155 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
156 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
157 #undef R
158
159 /* k0 and k1 are sometimes called these instead (for "kernel
160 temp"). */
161 { "kt0", 26 },
162 { "kt1", 27 },
163
164 /* This is the traditional GDB name for the CP0 status register. */
165 { "sr", MIPS_PS_REGNUM },
166
167 /* This is the traditional GDB name for the CP0 BadVAddr register. */
168 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
169
170 /* This is the traditional GDB name for the FCSR. */
171 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
172 };
173
174 const struct register_alias mips_numeric_register_aliases[] = {
175 #define R(n) { #n, n }
176 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
177 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
178 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
179 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
180 #undef R
181 };
182
183 #ifndef MIPS_DEFAULT_FPU_TYPE
184 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
185 #endif
186 static int mips_fpu_type_auto = 1;
187 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
188
189 static unsigned int mips_debug = 0;
190
191 /* Properties (for struct target_desc) describing the g/G packet
192 layout. */
193 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
194 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
195
196 struct target_desc *mips_tdesc_gp32;
197 struct target_desc *mips_tdesc_gp64;
198
199 const struct mips_regnum *
200 mips_regnum (struct gdbarch *gdbarch)
201 {
202 return gdbarch_tdep (gdbarch)->regnum;
203 }
204
205 static int
206 mips_fpa0_regnum (struct gdbarch *gdbarch)
207 {
208 return mips_regnum (gdbarch)->fp0 + 12;
209 }
210
211 /* Return 1 if REGNUM refers to a floating-point general register, raw
212 or cooked. Otherwise return 0. */
213
214 static int
215 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
216 {
217 int rawnum = regnum % gdbarch_num_regs (gdbarch);
218
219 return (rawnum >= mips_regnum (gdbarch)->fp0
220 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
221 }
222
223 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
224 == MIPS_ABI_EABI32 \
225 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
226
227 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
228 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
229
230 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
231 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
232
233 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
234
235 /* Return the MIPS ABI associated with GDBARCH. */
236 enum mips_abi
237 mips_abi (struct gdbarch *gdbarch)
238 {
239 return gdbarch_tdep (gdbarch)->mips_abi;
240 }
241
242 int
243 mips_isa_regsize (struct gdbarch *gdbarch)
244 {
245 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
246
247 /* If we know how big the registers are, use that size. */
248 if (tdep->register_size_valid_p)
249 return tdep->register_size;
250
251 /* Fall back to the previous behavior. */
252 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
253 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
254 }
255
256 /* Return the currently configured (or set) saved register size. */
257
258 unsigned int
259 mips_abi_regsize (struct gdbarch *gdbarch)
260 {
261 switch (mips_abi (gdbarch))
262 {
263 case MIPS_ABI_EABI32:
264 case MIPS_ABI_O32:
265 return 4;
266 case MIPS_ABI_N32:
267 case MIPS_ABI_N64:
268 case MIPS_ABI_O64:
269 case MIPS_ABI_EABI64:
270 return 8;
271 case MIPS_ABI_UNKNOWN:
272 case MIPS_ABI_LAST:
273 default:
274 internal_error (__FILE__, __LINE__, _("bad switch"));
275 }
276 }
277
278 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
279 are some functions to handle addresses associated with compressed
280 code including but not limited to testing, setting, or clearing
281 bit 0 of such addresses. */
282
283 /* Return one iff compressed code is the MIPS16 instruction set. */
284
285 static int
286 is_mips16_isa (struct gdbarch *gdbarch)
287 {
288 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
289 }
290
291 /* Return one iff compressed code is the microMIPS instruction set. */
292
293 static int
294 is_micromips_isa (struct gdbarch *gdbarch)
295 {
296 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
297 }
298
299 /* Return one iff ADDR denotes compressed code. */
300
301 static int
302 is_compact_addr (CORE_ADDR addr)
303 {
304 return ((addr) & 1);
305 }
306
307 /* Return one iff ADDR denotes standard ISA code. */
308
309 static int
310 is_mips_addr (CORE_ADDR addr)
311 {
312 return !is_compact_addr (addr);
313 }
314
315 /* Return one iff ADDR denotes MIPS16 code. */
316
317 static int
318 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
319 {
320 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
321 }
322
323 /* Return one iff ADDR denotes microMIPS code. */
324
325 static int
326 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
327 {
328 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
329 }
330
331 /* Strip the ISA (compression) bit off from ADDR. */
332
333 static CORE_ADDR
334 unmake_compact_addr (CORE_ADDR addr)
335 {
336 return ((addr) & ~(CORE_ADDR) 1);
337 }
338
339 /* Add the ISA (compression) bit to ADDR. */
340
341 static CORE_ADDR
342 make_compact_addr (CORE_ADDR addr)
343 {
344 return ((addr) | (CORE_ADDR) 1);
345 }
346
347 /* Extern version of unmake_compact_addr; we use a separate function
348 so that unmake_compact_addr can be inlined throughout this file. */
349
350 CORE_ADDR
351 mips_unmake_compact_addr (CORE_ADDR addr)
352 {
353 return unmake_compact_addr (addr);
354 }
355
356 /* Functions for setting and testing a bit in a minimal symbol that
357 marks it as MIPS16 or microMIPS function. The MSB of the minimal
358 symbol's "info" field is used for this purpose.
359
360 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
361 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
362 one of the "special" bits in a minimal symbol to mark it accordingly.
363 The test checks an ELF-private flag that is valid for true function
364 symbols only; for synthetic symbols such as for PLT stubs that have
365 no ELF-private part at all the MIPS BFD backend arranges for this
366 information to be carried in the asymbol's udata field instead.
367
368 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
369 in a minimal symbol. */
370
371 static void
372 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
373 {
374 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
375 unsigned char st_other;
376
377 if ((sym->flags & BSF_SYNTHETIC) == 0)
378 st_other = elfsym->internal_elf_sym.st_other;
379 else if ((sym->flags & BSF_FUNCTION) != 0)
380 st_other = sym->udata.i;
381 else
382 return;
383
384 if (ELF_ST_IS_MICROMIPS (st_other))
385 {
386 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
387 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
388 }
389 else if (ELF_ST_IS_MIPS16 (st_other))
390 {
391 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
392 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
393 }
394 }
395
396 /* Return one iff MSYM refers to standard ISA code. */
397
398 static int
399 msymbol_is_mips (struct minimal_symbol *msym)
400 {
401 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
402 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
403 }
404
405 /* Return one iff MSYM refers to MIPS16 code. */
406
407 static int
408 msymbol_is_mips16 (struct minimal_symbol *msym)
409 {
410 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
411 }
412
413 /* Return one iff MSYM refers to microMIPS code. */
414
415 static int
416 msymbol_is_micromips (struct minimal_symbol *msym)
417 {
418 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
419 }
420
421 /* Set the ISA bit in the main symbol too, complementing the corresponding
422 minimal symbol setting and reflecting the run-time value of the symbol.
423 The need for comes from the ISA bit having been cleared as code in
424 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
425 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
426 of symbols referring to compressed code different in GDB to the values
427 used by actual code. That in turn makes them evaluate incorrectly in
428 expressions, producing results different to what the same expressions
429 yield when compiled into the program being debugged. */
430
431 static void
432 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
433 {
434 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
435 {
436 /* We are in symbol reading so it is OK to cast away constness. */
437 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
438 CORE_ADDR compact_block_start;
439 struct bound_minimal_symbol msym;
440
441 compact_block_start = BLOCK_START (block) | 1;
442 msym = lookup_minimal_symbol_by_pc (compact_block_start);
443 if (msym.minsym && !msymbol_is_mips (msym.minsym))
444 {
445 BLOCK_START (block) = compact_block_start;
446 }
447 }
448 }
449
450 /* XFER a value from the big/little/left end of the register.
451 Depending on the size of the value it might occupy the entire
452 register or just part of it. Make an allowance for this, aligning
453 things accordingly. */
454
455 static void
456 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
457 int reg_num, int length,
458 enum bfd_endian endian, gdb_byte *in,
459 const gdb_byte *out, int buf_offset)
460 {
461 int reg_offset = 0;
462
463 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
464 /* Need to transfer the left or right part of the register, based on
465 the targets byte order. */
466 switch (endian)
467 {
468 case BFD_ENDIAN_BIG:
469 reg_offset = register_size (gdbarch, reg_num) - length;
470 break;
471 case BFD_ENDIAN_LITTLE:
472 reg_offset = 0;
473 break;
474 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
475 reg_offset = 0;
476 break;
477 default:
478 internal_error (__FILE__, __LINE__, _("bad switch"));
479 }
480 if (mips_debug)
481 fprintf_unfiltered (gdb_stderr,
482 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
483 reg_num, reg_offset, buf_offset, length);
484 if (mips_debug && out != NULL)
485 {
486 int i;
487 fprintf_unfiltered (gdb_stdlog, "out ");
488 for (i = 0; i < length; i++)
489 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
490 }
491 if (in != NULL)
492 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
493 in + buf_offset);
494 if (out != NULL)
495 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
496 out + buf_offset);
497 if (mips_debug && in != NULL)
498 {
499 int i;
500 fprintf_unfiltered (gdb_stdlog, "in ");
501 for (i = 0; i < length; i++)
502 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
503 }
504 if (mips_debug)
505 fprintf_unfiltered (gdb_stdlog, "\n");
506 }
507
508 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
509 compatiblity mode. A return value of 1 means that we have
510 physical 64-bit registers, but should treat them as 32-bit registers. */
511
512 static int
513 mips2_fp_compat (struct frame_info *frame)
514 {
515 struct gdbarch *gdbarch = get_frame_arch (frame);
516 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
517 meaningful. */
518 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
519 return 0;
520
521 #if 0
522 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
523 in all the places we deal with FP registers. PR gdb/413. */
524 /* Otherwise check the FR bit in the status register - it controls
525 the FP compatiblity mode. If it is clear we are in compatibility
526 mode. */
527 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
528 return 1;
529 #endif
530
531 return 0;
532 }
533
534 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
535
536 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
537
538 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
539
540 /* The list of available "set mips " and "show mips " commands. */
541
542 static struct cmd_list_element *setmipscmdlist = NULL;
543 static struct cmd_list_element *showmipscmdlist = NULL;
544
545 /* Integer registers 0 thru 31 are handled explicitly by
546 mips_register_name(). Processor specific registers 32 and above
547 are listed in the following tables. */
548
549 enum
550 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
551
552 /* Generic MIPS. */
553
554 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
555 "sr", "lo", "hi", "bad", "cause", "pc",
556 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
557 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
558 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
559 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
560 "fsr", "fir",
561 };
562
563 /* Names of IDT R3041 registers. */
564
565 static const char *mips_r3041_reg_names[] = {
566 "sr", "lo", "hi", "bad", "cause", "pc",
567 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
568 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
569 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
570 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
571 "fsr", "fir", "", /*"fp" */ "",
572 "", "", "bus", "ccfg", "", "", "", "",
573 "", "", "port", "cmp", "", "", "epc", "prid",
574 };
575
576 /* Names of tx39 registers. */
577
578 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
579 "sr", "lo", "hi", "bad", "cause", "pc",
580 "", "", "", "", "", "", "", "",
581 "", "", "", "", "", "", "", "",
582 "", "", "", "", "", "", "", "",
583 "", "", "", "", "", "", "", "",
584 "", "", "", "",
585 "", "", "", "", "", "", "", "",
586 "", "", "config", "cache", "debug", "depc", "epc",
587 };
588
589 /* Names of IRIX registers. */
590 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
591 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
592 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
593 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
594 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
595 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
596 };
597
598 /* Names of registers with Linux kernels. */
599 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
600 "sr", "lo", "hi", "bad", "cause", "pc",
601 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
602 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
603 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
604 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
605 "fsr", "fir"
606 };
607
608
609 /* Return the name of the register corresponding to REGNO. */
610 static const char *
611 mips_register_name (struct gdbarch *gdbarch, int regno)
612 {
613 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
614 /* GPR names for all ABIs other than n32/n64. */
615 static char *mips_gpr_names[] = {
616 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
617 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
618 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
619 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
620 };
621
622 /* GPR names for n32 and n64 ABIs. */
623 static char *mips_n32_n64_gpr_names[] = {
624 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
625 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
626 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
627 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
628 };
629
630 enum mips_abi abi = mips_abi (gdbarch);
631
632 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
633 but then don't make the raw register names visible. This (upper)
634 range of user visible register numbers are the pseudo-registers.
635
636 This approach was adopted accommodate the following scenario:
637 It is possible to debug a 64-bit device using a 32-bit
638 programming model. In such instances, the raw registers are
639 configured to be 64-bits wide, while the pseudo registers are
640 configured to be 32-bits wide. The registers that the user
641 sees - the pseudo registers - match the users expectations
642 given the programming model being used. */
643 int rawnum = regno % gdbarch_num_regs (gdbarch);
644 if (regno < gdbarch_num_regs (gdbarch))
645 return "";
646
647 /* The MIPS integer registers are always mapped from 0 to 31. The
648 names of the registers (which reflects the conventions regarding
649 register use) vary depending on the ABI. */
650 if (0 <= rawnum && rawnum < 32)
651 {
652 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
653 return mips_n32_n64_gpr_names[rawnum];
654 else
655 return mips_gpr_names[rawnum];
656 }
657 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
658 return tdesc_register_name (gdbarch, rawnum);
659 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
660 {
661 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
662 if (tdep->mips_processor_reg_names[rawnum - 32])
663 return tdep->mips_processor_reg_names[rawnum - 32];
664 return "";
665 }
666 else
667 internal_error (__FILE__, __LINE__,
668 _("mips_register_name: bad register number %d"), rawnum);
669 }
670
671 /* Return the groups that a MIPS register can be categorised into. */
672
673 static int
674 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
675 struct reggroup *reggroup)
676 {
677 int vector_p;
678 int float_p;
679 int raw_p;
680 int rawnum = regnum % gdbarch_num_regs (gdbarch);
681 int pseudo = regnum / gdbarch_num_regs (gdbarch);
682 if (reggroup == all_reggroup)
683 return pseudo;
684 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
685 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
686 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
687 (gdbarch), as not all architectures are multi-arch. */
688 raw_p = rawnum < gdbarch_num_regs (gdbarch);
689 if (gdbarch_register_name (gdbarch, regnum) == NULL
690 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
691 return 0;
692 if (reggroup == float_reggroup)
693 return float_p && pseudo;
694 if (reggroup == vector_reggroup)
695 return vector_p && pseudo;
696 if (reggroup == general_reggroup)
697 return (!vector_p && !float_p) && pseudo;
698 /* Save the pseudo registers. Need to make certain that any code
699 extracting register values from a saved register cache also uses
700 pseudo registers. */
701 if (reggroup == save_reggroup)
702 return raw_p && pseudo;
703 /* Restore the same pseudo register. */
704 if (reggroup == restore_reggroup)
705 return raw_p && pseudo;
706 return 0;
707 }
708
709 /* Return the groups that a MIPS register can be categorised into.
710 This version is only used if we have a target description which
711 describes real registers (and their groups). */
712
713 static int
714 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
715 struct reggroup *reggroup)
716 {
717 int rawnum = regnum % gdbarch_num_regs (gdbarch);
718 int pseudo = regnum / gdbarch_num_regs (gdbarch);
719 int ret;
720
721 /* Only save, restore, and display the pseudo registers. Need to
722 make certain that any code extracting register values from a
723 saved register cache also uses pseudo registers.
724
725 Note: saving and restoring the pseudo registers is slightly
726 strange; if we have 64 bits, we should save and restore all
727 64 bits. But this is hard and has little benefit. */
728 if (!pseudo)
729 return 0;
730
731 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
732 if (ret != -1)
733 return ret;
734
735 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
736 }
737
738 /* Map the symbol table registers which live in the range [1 *
739 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
740 registers. Take care of alignment and size problems. */
741
742 static enum register_status
743 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
744 int cookednum, gdb_byte *buf)
745 {
746 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
747 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
748 && cookednum < 2 * gdbarch_num_regs (gdbarch));
749 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
750 return regcache_raw_read (regcache, rawnum, buf);
751 else if (register_size (gdbarch, rawnum) >
752 register_size (gdbarch, cookednum))
753 {
754 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
755 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
756 else
757 {
758 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
759 LONGEST regval;
760 enum register_status status;
761
762 status = regcache_raw_read_signed (regcache, rawnum, &regval);
763 if (status == REG_VALID)
764 store_signed_integer (buf, 4, byte_order, regval);
765 return status;
766 }
767 }
768 else
769 internal_error (__FILE__, __LINE__, _("bad register size"));
770 }
771
772 static void
773 mips_pseudo_register_write (struct gdbarch *gdbarch,
774 struct regcache *regcache, int cookednum,
775 const gdb_byte *buf)
776 {
777 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
778 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
779 && cookednum < 2 * gdbarch_num_regs (gdbarch));
780 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
781 regcache_raw_write (regcache, rawnum, buf);
782 else if (register_size (gdbarch, rawnum) >
783 register_size (gdbarch, cookednum))
784 {
785 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
786 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
787 else
788 {
789 /* Sign extend the shortened version of the register prior
790 to placing it in the raw register. This is required for
791 some mips64 parts in order to avoid unpredictable behavior. */
792 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
793 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
794 regcache_raw_write_signed (regcache, rawnum, regval);
795 }
796 }
797 else
798 internal_error (__FILE__, __LINE__, _("bad register size"));
799 }
800
801 static int
802 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
803 struct agent_expr *ax, int reg)
804 {
805 int rawnum = reg % gdbarch_num_regs (gdbarch);
806 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
807 && reg < 2 * gdbarch_num_regs (gdbarch));
808
809 ax_reg_mask (ax, rawnum);
810
811 return 0;
812 }
813
814 static int
815 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
816 struct agent_expr *ax, int reg)
817 {
818 int rawnum = reg % gdbarch_num_regs (gdbarch);
819 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
820 && reg < 2 * gdbarch_num_regs (gdbarch));
821 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
822 {
823 ax_reg (ax, rawnum);
824
825 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
826 {
827 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
828 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
829 {
830 ax_const_l (ax, 32);
831 ax_simple (ax, aop_lsh);
832 }
833 ax_const_l (ax, 32);
834 ax_simple (ax, aop_rsh_signed);
835 }
836 }
837 else
838 internal_error (__FILE__, __LINE__, _("bad register size"));
839
840 return 0;
841 }
842
843 /* Table to translate 3-bit register field to actual register number. */
844 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
845
846 /* Heuristic_proc_start may hunt through the text section for a long
847 time across a 2400 baud serial line. Allows the user to limit this
848 search. */
849
850 static int heuristic_fence_post = 0;
851
852 /* Number of bytes of storage in the actual machine representation for
853 register N. NOTE: This defines the pseudo register type so need to
854 rebuild the architecture vector. */
855
856 static int mips64_transfers_32bit_regs_p = 0;
857
858 static void
859 set_mips64_transfers_32bit_regs (char *args, int from_tty,
860 struct cmd_list_element *c)
861 {
862 struct gdbarch_info info;
863 gdbarch_info_init (&info);
864 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
865 instead of relying on globals. Doing that would let generic code
866 handle the search for this specific architecture. */
867 if (!gdbarch_update_p (info))
868 {
869 mips64_transfers_32bit_regs_p = 0;
870 error (_("32-bit compatibility mode not supported"));
871 }
872 }
873
874 /* Convert to/from a register and the corresponding memory value. */
875
876 /* This predicate tests for the case of an 8 byte floating point
877 value that is being transferred to or from a pair of floating point
878 registers each of which are (or are considered to be) only 4 bytes
879 wide. */
880 static int
881 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
882 struct type *type)
883 {
884 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
885 && register_size (gdbarch, regnum) == 4
886 && mips_float_register_p (gdbarch, regnum)
887 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
888 }
889
890 /* This predicate tests for the case of a value of less than 8
891 bytes in width that is being transfered to or from an 8 byte
892 general purpose register. */
893 static int
894 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
895 struct type *type)
896 {
897 int num_regs = gdbarch_num_regs (gdbarch);
898
899 return (register_size (gdbarch, regnum) == 8
900 && regnum % num_regs > 0 && regnum % num_regs < 32
901 && TYPE_LENGTH (type) < 8);
902 }
903
904 static int
905 mips_convert_register_p (struct gdbarch *gdbarch,
906 int regnum, struct type *type)
907 {
908 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
909 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
910 }
911
912 static int
913 mips_register_to_value (struct frame_info *frame, int regnum,
914 struct type *type, gdb_byte *to,
915 int *optimizedp, int *unavailablep)
916 {
917 struct gdbarch *gdbarch = get_frame_arch (frame);
918
919 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
920 {
921 get_frame_register (frame, regnum + 0, to + 4);
922 get_frame_register (frame, regnum + 1, to + 0);
923
924 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
925 optimizedp, unavailablep))
926 return 0;
927
928 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
929 optimizedp, unavailablep))
930 return 0;
931 *optimizedp = *unavailablep = 0;
932 return 1;
933 }
934 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
935 {
936 int len = TYPE_LENGTH (type);
937 CORE_ADDR offset;
938
939 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
940 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
941 optimizedp, unavailablep))
942 return 0;
943
944 *optimizedp = *unavailablep = 0;
945 return 1;
946 }
947 else
948 {
949 internal_error (__FILE__, __LINE__,
950 _("mips_register_to_value: unrecognized case"));
951 }
952 }
953
954 static void
955 mips_value_to_register (struct frame_info *frame, int regnum,
956 struct type *type, const gdb_byte *from)
957 {
958 struct gdbarch *gdbarch = get_frame_arch (frame);
959
960 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
961 {
962 put_frame_register (frame, regnum + 0, from + 4);
963 put_frame_register (frame, regnum + 1, from + 0);
964 }
965 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
966 {
967 gdb_byte fill[8];
968 int len = TYPE_LENGTH (type);
969
970 /* Sign extend values, irrespective of type, that are stored to
971 a 64-bit general purpose register. (32-bit unsigned values
972 are stored as signed quantities within a 64-bit register.
973 When performing an operation, in compiled code, that combines
974 a 32-bit unsigned value with a signed 64-bit value, a type
975 conversion is first performed that zeroes out the high 32 bits.) */
976 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
977 {
978 if (from[0] & 0x80)
979 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
980 else
981 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
982 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
983 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
984 }
985 else
986 {
987 if (from[len-1] & 0x80)
988 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
989 else
990 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
991 put_frame_register_bytes (frame, regnum, 0, len, from);
992 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
993 }
994 }
995 else
996 {
997 internal_error (__FILE__, __LINE__,
998 _("mips_value_to_register: unrecognized case"));
999 }
1000 }
1001
1002 /* Return the GDB type object for the "standard" data type of data in
1003 register REG. */
1004
1005 static struct type *
1006 mips_register_type (struct gdbarch *gdbarch, int regnum)
1007 {
1008 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1009 if (mips_float_register_p (gdbarch, regnum))
1010 {
1011 /* The floating-point registers raw, or cooked, always match
1012 mips_isa_regsize(), and also map 1:1, byte for byte. */
1013 if (mips_isa_regsize (gdbarch) == 4)
1014 return builtin_type (gdbarch)->builtin_float;
1015 else
1016 return builtin_type (gdbarch)->builtin_double;
1017 }
1018 else if (regnum < gdbarch_num_regs (gdbarch))
1019 {
1020 /* The raw or ISA registers. These are all sized according to
1021 the ISA regsize. */
1022 if (mips_isa_regsize (gdbarch) == 4)
1023 return builtin_type (gdbarch)->builtin_int32;
1024 else
1025 return builtin_type (gdbarch)->builtin_int64;
1026 }
1027 else
1028 {
1029 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1030
1031 /* The cooked or ABI registers. These are sized according to
1032 the ABI (with a few complications). */
1033 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1034 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1035 return builtin_type (gdbarch)->builtin_int32;
1036 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1037 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1038 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1039 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1040 /* The pseudo/cooked view of the embedded registers is always
1041 32-bit. The raw view is handled below. */
1042 return builtin_type (gdbarch)->builtin_int32;
1043 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1044 /* The target, while possibly using a 64-bit register buffer,
1045 is only transfering 32-bits of each integer register.
1046 Reflect this in the cooked/pseudo (ABI) register value. */
1047 return builtin_type (gdbarch)->builtin_int32;
1048 else if (mips_abi_regsize (gdbarch) == 4)
1049 /* The ABI is restricted to 32-bit registers (the ISA could be
1050 32- or 64-bit). */
1051 return builtin_type (gdbarch)->builtin_int32;
1052 else
1053 /* 64-bit ABI. */
1054 return builtin_type (gdbarch)->builtin_int64;
1055 }
1056 }
1057
1058 /* Return the GDB type for the pseudo register REGNUM, which is the
1059 ABI-level view. This function is only called if there is a target
1060 description which includes registers, so we know precisely the
1061 types of hardware registers. */
1062
1063 static struct type *
1064 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1065 {
1066 const int num_regs = gdbarch_num_regs (gdbarch);
1067 int rawnum = regnum % num_regs;
1068 struct type *rawtype;
1069
1070 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1071
1072 /* Absent registers are still absent. */
1073 rawtype = gdbarch_register_type (gdbarch, rawnum);
1074 if (TYPE_LENGTH (rawtype) == 0)
1075 return rawtype;
1076
1077 if (mips_float_register_p (gdbarch, rawnum))
1078 /* Present the floating point registers however the hardware did;
1079 do not try to convert between FPU layouts. */
1080 return rawtype;
1081
1082 /* Use pointer types for registers if we can. For n32 we can not,
1083 since we do not have a 64-bit pointer type. */
1084 if (mips_abi_regsize (gdbarch)
1085 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1086 {
1087 if (rawnum == MIPS_SP_REGNUM
1088 || rawnum == mips_regnum (gdbarch)->badvaddr)
1089 return builtin_type (gdbarch)->builtin_data_ptr;
1090 else if (rawnum == mips_regnum (gdbarch)->pc)
1091 return builtin_type (gdbarch)->builtin_func_ptr;
1092 }
1093
1094 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1095 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1096 || rawnum == mips_regnum (gdbarch)->lo
1097 || rawnum == mips_regnum (gdbarch)->hi
1098 || rawnum == mips_regnum (gdbarch)->badvaddr
1099 || rawnum == mips_regnum (gdbarch)->cause
1100 || rawnum == mips_regnum (gdbarch)->pc
1101 || (mips_regnum (gdbarch)->dspacc != -1
1102 && rawnum >= mips_regnum (gdbarch)->dspacc
1103 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1104 return builtin_type (gdbarch)->builtin_int32;
1105
1106 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1107 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1108 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1109 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1110 {
1111 /* The pseudo/cooked view of embedded registers is always
1112 32-bit, even if the target transfers 64-bit values for them.
1113 New targets relying on XML descriptions should only transfer
1114 the necessary 32 bits, but older versions of GDB expected 64,
1115 so allow the target to provide 64 bits without interfering
1116 with the displayed type. */
1117 return builtin_type (gdbarch)->builtin_int32;
1118 }
1119
1120 /* For all other registers, pass through the hardware type. */
1121 return rawtype;
1122 }
1123
1124 /* Should the upper word of 64-bit addresses be zeroed? */
1125 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1126
1127 static int
1128 mips_mask_address_p (struct gdbarch_tdep *tdep)
1129 {
1130 switch (mask_address_var)
1131 {
1132 case AUTO_BOOLEAN_TRUE:
1133 return 1;
1134 case AUTO_BOOLEAN_FALSE:
1135 return 0;
1136 break;
1137 case AUTO_BOOLEAN_AUTO:
1138 return tdep->default_mask_address_p;
1139 default:
1140 internal_error (__FILE__, __LINE__,
1141 _("mips_mask_address_p: bad switch"));
1142 return -1;
1143 }
1144 }
1145
1146 static void
1147 show_mask_address (struct ui_file *file, int from_tty,
1148 struct cmd_list_element *c, const char *value)
1149 {
1150 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1151
1152 deprecated_show_value_hack (file, from_tty, c, value);
1153 switch (mask_address_var)
1154 {
1155 case AUTO_BOOLEAN_TRUE:
1156 printf_filtered ("The 32 bit mips address mask is enabled\n");
1157 break;
1158 case AUTO_BOOLEAN_FALSE:
1159 printf_filtered ("The 32 bit mips address mask is disabled\n");
1160 break;
1161 case AUTO_BOOLEAN_AUTO:
1162 printf_filtered
1163 ("The 32 bit address mask is set automatically. Currently %s\n",
1164 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1165 break;
1166 default:
1167 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1168 break;
1169 }
1170 }
1171
1172 /* Tell if the program counter value in MEMADDR is in a standard ISA
1173 function. */
1174
1175 int
1176 mips_pc_is_mips (CORE_ADDR memaddr)
1177 {
1178 struct bound_minimal_symbol sym;
1179
1180 /* Flags indicating that this is a MIPS16 or microMIPS function is
1181 stored by elfread.c in the high bit of the info field. Use this
1182 to decide if the function is standard MIPS. Otherwise if bit 0
1183 of the address is clear, then this is a standard MIPS function. */
1184 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1185 if (sym.minsym)
1186 return msymbol_is_mips (sym.minsym);
1187 else
1188 return is_mips_addr (memaddr);
1189 }
1190
1191 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1192
1193 int
1194 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1195 {
1196 struct bound_minimal_symbol sym;
1197
1198 /* A flag indicating that this is a MIPS16 function is stored by
1199 elfread.c in the high bit of the info field. Use this to decide
1200 if the function is MIPS16. Otherwise if bit 0 of the address is
1201 set, then ELF file flags will tell if this is a MIPS16 function. */
1202 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1203 if (sym.minsym)
1204 return msymbol_is_mips16 (sym.minsym);
1205 else
1206 return is_mips16_addr (gdbarch, memaddr);
1207 }
1208
1209 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1210
1211 int
1212 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1213 {
1214 struct bound_minimal_symbol sym;
1215
1216 /* A flag indicating that this is a microMIPS function is stored by
1217 elfread.c in the high bit of the info field. Use this to decide
1218 if the function is microMIPS. Otherwise if bit 0 of the address
1219 is set, then ELF file flags will tell if this is a microMIPS
1220 function. */
1221 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1222 if (sym.minsym)
1223 return msymbol_is_micromips (sym.minsym);
1224 else
1225 return is_micromips_addr (gdbarch, memaddr);
1226 }
1227
1228 /* Tell the ISA type of the function the program counter value in MEMADDR
1229 is in. */
1230
1231 static enum mips_isa
1232 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1233 {
1234 struct bound_minimal_symbol sym;
1235
1236 /* A flag indicating that this is a MIPS16 or a microMIPS function
1237 is stored by elfread.c in the high bit of the info field. Use
1238 this to decide if the function is MIPS16 or microMIPS or normal
1239 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1240 flags will tell if this is a MIPS16 or a microMIPS function. */
1241 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1242 if (sym.minsym)
1243 {
1244 if (msymbol_is_micromips (sym.minsym))
1245 return ISA_MICROMIPS;
1246 else if (msymbol_is_mips16 (sym.minsym))
1247 return ISA_MIPS16;
1248 else
1249 return ISA_MIPS;
1250 }
1251 else
1252 {
1253 if (is_mips_addr (memaddr))
1254 return ISA_MIPS;
1255 else if (is_micromips_addr (gdbarch, memaddr))
1256 return ISA_MICROMIPS;
1257 else
1258 return ISA_MIPS16;
1259 }
1260 }
1261
1262 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1263 The need for comes from the ISA bit having been cleared, making
1264 addresses in FDE, range records, etc. referring to compressed code
1265 different to those in line information, the symbol table and finally
1266 the PC register. That in turn confuses many operations. */
1267
1268 static CORE_ADDR
1269 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1270 {
1271 pc = unmake_compact_addr (pc);
1272 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1273 }
1274
1275 /* Recalculate the line record requested so that the resulting PC has
1276 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1277 this adjustment comes from some records associated with compressed
1278 code having the ISA bit cleared, most notably at function prologue
1279 ends. The ISA bit is in this context retrieved from the minimal
1280 symbol covering the address requested, which in turn has been
1281 constructed from the binary's symbol table rather than DWARF-2
1282 information. The correct setting of the ISA bit is required for
1283 breakpoint addresses to correctly match against the stop PC.
1284
1285 As line entries can specify relative address adjustments we need to
1286 keep track of the absolute value of the last line address recorded
1287 in line information, so that we can calculate the actual address to
1288 apply the ISA bit adjustment to. We use PC for this tracking and
1289 keep the original address there.
1290
1291 As such relative address adjustments can be odd within compressed
1292 code we need to keep track of the last line address with the ISA
1293 bit adjustment applied too, as the original address may or may not
1294 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1295 the adjusted address there.
1296
1297 For relative address adjustments we then use these variables to
1298 calculate the address intended by line information, which will be
1299 PC-relative, and return an updated adjustment carrying ISA bit
1300 information, which will be ADJ_PC-relative. For absolute address
1301 adjustments we just return the same address that we store in ADJ_PC
1302 too.
1303
1304 As the first line entry can be relative to an implied address value
1305 of 0 we need to have the initial address set up that we store in PC
1306 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1307 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1308
1309 static CORE_ADDR
1310 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1311 {
1312 static CORE_ADDR adj_pc;
1313 static CORE_ADDR pc;
1314 CORE_ADDR isa_pc;
1315
1316 pc = rel ? pc + addr : addr;
1317 isa_pc = mips_adjust_dwarf2_addr (pc);
1318 addr = rel ? isa_pc - adj_pc : isa_pc;
1319 adj_pc = isa_pc;
1320 return addr;
1321 }
1322
1323 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1324
1325 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1326 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1327 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1328 static const char mips_str_call_stub[] = "__call_stub_";
1329 static const char mips_str_fn_stub[] = "__fn_stub_";
1330
1331 /* This is used as a PIC thunk prefix. */
1332
1333 static const char mips_str_pic[] = ".pic.";
1334
1335 /* Return non-zero if the PC is inside a call thunk (aka stub or
1336 trampoline) that should be treated as a temporary frame. */
1337
1338 static int
1339 mips_in_frame_stub (CORE_ADDR pc)
1340 {
1341 CORE_ADDR start_addr;
1342 const char *name;
1343
1344 /* Find the starting address of the function containing the PC. */
1345 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1346 return 0;
1347
1348 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1349 if (startswith (name, mips_str_mips16_call_stub))
1350 return 1;
1351 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1352 if (startswith (name, mips_str_call_stub))
1353 return 1;
1354 /* If the PC is in __fn_stub_*, this is a call stub. */
1355 if (startswith (name, mips_str_fn_stub))
1356 return 1;
1357
1358 return 0; /* Not a stub. */
1359 }
1360
1361 /* MIPS believes that the PC has a sign extended value. Perhaps the
1362 all registers should be sign extended for simplicity? */
1363
1364 static CORE_ADDR
1365 mips_read_pc (struct regcache *regcache)
1366 {
1367 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1368 LONGEST pc;
1369
1370 regcache_cooked_read_signed (regcache, regnum, &pc);
1371 return pc;
1372 }
1373
1374 static CORE_ADDR
1375 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1376 {
1377 CORE_ADDR pc;
1378
1379 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1380 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1381 intermediate frames. In this case we can get the caller's address
1382 from $ra, or if $ra contains an address within a thunk as well, then
1383 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1384 and thus the caller's address is in $s2. */
1385 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1386 {
1387 pc = frame_unwind_register_signed
1388 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1389 if (mips_in_frame_stub (pc))
1390 pc = frame_unwind_register_signed
1391 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1392 }
1393 return pc;
1394 }
1395
1396 static CORE_ADDR
1397 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1398 {
1399 return frame_unwind_register_signed
1400 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1401 }
1402
1403 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1404 dummy frame. The frame ID's base needs to match the TOS value
1405 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1406 breakpoint. */
1407
1408 static struct frame_id
1409 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1410 {
1411 return frame_id_build
1412 (get_frame_register_signed (this_frame,
1413 gdbarch_num_regs (gdbarch)
1414 + MIPS_SP_REGNUM),
1415 get_frame_pc (this_frame));
1416 }
1417
1418 /* Implement the "write_pc" gdbarch method. */
1419
1420 void
1421 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1422 {
1423 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1424
1425 regcache_cooked_write_unsigned (regcache, regnum, pc);
1426 }
1427
1428 /* Fetch and return instruction from the specified location. Handle
1429 MIPS16/microMIPS as appropriate. */
1430
1431 static ULONGEST
1432 mips_fetch_instruction (struct gdbarch *gdbarch,
1433 enum mips_isa isa, CORE_ADDR addr, int *errp)
1434 {
1435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1436 gdb_byte buf[MIPS_INSN32_SIZE];
1437 int instlen;
1438 int err;
1439
1440 switch (isa)
1441 {
1442 case ISA_MICROMIPS:
1443 case ISA_MIPS16:
1444 instlen = MIPS_INSN16_SIZE;
1445 addr = unmake_compact_addr (addr);
1446 break;
1447 case ISA_MIPS:
1448 instlen = MIPS_INSN32_SIZE;
1449 break;
1450 default:
1451 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1452 break;
1453 }
1454 err = target_read_memory (addr, buf, instlen);
1455 if (errp != NULL)
1456 *errp = err;
1457 if (err != 0)
1458 {
1459 if (errp == NULL)
1460 memory_error (TARGET_XFER_E_IO, addr);
1461 return 0;
1462 }
1463 return extract_unsigned_integer (buf, instlen, byte_order);
1464 }
1465
1466 /* These are the fields of 32 bit mips instructions. */
1467 #define mips32_op(x) (x >> 26)
1468 #define itype_op(x) (x >> 26)
1469 #define itype_rs(x) ((x >> 21) & 0x1f)
1470 #define itype_rt(x) ((x >> 16) & 0x1f)
1471 #define itype_immediate(x) (x & 0xffff)
1472
1473 #define jtype_op(x) (x >> 26)
1474 #define jtype_target(x) (x & 0x03ffffff)
1475
1476 #define rtype_op(x) (x >> 26)
1477 #define rtype_rs(x) ((x >> 21) & 0x1f)
1478 #define rtype_rt(x) ((x >> 16) & 0x1f)
1479 #define rtype_rd(x) ((x >> 11) & 0x1f)
1480 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1481 #define rtype_funct(x) (x & 0x3f)
1482
1483 /* MicroMIPS instruction fields. */
1484 #define micromips_op(x) ((x) >> 10)
1485
1486 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1487 bit and the size respectively of the field extracted. */
1488 #define b0s4_imm(x) ((x) & 0xf)
1489 #define b0s5_imm(x) ((x) & 0x1f)
1490 #define b0s5_reg(x) ((x) & 0x1f)
1491 #define b0s7_imm(x) ((x) & 0x7f)
1492 #define b0s10_imm(x) ((x) & 0x3ff)
1493 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1494 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1495 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1496 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1497 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1498 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1499 #define b6s4_op(x) (((x) >> 6) & 0xf)
1500 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1501
1502 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1503 respectively of the field extracted. */
1504 #define b0s6_op(x) ((x) & 0x3f)
1505 #define b0s11_op(x) ((x) & 0x7ff)
1506 #define b0s12_imm(x) ((x) & 0xfff)
1507 #define b0s16_imm(x) ((x) & 0xffff)
1508 #define b0s26_imm(x) ((x) & 0x3ffffff)
1509 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1510 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1511 #define b12s4_op(x) (((x) >> 12) & 0xf)
1512
1513 /* Return the size in bytes of the instruction INSN encoded in the ISA
1514 instruction set. */
1515
1516 static int
1517 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1518 {
1519 switch (isa)
1520 {
1521 case ISA_MICROMIPS:
1522 if ((micromips_op (insn) & 0x4) == 0x4
1523 || (micromips_op (insn) & 0x7) == 0x0)
1524 return 2 * MIPS_INSN16_SIZE;
1525 else
1526 return MIPS_INSN16_SIZE;
1527 case ISA_MIPS16:
1528 if ((insn & 0xf800) == 0xf000)
1529 return 2 * MIPS_INSN16_SIZE;
1530 else
1531 return MIPS_INSN16_SIZE;
1532 case ISA_MIPS:
1533 return MIPS_INSN32_SIZE;
1534 }
1535 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1536 }
1537
1538 static LONGEST
1539 mips32_relative_offset (ULONGEST inst)
1540 {
1541 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1542 }
1543
1544 /* Determine the address of the next instruction executed after the INST
1545 floating condition branch instruction at PC. COUNT specifies the
1546 number of the floating condition bits tested by the branch. */
1547
1548 static CORE_ADDR
1549 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1550 ULONGEST inst, CORE_ADDR pc, int count)
1551 {
1552 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1553 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1554 int tf = itype_rt (inst) & 1;
1555 int mask = (1 << count) - 1;
1556 ULONGEST fcs;
1557 int cond;
1558
1559 if (fcsr == -1)
1560 /* No way to handle; it'll most likely trap anyway. */
1561 return pc;
1562
1563 fcs = get_frame_register_unsigned (frame, fcsr);
1564 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1565
1566 if (((cond >> cnum) & mask) != mask * !tf)
1567 pc += mips32_relative_offset (inst);
1568 else
1569 pc += 4;
1570
1571 return pc;
1572 }
1573
1574 /* Return nonzero if the gdbarch is an Octeon series. */
1575
1576 static int
1577 is_octeon (struct gdbarch *gdbarch)
1578 {
1579 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1580
1581 return (info->mach == bfd_mach_mips_octeon
1582 || info->mach == bfd_mach_mips_octeonp
1583 || info->mach == bfd_mach_mips_octeon2);
1584 }
1585
1586 /* Return true if the OP represents the Octeon's BBIT instruction. */
1587
1588 static int
1589 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1590 {
1591 if (!is_octeon (gdbarch))
1592 return 0;
1593 /* BBIT0 is encoded as LWC2: 110 010. */
1594 /* BBIT032 is encoded as LDC2: 110 110. */
1595 /* BBIT1 is encoded as SWC2: 111 010. */
1596 /* BBIT132 is encoded as SDC2: 111 110. */
1597 if (op == 50 || op == 54 || op == 58 || op == 62)
1598 return 1;
1599 return 0;
1600 }
1601
1602
1603 /* Determine where to set a single step breakpoint while considering
1604 branch prediction. */
1605
1606 static CORE_ADDR
1607 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1608 {
1609 struct gdbarch *gdbarch = get_frame_arch (frame);
1610 unsigned long inst;
1611 int op;
1612 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1613 op = itype_op (inst);
1614 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1615 instruction. */
1616 {
1617 if (op >> 2 == 5)
1618 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1619 {
1620 switch (op & 0x03)
1621 {
1622 case 0: /* BEQL */
1623 goto equal_branch;
1624 case 1: /* BNEL */
1625 goto neq_branch;
1626 case 2: /* BLEZL */
1627 goto less_branch;
1628 case 3: /* BGTZL */
1629 goto greater_branch;
1630 default:
1631 pc += 4;
1632 }
1633 }
1634 else if (op == 17 && itype_rs (inst) == 8)
1635 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1636 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1637 else if (op == 17 && itype_rs (inst) == 9
1638 && (itype_rt (inst) & 2) == 0)
1639 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1640 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1641 else if (op == 17 && itype_rs (inst) == 10
1642 && (itype_rt (inst) & 2) == 0)
1643 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1644 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1645 else if (op == 29)
1646 /* JALX: 011101 */
1647 /* The new PC will be alternate mode. */
1648 {
1649 unsigned long reg;
1650
1651 reg = jtype_target (inst) << 2;
1652 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1653 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1654 }
1655 else if (is_octeon_bbit_op (op, gdbarch))
1656 {
1657 int bit, branch_if;
1658
1659 branch_if = op == 58 || op == 62;
1660 bit = itype_rt (inst);
1661
1662 /* Take into account the *32 instructions. */
1663 if (op == 54 || op == 62)
1664 bit += 32;
1665
1666 if (((get_frame_register_signed (frame,
1667 itype_rs (inst)) >> bit) & 1)
1668 == branch_if)
1669 pc += mips32_relative_offset (inst) + 4;
1670 else
1671 pc += 8; /* After the delay slot. */
1672 }
1673
1674 else
1675 pc += 4; /* Not a branch, next instruction is easy. */
1676 }
1677 else
1678 { /* This gets way messy. */
1679
1680 /* Further subdivide into SPECIAL, REGIMM and other. */
1681 switch (op & 0x07) /* Extract bits 28,27,26. */
1682 {
1683 case 0: /* SPECIAL */
1684 op = rtype_funct (inst);
1685 switch (op)
1686 {
1687 case 8: /* JR */
1688 case 9: /* JALR */
1689 /* Set PC to that address. */
1690 pc = get_frame_register_signed (frame, rtype_rs (inst));
1691 break;
1692 case 12: /* SYSCALL */
1693 {
1694 struct gdbarch_tdep *tdep;
1695
1696 tdep = gdbarch_tdep (get_frame_arch (frame));
1697 if (tdep->syscall_next_pc != NULL)
1698 pc = tdep->syscall_next_pc (frame);
1699 else
1700 pc += 4;
1701 }
1702 break;
1703 default:
1704 pc += 4;
1705 }
1706
1707 break; /* end SPECIAL */
1708 case 1: /* REGIMM */
1709 {
1710 op = itype_rt (inst); /* branch condition */
1711 switch (op)
1712 {
1713 case 0: /* BLTZ */
1714 case 2: /* BLTZL */
1715 case 16: /* BLTZAL */
1716 case 18: /* BLTZALL */
1717 less_branch:
1718 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1719 pc += mips32_relative_offset (inst) + 4;
1720 else
1721 pc += 8; /* after the delay slot */
1722 break;
1723 case 1: /* BGEZ */
1724 case 3: /* BGEZL */
1725 case 17: /* BGEZAL */
1726 case 19: /* BGEZALL */
1727 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1728 pc += mips32_relative_offset (inst) + 4;
1729 else
1730 pc += 8; /* after the delay slot */
1731 break;
1732 case 0x1c: /* BPOSGE32 */
1733 case 0x1e: /* BPOSGE64 */
1734 pc += 4;
1735 if (itype_rs (inst) == 0)
1736 {
1737 unsigned int pos = (op & 2) ? 64 : 32;
1738 int dspctl = mips_regnum (gdbarch)->dspctl;
1739
1740 if (dspctl == -1)
1741 /* No way to handle; it'll most likely trap anyway. */
1742 break;
1743
1744 if ((get_frame_register_unsigned (frame,
1745 dspctl) & 0x7f) >= pos)
1746 pc += mips32_relative_offset (inst);
1747 else
1748 pc += 4;
1749 }
1750 break;
1751 /* All of the other instructions in the REGIMM category */
1752 default:
1753 pc += 4;
1754 }
1755 }
1756 break; /* end REGIMM */
1757 case 2: /* J */
1758 case 3: /* JAL */
1759 {
1760 unsigned long reg;
1761 reg = jtype_target (inst) << 2;
1762 /* Upper four bits get never changed... */
1763 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1764 }
1765 break;
1766 case 4: /* BEQ, BEQL */
1767 equal_branch:
1768 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1769 get_frame_register_signed (frame, itype_rt (inst)))
1770 pc += mips32_relative_offset (inst) + 4;
1771 else
1772 pc += 8;
1773 break;
1774 case 5: /* BNE, BNEL */
1775 neq_branch:
1776 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1777 get_frame_register_signed (frame, itype_rt (inst)))
1778 pc += mips32_relative_offset (inst) + 4;
1779 else
1780 pc += 8;
1781 break;
1782 case 6: /* BLEZ, BLEZL */
1783 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1784 pc += mips32_relative_offset (inst) + 4;
1785 else
1786 pc += 8;
1787 break;
1788 case 7:
1789 default:
1790 greater_branch: /* BGTZ, BGTZL */
1791 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1792 pc += mips32_relative_offset (inst) + 4;
1793 else
1794 pc += 8;
1795 break;
1796 } /* switch */
1797 } /* else */
1798 return pc;
1799 } /* mips32_next_pc */
1800
1801 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1802 INSN. */
1803
1804 static LONGEST
1805 micromips_relative_offset7 (ULONGEST insn)
1806 {
1807 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1808 }
1809
1810 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1811 INSN. */
1812
1813 static LONGEST
1814 micromips_relative_offset10 (ULONGEST insn)
1815 {
1816 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1817 }
1818
1819 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1820 INSN. */
1821
1822 static LONGEST
1823 micromips_relative_offset16 (ULONGEST insn)
1824 {
1825 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1826 }
1827
1828 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1829
1830 static int
1831 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1832 {
1833 ULONGEST insn;
1834
1835 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1836 return mips_insn_size (ISA_MICROMIPS, insn);
1837 }
1838
1839 /* Calculate the address of the next microMIPS instruction to execute
1840 after the INSN coprocessor 1 conditional branch instruction at the
1841 address PC. COUNT denotes the number of coprocessor condition bits
1842 examined by the branch. */
1843
1844 static CORE_ADDR
1845 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1846 ULONGEST insn, CORE_ADDR pc, int count)
1847 {
1848 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1849 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1850 int tf = b5s5_op (insn >> 16) & 1;
1851 int mask = (1 << count) - 1;
1852 ULONGEST fcs;
1853 int cond;
1854
1855 if (fcsr == -1)
1856 /* No way to handle; it'll most likely trap anyway. */
1857 return pc;
1858
1859 fcs = get_frame_register_unsigned (frame, fcsr);
1860 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1861
1862 if (((cond >> cnum) & mask) != mask * !tf)
1863 pc += micromips_relative_offset16 (insn);
1864 else
1865 pc += micromips_pc_insn_size (gdbarch, pc);
1866
1867 return pc;
1868 }
1869
1870 /* Calculate the address of the next microMIPS instruction to execute
1871 after the instruction at the address PC. */
1872
1873 static CORE_ADDR
1874 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1875 {
1876 struct gdbarch *gdbarch = get_frame_arch (frame);
1877 ULONGEST insn;
1878
1879 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1880 pc += MIPS_INSN16_SIZE;
1881 switch (mips_insn_size (ISA_MICROMIPS, insn))
1882 {
1883 /* 32-bit instructions. */
1884 case 2 * MIPS_INSN16_SIZE:
1885 insn <<= 16;
1886 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1887 pc += MIPS_INSN16_SIZE;
1888 switch (micromips_op (insn >> 16))
1889 {
1890 case 0x00: /* POOL32A: bits 000000 */
1891 if (b0s6_op (insn) == 0x3c
1892 /* POOL32Axf: bits 000000 ... 111100 */
1893 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1894 /* JALR, JALR.HB: 000000 000x111100 111100 */
1895 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1896 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1897 break;
1898
1899 case 0x10: /* POOL32I: bits 010000 */
1900 switch (b5s5_op (insn >> 16))
1901 {
1902 case 0x00: /* BLTZ: bits 010000 00000 */
1903 case 0x01: /* BLTZAL: bits 010000 00001 */
1904 case 0x11: /* BLTZALS: bits 010000 10001 */
1905 if (get_frame_register_signed (frame,
1906 b0s5_reg (insn >> 16)) < 0)
1907 pc += micromips_relative_offset16 (insn);
1908 else
1909 pc += micromips_pc_insn_size (gdbarch, pc);
1910 break;
1911
1912 case 0x02: /* BGEZ: bits 010000 00010 */
1913 case 0x03: /* BGEZAL: bits 010000 00011 */
1914 case 0x13: /* BGEZALS: bits 010000 10011 */
1915 if (get_frame_register_signed (frame,
1916 b0s5_reg (insn >> 16)) >= 0)
1917 pc += micromips_relative_offset16 (insn);
1918 else
1919 pc += micromips_pc_insn_size (gdbarch, pc);
1920 break;
1921
1922 case 0x04: /* BLEZ: bits 010000 00100 */
1923 if (get_frame_register_signed (frame,
1924 b0s5_reg (insn >> 16)) <= 0)
1925 pc += micromips_relative_offset16 (insn);
1926 else
1927 pc += micromips_pc_insn_size (gdbarch, pc);
1928 break;
1929
1930 case 0x05: /* BNEZC: bits 010000 00101 */
1931 if (get_frame_register_signed (frame,
1932 b0s5_reg (insn >> 16)) != 0)
1933 pc += micromips_relative_offset16 (insn);
1934 break;
1935
1936 case 0x06: /* BGTZ: bits 010000 00110 */
1937 if (get_frame_register_signed (frame,
1938 b0s5_reg (insn >> 16)) > 0)
1939 pc += micromips_relative_offset16 (insn);
1940 else
1941 pc += micromips_pc_insn_size (gdbarch, pc);
1942 break;
1943
1944 case 0x07: /* BEQZC: bits 010000 00111 */
1945 if (get_frame_register_signed (frame,
1946 b0s5_reg (insn >> 16)) == 0)
1947 pc += micromips_relative_offset16 (insn);
1948 break;
1949
1950 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1951 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1952 if (((insn >> 16) & 0x3) == 0x0)
1953 /* BC2F, BC2T: don't know how to handle these. */
1954 break;
1955 break;
1956
1957 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1958 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1959 {
1960 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1961 int dspctl = mips_regnum (gdbarch)->dspctl;
1962
1963 if (dspctl == -1)
1964 /* No way to handle; it'll most likely trap anyway. */
1965 break;
1966
1967 if ((get_frame_register_unsigned (frame,
1968 dspctl) & 0x7f) >= pos)
1969 pc += micromips_relative_offset16 (insn);
1970 else
1971 pc += micromips_pc_insn_size (gdbarch, pc);
1972 }
1973 break;
1974
1975 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1976 /* BC1ANY2F: bits 010000 11100 xxx01 */
1977 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1978 /* BC1ANY2T: bits 010000 11101 xxx01 */
1979 if (((insn >> 16) & 0x2) == 0x0)
1980 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1981 ((insn >> 16) & 0x1) + 1);
1982 break;
1983
1984 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1985 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1986 if (((insn >> 16) & 0x3) == 0x1)
1987 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1988 break;
1989 }
1990 break;
1991
1992 case 0x1d: /* JALS: bits 011101 */
1993 case 0x35: /* J: bits 110101 */
1994 case 0x3d: /* JAL: bits 111101 */
1995 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1996 break;
1997
1998 case 0x25: /* BEQ: bits 100101 */
1999 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2000 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2001 pc += micromips_relative_offset16 (insn);
2002 else
2003 pc += micromips_pc_insn_size (gdbarch, pc);
2004 break;
2005
2006 case 0x2d: /* BNE: bits 101101 */
2007 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2008 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2009 pc += micromips_relative_offset16 (insn);
2010 else
2011 pc += micromips_pc_insn_size (gdbarch, pc);
2012 break;
2013
2014 case 0x3c: /* JALX: bits 111100 */
2015 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2016 break;
2017 }
2018 break;
2019
2020 /* 16-bit instructions. */
2021 case MIPS_INSN16_SIZE:
2022 switch (micromips_op (insn))
2023 {
2024 case 0x11: /* POOL16C: bits 010001 */
2025 if ((b5s5_op (insn) & 0x1c) == 0xc)
2026 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2027 pc = get_frame_register_signed (frame, b0s5_reg (insn));
2028 else if (b5s5_op (insn) == 0x18)
2029 /* JRADDIUSP: bits 010001 11000 */
2030 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
2031 break;
2032
2033 case 0x23: /* BEQZ16: bits 100011 */
2034 {
2035 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2036
2037 if (get_frame_register_signed (frame, rs) == 0)
2038 pc += micromips_relative_offset7 (insn);
2039 else
2040 pc += micromips_pc_insn_size (gdbarch, pc);
2041 }
2042 break;
2043
2044 case 0x2b: /* BNEZ16: bits 101011 */
2045 {
2046 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2047
2048 if (get_frame_register_signed (frame, rs) != 0)
2049 pc += micromips_relative_offset7 (insn);
2050 else
2051 pc += micromips_pc_insn_size (gdbarch, pc);
2052 }
2053 break;
2054
2055 case 0x33: /* B16: bits 110011 */
2056 pc += micromips_relative_offset10 (insn);
2057 break;
2058 }
2059 break;
2060 }
2061
2062 return pc;
2063 }
2064
2065 /* Decoding the next place to set a breakpoint is irregular for the
2066 mips 16 variant, but fortunately, there fewer instructions. We have
2067 to cope ith extensions for 16 bit instructions and a pair of actual
2068 32 bit instructions. We dont want to set a single step instruction
2069 on the extend instruction either. */
2070
2071 /* Lots of mips16 instruction formats */
2072 /* Predicting jumps requires itype,ritype,i8type
2073 and their extensions extItype,extritype,extI8type. */
2074 enum mips16_inst_fmts
2075 {
2076 itype, /* 0 immediate 5,10 */
2077 ritype, /* 1 5,3,8 */
2078 rrtype, /* 2 5,3,3,5 */
2079 rritype, /* 3 5,3,3,5 */
2080 rrrtype, /* 4 5,3,3,3,2 */
2081 rriatype, /* 5 5,3,3,1,4 */
2082 shifttype, /* 6 5,3,3,3,2 */
2083 i8type, /* 7 5,3,8 */
2084 i8movtype, /* 8 5,3,3,5 */
2085 i8mov32rtype, /* 9 5,3,5,3 */
2086 i64type, /* 10 5,3,8 */
2087 ri64type, /* 11 5,3,3,5 */
2088 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2089 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2090 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2091 extRRItype, /* 15 5,5,5,5,3,3,5 */
2092 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2093 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2094 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2095 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2096 extRi64type, /* 20 5,6,5,5,3,3,5 */
2097 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2098 };
2099 /* I am heaping all the fields of the formats into one structure and
2100 then, only the fields which are involved in instruction extension. */
2101 struct upk_mips16
2102 {
2103 CORE_ADDR offset;
2104 unsigned int regx; /* Function in i8 type. */
2105 unsigned int regy;
2106 };
2107
2108
2109 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2110 for the bits which make up the immediate extension. */
2111
2112 static CORE_ADDR
2113 extended_offset (unsigned int extension)
2114 {
2115 CORE_ADDR value;
2116
2117 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2118 value = value << 6;
2119 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2120 value = value << 5;
2121 value |= extension & 0x1f; /* Extract 4:0. */
2122
2123 return value;
2124 }
2125
2126 /* Only call this function if you know that this is an extendable
2127 instruction. It won't malfunction, but why make excess remote memory
2128 references? If the immediate operands get sign extended or something,
2129 do it after the extension is performed. */
2130 /* FIXME: Every one of these cases needs to worry about sign extension
2131 when the offset is to be used in relative addressing. */
2132
2133 static unsigned int
2134 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2135 {
2136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2137 gdb_byte buf[8];
2138
2139 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2140 target_read_memory (pc, buf, 2);
2141 return extract_unsigned_integer (buf, 2, byte_order);
2142 }
2143
2144 static void
2145 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2146 unsigned int extension,
2147 unsigned int inst,
2148 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2149 {
2150 CORE_ADDR offset;
2151 int regx;
2152 int regy;
2153 switch (insn_format)
2154 {
2155 case itype:
2156 {
2157 CORE_ADDR value;
2158 if (extension)
2159 {
2160 value = extended_offset ((extension << 16) | inst);
2161 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2162 }
2163 else
2164 {
2165 value = inst & 0x7ff;
2166 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2167 }
2168 offset = value;
2169 regx = -1;
2170 regy = -1;
2171 }
2172 break;
2173 case ritype:
2174 case i8type:
2175 { /* A register identifier and an offset. */
2176 /* Most of the fields are the same as I type but the
2177 immediate value is of a different length. */
2178 CORE_ADDR value;
2179 if (extension)
2180 {
2181 value = extended_offset ((extension << 16) | inst);
2182 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2183 }
2184 else
2185 {
2186 value = inst & 0xff; /* 8 bits */
2187 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2188 }
2189 offset = value;
2190 regx = (inst >> 8) & 0x07; /* i8 funct */
2191 regy = -1;
2192 break;
2193 }
2194 case jalxtype:
2195 {
2196 unsigned long value;
2197 unsigned int nexthalf;
2198 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2199 value = value << 16;
2200 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2201 /* Low bit still set. */
2202 value |= nexthalf;
2203 offset = value;
2204 regx = -1;
2205 regy = -1;
2206 break;
2207 }
2208 default:
2209 internal_error (__FILE__, __LINE__, _("bad switch"));
2210 }
2211 upk->offset = offset;
2212 upk->regx = regx;
2213 upk->regy = regy;
2214 }
2215
2216
2217 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2218 and having a signed 16-bit OFFSET. */
2219
2220 static CORE_ADDR
2221 add_offset_16 (CORE_ADDR pc, int offset)
2222 {
2223 return pc + (offset << 1) + 2;
2224 }
2225
2226 static CORE_ADDR
2227 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2228 unsigned int extension, unsigned int insn)
2229 {
2230 struct gdbarch *gdbarch = get_frame_arch (frame);
2231 int op = (insn >> 11);
2232 switch (op)
2233 {
2234 case 2: /* Branch */
2235 {
2236 struct upk_mips16 upk;
2237 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2238 pc = add_offset_16 (pc, upk.offset);
2239 break;
2240 }
2241 case 3: /* JAL , JALX - Watch out, these are 32 bit
2242 instructions. */
2243 {
2244 struct upk_mips16 upk;
2245 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2246 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2247 if ((insn >> 10) & 0x01) /* Exchange mode */
2248 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2249 else
2250 pc |= 0x01;
2251 break;
2252 }
2253 case 4: /* beqz */
2254 {
2255 struct upk_mips16 upk;
2256 int reg;
2257 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2258 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2259 if (reg == 0)
2260 pc = add_offset_16 (pc, upk.offset);
2261 else
2262 pc += 2;
2263 break;
2264 }
2265 case 5: /* bnez */
2266 {
2267 struct upk_mips16 upk;
2268 int reg;
2269 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2270 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2271 if (reg != 0)
2272 pc = add_offset_16 (pc, upk.offset);
2273 else
2274 pc += 2;
2275 break;
2276 }
2277 case 12: /* I8 Formats btez btnez */
2278 {
2279 struct upk_mips16 upk;
2280 int reg;
2281 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2282 /* upk.regx contains the opcode */
2283 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2284 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2285 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2286 pc = add_offset_16 (pc, upk.offset);
2287 else
2288 pc += 2;
2289 break;
2290 }
2291 case 29: /* RR Formats JR, JALR, JALR-RA */
2292 {
2293 struct upk_mips16 upk;
2294 /* upk.fmt = rrtype; */
2295 op = insn & 0x1f;
2296 if (op == 0)
2297 {
2298 int reg;
2299 upk.regx = (insn >> 8) & 0x07;
2300 upk.regy = (insn >> 5) & 0x07;
2301 if ((upk.regy & 1) == 0)
2302 reg = mips_reg3_to_reg[upk.regx];
2303 else
2304 reg = 31; /* Function return instruction. */
2305 pc = get_frame_register_signed (frame, reg);
2306 }
2307 else
2308 pc += 2;
2309 break;
2310 }
2311 case 30:
2312 /* This is an instruction extension. Fetch the real instruction
2313 (which follows the extension) and decode things based on
2314 that. */
2315 {
2316 pc += 2;
2317 pc = extended_mips16_next_pc (frame, pc, insn,
2318 fetch_mips_16 (gdbarch, pc));
2319 break;
2320 }
2321 default:
2322 {
2323 pc += 2;
2324 break;
2325 }
2326 }
2327 return pc;
2328 }
2329
2330 static CORE_ADDR
2331 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2332 {
2333 struct gdbarch *gdbarch = get_frame_arch (frame);
2334 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2335 return extended_mips16_next_pc (frame, pc, 0, insn);
2336 }
2337
2338 /* The mips_next_pc function supports single_step when the remote
2339 target monitor or stub is not developed enough to do a single_step.
2340 It works by decoding the current instruction and predicting where a
2341 branch will go. This isn't hard because all the data is available.
2342 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2343 static CORE_ADDR
2344 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2345 {
2346 struct gdbarch *gdbarch = get_frame_arch (frame);
2347
2348 if (mips_pc_is_mips16 (gdbarch, pc))
2349 return mips16_next_pc (frame, pc);
2350 else if (mips_pc_is_micromips (gdbarch, pc))
2351 return micromips_next_pc (frame, pc);
2352 else
2353 return mips32_next_pc (frame, pc);
2354 }
2355
2356 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2357 or jump. */
2358
2359 static int
2360 mips16_instruction_is_compact_branch (unsigned short insn)
2361 {
2362 switch (insn & 0xf800)
2363 {
2364 case 0xe800:
2365 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2366 case 0x6000:
2367 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2368 case 0x2800: /* BNEZ */
2369 case 0x2000: /* BEQZ */
2370 case 0x1000: /* B */
2371 return 1;
2372 default:
2373 return 0;
2374 }
2375 }
2376
2377 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2378 or jump. */
2379
2380 static int
2381 micromips_instruction_is_compact_branch (unsigned short insn)
2382 {
2383 switch (micromips_op (insn))
2384 {
2385 case 0x11: /* POOL16C: bits 010001 */
2386 return (b5s5_op (insn) == 0x18
2387 /* JRADDIUSP: bits 010001 11000 */
2388 || b5s5_op (insn) == 0xd);
2389 /* JRC: bits 010011 01101 */
2390 case 0x10: /* POOL32I: bits 010000 */
2391 return (b5s5_op (insn) & 0x1d) == 0x5;
2392 /* BEQZC/BNEZC: bits 010000 001x1 */
2393 default:
2394 return 0;
2395 }
2396 }
2397
2398 struct mips_frame_cache
2399 {
2400 CORE_ADDR base;
2401 struct trad_frame_saved_reg *saved_regs;
2402 };
2403
2404 /* Set a register's saved stack address in temp_saved_regs. If an
2405 address has already been set for this register, do nothing; this
2406 way we will only recognize the first save of a given register in a
2407 function prologue.
2408
2409 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2410 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2411 Strictly speaking, only the second range is used as it is only second
2412 range (the ABI instead of ISA registers) that comes into play when finding
2413 saved registers in a frame. */
2414
2415 static void
2416 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2417 int regnum, CORE_ADDR offset)
2418 {
2419 if (this_cache != NULL
2420 && this_cache->saved_regs[regnum].addr == -1)
2421 {
2422 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2423 = offset;
2424 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2425 = offset;
2426 }
2427 }
2428
2429
2430 /* Fetch the immediate value from a MIPS16 instruction.
2431 If the previous instruction was an EXTEND, use it to extend
2432 the upper bits of the immediate value. This is a helper function
2433 for mips16_scan_prologue. */
2434
2435 static int
2436 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2437 unsigned short inst, /* current instruction */
2438 int nbits, /* number of bits in imm field */
2439 int scale, /* scale factor to be applied to imm */
2440 int is_signed) /* is the imm field signed? */
2441 {
2442 int offset;
2443
2444 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2445 {
2446 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2447 if (offset & 0x8000) /* check for negative extend */
2448 offset = 0 - (0x10000 - (offset & 0xffff));
2449 return offset | (inst & 0x1f);
2450 }
2451 else
2452 {
2453 int max_imm = 1 << nbits;
2454 int mask = max_imm - 1;
2455 int sign_bit = max_imm >> 1;
2456
2457 offset = inst & mask;
2458 if (is_signed && (offset & sign_bit))
2459 offset = 0 - (max_imm - offset);
2460 return offset * scale;
2461 }
2462 }
2463
2464
2465 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2466 the associated FRAME_CACHE if not null.
2467 Return the address of the first instruction past the prologue. */
2468
2469 static CORE_ADDR
2470 mips16_scan_prologue (struct gdbarch *gdbarch,
2471 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2472 struct frame_info *this_frame,
2473 struct mips_frame_cache *this_cache)
2474 {
2475 int prev_non_prologue_insn = 0;
2476 int this_non_prologue_insn;
2477 int non_prologue_insns = 0;
2478 CORE_ADDR prev_pc;
2479 CORE_ADDR cur_pc;
2480 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2481 CORE_ADDR sp;
2482 long frame_offset = 0; /* Size of stack frame. */
2483 long frame_adjust = 0; /* Offset of FP from SP. */
2484 int frame_reg = MIPS_SP_REGNUM;
2485 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2486 unsigned inst = 0; /* current instruction */
2487 unsigned entry_inst = 0; /* the entry instruction */
2488 unsigned save_inst = 0; /* the save instruction */
2489 int prev_delay_slot = 0;
2490 int in_delay_slot;
2491 int reg, offset;
2492
2493 int extend_bytes = 0;
2494 int prev_extend_bytes = 0;
2495 CORE_ADDR end_prologue_addr;
2496
2497 /* Can be called when there's no process, and hence when there's no
2498 THIS_FRAME. */
2499 if (this_frame != NULL)
2500 sp = get_frame_register_signed (this_frame,
2501 gdbarch_num_regs (gdbarch)
2502 + MIPS_SP_REGNUM);
2503 else
2504 sp = 0;
2505
2506 if (limit_pc > start_pc + 200)
2507 limit_pc = start_pc + 200;
2508 prev_pc = start_pc;
2509
2510 /* Permit at most one non-prologue non-control-transfer instruction
2511 in the middle which may have been reordered by the compiler for
2512 optimisation. */
2513 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2514 {
2515 this_non_prologue_insn = 0;
2516 in_delay_slot = 0;
2517
2518 /* Save the previous instruction. If it's an EXTEND, we'll extract
2519 the immediate offset extension from it in mips16_get_imm. */
2520 prev_inst = inst;
2521
2522 /* Fetch and decode the instruction. */
2523 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2524 cur_pc, NULL);
2525
2526 /* Normally we ignore extend instructions. However, if it is
2527 not followed by a valid prologue instruction, then this
2528 instruction is not part of the prologue either. We must
2529 remember in this case to adjust the end_prologue_addr back
2530 over the extend. */
2531 if ((inst & 0xf800) == 0xf000) /* extend */
2532 {
2533 extend_bytes = MIPS_INSN16_SIZE;
2534 continue;
2535 }
2536
2537 prev_extend_bytes = extend_bytes;
2538 extend_bytes = 0;
2539
2540 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2541 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2542 {
2543 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2544 if (offset < 0) /* Negative stack adjustment? */
2545 frame_offset -= offset;
2546 else
2547 /* Exit loop if a positive stack adjustment is found, which
2548 usually means that the stack cleanup code in the function
2549 epilogue is reached. */
2550 break;
2551 }
2552 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2553 {
2554 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2555 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2556 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2557 }
2558 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2559 {
2560 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2561 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2562 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2563 }
2564 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2565 {
2566 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2567 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2568 }
2569 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2570 {
2571 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2572 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2573 }
2574 else if (inst == 0x673d) /* move $s1, $sp */
2575 {
2576 frame_addr = sp;
2577 frame_reg = 17;
2578 }
2579 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2580 {
2581 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2582 frame_addr = sp + offset;
2583 frame_reg = 17;
2584 frame_adjust = offset;
2585 }
2586 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2587 {
2588 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2589 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2590 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2591 }
2592 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2593 {
2594 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2595 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2596 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2597 }
2598 else if ((inst & 0xf81f) == 0xe809
2599 && (inst & 0x700) != 0x700) /* entry */
2600 entry_inst = inst; /* Save for later processing. */
2601 else if ((inst & 0xff80) == 0x6480) /* save */
2602 {
2603 save_inst = inst; /* Save for later processing. */
2604 if (prev_extend_bytes) /* extend */
2605 save_inst |= prev_inst << 16;
2606 }
2607 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2608 {
2609 /* This instruction is part of the prologue, but we don't
2610 need to do anything special to handle it. */
2611 }
2612 else if (mips16_instruction_has_delay_slot (inst, 0))
2613 /* JAL/JALR/JALX/JR */
2614 {
2615 /* The instruction in the delay slot can be a part
2616 of the prologue, so move forward once more. */
2617 in_delay_slot = 1;
2618 if (mips16_instruction_has_delay_slot (inst, 1))
2619 /* JAL/JALX */
2620 {
2621 prev_extend_bytes = MIPS_INSN16_SIZE;
2622 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2623 }
2624 }
2625 else
2626 {
2627 this_non_prologue_insn = 1;
2628 }
2629
2630 non_prologue_insns += this_non_prologue_insn;
2631
2632 /* A jump or branch, or enough non-prologue insns seen? If so,
2633 then we must have reached the end of the prologue by now. */
2634 if (prev_delay_slot || non_prologue_insns > 1
2635 || mips16_instruction_is_compact_branch (inst))
2636 break;
2637
2638 prev_non_prologue_insn = this_non_prologue_insn;
2639 prev_delay_slot = in_delay_slot;
2640 prev_pc = cur_pc - prev_extend_bytes;
2641 }
2642
2643 /* The entry instruction is typically the first instruction in a function,
2644 and it stores registers at offsets relative to the value of the old SP
2645 (before the prologue). But the value of the sp parameter to this
2646 function is the new SP (after the prologue has been executed). So we
2647 can't calculate those offsets until we've seen the entire prologue,
2648 and can calculate what the old SP must have been. */
2649 if (entry_inst != 0)
2650 {
2651 int areg_count = (entry_inst >> 8) & 7;
2652 int sreg_count = (entry_inst >> 6) & 3;
2653
2654 /* The entry instruction always subtracts 32 from the SP. */
2655 frame_offset += 32;
2656
2657 /* Now we can calculate what the SP must have been at the
2658 start of the function prologue. */
2659 sp += frame_offset;
2660
2661 /* Check if a0-a3 were saved in the caller's argument save area. */
2662 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2663 {
2664 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2665 offset += mips_abi_regsize (gdbarch);
2666 }
2667
2668 /* Check if the ra register was pushed on the stack. */
2669 offset = -4;
2670 if (entry_inst & 0x20)
2671 {
2672 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2673 offset -= mips_abi_regsize (gdbarch);
2674 }
2675
2676 /* Check if the s0 and s1 registers were pushed on the stack. */
2677 for (reg = 16; reg < sreg_count + 16; reg++)
2678 {
2679 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2680 offset -= mips_abi_regsize (gdbarch);
2681 }
2682 }
2683
2684 /* The SAVE instruction is similar to ENTRY, except that defined by the
2685 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2686 size of the frame is specified as an immediate field of instruction
2687 and an extended variation exists which lets additional registers and
2688 frame space to be specified. The instruction always treats registers
2689 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2690 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2691 {
2692 static int args_table[16] = {
2693 0, 0, 0, 0, 1, 1, 1, 1,
2694 2, 2, 2, 0, 3, 3, 4, -1,
2695 };
2696 static int astatic_table[16] = {
2697 0, 1, 2, 3, 0, 1, 2, 3,
2698 0, 1, 2, 4, 0, 1, 0, -1,
2699 };
2700 int aregs = (save_inst >> 16) & 0xf;
2701 int xsregs = (save_inst >> 24) & 0x7;
2702 int args = args_table[aregs];
2703 int astatic = astatic_table[aregs];
2704 long frame_size;
2705
2706 if (args < 0)
2707 {
2708 warning (_("Invalid number of argument registers encoded in SAVE."));
2709 args = 0;
2710 }
2711 if (astatic < 0)
2712 {
2713 warning (_("Invalid number of static registers encoded in SAVE."));
2714 astatic = 0;
2715 }
2716
2717 /* For standard SAVE the frame size of 0 means 128. */
2718 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2719 if (frame_size == 0 && (save_inst >> 16) == 0)
2720 frame_size = 16;
2721 frame_size *= 8;
2722 frame_offset += frame_size;
2723
2724 /* Now we can calculate what the SP must have been at the
2725 start of the function prologue. */
2726 sp += frame_offset;
2727
2728 /* Check if A0-A3 were saved in the caller's argument save area. */
2729 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2730 {
2731 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2732 offset += mips_abi_regsize (gdbarch);
2733 }
2734
2735 offset = -4;
2736
2737 /* Check if the RA register was pushed on the stack. */
2738 if (save_inst & 0x40)
2739 {
2740 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2741 offset -= mips_abi_regsize (gdbarch);
2742 }
2743
2744 /* Check if the S8 register was pushed on the stack. */
2745 if (xsregs > 6)
2746 {
2747 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2748 offset -= mips_abi_regsize (gdbarch);
2749 xsregs--;
2750 }
2751 /* Check if S2-S7 were pushed on the stack. */
2752 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2753 {
2754 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2755 offset -= mips_abi_regsize (gdbarch);
2756 }
2757
2758 /* Check if the S1 register was pushed on the stack. */
2759 if (save_inst & 0x10)
2760 {
2761 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2762 offset -= mips_abi_regsize (gdbarch);
2763 }
2764 /* Check if the S0 register was pushed on the stack. */
2765 if (save_inst & 0x20)
2766 {
2767 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2768 offset -= mips_abi_regsize (gdbarch);
2769 }
2770
2771 /* Check if A0-A3 were pushed on the stack. */
2772 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2773 {
2774 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2775 offset -= mips_abi_regsize (gdbarch);
2776 }
2777 }
2778
2779 if (this_cache != NULL)
2780 {
2781 this_cache->base =
2782 (get_frame_register_signed (this_frame,
2783 gdbarch_num_regs (gdbarch) + frame_reg)
2784 + frame_offset - frame_adjust);
2785 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2786 be able to get rid of the assignment below, evetually. But it's
2787 still needed for now. */
2788 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2789 + mips_regnum (gdbarch)->pc]
2790 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2791 }
2792
2793 /* Set end_prologue_addr to the address of the instruction immediately
2794 after the last one we scanned. Unless the last one looked like a
2795 non-prologue instruction (and we looked ahead), in which case use
2796 its address instead. */
2797 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2798 ? prev_pc : cur_pc - prev_extend_bytes);
2799
2800 return end_prologue_addr;
2801 }
2802
2803 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2804 Procedures that use the 32-bit instruction set are handled by the
2805 mips_insn32 unwinder. */
2806
2807 static struct mips_frame_cache *
2808 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2809 {
2810 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2811 struct mips_frame_cache *cache;
2812
2813 if ((*this_cache) != NULL)
2814 return (struct mips_frame_cache *) (*this_cache);
2815 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2816 (*this_cache) = cache;
2817 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2818
2819 /* Analyze the function prologue. */
2820 {
2821 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2822 CORE_ADDR start_addr;
2823
2824 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2825 if (start_addr == 0)
2826 start_addr = heuristic_proc_start (gdbarch, pc);
2827 /* We can't analyze the prologue if we couldn't find the begining
2828 of the function. */
2829 if (start_addr == 0)
2830 return cache;
2831
2832 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2833 (struct mips_frame_cache *) *this_cache);
2834 }
2835
2836 /* gdbarch_sp_regnum contains the value and not the address. */
2837 trad_frame_set_value (cache->saved_regs,
2838 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2839 cache->base);
2840
2841 return (struct mips_frame_cache *) (*this_cache);
2842 }
2843
2844 static void
2845 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2846 struct frame_id *this_id)
2847 {
2848 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2849 this_cache);
2850 /* This marks the outermost frame. */
2851 if (info->base == 0)
2852 return;
2853 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2854 }
2855
2856 static struct value *
2857 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2858 void **this_cache, int regnum)
2859 {
2860 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2861 this_cache);
2862 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2863 }
2864
2865 static int
2866 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2867 struct frame_info *this_frame, void **this_cache)
2868 {
2869 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2870 CORE_ADDR pc = get_frame_pc (this_frame);
2871 if (mips_pc_is_mips16 (gdbarch, pc))
2872 return 1;
2873 return 0;
2874 }
2875
2876 static const struct frame_unwind mips_insn16_frame_unwind =
2877 {
2878 NORMAL_FRAME,
2879 default_frame_unwind_stop_reason,
2880 mips_insn16_frame_this_id,
2881 mips_insn16_frame_prev_register,
2882 NULL,
2883 mips_insn16_frame_sniffer
2884 };
2885
2886 static CORE_ADDR
2887 mips_insn16_frame_base_address (struct frame_info *this_frame,
2888 void **this_cache)
2889 {
2890 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2891 this_cache);
2892 return info->base;
2893 }
2894
2895 static const struct frame_base mips_insn16_frame_base =
2896 {
2897 &mips_insn16_frame_unwind,
2898 mips_insn16_frame_base_address,
2899 mips_insn16_frame_base_address,
2900 mips_insn16_frame_base_address
2901 };
2902
2903 static const struct frame_base *
2904 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2905 {
2906 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2907 CORE_ADDR pc = get_frame_pc (this_frame);
2908 if (mips_pc_is_mips16 (gdbarch, pc))
2909 return &mips_insn16_frame_base;
2910 else
2911 return NULL;
2912 }
2913
2914 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2915 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2916 interpreted directly, and then multiplied by 4. */
2917
2918 static int
2919 micromips_decode_imm9 (int imm)
2920 {
2921 imm = (imm ^ 0x100) - 0x100;
2922 if (imm > -3 && imm < 2)
2923 imm ^= 0x100;
2924 return imm << 2;
2925 }
2926
2927 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2928 the address of the first instruction past the prologue. */
2929
2930 static CORE_ADDR
2931 micromips_scan_prologue (struct gdbarch *gdbarch,
2932 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2933 struct frame_info *this_frame,
2934 struct mips_frame_cache *this_cache)
2935 {
2936 CORE_ADDR end_prologue_addr;
2937 int prev_non_prologue_insn = 0;
2938 int frame_reg = MIPS_SP_REGNUM;
2939 int this_non_prologue_insn;
2940 int non_prologue_insns = 0;
2941 long frame_offset = 0; /* Size of stack frame. */
2942 long frame_adjust = 0; /* Offset of FP from SP. */
2943 int prev_delay_slot = 0;
2944 int in_delay_slot;
2945 CORE_ADDR prev_pc;
2946 CORE_ADDR cur_pc;
2947 ULONGEST insn; /* current instruction */
2948 CORE_ADDR sp;
2949 long offset;
2950 long sp_adj;
2951 long v1_off = 0; /* The assumption is LUI will replace it. */
2952 int reglist;
2953 int breg;
2954 int dreg;
2955 int sreg;
2956 int treg;
2957 int loc;
2958 int op;
2959 int s;
2960 int i;
2961
2962 /* Can be called when there's no process, and hence when there's no
2963 THIS_FRAME. */
2964 if (this_frame != NULL)
2965 sp = get_frame_register_signed (this_frame,
2966 gdbarch_num_regs (gdbarch)
2967 + MIPS_SP_REGNUM);
2968 else
2969 sp = 0;
2970
2971 if (limit_pc > start_pc + 200)
2972 limit_pc = start_pc + 200;
2973 prev_pc = start_pc;
2974
2975 /* Permit at most one non-prologue non-control-transfer instruction
2976 in the middle which may have been reordered by the compiler for
2977 optimisation. */
2978 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2979 {
2980 this_non_prologue_insn = 0;
2981 in_delay_slot = 0;
2982 sp_adj = 0;
2983 loc = 0;
2984 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2985 loc += MIPS_INSN16_SIZE;
2986 switch (mips_insn_size (ISA_MICROMIPS, insn))
2987 {
2988 /* 32-bit instructions. */
2989 case 2 * MIPS_INSN16_SIZE:
2990 insn <<= 16;
2991 insn |= mips_fetch_instruction (gdbarch,
2992 ISA_MICROMIPS, cur_pc + loc, NULL);
2993 loc += MIPS_INSN16_SIZE;
2994 switch (micromips_op (insn >> 16))
2995 {
2996 /* Record $sp/$fp adjustment. */
2997 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2998 case 0x0: /* POOL32A: bits 000000 */
2999 case 0x16: /* POOL32S: bits 010110 */
3000 op = b0s11_op (insn);
3001 sreg = b0s5_reg (insn >> 16);
3002 treg = b5s5_reg (insn >> 16);
3003 dreg = b11s5_reg (insn);
3004 if (op == 0x1d0
3005 /* SUBU: bits 000000 00111010000 */
3006 /* DSUBU: bits 010110 00111010000 */
3007 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3008 && treg == 3)
3009 /* (D)SUBU $sp, $v1 */
3010 sp_adj = v1_off;
3011 else if (op != 0x150
3012 /* ADDU: bits 000000 00101010000 */
3013 /* DADDU: bits 010110 00101010000 */
3014 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3015 this_non_prologue_insn = 1;
3016 break;
3017
3018 case 0x8: /* POOL32B: bits 001000 */
3019 op = b12s4_op (insn);
3020 breg = b0s5_reg (insn >> 16);
3021 reglist = sreg = b5s5_reg (insn >> 16);
3022 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3023 if ((op == 0x9 || op == 0xc)
3024 /* SWP: bits 001000 1001 */
3025 /* SDP: bits 001000 1100 */
3026 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3027 /* S[DW]P reg,offset($sp) */
3028 {
3029 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3030 set_reg_offset (gdbarch, this_cache,
3031 sreg, sp + offset);
3032 set_reg_offset (gdbarch, this_cache,
3033 sreg + 1, sp + offset + s);
3034 }
3035 else if ((op == 0xd || op == 0xf)
3036 /* SWM: bits 001000 1101 */
3037 /* SDM: bits 001000 1111 */
3038 && breg == MIPS_SP_REGNUM
3039 /* SWM reglist,offset($sp) */
3040 && ((reglist >= 1 && reglist <= 9)
3041 || (reglist >= 16 && reglist <= 25)))
3042 {
3043 int sreglist = std::min(reglist & 0xf, 8);
3044
3045 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3046 for (i = 0; i < sreglist; i++)
3047 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3048 if ((reglist & 0xf) > 8)
3049 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3050 if ((reglist & 0x10) == 0x10)
3051 set_reg_offset (gdbarch, this_cache,
3052 MIPS_RA_REGNUM, sp + s * i++);
3053 }
3054 else
3055 this_non_prologue_insn = 1;
3056 break;
3057
3058 /* Record $sp/$fp adjustment. */
3059 /* Discard (D)ADDIU $gp used for PIC code. */
3060 case 0xc: /* ADDIU: bits 001100 */
3061 case 0x17: /* DADDIU: bits 010111 */
3062 sreg = b0s5_reg (insn >> 16);
3063 dreg = b5s5_reg (insn >> 16);
3064 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3065 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3066 /* (D)ADDIU $sp, imm */
3067 sp_adj = offset;
3068 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3069 /* (D)ADDIU $fp, $sp, imm */
3070 {
3071 frame_adjust = offset;
3072 frame_reg = 30;
3073 }
3074 else if (sreg != 28 || dreg != 28)
3075 /* (D)ADDIU $gp, imm */
3076 this_non_prologue_insn = 1;
3077 break;
3078
3079 /* LUI $v1 is used for larger $sp adjustments. */
3080 /* Discard LUI $gp used for PIC code. */
3081 case 0x10: /* POOL32I: bits 010000 */
3082 if (b5s5_op (insn >> 16) == 0xd
3083 /* LUI: bits 010000 001101 */
3084 && b0s5_reg (insn >> 16) == 3)
3085 /* LUI $v1, imm */
3086 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3087 else if (b5s5_op (insn >> 16) != 0xd
3088 /* LUI: bits 010000 001101 */
3089 || b0s5_reg (insn >> 16) != 28)
3090 /* LUI $gp, imm */
3091 this_non_prologue_insn = 1;
3092 break;
3093
3094 /* ORI $v1 is used for larger $sp adjustments. */
3095 case 0x14: /* ORI: bits 010100 */
3096 sreg = b0s5_reg (insn >> 16);
3097 dreg = b5s5_reg (insn >> 16);
3098 if (sreg == 3 && dreg == 3)
3099 /* ORI $v1, imm */
3100 v1_off |= b0s16_imm (insn);
3101 else
3102 this_non_prologue_insn = 1;
3103 break;
3104
3105 case 0x26: /* SWC1: bits 100110 */
3106 case 0x2e: /* SDC1: bits 101110 */
3107 breg = b0s5_reg (insn >> 16);
3108 if (breg != MIPS_SP_REGNUM)
3109 /* S[DW]C1 reg,offset($sp) */
3110 this_non_prologue_insn = 1;
3111 break;
3112
3113 case 0x36: /* SD: bits 110110 */
3114 case 0x3e: /* SW: bits 111110 */
3115 breg = b0s5_reg (insn >> 16);
3116 sreg = b5s5_reg (insn >> 16);
3117 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3118 if (breg == MIPS_SP_REGNUM)
3119 /* S[DW] reg,offset($sp) */
3120 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3121 else
3122 this_non_prologue_insn = 1;
3123 break;
3124
3125 default:
3126 /* The instruction in the delay slot can be a part
3127 of the prologue, so move forward once more. */
3128 if (micromips_instruction_has_delay_slot (insn, 0))
3129 in_delay_slot = 1;
3130 else
3131 this_non_prologue_insn = 1;
3132 break;
3133 }
3134 insn >>= 16;
3135 break;
3136
3137 /* 16-bit instructions. */
3138 case MIPS_INSN16_SIZE:
3139 switch (micromips_op (insn))
3140 {
3141 case 0x3: /* MOVE: bits 000011 */
3142 sreg = b0s5_reg (insn);
3143 dreg = b5s5_reg (insn);
3144 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3145 /* MOVE $fp, $sp */
3146 frame_reg = 30;
3147 else if ((sreg & 0x1c) != 0x4)
3148 /* MOVE reg, $a0-$a3 */
3149 this_non_prologue_insn = 1;
3150 break;
3151
3152 case 0x11: /* POOL16C: bits 010001 */
3153 if (b6s4_op (insn) == 0x5)
3154 /* SWM: bits 010001 0101 */
3155 {
3156 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3157 reglist = b4s2_regl (insn);
3158 for (i = 0; i <= reglist; i++)
3159 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3160 set_reg_offset (gdbarch, this_cache,
3161 MIPS_RA_REGNUM, sp + 4 * i++);
3162 }
3163 else
3164 this_non_prologue_insn = 1;
3165 break;
3166
3167 case 0x13: /* POOL16D: bits 010011 */
3168 if ((insn & 0x1) == 0x1)
3169 /* ADDIUSP: bits 010011 1 */
3170 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3171 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3172 /* ADDIUS5: bits 010011 0 */
3173 /* ADDIUS5 $sp, imm */
3174 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3175 else
3176 this_non_prologue_insn = 1;
3177 break;
3178
3179 case 0x32: /* SWSP: bits 110010 */
3180 offset = b0s5_imm (insn) << 2;
3181 sreg = b5s5_reg (insn);
3182 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3183 break;
3184
3185 default:
3186 /* The instruction in the delay slot can be a part
3187 of the prologue, so move forward once more. */
3188 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3189 in_delay_slot = 1;
3190 else
3191 this_non_prologue_insn = 1;
3192 break;
3193 }
3194 break;
3195 }
3196 if (sp_adj < 0)
3197 frame_offset -= sp_adj;
3198
3199 non_prologue_insns += this_non_prologue_insn;
3200
3201 /* A jump or branch, enough non-prologue insns seen or positive
3202 stack adjustment? If so, then we must have reached the end
3203 of the prologue by now. */
3204 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3205 || micromips_instruction_is_compact_branch (insn))
3206 break;
3207
3208 prev_non_prologue_insn = this_non_prologue_insn;
3209 prev_delay_slot = in_delay_slot;
3210 prev_pc = cur_pc;
3211 }
3212
3213 if (this_cache != NULL)
3214 {
3215 this_cache->base =
3216 (get_frame_register_signed (this_frame,
3217 gdbarch_num_regs (gdbarch) + frame_reg)
3218 + frame_offset - frame_adjust);
3219 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3220 be able to get rid of the assignment below, evetually. But it's
3221 still needed for now. */
3222 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3223 + mips_regnum (gdbarch)->pc]
3224 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3225 }
3226
3227 /* Set end_prologue_addr to the address of the instruction immediately
3228 after the last one we scanned. Unless the last one looked like a
3229 non-prologue instruction (and we looked ahead), in which case use
3230 its address instead. */
3231 end_prologue_addr
3232 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3233
3234 return end_prologue_addr;
3235 }
3236
3237 /* Heuristic unwinder for procedures using microMIPS instructions.
3238 Procedures that use the 32-bit instruction set are handled by the
3239 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3240
3241 static struct mips_frame_cache *
3242 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3243 {
3244 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3245 struct mips_frame_cache *cache;
3246
3247 if ((*this_cache) != NULL)
3248 return (struct mips_frame_cache *) (*this_cache);
3249
3250 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3251 (*this_cache) = cache;
3252 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3253
3254 /* Analyze the function prologue. */
3255 {
3256 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3257 CORE_ADDR start_addr;
3258
3259 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3260 if (start_addr == 0)
3261 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3262 /* We can't analyze the prologue if we couldn't find the begining
3263 of the function. */
3264 if (start_addr == 0)
3265 return cache;
3266
3267 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3268 (struct mips_frame_cache *) *this_cache);
3269 }
3270
3271 /* gdbarch_sp_regnum contains the value and not the address. */
3272 trad_frame_set_value (cache->saved_regs,
3273 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3274 cache->base);
3275
3276 return (struct mips_frame_cache *) (*this_cache);
3277 }
3278
3279 static void
3280 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3281 struct frame_id *this_id)
3282 {
3283 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3284 this_cache);
3285 /* This marks the outermost frame. */
3286 if (info->base == 0)
3287 return;
3288 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3289 }
3290
3291 static struct value *
3292 mips_micro_frame_prev_register (struct frame_info *this_frame,
3293 void **this_cache, int regnum)
3294 {
3295 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3296 this_cache);
3297 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3298 }
3299
3300 static int
3301 mips_micro_frame_sniffer (const struct frame_unwind *self,
3302 struct frame_info *this_frame, void **this_cache)
3303 {
3304 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3305 CORE_ADDR pc = get_frame_pc (this_frame);
3306
3307 if (mips_pc_is_micromips (gdbarch, pc))
3308 return 1;
3309 return 0;
3310 }
3311
3312 static const struct frame_unwind mips_micro_frame_unwind =
3313 {
3314 NORMAL_FRAME,
3315 default_frame_unwind_stop_reason,
3316 mips_micro_frame_this_id,
3317 mips_micro_frame_prev_register,
3318 NULL,
3319 mips_micro_frame_sniffer
3320 };
3321
3322 static CORE_ADDR
3323 mips_micro_frame_base_address (struct frame_info *this_frame,
3324 void **this_cache)
3325 {
3326 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3327 this_cache);
3328 return info->base;
3329 }
3330
3331 static const struct frame_base mips_micro_frame_base =
3332 {
3333 &mips_micro_frame_unwind,
3334 mips_micro_frame_base_address,
3335 mips_micro_frame_base_address,
3336 mips_micro_frame_base_address
3337 };
3338
3339 static const struct frame_base *
3340 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3341 {
3342 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3343 CORE_ADDR pc = get_frame_pc (this_frame);
3344
3345 if (mips_pc_is_micromips (gdbarch, pc))
3346 return &mips_micro_frame_base;
3347 else
3348 return NULL;
3349 }
3350
3351 /* Mark all the registers as unset in the saved_regs array
3352 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3353
3354 static void
3355 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3356 {
3357 if (this_cache == NULL || this_cache->saved_regs == NULL)
3358 return;
3359
3360 {
3361 const int num_regs = gdbarch_num_regs (gdbarch);
3362 int i;
3363
3364 for (i = 0; i < num_regs; i++)
3365 {
3366 this_cache->saved_regs[i].addr = -1;
3367 }
3368 }
3369 }
3370
3371 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3372 the associated FRAME_CACHE if not null.
3373 Return the address of the first instruction past the prologue. */
3374
3375 static CORE_ADDR
3376 mips32_scan_prologue (struct gdbarch *gdbarch,
3377 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3378 struct frame_info *this_frame,
3379 struct mips_frame_cache *this_cache)
3380 {
3381 int prev_non_prologue_insn;
3382 int this_non_prologue_insn;
3383 int non_prologue_insns;
3384 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3385 frame-pointer. */
3386 int prev_delay_slot;
3387 CORE_ADDR prev_pc;
3388 CORE_ADDR cur_pc;
3389 CORE_ADDR sp;
3390 long frame_offset;
3391 int frame_reg = MIPS_SP_REGNUM;
3392
3393 CORE_ADDR end_prologue_addr;
3394 int seen_sp_adjust = 0;
3395 int load_immediate_bytes = 0;
3396 int in_delay_slot;
3397 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3398
3399 /* Can be called when there's no process, and hence when there's no
3400 THIS_FRAME. */
3401 if (this_frame != NULL)
3402 sp = get_frame_register_signed (this_frame,
3403 gdbarch_num_regs (gdbarch)
3404 + MIPS_SP_REGNUM);
3405 else
3406 sp = 0;
3407
3408 if (limit_pc > start_pc + 200)
3409 limit_pc = start_pc + 200;
3410
3411 restart:
3412 prev_non_prologue_insn = 0;
3413 non_prologue_insns = 0;
3414 prev_delay_slot = 0;
3415 prev_pc = start_pc;
3416
3417 /* Permit at most one non-prologue non-control-transfer instruction
3418 in the middle which may have been reordered by the compiler for
3419 optimisation. */
3420 frame_offset = 0;
3421 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3422 {
3423 unsigned long inst, high_word;
3424 long offset;
3425 int reg;
3426
3427 this_non_prologue_insn = 0;
3428 in_delay_slot = 0;
3429
3430 /* Fetch the instruction. */
3431 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3432 cur_pc, NULL);
3433
3434 /* Save some code by pre-extracting some useful fields. */
3435 high_word = (inst >> 16) & 0xffff;
3436 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3437 reg = high_word & 0x1f;
3438
3439 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3440 || high_word == 0x23bd /* addi $sp,$sp,-i */
3441 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3442 {
3443 if (offset < 0) /* Negative stack adjustment? */
3444 frame_offset -= offset;
3445 else
3446 /* Exit loop if a positive stack adjustment is found, which
3447 usually means that the stack cleanup code in the function
3448 epilogue is reached. */
3449 break;
3450 seen_sp_adjust = 1;
3451 }
3452 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3453 && !regsize_is_64_bits)
3454 {
3455 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3456 }
3457 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3458 && regsize_is_64_bits)
3459 {
3460 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3461 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3462 }
3463 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3464 {
3465 /* Old gcc frame, r30 is virtual frame pointer. */
3466 if (offset != frame_offset)
3467 frame_addr = sp + offset;
3468 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3469 {
3470 unsigned alloca_adjust;
3471
3472 frame_reg = 30;
3473 frame_addr = get_frame_register_signed
3474 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3475 frame_offset = 0;
3476
3477 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3478 if (alloca_adjust > 0)
3479 {
3480 /* FP > SP + frame_size. This may be because of
3481 an alloca or somethings similar. Fix sp to
3482 "pre-alloca" value, and try again. */
3483 sp += alloca_adjust;
3484 /* Need to reset the status of all registers. Otherwise,
3485 we will hit a guard that prevents the new address
3486 for each register to be recomputed during the second
3487 pass. */
3488 reset_saved_regs (gdbarch, this_cache);
3489 goto restart;
3490 }
3491 }
3492 }
3493 /* move $30,$sp. With different versions of gas this will be either
3494 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3495 Accept any one of these. */
3496 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3497 {
3498 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3499 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3500 {
3501 unsigned alloca_adjust;
3502
3503 frame_reg = 30;
3504 frame_addr = get_frame_register_signed
3505 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3506
3507 alloca_adjust = (unsigned) (frame_addr - sp);
3508 if (alloca_adjust > 0)
3509 {
3510 /* FP > SP + frame_size. This may be because of
3511 an alloca or somethings similar. Fix sp to
3512 "pre-alloca" value, and try again. */
3513 sp = frame_addr;
3514 /* Need to reset the status of all registers. Otherwise,
3515 we will hit a guard that prevents the new address
3516 for each register to be recomputed during the second
3517 pass. */
3518 reset_saved_regs (gdbarch, this_cache);
3519 goto restart;
3520 }
3521 }
3522 }
3523 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3524 && !regsize_is_64_bits)
3525 {
3526 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3527 }
3528 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3529 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3530 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3531 || high_word == 0x3c1c /* lui $gp,n */
3532 || high_word == 0x279c /* addiu $gp,$gp,n */
3533 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3534 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3535 )
3536 {
3537 /* These instructions are part of the prologue, but we don't
3538 need to do anything special to handle them. */
3539 }
3540 /* The instructions below load $at or $t0 with an immediate
3541 value in preparation for a stack adjustment via
3542 subu $sp,$sp,[$at,$t0]. These instructions could also
3543 initialize a local variable, so we accept them only before
3544 a stack adjustment instruction was seen. */
3545 else if (!seen_sp_adjust
3546 && !prev_delay_slot
3547 && (high_word == 0x3c01 /* lui $at,n */
3548 || high_word == 0x3c08 /* lui $t0,n */
3549 || high_word == 0x3421 /* ori $at,$at,n */
3550 || high_word == 0x3508 /* ori $t0,$t0,n */
3551 || high_word == 0x3401 /* ori $at,$zero,n */
3552 || high_word == 0x3408 /* ori $t0,$zero,n */
3553 ))
3554 {
3555 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3556 }
3557 /* Check for branches and jumps. The instruction in the delay
3558 slot can be a part of the prologue, so move forward once more. */
3559 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3560 {
3561 in_delay_slot = 1;
3562 }
3563 /* This instruction is not an instruction typically found
3564 in a prologue, so we must have reached the end of the
3565 prologue. */
3566 else
3567 {
3568 this_non_prologue_insn = 1;
3569 }
3570
3571 non_prologue_insns += this_non_prologue_insn;
3572
3573 /* A jump or branch, or enough non-prologue insns seen? If so,
3574 then we must have reached the end of the prologue by now. */
3575 if (prev_delay_slot || non_prologue_insns > 1)
3576 break;
3577
3578 prev_non_prologue_insn = this_non_prologue_insn;
3579 prev_delay_slot = in_delay_slot;
3580 prev_pc = cur_pc;
3581 }
3582
3583 if (this_cache != NULL)
3584 {
3585 this_cache->base =
3586 (get_frame_register_signed (this_frame,
3587 gdbarch_num_regs (gdbarch) + frame_reg)
3588 + frame_offset);
3589 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3590 this assignment below, eventually. But it's still needed
3591 for now. */
3592 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3593 + mips_regnum (gdbarch)->pc]
3594 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3595 + MIPS_RA_REGNUM];
3596 }
3597
3598 /* Set end_prologue_addr to the address of the instruction immediately
3599 after the last one we scanned. Unless the last one looked like a
3600 non-prologue instruction (and we looked ahead), in which case use
3601 its address instead. */
3602 end_prologue_addr
3603 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3604
3605 /* In a frameless function, we might have incorrectly
3606 skipped some load immediate instructions. Undo the skipping
3607 if the load immediate was not followed by a stack adjustment. */
3608 if (load_immediate_bytes && !seen_sp_adjust)
3609 end_prologue_addr -= load_immediate_bytes;
3610
3611 return end_prologue_addr;
3612 }
3613
3614 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3615 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3616 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3617 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3618
3619 static struct mips_frame_cache *
3620 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3621 {
3622 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3623 struct mips_frame_cache *cache;
3624
3625 if ((*this_cache) != NULL)
3626 return (struct mips_frame_cache *) (*this_cache);
3627
3628 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3629 (*this_cache) = cache;
3630 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3631
3632 /* Analyze the function prologue. */
3633 {
3634 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3635 CORE_ADDR start_addr;
3636
3637 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3638 if (start_addr == 0)
3639 start_addr = heuristic_proc_start (gdbarch, pc);
3640 /* We can't analyze the prologue if we couldn't find the begining
3641 of the function. */
3642 if (start_addr == 0)
3643 return cache;
3644
3645 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3646 (struct mips_frame_cache *) *this_cache);
3647 }
3648
3649 /* gdbarch_sp_regnum contains the value and not the address. */
3650 trad_frame_set_value (cache->saved_regs,
3651 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3652 cache->base);
3653
3654 return (struct mips_frame_cache *) (*this_cache);
3655 }
3656
3657 static void
3658 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3659 struct frame_id *this_id)
3660 {
3661 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3662 this_cache);
3663 /* This marks the outermost frame. */
3664 if (info->base == 0)
3665 return;
3666 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3667 }
3668
3669 static struct value *
3670 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3671 void **this_cache, int regnum)
3672 {
3673 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3674 this_cache);
3675 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3676 }
3677
3678 static int
3679 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3680 struct frame_info *this_frame, void **this_cache)
3681 {
3682 CORE_ADDR pc = get_frame_pc (this_frame);
3683 if (mips_pc_is_mips (pc))
3684 return 1;
3685 return 0;
3686 }
3687
3688 static const struct frame_unwind mips_insn32_frame_unwind =
3689 {
3690 NORMAL_FRAME,
3691 default_frame_unwind_stop_reason,
3692 mips_insn32_frame_this_id,
3693 mips_insn32_frame_prev_register,
3694 NULL,
3695 mips_insn32_frame_sniffer
3696 };
3697
3698 static CORE_ADDR
3699 mips_insn32_frame_base_address (struct frame_info *this_frame,
3700 void **this_cache)
3701 {
3702 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3703 this_cache);
3704 return info->base;
3705 }
3706
3707 static const struct frame_base mips_insn32_frame_base =
3708 {
3709 &mips_insn32_frame_unwind,
3710 mips_insn32_frame_base_address,
3711 mips_insn32_frame_base_address,
3712 mips_insn32_frame_base_address
3713 };
3714
3715 static const struct frame_base *
3716 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3717 {
3718 CORE_ADDR pc = get_frame_pc (this_frame);
3719 if (mips_pc_is_mips (pc))
3720 return &mips_insn32_frame_base;
3721 else
3722 return NULL;
3723 }
3724
3725 static struct trad_frame_cache *
3726 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3727 {
3728 CORE_ADDR pc;
3729 CORE_ADDR start_addr;
3730 CORE_ADDR stack_addr;
3731 struct trad_frame_cache *this_trad_cache;
3732 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3733 int num_regs = gdbarch_num_regs (gdbarch);
3734
3735 if ((*this_cache) != NULL)
3736 return (struct trad_frame_cache *) (*this_cache);
3737 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3738 (*this_cache) = this_trad_cache;
3739
3740 /* The return address is in the link register. */
3741 trad_frame_set_reg_realreg (this_trad_cache,
3742 gdbarch_pc_regnum (gdbarch),
3743 num_regs + MIPS_RA_REGNUM);
3744
3745 /* Frame ID, since it's a frameless / stackless function, no stack
3746 space is allocated and SP on entry is the current SP. */
3747 pc = get_frame_pc (this_frame);
3748 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3749 stack_addr = get_frame_register_signed (this_frame,
3750 num_regs + MIPS_SP_REGNUM);
3751 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3752
3753 /* Assume that the frame's base is the same as the
3754 stack-pointer. */
3755 trad_frame_set_this_base (this_trad_cache, stack_addr);
3756
3757 return this_trad_cache;
3758 }
3759
3760 static void
3761 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3762 struct frame_id *this_id)
3763 {
3764 struct trad_frame_cache *this_trad_cache
3765 = mips_stub_frame_cache (this_frame, this_cache);
3766 trad_frame_get_id (this_trad_cache, this_id);
3767 }
3768
3769 static struct value *
3770 mips_stub_frame_prev_register (struct frame_info *this_frame,
3771 void **this_cache, int regnum)
3772 {
3773 struct trad_frame_cache *this_trad_cache
3774 = mips_stub_frame_cache (this_frame, this_cache);
3775 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3776 }
3777
3778 static int
3779 mips_stub_frame_sniffer (const struct frame_unwind *self,
3780 struct frame_info *this_frame, void **this_cache)
3781 {
3782 gdb_byte dummy[4];
3783 struct obj_section *s;
3784 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3785 struct bound_minimal_symbol msym;
3786
3787 /* Use the stub unwinder for unreadable code. */
3788 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3789 return 1;
3790
3791 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3792 return 1;
3793
3794 /* Calling a PIC function from a non-PIC function passes through a
3795 stub. The stub for foo is named ".pic.foo". */
3796 msym = lookup_minimal_symbol_by_pc (pc);
3797 if (msym.minsym != NULL
3798 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3799 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3800 return 1;
3801
3802 return 0;
3803 }
3804
3805 static const struct frame_unwind mips_stub_frame_unwind =
3806 {
3807 NORMAL_FRAME,
3808 default_frame_unwind_stop_reason,
3809 mips_stub_frame_this_id,
3810 mips_stub_frame_prev_register,
3811 NULL,
3812 mips_stub_frame_sniffer
3813 };
3814
3815 static CORE_ADDR
3816 mips_stub_frame_base_address (struct frame_info *this_frame,
3817 void **this_cache)
3818 {
3819 struct trad_frame_cache *this_trad_cache
3820 = mips_stub_frame_cache (this_frame, this_cache);
3821 return trad_frame_get_this_base (this_trad_cache);
3822 }
3823
3824 static const struct frame_base mips_stub_frame_base =
3825 {
3826 &mips_stub_frame_unwind,
3827 mips_stub_frame_base_address,
3828 mips_stub_frame_base_address,
3829 mips_stub_frame_base_address
3830 };
3831
3832 static const struct frame_base *
3833 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3834 {
3835 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3836 return &mips_stub_frame_base;
3837 else
3838 return NULL;
3839 }
3840
3841 /* mips_addr_bits_remove - remove useless address bits */
3842
3843 static CORE_ADDR
3844 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3845 {
3846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3847
3848 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3849 /* This hack is a work-around for existing boards using PMON, the
3850 simulator, and any other 64-bit targets that doesn't have true
3851 64-bit addressing. On these targets, the upper 32 bits of
3852 addresses are ignored by the hardware. Thus, the PC or SP are
3853 likely to have been sign extended to all 1s by instruction
3854 sequences that load 32-bit addresses. For example, a typical
3855 piece of code that loads an address is this:
3856
3857 lui $r2, <upper 16 bits>
3858 ori $r2, <lower 16 bits>
3859
3860 But the lui sign-extends the value such that the upper 32 bits
3861 may be all 1s. The workaround is simply to mask off these
3862 bits. In the future, gcc may be changed to support true 64-bit
3863 addressing, and this masking will have to be disabled. */
3864 return addr &= 0xffffffffUL;
3865 else
3866 return addr;
3867 }
3868
3869
3870 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3871 instruction and ending with a SC/SCD instruction. If such a sequence
3872 is found, attempt to step through it. A breakpoint is placed at the end of
3873 the sequence. */
3874
3875 /* Instructions used during single-stepping of atomic sequences, standard
3876 ISA version. */
3877 #define LL_OPCODE 0x30
3878 #define LLD_OPCODE 0x34
3879 #define SC_OPCODE 0x38
3880 #define SCD_OPCODE 0x3c
3881
3882 static int
3883 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3884 struct address_space *aspace, CORE_ADDR pc)
3885 {
3886 CORE_ADDR breaks[2] = {-1, -1};
3887 CORE_ADDR loc = pc;
3888 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3889 ULONGEST insn;
3890 int insn_count;
3891 int index;
3892 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3893 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3894
3895 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3896 /* Assume all atomic sequences start with a ll/lld instruction. */
3897 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3898 return 0;
3899
3900 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3901 instructions. */
3902 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3903 {
3904 int is_branch = 0;
3905 loc += MIPS_INSN32_SIZE;
3906 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3907
3908 /* Assume that there is at most one branch in the atomic
3909 sequence. If a branch is found, put a breakpoint in its
3910 destination address. */
3911 switch (itype_op (insn))
3912 {
3913 case 0: /* SPECIAL */
3914 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3915 return 0; /* fallback to the standard single-step code. */
3916 break;
3917 case 1: /* REGIMM */
3918 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3919 || ((itype_rt (insn) & 0x1e) == 0
3920 && itype_rs (insn) == 0)); /* BPOSGE* */
3921 break;
3922 case 2: /* J */
3923 case 3: /* JAL */
3924 return 0; /* fallback to the standard single-step code. */
3925 case 4: /* BEQ */
3926 case 5: /* BNE */
3927 case 6: /* BLEZ */
3928 case 7: /* BGTZ */
3929 case 20: /* BEQL */
3930 case 21: /* BNEL */
3931 case 22: /* BLEZL */
3932 case 23: /* BGTTL */
3933 is_branch = 1;
3934 break;
3935 case 17: /* COP1 */
3936 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3937 && (itype_rt (insn) & 0x2) == 0);
3938 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3939 break;
3940 /* Fall through. */
3941 case 18: /* COP2 */
3942 case 19: /* COP3 */
3943 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3944 break;
3945 }
3946 if (is_branch)
3947 {
3948 branch_bp = loc + mips32_relative_offset (insn) + 4;
3949 if (last_breakpoint >= 1)
3950 return 0; /* More than one branch found, fallback to the
3951 standard single-step code. */
3952 breaks[1] = branch_bp;
3953 last_breakpoint++;
3954 }
3955
3956 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3957 break;
3958 }
3959
3960 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3961 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3962 return 0;
3963
3964 loc += MIPS_INSN32_SIZE;
3965
3966 /* Insert a breakpoint right after the end of the atomic sequence. */
3967 breaks[0] = loc;
3968
3969 /* Check for duplicated breakpoints. Check also for a breakpoint
3970 placed (branch instruction's destination) in the atomic sequence. */
3971 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3972 last_breakpoint = 0;
3973
3974 /* Effectively inserts the breakpoints. */
3975 for (index = 0; index <= last_breakpoint; index++)
3976 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3977
3978 return 1;
3979 }
3980
3981 static int
3982 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3983 struct address_space *aspace,
3984 CORE_ADDR pc)
3985 {
3986 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3987 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3988 CORE_ADDR breaks[2] = {-1, -1};
3989 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3990 destination. */
3991 CORE_ADDR loc = pc;
3992 int sc_found = 0;
3993 ULONGEST insn;
3994 int insn_count;
3995 int index;
3996
3997 /* Assume all atomic sequences start with a ll/lld instruction. */
3998 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
3999 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4000 return 0;
4001 loc += MIPS_INSN16_SIZE;
4002 insn <<= 16;
4003 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4004 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4005 return 0;
4006 loc += MIPS_INSN16_SIZE;
4007
4008 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4009 that no atomic sequence is longer than "atomic_sequence_length"
4010 instructions. */
4011 for (insn_count = 0;
4012 !sc_found && insn_count < atomic_sequence_length;
4013 ++insn_count)
4014 {
4015 int is_branch = 0;
4016
4017 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4018 loc += MIPS_INSN16_SIZE;
4019
4020 /* Assume that there is at most one conditional branch in the
4021 atomic sequence. If a branch is found, put a breakpoint in
4022 its destination address. */
4023 switch (mips_insn_size (ISA_MICROMIPS, insn))
4024 {
4025 /* 32-bit instructions. */
4026 case 2 * MIPS_INSN16_SIZE:
4027 switch (micromips_op (insn))
4028 {
4029 case 0x10: /* POOL32I: bits 010000 */
4030 if ((b5s5_op (insn) & 0x18) != 0x0
4031 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4032 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4033 && (b5s5_op (insn) & 0x1d) != 0x11
4034 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4035 && ((b5s5_op (insn) & 0x1e) != 0x14
4036 || (insn & 0x3) != 0x0)
4037 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4038 && (b5s5_op (insn) & 0x1e) != 0x1a
4039 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4040 && ((b5s5_op (insn) & 0x1e) != 0x1c
4041 || (insn & 0x3) != 0x0)
4042 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4043 && ((b5s5_op (insn) & 0x1c) != 0x1c
4044 || (insn & 0x3) != 0x1))
4045 /* BC1ANY*: bits 010000 111xx xxx01 */
4046 break;
4047 /* Fall through. */
4048
4049 case 0x25: /* BEQ: bits 100101 */
4050 case 0x2d: /* BNE: bits 101101 */
4051 insn <<= 16;
4052 insn |= mips_fetch_instruction (gdbarch,
4053 ISA_MICROMIPS, loc, NULL);
4054 branch_bp = (loc + MIPS_INSN16_SIZE
4055 + micromips_relative_offset16 (insn));
4056 is_branch = 1;
4057 break;
4058
4059 case 0x00: /* POOL32A: bits 000000 */
4060 insn <<= 16;
4061 insn |= mips_fetch_instruction (gdbarch,
4062 ISA_MICROMIPS, loc, NULL);
4063 if (b0s6_op (insn) != 0x3c
4064 /* POOL32Axf: bits 000000 ... 111100 */
4065 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4066 /* JALR, JALR.HB: 000000 000x111100 111100 */
4067 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4068 break;
4069 /* Fall through. */
4070
4071 case 0x1d: /* JALS: bits 011101 */
4072 case 0x35: /* J: bits 110101 */
4073 case 0x3d: /* JAL: bits 111101 */
4074 case 0x3c: /* JALX: bits 111100 */
4075 return 0; /* Fall back to the standard single-step code. */
4076
4077 case 0x18: /* POOL32C: bits 011000 */
4078 if ((b12s4_op (insn) & 0xb) == 0xb)
4079 /* SC, SCD: bits 011000 1x11 */
4080 sc_found = 1;
4081 break;
4082 }
4083 loc += MIPS_INSN16_SIZE;
4084 break;
4085
4086 /* 16-bit instructions. */
4087 case MIPS_INSN16_SIZE:
4088 switch (micromips_op (insn))
4089 {
4090 case 0x23: /* BEQZ16: bits 100011 */
4091 case 0x2b: /* BNEZ16: bits 101011 */
4092 branch_bp = loc + micromips_relative_offset7 (insn);
4093 is_branch = 1;
4094 break;
4095
4096 case 0x11: /* POOL16C: bits 010001 */
4097 if ((b5s5_op (insn) & 0x1c) != 0xc
4098 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4099 && b5s5_op (insn) != 0x18)
4100 /* JRADDIUSP: bits 010001 11000 */
4101 break;
4102 return 0; /* Fall back to the standard single-step code. */
4103
4104 case 0x33: /* B16: bits 110011 */
4105 return 0; /* Fall back to the standard single-step code. */
4106 }
4107 break;
4108 }
4109 if (is_branch)
4110 {
4111 if (last_breakpoint >= 1)
4112 return 0; /* More than one branch found, fallback to the
4113 standard single-step code. */
4114 breaks[1] = branch_bp;
4115 last_breakpoint++;
4116 }
4117 }
4118 if (!sc_found)
4119 return 0;
4120
4121 /* Insert a breakpoint right after the end of the atomic sequence. */
4122 breaks[0] = loc;
4123
4124 /* Check for duplicated breakpoints. Check also for a breakpoint
4125 placed (branch instruction's destination) in the atomic sequence */
4126 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4127 last_breakpoint = 0;
4128
4129 /* Effectively inserts the breakpoints. */
4130 for (index = 0; index <= last_breakpoint; index++)
4131 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
4132
4133 return 1;
4134 }
4135
4136 static int
4137 deal_with_atomic_sequence (struct gdbarch *gdbarch,
4138 struct address_space *aspace, CORE_ADDR pc)
4139 {
4140 if (mips_pc_is_mips (pc))
4141 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4142 else if (mips_pc_is_micromips (gdbarch, pc))
4143 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4144 else
4145 return 0;
4146 }
4147
4148 /* mips_software_single_step() is called just before we want to resume
4149 the inferior, if we want to single-step it but there is no hardware
4150 or kernel single-step support (MIPS on GNU/Linux for example). We find
4151 the target of the coming instruction and breakpoint it. */
4152
4153 int
4154 mips_software_single_step (struct frame_info *frame)
4155 {
4156 struct gdbarch *gdbarch = get_frame_arch (frame);
4157 struct address_space *aspace = get_frame_address_space (frame);
4158 CORE_ADDR pc, next_pc;
4159
4160 pc = get_frame_pc (frame);
4161 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
4162 return 1;
4163
4164 next_pc = mips_next_pc (frame, pc);
4165
4166 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
4167 return 1;
4168 }
4169
4170 /* Test whether the PC points to the return instruction at the
4171 end of a function. */
4172
4173 static int
4174 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4175 {
4176 ULONGEST insn;
4177 ULONGEST hint;
4178
4179 /* This used to check for MIPS16, but this piece of code is never
4180 called for MIPS16 functions. And likewise microMIPS ones. */
4181 gdb_assert (mips_pc_is_mips (pc));
4182
4183 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4184 hint = 0x7c0;
4185 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4186 }
4187
4188
4189 /* This fencepost looks highly suspicious to me. Removing it also
4190 seems suspicious as it could affect remote debugging across serial
4191 lines. */
4192
4193 static CORE_ADDR
4194 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4195 {
4196 CORE_ADDR start_pc;
4197 CORE_ADDR fence;
4198 int instlen;
4199 int seen_adjsp = 0;
4200 struct inferior *inf;
4201
4202 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4203 start_pc = pc;
4204 fence = start_pc - heuristic_fence_post;
4205 if (start_pc == 0)
4206 return 0;
4207
4208 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4209 fence = VM_MIN_ADDRESS;
4210
4211 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4212
4213 inf = current_inferior ();
4214
4215 /* Search back for previous return. */
4216 for (start_pc -= instlen;; start_pc -= instlen)
4217 if (start_pc < fence)
4218 {
4219 /* It's not clear to me why we reach this point when
4220 stop_soon, but with this test, at least we
4221 don't print out warnings for every child forked (eg, on
4222 decstation). 22apr93 rich@cygnus.com. */
4223 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4224 {
4225 static int blurb_printed = 0;
4226
4227 warning (_("GDB can't find the start of the function at %s."),
4228 paddress (gdbarch, pc));
4229
4230 if (!blurb_printed)
4231 {
4232 /* This actually happens frequently in embedded
4233 development, when you first connect to a board
4234 and your stack pointer and pc are nowhere in
4235 particular. This message needs to give people
4236 in that situation enough information to
4237 determine that it's no big deal. */
4238 printf_filtered ("\n\
4239 GDB is unable to find the start of the function at %s\n\
4240 and thus can't determine the size of that function's stack frame.\n\
4241 This means that GDB may be unable to access that stack frame, or\n\
4242 the frames below it.\n\
4243 This problem is most likely caused by an invalid program counter or\n\
4244 stack pointer.\n\
4245 However, if you think GDB should simply search farther back\n\
4246 from %s for code which looks like the beginning of a\n\
4247 function, you can increase the range of the search using the `set\n\
4248 heuristic-fence-post' command.\n",
4249 paddress (gdbarch, pc), paddress (gdbarch, pc));
4250 blurb_printed = 1;
4251 }
4252 }
4253
4254 return 0;
4255 }
4256 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4257 {
4258 unsigned short inst;
4259
4260 /* On MIPS16, any one of the following is likely to be the
4261 start of a function:
4262 extend save
4263 save
4264 entry
4265 addiu sp,-n
4266 daddiu sp,-n
4267 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4268 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4269 if ((inst & 0xff80) == 0x6480) /* save */
4270 {
4271 if (start_pc - instlen >= fence)
4272 {
4273 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4274 start_pc - instlen, NULL);
4275 if ((inst & 0xf800) == 0xf000) /* extend */
4276 start_pc -= instlen;
4277 }
4278 break;
4279 }
4280 else if (((inst & 0xf81f) == 0xe809
4281 && (inst & 0x700) != 0x700) /* entry */
4282 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4283 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4284 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4285 break;
4286 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4287 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4288 seen_adjsp = 1;
4289 else
4290 seen_adjsp = 0;
4291 }
4292 else if (mips_pc_is_micromips (gdbarch, start_pc))
4293 {
4294 ULONGEST insn;
4295 int stop = 0;
4296 long offset;
4297 int dreg;
4298 int sreg;
4299
4300 /* On microMIPS, any one of the following is likely to be the
4301 start of a function:
4302 ADDIUSP -imm
4303 (D)ADDIU $sp, -imm
4304 LUI $gp, imm */
4305 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4306 switch (micromips_op (insn))
4307 {
4308 case 0xc: /* ADDIU: bits 001100 */
4309 case 0x17: /* DADDIU: bits 010111 */
4310 sreg = b0s5_reg (insn);
4311 dreg = b5s5_reg (insn);
4312 insn <<= 16;
4313 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4314 pc + MIPS_INSN16_SIZE, NULL);
4315 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4316 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4317 /* (D)ADDIU $sp, imm */
4318 && offset < 0)
4319 stop = 1;
4320 break;
4321
4322 case 0x10: /* POOL32I: bits 010000 */
4323 if (b5s5_op (insn) == 0xd
4324 /* LUI: bits 010000 001101 */
4325 && b0s5_reg (insn >> 16) == 28)
4326 /* LUI $gp, imm */
4327 stop = 1;
4328 break;
4329
4330 case 0x13: /* POOL16D: bits 010011 */
4331 if ((insn & 0x1) == 0x1)
4332 /* ADDIUSP: bits 010011 1 */
4333 {
4334 offset = micromips_decode_imm9 (b1s9_imm (insn));
4335 if (offset < 0)
4336 /* ADDIUSP -imm */
4337 stop = 1;
4338 }
4339 else
4340 /* ADDIUS5: bits 010011 0 */
4341 {
4342 dreg = b5s5_reg (insn);
4343 offset = (b1s4_imm (insn) ^ 8) - 8;
4344 if (dreg == MIPS_SP_REGNUM && offset < 0)
4345 /* ADDIUS5 $sp, -imm */
4346 stop = 1;
4347 }
4348 break;
4349 }
4350 if (stop)
4351 break;
4352 }
4353 else if (mips_about_to_return (gdbarch, start_pc))
4354 {
4355 /* Skip return and its delay slot. */
4356 start_pc += 2 * MIPS_INSN32_SIZE;
4357 break;
4358 }
4359
4360 return start_pc;
4361 }
4362
4363 struct mips_objfile_private
4364 {
4365 bfd_size_type size;
4366 char *contents;
4367 };
4368
4369 /* According to the current ABI, should the type be passed in a
4370 floating-point register (assuming that there is space)? When there
4371 is no FPU, FP are not even considered as possible candidates for
4372 FP registers and, consequently this returns false - forces FP
4373 arguments into integer registers. */
4374
4375 static int
4376 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4377 struct type *arg_type)
4378 {
4379 return ((typecode == TYPE_CODE_FLT
4380 || (MIPS_EABI (gdbarch)
4381 && (typecode == TYPE_CODE_STRUCT
4382 || typecode == TYPE_CODE_UNION)
4383 && TYPE_NFIELDS (arg_type) == 1
4384 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4385 == TYPE_CODE_FLT))
4386 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4387 }
4388
4389 /* On o32, argument passing in GPRs depends on the alignment of the type being
4390 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4391
4392 static int
4393 mips_type_needs_double_align (struct type *type)
4394 {
4395 enum type_code typecode = TYPE_CODE (type);
4396
4397 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4398 return 1;
4399 else if (typecode == TYPE_CODE_STRUCT)
4400 {
4401 if (TYPE_NFIELDS (type) < 1)
4402 return 0;
4403 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4404 }
4405 else if (typecode == TYPE_CODE_UNION)
4406 {
4407 int i, n;
4408
4409 n = TYPE_NFIELDS (type);
4410 for (i = 0; i < n; i++)
4411 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4412 return 1;
4413 return 0;
4414 }
4415 return 0;
4416 }
4417
4418 /* Adjust the address downward (direction of stack growth) so that it
4419 is correctly aligned for a new stack frame. */
4420 static CORE_ADDR
4421 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4422 {
4423 return align_down (addr, 16);
4424 }
4425
4426 /* Implement the "push_dummy_code" gdbarch method. */
4427
4428 static CORE_ADDR
4429 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4430 CORE_ADDR funaddr, struct value **args,
4431 int nargs, struct type *value_type,
4432 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4433 struct regcache *regcache)
4434 {
4435 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4436 CORE_ADDR nop_addr;
4437 CORE_ADDR bp_slot;
4438
4439 /* Reserve enough room on the stack for our breakpoint instruction. */
4440 bp_slot = sp - sizeof (nop_insn);
4441
4442 /* Return to microMIPS mode if calling microMIPS code to avoid
4443 triggering an address error exception on processors that only
4444 support microMIPS execution. */
4445 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4446 ? make_compact_addr (bp_slot) : bp_slot);
4447
4448 /* The breakpoint layer automatically adjusts the address of
4449 breakpoints inserted in a branch delay slot. With enough
4450 bad luck, the 4 bytes located just before our breakpoint
4451 instruction could look like a branch instruction, and thus
4452 trigger the adjustement, and break the function call entirely.
4453 So, we reserve those 4 bytes and write a nop instruction
4454 to prevent that from happening. */
4455 nop_addr = bp_slot - sizeof (nop_insn);
4456 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4457 sp = mips_frame_align (gdbarch, nop_addr);
4458
4459 /* Inferior resumes at the function entry point. */
4460 *real_pc = funaddr;
4461
4462 return sp;
4463 }
4464
4465 static CORE_ADDR
4466 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4467 struct regcache *regcache, CORE_ADDR bp_addr,
4468 int nargs, struct value **args, CORE_ADDR sp,
4469 int struct_return, CORE_ADDR struct_addr)
4470 {
4471 int argreg;
4472 int float_argreg;
4473 int argnum;
4474 int len = 0;
4475 int stack_offset = 0;
4476 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4477 CORE_ADDR func_addr = find_function_addr (function, NULL);
4478 int regsize = mips_abi_regsize (gdbarch);
4479
4480 /* For shared libraries, "t9" needs to point at the function
4481 address. */
4482 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4483
4484 /* Set the return address register to point to the entry point of
4485 the program, where a breakpoint lies in wait. */
4486 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4487
4488 /* First ensure that the stack and structure return address (if any)
4489 are properly aligned. The stack has to be at least 64-bit
4490 aligned even on 32-bit machines, because doubles must be 64-bit
4491 aligned. For n32 and n64, stack frames need to be 128-bit
4492 aligned, so we round to this widest known alignment. */
4493
4494 sp = align_down (sp, 16);
4495 struct_addr = align_down (struct_addr, 16);
4496
4497 /* Now make space on the stack for the args. We allocate more
4498 than necessary for EABI, because the first few arguments are
4499 passed in registers, but that's OK. */
4500 for (argnum = 0; argnum < nargs; argnum++)
4501 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4502 sp -= align_up (len, 16);
4503
4504 if (mips_debug)
4505 fprintf_unfiltered (gdb_stdlog,
4506 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4507 paddress (gdbarch, sp), (long) align_up (len, 16));
4508
4509 /* Initialize the integer and float register pointers. */
4510 argreg = MIPS_A0_REGNUM;
4511 float_argreg = mips_fpa0_regnum (gdbarch);
4512
4513 /* The struct_return pointer occupies the first parameter-passing reg. */
4514 if (struct_return)
4515 {
4516 if (mips_debug)
4517 fprintf_unfiltered (gdb_stdlog,
4518 "mips_eabi_push_dummy_call: "
4519 "struct_return reg=%d %s\n",
4520 argreg, paddress (gdbarch, struct_addr));
4521 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4522 }
4523
4524 /* Now load as many as possible of the first arguments into
4525 registers, and push the rest onto the stack. Loop thru args
4526 from first to last. */
4527 for (argnum = 0; argnum < nargs; argnum++)
4528 {
4529 const gdb_byte *val;
4530 gdb_byte valbuf[MAX_REGISTER_SIZE];
4531 struct value *arg = args[argnum];
4532 struct type *arg_type = check_typedef (value_type (arg));
4533 int len = TYPE_LENGTH (arg_type);
4534 enum type_code typecode = TYPE_CODE (arg_type);
4535
4536 if (mips_debug)
4537 fprintf_unfiltered (gdb_stdlog,
4538 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4539 argnum + 1, len, (int) typecode);
4540
4541 /* The EABI passes structures that do not fit in a register by
4542 reference. */
4543 if (len > regsize
4544 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4545 {
4546 store_unsigned_integer (valbuf, regsize, byte_order,
4547 value_address (arg));
4548 typecode = TYPE_CODE_PTR;
4549 len = regsize;
4550 val = valbuf;
4551 if (mips_debug)
4552 fprintf_unfiltered (gdb_stdlog, " push");
4553 }
4554 else
4555 val = value_contents (arg);
4556
4557 /* 32-bit ABIs always start floating point arguments in an
4558 even-numbered floating point register. Round the FP register
4559 up before the check to see if there are any FP registers
4560 left. Non MIPS_EABI targets also pass the FP in the integer
4561 registers so also round up normal registers. */
4562 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4563 {
4564 if ((float_argreg & 1))
4565 float_argreg++;
4566 }
4567
4568 /* Floating point arguments passed in registers have to be
4569 treated specially. On 32-bit architectures, doubles
4570 are passed in register pairs; the even register gets
4571 the low word, and the odd register gets the high word.
4572 On non-EABI processors, the first two floating point arguments are
4573 also copied to general registers, because MIPS16 functions
4574 don't use float registers for arguments. This duplication of
4575 arguments in general registers can't hurt non-MIPS16 functions
4576 because those registers are normally skipped. */
4577 /* MIPS_EABI squeezes a struct that contains a single floating
4578 point value into an FP register instead of pushing it onto the
4579 stack. */
4580 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4581 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4582 {
4583 /* EABI32 will pass doubles in consecutive registers, even on
4584 64-bit cores. At one time, we used to check the size of
4585 `float_argreg' to determine whether or not to pass doubles
4586 in consecutive registers, but this is not sufficient for
4587 making the ABI determination. */
4588 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4589 {
4590 int low_offset = gdbarch_byte_order (gdbarch)
4591 == BFD_ENDIAN_BIG ? 4 : 0;
4592 long regval;
4593
4594 /* Write the low word of the double to the even register(s). */
4595 regval = extract_signed_integer (val + low_offset,
4596 4, byte_order);
4597 if (mips_debug)
4598 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4599 float_argreg, phex (regval, 4));
4600 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4601
4602 /* Write the high word of the double to the odd register(s). */
4603 regval = extract_signed_integer (val + 4 - low_offset,
4604 4, byte_order);
4605 if (mips_debug)
4606 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4607 float_argreg, phex (regval, 4));
4608 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4609 }
4610 else
4611 {
4612 /* This is a floating point value that fits entirely
4613 in a single register. */
4614 /* On 32 bit ABI's the float_argreg is further adjusted
4615 above to ensure that it is even register aligned. */
4616 LONGEST regval = extract_signed_integer (val, len, byte_order);
4617 if (mips_debug)
4618 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4619 float_argreg, phex (regval, len));
4620 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4621 }
4622 }
4623 else
4624 {
4625 /* Copy the argument to general registers or the stack in
4626 register-sized pieces. Large arguments are split between
4627 registers and stack. */
4628 /* Note: structs whose size is not a multiple of regsize
4629 are treated specially: Irix cc passes
4630 them in registers where gcc sometimes puts them on the
4631 stack. For maximum compatibility, we will put them in
4632 both places. */
4633 int odd_sized_struct = (len > regsize && len % regsize != 0);
4634
4635 /* Note: Floating-point values that didn't fit into an FP
4636 register are only written to memory. */
4637 while (len > 0)
4638 {
4639 /* Remember if the argument was written to the stack. */
4640 int stack_used_p = 0;
4641 int partial_len = (len < regsize ? len : regsize);
4642
4643 if (mips_debug)
4644 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4645 partial_len);
4646
4647 /* Write this portion of the argument to the stack. */
4648 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4649 || odd_sized_struct
4650 || fp_register_arg_p (gdbarch, typecode, arg_type))
4651 {
4652 /* Should shorter than int integer values be
4653 promoted to int before being stored? */
4654 int longword_offset = 0;
4655 CORE_ADDR addr;
4656 stack_used_p = 1;
4657 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4658 {
4659 if (regsize == 8
4660 && (typecode == TYPE_CODE_INT
4661 || typecode == TYPE_CODE_PTR
4662 || typecode == TYPE_CODE_FLT) && len <= 4)
4663 longword_offset = regsize - len;
4664 else if ((typecode == TYPE_CODE_STRUCT
4665 || typecode == TYPE_CODE_UNION)
4666 && TYPE_LENGTH (arg_type) < regsize)
4667 longword_offset = regsize - len;
4668 }
4669
4670 if (mips_debug)
4671 {
4672 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4673 paddress (gdbarch, stack_offset));
4674 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4675 paddress (gdbarch, longword_offset));
4676 }
4677
4678 addr = sp + stack_offset + longword_offset;
4679
4680 if (mips_debug)
4681 {
4682 int i;
4683 fprintf_unfiltered (gdb_stdlog, " @%s ",
4684 paddress (gdbarch, addr));
4685 for (i = 0; i < partial_len; i++)
4686 {
4687 fprintf_unfiltered (gdb_stdlog, "%02x",
4688 val[i] & 0xff);
4689 }
4690 }
4691 write_memory (addr, val, partial_len);
4692 }
4693
4694 /* Note!!! This is NOT an else clause. Odd sized
4695 structs may go thru BOTH paths. Floating point
4696 arguments will not. */
4697 /* Write this portion of the argument to a general
4698 purpose register. */
4699 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4700 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4701 {
4702 LONGEST regval =
4703 extract_signed_integer (val, partial_len, byte_order);
4704
4705 if (mips_debug)
4706 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4707 argreg,
4708 phex (regval, regsize));
4709 regcache_cooked_write_signed (regcache, argreg, regval);
4710 argreg++;
4711 }
4712
4713 len -= partial_len;
4714 val += partial_len;
4715
4716 /* Compute the offset into the stack at which we will
4717 copy the next parameter.
4718
4719 In the new EABI (and the NABI32), the stack_offset
4720 only needs to be adjusted when it has been used. */
4721
4722 if (stack_used_p)
4723 stack_offset += align_up (partial_len, regsize);
4724 }
4725 }
4726 if (mips_debug)
4727 fprintf_unfiltered (gdb_stdlog, "\n");
4728 }
4729
4730 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4731
4732 /* Return adjusted stack pointer. */
4733 return sp;
4734 }
4735
4736 /* Determine the return value convention being used. */
4737
4738 static enum return_value_convention
4739 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4740 struct type *type, struct regcache *regcache,
4741 gdb_byte *readbuf, const gdb_byte *writebuf)
4742 {
4743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4744 int fp_return_type = 0;
4745 int offset, regnum, xfer;
4746
4747 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4748 return RETURN_VALUE_STRUCT_CONVENTION;
4749
4750 /* Floating point type? */
4751 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4752 {
4753 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4754 fp_return_type = 1;
4755 /* Structs with a single field of float type
4756 are returned in a floating point register. */
4757 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4758 || TYPE_CODE (type) == TYPE_CODE_UNION)
4759 && TYPE_NFIELDS (type) == 1)
4760 {
4761 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4762
4763 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4764 fp_return_type = 1;
4765 }
4766 }
4767
4768 if (fp_return_type)
4769 {
4770 /* A floating-point value belongs in the least significant part
4771 of FP0/FP1. */
4772 if (mips_debug)
4773 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4774 regnum = mips_regnum (gdbarch)->fp0;
4775 }
4776 else
4777 {
4778 /* An integer value goes in V0/V1. */
4779 if (mips_debug)
4780 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4781 regnum = MIPS_V0_REGNUM;
4782 }
4783 for (offset = 0;
4784 offset < TYPE_LENGTH (type);
4785 offset += mips_abi_regsize (gdbarch), regnum++)
4786 {
4787 xfer = mips_abi_regsize (gdbarch);
4788 if (offset + xfer > TYPE_LENGTH (type))
4789 xfer = TYPE_LENGTH (type) - offset;
4790 mips_xfer_register (gdbarch, regcache,
4791 gdbarch_num_regs (gdbarch) + regnum, xfer,
4792 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4793 offset);
4794 }
4795
4796 return RETURN_VALUE_REGISTER_CONVENTION;
4797 }
4798
4799
4800 /* N32/N64 ABI stuff. */
4801
4802 /* Search for a naturally aligned double at OFFSET inside a struct
4803 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4804 registers. */
4805
4806 static int
4807 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4808 int offset)
4809 {
4810 int i;
4811
4812 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4813 return 0;
4814
4815 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4816 return 0;
4817
4818 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4819 return 0;
4820
4821 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4822 {
4823 int pos;
4824 struct type *field_type;
4825
4826 /* We're only looking at normal fields. */
4827 if (field_is_static (&TYPE_FIELD (arg_type, i))
4828 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4829 continue;
4830
4831 /* If we have gone past the offset, there is no double to pass. */
4832 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4833 if (pos > offset)
4834 return 0;
4835
4836 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4837
4838 /* If this field is entirely before the requested offset, go
4839 on to the next one. */
4840 if (pos + TYPE_LENGTH (field_type) <= offset)
4841 continue;
4842
4843 /* If this is our special aligned double, we can stop. */
4844 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4845 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4846 return 1;
4847
4848 /* This field starts at or before the requested offset, and
4849 overlaps it. If it is a structure, recurse inwards. */
4850 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4851 }
4852
4853 return 0;
4854 }
4855
4856 static CORE_ADDR
4857 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4858 struct regcache *regcache, CORE_ADDR bp_addr,
4859 int nargs, struct value **args, CORE_ADDR sp,
4860 int struct_return, CORE_ADDR struct_addr)
4861 {
4862 int argreg;
4863 int float_argreg;
4864 int argnum;
4865 int len = 0;
4866 int stack_offset = 0;
4867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4868 CORE_ADDR func_addr = find_function_addr (function, NULL);
4869
4870 /* For shared libraries, "t9" needs to point at the function
4871 address. */
4872 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4873
4874 /* Set the return address register to point to the entry point of
4875 the program, where a breakpoint lies in wait. */
4876 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4877
4878 /* First ensure that the stack and structure return address (if any)
4879 are properly aligned. The stack has to be at least 64-bit
4880 aligned even on 32-bit machines, because doubles must be 64-bit
4881 aligned. For n32 and n64, stack frames need to be 128-bit
4882 aligned, so we round to this widest known alignment. */
4883
4884 sp = align_down (sp, 16);
4885 struct_addr = align_down (struct_addr, 16);
4886
4887 /* Now make space on the stack for the args. */
4888 for (argnum = 0; argnum < nargs; argnum++)
4889 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4890 sp -= align_up (len, 16);
4891
4892 if (mips_debug)
4893 fprintf_unfiltered (gdb_stdlog,
4894 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4895 paddress (gdbarch, sp), (long) align_up (len, 16));
4896
4897 /* Initialize the integer and float register pointers. */
4898 argreg = MIPS_A0_REGNUM;
4899 float_argreg = mips_fpa0_regnum (gdbarch);
4900
4901 /* The struct_return pointer occupies the first parameter-passing reg. */
4902 if (struct_return)
4903 {
4904 if (mips_debug)
4905 fprintf_unfiltered (gdb_stdlog,
4906 "mips_n32n64_push_dummy_call: "
4907 "struct_return reg=%d %s\n",
4908 argreg, paddress (gdbarch, struct_addr));
4909 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4910 }
4911
4912 /* Now load as many as possible of the first arguments into
4913 registers, and push the rest onto the stack. Loop thru args
4914 from first to last. */
4915 for (argnum = 0; argnum < nargs; argnum++)
4916 {
4917 const gdb_byte *val;
4918 struct value *arg = args[argnum];
4919 struct type *arg_type = check_typedef (value_type (arg));
4920 int len = TYPE_LENGTH (arg_type);
4921 enum type_code typecode = TYPE_CODE (arg_type);
4922
4923 if (mips_debug)
4924 fprintf_unfiltered (gdb_stdlog,
4925 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4926 argnum + 1, len, (int) typecode);
4927
4928 val = value_contents (arg);
4929
4930 /* A 128-bit long double value requires an even-odd pair of
4931 floating-point registers. */
4932 if (len == 16
4933 && fp_register_arg_p (gdbarch, typecode, arg_type)
4934 && (float_argreg & 1))
4935 {
4936 float_argreg++;
4937 argreg++;
4938 }
4939
4940 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4941 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4942 {
4943 /* This is a floating point value that fits entirely
4944 in a single register or a pair of registers. */
4945 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4946 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4947 if (mips_debug)
4948 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4949 float_argreg, phex (regval, reglen));
4950 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4951
4952 if (mips_debug)
4953 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4954 argreg, phex (regval, reglen));
4955 regcache_cooked_write_unsigned (regcache, argreg, regval);
4956 float_argreg++;
4957 argreg++;
4958 if (len == 16)
4959 {
4960 regval = extract_unsigned_integer (val + reglen,
4961 reglen, byte_order);
4962 if (mips_debug)
4963 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4964 float_argreg, phex (regval, reglen));
4965 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4966
4967 if (mips_debug)
4968 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4969 argreg, phex (regval, reglen));
4970 regcache_cooked_write_unsigned (regcache, argreg, regval);
4971 float_argreg++;
4972 argreg++;
4973 }
4974 }
4975 else
4976 {
4977 /* Copy the argument to general registers or the stack in
4978 register-sized pieces. Large arguments are split between
4979 registers and stack. */
4980 /* For N32/N64, structs, unions, or other composite types are
4981 treated as a sequence of doublewords, and are passed in integer
4982 or floating point registers as though they were simple scalar
4983 parameters to the extent that they fit, with any excess on the
4984 stack packed according to the normal memory layout of the
4985 object.
4986 The caller does not reserve space for the register arguments;
4987 the callee is responsible for reserving it if required. */
4988 /* Note: Floating-point values that didn't fit into an FP
4989 register are only written to memory. */
4990 while (len > 0)
4991 {
4992 /* Remember if the argument was written to the stack. */
4993 int stack_used_p = 0;
4994 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4995
4996 if (mips_debug)
4997 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4998 partial_len);
4999
5000 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5001 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5002
5003 /* Write this portion of the argument to the stack. */
5004 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5005 {
5006 /* Should shorter than int integer values be
5007 promoted to int before being stored? */
5008 int longword_offset = 0;
5009 CORE_ADDR addr;
5010 stack_used_p = 1;
5011 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5012 {
5013 if ((typecode == TYPE_CODE_INT
5014 || typecode == TYPE_CODE_PTR)
5015 && len <= 4)
5016 longword_offset = MIPS64_REGSIZE - len;
5017 }
5018
5019 if (mips_debug)
5020 {
5021 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5022 paddress (gdbarch, stack_offset));
5023 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5024 paddress (gdbarch, longword_offset));
5025 }
5026
5027 addr = sp + stack_offset + longword_offset;
5028
5029 if (mips_debug)
5030 {
5031 int i;
5032 fprintf_unfiltered (gdb_stdlog, " @%s ",
5033 paddress (gdbarch, addr));
5034 for (i = 0; i < partial_len; i++)
5035 {
5036 fprintf_unfiltered (gdb_stdlog, "%02x",
5037 val[i] & 0xff);
5038 }
5039 }
5040 write_memory (addr, val, partial_len);
5041 }
5042
5043 /* Note!!! This is NOT an else clause. Odd sized
5044 structs may go thru BOTH paths. */
5045 /* Write this portion of the argument to a general
5046 purpose register. */
5047 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5048 {
5049 LONGEST regval;
5050
5051 /* Sign extend pointers, 32-bit integers and signed
5052 16-bit and 8-bit integers; everything else is taken
5053 as is. */
5054
5055 if ((partial_len == 4
5056 && (typecode == TYPE_CODE_PTR
5057 || typecode == TYPE_CODE_INT))
5058 || (partial_len < 4
5059 && typecode == TYPE_CODE_INT
5060 && !TYPE_UNSIGNED (arg_type)))
5061 regval = extract_signed_integer (val, partial_len,
5062 byte_order);
5063 else
5064 regval = extract_unsigned_integer (val, partial_len,
5065 byte_order);
5066
5067 /* A non-floating-point argument being passed in a
5068 general register. If a struct or union, and if
5069 the remaining length is smaller than the register
5070 size, we have to adjust the register value on
5071 big endian targets.
5072
5073 It does not seem to be necessary to do the
5074 same for integral types. */
5075
5076 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5077 && partial_len < MIPS64_REGSIZE
5078 && (typecode == TYPE_CODE_STRUCT
5079 || typecode == TYPE_CODE_UNION))
5080 regval <<= ((MIPS64_REGSIZE - partial_len)
5081 * TARGET_CHAR_BIT);
5082
5083 if (mips_debug)
5084 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5085 argreg,
5086 phex (regval, MIPS64_REGSIZE));
5087 regcache_cooked_write_unsigned (regcache, argreg, regval);
5088
5089 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5090 TYPE_LENGTH (arg_type) - len))
5091 {
5092 if (mips_debug)
5093 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5094 float_argreg,
5095 phex (regval, MIPS64_REGSIZE));
5096 regcache_cooked_write_unsigned (regcache, float_argreg,
5097 regval);
5098 }
5099
5100 float_argreg++;
5101 argreg++;
5102 }
5103
5104 len -= partial_len;
5105 val += partial_len;
5106
5107 /* Compute the offset into the stack at which we will
5108 copy the next parameter.
5109
5110 In N32 (N64?), the stack_offset only needs to be
5111 adjusted when it has been used. */
5112
5113 if (stack_used_p)
5114 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5115 }
5116 }
5117 if (mips_debug)
5118 fprintf_unfiltered (gdb_stdlog, "\n");
5119 }
5120
5121 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5122
5123 /* Return adjusted stack pointer. */
5124 return sp;
5125 }
5126
5127 static enum return_value_convention
5128 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5129 struct type *type, struct regcache *regcache,
5130 gdb_byte *readbuf, const gdb_byte *writebuf)
5131 {
5132 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5133
5134 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5135
5136 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5137 if needed), as appropriate for the type. Composite results (struct,
5138 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5139 following rules:
5140
5141 * A struct with only one or two floating point fields is returned in $f0
5142 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5143 case.
5144
5145 * Any other composite results of at most 128 bits are returned in
5146 $2 (first 64 bits) and $3 (remainder, if necessary).
5147
5148 * Larger composite results are handled by converting the function to a
5149 procedure with an implicit first parameter, which is a pointer to an area
5150 reserved by the caller to receive the result. [The o32-bit ABI requires
5151 that all composite results be handled by conversion to implicit first
5152 parameters. The MIPS/SGI Fortran implementation has always made a
5153 specific exception to return COMPLEX results in the floating point
5154 registers.] */
5155
5156 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5157 return RETURN_VALUE_STRUCT_CONVENTION;
5158 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5159 && TYPE_LENGTH (type) == 16
5160 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5161 {
5162 /* A 128-bit floating-point value fills both $f0 and $f2. The
5163 two registers are used in the same as memory order, so the
5164 eight bytes with the lower memory address are in $f0. */
5165 if (mips_debug)
5166 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5167 mips_xfer_register (gdbarch, regcache,
5168 (gdbarch_num_regs (gdbarch)
5169 + mips_regnum (gdbarch)->fp0),
5170 8, gdbarch_byte_order (gdbarch),
5171 readbuf, writebuf, 0);
5172 mips_xfer_register (gdbarch, regcache,
5173 (gdbarch_num_regs (gdbarch)
5174 + mips_regnum (gdbarch)->fp0 + 2),
5175 8, gdbarch_byte_order (gdbarch),
5176 readbuf ? readbuf + 8 : readbuf,
5177 writebuf ? writebuf + 8 : writebuf, 0);
5178 return RETURN_VALUE_REGISTER_CONVENTION;
5179 }
5180 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5181 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5182 {
5183 /* A single or double floating-point value that fits in FP0. */
5184 if (mips_debug)
5185 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5186 mips_xfer_register (gdbarch, regcache,
5187 (gdbarch_num_regs (gdbarch)
5188 + mips_regnum (gdbarch)->fp0),
5189 TYPE_LENGTH (type),
5190 gdbarch_byte_order (gdbarch),
5191 readbuf, writebuf, 0);
5192 return RETURN_VALUE_REGISTER_CONVENTION;
5193 }
5194 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5195 && TYPE_NFIELDS (type) <= 2
5196 && TYPE_NFIELDS (type) >= 1
5197 && ((TYPE_NFIELDS (type) == 1
5198 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5199 == TYPE_CODE_FLT))
5200 || (TYPE_NFIELDS (type) == 2
5201 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5202 == TYPE_CODE_FLT)
5203 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5204 == TYPE_CODE_FLT))))
5205 {
5206 /* A struct that contains one or two floats. Each value is part
5207 in the least significant part of their floating point
5208 register (or GPR, for soft float). */
5209 int regnum;
5210 int field;
5211 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5212 ? mips_regnum (gdbarch)->fp0
5213 : MIPS_V0_REGNUM);
5214 field < TYPE_NFIELDS (type); field++, regnum += 2)
5215 {
5216 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5217 / TARGET_CHAR_BIT);
5218 if (mips_debug)
5219 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5220 offset);
5221 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5222 {
5223 /* A 16-byte long double field goes in two consecutive
5224 registers. */
5225 mips_xfer_register (gdbarch, regcache,
5226 gdbarch_num_regs (gdbarch) + regnum,
5227 8,
5228 gdbarch_byte_order (gdbarch),
5229 readbuf, writebuf, offset);
5230 mips_xfer_register (gdbarch, regcache,
5231 gdbarch_num_regs (gdbarch) + regnum + 1,
5232 8,
5233 gdbarch_byte_order (gdbarch),
5234 readbuf, writebuf, offset + 8);
5235 }
5236 else
5237 mips_xfer_register (gdbarch, regcache,
5238 gdbarch_num_regs (gdbarch) + regnum,
5239 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5240 gdbarch_byte_order (gdbarch),
5241 readbuf, writebuf, offset);
5242 }
5243 return RETURN_VALUE_REGISTER_CONVENTION;
5244 }
5245 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5246 || TYPE_CODE (type) == TYPE_CODE_UNION
5247 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5248 {
5249 /* A composite type. Extract the left justified value,
5250 regardless of the byte order. I.e. DO NOT USE
5251 mips_xfer_lower. */
5252 int offset;
5253 int regnum;
5254 for (offset = 0, regnum = MIPS_V0_REGNUM;
5255 offset < TYPE_LENGTH (type);
5256 offset += register_size (gdbarch, regnum), regnum++)
5257 {
5258 int xfer = register_size (gdbarch, regnum);
5259 if (offset + xfer > TYPE_LENGTH (type))
5260 xfer = TYPE_LENGTH (type) - offset;
5261 if (mips_debug)
5262 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5263 offset, xfer, regnum);
5264 mips_xfer_register (gdbarch, regcache,
5265 gdbarch_num_regs (gdbarch) + regnum,
5266 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5267 offset);
5268 }
5269 return RETURN_VALUE_REGISTER_CONVENTION;
5270 }
5271 else
5272 {
5273 /* A scalar extract each part but least-significant-byte
5274 justified. */
5275 int offset;
5276 int regnum;
5277 for (offset = 0, regnum = MIPS_V0_REGNUM;
5278 offset < TYPE_LENGTH (type);
5279 offset += register_size (gdbarch, regnum), regnum++)
5280 {
5281 int xfer = register_size (gdbarch, regnum);
5282 if (offset + xfer > TYPE_LENGTH (type))
5283 xfer = TYPE_LENGTH (type) - offset;
5284 if (mips_debug)
5285 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5286 offset, xfer, regnum);
5287 mips_xfer_register (gdbarch, regcache,
5288 gdbarch_num_regs (gdbarch) + regnum,
5289 xfer, gdbarch_byte_order (gdbarch),
5290 readbuf, writebuf, offset);
5291 }
5292 return RETURN_VALUE_REGISTER_CONVENTION;
5293 }
5294 }
5295
5296 /* Which registers to use for passing floating-point values between
5297 function calls, one of floating-point, general and both kinds of
5298 registers. O32 and O64 use different register kinds for standard
5299 MIPS and MIPS16 code; to make the handling of cases where we may
5300 not know what kind of code is being used (e.g. no debug information)
5301 easier we sometimes use both kinds. */
5302
5303 enum mips_fval_reg
5304 {
5305 mips_fval_fpr,
5306 mips_fval_gpr,
5307 mips_fval_both
5308 };
5309
5310 /* O32 ABI stuff. */
5311
5312 static CORE_ADDR
5313 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5314 struct regcache *regcache, CORE_ADDR bp_addr,
5315 int nargs, struct value **args, CORE_ADDR sp,
5316 int struct_return, CORE_ADDR struct_addr)
5317 {
5318 int argreg;
5319 int float_argreg;
5320 int argnum;
5321 int len = 0;
5322 int stack_offset = 0;
5323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5324 CORE_ADDR func_addr = find_function_addr (function, NULL);
5325
5326 /* For shared libraries, "t9" needs to point at the function
5327 address. */
5328 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5329
5330 /* Set the return address register to point to the entry point of
5331 the program, where a breakpoint lies in wait. */
5332 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5333
5334 /* First ensure that the stack and structure return address (if any)
5335 are properly aligned. The stack has to be at least 64-bit
5336 aligned even on 32-bit machines, because doubles must be 64-bit
5337 aligned. For n32 and n64, stack frames need to be 128-bit
5338 aligned, so we round to this widest known alignment. */
5339
5340 sp = align_down (sp, 16);
5341 struct_addr = align_down (struct_addr, 16);
5342
5343 /* Now make space on the stack for the args. */
5344 for (argnum = 0; argnum < nargs; argnum++)
5345 {
5346 struct type *arg_type = check_typedef (value_type (args[argnum]));
5347
5348 /* Align to double-word if necessary. */
5349 if (mips_type_needs_double_align (arg_type))
5350 len = align_up (len, MIPS32_REGSIZE * 2);
5351 /* Allocate space on the stack. */
5352 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5353 }
5354 sp -= align_up (len, 16);
5355
5356 if (mips_debug)
5357 fprintf_unfiltered (gdb_stdlog,
5358 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5359 paddress (gdbarch, sp), (long) align_up (len, 16));
5360
5361 /* Initialize the integer and float register pointers. */
5362 argreg = MIPS_A0_REGNUM;
5363 float_argreg = mips_fpa0_regnum (gdbarch);
5364
5365 /* The struct_return pointer occupies the first parameter-passing reg. */
5366 if (struct_return)
5367 {
5368 if (mips_debug)
5369 fprintf_unfiltered (gdb_stdlog,
5370 "mips_o32_push_dummy_call: "
5371 "struct_return reg=%d %s\n",
5372 argreg, paddress (gdbarch, struct_addr));
5373 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5374 stack_offset += MIPS32_REGSIZE;
5375 }
5376
5377 /* Now load as many as possible of the first arguments into
5378 registers, and push the rest onto the stack. Loop thru args
5379 from first to last. */
5380 for (argnum = 0; argnum < nargs; argnum++)
5381 {
5382 const gdb_byte *val;
5383 struct value *arg = args[argnum];
5384 struct type *arg_type = check_typedef (value_type (arg));
5385 int len = TYPE_LENGTH (arg_type);
5386 enum type_code typecode = TYPE_CODE (arg_type);
5387
5388 if (mips_debug)
5389 fprintf_unfiltered (gdb_stdlog,
5390 "mips_o32_push_dummy_call: %d len=%d type=%d",
5391 argnum + 1, len, (int) typecode);
5392
5393 val = value_contents (arg);
5394
5395 /* 32-bit ABIs always start floating point arguments in an
5396 even-numbered floating point register. Round the FP register
5397 up before the check to see if there are any FP registers
5398 left. O32 targets also pass the FP in the integer registers
5399 so also round up normal registers. */
5400 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5401 {
5402 if ((float_argreg & 1))
5403 float_argreg++;
5404 }
5405
5406 /* Floating point arguments passed in registers have to be
5407 treated specially. On 32-bit architectures, doubles are
5408 passed in register pairs; the even FP register gets the
5409 low word, and the odd FP register gets the high word.
5410 On O32, the first two floating point arguments are also
5411 copied to general registers, following their memory order,
5412 because MIPS16 functions don't use float registers for
5413 arguments. This duplication of arguments in general
5414 registers can't hurt non-MIPS16 functions, because those
5415 registers are normally skipped. */
5416
5417 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5418 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5419 {
5420 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5421 {
5422 int freg_offset = gdbarch_byte_order (gdbarch)
5423 == BFD_ENDIAN_BIG ? 1 : 0;
5424 unsigned long regval;
5425
5426 /* First word. */
5427 regval = extract_unsigned_integer (val, 4, byte_order);
5428 if (mips_debug)
5429 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5430 float_argreg + freg_offset,
5431 phex (regval, 4));
5432 regcache_cooked_write_unsigned (regcache,
5433 float_argreg++ + freg_offset,
5434 regval);
5435 if (mips_debug)
5436 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5437 argreg, phex (regval, 4));
5438 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5439
5440 /* Second word. */
5441 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5442 if (mips_debug)
5443 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5444 float_argreg - freg_offset,
5445 phex (regval, 4));
5446 regcache_cooked_write_unsigned (regcache,
5447 float_argreg++ - freg_offset,
5448 regval);
5449 if (mips_debug)
5450 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5451 argreg, phex (regval, 4));
5452 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5453 }
5454 else
5455 {
5456 /* This is a floating point value that fits entirely
5457 in a single register. */
5458 /* On 32 bit ABI's the float_argreg is further adjusted
5459 above to ensure that it is even register aligned. */
5460 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5461 if (mips_debug)
5462 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5463 float_argreg, phex (regval, len));
5464 regcache_cooked_write_unsigned (regcache,
5465 float_argreg++, regval);
5466 /* Although two FP registers are reserved for each
5467 argument, only one corresponding integer register is
5468 reserved. */
5469 if (mips_debug)
5470 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5471 argreg, phex (regval, len));
5472 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5473 }
5474 /* Reserve space for the FP register. */
5475 stack_offset += align_up (len, MIPS32_REGSIZE);
5476 }
5477 else
5478 {
5479 /* Copy the argument to general registers or the stack in
5480 register-sized pieces. Large arguments are split between
5481 registers and stack. */
5482 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5483 are treated specially: Irix cc passes
5484 them in registers where gcc sometimes puts them on the
5485 stack. For maximum compatibility, we will put them in
5486 both places. */
5487 int odd_sized_struct = (len > MIPS32_REGSIZE
5488 && len % MIPS32_REGSIZE != 0);
5489 /* Structures should be aligned to eight bytes (even arg registers)
5490 on MIPS_ABI_O32, if their first member has double precision. */
5491 if (mips_type_needs_double_align (arg_type))
5492 {
5493 if ((argreg & 1))
5494 {
5495 argreg++;
5496 stack_offset += MIPS32_REGSIZE;
5497 }
5498 }
5499 while (len > 0)
5500 {
5501 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5502
5503 if (mips_debug)
5504 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5505 partial_len);
5506
5507 /* Write this portion of the argument to the stack. */
5508 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5509 || odd_sized_struct)
5510 {
5511 /* Should shorter than int integer values be
5512 promoted to int before being stored? */
5513 int longword_offset = 0;
5514 CORE_ADDR addr;
5515
5516 if (mips_debug)
5517 {
5518 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5519 paddress (gdbarch, stack_offset));
5520 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5521 paddress (gdbarch, longword_offset));
5522 }
5523
5524 addr = sp + stack_offset + longword_offset;
5525
5526 if (mips_debug)
5527 {
5528 int i;
5529 fprintf_unfiltered (gdb_stdlog, " @%s ",
5530 paddress (gdbarch, addr));
5531 for (i = 0; i < partial_len; i++)
5532 {
5533 fprintf_unfiltered (gdb_stdlog, "%02x",
5534 val[i] & 0xff);
5535 }
5536 }
5537 write_memory (addr, val, partial_len);
5538 }
5539
5540 /* Note!!! This is NOT an else clause. Odd sized
5541 structs may go thru BOTH paths. */
5542 /* Write this portion of the argument to a general
5543 purpose register. */
5544 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5545 {
5546 LONGEST regval = extract_signed_integer (val, partial_len,
5547 byte_order);
5548 /* Value may need to be sign extended, because
5549 mips_isa_regsize() != mips_abi_regsize(). */
5550
5551 /* A non-floating-point argument being passed in a
5552 general register. If a struct or union, and if
5553 the remaining length is smaller than the register
5554 size, we have to adjust the register value on
5555 big endian targets.
5556
5557 It does not seem to be necessary to do the
5558 same for integral types.
5559
5560 Also don't do this adjustment on O64 binaries.
5561
5562 cagney/2001-07-23: gdb/179: Also, GCC, when
5563 outputting LE O32 with sizeof (struct) <
5564 mips_abi_regsize(), generates a left shift
5565 as part of storing the argument in a register
5566 (the left shift isn't generated when
5567 sizeof (struct) >= mips_abi_regsize()). Since
5568 it is quite possible that this is GCC
5569 contradicting the LE/O32 ABI, GDB has not been
5570 adjusted to accommodate this. Either someone
5571 needs to demonstrate that the LE/O32 ABI
5572 specifies such a left shift OR this new ABI gets
5573 identified as such and GDB gets tweaked
5574 accordingly. */
5575
5576 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5577 && partial_len < MIPS32_REGSIZE
5578 && (typecode == TYPE_CODE_STRUCT
5579 || typecode == TYPE_CODE_UNION))
5580 regval <<= ((MIPS32_REGSIZE - partial_len)
5581 * TARGET_CHAR_BIT);
5582
5583 if (mips_debug)
5584 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5585 argreg,
5586 phex (regval, MIPS32_REGSIZE));
5587 regcache_cooked_write_unsigned (regcache, argreg, regval);
5588 argreg++;
5589
5590 /* Prevent subsequent floating point arguments from
5591 being passed in floating point registers. */
5592 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5593 }
5594
5595 len -= partial_len;
5596 val += partial_len;
5597
5598 /* Compute the offset into the stack at which we will
5599 copy the next parameter.
5600
5601 In older ABIs, the caller reserved space for
5602 registers that contained arguments. This was loosely
5603 refered to as their "home". Consequently, space is
5604 always allocated. */
5605
5606 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5607 }
5608 }
5609 if (mips_debug)
5610 fprintf_unfiltered (gdb_stdlog, "\n");
5611 }
5612
5613 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5614
5615 /* Return adjusted stack pointer. */
5616 return sp;
5617 }
5618
5619 static enum return_value_convention
5620 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5621 struct type *type, struct regcache *regcache,
5622 gdb_byte *readbuf, const gdb_byte *writebuf)
5623 {
5624 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5625 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5626 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5627 enum mips_fval_reg fval_reg;
5628
5629 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5630 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5631 || TYPE_CODE (type) == TYPE_CODE_UNION
5632 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5633 return RETURN_VALUE_STRUCT_CONVENTION;
5634 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5635 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5636 {
5637 /* A single-precision floating-point value. If reading in or copying,
5638 then we get it from/put it to FP0 for standard MIPS code or GPR2
5639 for MIPS16 code. If writing out only, then we put it to both FP0
5640 and GPR2. We do not support reading in with no function known, if
5641 this safety check ever triggers, then we'll have to try harder. */
5642 gdb_assert (function || !readbuf);
5643 if (mips_debug)
5644 switch (fval_reg)
5645 {
5646 case mips_fval_fpr:
5647 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5648 break;
5649 case mips_fval_gpr:
5650 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5651 break;
5652 case mips_fval_both:
5653 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5654 break;
5655 }
5656 if (fval_reg != mips_fval_gpr)
5657 mips_xfer_register (gdbarch, regcache,
5658 (gdbarch_num_regs (gdbarch)
5659 + mips_regnum (gdbarch)->fp0),
5660 TYPE_LENGTH (type),
5661 gdbarch_byte_order (gdbarch),
5662 readbuf, writebuf, 0);
5663 if (fval_reg != mips_fval_fpr)
5664 mips_xfer_register (gdbarch, regcache,
5665 gdbarch_num_regs (gdbarch) + 2,
5666 TYPE_LENGTH (type),
5667 gdbarch_byte_order (gdbarch),
5668 readbuf, writebuf, 0);
5669 return RETURN_VALUE_REGISTER_CONVENTION;
5670 }
5671 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5672 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5673 {
5674 /* A double-precision floating-point value. If reading in or copying,
5675 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5676 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5677 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5678 no function known, if this safety check ever triggers, then we'll
5679 have to try harder. */
5680 gdb_assert (function || !readbuf);
5681 if (mips_debug)
5682 switch (fval_reg)
5683 {
5684 case mips_fval_fpr:
5685 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5686 break;
5687 case mips_fval_gpr:
5688 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5689 break;
5690 case mips_fval_both:
5691 fprintf_unfiltered (gdb_stderr,
5692 "Return float in $fp1/$fp0 and $2/$3\n");
5693 break;
5694 }
5695 if (fval_reg != mips_fval_gpr)
5696 {
5697 /* The most significant part goes in FP1, and the least significant
5698 in FP0. */
5699 switch (gdbarch_byte_order (gdbarch))
5700 {
5701 case BFD_ENDIAN_LITTLE:
5702 mips_xfer_register (gdbarch, regcache,
5703 (gdbarch_num_regs (gdbarch)
5704 + mips_regnum (gdbarch)->fp0 + 0),
5705 4, gdbarch_byte_order (gdbarch),
5706 readbuf, writebuf, 0);
5707 mips_xfer_register (gdbarch, regcache,
5708 (gdbarch_num_regs (gdbarch)
5709 + mips_regnum (gdbarch)->fp0 + 1),
5710 4, gdbarch_byte_order (gdbarch),
5711 readbuf, writebuf, 4);
5712 break;
5713 case BFD_ENDIAN_BIG:
5714 mips_xfer_register (gdbarch, regcache,
5715 (gdbarch_num_regs (gdbarch)
5716 + mips_regnum (gdbarch)->fp0 + 1),
5717 4, gdbarch_byte_order (gdbarch),
5718 readbuf, writebuf, 0);
5719 mips_xfer_register (gdbarch, regcache,
5720 (gdbarch_num_regs (gdbarch)
5721 + mips_regnum (gdbarch)->fp0 + 0),
5722 4, gdbarch_byte_order (gdbarch),
5723 readbuf, writebuf, 4);
5724 break;
5725 default:
5726 internal_error (__FILE__, __LINE__, _("bad switch"));
5727 }
5728 }
5729 if (fval_reg != mips_fval_fpr)
5730 {
5731 /* The two 32-bit parts are always placed in GPR2 and GPR3
5732 following these registers' memory order. */
5733 mips_xfer_register (gdbarch, regcache,
5734 gdbarch_num_regs (gdbarch) + 2,
5735 4, gdbarch_byte_order (gdbarch),
5736 readbuf, writebuf, 0);
5737 mips_xfer_register (gdbarch, regcache,
5738 gdbarch_num_regs (gdbarch) + 3,
5739 4, gdbarch_byte_order (gdbarch),
5740 readbuf, writebuf, 4);
5741 }
5742 return RETURN_VALUE_REGISTER_CONVENTION;
5743 }
5744 #if 0
5745 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5746 && TYPE_NFIELDS (type) <= 2
5747 && TYPE_NFIELDS (type) >= 1
5748 && ((TYPE_NFIELDS (type) == 1
5749 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5750 == TYPE_CODE_FLT))
5751 || (TYPE_NFIELDS (type) == 2
5752 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5753 == TYPE_CODE_FLT)
5754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5755 == TYPE_CODE_FLT)))
5756 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5757 {
5758 /* A struct that contains one or two floats. Each value is part
5759 in the least significant part of their floating point
5760 register.. */
5761 gdb_byte reg[MAX_REGISTER_SIZE];
5762 int regnum;
5763 int field;
5764 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5765 field < TYPE_NFIELDS (type); field++, regnum += 2)
5766 {
5767 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5768 / TARGET_CHAR_BIT);
5769 if (mips_debug)
5770 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5771 offset);
5772 mips_xfer_register (gdbarch, regcache,
5773 gdbarch_num_regs (gdbarch) + regnum,
5774 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5775 gdbarch_byte_order (gdbarch),
5776 readbuf, writebuf, offset);
5777 }
5778 return RETURN_VALUE_REGISTER_CONVENTION;
5779 }
5780 #endif
5781 #if 0
5782 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5783 || TYPE_CODE (type) == TYPE_CODE_UNION)
5784 {
5785 /* A structure or union. Extract the left justified value,
5786 regardless of the byte order. I.e. DO NOT USE
5787 mips_xfer_lower. */
5788 int offset;
5789 int regnum;
5790 for (offset = 0, regnum = MIPS_V0_REGNUM;
5791 offset < TYPE_LENGTH (type);
5792 offset += register_size (gdbarch, regnum), regnum++)
5793 {
5794 int xfer = register_size (gdbarch, regnum);
5795 if (offset + xfer > TYPE_LENGTH (type))
5796 xfer = TYPE_LENGTH (type) - offset;
5797 if (mips_debug)
5798 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5799 offset, xfer, regnum);
5800 mips_xfer_register (gdbarch, regcache,
5801 gdbarch_num_regs (gdbarch) + regnum, xfer,
5802 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5803 }
5804 return RETURN_VALUE_REGISTER_CONVENTION;
5805 }
5806 #endif
5807 else
5808 {
5809 /* A scalar extract each part but least-significant-byte
5810 justified. o32 thinks registers are 4 byte, regardless of
5811 the ISA. */
5812 int offset;
5813 int regnum;
5814 for (offset = 0, regnum = MIPS_V0_REGNUM;
5815 offset < TYPE_LENGTH (type);
5816 offset += MIPS32_REGSIZE, regnum++)
5817 {
5818 int xfer = MIPS32_REGSIZE;
5819 if (offset + xfer > TYPE_LENGTH (type))
5820 xfer = TYPE_LENGTH (type) - offset;
5821 if (mips_debug)
5822 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5823 offset, xfer, regnum);
5824 mips_xfer_register (gdbarch, regcache,
5825 gdbarch_num_regs (gdbarch) + regnum, xfer,
5826 gdbarch_byte_order (gdbarch),
5827 readbuf, writebuf, offset);
5828 }
5829 return RETURN_VALUE_REGISTER_CONVENTION;
5830 }
5831 }
5832
5833 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5834 ABI. */
5835
5836 static CORE_ADDR
5837 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5838 struct regcache *regcache, CORE_ADDR bp_addr,
5839 int nargs,
5840 struct value **args, CORE_ADDR sp,
5841 int struct_return, CORE_ADDR struct_addr)
5842 {
5843 int argreg;
5844 int float_argreg;
5845 int argnum;
5846 int len = 0;
5847 int stack_offset = 0;
5848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5849 CORE_ADDR func_addr = find_function_addr (function, NULL);
5850
5851 /* For shared libraries, "t9" needs to point at the function
5852 address. */
5853 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5854
5855 /* Set the return address register to point to the entry point of
5856 the program, where a breakpoint lies in wait. */
5857 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5858
5859 /* First ensure that the stack and structure return address (if any)
5860 are properly aligned. The stack has to be at least 64-bit
5861 aligned even on 32-bit machines, because doubles must be 64-bit
5862 aligned. For n32 and n64, stack frames need to be 128-bit
5863 aligned, so we round to this widest known alignment. */
5864
5865 sp = align_down (sp, 16);
5866 struct_addr = align_down (struct_addr, 16);
5867
5868 /* Now make space on the stack for the args. */
5869 for (argnum = 0; argnum < nargs; argnum++)
5870 {
5871 struct type *arg_type = check_typedef (value_type (args[argnum]));
5872
5873 /* Allocate space on the stack. */
5874 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5875 }
5876 sp -= align_up (len, 16);
5877
5878 if (mips_debug)
5879 fprintf_unfiltered (gdb_stdlog,
5880 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5881 paddress (gdbarch, sp), (long) align_up (len, 16));
5882
5883 /* Initialize the integer and float register pointers. */
5884 argreg = MIPS_A0_REGNUM;
5885 float_argreg = mips_fpa0_regnum (gdbarch);
5886
5887 /* The struct_return pointer occupies the first parameter-passing reg. */
5888 if (struct_return)
5889 {
5890 if (mips_debug)
5891 fprintf_unfiltered (gdb_stdlog,
5892 "mips_o64_push_dummy_call: "
5893 "struct_return reg=%d %s\n",
5894 argreg, paddress (gdbarch, struct_addr));
5895 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5896 stack_offset += MIPS64_REGSIZE;
5897 }
5898
5899 /* Now load as many as possible of the first arguments into
5900 registers, and push the rest onto the stack. Loop thru args
5901 from first to last. */
5902 for (argnum = 0; argnum < nargs; argnum++)
5903 {
5904 const gdb_byte *val;
5905 struct value *arg = args[argnum];
5906 struct type *arg_type = check_typedef (value_type (arg));
5907 int len = TYPE_LENGTH (arg_type);
5908 enum type_code typecode = TYPE_CODE (arg_type);
5909
5910 if (mips_debug)
5911 fprintf_unfiltered (gdb_stdlog,
5912 "mips_o64_push_dummy_call: %d len=%d type=%d",
5913 argnum + 1, len, (int) typecode);
5914
5915 val = value_contents (arg);
5916
5917 /* Floating point arguments passed in registers have to be
5918 treated specially. On 32-bit architectures, doubles are
5919 passed in register pairs; the even FP register gets the
5920 low word, and the odd FP register gets the high word.
5921 On O64, the first two floating point arguments are also
5922 copied to general registers, because MIPS16 functions
5923 don't use float registers for arguments. This duplication
5924 of arguments in general registers can't hurt non-MIPS16
5925 functions because those registers are normally skipped. */
5926
5927 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5928 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5929 {
5930 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5931 if (mips_debug)
5932 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5933 float_argreg, phex (regval, len));
5934 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5935 if (mips_debug)
5936 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5937 argreg, phex (regval, len));
5938 regcache_cooked_write_unsigned (regcache, argreg, regval);
5939 argreg++;
5940 /* Reserve space for the FP register. */
5941 stack_offset += align_up (len, MIPS64_REGSIZE);
5942 }
5943 else
5944 {
5945 /* Copy the argument to general registers or the stack in
5946 register-sized pieces. Large arguments are split between
5947 registers and stack. */
5948 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5949 are treated specially: Irix cc passes them in registers
5950 where gcc sometimes puts them on the stack. For maximum
5951 compatibility, we will put them in both places. */
5952 int odd_sized_struct = (len > MIPS64_REGSIZE
5953 && len % MIPS64_REGSIZE != 0);
5954 while (len > 0)
5955 {
5956 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5957
5958 if (mips_debug)
5959 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5960 partial_len);
5961
5962 /* Write this portion of the argument to the stack. */
5963 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5964 || odd_sized_struct)
5965 {
5966 /* Should shorter than int integer values be
5967 promoted to int before being stored? */
5968 int longword_offset = 0;
5969 CORE_ADDR addr;
5970 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5971 {
5972 if ((typecode == TYPE_CODE_INT
5973 || typecode == TYPE_CODE_PTR
5974 || typecode == TYPE_CODE_FLT)
5975 && len <= 4)
5976 longword_offset = MIPS64_REGSIZE - len;
5977 }
5978
5979 if (mips_debug)
5980 {
5981 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5982 paddress (gdbarch, stack_offset));
5983 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5984 paddress (gdbarch, longword_offset));
5985 }
5986
5987 addr = sp + stack_offset + longword_offset;
5988
5989 if (mips_debug)
5990 {
5991 int i;
5992 fprintf_unfiltered (gdb_stdlog, " @%s ",
5993 paddress (gdbarch, addr));
5994 for (i = 0; i < partial_len; i++)
5995 {
5996 fprintf_unfiltered (gdb_stdlog, "%02x",
5997 val[i] & 0xff);
5998 }
5999 }
6000 write_memory (addr, val, partial_len);
6001 }
6002
6003 /* Note!!! This is NOT an else clause. Odd sized
6004 structs may go thru BOTH paths. */
6005 /* Write this portion of the argument to a general
6006 purpose register. */
6007 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6008 {
6009 LONGEST regval = extract_signed_integer (val, partial_len,
6010 byte_order);
6011 /* Value may need to be sign extended, because
6012 mips_isa_regsize() != mips_abi_regsize(). */
6013
6014 /* A non-floating-point argument being passed in a
6015 general register. If a struct or union, and if
6016 the remaining length is smaller than the register
6017 size, we have to adjust the register value on
6018 big endian targets.
6019
6020 It does not seem to be necessary to do the
6021 same for integral types. */
6022
6023 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6024 && partial_len < MIPS64_REGSIZE
6025 && (typecode == TYPE_CODE_STRUCT
6026 || typecode == TYPE_CODE_UNION))
6027 regval <<= ((MIPS64_REGSIZE - partial_len)
6028 * TARGET_CHAR_BIT);
6029
6030 if (mips_debug)
6031 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6032 argreg,
6033 phex (regval, MIPS64_REGSIZE));
6034 regcache_cooked_write_unsigned (regcache, argreg, regval);
6035 argreg++;
6036
6037 /* Prevent subsequent floating point arguments from
6038 being passed in floating point registers. */
6039 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6040 }
6041
6042 len -= partial_len;
6043 val += partial_len;
6044
6045 /* Compute the offset into the stack at which we will
6046 copy the next parameter.
6047
6048 In older ABIs, the caller reserved space for
6049 registers that contained arguments. This was loosely
6050 refered to as their "home". Consequently, space is
6051 always allocated. */
6052
6053 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6054 }
6055 }
6056 if (mips_debug)
6057 fprintf_unfiltered (gdb_stdlog, "\n");
6058 }
6059
6060 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6061
6062 /* Return adjusted stack pointer. */
6063 return sp;
6064 }
6065
6066 static enum return_value_convention
6067 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6068 struct type *type, struct regcache *regcache,
6069 gdb_byte *readbuf, const gdb_byte *writebuf)
6070 {
6071 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6072 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6073 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6074 enum mips_fval_reg fval_reg;
6075
6076 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6077 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6078 || TYPE_CODE (type) == TYPE_CODE_UNION
6079 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6080 return RETURN_VALUE_STRUCT_CONVENTION;
6081 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6082 {
6083 /* A floating-point value. If reading in or copying, then we get it
6084 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6085 If writing out only, then we put it to both FP0 and GPR2. We do
6086 not support reading in with no function known, if this safety
6087 check ever triggers, then we'll have to try harder. */
6088 gdb_assert (function || !readbuf);
6089 if (mips_debug)
6090 switch (fval_reg)
6091 {
6092 case mips_fval_fpr:
6093 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6094 break;
6095 case mips_fval_gpr:
6096 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6097 break;
6098 case mips_fval_both:
6099 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6100 break;
6101 }
6102 if (fval_reg != mips_fval_gpr)
6103 mips_xfer_register (gdbarch, regcache,
6104 (gdbarch_num_regs (gdbarch)
6105 + mips_regnum (gdbarch)->fp0),
6106 TYPE_LENGTH (type),
6107 gdbarch_byte_order (gdbarch),
6108 readbuf, writebuf, 0);
6109 if (fval_reg != mips_fval_fpr)
6110 mips_xfer_register (gdbarch, regcache,
6111 gdbarch_num_regs (gdbarch) + 2,
6112 TYPE_LENGTH (type),
6113 gdbarch_byte_order (gdbarch),
6114 readbuf, writebuf, 0);
6115 return RETURN_VALUE_REGISTER_CONVENTION;
6116 }
6117 else
6118 {
6119 /* A scalar extract each part but least-significant-byte
6120 justified. */
6121 int offset;
6122 int regnum;
6123 for (offset = 0, regnum = MIPS_V0_REGNUM;
6124 offset < TYPE_LENGTH (type);
6125 offset += MIPS64_REGSIZE, regnum++)
6126 {
6127 int xfer = MIPS64_REGSIZE;
6128 if (offset + xfer > TYPE_LENGTH (type))
6129 xfer = TYPE_LENGTH (type) - offset;
6130 if (mips_debug)
6131 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6132 offset, xfer, regnum);
6133 mips_xfer_register (gdbarch, regcache,
6134 gdbarch_num_regs (gdbarch) + regnum,
6135 xfer, gdbarch_byte_order (gdbarch),
6136 readbuf, writebuf, offset);
6137 }
6138 return RETURN_VALUE_REGISTER_CONVENTION;
6139 }
6140 }
6141
6142 /* Floating point register management.
6143
6144 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6145 64bit operations, these early MIPS cpus treat fp register pairs
6146 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6147 registers and offer a compatibility mode that emulates the MIPS2 fp
6148 model. When operating in MIPS2 fp compat mode, later cpu's split
6149 double precision floats into two 32-bit chunks and store them in
6150 consecutive fp regs. To display 64-bit floats stored in this
6151 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6152 Throw in user-configurable endianness and you have a real mess.
6153
6154 The way this works is:
6155 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6156 double-precision value will be split across two logical registers.
6157 The lower-numbered logical register will hold the low-order bits,
6158 regardless of the processor's endianness.
6159 - If we are on a 64-bit processor, and we are looking for a
6160 single-precision value, it will be in the low ordered bits
6161 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6162 save slot in memory.
6163 - If we are in 64-bit mode, everything is straightforward.
6164
6165 Note that this code only deals with "live" registers at the top of the
6166 stack. We will attempt to deal with saved registers later, when
6167 the raw/cooked register interface is in place. (We need a general
6168 interface that can deal with dynamic saved register sizes -- fp
6169 regs could be 32 bits wide in one frame and 64 on the frame above
6170 and below). */
6171
6172 /* Copy a 32-bit single-precision value from the current frame
6173 into rare_buffer. */
6174
6175 static void
6176 mips_read_fp_register_single (struct frame_info *frame, int regno,
6177 gdb_byte *rare_buffer)
6178 {
6179 struct gdbarch *gdbarch = get_frame_arch (frame);
6180 int raw_size = register_size (gdbarch, regno);
6181 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6182
6183 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6184 error (_("can't read register %d (%s)"),
6185 regno, gdbarch_register_name (gdbarch, regno));
6186 if (raw_size == 8)
6187 {
6188 /* We have a 64-bit value for this register. Find the low-order
6189 32 bits. */
6190 int offset;
6191
6192 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6193 offset = 4;
6194 else
6195 offset = 0;
6196
6197 memcpy (rare_buffer, raw_buffer + offset, 4);
6198 }
6199 else
6200 {
6201 memcpy (rare_buffer, raw_buffer, 4);
6202 }
6203 }
6204
6205 /* Copy a 64-bit double-precision value from the current frame into
6206 rare_buffer. This may include getting half of it from the next
6207 register. */
6208
6209 static void
6210 mips_read_fp_register_double (struct frame_info *frame, int regno,
6211 gdb_byte *rare_buffer)
6212 {
6213 struct gdbarch *gdbarch = get_frame_arch (frame);
6214 int raw_size = register_size (gdbarch, regno);
6215
6216 if (raw_size == 8 && !mips2_fp_compat (frame))
6217 {
6218 /* We have a 64-bit value for this register, and we should use
6219 all 64 bits. */
6220 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6221 error (_("can't read register %d (%s)"),
6222 regno, gdbarch_register_name (gdbarch, regno));
6223 }
6224 else
6225 {
6226 int rawnum = regno % gdbarch_num_regs (gdbarch);
6227
6228 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6229 internal_error (__FILE__, __LINE__,
6230 _("mips_read_fp_register_double: bad access to "
6231 "odd-numbered FP register"));
6232
6233 /* mips_read_fp_register_single will find the correct 32 bits from
6234 each register. */
6235 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6236 {
6237 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6238 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6239 }
6240 else
6241 {
6242 mips_read_fp_register_single (frame, regno, rare_buffer);
6243 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6244 }
6245 }
6246 }
6247
6248 static void
6249 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6250 int regnum)
6251 { /* Do values for FP (float) regs. */
6252 struct gdbarch *gdbarch = get_frame_arch (frame);
6253 gdb_byte *raw_buffer;
6254 double doub, flt1; /* Doubles extracted from raw hex data. */
6255 int inv1, inv2;
6256
6257 raw_buffer
6258 = ((gdb_byte *)
6259 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6260
6261 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6262 fprintf_filtered (file, "%*s",
6263 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6264 "");
6265
6266 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6267 {
6268 struct value_print_options opts;
6269
6270 /* 4-byte registers: Print hex and floating. Also print even
6271 numbered registers as doubles. */
6272 mips_read_fp_register_single (frame, regnum, raw_buffer);
6273 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6274 raw_buffer, &inv1);
6275
6276 get_formatted_print_options (&opts, 'x');
6277 print_scalar_formatted (raw_buffer,
6278 builtin_type (gdbarch)->builtin_uint32,
6279 &opts, 'w', file);
6280
6281 fprintf_filtered (file, " flt: ");
6282 if (inv1)
6283 fprintf_filtered (file, " <invalid float> ");
6284 else
6285 fprintf_filtered (file, "%-17.9g", flt1);
6286
6287 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6288 {
6289 mips_read_fp_register_double (frame, regnum, raw_buffer);
6290 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6291 raw_buffer, &inv2);
6292
6293 fprintf_filtered (file, " dbl: ");
6294 if (inv2)
6295 fprintf_filtered (file, "<invalid double>");
6296 else
6297 fprintf_filtered (file, "%-24.17g", doub);
6298 }
6299 }
6300 else
6301 {
6302 struct value_print_options opts;
6303
6304 /* Eight byte registers: print each one as hex, float and double. */
6305 mips_read_fp_register_single (frame, regnum, raw_buffer);
6306 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6307 raw_buffer, &inv1);
6308
6309 mips_read_fp_register_double (frame, regnum, raw_buffer);
6310 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6311 raw_buffer, &inv2);
6312
6313 get_formatted_print_options (&opts, 'x');
6314 print_scalar_formatted (raw_buffer,
6315 builtin_type (gdbarch)->builtin_uint64,
6316 &opts, 'g', file);
6317
6318 fprintf_filtered (file, " flt: ");
6319 if (inv1)
6320 fprintf_filtered (file, "<invalid float>");
6321 else
6322 fprintf_filtered (file, "%-17.9g", flt1);
6323
6324 fprintf_filtered (file, " dbl: ");
6325 if (inv2)
6326 fprintf_filtered (file, "<invalid double>");
6327 else
6328 fprintf_filtered (file, "%-24.17g", doub);
6329 }
6330 }
6331
6332 static void
6333 mips_print_register (struct ui_file *file, struct frame_info *frame,
6334 int regnum)
6335 {
6336 struct gdbarch *gdbarch = get_frame_arch (frame);
6337 struct value_print_options opts;
6338 struct value *val;
6339
6340 if (mips_float_register_p (gdbarch, regnum))
6341 {
6342 mips_print_fp_register (file, frame, regnum);
6343 return;
6344 }
6345
6346 val = get_frame_register_value (frame, regnum);
6347
6348 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6349
6350 /* The problem with printing numeric register names (r26, etc.) is that
6351 the user can't use them on input. Probably the best solution is to
6352 fix it so that either the numeric or the funky (a2, etc.) names
6353 are accepted on input. */
6354 if (regnum < MIPS_NUMREGS)
6355 fprintf_filtered (file, "(r%d): ", regnum);
6356 else
6357 fprintf_filtered (file, ": ");
6358
6359 get_formatted_print_options (&opts, 'x');
6360 val_print_scalar_formatted (value_type (val),
6361 value_contents_for_printing (val),
6362 value_embedded_offset (val),
6363 val,
6364 &opts, 0, file);
6365 }
6366
6367 /* Print IEEE exception condition bits in FLAGS. */
6368
6369 static void
6370 print_fpu_flags (struct ui_file *file, int flags)
6371 {
6372 if (flags & (1 << 0))
6373 fputs_filtered (" inexact", file);
6374 if (flags & (1 << 1))
6375 fputs_filtered (" uflow", file);
6376 if (flags & (1 << 2))
6377 fputs_filtered (" oflow", file);
6378 if (flags & (1 << 3))
6379 fputs_filtered (" div0", file);
6380 if (flags & (1 << 4))
6381 fputs_filtered (" inval", file);
6382 if (flags & (1 << 5))
6383 fputs_filtered (" unimp", file);
6384 fputc_filtered ('\n', file);
6385 }
6386
6387 /* Print interesting information about the floating point processor
6388 (if present) or emulator. */
6389
6390 static void
6391 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6392 struct frame_info *frame, const char *args)
6393 {
6394 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6395 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6396 ULONGEST fcs = 0;
6397 int i;
6398
6399 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6400 type = MIPS_FPU_NONE;
6401
6402 fprintf_filtered (file, "fpu type: %s\n",
6403 type == MIPS_FPU_DOUBLE ? "double-precision"
6404 : type == MIPS_FPU_SINGLE ? "single-precision"
6405 : "none / unused");
6406
6407 if (type == MIPS_FPU_NONE)
6408 return;
6409
6410 fprintf_filtered (file, "reg size: %d bits\n",
6411 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6412
6413 fputs_filtered ("cond :", file);
6414 if (fcs & (1 << 23))
6415 fputs_filtered (" 0", file);
6416 for (i = 1; i <= 7; i++)
6417 if (fcs & (1 << (24 + i)))
6418 fprintf_filtered (file, " %d", i);
6419 fputc_filtered ('\n', file);
6420
6421 fputs_filtered ("cause :", file);
6422 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6423 fputs ("mask :", stdout);
6424 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6425 fputs ("flags :", stdout);
6426 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6427
6428 fputs_filtered ("rounding: ", file);
6429 switch (fcs & 3)
6430 {
6431 case 0: fputs_filtered ("nearest\n", file); break;
6432 case 1: fputs_filtered ("zero\n", file); break;
6433 case 2: fputs_filtered ("+inf\n", file); break;
6434 case 3: fputs_filtered ("-inf\n", file); break;
6435 }
6436
6437 fputs_filtered ("flush :", file);
6438 if (fcs & (1 << 21))
6439 fputs_filtered (" nearest", file);
6440 if (fcs & (1 << 22))
6441 fputs_filtered (" override", file);
6442 if (fcs & (1 << 24))
6443 fputs_filtered (" zero", file);
6444 if ((fcs & (0xb << 21)) == 0)
6445 fputs_filtered (" no", file);
6446 fputc_filtered ('\n', file);
6447
6448 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6449 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6450 fputc_filtered ('\n', file);
6451
6452 default_print_float_info (gdbarch, file, frame, args);
6453 }
6454
6455 /* Replacement for generic do_registers_info.
6456 Print regs in pretty columns. */
6457
6458 static int
6459 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6460 int regnum)
6461 {
6462 fprintf_filtered (file, " ");
6463 mips_print_fp_register (file, frame, regnum);
6464 fprintf_filtered (file, "\n");
6465 return regnum + 1;
6466 }
6467
6468
6469 /* Print a row's worth of GP (int) registers, with name labels above. */
6470
6471 static int
6472 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6473 int start_regnum)
6474 {
6475 struct gdbarch *gdbarch = get_frame_arch (frame);
6476 /* Do values for GP (int) regs. */
6477 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6478 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6479 per row. */
6480 int col, byte;
6481 int regnum;
6482
6483 /* For GP registers, we print a separate row of names above the vals. */
6484 for (col = 0, regnum = start_regnum;
6485 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6486 + gdbarch_num_pseudo_regs (gdbarch);
6487 regnum++)
6488 {
6489 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6490 continue; /* unused register */
6491 if (mips_float_register_p (gdbarch, regnum))
6492 break; /* End the row: reached FP register. */
6493 /* Large registers are handled separately. */
6494 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6495 {
6496 if (col > 0)
6497 break; /* End the row before this register. */
6498
6499 /* Print this register on a row by itself. */
6500 mips_print_register (file, frame, regnum);
6501 fprintf_filtered (file, "\n");
6502 return regnum + 1;
6503 }
6504 if (col == 0)
6505 fprintf_filtered (file, " ");
6506 fprintf_filtered (file,
6507 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6508 gdbarch_register_name (gdbarch, regnum));
6509 col++;
6510 }
6511
6512 if (col == 0)
6513 return regnum;
6514
6515 /* Print the R0 to R31 names. */
6516 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6517 fprintf_filtered (file, "\n R%-4d",
6518 start_regnum % gdbarch_num_regs (gdbarch));
6519 else
6520 fprintf_filtered (file, "\n ");
6521
6522 /* Now print the values in hex, 4 or 8 to the row. */
6523 for (col = 0, regnum = start_regnum;
6524 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6525 + gdbarch_num_pseudo_regs (gdbarch);
6526 regnum++)
6527 {
6528 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6529 continue; /* unused register */
6530 if (mips_float_register_p (gdbarch, regnum))
6531 break; /* End row: reached FP register. */
6532 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6533 break; /* End row: large register. */
6534
6535 /* OK: get the data in raw format. */
6536 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6537 error (_("can't read register %d (%s)"),
6538 regnum, gdbarch_register_name (gdbarch, regnum));
6539 /* pad small registers */
6540 for (byte = 0;
6541 byte < (mips_abi_regsize (gdbarch)
6542 - register_size (gdbarch, regnum)); byte++)
6543 printf_filtered (" ");
6544 /* Now print the register value in hex, endian order. */
6545 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6546 for (byte =
6547 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6548 byte < register_size (gdbarch, regnum); byte++)
6549 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6550 else
6551 for (byte = register_size (gdbarch, regnum) - 1;
6552 byte >= 0; byte--)
6553 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6554 fprintf_filtered (file, " ");
6555 col++;
6556 }
6557 if (col > 0) /* ie. if we actually printed anything... */
6558 fprintf_filtered (file, "\n");
6559
6560 return regnum;
6561 }
6562
6563 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6564
6565 static void
6566 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6567 struct frame_info *frame, int regnum, int all)
6568 {
6569 if (regnum != -1) /* Do one specified register. */
6570 {
6571 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6572 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6573 error (_("Not a valid register for the current processor type"));
6574
6575 mips_print_register (file, frame, regnum);
6576 fprintf_filtered (file, "\n");
6577 }
6578 else
6579 /* Do all (or most) registers. */
6580 {
6581 regnum = gdbarch_num_regs (gdbarch);
6582 while (regnum < gdbarch_num_regs (gdbarch)
6583 + gdbarch_num_pseudo_regs (gdbarch))
6584 {
6585 if (mips_float_register_p (gdbarch, regnum))
6586 {
6587 if (all) /* True for "INFO ALL-REGISTERS" command. */
6588 regnum = print_fp_register_row (file, frame, regnum);
6589 else
6590 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6591 }
6592 else
6593 regnum = print_gp_register_row (file, frame, regnum);
6594 }
6595 }
6596 }
6597
6598 static int
6599 mips_single_step_through_delay (struct gdbarch *gdbarch,
6600 struct frame_info *frame)
6601 {
6602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6603 CORE_ADDR pc = get_frame_pc (frame);
6604 struct address_space *aspace;
6605 enum mips_isa isa;
6606 ULONGEST insn;
6607 int status;
6608 int size;
6609
6610 if ((mips_pc_is_mips (pc)
6611 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6612 || (mips_pc_is_micromips (gdbarch, pc)
6613 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6614 || (mips_pc_is_mips16 (gdbarch, pc)
6615 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6616 return 0;
6617
6618 isa = mips_pc_isa (gdbarch, pc);
6619 /* _has_delay_slot above will have validated the read. */
6620 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6621 size = mips_insn_size (isa, insn);
6622 aspace = get_frame_address_space (frame);
6623 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6624 }
6625
6626 /* To skip prologues, I use this predicate. Returns either PC itself
6627 if the code at PC does not look like a function prologue; otherwise
6628 returns an address that (if we're lucky) follows the prologue. If
6629 LENIENT, then we must skip everything which is involved in setting
6630 up the frame (it's OK to skip more, just so long as we don't skip
6631 anything which might clobber the registers which are being saved.
6632 We must skip more in the case where part of the prologue is in the
6633 delay slot of a non-prologue instruction). */
6634
6635 static CORE_ADDR
6636 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6637 {
6638 CORE_ADDR limit_pc;
6639 CORE_ADDR func_addr;
6640
6641 /* See if we can determine the end of the prologue via the symbol table.
6642 If so, then return either PC, or the PC after the prologue, whichever
6643 is greater. */
6644 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6645 {
6646 CORE_ADDR post_prologue_pc
6647 = skip_prologue_using_sal (gdbarch, func_addr);
6648 if (post_prologue_pc != 0)
6649 return std::max (pc, post_prologue_pc);
6650 }
6651
6652 /* Can't determine prologue from the symbol table, need to examine
6653 instructions. */
6654
6655 /* Find an upper limit on the function prologue using the debug
6656 information. If the debug information could not be used to provide
6657 that bound, then use an arbitrary large number as the upper bound. */
6658 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6659 if (limit_pc == 0)
6660 limit_pc = pc + 100; /* Magic. */
6661
6662 if (mips_pc_is_mips16 (gdbarch, pc))
6663 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6664 else if (mips_pc_is_micromips (gdbarch, pc))
6665 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6666 else
6667 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6668 }
6669
6670 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6671 This is a helper function for mips_stack_frame_destroyed_p. */
6672
6673 static int
6674 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6675 {
6676 CORE_ADDR func_addr = 0, func_end = 0;
6677
6678 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6679 {
6680 /* The MIPS epilogue is max. 12 bytes long. */
6681 CORE_ADDR addr = func_end - 12;
6682
6683 if (addr < func_addr + 4)
6684 addr = func_addr + 4;
6685 if (pc < addr)
6686 return 0;
6687
6688 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6689 {
6690 unsigned long high_word;
6691 unsigned long inst;
6692
6693 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6694 high_word = (inst >> 16) & 0xffff;
6695
6696 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6697 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6698 && inst != 0x03e00008 /* jr $ra */
6699 && inst != 0x00000000) /* nop */
6700 return 0;
6701 }
6702
6703 return 1;
6704 }
6705
6706 return 0;
6707 }
6708
6709 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6710 This is a helper function for mips_stack_frame_destroyed_p. */
6711
6712 static int
6713 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6714 {
6715 CORE_ADDR func_addr = 0;
6716 CORE_ADDR func_end = 0;
6717 CORE_ADDR addr;
6718 ULONGEST insn;
6719 long offset;
6720 int dreg;
6721 int sreg;
6722 int loc;
6723
6724 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6725 return 0;
6726
6727 /* The microMIPS epilogue is max. 12 bytes long. */
6728 addr = func_end - 12;
6729
6730 if (addr < func_addr + 2)
6731 addr = func_addr + 2;
6732 if (pc < addr)
6733 return 0;
6734
6735 for (; pc < func_end; pc += loc)
6736 {
6737 loc = 0;
6738 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6739 loc += MIPS_INSN16_SIZE;
6740 switch (mips_insn_size (ISA_MICROMIPS, insn))
6741 {
6742 /* 32-bit instructions. */
6743 case 2 * MIPS_INSN16_SIZE:
6744 insn <<= 16;
6745 insn |= mips_fetch_instruction (gdbarch,
6746 ISA_MICROMIPS, pc + loc, NULL);
6747 loc += MIPS_INSN16_SIZE;
6748 switch (micromips_op (insn >> 16))
6749 {
6750 case 0xc: /* ADDIU: bits 001100 */
6751 case 0x17: /* DADDIU: bits 010111 */
6752 sreg = b0s5_reg (insn >> 16);
6753 dreg = b5s5_reg (insn >> 16);
6754 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6755 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6756 /* (D)ADDIU $sp, imm */
6757 && offset >= 0)
6758 break;
6759 return 0;
6760
6761 default:
6762 return 0;
6763 }
6764 break;
6765
6766 /* 16-bit instructions. */
6767 case MIPS_INSN16_SIZE:
6768 switch (micromips_op (insn))
6769 {
6770 case 0x3: /* MOVE: bits 000011 */
6771 sreg = b0s5_reg (insn);
6772 dreg = b5s5_reg (insn);
6773 if (sreg == 0 && dreg == 0)
6774 /* MOVE $zero, $zero aka NOP */
6775 break;
6776 return 0;
6777
6778 case 0x11: /* POOL16C: bits 010001 */
6779 if (b5s5_op (insn) == 0x18
6780 /* JRADDIUSP: bits 010011 11000 */
6781 || (b5s5_op (insn) == 0xd
6782 /* JRC: bits 010011 01101 */
6783 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6784 /* JRC $ra */
6785 break;
6786 return 0;
6787
6788 case 0x13: /* POOL16D: bits 010011 */
6789 offset = micromips_decode_imm9 (b1s9_imm (insn));
6790 if ((insn & 0x1) == 0x1
6791 /* ADDIUSP: bits 010011 1 */
6792 && offset > 0)
6793 break;
6794 return 0;
6795
6796 default:
6797 return 0;
6798 }
6799 }
6800 }
6801
6802 return 1;
6803 }
6804
6805 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6806 This is a helper function for mips_stack_frame_destroyed_p. */
6807
6808 static int
6809 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6810 {
6811 CORE_ADDR func_addr = 0, func_end = 0;
6812
6813 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6814 {
6815 /* The MIPS epilogue is max. 12 bytes long. */
6816 CORE_ADDR addr = func_end - 12;
6817
6818 if (addr < func_addr + 4)
6819 addr = func_addr + 4;
6820 if (pc < addr)
6821 return 0;
6822
6823 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6824 {
6825 unsigned short inst;
6826
6827 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6828
6829 if ((inst & 0xf800) == 0xf000) /* extend */
6830 continue;
6831
6832 if (inst != 0x6300 /* addiu $sp,offset */
6833 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6834 && inst != 0xe820 /* jr $ra */
6835 && inst != 0xe8a0 /* jrc $ra */
6836 && inst != 0x6500) /* nop */
6837 return 0;
6838 }
6839
6840 return 1;
6841 }
6842
6843 return 0;
6844 }
6845
6846 /* Implement the stack_frame_destroyed_p gdbarch method.
6847
6848 The epilogue is defined here as the area at the end of a function,
6849 after an instruction which destroys the function's stack frame. */
6850
6851 static int
6852 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6853 {
6854 if (mips_pc_is_mips16 (gdbarch, pc))
6855 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6856 else if (mips_pc_is_micromips (gdbarch, pc))
6857 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6858 else
6859 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6860 }
6861
6862 /* Root of all "set mips "/"show mips " commands. This will eventually be
6863 used for all MIPS-specific commands. */
6864
6865 static void
6866 show_mips_command (char *args, int from_tty)
6867 {
6868 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6869 }
6870
6871 static void
6872 set_mips_command (char *args, int from_tty)
6873 {
6874 printf_unfiltered
6875 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6876 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6877 }
6878
6879 /* Commands to show/set the MIPS FPU type. */
6880
6881 static void
6882 show_mipsfpu_command (char *args, int from_tty)
6883 {
6884 char *fpu;
6885
6886 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6887 {
6888 printf_unfiltered
6889 ("The MIPS floating-point coprocessor is unknown "
6890 "because the current architecture is not MIPS.\n");
6891 return;
6892 }
6893
6894 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6895 {
6896 case MIPS_FPU_SINGLE:
6897 fpu = "single-precision";
6898 break;
6899 case MIPS_FPU_DOUBLE:
6900 fpu = "double-precision";
6901 break;
6902 case MIPS_FPU_NONE:
6903 fpu = "absent (none)";
6904 break;
6905 default:
6906 internal_error (__FILE__, __LINE__, _("bad switch"));
6907 }
6908 if (mips_fpu_type_auto)
6909 printf_unfiltered ("The MIPS floating-point coprocessor "
6910 "is set automatically (currently %s)\n",
6911 fpu);
6912 else
6913 printf_unfiltered
6914 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6915 }
6916
6917
6918 static void
6919 set_mipsfpu_command (char *args, int from_tty)
6920 {
6921 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6922 "\"single\",\"none\" or \"auto\".\n");
6923 show_mipsfpu_command (args, from_tty);
6924 }
6925
6926 static void
6927 set_mipsfpu_single_command (char *args, int from_tty)
6928 {
6929 struct gdbarch_info info;
6930 gdbarch_info_init (&info);
6931 mips_fpu_type = MIPS_FPU_SINGLE;
6932 mips_fpu_type_auto = 0;
6933 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6934 instead of relying on globals. Doing that would let generic code
6935 handle the search for this specific architecture. */
6936 if (!gdbarch_update_p (info))
6937 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6938 }
6939
6940 static void
6941 set_mipsfpu_double_command (char *args, int from_tty)
6942 {
6943 struct gdbarch_info info;
6944 gdbarch_info_init (&info);
6945 mips_fpu_type = MIPS_FPU_DOUBLE;
6946 mips_fpu_type_auto = 0;
6947 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6948 instead of relying on globals. Doing that would let generic code
6949 handle the search for this specific architecture. */
6950 if (!gdbarch_update_p (info))
6951 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6952 }
6953
6954 static void
6955 set_mipsfpu_none_command (char *args, int from_tty)
6956 {
6957 struct gdbarch_info info;
6958 gdbarch_info_init (&info);
6959 mips_fpu_type = MIPS_FPU_NONE;
6960 mips_fpu_type_auto = 0;
6961 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6962 instead of relying on globals. Doing that would let generic code
6963 handle the search for this specific architecture. */
6964 if (!gdbarch_update_p (info))
6965 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6966 }
6967
6968 static void
6969 set_mipsfpu_auto_command (char *args, int from_tty)
6970 {
6971 mips_fpu_type_auto = 1;
6972 }
6973
6974 /* Just like reinit_frame_cache, but with the right arguments to be
6975 callable as an sfunc. */
6976
6977 static void
6978 reinit_frame_cache_sfunc (char *args, int from_tty,
6979 struct cmd_list_element *c)
6980 {
6981 reinit_frame_cache ();
6982 }
6983
6984 static int
6985 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6986 {
6987 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
6988
6989 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6990 disassembler needs to be able to locally determine the ISA, and
6991 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6992 work. */
6993 if (mips_pc_is_mips16 (gdbarch, memaddr))
6994 info->mach = bfd_mach_mips16;
6995 else if (mips_pc_is_micromips (gdbarch, memaddr))
6996 info->mach = bfd_mach_mips_micromips;
6997
6998 /* Round down the instruction address to the appropriate boundary. */
6999 memaddr &= (info->mach == bfd_mach_mips16
7000 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7001
7002 /* Set the disassembler options. */
7003 if (!info->disassembler_options)
7004 /* This string is not recognized explicitly by the disassembler,
7005 but it tells the disassembler to not try to guess the ABI from
7006 the bfd elf headers, such that, if the user overrides the ABI
7007 of a program linked as NewABI, the disassembly will follow the
7008 register naming conventions specified by the user. */
7009 info->disassembler_options = "gpr-names=32";
7010
7011 /* Call the appropriate disassembler based on the target endian-ness. */
7012 if (info->endian == BFD_ENDIAN_BIG)
7013 return print_insn_big_mips (memaddr, info);
7014 else
7015 return print_insn_little_mips (memaddr, info);
7016 }
7017
7018 static int
7019 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7020 {
7021 /* Set up the disassembler info, so that we get the right
7022 register names from libopcodes. */
7023 info->disassembler_options = "gpr-names=n32";
7024 info->flavour = bfd_target_elf_flavour;
7025
7026 return gdb_print_insn_mips (memaddr, info);
7027 }
7028
7029 static int
7030 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7031 {
7032 /* Set up the disassembler info, so that we get the right
7033 register names from libopcodes. */
7034 info->disassembler_options = "gpr-names=64";
7035 info->flavour = bfd_target_elf_flavour;
7036
7037 return gdb_print_insn_mips (memaddr, info);
7038 }
7039
7040 /* This function implements gdbarch_breakpoint_from_pc. It uses the
7041 program counter value to determine whether a 16- or 32-bit breakpoint
7042 should be used. It returns a pointer to a string of bytes that encode a
7043 breakpoint instruction, stores the length of the string to *lenptr, and
7044 adjusts pc (if necessary) to point to the actual memory location where
7045 the breakpoint should be inserted. */
7046
7047 static const gdb_byte *
7048 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
7049 CORE_ADDR *pcptr, int *lenptr)
7050 {
7051 CORE_ADDR pc = *pcptr;
7052
7053 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7054 {
7055 if (mips_pc_is_mips16 (gdbarch, pc))
7056 {
7057 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7058 *pcptr = unmake_compact_addr (pc);
7059 *lenptr = sizeof (mips16_big_breakpoint);
7060 return mips16_big_breakpoint;
7061 }
7062 else if (mips_pc_is_micromips (gdbarch, pc))
7063 {
7064 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7065 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7066 ULONGEST insn;
7067 int err;
7068 int size;
7069
7070 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &err);
7071 size = err ? 2 : mips_insn_size (ISA_MICROMIPS, insn);
7072 *pcptr = unmake_compact_addr (pc);
7073 *lenptr = size;
7074 return (size == 2) ? micromips16_big_breakpoint
7075 : micromips32_big_breakpoint;
7076 }
7077 else
7078 {
7079 /* The IDT board uses an unusual breakpoint value, and
7080 sometimes gets confused when it sees the usual MIPS
7081 breakpoint instruction. */
7082 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7083 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
7084 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
7085 /* Likewise, IRIX appears to expect a different breakpoint,
7086 although this is not apparent until you try to use pthreads. */
7087 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
7088
7089 *lenptr = sizeof (big_breakpoint);
7090
7091 if (strcmp (target_shortname, "mips") == 0)
7092 return idt_big_breakpoint;
7093 else if (strcmp (target_shortname, "ddb") == 0
7094 || strcmp (target_shortname, "pmon") == 0
7095 || strcmp (target_shortname, "lsi") == 0)
7096 return pmon_big_breakpoint;
7097 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
7098 return irix_big_breakpoint;
7099 else
7100 return big_breakpoint;
7101 }
7102 }
7103 else
7104 {
7105 if (mips_pc_is_mips16 (gdbarch, pc))
7106 {
7107 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7108 *pcptr = unmake_compact_addr (pc);
7109 *lenptr = sizeof (mips16_little_breakpoint);
7110 return mips16_little_breakpoint;
7111 }
7112 else if (mips_pc_is_micromips (gdbarch, pc))
7113 {
7114 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7115 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7116 ULONGEST insn;
7117 int err;
7118 int size;
7119
7120 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &err);
7121 size = err ? 2 : mips_insn_size (ISA_MICROMIPS, insn);
7122 *pcptr = unmake_compact_addr (pc);
7123 *lenptr = size;
7124 return (size == 2) ? micromips16_little_breakpoint
7125 : micromips32_little_breakpoint;
7126 }
7127 else
7128 {
7129 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7130 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
7131 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
7132
7133 *lenptr = sizeof (little_breakpoint);
7134
7135 if (strcmp (target_shortname, "mips") == 0)
7136 return idt_little_breakpoint;
7137 else if (strcmp (target_shortname, "ddb") == 0
7138 || strcmp (target_shortname, "pmon") == 0
7139 || strcmp (target_shortname, "lsi") == 0)
7140 return pmon_little_breakpoint;
7141 else
7142 return little_breakpoint;
7143 }
7144 }
7145 }
7146
7147 /* Determine the remote breakpoint kind suitable for the PC. The following
7148 kinds are used:
7149
7150 * 2 -- 16-bit MIPS16 mode breakpoint,
7151
7152 * 3 -- 16-bit microMIPS mode breakpoint,
7153
7154 * 4 -- 32-bit standard MIPS mode breakpoint,
7155
7156 * 5 -- 32-bit microMIPS mode breakpoint. */
7157
7158 static void
7159 mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7160 int *kindptr)
7161 {
7162 CORE_ADDR pc = *pcptr;
7163
7164 if (mips_pc_is_mips16 (gdbarch, pc))
7165 {
7166 *pcptr = unmake_compact_addr (pc);
7167 *kindptr = 2;
7168 }
7169 else if (mips_pc_is_micromips (gdbarch, pc))
7170 {
7171 ULONGEST insn;
7172 int status;
7173 int size;
7174
7175 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7176 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7177 *pcptr = unmake_compact_addr (pc);
7178 *kindptr = size | 1;
7179 }
7180 else
7181 *kindptr = 4;
7182 }
7183
7184 /* Return non-zero if the standard MIPS instruction INST has a branch
7185 delay slot (i.e. it is a jump or branch instruction). This function
7186 is based on mips32_next_pc. */
7187
7188 static int
7189 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7190 {
7191 int op;
7192 int rs;
7193 int rt;
7194
7195 op = itype_op (inst);
7196 if ((inst & 0xe0000000) != 0)
7197 {
7198 rs = itype_rs (inst);
7199 rt = itype_rt (inst);
7200 return (is_octeon_bbit_op (op, gdbarch)
7201 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7202 || op == 29 /* JALX: bits 011101 */
7203 || (op == 17
7204 && (rs == 8
7205 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7206 || (rs == 9 && (rt & 0x2) == 0)
7207 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7208 || (rs == 10 && (rt & 0x2) == 0))));
7209 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7210 }
7211 else
7212 switch (op & 0x07) /* extract bits 28,27,26 */
7213 {
7214 case 0: /* SPECIAL */
7215 op = rtype_funct (inst);
7216 return (op == 8 /* JR */
7217 || op == 9); /* JALR */
7218 break; /* end SPECIAL */
7219 case 1: /* REGIMM */
7220 rs = itype_rs (inst);
7221 rt = itype_rt (inst); /* branch condition */
7222 return ((rt & 0xc) == 0
7223 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7224 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7225 || ((rt & 0x1e) == 0x1c && rs == 0));
7226 /* BPOSGE32, BPOSGE64: bits 1110x */
7227 break; /* end REGIMM */
7228 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7229 return 1;
7230 break;
7231 }
7232 }
7233
7234 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7235 delay slot (i.e. it is a jump or branch instruction). */
7236
7237 static int
7238 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7239 {
7240 ULONGEST insn;
7241 int status;
7242
7243 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7244 if (status)
7245 return 0;
7246
7247 return mips32_instruction_has_delay_slot (gdbarch, insn);
7248 }
7249
7250 /* Return non-zero if the microMIPS instruction INSN, comprising the
7251 16-bit major opcode word in the high 16 bits and any second word
7252 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7253 jump or branch instruction). The instruction must be 32-bit if
7254 MUSTBE32 is set or can be any instruction otherwise. */
7255
7256 static int
7257 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7258 {
7259 ULONGEST major = insn >> 16;
7260
7261 switch (micromips_op (major))
7262 {
7263 /* 16-bit instructions. */
7264 case 0x33: /* B16: bits 110011 */
7265 case 0x2b: /* BNEZ16: bits 101011 */
7266 case 0x23: /* BEQZ16: bits 100011 */
7267 return !mustbe32;
7268 case 0x11: /* POOL16C: bits 010001 */
7269 return (!mustbe32
7270 && ((b5s5_op (major) == 0xc
7271 /* JR16: bits 010001 01100 */
7272 || (b5s5_op (major) & 0x1e) == 0xe)));
7273 /* JALR16, JALRS16: bits 010001 0111x */
7274 /* 32-bit instructions. */
7275 case 0x3d: /* JAL: bits 111101 */
7276 case 0x3c: /* JALX: bits 111100 */
7277 case 0x35: /* J: bits 110101 */
7278 case 0x2d: /* BNE: bits 101101 */
7279 case 0x25: /* BEQ: bits 100101 */
7280 case 0x1d: /* JALS: bits 011101 */
7281 return 1;
7282 case 0x10: /* POOL32I: bits 010000 */
7283 return ((b5s5_op (major) & 0x1c) == 0x0
7284 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7285 || (b5s5_op (major) & 0x1d) == 0x4
7286 /* BLEZ, BGTZ: bits 010000 001x0 */
7287 || (b5s5_op (major) & 0x1d) == 0x11
7288 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7289 || ((b5s5_op (major) & 0x1e) == 0x14
7290 && (major & 0x3) == 0x0)
7291 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7292 || (b5s5_op (major) & 0x1e) == 0x1a
7293 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7294 || ((b5s5_op (major) & 0x1e) == 0x1c
7295 && (major & 0x3) == 0x0)
7296 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7297 || ((b5s5_op (major) & 0x1c) == 0x1c
7298 && (major & 0x3) == 0x1));
7299 /* BC1ANY*: bits 010000 111xx xxx01 */
7300 case 0x0: /* POOL32A: bits 000000 */
7301 return (b0s6_op (insn) == 0x3c
7302 /* POOL32Axf: bits 000000 ... 111100 */
7303 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7304 /* JALR, JALR.HB: 000000 000x111100 111100 */
7305 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7306 default:
7307 return 0;
7308 }
7309 }
7310
7311 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7312 slot (i.e. it is a non-compact jump instruction). The instruction
7313 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7314
7315 static int
7316 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7317 CORE_ADDR addr, int mustbe32)
7318 {
7319 ULONGEST insn;
7320 int status;
7321 int size;
7322
7323 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7324 if (status)
7325 return 0;
7326 size = mips_insn_size (ISA_MICROMIPS, insn);
7327 insn <<= 16;
7328 if (size == 2 * MIPS_INSN16_SIZE)
7329 {
7330 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7331 if (status)
7332 return 0;
7333 }
7334
7335 return micromips_instruction_has_delay_slot (insn, mustbe32);
7336 }
7337
7338 /* Return non-zero if the MIPS16 instruction INST, which must be
7339 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7340 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7341 instruction). This function is based on mips16_next_pc. */
7342
7343 static int
7344 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7345 {
7346 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7347 return !mustbe32;
7348 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7349 }
7350
7351 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7352 slot (i.e. it is a non-compact jump instruction). The instruction
7353 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7354
7355 static int
7356 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7357 CORE_ADDR addr, int mustbe32)
7358 {
7359 unsigned short insn;
7360 int status;
7361
7362 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7363 if (status)
7364 return 0;
7365
7366 return mips16_instruction_has_delay_slot (insn, mustbe32);
7367 }
7368
7369 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7370 This assumes KSSEG exists. */
7371
7372 static CORE_ADDR
7373 mips_segment_boundary (CORE_ADDR bpaddr)
7374 {
7375 CORE_ADDR mask = CORE_ADDR_MAX;
7376 int segsize;
7377
7378 if (sizeof (CORE_ADDR) == 8)
7379 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7380 a compiler warning produced where CORE_ADDR is a 32-bit type even
7381 though in that case this is dead code). */
7382 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7383 {
7384 case 3:
7385 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7386 segsize = 29; /* 32-bit compatibility segment */
7387 else
7388 segsize = 62; /* xkseg */
7389 break;
7390 case 2: /* xkphys */
7391 segsize = 59;
7392 break;
7393 default: /* xksseg (1), xkuseg/kuseg (0) */
7394 segsize = 62;
7395 break;
7396 }
7397 else if (bpaddr & 0x80000000) /* kernel segment */
7398 segsize = 29;
7399 else
7400 segsize = 31; /* user segment */
7401 mask <<= segsize;
7402 return bpaddr & mask;
7403 }
7404
7405 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7406 it backwards if necessary. Return the address of the new location. */
7407
7408 static CORE_ADDR
7409 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7410 {
7411 CORE_ADDR prev_addr;
7412 CORE_ADDR boundary;
7413 CORE_ADDR func_addr;
7414
7415 /* If a breakpoint is set on the instruction in a branch delay slot,
7416 GDB gets confused. When the breakpoint is hit, the PC isn't on
7417 the instruction in the branch delay slot, the PC will point to
7418 the branch instruction. Since the PC doesn't match any known
7419 breakpoints, GDB reports a trap exception.
7420
7421 There are two possible fixes for this problem.
7422
7423 1) When the breakpoint gets hit, see if the BD bit is set in the
7424 Cause register (which indicates the last exception occurred in a
7425 branch delay slot). If the BD bit is set, fix the PC to point to
7426 the instruction in the branch delay slot.
7427
7428 2) When the user sets the breakpoint, don't allow him to set the
7429 breakpoint on the instruction in the branch delay slot. Instead
7430 move the breakpoint to the branch instruction (which will have
7431 the same result).
7432
7433 The problem with the first solution is that if the user then
7434 single-steps the processor, the branch instruction will get
7435 skipped (since GDB thinks the PC is on the instruction in the
7436 branch delay slot).
7437
7438 So, we'll use the second solution. To do this we need to know if
7439 the instruction we're trying to set the breakpoint on is in the
7440 branch delay slot. */
7441
7442 boundary = mips_segment_boundary (bpaddr);
7443
7444 /* Make sure we don't scan back before the beginning of the current
7445 function, since we may fetch constant data or insns that look like
7446 a jump. Of course we might do that anyway if the compiler has
7447 moved constants inline. :-( */
7448 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7449 && func_addr > boundary && func_addr <= bpaddr)
7450 boundary = func_addr;
7451
7452 if (mips_pc_is_mips (bpaddr))
7453 {
7454 if (bpaddr == boundary)
7455 return bpaddr;
7456
7457 /* If the previous instruction has a branch delay slot, we have
7458 to move the breakpoint to the branch instruction. */
7459 prev_addr = bpaddr - 4;
7460 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7461 bpaddr = prev_addr;
7462 }
7463 else
7464 {
7465 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7466 CORE_ADDR addr, jmpaddr;
7467 int i;
7468
7469 boundary = unmake_compact_addr (boundary);
7470
7471 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7472 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7473 so try for that first, then try the 2 byte JALR/JR.
7474 The microMIPS ASE has a whole range of jumps and branches
7475 with delay slots, some of which take 4 bytes and some take
7476 2 bytes, so the idea is the same.
7477 FIXME: We have to assume that bpaddr is not the second half
7478 of an extended instruction. */
7479 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7480 ? micromips_insn_at_pc_has_delay_slot
7481 : mips16_insn_at_pc_has_delay_slot);
7482
7483 jmpaddr = 0;
7484 addr = bpaddr;
7485 for (i = 1; i < 4; i++)
7486 {
7487 if (unmake_compact_addr (addr) == boundary)
7488 break;
7489 addr -= MIPS_INSN16_SIZE;
7490 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7491 /* Looks like a JR/JALR at [target-1], but it could be
7492 the second word of a previous JAL/JALX, so record it
7493 and check back one more. */
7494 jmpaddr = addr;
7495 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7496 {
7497 if (i == 2)
7498 /* Looks like a JAL/JALX at [target-2], but it could also
7499 be the second word of a previous JAL/JALX, record it,
7500 and check back one more. */
7501 jmpaddr = addr;
7502 else
7503 /* Looks like a JAL/JALX at [target-3], so any previously
7504 recorded JAL/JALX or JR/JALR must be wrong, because:
7505
7506 >-3: JAL
7507 -2: JAL-ext (can't be JAL/JALX)
7508 -1: bdslot (can't be JR/JALR)
7509 0: target insn
7510
7511 Of course it could be another JAL-ext which looks
7512 like a JAL, but in that case we'd have broken out
7513 of this loop at [target-2]:
7514
7515 -4: JAL
7516 >-3: JAL-ext
7517 -2: bdslot (can't be jmp)
7518 -1: JR/JALR
7519 0: target insn */
7520 jmpaddr = 0;
7521 }
7522 else
7523 {
7524 /* Not a jump instruction: if we're at [target-1] this
7525 could be the second word of a JAL/JALX, so continue;
7526 otherwise we're done. */
7527 if (i > 1)
7528 break;
7529 }
7530 }
7531
7532 if (jmpaddr)
7533 bpaddr = jmpaddr;
7534 }
7535
7536 return bpaddr;
7537 }
7538
7539 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7540 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7541
7542 static int
7543 mips_is_stub_suffix (const char *suffix, int zero)
7544 {
7545 switch (suffix[0])
7546 {
7547 case '0':
7548 return zero && suffix[1] == '\0';
7549 case '1':
7550 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7551 case '2':
7552 case '5':
7553 case '6':
7554 case '9':
7555 return suffix[1] == '\0';
7556 default:
7557 return 0;
7558 }
7559 }
7560
7561 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7562 call stubs, one of sf, df, sc, or dc. */
7563
7564 static int
7565 mips_is_stub_mode (const char *mode)
7566 {
7567 return ((mode[0] == 's' || mode[0] == 'd')
7568 && (mode[1] == 'f' || mode[1] == 'c'));
7569 }
7570
7571 /* Code at PC is a compiler-generated stub. Such a stub for a function
7572 bar might have a name like __fn_stub_bar, and might look like this:
7573
7574 mfc1 $4, $f13
7575 mfc1 $5, $f12
7576 mfc1 $6, $f15
7577 mfc1 $7, $f14
7578
7579 followed by (or interspersed with):
7580
7581 j bar
7582
7583 or:
7584
7585 lui $25, %hi(bar)
7586 addiu $25, $25, %lo(bar)
7587 jr $25
7588
7589 ($1 may be used in old code; for robustness we accept any register)
7590 or, in PIC code:
7591
7592 lui $28, %hi(_gp_disp)
7593 addiu $28, $28, %lo(_gp_disp)
7594 addu $28, $28, $25
7595 lw $25, %got(bar)
7596 addiu $25, $25, %lo(bar)
7597 jr $25
7598
7599 In the case of a __call_stub_bar stub, the sequence to set up
7600 arguments might look like this:
7601
7602 mtc1 $4, $f13
7603 mtc1 $5, $f12
7604 mtc1 $6, $f15
7605 mtc1 $7, $f14
7606
7607 followed by (or interspersed with) one of the jump sequences above.
7608
7609 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7610 of J or JR, respectively, followed by:
7611
7612 mfc1 $2, $f0
7613 mfc1 $3, $f1
7614 jr $18
7615
7616 We are at the beginning of the stub here, and scan down and extract
7617 the target address from the jump immediate instruction or, if a jump
7618 register instruction is used, from the register referred. Return
7619 the value of PC calculated or 0 if inconclusive.
7620
7621 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7622
7623 static CORE_ADDR
7624 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7625 {
7626 struct gdbarch *gdbarch = get_frame_arch (frame);
7627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7628 int addrreg = MIPS_ZERO_REGNUM;
7629 CORE_ADDR start_pc = pc;
7630 CORE_ADDR target_pc = 0;
7631 CORE_ADDR addr = 0;
7632 CORE_ADDR gp = 0;
7633 int status = 0;
7634 int i;
7635
7636 for (i = 0;
7637 status == 0 && target_pc == 0 && i < 20;
7638 i++, pc += MIPS_INSN32_SIZE)
7639 {
7640 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7641 CORE_ADDR imm;
7642 int rt;
7643 int rs;
7644 int rd;
7645
7646 switch (itype_op (inst))
7647 {
7648 case 0: /* SPECIAL */
7649 switch (rtype_funct (inst))
7650 {
7651 case 8: /* JR */
7652 case 9: /* JALR */
7653 rs = rtype_rs (inst);
7654 if (rs == MIPS_GP_REGNUM)
7655 target_pc = gp; /* Hmm... */
7656 else if (rs == addrreg)
7657 target_pc = addr;
7658 break;
7659
7660 case 0x21: /* ADDU */
7661 rt = rtype_rt (inst);
7662 rs = rtype_rs (inst);
7663 rd = rtype_rd (inst);
7664 if (rd == MIPS_GP_REGNUM
7665 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7666 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7667 gp += start_pc;
7668 break;
7669 }
7670 break;
7671
7672 case 2: /* J */
7673 case 3: /* JAL */
7674 target_pc = jtype_target (inst) << 2;
7675 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7676 break;
7677
7678 case 9: /* ADDIU */
7679 rt = itype_rt (inst);
7680 rs = itype_rs (inst);
7681 if (rt == rs)
7682 {
7683 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7684 if (rt == MIPS_GP_REGNUM)
7685 gp += imm;
7686 else if (rt == addrreg)
7687 addr += imm;
7688 }
7689 break;
7690
7691 case 0xf: /* LUI */
7692 rt = itype_rt (inst);
7693 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7694 if (rt == MIPS_GP_REGNUM)
7695 gp = imm;
7696 else if (rt != MIPS_ZERO_REGNUM)
7697 {
7698 addrreg = rt;
7699 addr = imm;
7700 }
7701 break;
7702
7703 case 0x23: /* LW */
7704 rt = itype_rt (inst);
7705 rs = itype_rs (inst);
7706 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7707 if (gp != 0 && rs == MIPS_GP_REGNUM)
7708 {
7709 gdb_byte buf[4];
7710
7711 memset (buf, 0, sizeof (buf));
7712 status = target_read_memory (gp + imm, buf, sizeof (buf));
7713 addrreg = rt;
7714 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7715 }
7716 break;
7717 }
7718 }
7719
7720 return target_pc;
7721 }
7722
7723 /* If PC is in a MIPS16 call or return stub, return the address of the
7724 target PC, which is either the callee or the caller. There are several
7725 cases which must be handled:
7726
7727 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7728 and the target PC is in $31 ($ra).
7729 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7730 and the target PC is in $2.
7731 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7732 i.e. before the JALR instruction, this is effectively a call stub
7733 and the target PC is in $2. Otherwise this is effectively
7734 a return stub and the target PC is in $18.
7735 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7736 JAL or JALR instruction, this is effectively a call stub and the
7737 target PC is buried in the instruction stream. Otherwise this
7738 is effectively a return stub and the target PC is in $18.
7739 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7740 stub and the target PC is buried in the instruction stream.
7741
7742 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7743 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7744 gory details. */
7745
7746 static CORE_ADDR
7747 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7748 {
7749 struct gdbarch *gdbarch = get_frame_arch (frame);
7750 CORE_ADDR start_addr;
7751 const char *name;
7752 size_t prefixlen;
7753
7754 /* Find the starting address and name of the function containing the PC. */
7755 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7756 return 0;
7757
7758 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7759 and the target PC is in $31 ($ra). */
7760 prefixlen = strlen (mips_str_mips16_ret_stub);
7761 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7762 && mips_is_stub_mode (name + prefixlen)
7763 && name[prefixlen + 2] == '\0')
7764 return get_frame_register_signed
7765 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7766
7767 /* If the PC is in __mips16_call_stub_*, this is one of the call
7768 call/return stubs. */
7769 prefixlen = strlen (mips_str_mips16_call_stub);
7770 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7771 {
7772 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7773 and the target PC is in $2. */
7774 if (mips_is_stub_suffix (name + prefixlen, 0))
7775 return get_frame_register_signed
7776 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7777
7778 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7779 i.e. before the JALR instruction, this is effectively a call stub
7780 and the target PC is in $2. Otherwise this is effectively
7781 a return stub and the target PC is in $18. */
7782 else if (mips_is_stub_mode (name + prefixlen)
7783 && name[prefixlen + 2] == '_'
7784 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7785 {
7786 if (pc == start_addr)
7787 /* This is the 'call' part of a call stub. The return
7788 address is in $2. */
7789 return get_frame_register_signed
7790 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7791 else
7792 /* This is the 'return' part of a call stub. The return
7793 address is in $18. */
7794 return get_frame_register_signed
7795 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7796 }
7797 else
7798 return 0; /* Not a stub. */
7799 }
7800
7801 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7802 compiler-generated call or call/return stubs. */
7803 if (startswith (name, mips_str_fn_stub)
7804 || startswith (name, mips_str_call_stub))
7805 {
7806 if (pc == start_addr)
7807 /* This is the 'call' part of a call stub. Call this helper
7808 to scan through this code for interesting instructions
7809 and determine the final PC. */
7810 return mips_get_mips16_fn_stub_pc (frame, pc);
7811 else
7812 /* This is the 'return' part of a call stub. The return address
7813 is in $18. */
7814 return get_frame_register_signed
7815 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7816 }
7817
7818 return 0; /* Not a stub. */
7819 }
7820
7821 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7822 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7823
7824 static int
7825 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7826 {
7827 CORE_ADDR start_addr;
7828 size_t prefixlen;
7829
7830 /* Find the starting address of the function containing the PC. */
7831 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7832 return 0;
7833
7834 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7835 the start, i.e. after the JALR instruction, this is effectively
7836 a return stub. */
7837 prefixlen = strlen (mips_str_mips16_call_stub);
7838 if (pc != start_addr
7839 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7840 && mips_is_stub_mode (name + prefixlen)
7841 && name[prefixlen + 2] == '_'
7842 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7843 return 1;
7844
7845 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7846 the JAL or JALR instruction, this is effectively a return stub. */
7847 prefixlen = strlen (mips_str_call_fp_stub);
7848 if (pc != start_addr
7849 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7850 return 1;
7851
7852 /* Consume the .pic. prefix of any PIC stub, this function must return
7853 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7854 or the call stub path will trigger in handle_inferior_event causing
7855 it to go astray. */
7856 prefixlen = strlen (mips_str_pic);
7857 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7858 name += prefixlen;
7859
7860 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7861 prefixlen = strlen (mips_str_mips16_ret_stub);
7862 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7863 && mips_is_stub_mode (name + prefixlen)
7864 && name[prefixlen + 2] == '\0')
7865 return 1;
7866
7867 return 0; /* Not a stub. */
7868 }
7869
7870 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7871 PC of the stub target. The stub just loads $t9 and jumps to it,
7872 so that $t9 has the correct value at function entry. */
7873
7874 static CORE_ADDR
7875 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7876 {
7877 struct gdbarch *gdbarch = get_frame_arch (frame);
7878 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7879 struct bound_minimal_symbol msym;
7880 int i;
7881 gdb_byte stub_code[16];
7882 int32_t stub_words[4];
7883
7884 /* The stub for foo is named ".pic.foo", and is either two
7885 instructions inserted before foo or a three instruction sequence
7886 which jumps to foo. */
7887 msym = lookup_minimal_symbol_by_pc (pc);
7888 if (msym.minsym == NULL
7889 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7890 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7891 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7892 return 0;
7893
7894 /* A two-instruction header. */
7895 if (MSYMBOL_SIZE (msym.minsym) == 8)
7896 return pc + 8;
7897
7898 /* A three-instruction (plus delay slot) trampoline. */
7899 if (MSYMBOL_SIZE (msym.minsym) == 16)
7900 {
7901 if (target_read_memory (pc, stub_code, 16) != 0)
7902 return 0;
7903 for (i = 0; i < 4; i++)
7904 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7905 4, byte_order);
7906
7907 /* A stub contains these instructions:
7908 lui t9, %hi(target)
7909 j target
7910 addiu t9, t9, %lo(target)
7911 nop
7912
7913 This works even for N64, since stubs are only generated with
7914 -msym32. */
7915 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7916 && (stub_words[1] & 0xfc000000U) == 0x08000000
7917 && (stub_words[2] & 0xffff0000U) == 0x27390000
7918 && stub_words[3] == 0x00000000)
7919 return ((((stub_words[0] & 0x0000ffff) << 16)
7920 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7921 }
7922
7923 /* Not a recognized stub. */
7924 return 0;
7925 }
7926
7927 static CORE_ADDR
7928 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7929 {
7930 CORE_ADDR requested_pc = pc;
7931 CORE_ADDR target_pc;
7932 CORE_ADDR new_pc;
7933
7934 do
7935 {
7936 target_pc = pc;
7937
7938 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7939 if (new_pc)
7940 pc = new_pc;
7941
7942 new_pc = find_solib_trampoline_target (frame, pc);
7943 if (new_pc)
7944 pc = new_pc;
7945
7946 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7947 if (new_pc)
7948 pc = new_pc;
7949 }
7950 while (pc != target_pc);
7951
7952 return pc != requested_pc ? pc : 0;
7953 }
7954
7955 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7956 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7957
7958 static int
7959 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7960 {
7961 int regnum;
7962 if (num >= 0 && num < 32)
7963 regnum = num;
7964 else if (num >= 38 && num < 70)
7965 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7966 else if (num == 70)
7967 regnum = mips_regnum (gdbarch)->hi;
7968 else if (num == 71)
7969 regnum = mips_regnum (gdbarch)->lo;
7970 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7971 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7972 else
7973 return -1;
7974 return gdbarch_num_regs (gdbarch) + regnum;
7975 }
7976
7977
7978 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7979 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7980
7981 static int
7982 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7983 {
7984 int regnum;
7985 if (num >= 0 && num < 32)
7986 regnum = num;
7987 else if (num >= 32 && num < 64)
7988 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7989 else if (num == 64)
7990 regnum = mips_regnum (gdbarch)->hi;
7991 else if (num == 65)
7992 regnum = mips_regnum (gdbarch)->lo;
7993 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7994 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7995 else
7996 return -1;
7997 return gdbarch_num_regs (gdbarch) + regnum;
7998 }
7999
8000 static int
8001 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
8002 {
8003 /* Only makes sense to supply raw registers. */
8004 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
8005 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
8006 decide if it is valid. Should instead define a standard sim/gdb
8007 register numbering scheme. */
8008 if (gdbarch_register_name (gdbarch,
8009 gdbarch_num_regs (gdbarch) + regnum) != NULL
8010 && gdbarch_register_name (gdbarch,
8011 gdbarch_num_regs (gdbarch)
8012 + regnum)[0] != '\0')
8013 return regnum;
8014 else
8015 return LEGACY_SIM_REGNO_IGNORE;
8016 }
8017
8018
8019 /* Convert an integer into an address. Extracting the value signed
8020 guarantees a correctly sign extended address. */
8021
8022 static CORE_ADDR
8023 mips_integer_to_address (struct gdbarch *gdbarch,
8024 struct type *type, const gdb_byte *buf)
8025 {
8026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8027 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
8028 }
8029
8030 /* Dummy virtual frame pointer method. This is no more or less accurate
8031 than most other architectures; we just need to be explicit about it,
8032 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
8033 an assertion failure. */
8034
8035 static void
8036 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
8037 CORE_ADDR pc, int *reg, LONGEST *offset)
8038 {
8039 *reg = MIPS_SP_REGNUM;
8040 *offset = 0;
8041 }
8042
8043 static void
8044 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
8045 {
8046 enum mips_abi *abip = (enum mips_abi *) obj;
8047 const char *name = bfd_get_section_name (abfd, sect);
8048
8049 if (*abip != MIPS_ABI_UNKNOWN)
8050 return;
8051
8052 if (!startswith (name, ".mdebug."))
8053 return;
8054
8055 if (strcmp (name, ".mdebug.abi32") == 0)
8056 *abip = MIPS_ABI_O32;
8057 else if (strcmp (name, ".mdebug.abiN32") == 0)
8058 *abip = MIPS_ABI_N32;
8059 else if (strcmp (name, ".mdebug.abi64") == 0)
8060 *abip = MIPS_ABI_N64;
8061 else if (strcmp (name, ".mdebug.abiO64") == 0)
8062 *abip = MIPS_ABI_O64;
8063 else if (strcmp (name, ".mdebug.eabi32") == 0)
8064 *abip = MIPS_ABI_EABI32;
8065 else if (strcmp (name, ".mdebug.eabi64") == 0)
8066 *abip = MIPS_ABI_EABI64;
8067 else
8068 warning (_("unsupported ABI %s."), name + 8);
8069 }
8070
8071 static void
8072 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8073 {
8074 int *lbp = (int *) obj;
8075 const char *name = bfd_get_section_name (abfd, sect);
8076
8077 if (startswith (name, ".gcc_compiled_long32"))
8078 *lbp = 32;
8079 else if (startswith (name, ".gcc_compiled_long64"))
8080 *lbp = 64;
8081 else if (startswith (name, ".gcc_compiled_long"))
8082 warning (_("unrecognized .gcc_compiled_longXX"));
8083 }
8084
8085 static enum mips_abi
8086 global_mips_abi (void)
8087 {
8088 int i;
8089
8090 for (i = 0; mips_abi_strings[i] != NULL; i++)
8091 if (mips_abi_strings[i] == mips_abi_string)
8092 return (enum mips_abi) i;
8093
8094 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8095 }
8096
8097 /* Return the default compressed instruction set, either of MIPS16
8098 or microMIPS, selected when none could have been determined from
8099 the ELF header of the binary being executed (or no binary has been
8100 selected. */
8101
8102 static enum mips_isa
8103 global_mips_compression (void)
8104 {
8105 int i;
8106
8107 for (i = 0; mips_compression_strings[i] != NULL; i++)
8108 if (mips_compression_strings[i] == mips_compression_string)
8109 return (enum mips_isa) i;
8110
8111 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8112 }
8113
8114 static void
8115 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8116 {
8117 /* If the size matches the set of 32-bit or 64-bit integer registers,
8118 assume that's what we've got. */
8119 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8120 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8121
8122 /* If the size matches the full set of registers GDB traditionally
8123 knows about, including floating point, for either 32-bit or
8124 64-bit, assume that's what we've got. */
8125 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8126 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8127
8128 /* Otherwise we don't have a useful guess. */
8129 }
8130
8131 static struct value *
8132 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8133 {
8134 const int *reg_p = (const int *) baton;
8135 return value_of_register (*reg_p, frame);
8136 }
8137
8138 static struct gdbarch *
8139 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8140 {
8141 struct gdbarch *gdbarch;
8142 struct gdbarch_tdep *tdep;
8143 int elf_flags;
8144 enum mips_abi mips_abi, found_abi, wanted_abi;
8145 int i, num_regs;
8146 enum mips_fpu_type fpu_type;
8147 struct tdesc_arch_data *tdesc_data = NULL;
8148 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8149 const char **reg_names;
8150 struct mips_regnum mips_regnum, *regnum;
8151 enum mips_isa mips_isa;
8152 int dspacc;
8153 int dspctl;
8154
8155 /* Fill in the OS dependent register numbers and names. */
8156 if (info.osabi == GDB_OSABI_IRIX)
8157 {
8158 mips_regnum.fp0 = 32;
8159 mips_regnum.pc = 64;
8160 mips_regnum.cause = 65;
8161 mips_regnum.badvaddr = 66;
8162 mips_regnum.hi = 67;
8163 mips_regnum.lo = 68;
8164 mips_regnum.fp_control_status = 69;
8165 mips_regnum.fp_implementation_revision = 70;
8166 mips_regnum.dspacc = dspacc = -1;
8167 mips_regnum.dspctl = dspctl = -1;
8168 num_regs = 71;
8169 reg_names = mips_irix_reg_names;
8170 }
8171 else if (info.osabi == GDB_OSABI_LINUX)
8172 {
8173 mips_regnum.fp0 = 38;
8174 mips_regnum.pc = 37;
8175 mips_regnum.cause = 36;
8176 mips_regnum.badvaddr = 35;
8177 mips_regnum.hi = 34;
8178 mips_regnum.lo = 33;
8179 mips_regnum.fp_control_status = 70;
8180 mips_regnum.fp_implementation_revision = 71;
8181 mips_regnum.dspacc = -1;
8182 mips_regnum.dspctl = -1;
8183 dspacc = 72;
8184 dspctl = 78;
8185 num_regs = 90;
8186 reg_names = mips_linux_reg_names;
8187 }
8188 else
8189 {
8190 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8191 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8192 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8193 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8194 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8195 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8196 mips_regnum.fp_control_status = 70;
8197 mips_regnum.fp_implementation_revision = 71;
8198 mips_regnum.dspacc = dspacc = -1;
8199 mips_regnum.dspctl = dspctl = -1;
8200 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8201 if (info.bfd_arch_info != NULL
8202 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8203 reg_names = mips_tx39_reg_names;
8204 else
8205 reg_names = mips_generic_reg_names;
8206 }
8207
8208 /* Check any target description for validity. */
8209 if (tdesc_has_registers (info.target_desc))
8210 {
8211 static const char *const mips_gprs[] = {
8212 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8213 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8214 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8215 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8216 };
8217 static const char *const mips_fprs[] = {
8218 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8219 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8220 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8221 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8222 };
8223
8224 const struct tdesc_feature *feature;
8225 int valid_p;
8226
8227 feature = tdesc_find_feature (info.target_desc,
8228 "org.gnu.gdb.mips.cpu");
8229 if (feature == NULL)
8230 return NULL;
8231
8232 tdesc_data = tdesc_data_alloc ();
8233
8234 valid_p = 1;
8235 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8236 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8237 mips_gprs[i]);
8238
8239
8240 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8241 mips_regnum.lo, "lo");
8242 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8243 mips_regnum.hi, "hi");
8244 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8245 mips_regnum.pc, "pc");
8246
8247 if (!valid_p)
8248 {
8249 tdesc_data_cleanup (tdesc_data);
8250 return NULL;
8251 }
8252
8253 feature = tdesc_find_feature (info.target_desc,
8254 "org.gnu.gdb.mips.cp0");
8255 if (feature == NULL)
8256 {
8257 tdesc_data_cleanup (tdesc_data);
8258 return NULL;
8259 }
8260
8261 valid_p = 1;
8262 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8263 mips_regnum.badvaddr, "badvaddr");
8264 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8265 MIPS_PS_REGNUM, "status");
8266 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8267 mips_regnum.cause, "cause");
8268
8269 if (!valid_p)
8270 {
8271 tdesc_data_cleanup (tdesc_data);
8272 return NULL;
8273 }
8274
8275 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8276 backend is not prepared for that, though. */
8277 feature = tdesc_find_feature (info.target_desc,
8278 "org.gnu.gdb.mips.fpu");
8279 if (feature == NULL)
8280 {
8281 tdesc_data_cleanup (tdesc_data);
8282 return NULL;
8283 }
8284
8285 valid_p = 1;
8286 for (i = 0; i < 32; i++)
8287 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8288 i + mips_regnum.fp0, mips_fprs[i]);
8289
8290 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8291 mips_regnum.fp_control_status,
8292 "fcsr");
8293 valid_p
8294 &= tdesc_numbered_register (feature, tdesc_data,
8295 mips_regnum.fp_implementation_revision,
8296 "fir");
8297
8298 if (!valid_p)
8299 {
8300 tdesc_data_cleanup (tdesc_data);
8301 return NULL;
8302 }
8303
8304 num_regs = mips_regnum.fp_implementation_revision + 1;
8305
8306 if (dspacc >= 0)
8307 {
8308 feature = tdesc_find_feature (info.target_desc,
8309 "org.gnu.gdb.mips.dsp");
8310 /* The DSP registers are optional; it's OK if they are absent. */
8311 if (feature != NULL)
8312 {
8313 i = 0;
8314 valid_p = 1;
8315 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8316 dspacc + i++, "hi1");
8317 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8318 dspacc + i++, "lo1");
8319 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8320 dspacc + i++, "hi2");
8321 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8322 dspacc + i++, "lo2");
8323 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8324 dspacc + i++, "hi3");
8325 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8326 dspacc + i++, "lo3");
8327
8328 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8329 dspctl, "dspctl");
8330
8331 if (!valid_p)
8332 {
8333 tdesc_data_cleanup (tdesc_data);
8334 return NULL;
8335 }
8336
8337 mips_regnum.dspacc = dspacc;
8338 mips_regnum.dspctl = dspctl;
8339
8340 num_regs = mips_regnum.dspctl + 1;
8341 }
8342 }
8343
8344 /* It would be nice to detect an attempt to use a 64-bit ABI
8345 when only 32-bit registers are provided. */
8346 reg_names = NULL;
8347 }
8348
8349 /* First of all, extract the elf_flags, if available. */
8350 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8351 elf_flags = elf_elfheader (info.abfd)->e_flags;
8352 else if (arches != NULL)
8353 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8354 else
8355 elf_flags = 0;
8356 if (gdbarch_debug)
8357 fprintf_unfiltered (gdb_stdlog,
8358 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8359
8360 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8361 switch ((elf_flags & EF_MIPS_ABI))
8362 {
8363 case E_MIPS_ABI_O32:
8364 found_abi = MIPS_ABI_O32;
8365 break;
8366 case E_MIPS_ABI_O64:
8367 found_abi = MIPS_ABI_O64;
8368 break;
8369 case E_MIPS_ABI_EABI32:
8370 found_abi = MIPS_ABI_EABI32;
8371 break;
8372 case E_MIPS_ABI_EABI64:
8373 found_abi = MIPS_ABI_EABI64;
8374 break;
8375 default:
8376 if ((elf_flags & EF_MIPS_ABI2))
8377 found_abi = MIPS_ABI_N32;
8378 else
8379 found_abi = MIPS_ABI_UNKNOWN;
8380 break;
8381 }
8382
8383 /* GCC creates a pseudo-section whose name describes the ABI. */
8384 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8385 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8386
8387 /* If we have no useful BFD information, use the ABI from the last
8388 MIPS architecture (if there is one). */
8389 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8390 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8391
8392 /* Try the architecture for any hint of the correct ABI. */
8393 if (found_abi == MIPS_ABI_UNKNOWN
8394 && info.bfd_arch_info != NULL
8395 && info.bfd_arch_info->arch == bfd_arch_mips)
8396 {
8397 switch (info.bfd_arch_info->mach)
8398 {
8399 case bfd_mach_mips3900:
8400 found_abi = MIPS_ABI_EABI32;
8401 break;
8402 case bfd_mach_mips4100:
8403 case bfd_mach_mips5000:
8404 found_abi = MIPS_ABI_EABI64;
8405 break;
8406 case bfd_mach_mips8000:
8407 case bfd_mach_mips10000:
8408 /* On Irix, ELF64 executables use the N64 ABI. The
8409 pseudo-sections which describe the ABI aren't present
8410 on IRIX. (Even for executables created by gcc.) */
8411 if (info.abfd != NULL
8412 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8413 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8414 found_abi = MIPS_ABI_N64;
8415 else
8416 found_abi = MIPS_ABI_N32;
8417 break;
8418 }
8419 }
8420
8421 /* Default 64-bit objects to N64 instead of O32. */
8422 if (found_abi == MIPS_ABI_UNKNOWN
8423 && info.abfd != NULL
8424 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8425 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8426 found_abi = MIPS_ABI_N64;
8427
8428 if (gdbarch_debug)
8429 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8430 found_abi);
8431
8432 /* What has the user specified from the command line? */
8433 wanted_abi = global_mips_abi ();
8434 if (gdbarch_debug)
8435 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8436 wanted_abi);
8437
8438 /* Now that we have found what the ABI for this binary would be,
8439 check whether the user is overriding it. */
8440 if (wanted_abi != MIPS_ABI_UNKNOWN)
8441 mips_abi = wanted_abi;
8442 else if (found_abi != MIPS_ABI_UNKNOWN)
8443 mips_abi = found_abi;
8444 else
8445 mips_abi = MIPS_ABI_O32;
8446 if (gdbarch_debug)
8447 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8448 mips_abi);
8449
8450 /* Determine the default compressed ISA. */
8451 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8452 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8453 mips_isa = ISA_MICROMIPS;
8454 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8455 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8456 mips_isa = ISA_MIPS16;
8457 else
8458 mips_isa = global_mips_compression ();
8459 mips_compression_string = mips_compression_strings[mips_isa];
8460
8461 /* Also used when doing an architecture lookup. */
8462 if (gdbarch_debug)
8463 fprintf_unfiltered (gdb_stdlog,
8464 "mips_gdbarch_init: "
8465 "mips64_transfers_32bit_regs_p = %d\n",
8466 mips64_transfers_32bit_regs_p);
8467
8468 /* Determine the MIPS FPU type. */
8469 #ifdef HAVE_ELF
8470 if (info.abfd
8471 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8472 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8473 Tag_GNU_MIPS_ABI_FP);
8474 #endif /* HAVE_ELF */
8475
8476 if (!mips_fpu_type_auto)
8477 fpu_type = mips_fpu_type;
8478 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8479 {
8480 switch (elf_fpu_type)
8481 {
8482 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8483 fpu_type = MIPS_FPU_DOUBLE;
8484 break;
8485 case Val_GNU_MIPS_ABI_FP_SINGLE:
8486 fpu_type = MIPS_FPU_SINGLE;
8487 break;
8488 case Val_GNU_MIPS_ABI_FP_SOFT:
8489 default:
8490 /* Soft float or unknown. */
8491 fpu_type = MIPS_FPU_NONE;
8492 break;
8493 }
8494 }
8495 else if (info.bfd_arch_info != NULL
8496 && info.bfd_arch_info->arch == bfd_arch_mips)
8497 switch (info.bfd_arch_info->mach)
8498 {
8499 case bfd_mach_mips3900:
8500 case bfd_mach_mips4100:
8501 case bfd_mach_mips4111:
8502 case bfd_mach_mips4120:
8503 fpu_type = MIPS_FPU_NONE;
8504 break;
8505 case bfd_mach_mips4650:
8506 fpu_type = MIPS_FPU_SINGLE;
8507 break;
8508 default:
8509 fpu_type = MIPS_FPU_DOUBLE;
8510 break;
8511 }
8512 else if (arches != NULL)
8513 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8514 else
8515 fpu_type = MIPS_FPU_DOUBLE;
8516 if (gdbarch_debug)
8517 fprintf_unfiltered (gdb_stdlog,
8518 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8519
8520 /* Check for blatant incompatibilities. */
8521
8522 /* If we have only 32-bit registers, then we can't debug a 64-bit
8523 ABI. */
8524 if (info.target_desc
8525 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8526 && mips_abi != MIPS_ABI_EABI32
8527 && mips_abi != MIPS_ABI_O32)
8528 {
8529 if (tdesc_data != NULL)
8530 tdesc_data_cleanup (tdesc_data);
8531 return NULL;
8532 }
8533
8534 /* Try to find a pre-existing architecture. */
8535 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8536 arches != NULL;
8537 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8538 {
8539 /* MIPS needs to be pedantic about which ABI and the compressed
8540 ISA variation the object is using. */
8541 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8542 continue;
8543 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8544 continue;
8545 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8546 continue;
8547 /* Need to be pedantic about which register virtual size is
8548 used. */
8549 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8550 != mips64_transfers_32bit_regs_p)
8551 continue;
8552 /* Be pedantic about which FPU is selected. */
8553 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8554 continue;
8555
8556 if (tdesc_data != NULL)
8557 tdesc_data_cleanup (tdesc_data);
8558 return arches->gdbarch;
8559 }
8560
8561 /* Need a new architecture. Fill in a target specific vector. */
8562 tdep = XNEW (struct gdbarch_tdep);
8563 gdbarch = gdbarch_alloc (&info, tdep);
8564 tdep->elf_flags = elf_flags;
8565 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8566 tdep->found_abi = found_abi;
8567 tdep->mips_abi = mips_abi;
8568 tdep->mips_isa = mips_isa;
8569 tdep->mips_fpu_type = fpu_type;
8570 tdep->register_size_valid_p = 0;
8571 tdep->register_size = 0;
8572
8573 if (info.target_desc)
8574 {
8575 /* Some useful properties can be inferred from the target. */
8576 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8577 {
8578 tdep->register_size_valid_p = 1;
8579 tdep->register_size = 4;
8580 }
8581 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8582 {
8583 tdep->register_size_valid_p = 1;
8584 tdep->register_size = 8;
8585 }
8586 }
8587
8588 /* Initially set everything according to the default ABI/ISA. */
8589 set_gdbarch_short_bit (gdbarch, 16);
8590 set_gdbarch_int_bit (gdbarch, 32);
8591 set_gdbarch_float_bit (gdbarch, 32);
8592 set_gdbarch_double_bit (gdbarch, 64);
8593 set_gdbarch_long_double_bit (gdbarch, 64);
8594 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8595 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8596 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8597
8598 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8599 mips_ax_pseudo_register_collect);
8600 set_gdbarch_ax_pseudo_register_push_stack
8601 (gdbarch, mips_ax_pseudo_register_push_stack);
8602
8603 set_gdbarch_elf_make_msymbol_special (gdbarch,
8604 mips_elf_make_msymbol_special);
8605 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8606 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8607 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8608
8609 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8610 *regnum = mips_regnum;
8611 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8612 set_gdbarch_num_regs (gdbarch, num_regs);
8613 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8614 set_gdbarch_register_name (gdbarch, mips_register_name);
8615 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8616 tdep->mips_processor_reg_names = reg_names;
8617 tdep->regnum = regnum;
8618
8619 switch (mips_abi)
8620 {
8621 case MIPS_ABI_O32:
8622 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8623 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8624 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8625 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8626 tdep->default_mask_address_p = 0;
8627 set_gdbarch_long_bit (gdbarch, 32);
8628 set_gdbarch_ptr_bit (gdbarch, 32);
8629 set_gdbarch_long_long_bit (gdbarch, 64);
8630 break;
8631 case MIPS_ABI_O64:
8632 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8633 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8634 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8635 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8636 tdep->default_mask_address_p = 0;
8637 set_gdbarch_long_bit (gdbarch, 32);
8638 set_gdbarch_ptr_bit (gdbarch, 32);
8639 set_gdbarch_long_long_bit (gdbarch, 64);
8640 break;
8641 case MIPS_ABI_EABI32:
8642 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8643 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8644 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8645 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8646 tdep->default_mask_address_p = 0;
8647 set_gdbarch_long_bit (gdbarch, 32);
8648 set_gdbarch_ptr_bit (gdbarch, 32);
8649 set_gdbarch_long_long_bit (gdbarch, 64);
8650 break;
8651 case MIPS_ABI_EABI64:
8652 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8653 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8654 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8655 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8656 tdep->default_mask_address_p = 0;
8657 set_gdbarch_long_bit (gdbarch, 64);
8658 set_gdbarch_ptr_bit (gdbarch, 64);
8659 set_gdbarch_long_long_bit (gdbarch, 64);
8660 break;
8661 case MIPS_ABI_N32:
8662 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8663 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8664 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8665 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8666 tdep->default_mask_address_p = 0;
8667 set_gdbarch_long_bit (gdbarch, 32);
8668 set_gdbarch_ptr_bit (gdbarch, 32);
8669 set_gdbarch_long_long_bit (gdbarch, 64);
8670 set_gdbarch_long_double_bit (gdbarch, 128);
8671 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8672 break;
8673 case MIPS_ABI_N64:
8674 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8675 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8676 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8677 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8678 tdep->default_mask_address_p = 0;
8679 set_gdbarch_long_bit (gdbarch, 64);
8680 set_gdbarch_ptr_bit (gdbarch, 64);
8681 set_gdbarch_long_long_bit (gdbarch, 64);
8682 set_gdbarch_long_double_bit (gdbarch, 128);
8683 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8684 break;
8685 default:
8686 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8687 }
8688
8689 /* GCC creates a pseudo-section whose name specifies the size of
8690 longs, since -mlong32 or -mlong64 may be used independent of
8691 other options. How those options affect pointer sizes is ABI and
8692 architecture dependent, so use them to override the default sizes
8693 set by the ABI. This table shows the relationship between ABI,
8694 -mlongXX, and size of pointers:
8695
8696 ABI -mlongXX ptr bits
8697 --- -------- --------
8698 o32 32 32
8699 o32 64 32
8700 n32 32 32
8701 n32 64 64
8702 o64 32 32
8703 o64 64 64
8704 n64 32 32
8705 n64 64 64
8706 eabi32 32 32
8707 eabi32 64 32
8708 eabi64 32 32
8709 eabi64 64 64
8710
8711 Note that for o32 and eabi32, pointers are always 32 bits
8712 regardless of any -mlongXX option. For all others, pointers and
8713 longs are the same, as set by -mlongXX or set by defaults. */
8714
8715 if (info.abfd != NULL)
8716 {
8717 int long_bit = 0;
8718
8719 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8720 if (long_bit)
8721 {
8722 set_gdbarch_long_bit (gdbarch, long_bit);
8723 switch (mips_abi)
8724 {
8725 case MIPS_ABI_O32:
8726 case MIPS_ABI_EABI32:
8727 break;
8728 case MIPS_ABI_N32:
8729 case MIPS_ABI_O64:
8730 case MIPS_ABI_N64:
8731 case MIPS_ABI_EABI64:
8732 set_gdbarch_ptr_bit (gdbarch, long_bit);
8733 break;
8734 default:
8735 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8736 }
8737 }
8738 }
8739
8740 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8741 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8742 comment:
8743
8744 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8745 flag in object files because to do so would make it impossible to
8746 link with libraries compiled without "-gp32". This is
8747 unnecessarily restrictive.
8748
8749 We could solve this problem by adding "-gp32" multilibs to gcc,
8750 but to set this flag before gcc is built with such multilibs will
8751 break too many systems.''
8752
8753 But even more unhelpfully, the default linker output target for
8754 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8755 for 64-bit programs - you need to change the ABI to change this,
8756 and not all gcc targets support that currently. Therefore using
8757 this flag to detect 32-bit mode would do the wrong thing given
8758 the current gcc - it would make GDB treat these 64-bit programs
8759 as 32-bit programs by default. */
8760
8761 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8762 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8763
8764 /* Add/remove bits from an address. The MIPS needs be careful to
8765 ensure that all 32 bit addresses are sign extended to 64 bits. */
8766 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8767
8768 /* Unwind the frame. */
8769 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8770 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8771 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8772
8773 /* Map debug register numbers onto internal register numbers. */
8774 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8775 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8776 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8777 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8778 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8779 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8780
8781 /* MIPS version of CALL_DUMMY. */
8782
8783 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8784 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8785 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8786
8787 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8788
8789 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8790 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8791 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8792
8793 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8794 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
8795 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8796 mips_remote_breakpoint_from_pc);
8797 set_gdbarch_adjust_breakpoint_address (gdbarch,
8798 mips_adjust_breakpoint_address);
8799
8800 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8801
8802 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8803
8804 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8805 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8806 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8807
8808 set_gdbarch_register_type (gdbarch, mips_register_type);
8809
8810 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8811
8812 if (mips_abi == MIPS_ABI_N32)
8813 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8814 else if (mips_abi == MIPS_ABI_N64)
8815 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8816 else
8817 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8818
8819 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8820 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8821 need to all be folded into the target vector. Since they are
8822 being used as guards for target_stopped_by_watchpoint, why not have
8823 target_stopped_by_watchpoint return the type of watchpoint that the code
8824 is sitting on? */
8825 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8826
8827 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8828
8829 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8830 to support MIPS16. This is a bad thing. Make sure not to do it
8831 if we have an OS ABI that actually supports shared libraries, since
8832 shared library support is more important. If we have an OS someday
8833 that supports both shared libraries and MIPS16, we'll have to find
8834 a better place for these.
8835 macro/2012-04-25: But that applies to return trampolines only and
8836 currently no MIPS OS ABI uses shared libraries that have them. */
8837 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8838
8839 set_gdbarch_single_step_through_delay (gdbarch,
8840 mips_single_step_through_delay);
8841
8842 /* Virtual tables. */
8843 set_gdbarch_vbit_in_delta (gdbarch, 1);
8844
8845 mips_register_g_packet_guesses (gdbarch);
8846
8847 /* Hook in OS ABI-specific overrides, if they have been registered. */
8848 info.tdep_info = tdesc_data;
8849 gdbarch_init_osabi (info, gdbarch);
8850
8851 /* The hook may have adjusted num_regs, fetch the final value and
8852 set pc_regnum and sp_regnum now that it has been fixed. */
8853 num_regs = gdbarch_num_regs (gdbarch);
8854 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8855 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8856
8857 /* Unwind the frame. */
8858 dwarf2_append_unwinders (gdbarch);
8859 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8860 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8861 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8862 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8863 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8864 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8865 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8866 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8867 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8868
8869 if (tdesc_data)
8870 {
8871 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8872 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8873
8874 /* Override the normal target description methods to handle our
8875 dual real and pseudo registers. */
8876 set_gdbarch_register_name (gdbarch, mips_register_name);
8877 set_gdbarch_register_reggroup_p (gdbarch,
8878 mips_tdesc_register_reggroup_p);
8879
8880 num_regs = gdbarch_num_regs (gdbarch);
8881 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8882 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8883 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8884 }
8885
8886 /* Add ABI-specific aliases for the registers. */
8887 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8888 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8889 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8890 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8891 else
8892 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8893 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8894 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8895
8896 /* Add some other standard aliases. */
8897 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8898 user_reg_add (gdbarch, mips_register_aliases[i].name,
8899 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8900
8901 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8902 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8903 value_of_mips_user_reg,
8904 &mips_numeric_register_aliases[i].regnum);
8905
8906 return gdbarch;
8907 }
8908
8909 static void
8910 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8911 {
8912 struct gdbarch_info info;
8913
8914 /* Force the architecture to update, and (if it's a MIPS architecture)
8915 mips_gdbarch_init will take care of the rest. */
8916 gdbarch_info_init (&info);
8917 gdbarch_update_p (info);
8918 }
8919
8920 /* Print out which MIPS ABI is in use. */
8921
8922 static void
8923 show_mips_abi (struct ui_file *file,
8924 int from_tty,
8925 struct cmd_list_element *ignored_cmd,
8926 const char *ignored_value)
8927 {
8928 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8929 fprintf_filtered
8930 (file,
8931 "The MIPS ABI is unknown because the current architecture "
8932 "is not MIPS.\n");
8933 else
8934 {
8935 enum mips_abi global_abi = global_mips_abi ();
8936 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8937 const char *actual_abi_str = mips_abi_strings[actual_abi];
8938
8939 if (global_abi == MIPS_ABI_UNKNOWN)
8940 fprintf_filtered
8941 (file,
8942 "The MIPS ABI is set automatically (currently \"%s\").\n",
8943 actual_abi_str);
8944 else if (global_abi == actual_abi)
8945 fprintf_filtered
8946 (file,
8947 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8948 actual_abi_str);
8949 else
8950 {
8951 /* Probably shouldn't happen... */
8952 fprintf_filtered (file,
8953 "The (auto detected) MIPS ABI \"%s\" is in use "
8954 "even though the user setting was \"%s\".\n",
8955 actual_abi_str, mips_abi_strings[global_abi]);
8956 }
8957 }
8958 }
8959
8960 /* Print out which MIPS compressed ISA encoding is used. */
8961
8962 static void
8963 show_mips_compression (struct ui_file *file, int from_tty,
8964 struct cmd_list_element *c, const char *value)
8965 {
8966 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8967 value);
8968 }
8969
8970 static void
8971 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8972 {
8973 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8974 if (tdep != NULL)
8975 {
8976 int ef_mips_arch;
8977 int ef_mips_32bitmode;
8978 /* Determine the ISA. */
8979 switch (tdep->elf_flags & EF_MIPS_ARCH)
8980 {
8981 case E_MIPS_ARCH_1:
8982 ef_mips_arch = 1;
8983 break;
8984 case E_MIPS_ARCH_2:
8985 ef_mips_arch = 2;
8986 break;
8987 case E_MIPS_ARCH_3:
8988 ef_mips_arch = 3;
8989 break;
8990 case E_MIPS_ARCH_4:
8991 ef_mips_arch = 4;
8992 break;
8993 default:
8994 ef_mips_arch = 0;
8995 break;
8996 }
8997 /* Determine the size of a pointer. */
8998 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8999 fprintf_unfiltered (file,
9000 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
9001 tdep->elf_flags);
9002 fprintf_unfiltered (file,
9003 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
9004 ef_mips_32bitmode);
9005 fprintf_unfiltered (file,
9006 "mips_dump_tdep: ef_mips_arch = %d\n",
9007 ef_mips_arch);
9008 fprintf_unfiltered (file,
9009 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
9010 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
9011 fprintf_unfiltered (file,
9012 "mips_dump_tdep: "
9013 "mips_mask_address_p() %d (default %d)\n",
9014 mips_mask_address_p (tdep),
9015 tdep->default_mask_address_p);
9016 }
9017 fprintf_unfiltered (file,
9018 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
9019 MIPS_DEFAULT_FPU_TYPE,
9020 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
9021 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
9022 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
9023 : "???"));
9024 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
9025 MIPS_EABI (gdbarch));
9026 fprintf_unfiltered (file,
9027 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
9028 MIPS_FPU_TYPE (gdbarch),
9029 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
9030 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
9031 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
9032 : "???"));
9033 }
9034
9035 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
9036
9037 void
9038 _initialize_mips_tdep (void)
9039 {
9040 static struct cmd_list_element *mipsfpulist = NULL;
9041 struct cmd_list_element *c;
9042
9043 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
9044 if (MIPS_ABI_LAST + 1
9045 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
9046 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
9047
9048 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
9049
9050 mips_pdr_data = register_objfile_data ();
9051
9052 /* Create feature sets with the appropriate properties. The values
9053 are not important. */
9054 mips_tdesc_gp32 = allocate_target_description ();
9055 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
9056
9057 mips_tdesc_gp64 = allocate_target_description ();
9058 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
9059
9060 /* Add root prefix command for all "set mips"/"show mips" commands. */
9061 add_prefix_cmd ("mips", no_class, set_mips_command,
9062 _("Various MIPS specific commands."),
9063 &setmipscmdlist, "set mips ", 0, &setlist);
9064
9065 add_prefix_cmd ("mips", no_class, show_mips_command,
9066 _("Various MIPS specific commands."),
9067 &showmipscmdlist, "show mips ", 0, &showlist);
9068
9069 /* Allow the user to override the ABI. */
9070 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9071 &mips_abi_string, _("\
9072 Set the MIPS ABI used by this program."), _("\
9073 Show the MIPS ABI used by this program."), _("\
9074 This option can be set to one of:\n\
9075 auto - the default ABI associated with the current binary\n\
9076 o32\n\
9077 o64\n\
9078 n32\n\
9079 n64\n\
9080 eabi32\n\
9081 eabi64"),
9082 mips_abi_update,
9083 show_mips_abi,
9084 &setmipscmdlist, &showmipscmdlist);
9085
9086 /* Allow the user to set the ISA to assume for compressed code if ELF
9087 file flags don't tell or there is no program file selected. This
9088 setting is updated whenever unambiguous ELF file flags are interpreted,
9089 and carried over to subsequent sessions. */
9090 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9091 &mips_compression_string, _("\
9092 Set the compressed ISA encoding used by MIPS code."), _("\
9093 Show the compressed ISA encoding used by MIPS code."), _("\
9094 Select the compressed ISA encoding used in functions that have no symbol\n\
9095 information available. The encoding can be set to either of:\n\
9096 mips16\n\
9097 micromips\n\
9098 and is updated automatically from ELF file flags if available."),
9099 mips_abi_update,
9100 show_mips_compression,
9101 &setmipscmdlist, &showmipscmdlist);
9102
9103 /* Let the user turn off floating point and set the fence post for
9104 heuristic_proc_start. */
9105
9106 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9107 _("Set use of MIPS floating-point coprocessor."),
9108 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9109 add_cmd ("single", class_support, set_mipsfpu_single_command,
9110 _("Select single-precision MIPS floating-point coprocessor."),
9111 &mipsfpulist);
9112 add_cmd ("double", class_support, set_mipsfpu_double_command,
9113 _("Select double-precision MIPS floating-point coprocessor."),
9114 &mipsfpulist);
9115 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9116 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9117 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9118 add_cmd ("none", class_support, set_mipsfpu_none_command,
9119 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9120 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9121 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9122 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9123 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9124 _("Select MIPS floating-point coprocessor automatically."),
9125 &mipsfpulist);
9126 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9127 _("Show current use of MIPS floating-point coprocessor target."),
9128 &showlist);
9129
9130 /* We really would like to have both "0" and "unlimited" work, but
9131 command.c doesn't deal with that. So make it a var_zinteger
9132 because the user can always use "999999" or some such for unlimited. */
9133 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9134 &heuristic_fence_post, _("\
9135 Set the distance searched for the start of a function."), _("\
9136 Show the distance searched for the start of a function."), _("\
9137 If you are debugging a stripped executable, GDB needs to search through the\n\
9138 program for the start of a function. This command sets the distance of the\n\
9139 search. The only need to set it is when debugging a stripped executable."),
9140 reinit_frame_cache_sfunc,
9141 NULL, /* FIXME: i18n: The distance searched for
9142 the start of a function is %s. */
9143 &setlist, &showlist);
9144
9145 /* Allow the user to control whether the upper bits of 64-bit
9146 addresses should be zeroed. */
9147 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9148 &mask_address_var, _("\
9149 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9150 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9151 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9152 allow GDB to determine the correct value."),
9153 NULL, show_mask_address,
9154 &setmipscmdlist, &showmipscmdlist);
9155
9156 /* Allow the user to control the size of 32 bit registers within the
9157 raw remote packet. */
9158 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9159 &mips64_transfers_32bit_regs_p, _("\
9160 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9161 _("\
9162 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9163 _("\
9164 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9165 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9166 64 bits for others. Use \"off\" to disable compatibility mode"),
9167 set_mips64_transfers_32bit_regs,
9168 NULL, /* FIXME: i18n: Compatibility with 64-bit
9169 MIPS target that transfers 32-bit
9170 quantities is %s. */
9171 &setlist, &showlist);
9172
9173 /* Debug this files internals. */
9174 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9175 &mips_debug, _("\
9176 Set mips debugging."), _("\
9177 Show mips debugging."), _("\
9178 When non-zero, mips specific debugging is enabled."),
9179 NULL,
9180 NULL, /* FIXME: i18n: Mips debugging is
9181 currently %s. */
9182 &setdebuglist, &showdebuglist);
9183 }
This page took 0.24615 seconds and 4 git commands to generate.