* sparc-tdep.c (sparc_extract_struct_value_address): Make it
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
5 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "value.h"
29 #include "gdbcmd.h"
30 #include "language.h"
31 #include "gdbcore.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdbtypes.h"
35 #include "target.h"
36
37 #include "opcode/mips.h"
38
39 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
40
41 /* FIXME: Put this declaration in frame.h. */
42 extern struct obstack frame_cache_obstack;
43
44 #if 0
45 static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
46 #endif
47
48 int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
49
50 static void mips_print_register PARAMS ((int, int));
51
52 static mips_extra_func_info_t
53 heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
54
55 static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
56
57 static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
58
59 static void mips_set_fpu_command PARAMS ((char *, int,
60 struct cmd_list_element *));
61
62 static void mips_show_fpu_command PARAMS ((char *, int,
63 struct cmd_list_element *));
64
65 void mips_set_processor_type_command PARAMS ((char *, int));
66
67 int mips_set_processor_type PARAMS ((char *));
68
69 static void mips_show_processor_type_command PARAMS ((char *, int));
70
71 static void reinit_frame_cache_sfunc PARAMS ((char *, int,
72 struct cmd_list_element *));
73
74 static mips_extra_func_info_t
75 find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame));
76
77 static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
78 mips_extra_func_info_t proc_desc));
79
80 /* This value is the model of MIPS in use. It is derived from the value
81 of the PrID register. */
82
83 char *mips_processor_type;
84
85 char *tmp_mips_processor_type;
86
87 /* Some MIPS boards don't support floating point, so we permit the
88 user to turn it off. */
89
90 enum mips_fpu_type mips_fpu;
91
92 static char *mips_fpu_string;
93
94 /* A set of original names, to be used when restoring back to generic
95 registers from a specific set. */
96
97 char *mips_generic_reg_names[] = REGISTER_NAMES;
98
99 /* Names of IDT R3041 registers. */
100
101 char *mips_r3041_reg_names[] = {
102 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
103 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
104 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
105 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
106 "sr", "lo", "hi", "bad", "cause","pc",
107 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
108 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
109 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
110 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
111 "fsr", "fir", "fp", "",
112 "", "", "bus", "ccfg", "", "", "", "",
113 "", "", "port", "cmp", "", "", "epc", "prid",
114 };
115
116 /* Names of IDT R3051 registers. */
117
118 char *mips_r3051_reg_names[] = {
119 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
120 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
121 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
122 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
123 "sr", "lo", "hi", "bad", "cause","pc",
124 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
125 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
126 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
127 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
128 "fsr", "fir", "fp", "",
129 "inx", "rand", "elo", "", "ctxt", "", "", "",
130 "", "", "ehi", "", "", "", "epc", "prid",
131 };
132
133 /* Names of IDT R3081 registers. */
134
135 char *mips_r3081_reg_names[] = {
136 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
137 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
138 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
139 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
140 "sr", "lo", "hi", "bad", "cause","pc",
141 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
142 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
143 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
144 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
145 "fsr", "fir", "fp", "",
146 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
147 "", "", "ehi", "", "", "", "epc", "prid",
148 };
149
150 /* Names of LSI 33k registers. */
151
152 char *mips_lsi33k_reg_names[] = {
153 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
154 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
155 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
156 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
157 "epc", "hi", "lo", "sr", "cause","badvaddr",
158 "dcic", "bpc", "bda", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
162 "", "", "", "",
163 "", "", "", "", "", "", "", "",
164 "", "", "", "", "", "", "", "",
165 };
166
167 struct {
168 char *name;
169 char **regnames;
170 } mips_processor_type_table[] = {
171 { "generic", mips_generic_reg_names },
172 { "r3041", mips_r3041_reg_names },
173 { "r3051", mips_r3051_reg_names },
174 { "r3071", mips_r3081_reg_names },
175 { "r3081", mips_r3081_reg_names },
176 { "lsi33k", mips_lsi33k_reg_names },
177 { NULL, NULL }
178 };
179
180 /* Table to translate MIPS16 register field to actual register number. */
181 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
182
183 /* Heuristic_proc_start may hunt through the text section for a long
184 time across a 2400 baud serial line. Allows the user to limit this
185 search. */
186
187 static unsigned int heuristic_fence_post = 0;
188
189 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
190 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
191 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
192 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
193 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
194 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
195 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
196 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
197 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
198 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
199 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
200 #define _PROC_MAGIC_ 0x0F0F0F0F
201 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
202 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
203
204 struct linked_proc_info
205 {
206 struct mips_extra_func_info info;
207 struct linked_proc_info *next;
208 } *linked_proc_desc_table = NULL;
209
210
211 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
212
213 static int
214 pc_is_mips16 (bfd_vma memaddr)
215 {
216 struct minimal_symbol *sym;
217
218 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
219 if (IS_MIPS16_ADDR (memaddr))
220 return 1;
221
222 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
223 the high bit of the info field. Use this to decide if the function is
224 MIPS16 or normal MIPS. */
225 sym = lookup_minimal_symbol_by_pc (memaddr);
226 if (sym)
227 return MSYMBOL_IS_SPECIAL (sym);
228 else
229 return 0;
230 }
231
232
233 /* This returns the PC of the first inst after the prologue. If we can't
234 find the prologue, then return 0. */
235
236 static CORE_ADDR
237 after_prologue (pc, proc_desc)
238 CORE_ADDR pc;
239 mips_extra_func_info_t proc_desc;
240 {
241 struct symtab_and_line sal;
242 CORE_ADDR func_addr, func_end;
243
244 if (!proc_desc)
245 proc_desc = find_proc_desc (pc, NULL);
246
247 if (proc_desc)
248 {
249 /* If function is frameless, then we need to do it the hard way. I
250 strongly suspect that frameless always means prologueless... */
251 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
252 && PROC_FRAME_OFFSET (proc_desc) == 0)
253 return 0;
254 }
255
256 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
257 return 0; /* Unknown */
258
259 sal = find_pc_line (func_addr, 0);
260
261 if (sal.end < func_end)
262 return sal.end;
263
264 /* The line after the prologue is after the end of the function. In this
265 case, tell the caller to find the prologue the hard way. */
266
267 return 0;
268 }
269
270 /* Decode a MIPS32 instruction that saves a register in the stack, and
271 set the appropriate bit in the general register mask or float register mask
272 to indicate which register is saved. This is a helper function
273 for mips_find_saved_regs. */
274
275 static void
276 mips32_decode_reg_save (inst, gen_mask, float_mask)
277 t_inst inst;
278 unsigned long *gen_mask;
279 unsigned long *float_mask;
280 {
281 int reg;
282
283 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
284 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
285 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
286 {
287 /* It might be possible to use the instruction to
288 find the offset, rather than the code below which
289 is based on things being in a certain order in the
290 frame, but figuring out what the instruction's offset
291 is relative to might be a little tricky. */
292 reg = (inst & 0x001f0000) >> 16;
293 *gen_mask |= (1 << reg);
294 }
295 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
296 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
297 || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */
298
299 {
300 reg = ((inst & 0x001f0000) >> 16);
301 *float_mask |= (1 << reg);
302 }
303 }
304
305 /* Decode a MIPS16 instruction that saves a register in the stack, and
306 set the appropriate bit in the general register or float register mask
307 to indicate which register is saved. This is a helper function
308 for mips_find_saved_regs. */
309
310 static void
311 mips16_decode_reg_save (inst, gen_mask)
312 t_inst inst;
313 unsigned long *gen_mask;
314 {
315 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
316 {
317 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
318 *gen_mask |= (1 << reg);
319 }
320 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
321 {
322 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
323 *gen_mask |= (1 << reg);
324 }
325 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
326 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
327 *gen_mask |= (1 << RA_REGNUM);
328 }
329
330
331 /* Fetch and return instruction from the specified location. If the PC
332 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
333
334 static t_inst
335 mips_fetch_instruction (addr)
336 CORE_ADDR addr;
337 {
338 char buf[MIPS_INSTLEN];
339 int instlen;
340 int status;
341
342 if (pc_is_mips16 (addr))
343 {
344 instlen = MIPS16_INSTLEN;
345 addr = UNMAKE_MIPS16_ADDR (addr);
346 }
347 else
348 instlen = MIPS_INSTLEN;
349 status = read_memory_nobpt (addr, buf, instlen);
350 if (status)
351 memory_error (status, addr);
352 return extract_unsigned_integer (buf, instlen);
353 }
354
355
356 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
357 NULL). */
358
359 void
360 mips_find_saved_regs (fci)
361 struct frame_info *fci;
362 {
363 int ireg;
364 CORE_ADDR reg_position;
365 /* r0 bit means kernel trap */
366 int kernel_trap;
367 /* What registers have been saved? Bitmasks. */
368 unsigned long gen_mask, float_mask;
369 mips_extra_func_info_t proc_desc;
370 t_inst inst;
371
372 fci->saved_regs = (struct frame_saved_regs *)
373 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
374 memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
375
376 /* If it is the frame for sigtramp, the saved registers are located
377 in a sigcontext structure somewhere on the stack.
378 If the stack layout for sigtramp changes we might have to change these
379 constants and the companion fixup_sigtramp in mdebugread.c */
380 #ifndef SIGFRAME_BASE
381 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
382 above the sigtramp frame. */
383 #define SIGFRAME_BASE MIPS_REGSIZE
384 /* FIXME! Are these correct?? */
385 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
386 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
387 #define SIGFRAME_FPREGSAVE_OFF \
388 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
389 #endif
390 #ifndef SIGFRAME_REG_SIZE
391 /* FIXME! Is this correct?? */
392 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
393 #endif
394 if (fci->signal_handler_caller)
395 {
396 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
397 {
398 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
399 + ireg * SIGFRAME_REG_SIZE;
400 fci->saved_regs->regs[ireg] = reg_position;
401 }
402 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
403 {
404 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
405 + ireg * SIGFRAME_REG_SIZE;
406 fci->saved_regs->regs[FP0_REGNUM + ireg] = reg_position;
407 }
408 fci->saved_regs->regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
409 return;
410 }
411
412 proc_desc = fci->proc_desc;
413 if (proc_desc == NULL)
414 /* I'm not sure how/whether this can happen. Normally when we can't
415 find a proc_desc, we "synthesize" one using heuristic_proc_desc
416 and set the saved_regs right away. */
417 return;
418
419 kernel_trap = PROC_REG_MASK(proc_desc) & 1;
420 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
421 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
422
423 if (/* In any frame other than the innermost or a frame interrupted by
424 a signal, we assume that all registers have been saved.
425 This assumes that all register saves in a function happen before
426 the first function call. */
427 (fci->next == NULL || fci->next->signal_handler_caller)
428
429 /* In a dummy frame we know exactly where things are saved. */
430 && !PROC_DESC_IS_DUMMY (proc_desc)
431
432 /* Don't bother unless we are inside a function prologue. Outside the
433 prologue, we know where everything is. */
434
435 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
436
437 /* Not sure exactly what kernel_trap means, but if it means
438 the kernel saves the registers without a prologue doing it,
439 we better not examine the prologue to see whether registers
440 have been saved yet. */
441 && !kernel_trap)
442 {
443 /* We need to figure out whether the registers that the proc_desc
444 claims are saved have been saved yet. */
445
446 CORE_ADDR addr;
447
448 /* Bitmasks; set if we have found a save for the register. */
449 unsigned long gen_save_found = 0;
450 unsigned long float_save_found = 0;
451 int instlen;
452
453 /* If the address is odd, assume this is MIPS16 code. */
454 addr = PROC_LOW_ADDR (proc_desc);
455 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
456
457 /* Scan through this function's instructions preceding the current
458 PC, and look for those that save registers. */
459 while (addr < fci->pc)
460 {
461 inst = mips_fetch_instruction (addr);
462 if (pc_is_mips16 (addr))
463 mips16_decode_reg_save (inst, &gen_save_found);
464 else
465 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
466 addr += instlen;
467 }
468 gen_mask = gen_save_found;
469 float_mask = float_save_found;
470 }
471
472 /* Fill in the offsets for the registers which gen_mask says
473 were saved. */
474 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
475 for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1)
476 if (gen_mask & 0x80000000)
477 {
478 fci->saved_regs->regs[ireg] = reg_position;
479 reg_position -= MIPS_REGSIZE;
480 }
481
482 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
483 of that normally used by gcc. Therefore, we have to fetch the first
484 instruction of the function, and if it's an entry instruction that
485 saves $s0 or $s1, correct their saved addresses. */
486 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
487 {
488 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
489 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
490 {
491 int reg;
492 int sreg_count = (inst >> 6) & 3;
493
494 /* Check if the ra register was pushed on the stack. */
495 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
496 if (inst & 0x20)
497 reg_position -= MIPS_REGSIZE;
498
499 /* Check if the s0 and s1 registers were pushed on the stack. */
500 for (reg = 16; reg < sreg_count+16; reg++)
501 {
502 fci->saved_regs->regs[reg] = reg_position;
503 reg_position -= MIPS_REGSIZE;
504 }
505 }
506 }
507
508 /* Fill in the offsets for the registers which float_mask says
509 were saved. */
510 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
511
512 /* The freg_offset points to where the first *double* register
513 is saved. So skip to the high-order word. */
514 if (! GDB_TARGET_IS_MIPS64)
515 reg_position += MIPS_REGSIZE;
516
517 /* Fill in the offsets for the float registers which float_mask says
518 were saved. */
519 for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1)
520 if (float_mask & 0x80000000)
521 {
522 fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
523 reg_position -= MIPS_REGSIZE;
524 }
525
526 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[RA_REGNUM];
527 }
528
529 static CORE_ADDR
530 read_next_frame_reg(fi, regno)
531 struct frame_info *fi;
532 int regno;
533 {
534 for (; fi; fi = fi->next)
535 {
536 /* We have to get the saved sp from the sigcontext
537 if it is a signal handler frame. */
538 if (regno == SP_REGNUM && !fi->signal_handler_caller)
539 return fi->frame;
540 else
541 {
542 if (fi->saved_regs == NULL)
543 mips_find_saved_regs (fi);
544 if (fi->saved_regs->regs[regno])
545 return read_memory_integer(fi->saved_regs->regs[regno], MIPS_REGSIZE);
546 }
547 }
548 return read_register (regno);
549 }
550
551 /* mips_addr_bits_remove - remove useless address bits */
552
553 CORE_ADDR
554 mips_addr_bits_remove (addr)
555 CORE_ADDR addr;
556 {
557 #if GDB_TARGET_IS_MIPS64
558 if ((addr >> 32 == (CORE_ADDR)0xffffffff)
559 && (strcmp (target_shortname,"pmon")==0
560 || strcmp (target_shortname,"ddb")==0
561 || strcmp (target_shortname,"sim")==0))
562 {
563 /* This hack is a work-around for existing boards using PMON,
564 the simulator, and any other 64-bit targets that doesn't have
565 true 64-bit addressing. On these targets, the upper 32 bits
566 of addresses are ignored by the hardware. Thus, the PC or SP
567 are likely to have been sign extended to all 1s by instruction
568 sequences that load 32-bit addresses. For example, a typical
569 piece of code that loads an address is this:
570 lui $r2, <upper 16 bits>
571 ori $r2, <lower 16 bits>
572 But the lui sign-extends the value such that the upper 32 bits
573 may be all 1s. The workaround is simply to mask off these bits.
574 In the future, gcc may be changed to support true 64-bit
575 addressing, and this masking will have to be disabled. */
576 addr &= (CORE_ADDR)0xffffffff;
577 }
578 #else
579 /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
580 BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
581 So we still have to mask off useless bits from addresses. */
582 addr &= (CORE_ADDR)0xffffffff;
583 #endif
584
585 return addr;
586 }
587
588 void
589 mips_init_frame_pc_first (fromleaf, prev)
590 int fromleaf;
591 struct frame_info *prev;
592 {
593 CORE_ADDR pc, tmp;
594
595 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
596 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
597 tmp = mips_skip_stub (pc);
598 prev->pc = tmp ? tmp : pc;
599 }
600
601
602 CORE_ADDR
603 mips_frame_saved_pc(frame)
604 struct frame_info *frame;
605 {
606 CORE_ADDR saved_pc;
607 mips_extra_func_info_t proc_desc = frame->proc_desc;
608 /* We have to get the saved pc from the sigcontext
609 if it is a signal handler frame. */
610 int pcreg = frame->signal_handler_caller ? PC_REGNUM
611 : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
612
613 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
614 saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE);
615 else
616 saved_pc = read_next_frame_reg(frame, pcreg);
617
618 return ADDR_BITS_REMOVE (saved_pc);
619 }
620
621 static struct mips_extra_func_info temp_proc_desc;
622 static struct frame_saved_regs temp_saved_regs;
623
624 /* Set a register's saved stack address in temp_saved_regs. If an address
625 has already been set for this register, do nothing; this way we will
626 only recognize the first save of a given register in a function prologue.
627 This is a helper function for mips{16,32}_heuristic_proc_desc. */
628
629 static void
630 set_reg_offset (regno, offset)
631 int regno;
632 CORE_ADDR offset;
633 {
634 if (temp_saved_regs.regs[regno] == 0)
635 temp_saved_regs.regs[regno] = offset;
636 }
637
638
639 /* This fencepost looks highly suspicious to me. Removing it also
640 seems suspicious as it could affect remote debugging across serial
641 lines. */
642
643 static CORE_ADDR
644 heuristic_proc_start(pc)
645 CORE_ADDR pc;
646 {
647 CORE_ADDR start_pc;
648 CORE_ADDR fence;
649 int instlen;
650 int seen_adjsp = 0;
651
652 pc = ADDR_BITS_REMOVE (pc);
653 start_pc = pc;
654 fence = start_pc - heuristic_fence_post;
655 if (start_pc == 0) return 0;
656
657 if (heuristic_fence_post == UINT_MAX
658 || fence < VM_MIN_ADDRESS)
659 fence = VM_MIN_ADDRESS;
660
661 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
662
663 /* search back for previous return */
664 for (start_pc -= instlen; ; start_pc -= instlen)
665 if (start_pc < fence)
666 {
667 /* It's not clear to me why we reach this point when
668 stop_soon_quietly, but with this test, at least we
669 don't print out warnings for every child forked (eg, on
670 decstation). 22apr93 rich@cygnus.com. */
671 if (!stop_soon_quietly)
672 {
673 static int blurb_printed = 0;
674
675 if (fence == VM_MIN_ADDRESS)
676 warning("Hit beginning of text section without finding");
677 else
678 warning("Hit heuristic-fence-post without finding");
679
680 warning("enclosing function for address 0x%s", paddr_nz (pc));
681 if (!blurb_printed)
682 {
683 printf_filtered ("\
684 This warning occurs if you are debugging a function without any symbols\n\
685 (for example, in a stripped executable). In that case, you may wish to\n\
686 increase the size of the search with the `set heuristic-fence-post' command.\n\
687 \n\
688 Otherwise, you told GDB there was a function where there isn't one, or\n\
689 (more likely) you have encountered a bug in GDB.\n");
690 blurb_printed = 1;
691 }
692 }
693
694 return 0;
695 }
696 else if (pc_is_mips16 (start_pc))
697 {
698 unsigned short inst;
699
700 /* On MIPS16, any one of the following is likely to be the
701 start of a function:
702 entry
703 addiu sp,-n
704 daddiu sp,-n
705 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
706 inst = mips_fetch_instruction (start_pc);
707 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
708 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
709 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
710 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
711 break;
712 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
713 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
714 seen_adjsp = 1;
715 else
716 seen_adjsp = 0;
717 }
718 else if (ABOUT_TO_RETURN(start_pc))
719 {
720 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
721 break;
722 }
723
724 #if 0
725 /* skip nops (usually 1) 0 - is this */
726 while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
727 start_pc += MIPS_INSTLEN;
728 #endif
729 return start_pc;
730 }
731
732 /* Fetch the immediate value from a MIPS16 instruction.
733 If the previous instruction was an EXTEND, use it to extend
734 the upper bits of the immediate value. This is a helper function
735 for mips16_heuristic_proc_desc. */
736
737 static int
738 mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
739 unsigned short prev_inst; /* previous instruction */
740 unsigned short inst; /* current instruction */
741 int nbits; /* number of bits in imm field */
742 int scale; /* scale factor to be applied to imm */
743 int is_signed; /* is the imm field signed? */
744 {
745 int offset;
746
747 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
748 {
749 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
750 if (offset & 0x8000) /* check for negative extend */
751 offset = 0 - (0x10000 - (offset & 0xffff));
752 return offset | (inst & 0x1f);
753 }
754 else
755 {
756 int max_imm = 1 << nbits;
757 int mask = max_imm - 1;
758 int sign_bit = max_imm >> 1;
759
760 offset = inst & mask;
761 if (is_signed && (offset & sign_bit))
762 offset = 0 - (max_imm - offset);
763 return offset * scale;
764 }
765 }
766
767
768 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
769 stream from start_pc to limit_pc. */
770
771 static void
772 mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
773 CORE_ADDR start_pc, limit_pc;
774 struct frame_info *next_frame;
775 CORE_ADDR sp;
776 {
777 CORE_ADDR cur_pc;
778 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
779 unsigned short prev_inst = 0; /* saved copy of previous instruction */
780 unsigned inst = 0; /* current instruction */
781 unsigned entry_inst = 0; /* the entry instruction */
782 int reg, offset;
783
784 PROC_FRAME_OFFSET(&temp_proc_desc) = 0; /* size of stack frame */
785 PROC_FRAME_ADJUST(&temp_proc_desc) = 0; /* offset of FP from SP */
786
787 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
788 {
789 /* Save the previous instruction. If it's an EXTEND, we'll extract
790 the immediate offset extension from it in mips16_get_imm. */
791 prev_inst = inst;
792
793 /* Fetch and decode the instruction. */
794 inst = (unsigned short) mips_fetch_instruction (cur_pc);
795 if ((inst & 0xff00) == 0x6300 /* addiu sp */
796 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
797 {
798 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
799 if (offset < 0) /* negative stack adjustment? */
800 PROC_FRAME_OFFSET(&temp_proc_desc) -= offset;
801 else
802 /* Exit loop if a positive stack adjustment is found, which
803 usually means that the stack cleanup code in the function
804 epilogue is reached. */
805 break;
806 }
807 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
808 {
809 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
810 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
811 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
812 set_reg_offset (reg, sp + offset);
813 }
814 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
815 {
816 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
817 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
818 PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
819 set_reg_offset (reg, sp + offset);
820 }
821 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
822 {
823 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
824 PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM);
825 set_reg_offset (RA_REGNUM, sp + offset);
826 }
827 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
828 {
829 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
830 PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM);
831 set_reg_offset (RA_REGNUM, sp + offset);
832 }
833 else if (inst == 0x673d) /* move $s1, $sp */
834 {
835 frame_addr = sp;
836 PROC_FRAME_REG (&temp_proc_desc) = 17;
837 }
838 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
839 {
840 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
841 frame_addr = sp + offset;
842 PROC_FRAME_REG (&temp_proc_desc) = 17;
843 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
844 }
845 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
846 {
847 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
848 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
849 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
850 set_reg_offset (reg, frame_addr + offset);
851 }
852 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
853 {
854 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
855 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
856 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
857 set_reg_offset (reg, frame_addr + offset);
858 }
859 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
860 entry_inst = inst; /* save for later processing */
861 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
862 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
863 }
864
865 /* The entry instruction is typically the first instruction in a function,
866 and it stores registers at offsets relative to the value of the old SP
867 (before the prologue). But the value of the sp parameter to this
868 function is the new SP (after the prologue has been executed). So we
869 can't calculate those offsets until we've seen the entire prologue,
870 and can calculate what the old SP must have been. */
871 if (entry_inst != 0)
872 {
873 int areg_count = (entry_inst >> 8) & 7;
874 int sreg_count = (entry_inst >> 6) & 3;
875
876 /* The entry instruction always subtracts 32 from the SP. */
877 PROC_FRAME_OFFSET(&temp_proc_desc) += 32;
878
879 /* Now we can calculate what the SP must have been at the
880 start of the function prologue. */
881 sp += PROC_FRAME_OFFSET(&temp_proc_desc);
882
883 /* Check if a0-a3 were saved in the caller's argument save area. */
884 for (reg = 4, offset = 0; reg < areg_count+4; reg++)
885 {
886 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
887 set_reg_offset (reg, sp + offset);
888 offset += MIPS_REGSIZE;
889 }
890
891 /* Check if the ra register was pushed on the stack. */
892 offset = -4;
893 if (entry_inst & 0x20)
894 {
895 PROC_REG_MASK(&temp_proc_desc) |= 1 << RA_REGNUM;
896 set_reg_offset (RA_REGNUM, sp + offset);
897 offset -= MIPS_REGSIZE;
898 }
899
900 /* Check if the s0 and s1 registers were pushed on the stack. */
901 for (reg = 16; reg < sreg_count+16; reg++)
902 {
903 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
904 set_reg_offset (reg, sp + offset);
905 offset -= MIPS_REGSIZE;
906 }
907 }
908 }
909
910 static void
911 mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
912 CORE_ADDR start_pc, limit_pc;
913 struct frame_info *next_frame;
914 CORE_ADDR sp;
915 {
916 CORE_ADDR cur_pc;
917 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
918 restart:
919 PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
920 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
921 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
922 {
923 unsigned long inst, high_word, low_word;
924 int reg;
925
926 /* Fetch the instruction. */
927 inst = (unsigned long) mips_fetch_instruction (cur_pc);
928
929 /* Save some code by pre-extracting some useful fields. */
930 high_word = (inst >> 16) & 0xffff;
931 low_word = inst & 0xffff;
932 reg = high_word & 0x1f;
933
934 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
935 || high_word == 0x23bd /* addi $sp,$sp,-i */
936 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
937 {
938 if (low_word & 0x8000) /* negative stack adjustment? */
939 PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word;
940 else
941 /* Exit loop if a positive stack adjustment is found, which
942 usually means that the stack cleanup code in the function
943 epilogue is reached. */
944 break;
945 }
946 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
947 {
948 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
949 set_reg_offset (reg, sp + low_word);
950 }
951 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
952 {
953 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
954 but the register size used is only 32 bits. Make the address
955 for the saved register point to the lower 32 bits. */
956 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
957 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
958 }
959 else if (high_word == 0x27be) /* addiu $30,$sp,size */
960 {
961 /* Old gcc frame, r30 is virtual frame pointer. */
962 if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc))
963 frame_addr = sp + low_word;
964 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
965 {
966 unsigned alloca_adjust;
967 PROC_FRAME_REG (&temp_proc_desc) = 30;
968 frame_addr = read_next_frame_reg(next_frame, 30);
969 alloca_adjust = (unsigned)(frame_addr - (sp + low_word));
970 if (alloca_adjust > 0)
971 {
972 /* FP > SP + frame_size. This may be because
973 * of an alloca or somethings similar.
974 * Fix sp to "pre-alloca" value, and try again.
975 */
976 sp += alloca_adjust;
977 goto restart;
978 }
979 }
980 }
981 /* move $30,$sp. With different versions of gas this will be either
982 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
983 Accept any one of these. */
984 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
985 {
986 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
987 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
988 {
989 unsigned alloca_adjust;
990 PROC_FRAME_REG (&temp_proc_desc) = 30;
991 frame_addr = read_next_frame_reg(next_frame, 30);
992 alloca_adjust = (unsigned)(frame_addr - sp);
993 if (alloca_adjust > 0)
994 {
995 /* FP > SP + frame_size. This may be because
996 * of an alloca or somethings similar.
997 * Fix sp to "pre-alloca" value, and try again.
998 */
999 sp += alloca_adjust;
1000 goto restart;
1001 }
1002 }
1003 }
1004 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1005 {
1006 PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
1007 set_reg_offset (reg, frame_addr + low_word);
1008 }
1009 }
1010 }
1011
1012 static mips_extra_func_info_t
1013 heuristic_proc_desc(start_pc, limit_pc, next_frame)
1014 CORE_ADDR start_pc, limit_pc;
1015 struct frame_info *next_frame;
1016 {
1017 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
1018
1019 if (start_pc == 0) return NULL;
1020 memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
1021 memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
1022 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
1023 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
1024 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
1025
1026 if (start_pc + 200 < limit_pc)
1027 limit_pc = start_pc + 200;
1028 if (pc_is_mips16 (start_pc))
1029 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1030 else
1031 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
1032 return &temp_proc_desc;
1033 }
1034
1035 static mips_extra_func_info_t
1036 non_heuristic_proc_desc (pc, addrptr)
1037 CORE_ADDR pc;
1038 CORE_ADDR *addrptr;
1039 {
1040 CORE_ADDR startaddr;
1041 mips_extra_func_info_t proc_desc;
1042 struct block *b = block_for_pc(pc);
1043 struct symbol *sym;
1044
1045 find_pc_partial_function (pc, NULL, &startaddr, NULL);
1046 if (addrptr)
1047 *addrptr = startaddr;
1048 if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
1049 sym = NULL;
1050 else
1051 {
1052 if (startaddr > BLOCK_START (b))
1053 /* This is the "pathological" case referred to in a comment in
1054 print_frame_info. It might be better to move this check into
1055 symbol reading. */
1056 sym = NULL;
1057 else
1058 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
1059 }
1060
1061 /* If we never found a PDR for this function in symbol reading, then
1062 examine prologues to find the information. */
1063 if (sym)
1064 {
1065 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
1066 if (PROC_FRAME_REG (proc_desc) == -1)
1067 return NULL;
1068 else
1069 return proc_desc;
1070 }
1071 else
1072 return NULL;
1073 }
1074
1075
1076 static mips_extra_func_info_t
1077 find_proc_desc (pc, next_frame)
1078 CORE_ADDR pc;
1079 struct frame_info *next_frame;
1080 {
1081 mips_extra_func_info_t proc_desc;
1082 CORE_ADDR startaddr;
1083
1084 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
1085
1086 if (proc_desc)
1087 {
1088 /* IF this is the topmost frame AND
1089 * (this proc does not have debugging information OR
1090 * the PC is in the procedure prologue)
1091 * THEN create a "heuristic" proc_desc (by analyzing
1092 * the actual code) to replace the "official" proc_desc.
1093 */
1094 if (next_frame == NULL)
1095 {
1096 struct symtab_and_line val;
1097 struct symbol *proc_symbol =
1098 PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
1099
1100 if (proc_symbol)
1101 {
1102 val = find_pc_line (BLOCK_START
1103 (SYMBOL_BLOCK_VALUE(proc_symbol)),
1104 0);
1105 val.pc = val.end ? val.end : pc;
1106 }
1107 if (!proc_symbol || pc < val.pc)
1108 {
1109 mips_extra_func_info_t found_heuristic =
1110 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
1111 pc, next_frame);
1112 if (found_heuristic)
1113 proc_desc = found_heuristic;
1114 }
1115 }
1116 }
1117 else
1118 {
1119 /* Is linked_proc_desc_table really necessary? It only seems to be used
1120 by procedure call dummys. However, the procedures being called ought
1121 to have their own proc_descs, and even if they don't,
1122 heuristic_proc_desc knows how to create them! */
1123
1124 register struct linked_proc_info *link;
1125
1126 for (link = linked_proc_desc_table; link; link = link->next)
1127 if (PROC_LOW_ADDR(&link->info) <= pc
1128 && PROC_HIGH_ADDR(&link->info) > pc)
1129 return &link->info;
1130
1131 if (startaddr == 0)
1132 startaddr = heuristic_proc_start (pc);
1133
1134 proc_desc =
1135 heuristic_proc_desc (startaddr, pc, next_frame);
1136 }
1137 return proc_desc;
1138 }
1139
1140 static CORE_ADDR
1141 get_frame_pointer(frame, proc_desc)
1142 struct frame_info *frame;
1143 mips_extra_func_info_t proc_desc;
1144 {
1145 return ADDR_BITS_REMOVE (
1146 read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
1147 PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
1148 }
1149
1150 mips_extra_func_info_t cached_proc_desc;
1151
1152 CORE_ADDR
1153 mips_frame_chain(frame)
1154 struct frame_info *frame;
1155 {
1156 mips_extra_func_info_t proc_desc;
1157 CORE_ADDR tmp;
1158 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
1159
1160 if (saved_pc == 0 || inside_entry_file (saved_pc))
1161 return 0;
1162
1163 /* Check if the PC is inside a call stub. If it is, fetch the
1164 PC of the caller of that stub. */
1165 if ((tmp = mips_skip_stub (saved_pc)) != 0)
1166 saved_pc = tmp;
1167
1168 /* Look up the procedure descriptor for this PC. */
1169 proc_desc = find_proc_desc(saved_pc, frame);
1170 if (!proc_desc)
1171 return 0;
1172
1173 cached_proc_desc = proc_desc;
1174
1175 /* If no frame pointer and frame size is zero, we must be at end
1176 of stack (or otherwise hosed). If we don't check frame size,
1177 we loop forever if we see a zero size frame. */
1178 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1179 && PROC_FRAME_OFFSET (proc_desc) == 0
1180 /* The previous frame from a sigtramp frame might be frameless
1181 and have frame size zero. */
1182 && !frame->signal_handler_caller)
1183 return 0;
1184 else
1185 return get_frame_pointer (frame, proc_desc);
1186 }
1187
1188 void
1189 init_extra_frame_info(fci)
1190 struct frame_info *fci;
1191 {
1192 int regnum;
1193
1194 /* Use proc_desc calculated in frame_chain */
1195 mips_extra_func_info_t proc_desc =
1196 fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
1197
1198 fci->saved_regs = NULL;
1199 fci->proc_desc =
1200 proc_desc == &temp_proc_desc ? 0 : proc_desc;
1201 if (proc_desc)
1202 {
1203 /* Fixup frame-pointer - only needed for top frame */
1204 /* This may not be quite right, if proc has a real frame register.
1205 Get the value of the frame relative sp, procedure might have been
1206 interrupted by a signal at it's very start. */
1207 if (fci->pc == PROC_LOW_ADDR (proc_desc)
1208 && !PROC_DESC_IS_DUMMY (proc_desc))
1209 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
1210 else
1211 fci->frame = get_frame_pointer (fci->next, proc_desc);
1212
1213 if (proc_desc == &temp_proc_desc)
1214 {
1215 char *name;
1216
1217 /* Do not set the saved registers for a sigtramp frame,
1218 mips_find_saved_registers will do that for us.
1219 We can't use fci->signal_handler_caller, it is not yet set. */
1220 find_pc_partial_function (fci->pc, &name,
1221 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
1222 if (!IN_SIGTRAMP (fci->pc, name))
1223 {
1224 fci->saved_regs = (struct frame_saved_regs*)
1225 obstack_alloc (&frame_cache_obstack,
1226 sizeof (struct frame_saved_regs));
1227 *fci->saved_regs = temp_saved_regs;
1228 fci->saved_regs->regs[PC_REGNUM]
1229 = fci->saved_regs->regs[RA_REGNUM];
1230 }
1231 }
1232
1233 /* hack: if argument regs are saved, guess these contain args */
1234 fci->num_args = -1; /* assume we can't tell how many args for now */
1235 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
1236 {
1237 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
1238 {
1239 fci->num_args = regnum - A0_REGNUM + 1;
1240 break;
1241 }
1242 }
1243 }
1244 }
1245
1246 /* MIPS stack frames are almost impenetrable. When execution stops,
1247 we basically have to look at symbol information for the function
1248 that we stopped in, which tells us *which* register (if any) is
1249 the base of the frame pointer, and what offset from that register
1250 the frame itself is at.
1251
1252 This presents a problem when trying to examine a stack in memory
1253 (that isn't executing at the moment), using the "frame" command. We
1254 don't have a PC, nor do we have any registers except SP.
1255
1256 This routine takes two arguments, SP and PC, and tries to make the
1257 cached frames look as if these two arguments defined a frame on the
1258 cache. This allows the rest of info frame to extract the important
1259 arguments without difficulty. */
1260
1261 struct frame_info *
1262 setup_arbitrary_frame (argc, argv)
1263 int argc;
1264 CORE_ADDR *argv;
1265 {
1266 if (argc != 2)
1267 error ("MIPS frame specifications require two arguments: sp and pc");
1268
1269 return create_new_frame (argv[0], argv[1]);
1270 }
1271
1272 CORE_ADDR
1273 mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
1274 int nargs;
1275 value_ptr *args;
1276 CORE_ADDR sp;
1277 int struct_return;
1278 CORE_ADDR struct_addr;
1279 {
1280 int argreg;
1281 int float_argreg;
1282 int argnum;
1283 int len = 0;
1284 int stack_offset = 0;
1285
1286 /* Macros to round N up or down to the next A boundary; A must be
1287 a power of two. */
1288 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
1289 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
1290
1291 /* First ensure that the stack and structure return address (if any)
1292 are properly aligned. The stack has to be 64-bit aligned even
1293 on 32-bit machines, because doubles must be 64-bit aligned. */
1294 sp = ROUND_DOWN (sp, 8);
1295 struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE);
1296
1297 /* Now make space on the stack for the args. We allocate more
1298 than necessary for EABI, because the first few arguments are
1299 passed in registers, but that's OK. */
1300 for (argnum = 0; argnum < nargs; argnum++)
1301 len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE);
1302 sp -= ROUND_UP (len, 8);
1303
1304 /* Initialize the integer and float register pointers. */
1305 argreg = A0_REGNUM;
1306 float_argreg = FPA0_REGNUM;
1307
1308 /* the struct_return pointer occupies the first parameter-passing reg */
1309 if (struct_return)
1310 write_register (argreg++, struct_addr);
1311
1312 /* Now load as many as possible of the first arguments into
1313 registers, and push the rest onto the stack. Loop thru args
1314 from first to last. */
1315 for (argnum = 0; argnum < nargs; argnum++)
1316 {
1317 char *val;
1318 char valbuf[MAX_REGISTER_RAW_SIZE];
1319 value_ptr arg = args[argnum];
1320 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1321 int len = TYPE_LENGTH (arg_type);
1322 enum type_code typecode = TYPE_CODE (arg_type);
1323
1324 /* The EABI passes structures that do not fit in a register by
1325 reference. In all other cases, pass the structure by value. */
1326 if (MIPS_EABI && len > MIPS_REGSIZE &&
1327 (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1328 {
1329 store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg));
1330 typecode = TYPE_CODE_PTR;
1331 len = MIPS_REGSIZE;
1332 val = valbuf;
1333 }
1334 else
1335 val = (char *)VALUE_CONTENTS (arg);
1336
1337 /* 32-bit ABIs always start floating point arguments in an
1338 even-numbered floating point register. */
1339 if (!GDB_TARGET_IS_MIPS64 && typecode == TYPE_CODE_FLT
1340 && (float_argreg & 1))
1341 float_argreg++;
1342
1343 /* Floating point arguments passed in registers have to be
1344 treated specially. On 32-bit architectures, doubles
1345 are passed in register pairs; the even register gets
1346 the low word, and the odd register gets the high word.
1347 On non-EABI processors, the first two floating point arguments are
1348 also copied to general registers, because MIPS16 functions
1349 don't use float registers for arguments. This duplication of
1350 arguments in general registers can't hurt non-MIPS16 functions
1351 because those registers are normally skipped. */
1352 if (typecode == TYPE_CODE_FLT
1353 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
1354 && mips_fpu != MIPS_FPU_NONE)
1355 {
1356 if (!GDB_TARGET_IS_MIPS64 && len == 8)
1357 {
1358 int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
1359 unsigned long regval;
1360
1361 /* Write the low word of the double to the even register(s). */
1362 regval = extract_unsigned_integer (val+low_offset, 4);
1363 write_register (float_argreg++, regval);
1364 if (!MIPS_EABI)
1365 write_register (argreg+1, regval);
1366
1367 /* Write the high word of the double to the odd register(s). */
1368 regval = extract_unsigned_integer (val+4-low_offset, 4);
1369 write_register (float_argreg++, regval);
1370 if (!MIPS_EABI)
1371 {
1372 write_register (argreg, regval);
1373 argreg += 2;
1374 }
1375
1376 }
1377 else
1378 {
1379 /* This is a floating point value that fits entirely
1380 in a single register. */
1381 CORE_ADDR regval = extract_address (val, len);
1382 write_register (float_argreg++, regval);
1383 if (!MIPS_EABI)
1384 {
1385 write_register (argreg, regval);
1386 argreg += GDB_TARGET_IS_MIPS64 ? 1 : 2;
1387 }
1388 }
1389 }
1390 else
1391 {
1392 /* Copy the argument to general registers or the stack in
1393 register-sized pieces. Large arguments are split between
1394 registers and stack. */
1395 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
1396 are treated specially: Irix cc passes them in registers
1397 where gcc sometimes puts them on the stack. For maximum
1398 compatibility, we will put them in both places. */
1399
1400 int odd_sized_struct = ((len > MIPS_REGSIZE) &&
1401 (len % MIPS_REGSIZE != 0));
1402 while (len > 0)
1403 {
1404 int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE;
1405
1406 if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
1407 {
1408 /* Write this portion of the argument to the stack. */
1409 /* Should shorter than int integer values be
1410 promoted to int before being stored? */
1411
1412 int longword_offset = 0;
1413 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1414 if (MIPS_REGSIZE == 8 &&
1415 (typecode == TYPE_CODE_INT ||
1416 typecode == TYPE_CODE_PTR ||
1417 typecode == TYPE_CODE_FLT) && len <= 4)
1418 longword_offset = MIPS_REGSIZE - len;
1419 else if ((typecode == TYPE_CODE_STRUCT ||
1420 typecode == TYPE_CODE_UNION) &&
1421 TYPE_LENGTH (arg_type) < MIPS_REGSIZE)
1422 longword_offset = MIPS_REGSIZE - len;
1423
1424 write_memory (sp + stack_offset + longword_offset,
1425 val, partial_len);
1426 }
1427
1428 /* Note!!! This is NOT an else clause.
1429 Odd sized structs may go thru BOTH paths. */
1430 if (argreg <= MIPS_LAST_ARG_REGNUM)
1431 {
1432 CORE_ADDR regval = extract_address (val, partial_len);
1433
1434 /* A non-floating-point argument being passed in a
1435 general register. If a struct or union, and if
1436 the remaining length is smaller than the register
1437 size, we have to adjust the register value on
1438 big endian targets.
1439
1440 It does not seem to be necessary to do the
1441 same for integral types.
1442
1443 Also don't do this adjustment on EABI targets. */
1444
1445 if (!MIPS_EABI &&
1446 TARGET_BYTE_ORDER == BIG_ENDIAN &&
1447 partial_len < MIPS_REGSIZE &&
1448 (typecode == TYPE_CODE_STRUCT ||
1449 typecode == TYPE_CODE_UNION))
1450 regval <<= ((MIPS_REGSIZE - partial_len) *
1451 TARGET_CHAR_BIT);
1452
1453 write_register (argreg, regval);
1454 argreg++;
1455
1456 /* If this is the old ABI, prevent subsequent floating
1457 point arguments from being passed in floating point
1458 registers. */
1459 if (!MIPS_EABI)
1460 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
1461 }
1462
1463 len -= partial_len;
1464 val += partial_len;
1465
1466 /* The offset onto the stack at which we will start
1467 copying parameters (after the registers are used up)
1468 begins at (4 * MIPS_REGSIZE) in the old ABI. This
1469 leaves room for the "home" area for register parameters.
1470
1471 In the new EABI, the 8 register parameters do not
1472 have "home" stack space reserved for them, so the
1473 stack offset does not get incremented until after
1474 we have used up the 8 parameter registers. */
1475 if (!(MIPS_EABI && argnum < 8))
1476 stack_offset += ROUND_UP (partial_len, MIPS_REGSIZE);
1477 }
1478 }
1479 }
1480
1481 /* Set the return address register to point to the entry
1482 point of the program, where a breakpoint lies in wait. */
1483 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS());
1484
1485 /* Return adjusted stack pointer. */
1486 return sp;
1487 }
1488
1489 static void
1490 mips_push_register(CORE_ADDR *sp, int regno)
1491 {
1492 char buffer[MAX_REGISTER_RAW_SIZE];
1493 int regsize = REGISTER_RAW_SIZE (regno);
1494
1495 *sp -= regsize;
1496 read_register_gen (regno, buffer);
1497 write_memory (*sp, buffer, regsize);
1498 }
1499
1500 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
1501 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
1502
1503 void
1504 mips_push_dummy_frame()
1505 {
1506 int ireg;
1507 struct linked_proc_info *link = (struct linked_proc_info*)
1508 xmalloc(sizeof(struct linked_proc_info));
1509 mips_extra_func_info_t proc_desc = &link->info;
1510 CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
1511 CORE_ADDR old_sp = sp;
1512 link->next = linked_proc_desc_table;
1513 linked_proc_desc_table = link;
1514
1515 /* FIXME! are these correct ? */
1516 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
1517 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
1518 #define FLOAT_REG_SAVE_MASK MASK(0,19)
1519 #define FLOAT_SINGLE_REG_SAVE_MASK \
1520 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
1521 /*
1522 * The registers we must save are all those not preserved across
1523 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
1524 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
1525 * and FP Control/Status registers.
1526 *
1527 *
1528 * Dummy frame layout:
1529 * (high memory)
1530 * Saved PC
1531 * Saved MMHI, MMLO, FPC_CSR
1532 * Saved R31
1533 * Saved R28
1534 * ...
1535 * Saved R1
1536 * Saved D18 (i.e. F19, F18)
1537 * ...
1538 * Saved D0 (i.e. F1, F0)
1539 * Argument build area and stack arguments written via mips_push_arguments
1540 * (low memory)
1541 */
1542
1543 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
1544 PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
1545 PROC_FRAME_OFFSET(proc_desc) = 0;
1546 PROC_FRAME_ADJUST(proc_desc) = 0;
1547 mips_push_register (&sp, PC_REGNUM);
1548 mips_push_register (&sp, HI_REGNUM);
1549 mips_push_register (&sp, LO_REGNUM);
1550 mips_push_register (&sp, mips_fpu == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
1551
1552 /* Save general CPU registers */
1553 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
1554 PROC_REG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved R31) from FP */
1555 for (ireg = 32; --ireg >= 0; )
1556 if (PROC_REG_MASK(proc_desc) & (1 << ireg))
1557 mips_push_register (&sp, ireg);
1558
1559 /* Save floating point registers starting with high order word */
1560 PROC_FREG_MASK(proc_desc) =
1561 mips_fpu == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
1562 : mips_fpu == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
1563 PROC_FREG_OFFSET(proc_desc) = sp - old_sp; /* offset of (Saved D18) from FP */
1564 for (ireg = 32; --ireg >= 0; )
1565 if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
1566 mips_push_register (&sp, ireg + FP0_REGNUM);
1567
1568 /* Update the frame pointer for the call dummy and the stack pointer.
1569 Set the procedure's starting and ending addresses to point to the
1570 call dummy address at the entry point. */
1571 write_register (PUSH_FP_REGNUM, old_sp);
1572 write_register (SP_REGNUM, sp);
1573 PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS();
1574 PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4;
1575 SET_PROC_DESC_IS_DUMMY(proc_desc);
1576 PROC_PC_REG(proc_desc) = RA_REGNUM;
1577 }
1578
1579 void
1580 mips_pop_frame()
1581 {
1582 register int regnum;
1583 struct frame_info *frame = get_current_frame ();
1584 CORE_ADDR new_sp = FRAME_FP (frame);
1585
1586 mips_extra_func_info_t proc_desc = frame->proc_desc;
1587
1588 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
1589 if (frame->saved_regs == NULL)
1590 mips_find_saved_regs (frame);
1591 for (regnum = 0; regnum < NUM_REGS; regnum++)
1592 {
1593 if (regnum != SP_REGNUM && regnum != PC_REGNUM
1594 && frame->saved_regs->regs[regnum])
1595 write_register (regnum,
1596 read_memory_integer (frame->saved_regs->regs[regnum],
1597 MIPS_REGSIZE));
1598 }
1599 write_register (SP_REGNUM, new_sp);
1600 flush_cached_frames ();
1601
1602 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
1603 {
1604 struct linked_proc_info *pi_ptr, *prev_ptr;
1605
1606 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1607 pi_ptr != NULL;
1608 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1609 {
1610 if (&pi_ptr->info == proc_desc)
1611 break;
1612 }
1613
1614 if (pi_ptr == NULL)
1615 error ("Can't locate dummy extra frame info\n");
1616
1617 if (prev_ptr != NULL)
1618 prev_ptr->next = pi_ptr->next;
1619 else
1620 linked_proc_desc_table = pi_ptr->next;
1621
1622 free (pi_ptr);
1623
1624 write_register (HI_REGNUM,
1625 read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE));
1626 write_register (LO_REGNUM,
1627 read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE));
1628 if (mips_fpu != MIPS_FPU_NONE)
1629 write_register (FCRCS_REGNUM,
1630 read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE));
1631 }
1632 }
1633
1634 static void
1635 mips_print_register (regnum, all)
1636 int regnum, all;
1637 {
1638 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1639
1640 /* Get the data in raw format. */
1641 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1642 {
1643 printf_filtered ("%s: [Invalid]", reg_names[regnum]);
1644 return;
1645 }
1646
1647 /* If an even floating point register, also print as double. */
1648 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
1649 && !((regnum-FP0_REGNUM) & 1))
1650 if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 */
1651 {
1652 char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
1653
1654 read_relative_register_raw_bytes (regnum, dbuffer);
1655 read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
1656 REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
1657
1658 printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
1659 val_print (builtin_type_double, dbuffer, 0,
1660 gdb_stdout, 0, 1, 0, Val_pretty_default);
1661 printf_filtered ("); ");
1662 }
1663 fputs_filtered (reg_names[regnum], gdb_stdout);
1664
1665 /* The problem with printing numeric register names (r26, etc.) is that
1666 the user can't use them on input. Probably the best solution is to
1667 fix it so that either the numeric or the funky (a2, etc.) names
1668 are accepted on input. */
1669 if (regnum < MIPS_NUMREGS)
1670 printf_filtered ("(r%d): ", regnum);
1671 else
1672 printf_filtered (": ");
1673
1674 /* If virtual format is floating, print it that way. */
1675 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1676 if (REGISTER_RAW_SIZE(regnum) == 8)
1677 { /* show 8-byte floats as float AND double: */
1678 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
1679
1680 printf_filtered (" (float) ");
1681 val_print (builtin_type_float, raw_buffer + offset, 0,
1682 gdb_stdout, 0, 1, 0, Val_pretty_default);
1683 printf_filtered (", (double) ");
1684 val_print (builtin_type_double, raw_buffer, 0,
1685 gdb_stdout, 0, 1, 0, Val_pretty_default);
1686 }
1687 else
1688 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0,
1689 gdb_stdout, 0, 1, 0, Val_pretty_default);
1690 /* Else print as integer in hex. */
1691 else
1692 print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
1693 'x', 0, gdb_stdout);
1694 }
1695
1696 /* Replacement for generic do_registers_info.
1697 Print regs in pretty columns. */
1698
1699 static int
1700 do_fp_register_row (regnum)
1701 int regnum;
1702 { /* do values for FP (float) regs */
1703 char *raw_buffer[2];
1704 char *dbl_buffer;
1705 /* use HI and LO to control the order of combining two flt regs */
1706 int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
1707 int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
1708 double doub, flt1, flt2; /* doubles extracted from raw hex data */
1709 int inv1, inv2, inv3;
1710
1711 raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
1712 raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
1713 dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
1714
1715 /* Get the data in raw format. */
1716 if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
1717 error ("can't read register %d (%s)", regnum, reg_names[regnum]);
1718 if (REGISTER_RAW_SIZE(regnum) == 4)
1719 {
1720 /* 4-byte registers: we can fit two registers per row. */
1721 /* Also print every pair of 4-byte regs as an 8-byte double. */
1722 if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
1723 error ("can't read register %d (%s)",
1724 regnum + 1, reg_names[regnum + 1]);
1725
1726 /* copy the two floats into one double, and unpack both */
1727 memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer));
1728 flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
1729 flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
1730 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
1731
1732 printf_filtered (inv1 ? " %-5s: <invalid float>" :
1733 " %-5s%-17.9g", reg_names[regnum], flt1);
1734 printf_filtered (inv2 ? " %-5s: <invalid float>" :
1735 " %-5s%-17.9g", reg_names[regnum + 1], flt2);
1736 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
1737 " dbl: %-24.17g\n", doub);
1738 /* may want to do hex display here (future enhancement) */
1739 regnum +=2;
1740 }
1741 else
1742 { /* eight byte registers: print each one as float AND as double. */
1743 int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
1744
1745 memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer));
1746 flt1 = unpack_double (builtin_type_float,
1747 &raw_buffer[HI][offset], &inv1);
1748 doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
1749
1750 printf_filtered (inv1 ? " %-5s: <invalid float>" :
1751 " %-5s flt: %-17.9g", reg_names[regnum], flt1);
1752 printf_filtered (inv3 ? " dbl: <invalid double>\n" :
1753 " dbl: %-24.17g\n", doub);
1754 /* may want to do hex display here (future enhancement) */
1755 regnum++;
1756 }
1757 return regnum;
1758 }
1759
1760 /* Print a row's worth of GP (int) registers, with name labels above */
1761
1762 static int
1763 do_gp_register_row (regnum)
1764 int regnum;
1765 {
1766 /* do values for GP (int) regs */
1767 char raw_buffer[MAX_REGISTER_RAW_SIZE];
1768 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
1769 int col, byte;
1770 int start_regnum = regnum;
1771 int numregs = NUM_REGS;
1772
1773 /* start-sanitize-sky */
1774 #ifdef NUM_R5900_REGS
1775 numregs = NUM_R5900_REGS;
1776 #endif
1777 /* end-sanitize-sky */
1778
1779 /* For GP registers, we print a separate row of names above the vals */
1780 printf_filtered (" ");
1781 for (col = 0; col < ncols && regnum < numregs; regnum++)
1782 {
1783 if (*reg_names[regnum] == '\0')
1784 continue; /* unused register */
1785 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1786 break; /* end the row: reached FP register */
1787 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
1788 reg_names[regnum]);
1789 col++;
1790 }
1791 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
1792 start_regnum); /* print the R0 to R31 names */
1793
1794 regnum = start_regnum; /* go back to start of row */
1795 /* now print the values in hex, 4 or 8 to the row */
1796 for (col = 0; col < ncols && regnum < numregs; regnum++)
1797 {
1798 if (*reg_names[regnum] == '\0')
1799 continue; /* unused register */
1800 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1801 break; /* end row: reached FP register */
1802 /* OK: get the data in raw format. */
1803 if (read_relative_register_raw_bytes (regnum, raw_buffer))
1804 error ("can't read register %d (%s)", regnum, reg_names[regnum]);
1805 /* pad small registers */
1806 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_RAW_SIZE (regnum)); byte++)
1807 printf_filtered (" ");
1808 /* Now print the register value in hex, endian order. */
1809 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1810 for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++)
1811 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1812 else
1813 for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--)
1814 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
1815 printf_filtered (" ");
1816 col++;
1817 }
1818 if (col > 0) /* ie. if we actually printed anything... */
1819 printf_filtered ("\n");
1820
1821 return regnum;
1822 }
1823
1824 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
1825
1826 void
1827 mips_do_registers_info (regnum, fpregs)
1828 int regnum;
1829 int fpregs;
1830 {
1831 if (regnum != -1) /* do one specified register */
1832 {
1833 if (*(reg_names[regnum]) == '\0')
1834 error ("Not a valid register for the current processor type");
1835
1836 mips_print_register (regnum, 0);
1837 printf_filtered ("\n");
1838 }
1839 else /* do all (or most) registers */
1840 {
1841 regnum = 0;
1842 while (regnum < NUM_REGS)
1843 {
1844 if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
1845 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
1846 regnum = do_fp_register_row (regnum); /* FP regs */
1847 else
1848 regnum += MIPS_NUMREGS; /* skip floating point regs */
1849 else
1850 regnum = do_gp_register_row (regnum); /* GP (int) regs */
1851 /* start-sanitize-sky */
1852 #ifdef NUM_R5900_REGS
1853 /* For the sky project, NUM_REGS includes the vector slaves,
1854 which are handled elsewhere */
1855 if (regnum >= NUM_R5900_REGS)
1856 break;
1857 #endif
1858 /* end-sanitize-sky */
1859 }
1860 }
1861 }
1862
1863 /* Return number of args passed to a frame. described by FIP.
1864 Can return -1, meaning no way to tell. */
1865
1866 int
1867 mips_frame_num_args (frame)
1868 struct frame_info *frame;
1869 {
1870 #if 0 /* FIXME Use or lose this! */
1871 struct chain_info_t *p;
1872
1873 p = mips_find_cached_frame (FRAME_FP (frame));
1874 if (p->valid)
1875 return p->the_info.numargs;
1876 #endif
1877 return -1;
1878 }
1879
1880 /* Is this a branch with a delay slot? */
1881
1882 static int is_delayed PARAMS ((unsigned long));
1883
1884 static int
1885 is_delayed (insn)
1886 unsigned long insn;
1887 {
1888 int i;
1889 for (i = 0; i < NUMOPCODES; ++i)
1890 if (mips_opcodes[i].pinfo != INSN_MACRO
1891 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
1892 break;
1893 return (i < NUMOPCODES
1894 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
1895 | INSN_COND_BRANCH_DELAY
1896 | INSN_COND_BRANCH_LIKELY)));
1897 }
1898
1899 int
1900 mips_step_skips_delay (pc)
1901 CORE_ADDR pc;
1902 {
1903 char buf[MIPS_INSTLEN];
1904
1905 /* There is no branch delay slot on MIPS16. */
1906 if (pc_is_mips16 (pc))
1907 return 0;
1908
1909 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
1910 /* If error reading memory, guess that it is not a delayed branch. */
1911 return 0;
1912 return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN));
1913 }
1914
1915
1916 /* Skip the PC past function prologue instructions (32-bit version).
1917 This is a helper function for mips_skip_prologue. */
1918
1919 static CORE_ADDR
1920 mips32_skip_prologue (pc, lenient)
1921 CORE_ADDR pc; /* starting PC to search from */
1922 int lenient;
1923 {
1924 t_inst inst;
1925 CORE_ADDR end_pc;
1926 int seen_sp_adjust = 0;
1927 int load_immediate_bytes = 0;
1928
1929 /* Skip the typical prologue instructions. These are the stack adjustment
1930 instruction and the instructions that save registers on the stack
1931 or in the gcc frame. */
1932 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
1933 {
1934 unsigned long high_word;
1935
1936 inst = mips_fetch_instruction (pc);
1937 high_word = (inst >> 16) & 0xffff;
1938
1939 #if 0
1940 if (lenient && is_delayed (inst))
1941 continue;
1942 #endif
1943
1944 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
1945 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
1946 seen_sp_adjust = 1;
1947 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
1948 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
1949 seen_sp_adjust = 1;
1950 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
1951 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
1952 && (inst & 0x001F0000)) /* reg != $zero */
1953 continue;
1954
1955 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
1956 continue;
1957 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
1958 /* sx reg,n($s8) */
1959 continue; /* reg != $zero */
1960
1961 /* move $s8,$sp. With different versions of gas this will be either
1962 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
1963 Accept any one of these. */
1964 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1965 continue;
1966
1967 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
1968 continue;
1969 else if (high_word == 0x3c1c) /* lui $gp,n */
1970 continue;
1971 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
1972 continue;
1973 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1974 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
1975 continue;
1976 /* The following instructions load $at or $t0 with an immediate
1977 value in preparation for a stack adjustment via
1978 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
1979 a local variable, so we accept them only before a stack adjustment
1980 instruction was seen. */
1981 else if (!seen_sp_adjust)
1982 {
1983 if (high_word == 0x3c01 || /* lui $at,n */
1984 high_word == 0x3c08) /* lui $t0,n */
1985 {
1986 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
1987 continue;
1988 }
1989 else if (high_word == 0x3421 || /* ori $at,$at,n */
1990 high_word == 0x3508 || /* ori $t0,$t0,n */
1991 high_word == 0x3401 || /* ori $at,$zero,n */
1992 high_word == 0x3408) /* ori $t0,$zero,n */
1993 {
1994 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
1995 continue;
1996 }
1997 else
1998 break;
1999 }
2000 else
2001 break;
2002 }
2003
2004 /* In a frameless function, we might have incorrectly
2005 skipped some load immediate instructions. Undo the skipping
2006 if the load immediate was not followed by a stack adjustment. */
2007 if (load_immediate_bytes && !seen_sp_adjust)
2008 pc -= load_immediate_bytes;
2009 return pc;
2010 }
2011
2012 /* Skip the PC past function prologue instructions (16-bit version).
2013 This is a helper function for mips_skip_prologue. */
2014
2015 static CORE_ADDR
2016 mips16_skip_prologue (pc, lenient)
2017 CORE_ADDR pc; /* starting PC to search from */
2018 int lenient;
2019 {
2020 CORE_ADDR end_pc;
2021 int extend_bytes = 0;
2022 int prev_extend_bytes;
2023
2024 /* Table of instructions likely to be found in a function prologue. */
2025 static struct
2026 {
2027 unsigned short inst;
2028 unsigned short mask;
2029 } table[] =
2030 {
2031 { 0x6300, 0xff00 }, /* addiu $sp,offset */
2032 { 0xfb00, 0xff00 }, /* daddiu $sp,offset */
2033 { 0xd000, 0xf800 }, /* sw reg,n($sp) */
2034 { 0xf900, 0xff00 }, /* sd reg,n($sp) */
2035 { 0x6200, 0xff00 }, /* sw $ra,n($sp) */
2036 { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */
2037 { 0x673d, 0xffff }, /* move $s1,sp */
2038 { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */
2039 { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */
2040 { 0xe809, 0xf81f }, /* entry pseudo-op */
2041 { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */
2042 { 0, 0 } /* end of table marker */
2043 };
2044
2045 /* Skip the typical prologue instructions. These are the stack adjustment
2046 instruction and the instructions that save registers on the stack
2047 or in the gcc frame. */
2048 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
2049 {
2050 unsigned short inst;
2051 int i;
2052
2053 inst = mips_fetch_instruction (pc);
2054
2055 /* Normally we ignore an extend instruction. However, if it is
2056 not followed by a valid prologue instruction, we must adjust
2057 the pc back over the extend so that it won't be considered
2058 part of the prologue. */
2059 if ((inst & 0xf800) == 0xf000) /* extend */
2060 {
2061 extend_bytes = MIPS16_INSTLEN;
2062 continue;
2063 }
2064 prev_extend_bytes = extend_bytes;
2065 extend_bytes = 0;
2066
2067 /* Check for other valid prologue instructions besides extend. */
2068 for (i = 0; table[i].mask != 0; i++)
2069 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
2070 break;
2071 if (table[i].mask != 0) /* it was in table? */
2072 continue; /* ignore it */
2073 else /* non-prologue */
2074 {
2075 /* Return the current pc, adjusted backwards by 2 if
2076 the previous instruction was an extend. */
2077 return pc - prev_extend_bytes;
2078 }
2079 }
2080 return pc;
2081 }
2082
2083 /* To skip prologues, I use this predicate. Returns either PC itself
2084 if the code at PC does not look like a function prologue; otherwise
2085 returns an address that (if we're lucky) follows the prologue. If
2086 LENIENT, then we must skip everything which is involved in setting
2087 up the frame (it's OK to skip more, just so long as we don't skip
2088 anything which might clobber the registers which are being saved.
2089 We must skip more in the case where part of the prologue is in the
2090 delay slot of a non-prologue instruction). */
2091
2092 CORE_ADDR
2093 mips_skip_prologue (pc, lenient)
2094 CORE_ADDR pc;
2095 int lenient;
2096 {
2097 /* See if we can determine the end of the prologue via the symbol table.
2098 If so, then return either PC, or the PC after the prologue, whichever
2099 is greater. */
2100
2101 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
2102
2103 if (post_prologue_pc != 0)
2104 return max (pc, post_prologue_pc);
2105
2106 /* Can't determine prologue from the symbol table, need to examine
2107 instructions. */
2108
2109 if (pc_is_mips16 (pc))
2110 return mips16_skip_prologue (pc, lenient);
2111 else
2112 return mips32_skip_prologue (pc, lenient);
2113 }
2114
2115 #if 0
2116 /* The lenient prologue stuff should be superseded by the code in
2117 init_extra_frame_info which looks to see whether the stores mentioned
2118 in the proc_desc have actually taken place. */
2119
2120 /* Is address PC in the prologue (loosely defined) for function at
2121 STARTADDR? */
2122
2123 static int
2124 mips_in_lenient_prologue (startaddr, pc)
2125 CORE_ADDR startaddr;
2126 CORE_ADDR pc;
2127 {
2128 CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
2129 return pc >= startaddr && pc < end_prologue;
2130 }
2131 #endif
2132
2133 /* Given a return value in `regbuf' with a type `valtype',
2134 extract and copy its value into `valbuf'. */
2135 void
2136 mips_extract_return_value (valtype, regbuf, valbuf)
2137 struct type *valtype;
2138 char regbuf[REGISTER_BYTES];
2139 char *valbuf;
2140 {
2141 int regnum;
2142 int offset = 0;
2143 int len = TYPE_LENGTH (valtype);
2144
2145 regnum = 2;
2146 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
2147 && (mips_fpu == MIPS_FPU_DOUBLE
2148 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_FPU_SINGLE_REGSIZE)))
2149 regnum = FP0_REGNUM;
2150
2151 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2152 { /* "un-left-justify" the value from the register */
2153 if (len < REGISTER_RAW_SIZE (regnum))
2154 offset = REGISTER_RAW_SIZE (regnum) - len;
2155 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
2156 len < REGISTER_RAW_SIZE (regnum) * 2 &&
2157 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
2158 TYPE_CODE (valtype) == TYPE_CODE_UNION))
2159 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
2160 }
2161 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
2162 REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
2163 }
2164
2165 /* Given a return value in `regbuf' with a type `valtype',
2166 write it's value into the appropriate register. */
2167 void
2168 mips_store_return_value (valtype, valbuf)
2169 struct type *valtype;
2170 char *valbuf;
2171 {
2172 int regnum;
2173 int offset = 0;
2174 int len = TYPE_LENGTH (valtype);
2175 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2176
2177 regnum = 2;
2178 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
2179 && (mips_fpu == MIPS_FPU_DOUBLE
2180 || (mips_fpu == MIPS_FPU_SINGLE && len <= MIPS_REGSIZE)))
2181 regnum = FP0_REGNUM;
2182
2183 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2184 { /* "left-justify" the value in the register */
2185 if (len < REGISTER_RAW_SIZE (regnum))
2186 offset = REGISTER_RAW_SIZE (regnum) - len;
2187 if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
2188 len < REGISTER_RAW_SIZE (regnum) * 2 &&
2189 (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
2190 TYPE_CODE (valtype) == TYPE_CODE_UNION))
2191 offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
2192 }
2193 memcpy(raw_buffer + offset, valbuf, len);
2194 REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer);
2195 write_register_bytes(REGISTER_BYTE (regnum), raw_buffer,
2196 len > REGISTER_RAW_SIZE (regnum) ?
2197 len : REGISTER_RAW_SIZE (regnum));
2198 }
2199
2200 /* Exported procedure: Is PC in the signal trampoline code */
2201
2202 int
2203 in_sigtramp (pc, ignore)
2204 CORE_ADDR pc;
2205 char *ignore; /* function name */
2206 {
2207 if (sigtramp_address == 0)
2208 fixup_sigtramp ();
2209 return (pc >= sigtramp_address && pc < sigtramp_end);
2210 }
2211
2212 /* Command to set FPU type. mips_fpu_string will have been set to the
2213 user's argument. Set mips_fpu based on mips_fpu_string, and then
2214 canonicalize mips_fpu_string. */
2215
2216 /*ARGSUSED*/
2217 static void
2218 mips_set_fpu_command (args, from_tty, c)
2219 char *args;
2220 int from_tty;
2221 struct cmd_list_element *c;
2222 {
2223 char *err = NULL;
2224
2225 if (mips_fpu_string == NULL || *mips_fpu_string == '\0')
2226 mips_fpu = MIPS_FPU_DOUBLE;
2227 else if (strcasecmp (mips_fpu_string, "double") == 0
2228 || strcasecmp (mips_fpu_string, "on") == 0
2229 || strcasecmp (mips_fpu_string, "1") == 0
2230 || strcasecmp (mips_fpu_string, "yes") == 0)
2231 mips_fpu = MIPS_FPU_DOUBLE;
2232 else if (strcasecmp (mips_fpu_string, "none") == 0
2233 || strcasecmp (mips_fpu_string, "off") == 0
2234 || strcasecmp (mips_fpu_string, "0") == 0
2235 || strcasecmp (mips_fpu_string, "no") == 0)
2236 mips_fpu = MIPS_FPU_NONE;
2237 else if (strcasecmp (mips_fpu_string, "single") == 0)
2238 mips_fpu = MIPS_FPU_SINGLE;
2239 else
2240 err = strsave (mips_fpu_string);
2241
2242 if (mips_fpu_string != NULL)
2243 free (mips_fpu_string);
2244
2245 switch (mips_fpu)
2246 {
2247 case MIPS_FPU_DOUBLE:
2248 mips_fpu_string = strsave ("double");
2249 break;
2250 case MIPS_FPU_SINGLE:
2251 mips_fpu_string = strsave ("single");
2252 break;
2253 case MIPS_FPU_NONE:
2254 mips_fpu_string = strsave ("none");
2255 break;
2256 }
2257
2258 if (err != NULL)
2259 {
2260 struct cleanup *cleanups = make_cleanup (free, err);
2261 error ("Unknown FPU type `%s'. Use `double', `none', or `single'.",
2262 err);
2263 do_cleanups (cleanups);
2264 }
2265 }
2266
2267 static void
2268 mips_show_fpu_command (args, from_tty, c)
2269 char *args;
2270 int from_tty;
2271 struct cmd_list_element *c;
2272 {
2273 }
2274
2275 /* Command to set the processor type. */
2276
2277 void
2278 mips_set_processor_type_command (args, from_tty)
2279 char *args;
2280 int from_tty;
2281 {
2282 int i;
2283
2284 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
2285 {
2286 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
2287 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2288 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
2289
2290 /* Restore the value. */
2291 tmp_mips_processor_type = strsave (mips_processor_type);
2292
2293 return;
2294 }
2295
2296 if (!mips_set_processor_type (tmp_mips_processor_type))
2297 {
2298 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
2299 /* Restore its value. */
2300 tmp_mips_processor_type = strsave (mips_processor_type);
2301 }
2302 }
2303
2304 static void
2305 mips_show_processor_type_command (args, from_tty)
2306 char *args;
2307 int from_tty;
2308 {
2309 }
2310
2311 /* Modify the actual processor type. */
2312
2313 int
2314 mips_set_processor_type (str)
2315 char *str;
2316 {
2317 int i, j;
2318
2319 if (str == NULL)
2320 return 0;
2321
2322 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
2323 {
2324 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
2325 {
2326 mips_processor_type = str;
2327
2328 for (j = 0; j < NUM_REGS; ++j)
2329 reg_names[j] = mips_processor_type_table[i].regnames[j];
2330
2331 return 1;
2332
2333 /* FIXME tweak fpu flag too */
2334 }
2335 }
2336
2337 return 0;
2338 }
2339
2340 /* Attempt to identify the particular processor model by reading the
2341 processor id. */
2342
2343 char *
2344 mips_read_processor_type ()
2345 {
2346 CORE_ADDR prid;
2347
2348 prid = read_register (PRID_REGNUM);
2349
2350 if ((prid & ~0xf) == 0x700)
2351 return savestring ("r3041", strlen("r3041"));
2352
2353 return NULL;
2354 }
2355
2356 /* Just like reinit_frame_cache, but with the right arguments to be
2357 callable as an sfunc. */
2358
2359 static void
2360 reinit_frame_cache_sfunc (args, from_tty, c)
2361 char *args;
2362 int from_tty;
2363 struct cmd_list_element *c;
2364 {
2365 reinit_frame_cache ();
2366 }
2367
2368 int
2369 gdb_print_insn_mips (memaddr, info)
2370 bfd_vma memaddr;
2371 disassemble_info *info;
2372 {
2373 mips_extra_func_info_t proc_desc;
2374
2375 /* Search for the function containing this address. Set the low bit
2376 of the address when searching, in case we were given an even address
2377 that is the start of a 16-bit function. If we didn't do this,
2378 the search would fail because the symbol table says the function
2379 starts at an odd address, i.e. 1 byte past the given address. */
2380 memaddr = ADDR_BITS_REMOVE (memaddr);
2381 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
2382
2383 /* Make an attempt to determine if this is a 16-bit function. If
2384 the procedure descriptor exists and the address therein is odd,
2385 it's definitely a 16-bit function. Otherwise, we have to just
2386 guess that if the address passed in is odd, it's 16-bits. */
2387 if (proc_desc)
2388 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : 0;
2389 else
2390 info->mach = pc_is_mips16 (memaddr) ? 16 : 0;
2391
2392 /* Round down the instruction address to the appropriate boundary. */
2393 memaddr &= (info->mach == 16 ? ~1 : ~3);
2394
2395 /* Call the appropriate disassembler based on the target endian-ness. */
2396 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2397 return print_insn_big_mips (memaddr, info);
2398 else
2399 return print_insn_little_mips (memaddr, info);
2400 }
2401
2402 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
2403 counter value to determine whether a 16- or 32-bit breakpoint should be
2404 used. It returns a pointer to a string of bytes that encode a breakpoint
2405 instruction, stores the length of the string to *lenptr, and adjusts pc
2406 (if necessary) to point to the actual memory location where the
2407 breakpoint should be inserted. */
2408
2409 unsigned char *mips_breakpoint_from_pc (pcptr, lenptr)
2410 CORE_ADDR *pcptr;
2411 int *lenptr;
2412 {
2413 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2414 {
2415 if (pc_is_mips16 (*pcptr))
2416 {
2417 static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
2418 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
2419 *lenptr = sizeof(mips16_big_breakpoint);
2420 return mips16_big_breakpoint;
2421 }
2422 else
2423 {
2424 static char big_breakpoint[] = BIG_BREAKPOINT;
2425 static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
2426 static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
2427
2428 *lenptr = sizeof(big_breakpoint);
2429
2430 if (strcmp (target_shortname, "mips") == 0)
2431 return idt_big_breakpoint;
2432 else if (strcmp (target_shortname, "ddb") == 0
2433 || strcmp (target_shortname, "pmon") == 0
2434 || strcmp (target_shortname, "lsi") == 0)
2435 return pmon_big_breakpoint;
2436 else
2437 return big_breakpoint;
2438 }
2439 }
2440 else
2441 {
2442 if (pc_is_mips16 (*pcptr))
2443 {
2444 static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
2445 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
2446 *lenptr = sizeof(mips16_little_breakpoint);
2447 return mips16_little_breakpoint;
2448 }
2449 else
2450 {
2451 static char little_breakpoint[] = LITTLE_BREAKPOINT;
2452 static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
2453 static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
2454
2455 *lenptr = sizeof(little_breakpoint);
2456
2457 if (strcmp (target_shortname, "mips") == 0)
2458 return idt_little_breakpoint;
2459 else if (strcmp (target_shortname, "ddb") == 0
2460 || strcmp (target_shortname, "pmon") == 0
2461 || strcmp (target_shortname, "lsi") == 0)
2462 return pmon_little_breakpoint;
2463 else
2464 return little_breakpoint;
2465 }
2466 }
2467 }
2468
2469 /* Test whether the PC points to the return instruction at the
2470 end of a function. This implements the ABOUT_TO_RETURN macro. */
2471
2472 int
2473 mips_about_to_return (pc)
2474 CORE_ADDR pc;
2475 {
2476 if (pc_is_mips16 (pc))
2477 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2478 generates a "jr $ra"; other times it generates code to load
2479 the return address from the stack to an accessible register (such
2480 as $a3), then a "jr" using that register. This second case
2481 is almost impossible to distinguish from an indirect jump
2482 used for switch statements, so we don't even try. */
2483 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2484 else
2485 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2486 }
2487
2488
2489 /* If PC is in a mips16 call or return stub, return the address of the target
2490 PC, which is either the callee or the caller. There are several
2491 cases which must be handled:
2492
2493 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2494 target PC is in $31 ($ra).
2495 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2496 and the target PC is in $2.
2497 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2498 before the jal instruction, this is effectively a call stub
2499 and the the target PC is in $2. Otherwise this is effectively
2500 a return stub and the target PC is in $18.
2501
2502 See the source code for the stubs in gcc/config/mips/mips16.S for
2503 gory details.
2504
2505 This function implements the SKIP_TRAMPOLINE_CODE macro.
2506 */
2507
2508 CORE_ADDR
2509 mips_skip_stub (pc)
2510 CORE_ADDR pc;
2511 {
2512 char *name;
2513 CORE_ADDR start_addr;
2514
2515 /* Find the starting address and name of the function containing the PC. */
2516 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2517 return 0;
2518
2519 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
2520 target PC is in $31 ($ra). */
2521 if (strcmp (name, "__mips16_ret_sf") == 0
2522 || strcmp (name, "__mips16_ret_df") == 0)
2523 return read_register (RA_REGNUM);
2524
2525 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2526 {
2527 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
2528 and the target PC is in $2. */
2529 if (name[19] >= '0' && name[19] <= '9')
2530 return read_register (2);
2531
2532 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2533 before the jal instruction, this is effectively a call stub
2534 and the the target PC is in $2. Otherwise this is effectively
2535 a return stub and the target PC is in $18. */
2536 else if (name[19] == 's' || name[19] == 'd')
2537 {
2538 if (pc == start_addr)
2539 {
2540 /* Check if the target of the stub is a compiler-generated
2541 stub. Such a stub for a function bar might have a name
2542 like __fn_stub_bar, and might look like this:
2543 mfc1 $4,$f13
2544 mfc1 $5,$f12
2545 mfc1 $6,$f15
2546 mfc1 $7,$f14
2547 la $1,bar (becomes a lui/addiu pair)
2548 jr $1
2549 So scan down to the lui/addi and extract the target
2550 address from those two instructions. */
2551
2552 CORE_ADDR target_pc = read_register (2);
2553 t_inst inst;
2554 int i;
2555
2556 /* See if the name of the target function is __fn_stub_*. */
2557 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
2558 return target_pc;
2559 if (strncmp (name, "__fn_stub_", 10) != 0
2560 && strcmp (name, "etext") != 0
2561 && strcmp (name, "_etext") != 0)
2562 return target_pc;
2563
2564 /* Scan through this _fn_stub_ code for the lui/addiu pair.
2565 The limit on the search is arbitrarily set to 20
2566 instructions. FIXME. */
2567 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
2568 {
2569 inst = mips_fetch_instruction (target_pc);
2570 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
2571 pc = (inst << 16) & 0xffff0000; /* high word */
2572 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
2573 return pc | (inst & 0xffff); /* low word */
2574 }
2575
2576 /* Couldn't find the lui/addui pair, so return stub address. */
2577 return target_pc;
2578 }
2579 else
2580 /* This is the 'return' part of a call stub. The return
2581 address is in $r18. */
2582 return read_register (18);
2583 }
2584 }
2585 return 0; /* not a stub */
2586 }
2587
2588
2589 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
2590 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
2591
2592 int
2593 mips_in_call_stub (pc, name)
2594 CORE_ADDR pc;
2595 char *name;
2596 {
2597 CORE_ADDR start_addr;
2598
2599 /* Find the starting address of the function containing the PC. If the
2600 caller didn't give us a name, look it up at the same time. */
2601 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
2602 return 0;
2603
2604 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
2605 {
2606 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
2607 if (name[19] >= '0' && name[19] <= '9')
2608 return 1;
2609 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
2610 before the jal instruction, this is effectively a call stub. */
2611 else if (name[19] == 's' || name[19] == 'd')
2612 return pc == start_addr;
2613 }
2614
2615 return 0; /* not a stub */
2616 }
2617
2618
2619 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
2620 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
2621
2622 int
2623 mips_in_return_stub (pc, name)
2624 CORE_ADDR pc;
2625 char *name;
2626 {
2627 CORE_ADDR start_addr;
2628
2629 /* Find the starting address of the function containing the PC. */
2630 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
2631 return 0;
2632
2633 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
2634 if (strcmp (name, "__mips16_ret_sf") == 0
2635 || strcmp (name, "__mips16_ret_df") == 0)
2636 return 1;
2637
2638 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
2639 i.e. after the jal instruction, this is effectively a return stub. */
2640 if (strncmp (name, "__mips16_call_stub_", 19) == 0
2641 && (name[19] == 's' || name[19] == 'd')
2642 && pc != start_addr)
2643 return 1;
2644
2645 return 0; /* not a stub */
2646 }
2647
2648
2649 /* Return non-zero if the PC is in a library helper function that should
2650 be ignored. This implements the IGNORE_HELPER_CALL macro. */
2651
2652 int
2653 mips_ignore_helper (pc)
2654 CORE_ADDR pc;
2655 {
2656 char *name;
2657
2658 /* Find the starting address and name of the function containing the PC. */
2659 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
2660 return 0;
2661
2662 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
2663 that we want to ignore. */
2664 return (strcmp (name, "__mips16_ret_sf") == 0
2665 || strcmp (name, "__mips16_ret_df") == 0);
2666 }
2667
2668
2669 void
2670 _initialize_mips_tdep ()
2671 {
2672 struct cmd_list_element *c;
2673
2674 if (!tm_print_insn) /* Someone may have already set it */
2675 tm_print_insn = gdb_print_insn_mips;
2676
2677 /* Let the user turn off floating point and set the fence post for
2678 heuristic_proc_start. */
2679
2680 c = add_set_cmd ("mipsfpu", class_support, var_string_noescape,
2681 (char *) &mips_fpu_string,
2682 "Set use of floating point coprocessor.\n\
2683 Set to `none' to avoid using floating point instructions when calling\n\
2684 functions or dealing with return values. Set to `single' to use only\n\
2685 single precision floating point as on the R4650. Set to `double' for\n\
2686 normal floating point support.",
2687 &setlist);
2688 c->function.sfunc = mips_set_fpu_command;
2689 c = add_show_from_set (c, &showlist);
2690 c->function.sfunc = mips_show_fpu_command;
2691
2692 #ifndef MIPS_DEFAULT_FPU_TYPE
2693 mips_fpu = MIPS_FPU_DOUBLE;
2694 mips_fpu_string = strsave ("double");
2695 #else
2696 mips_fpu = MIPS_DEFAULT_FPU_TYPE;
2697 switch (mips_fpu)
2698 {
2699 case MIPS_FPU_DOUBLE: mips_fpu_string = strsave ("double"); break;
2700 case MIPS_FPU_SINGLE: mips_fpu_string = strsave ("single"); break;
2701 case MIPS_FPU_NONE: mips_fpu_string = strsave ("none"); break;
2702 }
2703 #endif
2704
2705 c = add_set_cmd ("processor", class_support, var_string_noescape,
2706 (char *) &tmp_mips_processor_type,
2707 "Set the type of MIPS processor in use.\n\
2708 Set this to be able to access processor-type-specific registers.\n\
2709 ",
2710 &setlist);
2711 c->function.cfunc = mips_set_processor_type_command;
2712 c = add_show_from_set (c, &showlist);
2713 c->function.cfunc = mips_show_processor_type_command;
2714
2715 tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
2716 mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
2717
2718 /* We really would like to have both "0" and "unlimited" work, but
2719 command.c doesn't deal with that. So make it a var_zinteger
2720 because the user can always use "999999" or some such for unlimited. */
2721 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
2722 (char *) &heuristic_fence_post,
2723 "\
2724 Set the distance searched for the start of a function.\n\
2725 If you are debugging a stripped executable, GDB needs to search through the\n\
2726 program for the start of a function. This command sets the distance of the\n\
2727 search. The only need to set it is when debugging a stripped executable.",
2728 &setlist);
2729 /* We need to throw away the frame cache when we set this, since it
2730 might change our ability to get backtraces. */
2731 c->function.sfunc = reinit_frame_cache_sfunc;
2732 add_show_from_set (c, &showlist);
2733 }
This page took 0.155544 seconds and 4 git commands to generate.