*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45 #include "reggroups.h"
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50 #include "sim-regno.h"
51 #include "dis-asm.h"
52
53 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
54 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
55
56 /* A useful bit in the CP0 status register (PS_REGNUM). */
57 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
58 #define ST0_FR (1 << 26)
59
60 /* The sizes of floating point registers. */
61
62 enum
63 {
64 MIPS_FPU_SINGLE_REGSIZE = 4,
65 MIPS_FPU_DOUBLE_REGSIZE = 8
66 };
67
68
69 static const char *mips_abi_string;
70
71 static const char *mips_abi_strings[] = {
72 "auto",
73 "n32",
74 "o32",
75 "n64",
76 "o64",
77 "eabi32",
78 "eabi64",
79 NULL
80 };
81
82 struct frame_extra_info
83 {
84 mips_extra_func_info_t proc_desc;
85 int num_args;
86 };
87
88 /* Various MIPS ISA options (related to stack analysis) can be
89 overridden dynamically. Establish an enum/array for managing
90 them. */
91
92 static const char size_auto[] = "auto";
93 static const char size_32[] = "32";
94 static const char size_64[] = "64";
95
96 static const char *size_enums[] = {
97 size_auto,
98 size_32,
99 size_64,
100 0
101 };
102
103 /* Some MIPS boards don't support floating point while others only
104 support single-precision floating-point operations. See also
105 FP_REGISTER_DOUBLE. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int mips_default_saved_regsize;
135 int mips_fp_register_double;
136 int mips_default_stack_argsize;
137 int gdb_target_is_mips64;
138 int default_mask_address_p;
139 };
140
141 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
142 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
143
144 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
145
146 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
147
148 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
149
150 /* Return the currently configured (or set) saved register size. */
151
152 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
153
154 static const char *mips_saved_regsize_string = size_auto;
155
156 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
157
158 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
159 functions to test, set, or clear bit 0 of addresses. */
160
161 static CORE_ADDR
162 is_mips16_addr (CORE_ADDR addr)
163 {
164 return ((addr) & 1);
165 }
166
167 static CORE_ADDR
168 make_mips16_addr (CORE_ADDR addr)
169 {
170 return ((addr) | 1);
171 }
172
173 static CORE_ADDR
174 unmake_mips16_addr (CORE_ADDR addr)
175 {
176 return ((addr) & ~1);
177 }
178
179 /* Return the contents of register REGNUM as a signed integer. */
180
181 static LONGEST
182 read_signed_register (int regnum)
183 {
184 void *buf = alloca (DEPRECATED_REGISTER_RAW_SIZE (regnum));
185 deprecated_read_register_gen (regnum, buf);
186 return (extract_signed_integer (buf, DEPRECATED_REGISTER_RAW_SIZE (regnum)));
187 }
188
189 static LONGEST
190 read_signed_register_pid (int regnum, ptid_t ptid)
191 {
192 ptid_t save_ptid;
193 LONGEST retval;
194
195 if (ptid_equal (ptid, inferior_ptid))
196 return read_signed_register (regnum);
197
198 save_ptid = inferior_ptid;
199
200 inferior_ptid = ptid;
201
202 retval = read_signed_register (regnum);
203
204 inferior_ptid = save_ptid;
205
206 return retval;
207 }
208
209 /* Return the MIPS ABI associated with GDBARCH. */
210 enum mips_abi
211 mips_abi (struct gdbarch *gdbarch)
212 {
213 return gdbarch_tdep (gdbarch)->mips_abi;
214 }
215
216 static unsigned int
217 mips_saved_regsize (void)
218 {
219 if (mips_saved_regsize_string == size_auto)
220 return MIPS_DEFAULT_SAVED_REGSIZE;
221 else if (mips_saved_regsize_string == size_64)
222 return 8;
223 else /* if (mips_saved_regsize_string == size_32) */
224 return 4;
225 }
226
227 /* Functions for setting and testing a bit in a minimal symbol that
228 marks it as 16-bit function. The MSB of the minimal symbol's
229 "info" field is used for this purpose.
230
231 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
232 i.e. refers to a 16-bit function, and sets a "special" bit in a
233 minimal symbol to mark it as a 16-bit function
234
235 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
236
237 static void
238 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
239 {
240 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
241 {
242 MSYMBOL_INFO (msym) = (char *)
243 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
244 SYMBOL_VALUE_ADDRESS (msym) |= 1;
245 }
246 }
247
248 static int
249 msymbol_is_special (struct minimal_symbol *msym)
250 {
251 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
252 }
253
254 /* XFER a value from the big/little/left end of the register.
255 Depending on the size of the value it might occupy the entire
256 register or just part of it. Make an allowance for this, aligning
257 things accordingly. */
258
259 static void
260 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
261 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
262 int buf_offset)
263 {
264 bfd_byte reg[MAX_REGISTER_SIZE];
265 int reg_offset = 0;
266 gdb_assert (reg_num >= NUM_REGS);
267 /* Need to transfer the left or right part of the register, based on
268 the targets byte order. */
269 switch (endian)
270 {
271 case BFD_ENDIAN_BIG:
272 reg_offset = DEPRECATED_REGISTER_RAW_SIZE (reg_num) - length;
273 break;
274 case BFD_ENDIAN_LITTLE:
275 reg_offset = 0;
276 break;
277 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
278 reg_offset = 0;
279 break;
280 default:
281 internal_error (__FILE__, __LINE__, "bad switch");
282 }
283 if (mips_debug)
284 fprintf_unfiltered (gdb_stderr,
285 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
286 reg_num, reg_offset, buf_offset, length);
287 if (mips_debug && out != NULL)
288 {
289 int i;
290 fprintf_unfiltered (gdb_stdlog, "out ");
291 for (i = 0; i < length; i++)
292 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
293 }
294 if (in != NULL)
295 regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
296 if (out != NULL)
297 regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
298 if (mips_debug && in != NULL)
299 {
300 int i;
301 fprintf_unfiltered (gdb_stdlog, "in ");
302 for (i = 0; i < length; i++)
303 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
304 }
305 if (mips_debug)
306 fprintf_unfiltered (gdb_stdlog, "\n");
307 }
308
309 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
310 compatiblity mode. A return value of 1 means that we have
311 physical 64-bit registers, but should treat them as 32-bit registers. */
312
313 static int
314 mips2_fp_compat (void)
315 {
316 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
317 meaningful. */
318 if (DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
319 return 0;
320
321 #if 0
322 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
323 in all the places we deal with FP registers. PR gdb/413. */
324 /* Otherwise check the FR bit in the status register - it controls
325 the FP compatiblity mode. If it is clear we are in compatibility
326 mode. */
327 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
328 return 1;
329 #endif
330
331 return 0;
332 }
333
334 /* Indicate that the ABI makes use of double-precision registers
335 provided by the FPU (rather than combining pairs of registers to
336 form double-precision values). Do not use "TARGET_IS_MIPS64" to
337 determine if the ABI is using double-precision registers. See also
338 MIPS_FPU_TYPE. */
339 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
340
341 /* The amount of space reserved on the stack for registers. This is
342 different to MIPS_SAVED_REGSIZE as it determines the alignment of
343 data allocated after the registers have run out. */
344
345 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
346
347 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
348
349 static const char *mips_stack_argsize_string = size_auto;
350
351 static unsigned int
352 mips_stack_argsize (void)
353 {
354 if (mips_stack_argsize_string == size_auto)
355 return MIPS_DEFAULT_STACK_ARGSIZE;
356 else if (mips_stack_argsize_string == size_64)
357 return 8;
358 else /* if (mips_stack_argsize_string == size_32) */
359 return 4;
360 }
361
362 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
363
364 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
365
366 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
367
368 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
369 struct frame_info *, int);
370
371 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
372
373 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
374
375 static int mips_set_processor_type (char *);
376
377 static void mips_show_processor_type_command (char *, int);
378
379 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
380
381 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
382 struct frame_info *next_frame,
383 int cur_frame);
384
385 static CORE_ADDR after_prologue (CORE_ADDR pc,
386 mips_extra_func_info_t proc_desc);
387
388 static struct type *mips_float_register_type (void);
389 static struct type *mips_double_register_type (void);
390
391 /* This value is the model of MIPS in use. It is derived from the value
392 of the PrID register. */
393
394 char *mips_processor_type;
395
396 char *tmp_mips_processor_type;
397
398 /* The list of available "set mips " and "show mips " commands */
399
400 static struct cmd_list_element *setmipscmdlist = NULL;
401 static struct cmd_list_element *showmipscmdlist = NULL;
402
403 /* A set of original names, to be used when restoring back to generic
404 registers from a specific set. */
405 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
406
407 /* Integer registers 0 thru 31 are handled explicitly by
408 mips_register_name(). Processor specific registers 32 and above
409 are listed in the sets of register names assigned to
410 mips_processor_reg_names. */
411 static char **mips_processor_reg_names = mips_generic_reg_names;
412
413 /* Return the name of the register corresponding to REGNO. */
414 static const char *
415 mips_register_name (int regno)
416 {
417 /* GPR names for all ABIs other than n32/n64. */
418 static char *mips_gpr_names[] = {
419 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
420 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
421 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
422 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
423 };
424
425 /* GPR names for n32 and n64 ABIs. */
426 static char *mips_n32_n64_gpr_names[] = {
427 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
428 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
429 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
430 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
431 };
432
433 enum mips_abi abi = mips_abi (current_gdbarch);
434
435 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
436 don't make the raw register names visible. */
437 int rawnum = regno % NUM_REGS;
438 if (regno < NUM_REGS)
439 return "";
440
441 /* The MIPS integer registers are always mapped from 0 to 31. The
442 names of the registers (which reflects the conventions regarding
443 register use) vary depending on the ABI. */
444 if (0 <= rawnum && rawnum < 32)
445 {
446 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
447 return mips_n32_n64_gpr_names[rawnum];
448 else
449 return mips_gpr_names[rawnum];
450 }
451 else if (32 <= rawnum && rawnum < NUM_REGS)
452 return mips_processor_reg_names[rawnum - 32];
453 else
454 internal_error (__FILE__, __LINE__,
455 "mips_register_name: bad register number %d", rawnum);
456 }
457
458 /* *INDENT-OFF* */
459 /* Names of IDT R3041 registers. */
460
461 char *mips_r3041_reg_names[] = {
462 "sr", "lo", "hi", "bad", "cause","pc",
463 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
464 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
465 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
466 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
467 "fsr", "fir", "",/*"fp"*/ "",
468 "", "", "bus", "ccfg", "", "", "", "",
469 "", "", "port", "cmp", "", "", "epc", "prid",
470 };
471
472 /* Names of IDT R3051 registers. */
473
474 char *mips_r3051_reg_names[] = {
475 "sr", "lo", "hi", "bad", "cause","pc",
476 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
477 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
478 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
479 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
480 "fsr", "fir", ""/*"fp"*/, "",
481 "inx", "rand", "elo", "", "ctxt", "", "", "",
482 "", "", "ehi", "", "", "", "epc", "prid",
483 };
484
485 /* Names of IDT R3081 registers. */
486
487 char *mips_r3081_reg_names[] = {
488 "sr", "lo", "hi", "bad", "cause","pc",
489 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
490 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
491 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
492 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
493 "fsr", "fir", ""/*"fp"*/, "",
494 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
495 "", "", "ehi", "", "", "", "epc", "prid",
496 };
497
498 /* Names of LSI 33k registers. */
499
500 char *mips_lsi33k_reg_names[] = {
501 "epc", "hi", "lo", "sr", "cause","badvaddr",
502 "dcic", "bpc", "bda", "", "", "", "", "",
503 "", "", "", "", "", "", "", "",
504 "", "", "", "", "", "", "", "",
505 "", "", "", "", "", "", "", "",
506 "", "", "", "",
507 "", "", "", "", "", "", "", "",
508 "", "", "", "", "", "", "", "",
509 };
510
511 struct {
512 char *name;
513 char **regnames;
514 } mips_processor_type_table[] = {
515 { "generic", mips_generic_reg_names },
516 { "r3041", mips_r3041_reg_names },
517 { "r3051", mips_r3051_reg_names },
518 { "r3071", mips_r3081_reg_names },
519 { "r3081", mips_r3081_reg_names },
520 { "lsi33k", mips_lsi33k_reg_names },
521 { NULL, NULL }
522 };
523 /* *INDENT-ON* */
524
525 /* Return the groups that a MIPS register can be categorised into. */
526
527 static int
528 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
529 struct reggroup *reggroup)
530 {
531 int vector_p;
532 int float_p;
533 int raw_p;
534 int rawnum = regnum % NUM_REGS;
535 int pseudo = regnum / NUM_REGS;
536 if (reggroup == all_reggroup)
537 return pseudo;
538 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
539 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
540 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
541 (gdbarch), as not all architectures are multi-arch. */
542 raw_p = rawnum < NUM_REGS;
543 if (REGISTER_NAME (regnum) == NULL
544 || REGISTER_NAME (regnum)[0] == '\0')
545 return 0;
546 if (reggroup == float_reggroup)
547 return float_p && pseudo;
548 if (reggroup == vector_reggroup)
549 return vector_p && pseudo;
550 if (reggroup == general_reggroup)
551 return (!vector_p && !float_p) && pseudo;
552 /* Save the pseudo registers. Need to make certain that any code
553 extracting register values from a saved register cache also uses
554 pseudo registers. */
555 if (reggroup == save_reggroup)
556 return raw_p && pseudo;
557 /* Restore the same pseudo register. */
558 if (reggroup == restore_reggroup)
559 return raw_p && pseudo;
560 return 0;
561 }
562
563 /* Map the symbol table registers which live in the range [1 *
564 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
565 registers. */
566
567 static void
568 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
569 int cookednum, void *buf)
570 {
571 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
572 return regcache_raw_read (regcache, cookednum % NUM_REGS, buf);
573 }
574
575 static void
576 mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
577 int cookednum, const void *buf)
578 {
579 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
580 return regcache_raw_write (regcache, cookednum % NUM_REGS, buf);
581 }
582
583 /* Table to translate MIPS16 register field to actual register number. */
584 static int mips16_to_32_reg[8] =
585 {16, 17, 2, 3, 4, 5, 6, 7};
586
587 /* Heuristic_proc_start may hunt through the text section for a long
588 time across a 2400 baud serial line. Allows the user to limit this
589 search. */
590
591 static unsigned int heuristic_fence_post = 0;
592
593 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
594 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
595 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
596 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
597 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
598 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
599 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
600 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
601 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
602 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
603 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
604 this will corrupt pdr.iline. Fortunately we don't use it. */
605 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
606 #define _PROC_MAGIC_ 0x0F0F0F0F
607 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
608 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
609
610 struct linked_proc_info
611 {
612 struct mips_extra_func_info info;
613 struct linked_proc_info *next;
614 }
615 *linked_proc_desc_table = NULL;
616
617 /* Number of bytes of storage in the actual machine representation for
618 register N. NOTE: This indirectly defines the register size
619 transfered by the GDB protocol. */
620
621 static int mips64_transfers_32bit_regs_p = 0;
622
623 static int
624 mips_register_raw_size (int regnum)
625 {
626 gdb_assert (regnum >= 0);
627 if (regnum < NUM_REGS)
628 {
629 /* For compatibility with old code, implemnt the broken register raw
630 size map for the raw registers.
631
632 NOTE: cagney/2003-06-15: This is so bogus. The register's
633 raw size is changing according to the ABI
634 (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a
635 combination of DEPRECATED_REGISTER_RAW_SIZE and DEPRECATED_REGISTER_BYTE. */
636 if (mips64_transfers_32bit_regs_p)
637 return DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
638 else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32
639 && FP_REGISTER_DOUBLE)
640 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
641 registers. */
642 return 8;
643 else
644 return MIPS_REGSIZE;
645 }
646 else if (regnum < 2 * NUM_REGS)
647 {
648 /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw
649 registers, but always return the virtual size. */
650 int rawnum = regnum % NUM_REGS;
651 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, rawnum));
652 }
653 else
654 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
655 }
656
657 /* Register offset in a buffer for each register.
658
659 FIXME: cagney/2003-06-15: This is so bogus. Instead REGISTER_TYPE
660 should strictly return the layout of the buffer. Unfortunately
661 remote.c and the MIPS have come to rely on a custom layout that
662 doesn't 1:1 map onto the register type. */
663
664 static int
665 mips_register_byte (int regnum)
666 {
667 gdb_assert (regnum >= 0);
668 if (regnum < NUM_REGS)
669 /* Pick up the relevant per-tm file register byte method. */
670 return MIPS_REGISTER_BYTE (regnum);
671 else if (regnum < 2 * NUM_REGS)
672 {
673 int reg;
674 int byte;
675 /* Start with the end of the raw register buffer - assum that
676 MIPS_REGISTER_BYTE (NUM_REGS) returns that end. */
677 byte = MIPS_REGISTER_BYTE (NUM_REGS);
678 /* Add space for all the proceeding registers based on their
679 real size. */
680 for (reg = NUM_REGS; reg < regnum; reg++)
681 byte += TYPE_LENGTH (gdbarch_register_type (current_gdbarch,
682 (reg % NUM_REGS)));
683 return byte;
684 }
685 else
686 internal_error (__FILE__, __LINE__, "Register %d out of range", regnum);
687 }
688
689 /* Convert between RAW and VIRTUAL registers. The RAW register size
690 defines the remote-gdb packet. */
691
692 static int
693 mips_register_convertible (int reg_nr)
694 {
695 if (mips64_transfers_32bit_regs_p)
696 return 0;
697 else
698 return (DEPRECATED_REGISTER_RAW_SIZE (reg_nr) > DEPRECATED_REGISTER_VIRTUAL_SIZE (reg_nr));
699 }
700
701 static void
702 mips_register_convert_to_virtual (int n, struct type *virtual_type,
703 char *raw_buf, char *virt_buf)
704 {
705 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
706 memcpy (virt_buf,
707 raw_buf + (DEPRECATED_REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
708 TYPE_LENGTH (virtual_type));
709 else
710 memcpy (virt_buf,
711 raw_buf,
712 TYPE_LENGTH (virtual_type));
713 }
714
715 static void
716 mips_register_convert_to_raw (struct type *virtual_type, int n,
717 const char *virt_buf, char *raw_buf)
718 {
719 memset (raw_buf, 0, DEPRECATED_REGISTER_RAW_SIZE (n));
720 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
721 memcpy (raw_buf + (DEPRECATED_REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
722 virt_buf,
723 TYPE_LENGTH (virtual_type));
724 else
725 memcpy (raw_buf,
726 virt_buf,
727 TYPE_LENGTH (virtual_type));
728 }
729
730 static int
731 mips_convert_register_p (int regnum, struct type *type)
732 {
733 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
734 && DEPRECATED_REGISTER_RAW_SIZE (regnum) == 4
735 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
736 && TYPE_CODE(type) == TYPE_CODE_FLT
737 && TYPE_LENGTH(type) == 8);
738 }
739
740 static void
741 mips_register_to_value (struct frame_info *frame, int regnum,
742 struct type *type, void *to)
743 {
744 get_frame_register (frame, regnum + 0, (char *) to + 4);
745 get_frame_register (frame, regnum + 1, (char *) to + 0);
746 }
747
748 static void
749 mips_value_to_register (struct frame_info *frame, int regnum,
750 struct type *type, const void *from)
751 {
752 put_frame_register (frame, regnum + 0, (const char *) from + 4);
753 put_frame_register (frame, regnum + 1, (const char *) from + 0);
754 }
755
756 /* Return the GDB type object for the "standard" data type of data in
757 register REG. */
758
759 static struct type *
760 mips_register_type (struct gdbarch *gdbarch, int regnum)
761 {
762 /* For moment, map [NUM_REGS .. 2*NUM_REGS) onto the same raw
763 registers. Even return the same type. */
764 int rawnum = regnum % NUM_REGS;
765 gdb_assert (rawnum >= 0 && rawnum < NUM_REGS);
766 #ifdef MIPS_REGISTER_TYPE
767 return MIPS_REGISTER_TYPE (rawnum);
768 #else
769 if (FP0_REGNUM <= rawnum && rawnum < FP0_REGNUM + 32)
770 {
771 /* Floating point registers... */
772 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
773 return builtin_type_ieee_double_big;
774 else
775 return builtin_type_ieee_double_little;
776 }
777 else if (rawnum == PS_REGNUM /* CR */)
778 return builtin_type_uint32;
779 else if (FCRCS_REGNUM <= rawnum && rawnum <= LAST_EMBED_REGNUM)
780 return builtin_type_uint32;
781 else
782 {
783 /* Everything else...
784 Return type appropriate for width of register. */
785 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
786 return builtin_type_uint64;
787 else
788 return builtin_type_uint32;
789 }
790 #endif
791 }
792
793 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
794
795 static CORE_ADDR
796 mips_read_sp (void)
797 {
798 return read_signed_register (SP_REGNUM);
799 }
800
801 /* Should the upper word of 64-bit addresses be zeroed? */
802 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
803
804 static int
805 mips_mask_address_p (void)
806 {
807 switch (mask_address_var)
808 {
809 case AUTO_BOOLEAN_TRUE:
810 return 1;
811 case AUTO_BOOLEAN_FALSE:
812 return 0;
813 break;
814 case AUTO_BOOLEAN_AUTO:
815 return MIPS_DEFAULT_MASK_ADDRESS_P;
816 default:
817 internal_error (__FILE__, __LINE__,
818 "mips_mask_address_p: bad switch");
819 return -1;
820 }
821 }
822
823 static void
824 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
825 {
826 switch (mask_address_var)
827 {
828 case AUTO_BOOLEAN_TRUE:
829 printf_filtered ("The 32 bit mips address mask is enabled\n");
830 break;
831 case AUTO_BOOLEAN_FALSE:
832 printf_filtered ("The 32 bit mips address mask is disabled\n");
833 break;
834 case AUTO_BOOLEAN_AUTO:
835 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
836 mips_mask_address_p () ? "enabled" : "disabled");
837 break;
838 default:
839 internal_error (__FILE__, __LINE__,
840 "show_mask_address: bad switch");
841 break;
842 }
843 }
844
845 /* Should call_function allocate stack space for a struct return? */
846
847 static int
848 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
849 {
850 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
851 }
852
853 static int
854 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
855 {
856 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
857 }
858
859 /* Should call_function pass struct by reference?
860 For each architecture, structs are passed either by
861 value or by reference, depending on their size. */
862
863 static int
864 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
865 {
866 enum type_code typecode = TYPE_CODE (check_typedef (type));
867 int len = TYPE_LENGTH (check_typedef (type));
868
869 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
870 return (len > MIPS_SAVED_REGSIZE);
871
872 return 0;
873 }
874
875 static int
876 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
877 {
878 return 0; /* Assumption: N32/N64 never passes struct by ref. */
879 }
880
881 static int
882 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
883 {
884 return 0; /* Assumption: O32/O64 never passes struct by ref. */
885 }
886
887 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
888
889 static int
890 pc_is_mips16 (bfd_vma memaddr)
891 {
892 struct minimal_symbol *sym;
893
894 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
895 if (is_mips16_addr (memaddr))
896 return 1;
897
898 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
899 the high bit of the info field. Use this to decide if the function is
900 MIPS16 or normal MIPS. */
901 sym = lookup_minimal_symbol_by_pc (memaddr);
902 if (sym)
903 return msymbol_is_special (sym);
904 else
905 return 0;
906 }
907
908 /* MIPS believes that the PC has a sign extended value. Perhaphs the
909 all registers should be sign extended for simplicity? */
910
911 static CORE_ADDR
912 mips_read_pc (ptid_t ptid)
913 {
914 return read_signed_register_pid (PC_REGNUM, ptid);
915 }
916
917 /* This returns the PC of the first inst after the prologue. If we can't
918 find the prologue, then return 0. */
919
920 static CORE_ADDR
921 after_prologue (CORE_ADDR pc,
922 mips_extra_func_info_t proc_desc)
923 {
924 struct symtab_and_line sal;
925 CORE_ADDR func_addr, func_end;
926
927 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
928 to read the stack pointer from the current machine state, because
929 the current machine state has nothing to do with the information
930 we need from the proc_desc; and the process may or may not exist
931 right now. */
932 if (!proc_desc)
933 proc_desc = find_proc_desc (pc, NULL, 0);
934
935 if (proc_desc)
936 {
937 /* If function is frameless, then we need to do it the hard way. I
938 strongly suspect that frameless always means prologueless... */
939 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
940 && PROC_FRAME_OFFSET (proc_desc) == 0)
941 return 0;
942 }
943
944 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
945 return 0; /* Unknown */
946
947 sal = find_pc_line (func_addr, 0);
948
949 if (sal.end < func_end)
950 return sal.end;
951
952 /* The line after the prologue is after the end of the function. In this
953 case, tell the caller to find the prologue the hard way. */
954
955 return 0;
956 }
957
958 /* Decode a MIPS32 instruction that saves a register in the stack, and
959 set the appropriate bit in the general register mask or float register mask
960 to indicate which register is saved. This is a helper function
961 for mips_find_saved_regs. */
962
963 static void
964 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
965 unsigned long *float_mask)
966 {
967 int reg;
968
969 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
970 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
971 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
972 {
973 /* It might be possible to use the instruction to
974 find the offset, rather than the code below which
975 is based on things being in a certain order in the
976 frame, but figuring out what the instruction's offset
977 is relative to might be a little tricky. */
978 reg = (inst & 0x001f0000) >> 16;
979 *gen_mask |= (1 << reg);
980 }
981 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
982 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
983 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
984
985 {
986 reg = ((inst & 0x001f0000) >> 16);
987 *float_mask |= (1 << reg);
988 }
989 }
990
991 /* Decode a MIPS16 instruction that saves a register in the stack, and
992 set the appropriate bit in the general register or float register mask
993 to indicate which register is saved. This is a helper function
994 for mips_find_saved_regs. */
995
996 static void
997 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
998 {
999 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1000 {
1001 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1002 *gen_mask |= (1 << reg);
1003 }
1004 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1005 {
1006 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1007 *gen_mask |= (1 << reg);
1008 }
1009 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
1010 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1011 *gen_mask |= (1 << RA_REGNUM);
1012 }
1013
1014
1015 /* Fetch and return instruction from the specified location. If the PC
1016 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
1017
1018 static t_inst
1019 mips_fetch_instruction (CORE_ADDR addr)
1020 {
1021 char buf[MIPS_INSTLEN];
1022 int instlen;
1023 int status;
1024
1025 if (pc_is_mips16 (addr))
1026 {
1027 instlen = MIPS16_INSTLEN;
1028 addr = unmake_mips16_addr (addr);
1029 }
1030 else
1031 instlen = MIPS_INSTLEN;
1032 status = read_memory_nobpt (addr, buf, instlen);
1033 if (status)
1034 memory_error (status, addr);
1035 return extract_unsigned_integer (buf, instlen);
1036 }
1037
1038
1039 /* These the fields of 32 bit mips instructions */
1040 #define mips32_op(x) (x >> 26)
1041 #define itype_op(x) (x >> 26)
1042 #define itype_rs(x) ((x >> 21) & 0x1f)
1043 #define itype_rt(x) ((x >> 16) & 0x1f)
1044 #define itype_immediate(x) (x & 0xffff)
1045
1046 #define jtype_op(x) (x >> 26)
1047 #define jtype_target(x) (x & 0x03ffffff)
1048
1049 #define rtype_op(x) (x >> 26)
1050 #define rtype_rs(x) ((x >> 21) & 0x1f)
1051 #define rtype_rt(x) ((x >> 16) & 0x1f)
1052 #define rtype_rd(x) ((x >> 11) & 0x1f)
1053 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1054 #define rtype_funct(x) (x & 0x3f)
1055
1056 static CORE_ADDR
1057 mips32_relative_offset (unsigned long inst)
1058 {
1059 long x;
1060 x = itype_immediate (inst);
1061 if (x & 0x8000) /* sign bit set */
1062 {
1063 x |= 0xffff0000; /* sign extension */
1064 }
1065 x = x << 2;
1066 return x;
1067 }
1068
1069 /* Determine whate to set a single step breakpoint while considering
1070 branch prediction */
1071 static CORE_ADDR
1072 mips32_next_pc (CORE_ADDR pc)
1073 {
1074 unsigned long inst;
1075 int op;
1076 inst = mips_fetch_instruction (pc);
1077 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
1078 {
1079 if (itype_op (inst) >> 2 == 5)
1080 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1081 {
1082 op = (itype_op (inst) & 0x03);
1083 switch (op)
1084 {
1085 case 0: /* BEQL */
1086 goto equal_branch;
1087 case 1: /* BNEL */
1088 goto neq_branch;
1089 case 2: /* BLEZL */
1090 goto less_branch;
1091 case 3: /* BGTZ */
1092 goto greater_branch;
1093 default:
1094 pc += 4;
1095 }
1096 }
1097 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1098 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1099 {
1100 int tf = itype_rt (inst) & 0x01;
1101 int cnum = itype_rt (inst) >> 2;
1102 int fcrcs = read_signed_register (FCRCS_REGNUM);
1103 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1104
1105 if (((cond >> cnum) & 0x01) == tf)
1106 pc += mips32_relative_offset (inst) + 4;
1107 else
1108 pc += 8;
1109 }
1110 else
1111 pc += 4; /* Not a branch, next instruction is easy */
1112 }
1113 else
1114 { /* This gets way messy */
1115
1116 /* Further subdivide into SPECIAL, REGIMM and other */
1117 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1118 {
1119 case 0: /* SPECIAL */
1120 op = rtype_funct (inst);
1121 switch (op)
1122 {
1123 case 8: /* JR */
1124 case 9: /* JALR */
1125 /* Set PC to that address */
1126 pc = read_signed_register (rtype_rs (inst));
1127 break;
1128 default:
1129 pc += 4;
1130 }
1131
1132 break; /* end SPECIAL */
1133 case 1: /* REGIMM */
1134 {
1135 op = itype_rt (inst); /* branch condition */
1136 switch (op)
1137 {
1138 case 0: /* BLTZ */
1139 case 2: /* BLTZL */
1140 case 16: /* BLTZAL */
1141 case 18: /* BLTZALL */
1142 less_branch:
1143 if (read_signed_register (itype_rs (inst)) < 0)
1144 pc += mips32_relative_offset (inst) + 4;
1145 else
1146 pc += 8; /* after the delay slot */
1147 break;
1148 case 1: /* BGEZ */
1149 case 3: /* BGEZL */
1150 case 17: /* BGEZAL */
1151 case 19: /* BGEZALL */
1152 greater_equal_branch:
1153 if (read_signed_register (itype_rs (inst)) >= 0)
1154 pc += mips32_relative_offset (inst) + 4;
1155 else
1156 pc += 8; /* after the delay slot */
1157 break;
1158 /* All of the other instructions in the REGIMM category */
1159 default:
1160 pc += 4;
1161 }
1162 }
1163 break; /* end REGIMM */
1164 case 2: /* J */
1165 case 3: /* JAL */
1166 {
1167 unsigned long reg;
1168 reg = jtype_target (inst) << 2;
1169 /* Upper four bits get never changed... */
1170 pc = reg + ((pc + 4) & 0xf0000000);
1171 }
1172 break;
1173 /* FIXME case JALX : */
1174 {
1175 unsigned long reg;
1176 reg = jtype_target (inst) << 2;
1177 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1178 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1179 }
1180 break; /* The new PC will be alternate mode */
1181 case 4: /* BEQ, BEQL */
1182 equal_branch:
1183 if (read_signed_register (itype_rs (inst)) ==
1184 read_signed_register (itype_rt (inst)))
1185 pc += mips32_relative_offset (inst) + 4;
1186 else
1187 pc += 8;
1188 break;
1189 case 5: /* BNE, BNEL */
1190 neq_branch:
1191 if (read_signed_register (itype_rs (inst)) !=
1192 read_signed_register (itype_rt (inst)))
1193 pc += mips32_relative_offset (inst) + 4;
1194 else
1195 pc += 8;
1196 break;
1197 case 6: /* BLEZ, BLEZL */
1198 less_zero_branch:
1199 if (read_signed_register (itype_rs (inst) <= 0))
1200 pc += mips32_relative_offset (inst) + 4;
1201 else
1202 pc += 8;
1203 break;
1204 case 7:
1205 default:
1206 greater_branch: /* BGTZ, BGTZL */
1207 if (read_signed_register (itype_rs (inst) > 0))
1208 pc += mips32_relative_offset (inst) + 4;
1209 else
1210 pc += 8;
1211 break;
1212 } /* switch */
1213 } /* else */
1214 return pc;
1215 } /* mips32_next_pc */
1216
1217 /* Decoding the next place to set a breakpoint is irregular for the
1218 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1219 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1220 We dont want to set a single step instruction on the extend instruction
1221 either.
1222 */
1223
1224 /* Lots of mips16 instruction formats */
1225 /* Predicting jumps requires itype,ritype,i8type
1226 and their extensions extItype,extritype,extI8type
1227 */
1228 enum mips16_inst_fmts
1229 {
1230 itype, /* 0 immediate 5,10 */
1231 ritype, /* 1 5,3,8 */
1232 rrtype, /* 2 5,3,3,5 */
1233 rritype, /* 3 5,3,3,5 */
1234 rrrtype, /* 4 5,3,3,3,2 */
1235 rriatype, /* 5 5,3,3,1,4 */
1236 shifttype, /* 6 5,3,3,3,2 */
1237 i8type, /* 7 5,3,8 */
1238 i8movtype, /* 8 5,3,3,5 */
1239 i8mov32rtype, /* 9 5,3,5,3 */
1240 i64type, /* 10 5,3,8 */
1241 ri64type, /* 11 5,3,3,5 */
1242 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1243 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1244 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1245 extRRItype, /* 15 5,5,5,5,3,3,5 */
1246 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1247 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1248 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1249 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1250 extRi64type, /* 20 5,6,5,5,3,3,5 */
1251 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1252 };
1253 /* I am heaping all the fields of the formats into one structure and
1254 then, only the fields which are involved in instruction extension */
1255 struct upk_mips16
1256 {
1257 CORE_ADDR offset;
1258 unsigned int regx; /* Function in i8 type */
1259 unsigned int regy;
1260 };
1261
1262
1263 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1264 for the bits which make up the immediatate extension. */
1265
1266 static CORE_ADDR
1267 extended_offset (unsigned int extension)
1268 {
1269 CORE_ADDR value;
1270 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1271 value = value << 6;
1272 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1273 value = value << 5;
1274 value |= extension & 0x01f; /* extract 4:0 */
1275 return value;
1276 }
1277
1278 /* Only call this function if you know that this is an extendable
1279 instruction, It wont malfunction, but why make excess remote memory references?
1280 If the immediate operands get sign extended or somthing, do it after
1281 the extension is performed.
1282 */
1283 /* FIXME: Every one of these cases needs to worry about sign extension
1284 when the offset is to be used in relative addressing */
1285
1286
1287 static unsigned int
1288 fetch_mips_16 (CORE_ADDR pc)
1289 {
1290 char buf[8];
1291 pc &= 0xfffffffe; /* clear the low order bit */
1292 target_read_memory (pc, buf, 2);
1293 return extract_unsigned_integer (buf, 2);
1294 }
1295
1296 static void
1297 unpack_mips16 (CORE_ADDR pc,
1298 unsigned int extension,
1299 unsigned int inst,
1300 enum mips16_inst_fmts insn_format,
1301 struct upk_mips16 *upk)
1302 {
1303 CORE_ADDR offset;
1304 int regx;
1305 int regy;
1306 switch (insn_format)
1307 {
1308 case itype:
1309 {
1310 CORE_ADDR value;
1311 if (extension)
1312 {
1313 value = extended_offset (extension);
1314 value = value << 11; /* rom for the original value */
1315 value |= inst & 0x7ff; /* eleven bits from instruction */
1316 }
1317 else
1318 {
1319 value = inst & 0x7ff;
1320 /* FIXME : Consider sign extension */
1321 }
1322 offset = value;
1323 regx = -1;
1324 regy = -1;
1325 }
1326 break;
1327 case ritype:
1328 case i8type:
1329 { /* A register identifier and an offset */
1330 /* Most of the fields are the same as I type but the
1331 immediate value is of a different length */
1332 CORE_ADDR value;
1333 if (extension)
1334 {
1335 value = extended_offset (extension);
1336 value = value << 8; /* from the original instruction */
1337 value |= inst & 0xff; /* eleven bits from instruction */
1338 regx = (extension >> 8) & 0x07; /* or i8 funct */
1339 if (value & 0x4000) /* test the sign bit , bit 26 */
1340 {
1341 value &= ~0x3fff; /* remove the sign bit */
1342 value = -value;
1343 }
1344 }
1345 else
1346 {
1347 value = inst & 0xff; /* 8 bits */
1348 regx = (inst >> 8) & 0x07; /* or i8 funct */
1349 /* FIXME: Do sign extension , this format needs it */
1350 if (value & 0x80) /* THIS CONFUSES ME */
1351 {
1352 value &= 0xef; /* remove the sign bit */
1353 value = -value;
1354 }
1355 }
1356 offset = value;
1357 regy = -1;
1358 break;
1359 }
1360 case jalxtype:
1361 {
1362 unsigned long value;
1363 unsigned int nexthalf;
1364 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1365 value = value << 16;
1366 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1367 value |= nexthalf;
1368 offset = value;
1369 regx = -1;
1370 regy = -1;
1371 break;
1372 }
1373 default:
1374 internal_error (__FILE__, __LINE__,
1375 "bad switch");
1376 }
1377 upk->offset = offset;
1378 upk->regx = regx;
1379 upk->regy = regy;
1380 }
1381
1382
1383 static CORE_ADDR
1384 add_offset_16 (CORE_ADDR pc, int offset)
1385 {
1386 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1387 }
1388
1389 static CORE_ADDR
1390 extended_mips16_next_pc (CORE_ADDR pc,
1391 unsigned int extension,
1392 unsigned int insn)
1393 {
1394 int op = (insn >> 11);
1395 switch (op)
1396 {
1397 case 2: /* Branch */
1398 {
1399 CORE_ADDR offset;
1400 struct upk_mips16 upk;
1401 unpack_mips16 (pc, extension, insn, itype, &upk);
1402 offset = upk.offset;
1403 if (offset & 0x800)
1404 {
1405 offset &= 0xeff;
1406 offset = -offset;
1407 }
1408 pc += (offset << 1) + 2;
1409 break;
1410 }
1411 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1412 {
1413 struct upk_mips16 upk;
1414 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1415 pc = add_offset_16 (pc, upk.offset);
1416 if ((insn >> 10) & 0x01) /* Exchange mode */
1417 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1418 else
1419 pc |= 0x01;
1420 break;
1421 }
1422 case 4: /* beqz */
1423 {
1424 struct upk_mips16 upk;
1425 int reg;
1426 unpack_mips16 (pc, extension, insn, ritype, &upk);
1427 reg = read_signed_register (upk.regx);
1428 if (reg == 0)
1429 pc += (upk.offset << 1) + 2;
1430 else
1431 pc += 2;
1432 break;
1433 }
1434 case 5: /* bnez */
1435 {
1436 struct upk_mips16 upk;
1437 int reg;
1438 unpack_mips16 (pc, extension, insn, ritype, &upk);
1439 reg = read_signed_register (upk.regx);
1440 if (reg != 0)
1441 pc += (upk.offset << 1) + 2;
1442 else
1443 pc += 2;
1444 break;
1445 }
1446 case 12: /* I8 Formats btez btnez */
1447 {
1448 struct upk_mips16 upk;
1449 int reg;
1450 unpack_mips16 (pc, extension, insn, i8type, &upk);
1451 /* upk.regx contains the opcode */
1452 reg = read_signed_register (24); /* Test register is 24 */
1453 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1454 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1455 /* pc = add_offset_16(pc,upk.offset) ; */
1456 pc += (upk.offset << 1) + 2;
1457 else
1458 pc += 2;
1459 break;
1460 }
1461 case 29: /* RR Formats JR, JALR, JALR-RA */
1462 {
1463 struct upk_mips16 upk;
1464 /* upk.fmt = rrtype; */
1465 op = insn & 0x1f;
1466 if (op == 0)
1467 {
1468 int reg;
1469 upk.regx = (insn >> 8) & 0x07;
1470 upk.regy = (insn >> 5) & 0x07;
1471 switch (upk.regy)
1472 {
1473 case 0:
1474 reg = upk.regx;
1475 break;
1476 case 1:
1477 reg = 31;
1478 break; /* Function return instruction */
1479 case 2:
1480 reg = upk.regx;
1481 break;
1482 default:
1483 reg = 31;
1484 break; /* BOGUS Guess */
1485 }
1486 pc = read_signed_register (reg);
1487 }
1488 else
1489 pc += 2;
1490 break;
1491 }
1492 case 30:
1493 /* This is an instruction extension. Fetch the real instruction
1494 (which follows the extension) and decode things based on
1495 that. */
1496 {
1497 pc += 2;
1498 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1499 break;
1500 }
1501 default:
1502 {
1503 pc += 2;
1504 break;
1505 }
1506 }
1507 return pc;
1508 }
1509
1510 static CORE_ADDR
1511 mips16_next_pc (CORE_ADDR pc)
1512 {
1513 unsigned int insn = fetch_mips_16 (pc);
1514 return extended_mips16_next_pc (pc, 0, insn);
1515 }
1516
1517 /* The mips_next_pc function supports single_step when the remote
1518 target monitor or stub is not developed enough to do a single_step.
1519 It works by decoding the current instruction and predicting where a
1520 branch will go. This isnt hard because all the data is available.
1521 The MIPS32 and MIPS16 variants are quite different */
1522 CORE_ADDR
1523 mips_next_pc (CORE_ADDR pc)
1524 {
1525 if (pc & 0x01)
1526 return mips16_next_pc (pc);
1527 else
1528 return mips32_next_pc (pc);
1529 }
1530
1531 /* Set up the 'saved_regs' array. This is a data structure containing
1532 the addresses on the stack where each register has been saved, for
1533 each stack frame. Registers that have not been saved will have
1534 zero here. The stack pointer register is special: rather than the
1535 address where the stack register has been saved,
1536 saved_regs[SP_REGNUM] will have the actual value of the previous
1537 frame's stack register. */
1538
1539 static void
1540 mips_find_saved_regs (struct frame_info *fci)
1541 {
1542 int ireg;
1543 /* r0 bit means kernel trap */
1544 int kernel_trap;
1545 /* What registers have been saved? Bitmasks. */
1546 unsigned long gen_mask, float_mask;
1547 mips_extra_func_info_t proc_desc;
1548 t_inst inst;
1549 CORE_ADDR *saved_regs;
1550
1551 if (deprecated_get_frame_saved_regs (fci) != NULL)
1552 return;
1553 saved_regs = frame_saved_regs_zalloc (fci);
1554
1555 /* If it is the frame for sigtramp, the saved registers are located
1556 in a sigcontext structure somewhere on the stack. If the stack
1557 layout for sigtramp changes we might have to change these
1558 constants and the companion fixup_sigtramp in mdebugread.c */
1559 #ifndef SIGFRAME_BASE
1560 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1561 above the sigtramp frame. */
1562 #define SIGFRAME_BASE MIPS_REGSIZE
1563 /* FIXME! Are these correct?? */
1564 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1565 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1566 #define SIGFRAME_FPREGSAVE_OFF \
1567 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1568 #endif
1569 #ifndef SIGFRAME_REG_SIZE
1570 /* FIXME! Is this correct?? */
1571 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1572 #endif
1573 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1574 {
1575 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1576 {
1577 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1578 + ireg * SIGFRAME_REG_SIZE);
1579 set_reg_offset (saved_regs, ireg, reg_position);
1580 }
1581 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1582 {
1583 CORE_ADDR reg_position = (get_frame_base (fci)
1584 + SIGFRAME_FPREGSAVE_OFF
1585 + ireg * SIGFRAME_REG_SIZE);
1586 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1587 }
1588
1589 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1590 /* SP_REGNUM, contains the value and not the address. */
1591 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1592 return;
1593 }
1594
1595 proc_desc = get_frame_extra_info (fci)->proc_desc;
1596 if (proc_desc == NULL)
1597 /* I'm not sure how/whether this can happen. Normally when we
1598 can't find a proc_desc, we "synthesize" one using
1599 heuristic_proc_desc and set the saved_regs right away. */
1600 return;
1601
1602 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1603 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1604 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1605
1606 if (/* In any frame other than the innermost or a frame interrupted
1607 by a signal, we assume that all registers have been saved.
1608 This assumes that all register saves in a function happen
1609 before the first function call. */
1610 (get_next_frame (fci) == NULL
1611 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1612
1613 /* In a dummy frame we know exactly where things are saved. */
1614 && !PROC_DESC_IS_DUMMY (proc_desc)
1615
1616 /* Don't bother unless we are inside a function prologue.
1617 Outside the prologue, we know where everything is. */
1618
1619 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1620
1621 /* Not sure exactly what kernel_trap means, but if it means the
1622 kernel saves the registers without a prologue doing it, we
1623 better not examine the prologue to see whether registers
1624 have been saved yet. */
1625 && !kernel_trap)
1626 {
1627 /* We need to figure out whether the registers that the
1628 proc_desc claims are saved have been saved yet. */
1629
1630 CORE_ADDR addr;
1631
1632 /* Bitmasks; set if we have found a save for the register. */
1633 unsigned long gen_save_found = 0;
1634 unsigned long float_save_found = 0;
1635 int instlen;
1636
1637 /* If the address is odd, assume this is MIPS16 code. */
1638 addr = PROC_LOW_ADDR (proc_desc);
1639 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1640
1641 /* Scan through this function's instructions preceding the
1642 current PC, and look for those that save registers. */
1643 while (addr < get_frame_pc (fci))
1644 {
1645 inst = mips_fetch_instruction (addr);
1646 if (pc_is_mips16 (addr))
1647 mips16_decode_reg_save (inst, &gen_save_found);
1648 else
1649 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1650 addr += instlen;
1651 }
1652 gen_mask = gen_save_found;
1653 float_mask = float_save_found;
1654 }
1655
1656 /* Fill in the offsets for the registers which gen_mask says were
1657 saved. */
1658 {
1659 CORE_ADDR reg_position = (get_frame_base (fci)
1660 + PROC_REG_OFFSET (proc_desc));
1661 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1662 if (gen_mask & 0x80000000)
1663 {
1664 set_reg_offset (saved_regs, ireg, reg_position);
1665 reg_position -= MIPS_SAVED_REGSIZE;
1666 }
1667 }
1668
1669 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1670 order of that normally used by gcc. Therefore, we have to fetch
1671 the first instruction of the function, and if it's an entry
1672 instruction that saves $s0 or $s1, correct their saved addresses. */
1673 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1674 {
1675 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1676 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1677 /* entry */
1678 {
1679 int reg;
1680 int sreg_count = (inst >> 6) & 3;
1681
1682 /* Check if the ra register was pushed on the stack. */
1683 CORE_ADDR reg_position = (get_frame_base (fci)
1684 + PROC_REG_OFFSET (proc_desc));
1685 if (inst & 0x20)
1686 reg_position -= MIPS_SAVED_REGSIZE;
1687
1688 /* Check if the s0 and s1 registers were pushed on the
1689 stack. */
1690 for (reg = 16; reg < sreg_count + 16; reg++)
1691 {
1692 set_reg_offset (saved_regs, reg, reg_position);
1693 reg_position -= MIPS_SAVED_REGSIZE;
1694 }
1695 }
1696 }
1697
1698 /* Fill in the offsets for the registers which float_mask says were
1699 saved. */
1700 {
1701 CORE_ADDR reg_position = (get_frame_base (fci)
1702 + PROC_FREG_OFFSET (proc_desc));
1703
1704 /* Fill in the offsets for the float registers which float_mask
1705 says were saved. */
1706 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1707 if (float_mask & 0x80000000)
1708 {
1709 if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1710 {
1711 /* On a big endian 32 bit ABI, floating point registers
1712 are paired to form doubles such that the most
1713 significant part is in $f[N+1] and the least
1714 significant in $f[N] vis: $f[N+1] ||| $f[N]. The
1715 registers are also spilled as a pair and stored as a
1716 double.
1717
1718 When little-endian the least significant part is
1719 stored first leading to the memory order $f[N] and
1720 then $f[N+1].
1721
1722 Unfortunately, when big-endian the most significant
1723 part of the double is stored first, and the least
1724 significant is stored second. This leads to the
1725 registers being ordered in memory as firt $f[N+1] and
1726 then $f[N].
1727
1728 For the big-endian case make certain that the
1729 addresses point at the correct (swapped) locations
1730 $f[N] and $f[N+1] pair (keep in mind that
1731 reg_position is decremented each time through the
1732 loop). */
1733 if ((ireg & 1))
1734 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1735 reg_position - MIPS_SAVED_REGSIZE);
1736 else
1737 set_reg_offset (saved_regs, FP0_REGNUM + ireg,
1738 reg_position + MIPS_SAVED_REGSIZE);
1739 }
1740 else
1741 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1742 reg_position -= MIPS_SAVED_REGSIZE;
1743 }
1744
1745 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1746 }
1747
1748 /* SP_REGNUM, contains the value and not the address. */
1749 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1750 }
1751
1752 static CORE_ADDR
1753 read_next_frame_reg (struct frame_info *fi, int regno)
1754 {
1755 /* Always a pseudo. */
1756 gdb_assert (regno >= NUM_REGS);
1757 if (fi == NULL)
1758 {
1759 LONGEST val;
1760 regcache_cooked_read_signed (current_regcache, regno, &val);
1761 return val;
1762 }
1763 else if ((regno % NUM_REGS) == SP_REGNUM)
1764 /* The SP_REGNUM is special, its value is stored in saved_regs.
1765 In fact, it is so special that it can even only be fetched
1766 using a raw register number! Once this code as been converted
1767 to frame-unwind the problem goes away. */
1768 return frame_unwind_register_signed (fi, regno % NUM_REGS);
1769 else
1770 return frame_unwind_register_signed (fi, regno);
1771
1772 }
1773
1774 /* mips_addr_bits_remove - remove useless address bits */
1775
1776 static CORE_ADDR
1777 mips_addr_bits_remove (CORE_ADDR addr)
1778 {
1779 if (GDB_TARGET_IS_MIPS64)
1780 {
1781 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1782 {
1783 /* This hack is a work-around for existing boards using
1784 PMON, the simulator, and any other 64-bit targets that
1785 doesn't have true 64-bit addressing. On these targets,
1786 the upper 32 bits of addresses are ignored by the
1787 hardware. Thus, the PC or SP are likely to have been
1788 sign extended to all 1s by instruction sequences that
1789 load 32-bit addresses. For example, a typical piece of
1790 code that loads an address is this:
1791 lui $r2, <upper 16 bits>
1792 ori $r2, <lower 16 bits>
1793 But the lui sign-extends the value such that the upper 32
1794 bits may be all 1s. The workaround is simply to mask off
1795 these bits. In the future, gcc may be changed to support
1796 true 64-bit addressing, and this masking will have to be
1797 disabled. */
1798 addr &= (CORE_ADDR) 0xffffffff;
1799 }
1800 }
1801 else if (mips_mask_address_p ())
1802 {
1803 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1804 masking off bits, instead, the actual target should be asking
1805 for the address to be converted to a valid pointer. */
1806 /* Even when GDB is configured for some 32-bit targets
1807 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1808 so CORE_ADDR is 64 bits. So we still have to mask off
1809 useless bits from addresses. */
1810 addr &= (CORE_ADDR) 0xffffffff;
1811 }
1812 return addr;
1813 }
1814
1815 /* mips_software_single_step() is called just before we want to resume
1816 the inferior, if we want to single-step it but there is no hardware
1817 or kernel single-step support (MIPS on GNU/Linux for example). We find
1818 the target of the coming instruction and breakpoint it.
1819
1820 single_step is also called just after the inferior stops. If we had
1821 set up a simulated single-step, we undo our damage. */
1822
1823 void
1824 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1825 {
1826 static CORE_ADDR next_pc;
1827 typedef char binsn_quantum[BREAKPOINT_MAX];
1828 static binsn_quantum break_mem;
1829 CORE_ADDR pc;
1830
1831 if (insert_breakpoints_p)
1832 {
1833 pc = read_register (PC_REGNUM);
1834 next_pc = mips_next_pc (pc);
1835
1836 target_insert_breakpoint (next_pc, break_mem);
1837 }
1838 else
1839 target_remove_breakpoint (next_pc, break_mem);
1840 }
1841
1842 static CORE_ADDR
1843 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1844 {
1845 CORE_ADDR pc, tmp;
1846
1847 pc = ((fromleaf)
1848 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1849 : get_next_frame (prev)
1850 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1851 : read_pc ());
1852 tmp = SKIP_TRAMPOLINE_CODE (pc);
1853 return tmp ? tmp : pc;
1854 }
1855
1856
1857 static CORE_ADDR
1858 mips_frame_saved_pc (struct frame_info *frame)
1859 {
1860 CORE_ADDR saved_pc;
1861
1862 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1863 {
1864 LONGEST tmp;
1865 /* Always unwind the cooked PC register value. */
1866 frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp);
1867 saved_pc = tmp;
1868 }
1869 else
1870 {
1871 mips_extra_func_info_t proc_desc
1872 = get_frame_extra_info (frame)->proc_desc;
1873 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1874 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1875 else
1876 {
1877 /* We have to get the saved pc from the sigcontext if it is
1878 a signal handler frame. */
1879 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM
1880 : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1881 saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg);
1882 }
1883 }
1884 return ADDR_BITS_REMOVE (saved_pc);
1885 }
1886
1887 static struct mips_extra_func_info temp_proc_desc;
1888
1889 /* This hack will go away once the get_prev_frame() code has been
1890 modified to set the frame's type first. That is BEFORE init extra
1891 frame info et.al. is called. This is because it will become
1892 possible to skip the init extra info call for sigtramp and dummy
1893 frames. */
1894 static CORE_ADDR *temp_saved_regs;
1895
1896 /* Set a register's saved stack address in temp_saved_regs. If an
1897 address has already been set for this register, do nothing; this
1898 way we will only recognize the first save of a given register in a
1899 function prologue.
1900
1901 For simplicity, save the address in both [0 .. NUM_REGS) and
1902 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1903 is used as it is only second range (the ABI instead of ISA
1904 registers) that comes into play when finding saved registers in a
1905 frame. */
1906
1907 static void
1908 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1909 {
1910 if (saved_regs[regno] == 0)
1911 {
1912 saved_regs[regno + 0 * NUM_REGS] = offset;
1913 saved_regs[regno + 1 * NUM_REGS] = offset;
1914 }
1915 }
1916
1917
1918 /* Test whether the PC points to the return instruction at the
1919 end of a function. */
1920
1921 static int
1922 mips_about_to_return (CORE_ADDR pc)
1923 {
1924 if (pc_is_mips16 (pc))
1925 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1926 generates a "jr $ra"; other times it generates code to load
1927 the return address from the stack to an accessible register (such
1928 as $a3), then a "jr" using that register. This second case
1929 is almost impossible to distinguish from an indirect jump
1930 used for switch statements, so we don't even try. */
1931 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1932 else
1933 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1934 }
1935
1936
1937 /* This fencepost looks highly suspicious to me. Removing it also
1938 seems suspicious as it could affect remote debugging across serial
1939 lines. */
1940
1941 static CORE_ADDR
1942 heuristic_proc_start (CORE_ADDR pc)
1943 {
1944 CORE_ADDR start_pc;
1945 CORE_ADDR fence;
1946 int instlen;
1947 int seen_adjsp = 0;
1948
1949 pc = ADDR_BITS_REMOVE (pc);
1950 start_pc = pc;
1951 fence = start_pc - heuristic_fence_post;
1952 if (start_pc == 0)
1953 return 0;
1954
1955 if (heuristic_fence_post == UINT_MAX
1956 || fence < VM_MIN_ADDRESS)
1957 fence = VM_MIN_ADDRESS;
1958
1959 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1960
1961 /* search back for previous return */
1962 for (start_pc -= instlen;; start_pc -= instlen)
1963 if (start_pc < fence)
1964 {
1965 /* It's not clear to me why we reach this point when
1966 stop_soon, but with this test, at least we
1967 don't print out warnings for every child forked (eg, on
1968 decstation). 22apr93 rich@cygnus.com. */
1969 if (stop_soon == NO_STOP_QUIETLY)
1970 {
1971 static int blurb_printed = 0;
1972
1973 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1974 paddr_nz (pc));
1975
1976 if (!blurb_printed)
1977 {
1978 /* This actually happens frequently in embedded
1979 development, when you first connect to a board
1980 and your stack pointer and pc are nowhere in
1981 particular. This message needs to give people
1982 in that situation enough information to
1983 determine that it's no big deal. */
1984 printf_filtered ("\n\
1985 GDB is unable to find the start of the function at 0x%s\n\
1986 and thus can't determine the size of that function's stack frame.\n\
1987 This means that GDB may be unable to access that stack frame, or\n\
1988 the frames below it.\n\
1989 This problem is most likely caused by an invalid program counter or\n\
1990 stack pointer.\n\
1991 However, if you think GDB should simply search farther back\n\
1992 from 0x%s for code which looks like the beginning of a\n\
1993 function, you can increase the range of the search using the `set\n\
1994 heuristic-fence-post' command.\n",
1995 paddr_nz (pc), paddr_nz (pc));
1996 blurb_printed = 1;
1997 }
1998 }
1999
2000 return 0;
2001 }
2002 else if (pc_is_mips16 (start_pc))
2003 {
2004 unsigned short inst;
2005
2006 /* On MIPS16, any one of the following is likely to be the
2007 start of a function:
2008 entry
2009 addiu sp,-n
2010 daddiu sp,-n
2011 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2012 inst = mips_fetch_instruction (start_pc);
2013 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2014 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2015 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2016 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2017 break;
2018 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2019 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2020 seen_adjsp = 1;
2021 else
2022 seen_adjsp = 0;
2023 }
2024 else if (mips_about_to_return (start_pc))
2025 {
2026 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
2027 break;
2028 }
2029
2030 return start_pc;
2031 }
2032
2033 /* Fetch the immediate value from a MIPS16 instruction.
2034 If the previous instruction was an EXTEND, use it to extend
2035 the upper bits of the immediate value. This is a helper function
2036 for mips16_heuristic_proc_desc. */
2037
2038 static int
2039 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2040 unsigned short inst, /* current instruction */
2041 int nbits, /* number of bits in imm field */
2042 int scale, /* scale factor to be applied to imm */
2043 int is_signed) /* is the imm field signed? */
2044 {
2045 int offset;
2046
2047 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2048 {
2049 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2050 if (offset & 0x8000) /* check for negative extend */
2051 offset = 0 - (0x10000 - (offset & 0xffff));
2052 return offset | (inst & 0x1f);
2053 }
2054 else
2055 {
2056 int max_imm = 1 << nbits;
2057 int mask = max_imm - 1;
2058 int sign_bit = max_imm >> 1;
2059
2060 offset = inst & mask;
2061 if (is_signed && (offset & sign_bit))
2062 offset = 0 - (max_imm - offset);
2063 return offset * scale;
2064 }
2065 }
2066
2067
2068 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
2069 stream from start_pc to limit_pc. */
2070
2071 static void
2072 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2073 struct frame_info *next_frame, CORE_ADDR sp)
2074 {
2075 CORE_ADDR cur_pc;
2076 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
2077 unsigned short prev_inst = 0; /* saved copy of previous instruction */
2078 unsigned inst = 0; /* current instruction */
2079 unsigned entry_inst = 0; /* the entry instruction */
2080 int reg, offset;
2081
2082 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
2083 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2084
2085 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
2086 {
2087 /* Save the previous instruction. If it's an EXTEND, we'll extract
2088 the immediate offset extension from it in mips16_get_imm. */
2089 prev_inst = inst;
2090
2091 /* Fetch and decode the instruction. */
2092 inst = (unsigned short) mips_fetch_instruction (cur_pc);
2093 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2094 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2095 {
2096 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2097 if (offset < 0) /* negative stack adjustment? */
2098 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
2099 else
2100 /* Exit loop if a positive stack adjustment is found, which
2101 usually means that the stack cleanup code in the function
2102 epilogue is reached. */
2103 break;
2104 }
2105 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2106 {
2107 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2108 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
2109 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2110 set_reg_offset (temp_saved_regs, reg, sp + offset);
2111 }
2112 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2113 {
2114 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2115 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2116 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2117 set_reg_offset (temp_saved_regs, reg, sp + offset);
2118 }
2119 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2120 {
2121 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2122 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2123 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2124 }
2125 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2126 {
2127 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2128 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2129 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2130 }
2131 else if (inst == 0x673d) /* move $s1, $sp */
2132 {
2133 frame_addr = sp;
2134 PROC_FRAME_REG (&temp_proc_desc) = 17;
2135 }
2136 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2137 {
2138 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2139 frame_addr = sp + offset;
2140 PROC_FRAME_REG (&temp_proc_desc) = 17;
2141 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2142 }
2143 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2144 {
2145 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2146 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2147 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2148 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2149 }
2150 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2151 {
2152 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2153 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2154 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2155 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2156 }
2157 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2158 entry_inst = inst; /* save for later processing */
2159 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2160 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2161 }
2162
2163 /* The entry instruction is typically the first instruction in a function,
2164 and it stores registers at offsets relative to the value of the old SP
2165 (before the prologue). But the value of the sp parameter to this
2166 function is the new SP (after the prologue has been executed). So we
2167 can't calculate those offsets until we've seen the entire prologue,
2168 and can calculate what the old SP must have been. */
2169 if (entry_inst != 0)
2170 {
2171 int areg_count = (entry_inst >> 8) & 7;
2172 int sreg_count = (entry_inst >> 6) & 3;
2173
2174 /* The entry instruction always subtracts 32 from the SP. */
2175 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2176
2177 /* Now we can calculate what the SP must have been at the
2178 start of the function prologue. */
2179 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2180
2181 /* Check if a0-a3 were saved in the caller's argument save area. */
2182 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2183 {
2184 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2185 set_reg_offset (temp_saved_regs, reg, sp + offset);
2186 offset += MIPS_SAVED_REGSIZE;
2187 }
2188
2189 /* Check if the ra register was pushed on the stack. */
2190 offset = -4;
2191 if (entry_inst & 0x20)
2192 {
2193 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2194 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2195 offset -= MIPS_SAVED_REGSIZE;
2196 }
2197
2198 /* Check if the s0 and s1 registers were pushed on the stack. */
2199 for (reg = 16; reg < sreg_count + 16; reg++)
2200 {
2201 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2202 set_reg_offset (temp_saved_regs, reg, sp + offset);
2203 offset -= MIPS_SAVED_REGSIZE;
2204 }
2205 }
2206 }
2207
2208 static void
2209 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2210 struct frame_info *next_frame, CORE_ADDR sp)
2211 {
2212 CORE_ADDR cur_pc;
2213 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2214 restart:
2215 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2216 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2217 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2218 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2219 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2220 {
2221 unsigned long inst, high_word, low_word;
2222 int reg;
2223
2224 /* Fetch the instruction. */
2225 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2226
2227 /* Save some code by pre-extracting some useful fields. */
2228 high_word = (inst >> 16) & 0xffff;
2229 low_word = inst & 0xffff;
2230 reg = high_word & 0x1f;
2231
2232 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2233 || high_word == 0x23bd /* addi $sp,$sp,-i */
2234 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2235 {
2236 if (low_word & 0x8000) /* negative stack adjustment? */
2237 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2238 else
2239 /* Exit loop if a positive stack adjustment is found, which
2240 usually means that the stack cleanup code in the function
2241 epilogue is reached. */
2242 break;
2243 }
2244 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2245 {
2246 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2247 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2248 }
2249 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2250 {
2251 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2252 but the register size used is only 32 bits. Make the address
2253 for the saved register point to the lower 32 bits. */
2254 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2255 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2256 }
2257 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2258 {
2259 /* Old gcc frame, r30 is virtual frame pointer. */
2260 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2261 frame_addr = sp + low_word;
2262 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2263 {
2264 unsigned alloca_adjust;
2265 PROC_FRAME_REG (&temp_proc_desc) = 30;
2266 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2267 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2268 if (alloca_adjust > 0)
2269 {
2270 /* FP > SP + frame_size. This may be because
2271 * of an alloca or somethings similar.
2272 * Fix sp to "pre-alloca" value, and try again.
2273 */
2274 sp += alloca_adjust;
2275 goto restart;
2276 }
2277 }
2278 }
2279 /* move $30,$sp. With different versions of gas this will be either
2280 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2281 Accept any one of these. */
2282 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2283 {
2284 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2285 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2286 {
2287 unsigned alloca_adjust;
2288 PROC_FRAME_REG (&temp_proc_desc) = 30;
2289 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
2290 alloca_adjust = (unsigned) (frame_addr - sp);
2291 if (alloca_adjust > 0)
2292 {
2293 /* FP > SP + frame_size. This may be because
2294 * of an alloca or somethings similar.
2295 * Fix sp to "pre-alloca" value, and try again.
2296 */
2297 sp += alloca_adjust;
2298 goto restart;
2299 }
2300 }
2301 }
2302 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2303 {
2304 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2305 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2306 }
2307 }
2308 }
2309
2310 static mips_extra_func_info_t
2311 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2312 struct frame_info *next_frame, int cur_frame)
2313 {
2314 CORE_ADDR sp;
2315
2316 if (cur_frame)
2317 sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM);
2318 else
2319 sp = 0;
2320
2321 if (start_pc == 0)
2322 return NULL;
2323 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2324 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2325 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2326 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2327 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2328 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2329
2330 if (start_pc + 200 < limit_pc)
2331 limit_pc = start_pc + 200;
2332 if (pc_is_mips16 (start_pc))
2333 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2334 else
2335 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2336 return &temp_proc_desc;
2337 }
2338
2339 struct mips_objfile_private
2340 {
2341 bfd_size_type size;
2342 char *contents;
2343 };
2344
2345 /* Global used to communicate between non_heuristic_proc_desc and
2346 compare_pdr_entries within qsort (). */
2347 static bfd *the_bfd;
2348
2349 static int
2350 compare_pdr_entries (const void *a, const void *b)
2351 {
2352 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2353 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2354
2355 if (lhs < rhs)
2356 return -1;
2357 else if (lhs == rhs)
2358 return 0;
2359 else
2360 return 1;
2361 }
2362
2363 static mips_extra_func_info_t
2364 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2365 {
2366 CORE_ADDR startaddr;
2367 mips_extra_func_info_t proc_desc;
2368 struct block *b = block_for_pc (pc);
2369 struct symbol *sym;
2370 struct obj_section *sec;
2371 struct mips_objfile_private *priv;
2372
2373 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2374 return NULL;
2375
2376 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2377 if (addrptr)
2378 *addrptr = startaddr;
2379
2380 priv = NULL;
2381
2382 sec = find_pc_section (pc);
2383 if (sec != NULL)
2384 {
2385 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2386
2387 /* Search the ".pdr" section generated by GAS. This includes most of
2388 the information normally found in ECOFF PDRs. */
2389
2390 the_bfd = sec->objfile->obfd;
2391 if (priv == NULL
2392 && (the_bfd->format == bfd_object
2393 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2394 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2395 {
2396 /* Right now GAS only outputs the address as a four-byte sequence.
2397 This means that we should not bother with this method on 64-bit
2398 targets (until that is fixed). */
2399
2400 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2401 sizeof (struct mips_objfile_private));
2402 priv->size = 0;
2403 sec->objfile->obj_private = priv;
2404 }
2405 else if (priv == NULL)
2406 {
2407 asection *bfdsec;
2408
2409 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2410 sizeof (struct mips_objfile_private));
2411
2412 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2413 if (bfdsec != NULL)
2414 {
2415 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2416 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2417 priv->size);
2418 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2419 priv->contents, 0, priv->size);
2420
2421 /* In general, the .pdr section is sorted. However, in the
2422 presence of multiple code sections (and other corner cases)
2423 it can become unsorted. Sort it so that we can use a faster
2424 binary search. */
2425 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2426 }
2427 else
2428 priv->size = 0;
2429
2430 sec->objfile->obj_private = priv;
2431 }
2432 the_bfd = NULL;
2433
2434 if (priv->size != 0)
2435 {
2436 int low, mid, high;
2437 char *ptr;
2438
2439 low = 0;
2440 high = priv->size / 32;
2441
2442 do
2443 {
2444 CORE_ADDR pdr_pc;
2445
2446 mid = (low + high) / 2;
2447
2448 ptr = priv->contents + mid * 32;
2449 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2450 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2451 SECT_OFF_TEXT (sec->objfile));
2452 if (pdr_pc == startaddr)
2453 break;
2454 if (pdr_pc > startaddr)
2455 high = mid;
2456 else
2457 low = mid + 1;
2458 }
2459 while (low != high);
2460
2461 if (low != high)
2462 {
2463 struct symbol *sym = find_pc_function (pc);
2464
2465 /* Fill in what we need of the proc_desc. */
2466 proc_desc = (mips_extra_func_info_t)
2467 obstack_alloc (&sec->objfile->psymbol_obstack,
2468 sizeof (struct mips_extra_func_info));
2469 PROC_LOW_ADDR (proc_desc) = startaddr;
2470
2471 /* Only used for dummy frames. */
2472 PROC_HIGH_ADDR (proc_desc) = 0;
2473
2474 PROC_FRAME_OFFSET (proc_desc)
2475 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2476 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2477 ptr + 24);
2478 PROC_FRAME_ADJUST (proc_desc) = 0;
2479 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2480 ptr + 4);
2481 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2482 ptr + 12);
2483 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2484 ptr + 8);
2485 PROC_FREG_OFFSET (proc_desc)
2486 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2487 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2488 ptr + 28);
2489 proc_desc->pdr.isym = (long) sym;
2490
2491 return proc_desc;
2492 }
2493 }
2494 }
2495
2496 if (b == NULL)
2497 return NULL;
2498
2499 if (startaddr > BLOCK_START (b))
2500 {
2501 /* This is the "pathological" case referred to in a comment in
2502 print_frame_info. It might be better to move this check into
2503 symbol reading. */
2504 return NULL;
2505 }
2506
2507 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2508
2509 /* If we never found a PDR for this function in symbol reading, then
2510 examine prologues to find the information. */
2511 if (sym)
2512 {
2513 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2514 if (PROC_FRAME_REG (proc_desc) == -1)
2515 return NULL;
2516 else
2517 return proc_desc;
2518 }
2519 else
2520 return NULL;
2521 }
2522
2523
2524 static mips_extra_func_info_t
2525 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2526 {
2527 mips_extra_func_info_t proc_desc;
2528 CORE_ADDR startaddr = 0;
2529
2530 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2531
2532 if (proc_desc)
2533 {
2534 /* IF this is the topmost frame AND
2535 * (this proc does not have debugging information OR
2536 * the PC is in the procedure prologue)
2537 * THEN create a "heuristic" proc_desc (by analyzing
2538 * the actual code) to replace the "official" proc_desc.
2539 */
2540 if (next_frame == NULL)
2541 {
2542 struct symtab_and_line val;
2543 struct symbol *proc_symbol =
2544 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2545
2546 if (proc_symbol)
2547 {
2548 val = find_pc_line (BLOCK_START
2549 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2550 0);
2551 val.pc = val.end ? val.end : pc;
2552 }
2553 if (!proc_symbol || pc < val.pc)
2554 {
2555 mips_extra_func_info_t found_heuristic =
2556 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2557 pc, next_frame, cur_frame);
2558 if (found_heuristic)
2559 proc_desc = found_heuristic;
2560 }
2561 }
2562 }
2563 else
2564 {
2565 /* Is linked_proc_desc_table really necessary? It only seems to be used
2566 by procedure call dummys. However, the procedures being called ought
2567 to have their own proc_descs, and even if they don't,
2568 heuristic_proc_desc knows how to create them! */
2569
2570 struct linked_proc_info *link;
2571
2572 for (link = linked_proc_desc_table; link; link = link->next)
2573 if (PROC_LOW_ADDR (&link->info) <= pc
2574 && PROC_HIGH_ADDR (&link->info) > pc)
2575 return &link->info;
2576
2577 if (startaddr == 0)
2578 startaddr = heuristic_proc_start (pc);
2579
2580 proc_desc =
2581 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2582 }
2583 return proc_desc;
2584 }
2585
2586 static CORE_ADDR
2587 get_frame_pointer (struct frame_info *frame,
2588 mips_extra_func_info_t proc_desc)
2589 {
2590 return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc))
2591 + PROC_FRAME_OFFSET (proc_desc)
2592 - PROC_FRAME_ADJUST (proc_desc));
2593 }
2594
2595 static mips_extra_func_info_t cached_proc_desc;
2596
2597 static CORE_ADDR
2598 mips_frame_chain (struct frame_info *frame)
2599 {
2600 mips_extra_func_info_t proc_desc;
2601 CORE_ADDR tmp;
2602 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2603
2604 if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc))
2605 return 0;
2606
2607 /* Check if the PC is inside a call stub. If it is, fetch the
2608 PC of the caller of that stub. */
2609 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2610 saved_pc = tmp;
2611
2612 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2613 {
2614 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2615 is well, frame->frame the bottom of the current frame will
2616 contain that value. */
2617 return get_frame_base (frame);
2618 }
2619
2620 /* Look up the procedure descriptor for this PC. */
2621 proc_desc = find_proc_desc (saved_pc, frame, 1);
2622 if (!proc_desc)
2623 return 0;
2624
2625 cached_proc_desc = proc_desc;
2626
2627 /* If no frame pointer and frame size is zero, we must be at end
2628 of stack (or otherwise hosed). If we don't check frame size,
2629 we loop forever if we see a zero size frame. */
2630 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2631 && PROC_FRAME_OFFSET (proc_desc) == 0
2632 /* The previous frame from a sigtramp frame might be frameless
2633 and have frame size zero. */
2634 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2635 /* For a generic dummy frame, let get_frame_pointer() unwind a
2636 register value saved as part of the dummy frame call. */
2637 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2638 return 0;
2639 else
2640 return get_frame_pointer (frame, proc_desc);
2641 }
2642
2643 static void
2644 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2645 {
2646 int regnum;
2647 mips_extra_func_info_t proc_desc;
2648
2649 if (get_frame_type (fci) == DUMMY_FRAME)
2650 return;
2651
2652 /* Use proc_desc calculated in frame_chain. When there is no
2653 next frame, i.e, get_next_frame (fci) == NULL, we call
2654 find_proc_desc () to calculate it, passing an explicit
2655 NULL as the frame parameter. */
2656 proc_desc =
2657 get_next_frame (fci)
2658 ? cached_proc_desc
2659 : find_proc_desc (get_frame_pc (fci),
2660 NULL /* i.e, get_next_frame (fci) */,
2661 1);
2662
2663 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2664
2665 deprecated_set_frame_saved_regs_hack (fci, NULL);
2666 get_frame_extra_info (fci)->proc_desc =
2667 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2668 if (proc_desc)
2669 {
2670 /* Fixup frame-pointer - only needed for top frame */
2671 /* This may not be quite right, if proc has a real frame register.
2672 Get the value of the frame relative sp, procedure might have been
2673 interrupted by a signal at it's very start. */
2674 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2675 && !PROC_DESC_IS_DUMMY (proc_desc))
2676 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM));
2677 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2678 /* Do not ``fix'' fci->frame. It will have the value of the
2679 generic dummy frame's top-of-stack (since the draft
2680 fci->frame is obtained by returning the unwound stack
2681 pointer) and that is what we want. That way the fci->frame
2682 value will match the top-of-stack value that was saved as
2683 part of the dummy frames data. */
2684 /* Do nothing. */;
2685 else
2686 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2687
2688 if (proc_desc == &temp_proc_desc)
2689 {
2690 char *name;
2691
2692 /* Do not set the saved registers for a sigtramp frame,
2693 mips_find_saved_registers will do that for us. We can't
2694 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2695 yet set. */
2696 /* FIXME: cagney/2002-11-18: This problem will go away once
2697 frame.c:get_prev_frame() is modified to set the frame's
2698 type before calling functions like this. */
2699 find_pc_partial_function (get_frame_pc (fci), &name,
2700 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2701 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2702 {
2703 frame_saved_regs_zalloc (fci);
2704 /* Set value of previous frame's stack pointer.
2705 Remember that saved_regs[SP_REGNUM] is special in
2706 that it contains the value of the stack pointer
2707 register. The other saved_regs values are addresses
2708 (in the inferior) at which a given register's value
2709 may be found. */
2710 set_reg_offset (temp_saved_regs, SP_REGNUM,
2711 get_frame_base (fci));
2712 set_reg_offset (temp_saved_regs, PC_REGNUM,
2713 temp_saved_regs[RA_REGNUM]);
2714 memcpy (deprecated_get_frame_saved_regs (fci), temp_saved_regs,
2715 SIZEOF_FRAME_SAVED_REGS);
2716 }
2717 }
2718
2719 /* hack: if argument regs are saved, guess these contain args */
2720 /* assume we can't tell how many args for now */
2721 get_frame_extra_info (fci)->num_args = -1;
2722 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2723 {
2724 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2725 {
2726 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2727 break;
2728 }
2729 }
2730 }
2731 }
2732
2733 /* MIPS stack frames are almost impenetrable. When execution stops,
2734 we basically have to look at symbol information for the function
2735 that we stopped in, which tells us *which* register (if any) is
2736 the base of the frame pointer, and what offset from that register
2737 the frame itself is at.
2738
2739 This presents a problem when trying to examine a stack in memory
2740 (that isn't executing at the moment), using the "frame" command. We
2741 don't have a PC, nor do we have any registers except SP.
2742
2743 This routine takes two arguments, SP and PC, and tries to make the
2744 cached frames look as if these two arguments defined a frame on the
2745 cache. This allows the rest of info frame to extract the important
2746 arguments without difficulty. */
2747
2748 struct frame_info *
2749 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2750 {
2751 if (argc != 2)
2752 error ("MIPS frame specifications require two arguments: sp and pc");
2753
2754 return create_new_frame (argv[0], argv[1]);
2755 }
2756
2757 /* According to the current ABI, should the type be passed in a
2758 floating-point register (assuming that there is space)? When there
2759 is no FPU, FP are not even considered as possibile candidates for
2760 FP registers and, consequently this returns false - forces FP
2761 arguments into integer registers. */
2762
2763 static int
2764 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2765 {
2766 return ((typecode == TYPE_CODE_FLT
2767 || (MIPS_EABI
2768 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2769 && TYPE_NFIELDS (arg_type) == 1
2770 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2771 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2772 }
2773
2774 /* On o32, argument passing in GPRs depends on the alignment of the type being
2775 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2776
2777 static int
2778 mips_type_needs_double_align (struct type *type)
2779 {
2780 enum type_code typecode = TYPE_CODE (type);
2781
2782 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2783 return 1;
2784 else if (typecode == TYPE_CODE_STRUCT)
2785 {
2786 if (TYPE_NFIELDS (type) < 1)
2787 return 0;
2788 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2789 }
2790 else if (typecode == TYPE_CODE_UNION)
2791 {
2792 int i, n;
2793
2794 n = TYPE_NFIELDS (type);
2795 for (i = 0; i < n; i++)
2796 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2797 return 1;
2798 return 0;
2799 }
2800 return 0;
2801 }
2802
2803 /* Adjust the address downward (direction of stack growth) so that it
2804 is correctly aligned for a new stack frame. */
2805 static CORE_ADDR
2806 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2807 {
2808 return align_down (addr, 16);
2809 }
2810
2811 static CORE_ADDR
2812 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2813 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2814 struct value **args, CORE_ADDR sp, int struct_return,
2815 CORE_ADDR struct_addr)
2816 {
2817 int argreg;
2818 int float_argreg;
2819 int argnum;
2820 int len = 0;
2821 int stack_offset = 0;
2822
2823 /* For shared libraries, "t9" needs to point at the function
2824 address. */
2825 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2826
2827 /* Set the return address register to point to the entry point of
2828 the program, where a breakpoint lies in wait. */
2829 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2830
2831 /* First ensure that the stack and structure return address (if any)
2832 are properly aligned. The stack has to be at least 64-bit
2833 aligned even on 32-bit machines, because doubles must be 64-bit
2834 aligned. For n32 and n64, stack frames need to be 128-bit
2835 aligned, so we round to this widest known alignment. */
2836
2837 sp = align_down (sp, 16);
2838 struct_addr = align_down (struct_addr, 16);
2839
2840 /* Now make space on the stack for the args. We allocate more
2841 than necessary for EABI, because the first few arguments are
2842 passed in registers, but that's OK. */
2843 for (argnum = 0; argnum < nargs; argnum++)
2844 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2845 MIPS_STACK_ARGSIZE);
2846 sp -= align_up (len, 16);
2847
2848 if (mips_debug)
2849 fprintf_unfiltered (gdb_stdlog,
2850 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2851 paddr_nz (sp), (long) align_up (len, 16));
2852
2853 /* Initialize the integer and float register pointers. */
2854 argreg = A0_REGNUM;
2855 float_argreg = FPA0_REGNUM;
2856
2857 /* The struct_return pointer occupies the first parameter-passing reg. */
2858 if (struct_return)
2859 {
2860 if (mips_debug)
2861 fprintf_unfiltered (gdb_stdlog,
2862 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2863 argreg, paddr_nz (struct_addr));
2864 write_register (argreg++, struct_addr);
2865 }
2866
2867 /* Now load as many as possible of the first arguments into
2868 registers, and push the rest onto the stack. Loop thru args
2869 from first to last. */
2870 for (argnum = 0; argnum < nargs; argnum++)
2871 {
2872 char *val;
2873 char valbuf[MAX_REGISTER_SIZE];
2874 struct value *arg = args[argnum];
2875 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2876 int len = TYPE_LENGTH (arg_type);
2877 enum type_code typecode = TYPE_CODE (arg_type);
2878
2879 if (mips_debug)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2882 argnum + 1, len, (int) typecode);
2883
2884 /* The EABI passes structures that do not fit in a register by
2885 reference. */
2886 if (len > MIPS_SAVED_REGSIZE
2887 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2888 {
2889 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2890 typecode = TYPE_CODE_PTR;
2891 len = MIPS_SAVED_REGSIZE;
2892 val = valbuf;
2893 if (mips_debug)
2894 fprintf_unfiltered (gdb_stdlog, " push");
2895 }
2896 else
2897 val = (char *) VALUE_CONTENTS (arg);
2898
2899 /* 32-bit ABIs always start floating point arguments in an
2900 even-numbered floating point register. Round the FP register
2901 up before the check to see if there are any FP registers
2902 left. Non MIPS_EABI targets also pass the FP in the integer
2903 registers so also round up normal registers. */
2904 if (!FP_REGISTER_DOUBLE
2905 && fp_register_arg_p (typecode, arg_type))
2906 {
2907 if ((float_argreg & 1))
2908 float_argreg++;
2909 }
2910
2911 /* Floating point arguments passed in registers have to be
2912 treated specially. On 32-bit architectures, doubles
2913 are passed in register pairs; the even register gets
2914 the low word, and the odd register gets the high word.
2915 On non-EABI processors, the first two floating point arguments are
2916 also copied to general registers, because MIPS16 functions
2917 don't use float registers for arguments. This duplication of
2918 arguments in general registers can't hurt non-MIPS16 functions
2919 because those registers are normally skipped. */
2920 /* MIPS_EABI squeezes a struct that contains a single floating
2921 point value into an FP register instead of pushing it onto the
2922 stack. */
2923 if (fp_register_arg_p (typecode, arg_type)
2924 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2925 {
2926 if (!FP_REGISTER_DOUBLE && len == 8)
2927 {
2928 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2929 unsigned long regval;
2930
2931 /* Write the low word of the double to the even register(s). */
2932 regval = extract_unsigned_integer (val + low_offset, 4);
2933 if (mips_debug)
2934 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2935 float_argreg, phex (regval, 4));
2936 write_register (float_argreg++, regval);
2937
2938 /* Write the high word of the double to the odd register(s). */
2939 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2940 if (mips_debug)
2941 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2942 float_argreg, phex (regval, 4));
2943 write_register (float_argreg++, regval);
2944 }
2945 else
2946 {
2947 /* This is a floating point value that fits entirely
2948 in a single register. */
2949 /* On 32 bit ABI's the float_argreg is further adjusted
2950 above to ensure that it is even register aligned. */
2951 LONGEST regval = extract_unsigned_integer (val, len);
2952 if (mips_debug)
2953 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2954 float_argreg, phex (regval, len));
2955 write_register (float_argreg++, regval);
2956 }
2957 }
2958 else
2959 {
2960 /* Copy the argument to general registers or the stack in
2961 register-sized pieces. Large arguments are split between
2962 registers and stack. */
2963 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2964 are treated specially: Irix cc passes them in registers
2965 where gcc sometimes puts them on the stack. For maximum
2966 compatibility, we will put them in both places. */
2967 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2968 (len % MIPS_SAVED_REGSIZE != 0));
2969
2970 /* Note: Floating-point values that didn't fit into an FP
2971 register are only written to memory. */
2972 while (len > 0)
2973 {
2974 /* Remember if the argument was written to the stack. */
2975 int stack_used_p = 0;
2976 int partial_len =
2977 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2978
2979 if (mips_debug)
2980 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2981 partial_len);
2982
2983 /* Write this portion of the argument to the stack. */
2984 if (argreg > MIPS_LAST_ARG_REGNUM
2985 || odd_sized_struct
2986 || fp_register_arg_p (typecode, arg_type))
2987 {
2988 /* Should shorter than int integer values be
2989 promoted to int before being stored? */
2990 int longword_offset = 0;
2991 CORE_ADDR addr;
2992 stack_used_p = 1;
2993 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2994 {
2995 if (MIPS_STACK_ARGSIZE == 8 &&
2996 (typecode == TYPE_CODE_INT ||
2997 typecode == TYPE_CODE_PTR ||
2998 typecode == TYPE_CODE_FLT) && len <= 4)
2999 longword_offset = MIPS_STACK_ARGSIZE - len;
3000 else if ((typecode == TYPE_CODE_STRUCT ||
3001 typecode == TYPE_CODE_UNION) &&
3002 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
3003 longword_offset = MIPS_STACK_ARGSIZE - len;
3004 }
3005
3006 if (mips_debug)
3007 {
3008 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3009 paddr_nz (stack_offset));
3010 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3011 paddr_nz (longword_offset));
3012 }
3013
3014 addr = sp + stack_offset + longword_offset;
3015
3016 if (mips_debug)
3017 {
3018 int i;
3019 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3020 paddr_nz (addr));
3021 for (i = 0; i < partial_len; i++)
3022 {
3023 fprintf_unfiltered (gdb_stdlog, "%02x",
3024 val[i] & 0xff);
3025 }
3026 }
3027 write_memory (addr, val, partial_len);
3028 }
3029
3030 /* Note!!! This is NOT an else clause. Odd sized
3031 structs may go thru BOTH paths. Floating point
3032 arguments will not. */
3033 /* Write this portion of the argument to a general
3034 purpose register. */
3035 if (argreg <= MIPS_LAST_ARG_REGNUM
3036 && !fp_register_arg_p (typecode, arg_type))
3037 {
3038 LONGEST regval = extract_unsigned_integer (val, partial_len);
3039
3040 if (mips_debug)
3041 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3042 argreg,
3043 phex (regval, MIPS_SAVED_REGSIZE));
3044 write_register (argreg, regval);
3045 argreg++;
3046 }
3047
3048 len -= partial_len;
3049 val += partial_len;
3050
3051 /* Compute the the offset into the stack at which we
3052 will copy the next parameter.
3053
3054 In the new EABI (and the NABI32), the stack_offset
3055 only needs to be adjusted when it has been used. */
3056
3057 if (stack_used_p)
3058 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3059 }
3060 }
3061 if (mips_debug)
3062 fprintf_unfiltered (gdb_stdlog, "\n");
3063 }
3064
3065 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3066
3067 /* Return adjusted stack pointer. */
3068 return sp;
3069 }
3070
3071 /* N32/N64 version of push_dummy_call. */
3072
3073 static CORE_ADDR
3074 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3075 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3076 struct value **args, CORE_ADDR sp, int struct_return,
3077 CORE_ADDR struct_addr)
3078 {
3079 int argreg;
3080 int float_argreg;
3081 int argnum;
3082 int len = 0;
3083 int stack_offset = 0;
3084
3085 /* For shared libraries, "t9" needs to point at the function
3086 address. */
3087 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3088
3089 /* Set the return address register to point to the entry point of
3090 the program, where a breakpoint lies in wait. */
3091 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3092
3093 /* First ensure that the stack and structure return address (if any)
3094 are properly aligned. The stack has to be at least 64-bit
3095 aligned even on 32-bit machines, because doubles must be 64-bit
3096 aligned. For n32 and n64, stack frames need to be 128-bit
3097 aligned, so we round to this widest known alignment. */
3098
3099 sp = align_down (sp, 16);
3100 struct_addr = align_down (struct_addr, 16);
3101
3102 /* Now make space on the stack for the args. */
3103 for (argnum = 0; argnum < nargs; argnum++)
3104 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3105 MIPS_STACK_ARGSIZE);
3106 sp -= align_up (len, 16);
3107
3108 if (mips_debug)
3109 fprintf_unfiltered (gdb_stdlog,
3110 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
3111 paddr_nz (sp), (long) align_up (len, 16));
3112
3113 /* Initialize the integer and float register pointers. */
3114 argreg = A0_REGNUM;
3115 float_argreg = FPA0_REGNUM;
3116
3117 /* The struct_return pointer occupies the first parameter-passing reg. */
3118 if (struct_return)
3119 {
3120 if (mips_debug)
3121 fprintf_unfiltered (gdb_stdlog,
3122 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3123 argreg, paddr_nz (struct_addr));
3124 write_register (argreg++, struct_addr);
3125 }
3126
3127 /* Now load as many as possible of the first arguments into
3128 registers, and push the rest onto the stack. Loop thru args
3129 from first to last. */
3130 for (argnum = 0; argnum < nargs; argnum++)
3131 {
3132 char *val;
3133 char valbuf[MAX_REGISTER_SIZE];
3134 struct value *arg = args[argnum];
3135 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3136 int len = TYPE_LENGTH (arg_type);
3137 enum type_code typecode = TYPE_CODE (arg_type);
3138
3139 if (mips_debug)
3140 fprintf_unfiltered (gdb_stdlog,
3141 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3142 argnum + 1, len, (int) typecode);
3143
3144 val = (char *) VALUE_CONTENTS (arg);
3145
3146 if (fp_register_arg_p (typecode, arg_type)
3147 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3148 {
3149 /* This is a floating point value that fits entirely
3150 in a single register. */
3151 /* On 32 bit ABI's the float_argreg is further adjusted
3152 above to ensure that it is even register aligned. */
3153 LONGEST regval = extract_unsigned_integer (val, len);
3154 if (mips_debug)
3155 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3156 float_argreg, phex (regval, len));
3157 write_register (float_argreg++, regval);
3158
3159 if (mips_debug)
3160 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3161 argreg, phex (regval, len));
3162 write_register (argreg, regval);
3163 argreg += 1;
3164 }
3165 else
3166 {
3167 /* Copy the argument to general registers or the stack in
3168 register-sized pieces. Large arguments are split between
3169 registers and stack. */
3170 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3171 are treated specially: Irix cc passes them in registers
3172 where gcc sometimes puts them on the stack. For maximum
3173 compatibility, we will put them in both places. */
3174 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3175 (len % MIPS_SAVED_REGSIZE != 0));
3176 /* Note: Floating-point values that didn't fit into an FP
3177 register are only written to memory. */
3178 while (len > 0)
3179 {
3180 /* Rememer if the argument was written to the stack. */
3181 int stack_used_p = 0;
3182 int partial_len = len < MIPS_SAVED_REGSIZE ?
3183 len : MIPS_SAVED_REGSIZE;
3184
3185 if (mips_debug)
3186 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3187 partial_len);
3188
3189 /* Write this portion of the argument to the stack. */
3190 if (argreg > MIPS_LAST_ARG_REGNUM
3191 || odd_sized_struct
3192 || fp_register_arg_p (typecode, arg_type))
3193 {
3194 /* Should shorter than int integer values be
3195 promoted to int before being stored? */
3196 int longword_offset = 0;
3197 CORE_ADDR addr;
3198 stack_used_p = 1;
3199 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3200 {
3201 if (MIPS_STACK_ARGSIZE == 8 &&
3202 (typecode == TYPE_CODE_INT ||
3203 typecode == TYPE_CODE_PTR ||
3204 typecode == TYPE_CODE_FLT) && len <= 4)
3205 longword_offset = MIPS_STACK_ARGSIZE - len;
3206 }
3207
3208 if (mips_debug)
3209 {
3210 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3211 paddr_nz (stack_offset));
3212 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3213 paddr_nz (longword_offset));
3214 }
3215
3216 addr = sp + stack_offset + longword_offset;
3217
3218 if (mips_debug)
3219 {
3220 int i;
3221 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3222 paddr_nz (addr));
3223 for (i = 0; i < partial_len; i++)
3224 {
3225 fprintf_unfiltered (gdb_stdlog, "%02x",
3226 val[i] & 0xff);
3227 }
3228 }
3229 write_memory (addr, val, partial_len);
3230 }
3231
3232 /* Note!!! This is NOT an else clause. Odd sized
3233 structs may go thru BOTH paths. Floating point
3234 arguments will not. */
3235 /* Write this portion of the argument to a general
3236 purpose register. */
3237 if (argreg <= MIPS_LAST_ARG_REGNUM
3238 && !fp_register_arg_p (typecode, arg_type))
3239 {
3240 LONGEST regval = extract_unsigned_integer (val, partial_len);
3241
3242 /* A non-floating-point argument being passed in a
3243 general register. If a struct or union, and if
3244 the remaining length is smaller than the register
3245 size, we have to adjust the register value on
3246 big endian targets.
3247
3248 It does not seem to be necessary to do the
3249 same for integral types.
3250
3251 cagney/2001-07-23: gdb/179: Also, GCC, when
3252 outputting LE O32 with sizeof (struct) <
3253 MIPS_SAVED_REGSIZE, generates a left shift as
3254 part of storing the argument in a register a
3255 register (the left shift isn't generated when
3256 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3257 is quite possible that this is GCC contradicting
3258 the LE/O32 ABI, GDB has not been adjusted to
3259 accommodate this. Either someone needs to
3260 demonstrate that the LE/O32 ABI specifies such a
3261 left shift OR this new ABI gets identified as
3262 such and GDB gets tweaked accordingly. */
3263
3264 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3265 && partial_len < MIPS_SAVED_REGSIZE
3266 && (typecode == TYPE_CODE_STRUCT ||
3267 typecode == TYPE_CODE_UNION))
3268 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3269 TARGET_CHAR_BIT);
3270
3271 if (mips_debug)
3272 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3273 argreg,
3274 phex (regval, MIPS_SAVED_REGSIZE));
3275 write_register (argreg, regval);
3276 argreg++;
3277 }
3278
3279 len -= partial_len;
3280 val += partial_len;
3281
3282 /* Compute the the offset into the stack at which we
3283 will copy the next parameter.
3284
3285 In N32 (N64?), the stack_offset only needs to be
3286 adjusted when it has been used. */
3287
3288 if (stack_used_p)
3289 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3290 }
3291 }
3292 if (mips_debug)
3293 fprintf_unfiltered (gdb_stdlog, "\n");
3294 }
3295
3296 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3297
3298 /* Return adjusted stack pointer. */
3299 return sp;
3300 }
3301
3302 /* O32 version of push_dummy_call. */
3303
3304 static CORE_ADDR
3305 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3306 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3307 struct value **args, CORE_ADDR sp, int struct_return,
3308 CORE_ADDR struct_addr)
3309 {
3310 int argreg;
3311 int float_argreg;
3312 int argnum;
3313 int len = 0;
3314 int stack_offset = 0;
3315
3316 /* For shared libraries, "t9" needs to point at the function
3317 address. */
3318 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3319
3320 /* Set the return address register to point to the entry point of
3321 the program, where a breakpoint lies in wait. */
3322 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3323
3324 /* First ensure that the stack and structure return address (if any)
3325 are properly aligned. The stack has to be at least 64-bit
3326 aligned even on 32-bit machines, because doubles must be 64-bit
3327 aligned. For n32 and n64, stack frames need to be 128-bit
3328 aligned, so we round to this widest known alignment. */
3329
3330 sp = align_down (sp, 16);
3331 struct_addr = align_down (struct_addr, 16);
3332
3333 /* Now make space on the stack for the args. */
3334 for (argnum = 0; argnum < nargs; argnum++)
3335 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3336 MIPS_STACK_ARGSIZE);
3337 sp -= align_up (len, 16);
3338
3339 if (mips_debug)
3340 fprintf_unfiltered (gdb_stdlog,
3341 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3342 paddr_nz (sp), (long) align_up (len, 16));
3343
3344 /* Initialize the integer and float register pointers. */
3345 argreg = A0_REGNUM;
3346 float_argreg = FPA0_REGNUM;
3347
3348 /* The struct_return pointer occupies the first parameter-passing reg. */
3349 if (struct_return)
3350 {
3351 if (mips_debug)
3352 fprintf_unfiltered (gdb_stdlog,
3353 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3354 argreg, paddr_nz (struct_addr));
3355 write_register (argreg++, struct_addr);
3356 stack_offset += MIPS_STACK_ARGSIZE;
3357 }
3358
3359 /* Now load as many as possible of the first arguments into
3360 registers, and push the rest onto the stack. Loop thru args
3361 from first to last. */
3362 for (argnum = 0; argnum < nargs; argnum++)
3363 {
3364 char *val;
3365 char valbuf[MAX_REGISTER_SIZE];
3366 struct value *arg = args[argnum];
3367 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3368 int len = TYPE_LENGTH (arg_type);
3369 enum type_code typecode = TYPE_CODE (arg_type);
3370
3371 if (mips_debug)
3372 fprintf_unfiltered (gdb_stdlog,
3373 "mips_o32_push_dummy_call: %d len=%d type=%d",
3374 argnum + 1, len, (int) typecode);
3375
3376 val = (char *) VALUE_CONTENTS (arg);
3377
3378 /* 32-bit ABIs always start floating point arguments in an
3379 even-numbered floating point register. Round the FP register
3380 up before the check to see if there are any FP registers
3381 left. O32/O64 targets also pass the FP in the integer
3382 registers so also round up normal registers. */
3383 if (!FP_REGISTER_DOUBLE
3384 && fp_register_arg_p (typecode, arg_type))
3385 {
3386 if ((float_argreg & 1))
3387 float_argreg++;
3388 }
3389
3390 /* Floating point arguments passed in registers have to be
3391 treated specially. On 32-bit architectures, doubles
3392 are passed in register pairs; the even register gets
3393 the low word, and the odd register gets the high word.
3394 On O32/O64, the first two floating point arguments are
3395 also copied to general registers, because MIPS16 functions
3396 don't use float registers for arguments. This duplication of
3397 arguments in general registers can't hurt non-MIPS16 functions
3398 because those registers are normally skipped. */
3399
3400 if (fp_register_arg_p (typecode, arg_type)
3401 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3402 {
3403 if (!FP_REGISTER_DOUBLE && len == 8)
3404 {
3405 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3406 unsigned long regval;
3407
3408 /* Write the low word of the double to the even register(s). */
3409 regval = extract_unsigned_integer (val + low_offset, 4);
3410 if (mips_debug)
3411 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3412 float_argreg, phex (regval, 4));
3413 write_register (float_argreg++, regval);
3414 if (mips_debug)
3415 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3416 argreg, phex (regval, 4));
3417 write_register (argreg++, regval);
3418
3419 /* Write the high word of the double to the odd register(s). */
3420 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3421 if (mips_debug)
3422 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3423 float_argreg, phex (regval, 4));
3424 write_register (float_argreg++, regval);
3425
3426 if (mips_debug)
3427 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3428 argreg, phex (regval, 4));
3429 write_register (argreg++, regval);
3430 }
3431 else
3432 {
3433 /* This is a floating point value that fits entirely
3434 in a single register. */
3435 /* On 32 bit ABI's the float_argreg is further adjusted
3436 above to ensure that it is even register aligned. */
3437 LONGEST regval = extract_unsigned_integer (val, len);
3438 if (mips_debug)
3439 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3440 float_argreg, phex (regval, len));
3441 write_register (float_argreg++, regval);
3442 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3443 registers for each argument. The below is (my
3444 guess) to ensure that the corresponding integer
3445 register has reserved the same space. */
3446 if (mips_debug)
3447 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3448 argreg, phex (regval, len));
3449 write_register (argreg, regval);
3450 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3451 }
3452 /* Reserve space for the FP register. */
3453 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3454 }
3455 else
3456 {
3457 /* Copy the argument to general registers or the stack in
3458 register-sized pieces. Large arguments are split between
3459 registers and stack. */
3460 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3461 are treated specially: Irix cc passes them in registers
3462 where gcc sometimes puts them on the stack. For maximum
3463 compatibility, we will put them in both places. */
3464 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3465 (len % MIPS_SAVED_REGSIZE != 0));
3466 /* Structures should be aligned to eight bytes (even arg registers)
3467 on MIPS_ABI_O32, if their first member has double precision. */
3468 if (MIPS_SAVED_REGSIZE < 8
3469 && mips_type_needs_double_align (arg_type))
3470 {
3471 if ((argreg & 1))
3472 argreg++;
3473 }
3474 /* Note: Floating-point values that didn't fit into an FP
3475 register are only written to memory. */
3476 while (len > 0)
3477 {
3478 /* Remember if the argument was written to the stack. */
3479 int stack_used_p = 0;
3480 int partial_len =
3481 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3482
3483 if (mips_debug)
3484 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3485 partial_len);
3486
3487 /* Write this portion of the argument to the stack. */
3488 if (argreg > MIPS_LAST_ARG_REGNUM
3489 || odd_sized_struct
3490 || fp_register_arg_p (typecode, arg_type))
3491 {
3492 /* Should shorter than int integer values be
3493 promoted to int before being stored? */
3494 int longword_offset = 0;
3495 CORE_ADDR addr;
3496 stack_used_p = 1;
3497 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3498 {
3499 if (MIPS_STACK_ARGSIZE == 8 &&
3500 (typecode == TYPE_CODE_INT ||
3501 typecode == TYPE_CODE_PTR ||
3502 typecode == TYPE_CODE_FLT) && len <= 4)
3503 longword_offset = MIPS_STACK_ARGSIZE - len;
3504 }
3505
3506 if (mips_debug)
3507 {
3508 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3509 paddr_nz (stack_offset));
3510 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3511 paddr_nz (longword_offset));
3512 }
3513
3514 addr = sp + stack_offset + longword_offset;
3515
3516 if (mips_debug)
3517 {
3518 int i;
3519 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3520 paddr_nz (addr));
3521 for (i = 0; i < partial_len; i++)
3522 {
3523 fprintf_unfiltered (gdb_stdlog, "%02x",
3524 val[i] & 0xff);
3525 }
3526 }
3527 write_memory (addr, val, partial_len);
3528 }
3529
3530 /* Note!!! This is NOT an else clause. Odd sized
3531 structs may go thru BOTH paths. Floating point
3532 arguments will not. */
3533 /* Write this portion of the argument to a general
3534 purpose register. */
3535 if (argreg <= MIPS_LAST_ARG_REGNUM
3536 && !fp_register_arg_p (typecode, arg_type))
3537 {
3538 LONGEST regval = extract_signed_integer (val, partial_len);
3539 /* Value may need to be sign extended, because
3540 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3541
3542 /* A non-floating-point argument being passed in a
3543 general register. If a struct or union, and if
3544 the remaining length is smaller than the register
3545 size, we have to adjust the register value on
3546 big endian targets.
3547
3548 It does not seem to be necessary to do the
3549 same for integral types.
3550
3551 Also don't do this adjustment on O64 binaries.
3552
3553 cagney/2001-07-23: gdb/179: Also, GCC, when
3554 outputting LE O32 with sizeof (struct) <
3555 MIPS_SAVED_REGSIZE, generates a left shift as
3556 part of storing the argument in a register a
3557 register (the left shift isn't generated when
3558 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3559 is quite possible that this is GCC contradicting
3560 the LE/O32 ABI, GDB has not been adjusted to
3561 accommodate this. Either someone needs to
3562 demonstrate that the LE/O32 ABI specifies such a
3563 left shift OR this new ABI gets identified as
3564 such and GDB gets tweaked accordingly. */
3565
3566 if (MIPS_SAVED_REGSIZE < 8
3567 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3568 && partial_len < MIPS_SAVED_REGSIZE
3569 && (typecode == TYPE_CODE_STRUCT ||
3570 typecode == TYPE_CODE_UNION))
3571 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3572 TARGET_CHAR_BIT);
3573
3574 if (mips_debug)
3575 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3576 argreg,
3577 phex (regval, MIPS_SAVED_REGSIZE));
3578 write_register (argreg, regval);
3579 argreg++;
3580
3581 /* Prevent subsequent floating point arguments from
3582 being passed in floating point registers. */
3583 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3584 }
3585
3586 len -= partial_len;
3587 val += partial_len;
3588
3589 /* Compute the the offset into the stack at which we
3590 will copy the next parameter.
3591
3592 In older ABIs, the caller reserved space for
3593 registers that contained arguments. This was loosely
3594 refered to as their "home". Consequently, space is
3595 always allocated. */
3596
3597 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3598 }
3599 }
3600 if (mips_debug)
3601 fprintf_unfiltered (gdb_stdlog, "\n");
3602 }
3603
3604 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3605
3606 /* Return adjusted stack pointer. */
3607 return sp;
3608 }
3609
3610 /* O64 version of push_dummy_call. */
3611
3612 static CORE_ADDR
3613 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3614 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3615 struct value **args, CORE_ADDR sp, int struct_return,
3616 CORE_ADDR struct_addr)
3617 {
3618 int argreg;
3619 int float_argreg;
3620 int argnum;
3621 int len = 0;
3622 int stack_offset = 0;
3623
3624 /* For shared libraries, "t9" needs to point at the function
3625 address. */
3626 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3627
3628 /* Set the return address register to point to the entry point of
3629 the program, where a breakpoint lies in wait. */
3630 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3631
3632 /* First ensure that the stack and structure return address (if any)
3633 are properly aligned. The stack has to be at least 64-bit
3634 aligned even on 32-bit machines, because doubles must be 64-bit
3635 aligned. For n32 and n64, stack frames need to be 128-bit
3636 aligned, so we round to this widest known alignment. */
3637
3638 sp = align_down (sp, 16);
3639 struct_addr = align_down (struct_addr, 16);
3640
3641 /* Now make space on the stack for the args. */
3642 for (argnum = 0; argnum < nargs; argnum++)
3643 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3644 MIPS_STACK_ARGSIZE);
3645 sp -= align_up (len, 16);
3646
3647 if (mips_debug)
3648 fprintf_unfiltered (gdb_stdlog,
3649 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3650 paddr_nz (sp), (long) align_up (len, 16));
3651
3652 /* Initialize the integer and float register pointers. */
3653 argreg = A0_REGNUM;
3654 float_argreg = FPA0_REGNUM;
3655
3656 /* The struct_return pointer occupies the first parameter-passing reg. */
3657 if (struct_return)
3658 {
3659 if (mips_debug)
3660 fprintf_unfiltered (gdb_stdlog,
3661 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3662 argreg, paddr_nz (struct_addr));
3663 write_register (argreg++, struct_addr);
3664 stack_offset += MIPS_STACK_ARGSIZE;
3665 }
3666
3667 /* Now load as many as possible of the first arguments into
3668 registers, and push the rest onto the stack. Loop thru args
3669 from first to last. */
3670 for (argnum = 0; argnum < nargs; argnum++)
3671 {
3672 char *val;
3673 char valbuf[MAX_REGISTER_SIZE];
3674 struct value *arg = args[argnum];
3675 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3676 int len = TYPE_LENGTH (arg_type);
3677 enum type_code typecode = TYPE_CODE (arg_type);
3678
3679 if (mips_debug)
3680 fprintf_unfiltered (gdb_stdlog,
3681 "mips_o64_push_dummy_call: %d len=%d type=%d",
3682 argnum + 1, len, (int) typecode);
3683
3684 val = (char *) VALUE_CONTENTS (arg);
3685
3686 /* 32-bit ABIs always start floating point arguments in an
3687 even-numbered floating point register. Round the FP register
3688 up before the check to see if there are any FP registers
3689 left. O32/O64 targets also pass the FP in the integer
3690 registers so also round up normal registers. */
3691 if (!FP_REGISTER_DOUBLE
3692 && fp_register_arg_p (typecode, arg_type))
3693 {
3694 if ((float_argreg & 1))
3695 float_argreg++;
3696 }
3697
3698 /* Floating point arguments passed in registers have to be
3699 treated specially. On 32-bit architectures, doubles
3700 are passed in register pairs; the even register gets
3701 the low word, and the odd register gets the high word.
3702 On O32/O64, the first two floating point arguments are
3703 also copied to general registers, because MIPS16 functions
3704 don't use float registers for arguments. This duplication of
3705 arguments in general registers can't hurt non-MIPS16 functions
3706 because those registers are normally skipped. */
3707
3708 if (fp_register_arg_p (typecode, arg_type)
3709 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3710 {
3711 if (!FP_REGISTER_DOUBLE && len == 8)
3712 {
3713 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3714 unsigned long regval;
3715
3716 /* Write the low word of the double to the even register(s). */
3717 regval = extract_unsigned_integer (val + low_offset, 4);
3718 if (mips_debug)
3719 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3720 float_argreg, phex (regval, 4));
3721 write_register (float_argreg++, regval);
3722 if (mips_debug)
3723 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3724 argreg, phex (regval, 4));
3725 write_register (argreg++, regval);
3726
3727 /* Write the high word of the double to the odd register(s). */
3728 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3729 if (mips_debug)
3730 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3731 float_argreg, phex (regval, 4));
3732 write_register (float_argreg++, regval);
3733
3734 if (mips_debug)
3735 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3736 argreg, phex (regval, 4));
3737 write_register (argreg++, regval);
3738 }
3739 else
3740 {
3741 /* This is a floating point value that fits entirely
3742 in a single register. */
3743 /* On 32 bit ABI's the float_argreg is further adjusted
3744 above to ensure that it is even register aligned. */
3745 LONGEST regval = extract_unsigned_integer (val, len);
3746 if (mips_debug)
3747 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3748 float_argreg, phex (regval, len));
3749 write_register (float_argreg++, regval);
3750 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3751 registers for each argument. The below is (my
3752 guess) to ensure that the corresponding integer
3753 register has reserved the same space. */
3754 if (mips_debug)
3755 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3756 argreg, phex (regval, len));
3757 write_register (argreg, regval);
3758 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3759 }
3760 /* Reserve space for the FP register. */
3761 stack_offset += align_up (len, MIPS_STACK_ARGSIZE);
3762 }
3763 else
3764 {
3765 /* Copy the argument to general registers or the stack in
3766 register-sized pieces. Large arguments are split between
3767 registers and stack. */
3768 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3769 are treated specially: Irix cc passes them in registers
3770 where gcc sometimes puts them on the stack. For maximum
3771 compatibility, we will put them in both places. */
3772 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3773 (len % MIPS_SAVED_REGSIZE != 0));
3774 /* Structures should be aligned to eight bytes (even arg registers)
3775 on MIPS_ABI_O32, if their first member has double precision. */
3776 if (MIPS_SAVED_REGSIZE < 8
3777 && mips_type_needs_double_align (arg_type))
3778 {
3779 if ((argreg & 1))
3780 argreg++;
3781 }
3782 /* Note: Floating-point values that didn't fit into an FP
3783 register are only written to memory. */
3784 while (len > 0)
3785 {
3786 /* Remember if the argument was written to the stack. */
3787 int stack_used_p = 0;
3788 int partial_len =
3789 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3790
3791 if (mips_debug)
3792 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3793 partial_len);
3794
3795 /* Write this portion of the argument to the stack. */
3796 if (argreg > MIPS_LAST_ARG_REGNUM
3797 || odd_sized_struct
3798 || fp_register_arg_p (typecode, arg_type))
3799 {
3800 /* Should shorter than int integer values be
3801 promoted to int before being stored? */
3802 int longword_offset = 0;
3803 CORE_ADDR addr;
3804 stack_used_p = 1;
3805 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3806 {
3807 if (MIPS_STACK_ARGSIZE == 8 &&
3808 (typecode == TYPE_CODE_INT ||
3809 typecode == TYPE_CODE_PTR ||
3810 typecode == TYPE_CODE_FLT) && len <= 4)
3811 longword_offset = MIPS_STACK_ARGSIZE - len;
3812 }
3813
3814 if (mips_debug)
3815 {
3816 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3817 paddr_nz (stack_offset));
3818 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3819 paddr_nz (longword_offset));
3820 }
3821
3822 addr = sp + stack_offset + longword_offset;
3823
3824 if (mips_debug)
3825 {
3826 int i;
3827 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3828 paddr_nz (addr));
3829 for (i = 0; i < partial_len; i++)
3830 {
3831 fprintf_unfiltered (gdb_stdlog, "%02x",
3832 val[i] & 0xff);
3833 }
3834 }
3835 write_memory (addr, val, partial_len);
3836 }
3837
3838 /* Note!!! This is NOT an else clause. Odd sized
3839 structs may go thru BOTH paths. Floating point
3840 arguments will not. */
3841 /* Write this portion of the argument to a general
3842 purpose register. */
3843 if (argreg <= MIPS_LAST_ARG_REGNUM
3844 && !fp_register_arg_p (typecode, arg_type))
3845 {
3846 LONGEST regval = extract_signed_integer (val, partial_len);
3847 /* Value may need to be sign extended, because
3848 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3849
3850 /* A non-floating-point argument being passed in a
3851 general register. If a struct or union, and if
3852 the remaining length is smaller than the register
3853 size, we have to adjust the register value on
3854 big endian targets.
3855
3856 It does not seem to be necessary to do the
3857 same for integral types.
3858
3859 Also don't do this adjustment on O64 binaries.
3860
3861 cagney/2001-07-23: gdb/179: Also, GCC, when
3862 outputting LE O32 with sizeof (struct) <
3863 MIPS_SAVED_REGSIZE, generates a left shift as
3864 part of storing the argument in a register a
3865 register (the left shift isn't generated when
3866 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3867 is quite possible that this is GCC contradicting
3868 the LE/O32 ABI, GDB has not been adjusted to
3869 accommodate this. Either someone needs to
3870 demonstrate that the LE/O32 ABI specifies such a
3871 left shift OR this new ABI gets identified as
3872 such and GDB gets tweaked accordingly. */
3873
3874 if (MIPS_SAVED_REGSIZE < 8
3875 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3876 && partial_len < MIPS_SAVED_REGSIZE
3877 && (typecode == TYPE_CODE_STRUCT ||
3878 typecode == TYPE_CODE_UNION))
3879 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3880 TARGET_CHAR_BIT);
3881
3882 if (mips_debug)
3883 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3884 argreg,
3885 phex (regval, MIPS_SAVED_REGSIZE));
3886 write_register (argreg, regval);
3887 argreg++;
3888
3889 /* Prevent subsequent floating point arguments from
3890 being passed in floating point registers. */
3891 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3892 }
3893
3894 len -= partial_len;
3895 val += partial_len;
3896
3897 /* Compute the the offset into the stack at which we
3898 will copy the next parameter.
3899
3900 In older ABIs, the caller reserved space for
3901 registers that contained arguments. This was loosely
3902 refered to as their "home". Consequently, space is
3903 always allocated. */
3904
3905 stack_offset += align_up (partial_len, MIPS_STACK_ARGSIZE);
3906 }
3907 }
3908 if (mips_debug)
3909 fprintf_unfiltered (gdb_stdlog, "\n");
3910 }
3911
3912 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3913
3914 /* Return adjusted stack pointer. */
3915 return sp;
3916 }
3917
3918 static void
3919 mips_pop_frame (void)
3920 {
3921 int regnum;
3922 struct frame_info *frame = get_current_frame ();
3923 CORE_ADDR new_sp = get_frame_base (frame);
3924 mips_extra_func_info_t proc_desc;
3925
3926 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3927 {
3928 generic_pop_dummy_frame ();
3929 flush_cached_frames ();
3930 return;
3931 }
3932
3933 proc_desc = get_frame_extra_info (frame)->proc_desc;
3934 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3935 mips_find_saved_regs (frame);
3936 for (regnum = 0; regnum < NUM_REGS; regnum++)
3937 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3938 && deprecated_get_frame_saved_regs (frame)[regnum])
3939 {
3940 /* Floating point registers must not be sign extended,
3941 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3942
3943 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3944 write_register (regnum,
3945 read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3946 MIPS_SAVED_REGSIZE));
3947 else
3948 write_register (regnum,
3949 read_memory_integer (deprecated_get_frame_saved_regs (frame)[regnum],
3950 MIPS_SAVED_REGSIZE));
3951 }
3952
3953 write_register (SP_REGNUM, new_sp);
3954 flush_cached_frames ();
3955
3956 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3957 {
3958 struct linked_proc_info *pi_ptr, *prev_ptr;
3959
3960 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3961 pi_ptr != NULL;
3962 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3963 {
3964 if (&pi_ptr->info == proc_desc)
3965 break;
3966 }
3967
3968 if (pi_ptr == NULL)
3969 error ("Can't locate dummy extra frame info\n");
3970
3971 if (prev_ptr != NULL)
3972 prev_ptr->next = pi_ptr->next;
3973 else
3974 linked_proc_desc_table = pi_ptr->next;
3975
3976 xfree (pi_ptr);
3977
3978 write_register (HI_REGNUM,
3979 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3980 MIPS_SAVED_REGSIZE));
3981 write_register (LO_REGNUM,
3982 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3983 MIPS_SAVED_REGSIZE));
3984 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3985 write_register (FCRCS_REGNUM,
3986 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3987 MIPS_SAVED_REGSIZE));
3988 }
3989 }
3990
3991 /* Floating point register management.
3992
3993 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3994 64bit operations, these early MIPS cpus treat fp register pairs
3995 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3996 registers and offer a compatibility mode that emulates the MIPS2 fp
3997 model. When operating in MIPS2 fp compat mode, later cpu's split
3998 double precision floats into two 32-bit chunks and store them in
3999 consecutive fp regs. To display 64-bit floats stored in this
4000 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
4001 Throw in user-configurable endianness and you have a real mess.
4002
4003 The way this works is:
4004 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
4005 double-precision value will be split across two logical registers.
4006 The lower-numbered logical register will hold the low-order bits,
4007 regardless of the processor's endianness.
4008 - If we are on a 64-bit processor, and we are looking for a
4009 single-precision value, it will be in the low ordered bits
4010 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
4011 save slot in memory.
4012 - If we are in 64-bit mode, everything is straightforward.
4013
4014 Note that this code only deals with "live" registers at the top of the
4015 stack. We will attempt to deal with saved registers later, when
4016 the raw/cooked register interface is in place. (We need a general
4017 interface that can deal with dynamic saved register sizes -- fp
4018 regs could be 32 bits wide in one frame and 64 on the frame above
4019 and below). */
4020
4021 static struct type *
4022 mips_float_register_type (void)
4023 {
4024 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4025 return builtin_type_ieee_single_big;
4026 else
4027 return builtin_type_ieee_single_little;
4028 }
4029
4030 static struct type *
4031 mips_double_register_type (void)
4032 {
4033 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4034 return builtin_type_ieee_double_big;
4035 else
4036 return builtin_type_ieee_double_little;
4037 }
4038
4039 /* Copy a 32-bit single-precision value from the current frame
4040 into rare_buffer. */
4041
4042 static void
4043 mips_read_fp_register_single (struct frame_info *frame, int regno,
4044 char *rare_buffer)
4045 {
4046 int raw_size = DEPRECATED_REGISTER_RAW_SIZE (regno);
4047 char *raw_buffer = alloca (raw_size);
4048
4049 if (!frame_register_read (frame, regno, raw_buffer))
4050 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4051 if (raw_size == 8)
4052 {
4053 /* We have a 64-bit value for this register. Find the low-order
4054 32 bits. */
4055 int offset;
4056
4057 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4058 offset = 4;
4059 else
4060 offset = 0;
4061
4062 memcpy (rare_buffer, raw_buffer + offset, 4);
4063 }
4064 else
4065 {
4066 memcpy (rare_buffer, raw_buffer, 4);
4067 }
4068 }
4069
4070 /* Copy a 64-bit double-precision value from the current frame into
4071 rare_buffer. This may include getting half of it from the next
4072 register. */
4073
4074 static void
4075 mips_read_fp_register_double (struct frame_info *frame, int regno,
4076 char *rare_buffer)
4077 {
4078 int raw_size = DEPRECATED_REGISTER_RAW_SIZE (regno);
4079
4080 if (raw_size == 8 && !mips2_fp_compat ())
4081 {
4082 /* We have a 64-bit value for this register, and we should use
4083 all 64 bits. */
4084 if (!frame_register_read (frame, regno, rare_buffer))
4085 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
4086 }
4087 else
4088 {
4089 if ((regno - FP0_REGNUM) & 1)
4090 internal_error (__FILE__, __LINE__,
4091 "mips_read_fp_register_double: bad access to "
4092 "odd-numbered FP register");
4093
4094 /* mips_read_fp_register_single will find the correct 32 bits from
4095 each register. */
4096 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4097 {
4098 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
4099 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
4100 }
4101 else
4102 {
4103 mips_read_fp_register_single (frame, regno, rare_buffer);
4104 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4105 }
4106 }
4107 }
4108
4109 static void
4110 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4111 int regnum)
4112 { /* do values for FP (float) regs */
4113 char *raw_buffer;
4114 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4115 int inv1, inv2, namelen;
4116
4117 raw_buffer = (char *) alloca (2 * DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM));
4118
4119 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4120 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4121 "");
4122
4123 if (DEPRECATED_REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4124 {
4125 /* 4-byte registers: Print hex and floating. Also print even
4126 numbered registers as doubles. */
4127 mips_read_fp_register_single (frame, regnum, raw_buffer);
4128 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4129
4130 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4131
4132 fprintf_filtered (file, " flt: ");
4133 if (inv1)
4134 fprintf_filtered (file, " <invalid float> ");
4135 else
4136 fprintf_filtered (file, "%-17.9g", flt1);
4137
4138 if (regnum % 2 == 0)
4139 {
4140 mips_read_fp_register_double (frame, regnum, raw_buffer);
4141 doub = unpack_double (mips_double_register_type (), raw_buffer,
4142 &inv2);
4143
4144 fprintf_filtered (file, " dbl: ");
4145 if (inv2)
4146 fprintf_filtered (file, "<invalid double>");
4147 else
4148 fprintf_filtered (file, "%-24.17g", doub);
4149 }
4150 }
4151 else
4152 {
4153 /* Eight byte registers: print each one as hex, float and double. */
4154 mips_read_fp_register_single (frame, regnum, raw_buffer);
4155 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4156
4157 mips_read_fp_register_double (frame, regnum, raw_buffer);
4158 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4159
4160
4161 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4162
4163 fprintf_filtered (file, " flt: ");
4164 if (inv1)
4165 fprintf_filtered (file, "<invalid float>");
4166 else
4167 fprintf_filtered (file, "%-17.9g", flt1);
4168
4169 fprintf_filtered (file, " dbl: ");
4170 if (inv2)
4171 fprintf_filtered (file, "<invalid double>");
4172 else
4173 fprintf_filtered (file, "%-24.17g", doub);
4174 }
4175 }
4176
4177 static void
4178 mips_print_register (struct ui_file *file, struct frame_info *frame,
4179 int regnum, int all)
4180 {
4181 struct gdbarch *gdbarch = get_frame_arch (frame);
4182 char raw_buffer[MAX_REGISTER_SIZE];
4183 int offset;
4184
4185 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4186 {
4187 mips_print_fp_register (file, frame, regnum);
4188 return;
4189 }
4190
4191 /* Get the data in raw format. */
4192 if (!frame_register_read (frame, regnum, raw_buffer))
4193 {
4194 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4195 return;
4196 }
4197
4198 fputs_filtered (REGISTER_NAME (regnum), file);
4199
4200 /* The problem with printing numeric register names (r26, etc.) is that
4201 the user can't use them on input. Probably the best solution is to
4202 fix it so that either the numeric or the funky (a2, etc.) names
4203 are accepted on input. */
4204 if (regnum < MIPS_NUMREGS)
4205 fprintf_filtered (file, "(r%d): ", regnum);
4206 else
4207 fprintf_filtered (file, ": ");
4208
4209 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4210 offset = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
4211 else
4212 offset = 0;
4213
4214 print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum),
4215 'x', 0, file);
4216 }
4217
4218 /* Replacement for generic do_registers_info.
4219 Print regs in pretty columns. */
4220
4221 static int
4222 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4223 int regnum)
4224 {
4225 fprintf_filtered (file, " ");
4226 mips_print_fp_register (file, frame, regnum);
4227 fprintf_filtered (file, "\n");
4228 return regnum + 1;
4229 }
4230
4231
4232 /* Print a row's worth of GP (int) registers, with name labels above */
4233
4234 static int
4235 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4236 int start_regnum)
4237 {
4238 struct gdbarch *gdbarch = get_frame_arch (frame);
4239 /* do values for GP (int) regs */
4240 char raw_buffer[MAX_REGISTER_SIZE];
4241 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4242 int col, byte;
4243 int regnum;
4244
4245 /* For GP registers, we print a separate row of names above the vals */
4246 fprintf_filtered (file, " ");
4247 for (col = 0, regnum = start_regnum;
4248 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4249 regnum++)
4250 {
4251 if (*REGISTER_NAME (regnum) == '\0')
4252 continue; /* unused register */
4253 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4254 break; /* end the row: reached FP register */
4255 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4256 REGISTER_NAME (regnum));
4257 col++;
4258 }
4259 /* print the R0 to R31 names */
4260 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4261 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4262 else
4263 fprintf_filtered (file, "\n ");
4264
4265 /* now print the values in hex, 4 or 8 to the row */
4266 for (col = 0, regnum = start_regnum;
4267 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS;
4268 regnum++)
4269 {
4270 if (*REGISTER_NAME (regnum) == '\0')
4271 continue; /* unused register */
4272 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4273 break; /* end row: reached FP register */
4274 /* OK: get the data in raw format. */
4275 if (!frame_register_read (frame, regnum, raw_buffer))
4276 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4277 /* pad small registers */
4278 for (byte = 0; byte < (MIPS_REGSIZE - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4279 printf_filtered (" ");
4280 /* Now print the register value in hex, endian order. */
4281 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4282 for (byte = DEPRECATED_REGISTER_RAW_SIZE (regnum) - DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum);
4283 byte < DEPRECATED_REGISTER_RAW_SIZE (regnum);
4284 byte++)
4285 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4286 else
4287 for (byte = DEPRECATED_REGISTER_VIRTUAL_SIZE (regnum) - 1;
4288 byte >= 0;
4289 byte--)
4290 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4291 fprintf_filtered (file, " ");
4292 col++;
4293 }
4294 if (col > 0) /* ie. if we actually printed anything... */
4295 fprintf_filtered (file, "\n");
4296
4297 return regnum;
4298 }
4299
4300 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4301
4302 static void
4303 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4304 struct frame_info *frame, int regnum, int all)
4305 {
4306 if (regnum != -1) /* do one specified register */
4307 {
4308 gdb_assert (regnum >= NUM_REGS);
4309 if (*(REGISTER_NAME (regnum)) == '\0')
4310 error ("Not a valid register for the current processor type");
4311
4312 mips_print_register (file, frame, regnum, 0);
4313 fprintf_filtered (file, "\n");
4314 }
4315 else
4316 /* do all (or most) registers */
4317 {
4318 regnum = NUM_REGS;
4319 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4320 {
4321 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
4322 {
4323 if (all) /* true for "INFO ALL-REGISTERS" command */
4324 regnum = print_fp_register_row (file, frame, regnum);
4325 else
4326 regnum += MIPS_NUMREGS; /* skip floating point regs */
4327 }
4328 else
4329 regnum = print_gp_register_row (file, frame, regnum);
4330 }
4331 }
4332 }
4333
4334 /* Is this a branch with a delay slot? */
4335
4336 static int is_delayed (unsigned long);
4337
4338 static int
4339 is_delayed (unsigned long insn)
4340 {
4341 int i;
4342 for (i = 0; i < NUMOPCODES; ++i)
4343 if (mips_opcodes[i].pinfo != INSN_MACRO
4344 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4345 break;
4346 return (i < NUMOPCODES
4347 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4348 | INSN_COND_BRANCH_DELAY
4349 | INSN_COND_BRANCH_LIKELY)));
4350 }
4351
4352 int
4353 mips_step_skips_delay (CORE_ADDR pc)
4354 {
4355 char buf[MIPS_INSTLEN];
4356
4357 /* There is no branch delay slot on MIPS16. */
4358 if (pc_is_mips16 (pc))
4359 return 0;
4360
4361 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4362 /* If error reading memory, guess that it is not a delayed branch. */
4363 return 0;
4364 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4365 }
4366
4367
4368 /* Skip the PC past function prologue instructions (32-bit version).
4369 This is a helper function for mips_skip_prologue. */
4370
4371 static CORE_ADDR
4372 mips32_skip_prologue (CORE_ADDR pc)
4373 {
4374 t_inst inst;
4375 CORE_ADDR end_pc;
4376 int seen_sp_adjust = 0;
4377 int load_immediate_bytes = 0;
4378
4379 /* Skip the typical prologue instructions. These are the stack adjustment
4380 instruction and the instructions that save registers on the stack
4381 or in the gcc frame. */
4382 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4383 {
4384 unsigned long high_word;
4385
4386 inst = mips_fetch_instruction (pc);
4387 high_word = (inst >> 16) & 0xffff;
4388
4389 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4390 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4391 seen_sp_adjust = 1;
4392 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4393 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4394 seen_sp_adjust = 1;
4395 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4396 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4397 && (inst & 0x001F0000)) /* reg != $zero */
4398 continue;
4399
4400 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4401 continue;
4402 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4403 /* sx reg,n($s8) */
4404 continue; /* reg != $zero */
4405
4406 /* move $s8,$sp. With different versions of gas this will be either
4407 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4408 Accept any one of these. */
4409 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4410 continue;
4411
4412 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4413 continue;
4414 else if (high_word == 0x3c1c) /* lui $gp,n */
4415 continue;
4416 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4417 continue;
4418 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4419 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4420 continue;
4421 /* The following instructions load $at or $t0 with an immediate
4422 value in preparation for a stack adjustment via
4423 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4424 a local variable, so we accept them only before a stack adjustment
4425 instruction was seen. */
4426 else if (!seen_sp_adjust)
4427 {
4428 if (high_word == 0x3c01 || /* lui $at,n */
4429 high_word == 0x3c08) /* lui $t0,n */
4430 {
4431 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4432 continue;
4433 }
4434 else if (high_word == 0x3421 || /* ori $at,$at,n */
4435 high_word == 0x3508 || /* ori $t0,$t0,n */
4436 high_word == 0x3401 || /* ori $at,$zero,n */
4437 high_word == 0x3408) /* ori $t0,$zero,n */
4438 {
4439 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4440 continue;
4441 }
4442 else
4443 break;
4444 }
4445 else
4446 break;
4447 }
4448
4449 /* In a frameless function, we might have incorrectly
4450 skipped some load immediate instructions. Undo the skipping
4451 if the load immediate was not followed by a stack adjustment. */
4452 if (load_immediate_bytes && !seen_sp_adjust)
4453 pc -= load_immediate_bytes;
4454 return pc;
4455 }
4456
4457 /* Skip the PC past function prologue instructions (16-bit version).
4458 This is a helper function for mips_skip_prologue. */
4459
4460 static CORE_ADDR
4461 mips16_skip_prologue (CORE_ADDR pc)
4462 {
4463 CORE_ADDR end_pc;
4464 int extend_bytes = 0;
4465 int prev_extend_bytes;
4466
4467 /* Table of instructions likely to be found in a function prologue. */
4468 static struct
4469 {
4470 unsigned short inst;
4471 unsigned short mask;
4472 }
4473 table[] =
4474 {
4475 {
4476 0x6300, 0xff00
4477 }
4478 , /* addiu $sp,offset */
4479 {
4480 0xfb00, 0xff00
4481 }
4482 , /* daddiu $sp,offset */
4483 {
4484 0xd000, 0xf800
4485 }
4486 , /* sw reg,n($sp) */
4487 {
4488 0xf900, 0xff00
4489 }
4490 , /* sd reg,n($sp) */
4491 {
4492 0x6200, 0xff00
4493 }
4494 , /* sw $ra,n($sp) */
4495 {
4496 0xfa00, 0xff00
4497 }
4498 , /* sd $ra,n($sp) */
4499 {
4500 0x673d, 0xffff
4501 }
4502 , /* move $s1,sp */
4503 {
4504 0xd980, 0xff80
4505 }
4506 , /* sw $a0-$a3,n($s1) */
4507 {
4508 0x6704, 0xff1c
4509 }
4510 , /* move reg,$a0-$a3 */
4511 {
4512 0xe809, 0xf81f
4513 }
4514 , /* entry pseudo-op */
4515 {
4516 0x0100, 0xff00
4517 }
4518 , /* addiu $s1,$sp,n */
4519 {
4520 0, 0
4521 } /* end of table marker */
4522 };
4523
4524 /* Skip the typical prologue instructions. These are the stack adjustment
4525 instruction and the instructions that save registers on the stack
4526 or in the gcc frame. */
4527 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4528 {
4529 unsigned short inst;
4530 int i;
4531
4532 inst = mips_fetch_instruction (pc);
4533
4534 /* Normally we ignore an extend instruction. However, if it is
4535 not followed by a valid prologue instruction, we must adjust
4536 the pc back over the extend so that it won't be considered
4537 part of the prologue. */
4538 if ((inst & 0xf800) == 0xf000) /* extend */
4539 {
4540 extend_bytes = MIPS16_INSTLEN;
4541 continue;
4542 }
4543 prev_extend_bytes = extend_bytes;
4544 extend_bytes = 0;
4545
4546 /* Check for other valid prologue instructions besides extend. */
4547 for (i = 0; table[i].mask != 0; i++)
4548 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4549 break;
4550 if (table[i].mask != 0) /* it was in table? */
4551 continue; /* ignore it */
4552 else
4553 /* non-prologue */
4554 {
4555 /* Return the current pc, adjusted backwards by 2 if
4556 the previous instruction was an extend. */
4557 return pc - prev_extend_bytes;
4558 }
4559 }
4560 return pc;
4561 }
4562
4563 /* To skip prologues, I use this predicate. Returns either PC itself
4564 if the code at PC does not look like a function prologue; otherwise
4565 returns an address that (if we're lucky) follows the prologue. If
4566 LENIENT, then we must skip everything which is involved in setting
4567 up the frame (it's OK to skip more, just so long as we don't skip
4568 anything which might clobber the registers which are being saved.
4569 We must skip more in the case where part of the prologue is in the
4570 delay slot of a non-prologue instruction). */
4571
4572 static CORE_ADDR
4573 mips_skip_prologue (CORE_ADDR pc)
4574 {
4575 /* See if we can determine the end of the prologue via the symbol table.
4576 If so, then return either PC, or the PC after the prologue, whichever
4577 is greater. */
4578
4579 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4580
4581 if (post_prologue_pc != 0)
4582 return max (pc, post_prologue_pc);
4583
4584 /* Can't determine prologue from the symbol table, need to examine
4585 instructions. */
4586
4587 if (pc_is_mips16 (pc))
4588 return mips16_skip_prologue (pc);
4589 else
4590 return mips32_skip_prologue (pc);
4591 }
4592
4593 /* Determine how a return value is stored within the MIPS register
4594 file, given the return type `valtype'. */
4595
4596 struct return_value_word
4597 {
4598 int len;
4599 int reg;
4600 int reg_offset;
4601 int buf_offset;
4602 };
4603
4604 static void
4605 return_value_location (struct type *valtype,
4606 struct return_value_word *hi,
4607 struct return_value_word *lo)
4608 {
4609 int len = TYPE_LENGTH (valtype);
4610
4611 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4612 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4613 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4614 {
4615 if (!FP_REGISTER_DOUBLE && len == 8)
4616 {
4617 /* We need to break a 64bit float in two 32 bit halves and
4618 spread them across a floating-point register pair. */
4619 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4620 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4621 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4622 && DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4623 ? 4 : 0);
4624 hi->reg_offset = lo->reg_offset;
4625 lo->reg = FP0_REGNUM + 0;
4626 hi->reg = FP0_REGNUM + 1;
4627 lo->len = 4;
4628 hi->len = 4;
4629 }
4630 else
4631 {
4632 /* The floating point value fits in a single floating-point
4633 register. */
4634 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4635 && DEPRECATED_REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4636 && len == 4)
4637 ? 4 : 0);
4638 lo->reg = FP0_REGNUM;
4639 lo->len = len;
4640 lo->buf_offset = 0;
4641 hi->len = 0;
4642 hi->reg_offset = 0;
4643 hi->buf_offset = 0;
4644 hi->reg = 0;
4645 }
4646 }
4647 else
4648 {
4649 /* Locate a result possibly spread across two registers. */
4650 int regnum = 2;
4651 lo->reg = regnum + 0;
4652 hi->reg = regnum + 1;
4653 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4654 && len < MIPS_SAVED_REGSIZE)
4655 {
4656 /* "un-left-justify" the value in the low register */
4657 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4658 lo->len = len;
4659 hi->reg_offset = 0;
4660 hi->len = 0;
4661 }
4662 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4663 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4664 && len < MIPS_SAVED_REGSIZE * 2
4665 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4666 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4667 {
4668 /* "un-left-justify" the value spread across two registers. */
4669 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4670 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4671 hi->reg_offset = 0;
4672 hi->len = len - lo->len;
4673 }
4674 else
4675 {
4676 /* Only perform a partial copy of the second register. */
4677 lo->reg_offset = 0;
4678 hi->reg_offset = 0;
4679 if (len > MIPS_SAVED_REGSIZE)
4680 {
4681 lo->len = MIPS_SAVED_REGSIZE;
4682 hi->len = len - MIPS_SAVED_REGSIZE;
4683 }
4684 else
4685 {
4686 lo->len = len;
4687 hi->len = 0;
4688 }
4689 }
4690 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4691 && DEPRECATED_REGISTER_RAW_SIZE (regnum) == 8
4692 && MIPS_SAVED_REGSIZE == 4)
4693 {
4694 /* Account for the fact that only the least-signficant part
4695 of the register is being used */
4696 lo->reg_offset += 4;
4697 hi->reg_offset += 4;
4698 }
4699 lo->buf_offset = 0;
4700 hi->buf_offset = lo->len;
4701 }
4702 }
4703
4704 /* Given a return value in `regbuf' with a type `valtype', extract and
4705 copy its value into `valbuf'. */
4706
4707 static void
4708 mips_eabi_extract_return_value (struct type *valtype,
4709 char regbuf[],
4710 char *valbuf)
4711 {
4712 struct return_value_word lo;
4713 struct return_value_word hi;
4714 return_value_location (valtype, &hi, &lo);
4715
4716 memcpy (valbuf + lo.buf_offset,
4717 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4718 lo.len);
4719
4720 if (hi.len > 0)
4721 memcpy (valbuf + hi.buf_offset,
4722 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4723 hi.len);
4724 }
4725
4726 static void
4727 mips_o64_extract_return_value (struct type *valtype,
4728 char regbuf[],
4729 char *valbuf)
4730 {
4731 struct return_value_word lo;
4732 struct return_value_word hi;
4733 return_value_location (valtype, &hi, &lo);
4734
4735 memcpy (valbuf + lo.buf_offset,
4736 regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset,
4737 lo.len);
4738
4739 if (hi.len > 0)
4740 memcpy (valbuf + hi.buf_offset,
4741 regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset,
4742 hi.len);
4743 }
4744
4745 /* Given a return value in `valbuf' with a type `valtype', write it's
4746 value into the appropriate register. */
4747
4748 static void
4749 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4750 {
4751 char raw_buffer[MAX_REGISTER_SIZE];
4752 struct return_value_word lo;
4753 struct return_value_word hi;
4754 return_value_location (valtype, &hi, &lo);
4755
4756 memset (raw_buffer, 0, sizeof (raw_buffer));
4757 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4758 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4759 DEPRECATED_REGISTER_RAW_SIZE (lo.reg));
4760
4761 if (hi.len > 0)
4762 {
4763 memset (raw_buffer, 0, sizeof (raw_buffer));
4764 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4765 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4766 DEPRECATED_REGISTER_RAW_SIZE (hi.reg));
4767 }
4768 }
4769
4770 static void
4771 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4772 {
4773 char raw_buffer[MAX_REGISTER_SIZE];
4774 struct return_value_word lo;
4775 struct return_value_word hi;
4776 return_value_location (valtype, &hi, &lo);
4777
4778 memset (raw_buffer, 0, sizeof (raw_buffer));
4779 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4780 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer,
4781 DEPRECATED_REGISTER_RAW_SIZE (lo.reg));
4782
4783 if (hi.len > 0)
4784 {
4785 memset (raw_buffer, 0, sizeof (raw_buffer));
4786 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4787 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer,
4788 DEPRECATED_REGISTER_RAW_SIZE (hi.reg));
4789 }
4790 }
4791
4792 /* O32 ABI stuff. */
4793
4794 static void
4795 mips_o32_xfer_return_value (struct type *type,
4796 struct regcache *regcache,
4797 bfd_byte *in, const bfd_byte *out)
4798 {
4799 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4800 if (TYPE_CODE (type) == TYPE_CODE_FLT
4801 && TYPE_LENGTH (type) == 4
4802 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4803 {
4804 /* A single-precision floating-point value. It fits in the
4805 least significant part of FP0. */
4806 if (mips_debug)
4807 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4808 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4809 TARGET_BYTE_ORDER, in, out, 0);
4810 }
4811 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4812 && TYPE_LENGTH (type) == 8
4813 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4814 {
4815 /* A double-precision floating-point value. The most
4816 significant part goes in FP1, and the least significant in
4817 FP0. */
4818 if (mips_debug)
4819 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
4820 switch (TARGET_BYTE_ORDER)
4821 {
4822 case BFD_ENDIAN_LITTLE:
4823 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4824 TARGET_BYTE_ORDER, in, out, 0);
4825 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4826 TARGET_BYTE_ORDER, in, out, 4);
4827 break;
4828 case BFD_ENDIAN_BIG:
4829 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4,
4830 TARGET_BYTE_ORDER, in, out, 0);
4831 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4,
4832 TARGET_BYTE_ORDER, in, out, 4);
4833 break;
4834 default:
4835 internal_error (__FILE__, __LINE__, "bad switch");
4836 }
4837 }
4838 #if 0
4839 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4840 && TYPE_NFIELDS (type) <= 2
4841 && TYPE_NFIELDS (type) >= 1
4842 && ((TYPE_NFIELDS (type) == 1
4843 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4844 == TYPE_CODE_FLT))
4845 || (TYPE_NFIELDS (type) == 2
4846 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4847 == TYPE_CODE_FLT)
4848 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4849 == TYPE_CODE_FLT)))
4850 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4851 {
4852 /* A struct that contains one or two floats. Each value is part
4853 in the least significant part of their floating point
4854 register.. */
4855 bfd_byte reg[MAX_REGISTER_SIZE];
4856 int regnum;
4857 int field;
4858 for (field = 0, regnum = FP0_REGNUM;
4859 field < TYPE_NFIELDS (type);
4860 field++, regnum += 2)
4861 {
4862 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4863 / TARGET_CHAR_BIT);
4864 if (mips_debug)
4865 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4866 mips_xfer_register (regcache, NUM_REGS + regnum,
4867 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4868 TARGET_BYTE_ORDER, in, out, offset);
4869 }
4870 }
4871 #endif
4872 #if 0
4873 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4874 || TYPE_CODE (type) == TYPE_CODE_UNION)
4875 {
4876 /* A structure or union. Extract the left justified value,
4877 regardless of the byte order. I.e. DO NOT USE
4878 mips_xfer_lower. */
4879 int offset;
4880 int regnum;
4881 for (offset = 0, regnum = V0_REGNUM;
4882 offset < TYPE_LENGTH (type);
4883 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
4884 {
4885 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
4886 if (offset + xfer > TYPE_LENGTH (type))
4887 xfer = TYPE_LENGTH (type) - offset;
4888 if (mips_debug)
4889 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4890 offset, xfer, regnum);
4891 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4892 BFD_ENDIAN_UNKNOWN, in, out, offset);
4893 }
4894 }
4895 #endif
4896 else
4897 {
4898 /* A scalar extract each part but least-significant-byte
4899 justified. o32 thinks registers are 4 byte, regardless of
4900 the ISA. mips_stack_argsize controls this. */
4901 int offset;
4902 int regnum;
4903 for (offset = 0, regnum = V0_REGNUM;
4904 offset < TYPE_LENGTH (type);
4905 offset += mips_stack_argsize (), regnum++)
4906 {
4907 int xfer = mips_stack_argsize ();
4908 int pos = 0;
4909 if (offset + xfer > TYPE_LENGTH (type))
4910 xfer = TYPE_LENGTH (type) - offset;
4911 if (mips_debug)
4912 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4913 offset, xfer, regnum);
4914 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
4915 TARGET_BYTE_ORDER, in, out, offset);
4916 }
4917 }
4918 }
4919
4920 static void
4921 mips_o32_extract_return_value (struct type *type,
4922 struct regcache *regcache,
4923 void *valbuf)
4924 {
4925 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4926 }
4927
4928 static void
4929 mips_o32_store_return_value (struct type *type, char *valbuf)
4930 {
4931 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4932 }
4933
4934 /* N32/N44 ABI stuff. */
4935
4936 static void
4937 mips_n32n64_xfer_return_value (struct type *type,
4938 struct regcache *regcache,
4939 bfd_byte *in, const bfd_byte *out)
4940 {
4941 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4942 if (TYPE_CODE (type) == TYPE_CODE_FLT
4943 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4944 {
4945 /* A floating-point value belongs in the least significant part
4946 of FP0. */
4947 if (mips_debug)
4948 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4949 mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type),
4950 TARGET_BYTE_ORDER, in, out, 0);
4951 }
4952 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4953 && TYPE_NFIELDS (type) <= 2
4954 && TYPE_NFIELDS (type) >= 1
4955 && ((TYPE_NFIELDS (type) == 1
4956 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4957 == TYPE_CODE_FLT))
4958 || (TYPE_NFIELDS (type) == 2
4959 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4960 == TYPE_CODE_FLT)
4961 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4962 == TYPE_CODE_FLT)))
4963 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4964 {
4965 /* A struct that contains one or two floats. Each value is part
4966 in the least significant part of their floating point
4967 register.. */
4968 bfd_byte reg[MAX_REGISTER_SIZE];
4969 int regnum;
4970 int field;
4971 for (field = 0, regnum = FP0_REGNUM;
4972 field < TYPE_NFIELDS (type);
4973 field++, regnum += 2)
4974 {
4975 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4976 / TARGET_CHAR_BIT);
4977 if (mips_debug)
4978 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4979 mips_xfer_register (regcache, NUM_REGS + regnum,
4980 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4981 TARGET_BYTE_ORDER, in, out, offset);
4982 }
4983 }
4984 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4985 || TYPE_CODE (type) == TYPE_CODE_UNION)
4986 {
4987 /* A structure or union. Extract the left justified value,
4988 regardless of the byte order. I.e. DO NOT USE
4989 mips_xfer_lower. */
4990 int offset;
4991 int regnum;
4992 for (offset = 0, regnum = V0_REGNUM;
4993 offset < TYPE_LENGTH (type);
4994 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
4995 {
4996 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
4997 if (offset + xfer > TYPE_LENGTH (type))
4998 xfer = TYPE_LENGTH (type) - offset;
4999 if (mips_debug)
5000 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5001 offset, xfer, regnum);
5002 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5003 BFD_ENDIAN_UNKNOWN, in, out, offset);
5004 }
5005 }
5006 else
5007 {
5008 /* A scalar extract each part but least-significant-byte
5009 justified. */
5010 int offset;
5011 int regnum;
5012 for (offset = 0, regnum = V0_REGNUM;
5013 offset < TYPE_LENGTH (type);
5014 offset += DEPRECATED_REGISTER_RAW_SIZE (regnum), regnum++)
5015 {
5016 int xfer = DEPRECATED_REGISTER_RAW_SIZE (regnum);
5017 int pos = 0;
5018 if (offset + xfer > TYPE_LENGTH (type))
5019 xfer = TYPE_LENGTH (type) - offset;
5020 if (mips_debug)
5021 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5022 offset, xfer, regnum);
5023 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
5024 TARGET_BYTE_ORDER, in, out, offset);
5025 }
5026 }
5027 }
5028
5029 static void
5030 mips_n32n64_extract_return_value (struct type *type,
5031 struct regcache *regcache,
5032 void *valbuf)
5033 {
5034 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
5035 }
5036
5037 static void
5038 mips_n32n64_store_return_value (struct type *type, char *valbuf)
5039 {
5040 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
5041 }
5042
5043 static CORE_ADDR
5044 mips_extract_struct_value_address (struct regcache *regcache)
5045 {
5046 /* FIXME: This will only work at random. The caller passes the
5047 struct_return address in V0, but it is not preserved. It may
5048 still be there, or this may be a random value. */
5049 LONGEST val;
5050
5051 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
5052 return val;
5053 }
5054
5055 /* Exported procedure: Is PC in the signal trampoline code */
5056
5057 static int
5058 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
5059 {
5060 if (sigtramp_address == 0)
5061 fixup_sigtramp ();
5062 return (pc >= sigtramp_address && pc < sigtramp_end);
5063 }
5064
5065 /* Root of all "set mips "/"show mips " commands. This will eventually be
5066 used for all MIPS-specific commands. */
5067
5068 static void
5069 show_mips_command (char *args, int from_tty)
5070 {
5071 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
5072 }
5073
5074 static void
5075 set_mips_command (char *args, int from_tty)
5076 {
5077 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
5078 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
5079 }
5080
5081 /* Commands to show/set the MIPS FPU type. */
5082
5083 static void
5084 show_mipsfpu_command (char *args, int from_tty)
5085 {
5086 char *fpu;
5087 switch (MIPS_FPU_TYPE)
5088 {
5089 case MIPS_FPU_SINGLE:
5090 fpu = "single-precision";
5091 break;
5092 case MIPS_FPU_DOUBLE:
5093 fpu = "double-precision";
5094 break;
5095 case MIPS_FPU_NONE:
5096 fpu = "absent (none)";
5097 break;
5098 default:
5099 internal_error (__FILE__, __LINE__, "bad switch");
5100 }
5101 if (mips_fpu_type_auto)
5102 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5103 fpu);
5104 else
5105 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5106 fpu);
5107 }
5108
5109
5110 static void
5111 set_mipsfpu_command (char *args, int from_tty)
5112 {
5113 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5114 show_mipsfpu_command (args, from_tty);
5115 }
5116
5117 static void
5118 set_mipsfpu_single_command (char *args, int from_tty)
5119 {
5120 mips_fpu_type = MIPS_FPU_SINGLE;
5121 mips_fpu_type_auto = 0;
5122 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5123 }
5124
5125 static void
5126 set_mipsfpu_double_command (char *args, int from_tty)
5127 {
5128 mips_fpu_type = MIPS_FPU_DOUBLE;
5129 mips_fpu_type_auto = 0;
5130 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5131 }
5132
5133 static void
5134 set_mipsfpu_none_command (char *args, int from_tty)
5135 {
5136 mips_fpu_type = MIPS_FPU_NONE;
5137 mips_fpu_type_auto = 0;
5138 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5139 }
5140
5141 static void
5142 set_mipsfpu_auto_command (char *args, int from_tty)
5143 {
5144 mips_fpu_type_auto = 1;
5145 }
5146
5147 /* Command to set the processor type. */
5148
5149 void
5150 mips_set_processor_type_command (char *args, int from_tty)
5151 {
5152 int i;
5153
5154 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5155 {
5156 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5157 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5158 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5159
5160 /* Restore the value. */
5161 tmp_mips_processor_type = xstrdup (mips_processor_type);
5162
5163 return;
5164 }
5165
5166 if (!mips_set_processor_type (tmp_mips_processor_type))
5167 {
5168 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5169 /* Restore its value. */
5170 tmp_mips_processor_type = xstrdup (mips_processor_type);
5171 }
5172 }
5173
5174 static void
5175 mips_show_processor_type_command (char *args, int from_tty)
5176 {
5177 }
5178
5179 /* Modify the actual processor type. */
5180
5181 static int
5182 mips_set_processor_type (char *str)
5183 {
5184 int i;
5185
5186 if (str == NULL)
5187 return 0;
5188
5189 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5190 {
5191 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5192 {
5193 mips_processor_type = str;
5194 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5195 return 1;
5196 /* FIXME tweak fpu flag too */
5197 }
5198 }
5199
5200 return 0;
5201 }
5202
5203 /* Attempt to identify the particular processor model by reading the
5204 processor id. */
5205
5206 char *
5207 mips_read_processor_type (void)
5208 {
5209 CORE_ADDR prid;
5210
5211 prid = read_register (PRID_REGNUM);
5212
5213 if ((prid & ~0xf) == 0x700)
5214 return savestring ("r3041", strlen ("r3041"));
5215
5216 return NULL;
5217 }
5218
5219 /* Just like reinit_frame_cache, but with the right arguments to be
5220 callable as an sfunc. */
5221
5222 static void
5223 reinit_frame_cache_sfunc (char *args, int from_tty,
5224 struct cmd_list_element *c)
5225 {
5226 reinit_frame_cache ();
5227 }
5228
5229 static int
5230 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
5231 {
5232 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5233 mips_extra_func_info_t proc_desc;
5234
5235 /* Search for the function containing this address. Set the low bit
5236 of the address when searching, in case we were given an even address
5237 that is the start of a 16-bit function. If we didn't do this,
5238 the search would fail because the symbol table says the function
5239 starts at an odd address, i.e. 1 byte past the given address. */
5240 memaddr = ADDR_BITS_REMOVE (memaddr);
5241 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5242
5243 /* Make an attempt to determine if this is a 16-bit function. If
5244 the procedure descriptor exists and the address therein is odd,
5245 it's definitely a 16-bit function. Otherwise, we have to just
5246 guess that if the address passed in is odd, it's 16-bits. */
5247 /* FIXME: cagney/2003-06-26: Is this even necessary? The
5248 disassembler needs to be able to locally determine the ISA, and
5249 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
5250 work. */
5251 if (proc_desc)
5252 {
5253 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
5254 info->mach = bfd_mach_mips16;
5255 }
5256 else
5257 {
5258 if (pc_is_mips16 (memaddr))
5259 info->mach = bfd_mach_mips16;
5260 }
5261
5262 /* Round down the instruction address to the appropriate boundary. */
5263 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5264
5265 /* Set the disassembler options. */
5266 if (tdep->mips_abi == MIPS_ABI_N32
5267 || tdep->mips_abi == MIPS_ABI_N64)
5268 {
5269 /* Set up the disassembler info, so that we get the right
5270 register names from libopcodes. */
5271 if (tdep->mips_abi == MIPS_ABI_N32)
5272 info->disassembler_options = "gpr-names=n32";
5273 else
5274 info->disassembler_options = "gpr-names=64";
5275 info->flavour = bfd_target_elf_flavour;
5276 }
5277 else
5278 /* This string is not recognized explicitly by the disassembler,
5279 but it tells the disassembler to not try to guess the ABI from
5280 the bfd elf headers, such that, if the user overrides the ABI
5281 of a program linked as NewABI, the disassembly will follow the
5282 register naming conventions specified by the user. */
5283 info->disassembler_options = "gpr-names=32";
5284
5285 /* Call the appropriate disassembler based on the target endian-ness. */
5286 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5287 return print_insn_big_mips (memaddr, info);
5288 else
5289 return print_insn_little_mips (memaddr, info);
5290 }
5291
5292 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5293 counter value to determine whether a 16- or 32-bit breakpoint should be
5294 used. It returns a pointer to a string of bytes that encode a breakpoint
5295 instruction, stores the length of the string to *lenptr, and adjusts pc
5296 (if necessary) to point to the actual memory location where the
5297 breakpoint should be inserted. */
5298
5299 static const unsigned char *
5300 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5301 {
5302 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5303 {
5304 if (pc_is_mips16 (*pcptr))
5305 {
5306 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5307 *pcptr = unmake_mips16_addr (*pcptr);
5308 *lenptr = sizeof (mips16_big_breakpoint);
5309 return mips16_big_breakpoint;
5310 }
5311 else
5312 {
5313 /* The IDT board uses an unusual breakpoint value, and
5314 sometimes gets confused when it sees the usual MIPS
5315 breakpoint instruction. */
5316 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5317 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5318 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5319
5320 *lenptr = sizeof (big_breakpoint);
5321
5322 if (strcmp (target_shortname, "mips") == 0)
5323 return idt_big_breakpoint;
5324 else if (strcmp (target_shortname, "ddb") == 0
5325 || strcmp (target_shortname, "pmon") == 0
5326 || strcmp (target_shortname, "lsi") == 0)
5327 return pmon_big_breakpoint;
5328 else
5329 return big_breakpoint;
5330 }
5331 }
5332 else
5333 {
5334 if (pc_is_mips16 (*pcptr))
5335 {
5336 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5337 *pcptr = unmake_mips16_addr (*pcptr);
5338 *lenptr = sizeof (mips16_little_breakpoint);
5339 return mips16_little_breakpoint;
5340 }
5341 else
5342 {
5343 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5344 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5345 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5346
5347 *lenptr = sizeof (little_breakpoint);
5348
5349 if (strcmp (target_shortname, "mips") == 0)
5350 return idt_little_breakpoint;
5351 else if (strcmp (target_shortname, "ddb") == 0
5352 || strcmp (target_shortname, "pmon") == 0
5353 || strcmp (target_shortname, "lsi") == 0)
5354 return pmon_little_breakpoint;
5355 else
5356 return little_breakpoint;
5357 }
5358 }
5359 }
5360
5361 /* If PC is in a mips16 call or return stub, return the address of the target
5362 PC, which is either the callee or the caller. There are several
5363 cases which must be handled:
5364
5365 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5366 target PC is in $31 ($ra).
5367 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5368 and the target PC is in $2.
5369 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5370 before the jal instruction, this is effectively a call stub
5371 and the the target PC is in $2. Otherwise this is effectively
5372 a return stub and the target PC is in $18.
5373
5374 See the source code for the stubs in gcc/config/mips/mips16.S for
5375 gory details.
5376
5377 This function implements the SKIP_TRAMPOLINE_CODE macro.
5378 */
5379
5380 static CORE_ADDR
5381 mips_skip_stub (CORE_ADDR pc)
5382 {
5383 char *name;
5384 CORE_ADDR start_addr;
5385
5386 /* Find the starting address and name of the function containing the PC. */
5387 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5388 return 0;
5389
5390 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5391 target PC is in $31 ($ra). */
5392 if (strcmp (name, "__mips16_ret_sf") == 0
5393 || strcmp (name, "__mips16_ret_df") == 0)
5394 return read_signed_register (RA_REGNUM);
5395
5396 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5397 {
5398 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5399 and the target PC is in $2. */
5400 if (name[19] >= '0' && name[19] <= '9')
5401 return read_signed_register (2);
5402
5403 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5404 before the jal instruction, this is effectively a call stub
5405 and the the target PC is in $2. Otherwise this is effectively
5406 a return stub and the target PC is in $18. */
5407 else if (name[19] == 's' || name[19] == 'd')
5408 {
5409 if (pc == start_addr)
5410 {
5411 /* Check if the target of the stub is a compiler-generated
5412 stub. Such a stub for a function bar might have a name
5413 like __fn_stub_bar, and might look like this:
5414 mfc1 $4,$f13
5415 mfc1 $5,$f12
5416 mfc1 $6,$f15
5417 mfc1 $7,$f14
5418 la $1,bar (becomes a lui/addiu pair)
5419 jr $1
5420 So scan down to the lui/addi and extract the target
5421 address from those two instructions. */
5422
5423 CORE_ADDR target_pc = read_signed_register (2);
5424 t_inst inst;
5425 int i;
5426
5427 /* See if the name of the target function is __fn_stub_*. */
5428 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5429 return target_pc;
5430 if (strncmp (name, "__fn_stub_", 10) != 0
5431 && strcmp (name, "etext") != 0
5432 && strcmp (name, "_etext") != 0)
5433 return target_pc;
5434
5435 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5436 The limit on the search is arbitrarily set to 20
5437 instructions. FIXME. */
5438 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5439 {
5440 inst = mips_fetch_instruction (target_pc);
5441 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5442 pc = (inst << 16) & 0xffff0000; /* high word */
5443 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5444 return pc | (inst & 0xffff); /* low word */
5445 }
5446
5447 /* Couldn't find the lui/addui pair, so return stub address. */
5448 return target_pc;
5449 }
5450 else
5451 /* This is the 'return' part of a call stub. The return
5452 address is in $r18. */
5453 return read_signed_register (18);
5454 }
5455 }
5456 return 0; /* not a stub */
5457 }
5458
5459
5460 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5461 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5462
5463 static int
5464 mips_in_call_stub (CORE_ADDR pc, char *name)
5465 {
5466 CORE_ADDR start_addr;
5467
5468 /* Find the starting address of the function containing the PC. If the
5469 caller didn't give us a name, look it up at the same time. */
5470 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5471 return 0;
5472
5473 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5474 {
5475 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5476 if (name[19] >= '0' && name[19] <= '9')
5477 return 1;
5478 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5479 before the jal instruction, this is effectively a call stub. */
5480 else if (name[19] == 's' || name[19] == 'd')
5481 return pc == start_addr;
5482 }
5483
5484 return 0; /* not a stub */
5485 }
5486
5487
5488 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5489 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5490
5491 static int
5492 mips_in_return_stub (CORE_ADDR pc, char *name)
5493 {
5494 CORE_ADDR start_addr;
5495
5496 /* Find the starting address of the function containing the PC. */
5497 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5498 return 0;
5499
5500 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5501 if (strcmp (name, "__mips16_ret_sf") == 0
5502 || strcmp (name, "__mips16_ret_df") == 0)
5503 return 1;
5504
5505 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5506 i.e. after the jal instruction, this is effectively a return stub. */
5507 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5508 && (name[19] == 's' || name[19] == 'd')
5509 && pc != start_addr)
5510 return 1;
5511
5512 return 0; /* not a stub */
5513 }
5514
5515
5516 /* Return non-zero if the PC is in a library helper function that should
5517 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5518
5519 int
5520 mips_ignore_helper (CORE_ADDR pc)
5521 {
5522 char *name;
5523
5524 /* Find the starting address and name of the function containing the PC. */
5525 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5526 return 0;
5527
5528 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5529 that we want to ignore. */
5530 return (strcmp (name, "__mips16_ret_sf") == 0
5531 || strcmp (name, "__mips16_ret_df") == 0);
5532 }
5533
5534
5535 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5536 the register stored on the stack (32) is different to its real raw
5537 size (64). The below ensures that registers are fetched from the
5538 stack using their ABI size and then stored into the RAW_BUFFER
5539 using their raw size.
5540
5541 The alternative to adding this function would be to add an ABI
5542 macro - REGISTER_STACK_SIZE(). */
5543
5544 static void
5545 mips_get_saved_register (char *raw_buffer,
5546 int *optimizedp,
5547 CORE_ADDR *addrp,
5548 struct frame_info *frame,
5549 int regnum,
5550 enum lval_type *lvalp)
5551 {
5552 CORE_ADDR addrx;
5553 enum lval_type lvalx;
5554 int optimizedx;
5555 int realnumx;
5556
5557 /* Always a pseudo. */
5558 gdb_assert (regnum >= NUM_REGS);
5559
5560 /* Make certain that all needed parameters are present. */
5561 if (addrp == NULL)
5562 addrp = &addrx;
5563 if (lvalp == NULL)
5564 lvalp = &lvalx;
5565 if (optimizedp == NULL)
5566 optimizedp = &optimizedx;
5567
5568 if ((regnum % NUM_REGS) == SP_REGNUM)
5569 /* The SP_REGNUM is special, its value is stored in saved_regs.
5570 In fact, it is so special that it can even only be fetched
5571 using a raw register number! Once this code as been converted
5572 to frame-unwind the problem goes away. */
5573 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5574 regnum % NUM_REGS, optimizedp, lvalp, addrp,
5575 &realnumx, raw_buffer);
5576 else
5577 /* Get it from the next frame. */
5578 frame_register_unwind (deprecated_get_next_frame_hack (frame),
5579 regnum, optimizedp, lvalp, addrp,
5580 &realnumx, raw_buffer);
5581 }
5582
5583 /* Immediately after a function call, return the saved pc.
5584 Can't always go through the frames for this because on some machines
5585 the new frame is not set up until the new function executes
5586 some instructions. */
5587
5588 static CORE_ADDR
5589 mips_saved_pc_after_call (struct frame_info *frame)
5590 {
5591 return read_signed_register (RA_REGNUM);
5592 }
5593
5594
5595 /* Convert a dbx stab register number (from `r' declaration) to a GDB
5596 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5597
5598 static int
5599 mips_stab_reg_to_regnum (int num)
5600 {
5601 int regnum;
5602 if (num >= 0 && num < 32)
5603 regnum = num;
5604 else if (num >= 38 && num < 70)
5605 regnum = num + FP0_REGNUM - 38;
5606 else if (num == 70)
5607 regnum = HI_REGNUM;
5608 else if (num == 71)
5609 regnum = LO_REGNUM;
5610 else
5611 /* This will hopefully (eventually) provoke a warning. Should
5612 we be calling complaint() here? */
5613 return NUM_REGS + NUM_PSEUDO_REGS;
5614 return NUM_REGS + regnum;
5615 }
5616
5617
5618 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
5619 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
5620
5621 static int
5622 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5623 {
5624 int regnum;
5625 if (num >= 0 && num < 32)
5626 regnum = num;
5627 else if (num >= 32 && num < 64)
5628 regnum = num + FP0_REGNUM - 32;
5629 else if (num == 64)
5630 regnum = HI_REGNUM;
5631 else if (num == 65)
5632 regnum = LO_REGNUM;
5633 else
5634 /* This will hopefully (eventually) provoke a warning. Should we
5635 be calling complaint() here? */
5636 return NUM_REGS + NUM_PSEUDO_REGS;
5637 return NUM_REGS + regnum;
5638 }
5639
5640 static int
5641 mips_register_sim_regno (int regnum)
5642 {
5643 /* Only makes sense to supply raw registers. */
5644 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
5645 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
5646 decide if it is valid. Should instead define a standard sim/gdb
5647 register numbering scheme. */
5648 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
5649 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
5650 return regnum;
5651 else
5652 return LEGACY_SIM_REGNO_IGNORE;
5653 }
5654
5655
5656 /* Convert an integer into an address. By first converting the value
5657 into a pointer and then extracting it signed, the address is
5658 guarenteed to be correctly sign extended. */
5659
5660 static CORE_ADDR
5661 mips_integer_to_address (struct type *type, void *buf)
5662 {
5663 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5664 LONGEST val = unpack_long (type, buf);
5665 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5666 return extract_signed_integer (tmp,
5667 TYPE_LENGTH (builtin_type_void_data_ptr));
5668 }
5669
5670 static void
5671 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5672 {
5673 enum mips_abi *abip = (enum mips_abi *) obj;
5674 const char *name = bfd_get_section_name (abfd, sect);
5675
5676 if (*abip != MIPS_ABI_UNKNOWN)
5677 return;
5678
5679 if (strncmp (name, ".mdebug.", 8) != 0)
5680 return;
5681
5682 if (strcmp (name, ".mdebug.abi32") == 0)
5683 *abip = MIPS_ABI_O32;
5684 else if (strcmp (name, ".mdebug.abiN32") == 0)
5685 *abip = MIPS_ABI_N32;
5686 else if (strcmp (name, ".mdebug.abi64") == 0)
5687 *abip = MIPS_ABI_N64;
5688 else if (strcmp (name, ".mdebug.abiO64") == 0)
5689 *abip = MIPS_ABI_O64;
5690 else if (strcmp (name, ".mdebug.eabi32") == 0)
5691 *abip = MIPS_ABI_EABI32;
5692 else if (strcmp (name, ".mdebug.eabi64") == 0)
5693 *abip = MIPS_ABI_EABI64;
5694 else
5695 warning ("unsupported ABI %s.", name + 8);
5696 }
5697
5698 static enum mips_abi
5699 global_mips_abi (void)
5700 {
5701 int i;
5702
5703 for (i = 0; mips_abi_strings[i] != NULL; i++)
5704 if (mips_abi_strings[i] == mips_abi_string)
5705 return (enum mips_abi) i;
5706
5707 internal_error (__FILE__, __LINE__,
5708 "unknown ABI string");
5709 }
5710
5711 static struct gdbarch *
5712 mips_gdbarch_init (struct gdbarch_info info,
5713 struct gdbarch_list *arches)
5714 {
5715 struct gdbarch *gdbarch;
5716 struct gdbarch_tdep *tdep;
5717 int elf_flags;
5718 enum mips_abi mips_abi, found_abi, wanted_abi;
5719 int num_regs;
5720
5721 elf_flags = 0;
5722
5723 if (info.abfd)
5724 {
5725 /* First of all, extract the elf_flags, if available. */
5726 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5727 elf_flags = elf_elfheader (info.abfd)->e_flags;
5728 }
5729
5730 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5731 switch ((elf_flags & EF_MIPS_ABI))
5732 {
5733 case E_MIPS_ABI_O32:
5734 mips_abi = MIPS_ABI_O32;
5735 break;
5736 case E_MIPS_ABI_O64:
5737 mips_abi = MIPS_ABI_O64;
5738 break;
5739 case E_MIPS_ABI_EABI32:
5740 mips_abi = MIPS_ABI_EABI32;
5741 break;
5742 case E_MIPS_ABI_EABI64:
5743 mips_abi = MIPS_ABI_EABI64;
5744 break;
5745 default:
5746 if ((elf_flags & EF_MIPS_ABI2))
5747 mips_abi = MIPS_ABI_N32;
5748 else
5749 mips_abi = MIPS_ABI_UNKNOWN;
5750 break;
5751 }
5752
5753 /* GCC creates a pseudo-section whose name describes the ABI. */
5754 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5755 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5756
5757 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5758 Use the ABI from the last architecture if there is one. */
5759 if (info.abfd == NULL && arches != NULL)
5760 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5761
5762 /* Try the architecture for any hint of the correct ABI. */
5763 if (mips_abi == MIPS_ABI_UNKNOWN
5764 && info.bfd_arch_info != NULL
5765 && info.bfd_arch_info->arch == bfd_arch_mips)
5766 {
5767 switch (info.bfd_arch_info->mach)
5768 {
5769 case bfd_mach_mips3900:
5770 mips_abi = MIPS_ABI_EABI32;
5771 break;
5772 case bfd_mach_mips4100:
5773 case bfd_mach_mips5000:
5774 mips_abi = MIPS_ABI_EABI64;
5775 break;
5776 case bfd_mach_mips8000:
5777 case bfd_mach_mips10000:
5778 /* On Irix, ELF64 executables use the N64 ABI. The
5779 pseudo-sections which describe the ABI aren't present
5780 on IRIX. (Even for executables created by gcc.) */
5781 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5782 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5783 mips_abi = MIPS_ABI_N64;
5784 else
5785 mips_abi = MIPS_ABI_N32;
5786 break;
5787 }
5788 }
5789
5790 if (mips_abi == MIPS_ABI_UNKNOWN)
5791 mips_abi = MIPS_ABI_O32;
5792
5793 /* Now that we have found what the ABI for this binary would be,
5794 check whether the user is overriding it. */
5795 found_abi = mips_abi;
5796 wanted_abi = global_mips_abi ();
5797 if (wanted_abi != MIPS_ABI_UNKNOWN)
5798 mips_abi = wanted_abi;
5799
5800 if (gdbarch_debug)
5801 {
5802 fprintf_unfiltered (gdb_stdlog,
5803 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5804 elf_flags);
5805 fprintf_unfiltered (gdb_stdlog,
5806 "mips_gdbarch_init: mips_abi = %d\n",
5807 mips_abi);
5808 fprintf_unfiltered (gdb_stdlog,
5809 "mips_gdbarch_init: found_mips_abi = %d\n",
5810 found_abi);
5811 }
5812
5813 /* try to find a pre-existing architecture */
5814 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5815 arches != NULL;
5816 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5817 {
5818 /* MIPS needs to be pedantic about which ABI the object is
5819 using. */
5820 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5821 continue;
5822 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5823 continue;
5824 return arches->gdbarch;
5825 }
5826
5827 /* Need a new architecture. Fill in a target specific vector. */
5828 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5829 gdbarch = gdbarch_alloc (&info, tdep);
5830 tdep->elf_flags = elf_flags;
5831
5832 /* Initially set everything according to the default ABI/ISA. */
5833 set_gdbarch_short_bit (gdbarch, 16);
5834 set_gdbarch_int_bit (gdbarch, 32);
5835 set_gdbarch_float_bit (gdbarch, 32);
5836 set_gdbarch_double_bit (gdbarch, 64);
5837 set_gdbarch_long_double_bit (gdbarch, 64);
5838 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
5839 set_gdbarch_deprecated_register_byte (gdbarch, mips_register_byte);
5840 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
5841 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
5842 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
5843 tdep->found_abi = found_abi;
5844 tdep->mips_abi = mips_abi;
5845
5846 set_gdbarch_elf_make_msymbol_special (gdbarch,
5847 mips_elf_make_msymbol_special);
5848
5849
5850 if (info.osabi == GDB_OSABI_IRIX)
5851 num_regs = 71;
5852 else
5853 num_regs = 90;
5854 set_gdbarch_num_regs (gdbarch, num_regs);
5855 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
5856
5857 switch (mips_abi)
5858 {
5859 case MIPS_ABI_O32:
5860 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5861 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5862 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5863 tdep->mips_default_saved_regsize = 4;
5864 tdep->mips_default_stack_argsize = 4;
5865 tdep->mips_fp_register_double = 0;
5866 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5867 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5868 tdep->gdb_target_is_mips64 = 0;
5869 tdep->default_mask_address_p = 0;
5870 set_gdbarch_long_bit (gdbarch, 32);
5871 set_gdbarch_ptr_bit (gdbarch, 32);
5872 set_gdbarch_long_long_bit (gdbarch, 64);
5873 set_gdbarch_deprecated_reg_struct_has_addr
5874 (gdbarch, mips_o32_reg_struct_has_addr);
5875 set_gdbarch_use_struct_convention (gdbarch,
5876 always_use_struct_convention);
5877 break;
5878 case MIPS_ABI_O64:
5879 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5880 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5881 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5882 tdep->mips_default_saved_regsize = 8;
5883 tdep->mips_default_stack_argsize = 8;
5884 tdep->mips_fp_register_double = 1;
5885 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5886 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5887 tdep->gdb_target_is_mips64 = 1;
5888 tdep->default_mask_address_p = 0;
5889 set_gdbarch_long_bit (gdbarch, 32);
5890 set_gdbarch_ptr_bit (gdbarch, 32);
5891 set_gdbarch_long_long_bit (gdbarch, 64);
5892 set_gdbarch_deprecated_reg_struct_has_addr
5893 (gdbarch, mips_o32_reg_struct_has_addr);
5894 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5895 break;
5896 case MIPS_ABI_EABI32:
5897 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5898 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5899 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5900 tdep->mips_default_saved_regsize = 4;
5901 tdep->mips_default_stack_argsize = 4;
5902 tdep->mips_fp_register_double = 0;
5903 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5904 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5905 tdep->gdb_target_is_mips64 = 0;
5906 tdep->default_mask_address_p = 0;
5907 set_gdbarch_long_bit (gdbarch, 32);
5908 set_gdbarch_ptr_bit (gdbarch, 32);
5909 set_gdbarch_long_long_bit (gdbarch, 64);
5910 set_gdbarch_deprecated_reg_struct_has_addr
5911 (gdbarch, mips_eabi_reg_struct_has_addr);
5912 set_gdbarch_use_struct_convention (gdbarch,
5913 mips_eabi_use_struct_convention);
5914 break;
5915 case MIPS_ABI_EABI64:
5916 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5917 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5918 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5919 tdep->mips_default_saved_regsize = 8;
5920 tdep->mips_default_stack_argsize = 8;
5921 tdep->mips_fp_register_double = 1;
5922 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5923 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5924 tdep->gdb_target_is_mips64 = 1;
5925 tdep->default_mask_address_p = 0;
5926 set_gdbarch_long_bit (gdbarch, 64);
5927 set_gdbarch_ptr_bit (gdbarch, 64);
5928 set_gdbarch_long_long_bit (gdbarch, 64);
5929 set_gdbarch_deprecated_reg_struct_has_addr
5930 (gdbarch, mips_eabi_reg_struct_has_addr);
5931 set_gdbarch_use_struct_convention (gdbarch,
5932 mips_eabi_use_struct_convention);
5933 break;
5934 case MIPS_ABI_N32:
5935 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5936 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5937 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5938 tdep->mips_default_saved_regsize = 8;
5939 tdep->mips_default_stack_argsize = 8;
5940 tdep->mips_fp_register_double = 1;
5941 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5942 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5943 tdep->gdb_target_is_mips64 = 1;
5944 tdep->default_mask_address_p = 0;
5945 set_gdbarch_long_bit (gdbarch, 32);
5946 set_gdbarch_ptr_bit (gdbarch, 32);
5947 set_gdbarch_long_long_bit (gdbarch, 64);
5948 set_gdbarch_use_struct_convention (gdbarch,
5949 mips_n32n64_use_struct_convention);
5950 set_gdbarch_deprecated_reg_struct_has_addr
5951 (gdbarch, mips_n32n64_reg_struct_has_addr);
5952 break;
5953 case MIPS_ABI_N64:
5954 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5955 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5956 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5957 tdep->mips_default_saved_regsize = 8;
5958 tdep->mips_default_stack_argsize = 8;
5959 tdep->mips_fp_register_double = 1;
5960 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5961 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5962 tdep->gdb_target_is_mips64 = 1;
5963 tdep->default_mask_address_p = 0;
5964 set_gdbarch_long_bit (gdbarch, 64);
5965 set_gdbarch_ptr_bit (gdbarch, 64);
5966 set_gdbarch_long_long_bit (gdbarch, 64);
5967 set_gdbarch_use_struct_convention (gdbarch,
5968 mips_n32n64_use_struct_convention);
5969 set_gdbarch_deprecated_reg_struct_has_addr
5970 (gdbarch, mips_n32n64_reg_struct_has_addr);
5971 break;
5972 default:
5973 internal_error (__FILE__, __LINE__,
5974 "unknown ABI in switch");
5975 }
5976
5977 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5978 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5979 comment:
5980
5981 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5982 flag in object files because to do so would make it impossible to
5983 link with libraries compiled without "-gp32". This is
5984 unnecessarily restrictive.
5985
5986 We could solve this problem by adding "-gp32" multilibs to gcc,
5987 but to set this flag before gcc is built with such multilibs will
5988 break too many systems.''
5989
5990 But even more unhelpfully, the default linker output target for
5991 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5992 for 64-bit programs - you need to change the ABI to change this,
5993 and not all gcc targets support that currently. Therefore using
5994 this flag to detect 32-bit mode would do the wrong thing given
5995 the current gcc - it would make GDB treat these 64-bit programs
5996 as 32-bit programs by default. */
5997
5998 /* enable/disable the MIPS FPU */
5999 if (!mips_fpu_type_auto)
6000 tdep->mips_fpu_type = mips_fpu_type;
6001 else if (info.bfd_arch_info != NULL
6002 && info.bfd_arch_info->arch == bfd_arch_mips)
6003 switch (info.bfd_arch_info->mach)
6004 {
6005 case bfd_mach_mips3900:
6006 case bfd_mach_mips4100:
6007 case bfd_mach_mips4111:
6008 tdep->mips_fpu_type = MIPS_FPU_NONE;
6009 break;
6010 case bfd_mach_mips4650:
6011 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
6012 break;
6013 default:
6014 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6015 break;
6016 }
6017 else
6018 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
6019
6020 /* MIPS version of register names. NOTE: At present the MIPS
6021 register name management is part way between the old -
6022 #undef/#define MIPS_REGISTER_NAMES and the new REGISTER_NAME(nr).
6023 Further work on it is required. */
6024 set_gdbarch_register_name (gdbarch, mips_register_name);
6025 set_gdbarch_read_pc (gdbarch, mips_read_pc);
6026 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
6027 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
6028 set_gdbarch_read_sp (gdbarch, mips_read_sp);
6029
6030 /* Add/remove bits from an address. The MIPS needs be careful to
6031 ensure that all 32 bit addresses are sign extended to 64 bits. */
6032 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
6033
6034 /* There's a mess in stack frame creation. See comments in
6035 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
6036 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
6037
6038 /* Map debug register numbers onto internal register numbers. */
6039 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
6040 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6041 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6042 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
6043 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
6044
6045 /* Initialize a frame */
6046 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
6047 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
6048
6049 /* MIPS version of CALL_DUMMY */
6050
6051 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
6052 replaced by a command, and all targets will default to on stack
6053 (regardless of the stack's execute status). */
6054 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
6055 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
6056 set_gdbarch_frame_align (gdbarch, mips_frame_align);
6057 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6058 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
6059 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
6060 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
6061
6062 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
6063 set_gdbarch_frameless_function_invocation (gdbarch,
6064 generic_frameless_function_invocation_not);
6065 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
6066 set_gdbarch_frame_args_skip (gdbarch, 0);
6067
6068 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
6069
6070 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
6071 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
6072 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6073
6074 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6075 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6076
6077 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6078 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6079 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6080
6081 set_gdbarch_function_start_offset (gdbarch, 0);
6082
6083 set_gdbarch_register_type (gdbarch, mips_register_type);
6084
6085 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
6086 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6087
6088 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
6089
6090 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
6091 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
6092 need to all be folded into the target vector. Since they are
6093 being used as guards for STOPPED_BY_WATCHPOINT, why not have
6094 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
6095 is sitting on? */
6096 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6097
6098 /* Hook in OS ABI-specific overrides, if they have been registered. */
6099 gdbarch_init_osabi (info, gdbarch);
6100
6101 set_gdbarch_extract_struct_value_address (gdbarch,
6102 mips_extract_struct_value_address);
6103
6104 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6105
6106 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6107 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6108
6109 return gdbarch;
6110 }
6111
6112 static void
6113 mips_abi_update (char *ignore_args, int from_tty,
6114 struct cmd_list_element *c)
6115 {
6116 struct gdbarch_info info;
6117
6118 /* Force the architecture to update, and (if it's a MIPS architecture)
6119 mips_gdbarch_init will take care of the rest. */
6120 gdbarch_info_init (&info);
6121 gdbarch_update_p (info);
6122 }
6123
6124 /* Print out which MIPS ABI is in use. */
6125
6126 static void
6127 show_mips_abi (char *ignore_args, int from_tty)
6128 {
6129 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6130 printf_filtered (
6131 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6132 else
6133 {
6134 enum mips_abi global_abi = global_mips_abi ();
6135 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6136 const char *actual_abi_str = mips_abi_strings[actual_abi];
6137
6138 if (global_abi == MIPS_ABI_UNKNOWN)
6139 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6140 actual_abi_str);
6141 else if (global_abi == actual_abi)
6142 printf_filtered (
6143 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6144 actual_abi_str);
6145 else
6146 {
6147 /* Probably shouldn't happen... */
6148 printf_filtered (
6149 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6150 actual_abi_str,
6151 mips_abi_strings[global_abi]);
6152 }
6153 }
6154 }
6155
6156 static void
6157 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6158 {
6159 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6160 if (tdep != NULL)
6161 {
6162 int ef_mips_arch;
6163 int ef_mips_32bitmode;
6164 /* determine the ISA */
6165 switch (tdep->elf_flags & EF_MIPS_ARCH)
6166 {
6167 case E_MIPS_ARCH_1:
6168 ef_mips_arch = 1;
6169 break;
6170 case E_MIPS_ARCH_2:
6171 ef_mips_arch = 2;
6172 break;
6173 case E_MIPS_ARCH_3:
6174 ef_mips_arch = 3;
6175 break;
6176 case E_MIPS_ARCH_4:
6177 ef_mips_arch = 4;
6178 break;
6179 default:
6180 ef_mips_arch = 0;
6181 break;
6182 }
6183 /* determine the size of a pointer */
6184 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6187 tdep->elf_flags);
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6190 ef_mips_32bitmode);
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: ef_mips_arch = %d\n",
6193 ef_mips_arch);
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6196 tdep->mips_abi,
6197 mips_abi_strings[tdep->mips_abi]);
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6200 mips_mask_address_p (),
6201 tdep->default_mask_address_p);
6202 }
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6205 FP_REGISTER_DOUBLE);
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6208 MIPS_DEFAULT_FPU_TYPE,
6209 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6210 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6211 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6212 : "???"));
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: MIPS_EABI = %d\n",
6215 MIPS_EABI);
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6218 MIPS_LAST_FP_ARG_REGNUM,
6219 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6222 MIPS_FPU_TYPE,
6223 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6224 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6225 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6226 : "???"));
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6229 MIPS_DEFAULT_SAVED_REGSIZE);
6230 fprintf_unfiltered (file,
6231 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6232 FP_REGISTER_DOUBLE);
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6235 MIPS_DEFAULT_STACK_ARGSIZE);
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6238 MIPS_STACK_ARGSIZE);
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6241 MIPS_REGSIZE);
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: A0_REGNUM = %d\n",
6244 A0_REGNUM);
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6247 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6250 XSTRING (ATTACH_DETACH));
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6253 BADVADDR_REGNUM);
6254 fprintf_unfiltered (file,
6255 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6256 CAUSE_REGNUM);
6257 fprintf_unfiltered (file,
6258 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6259 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6262 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6265 FCRCS_REGNUM);
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6268 FCRIR_REGNUM);
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6271 FIRST_EMBED_REGNUM);
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6274 FPA0_REGNUM);
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6277 GDB_TARGET_IS_MIPS64);
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: HI_REGNUM = %d\n",
6280 HI_REGNUM);
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6283 XSTRING (IGNORE_HELPER_CALL (PC)));
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6286 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6287 fprintf_unfiltered (file,
6288 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6289 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6290 fprintf_unfiltered (file,
6291 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6292 LAST_EMBED_REGNUM);
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: LO_REGNUM = %d\n",
6295 LO_REGNUM);
6296 #ifdef MACHINE_CPROC_FP_OFFSET
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6299 MACHINE_CPROC_FP_OFFSET);
6300 #endif
6301 #ifdef MACHINE_CPROC_PC_OFFSET
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6304 MACHINE_CPROC_PC_OFFSET);
6305 #endif
6306 #ifdef MACHINE_CPROC_SP_OFFSET
6307 fprintf_unfiltered (file,
6308 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6309 MACHINE_CPROC_SP_OFFSET);
6310 #endif
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6313 MIPS16_INSTLEN);
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6316 fprintf_unfiltered (file,
6317 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6320 MIPS_INSTLEN);
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6323 MIPS_LAST_ARG_REGNUM,
6324 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6327 MIPS_NUMREGS);
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6332 MIPS_SAVED_REGSIZE);
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: OP_LDFPR = used?\n");
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: OP_LDGPR = used?\n");
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: PRID_REGNUM = %d\n",
6339 PRID_REGNUM);
6340 fprintf_unfiltered (file,
6341 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6350 fprintf_unfiltered (file,
6351 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6354 fprintf_unfiltered (file,
6355 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: PROC_PC_REG = function?\n");
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6360 fprintf_unfiltered (file,
6361 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: PS_REGNUM = %d\n",
6366 PS_REGNUM);
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: RA_REGNUM = %d\n",
6369 RA_REGNUM);
6370 #ifdef SAVED_BYTES
6371 fprintf_unfiltered (file,
6372 "mips_dump_tdep: SAVED_BYTES = %d\n",
6373 SAVED_BYTES);
6374 #endif
6375 #ifdef SAVED_FP
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: SAVED_FP = %d\n",
6378 SAVED_FP);
6379 #endif
6380 #ifdef SAVED_PC
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: SAVED_PC = %d\n",
6383 SAVED_PC);
6384 #endif
6385 fprintf_unfiltered (file,
6386 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6387 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6388 fprintf_unfiltered (file,
6389 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6390 fprintf_unfiltered (file,
6391 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6392 SIGFRAME_BASE);
6393 fprintf_unfiltered (file,
6394 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6395 SIGFRAME_FPREGSAVE_OFF);
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6398 SIGFRAME_PC_OFF);
6399 fprintf_unfiltered (file,
6400 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6401 SIGFRAME_REGSAVE_OFF);
6402 fprintf_unfiltered (file,
6403 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6404 SIGFRAME_REG_SIZE);
6405 fprintf_unfiltered (file,
6406 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6407 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6410 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6413 SOFTWARE_SINGLE_STEP_P ());
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6416 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6417 #ifdef STACK_END_ADDR
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6420 STACK_END_ADDR);
6421 #endif
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6424 XSTRING (STEP_SKIPS_DELAY (PC)));
6425 fprintf_unfiltered (file,
6426 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6427 STEP_SKIPS_DELAY_P);
6428 fprintf_unfiltered (file,
6429 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6430 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6431 fprintf_unfiltered (file,
6432 "mips_dump_tdep: T9_REGNUM = %d\n",
6433 T9_REGNUM);
6434 fprintf_unfiltered (file,
6435 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6436 fprintf_unfiltered (file,
6437 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6438 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6439 fprintf_unfiltered (file,
6440 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6441 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6442 #ifdef TRACE_CLEAR
6443 fprintf_unfiltered (file,
6444 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6445 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6446 #endif
6447 #ifdef TRACE_FLAVOR
6448 fprintf_unfiltered (file,
6449 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6450 TRACE_FLAVOR);
6451 #endif
6452 #ifdef TRACE_FLAVOR_SIZE
6453 fprintf_unfiltered (file,
6454 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6455 TRACE_FLAVOR_SIZE);
6456 #endif
6457 #ifdef TRACE_SET
6458 fprintf_unfiltered (file,
6459 "mips_dump_tdep: TRACE_SET # %s\n",
6460 XSTRING (TRACE_SET (X,STATE)));
6461 #endif
6462 #ifdef UNUSED_REGNUM
6463 fprintf_unfiltered (file,
6464 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6465 UNUSED_REGNUM);
6466 #endif
6467 fprintf_unfiltered (file,
6468 "mips_dump_tdep: V0_REGNUM = %d\n",
6469 V0_REGNUM);
6470 fprintf_unfiltered (file,
6471 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6472 (long) VM_MIN_ADDRESS);
6473 fprintf_unfiltered (file,
6474 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6475 ZERO_REGNUM);
6476 fprintf_unfiltered (file,
6477 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6478 _PROC_MAGIC_);
6479 }
6480
6481 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6482
6483 void
6484 _initialize_mips_tdep (void)
6485 {
6486 static struct cmd_list_element *mipsfpulist = NULL;
6487 struct cmd_list_element *c;
6488
6489 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6490 if (MIPS_ABI_LAST + 1
6491 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6492 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6493
6494 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6495
6496 /* Add root prefix command for all "set mips"/"show mips" commands */
6497 add_prefix_cmd ("mips", no_class, set_mips_command,
6498 "Various MIPS specific commands.",
6499 &setmipscmdlist, "set mips ", 0, &setlist);
6500
6501 add_prefix_cmd ("mips", no_class, show_mips_command,
6502 "Various MIPS specific commands.",
6503 &showmipscmdlist, "show mips ", 0, &showlist);
6504
6505 /* Allow the user to override the saved register size. */
6506 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6507 class_obscure,
6508 size_enums,
6509 &mips_saved_regsize_string, "\
6510 Set size of general purpose registers saved on the stack.\n\
6511 This option can be set to one of:\n\
6512 32 - Force GDB to treat saved GP registers as 32-bit\n\
6513 64 - Force GDB to treat saved GP registers as 64-bit\n\
6514 auto - Allow GDB to use the target's default setting or autodetect the\n\
6515 saved GP register size from information contained in the executable.\n\
6516 (default: auto)",
6517 &setmipscmdlist),
6518 &showmipscmdlist);
6519
6520 /* Allow the user to override the argument stack size. */
6521 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6522 class_obscure,
6523 size_enums,
6524 &mips_stack_argsize_string, "\
6525 Set the amount of stack space reserved for each argument.\n\
6526 This option can be set to one of:\n\
6527 32 - Force GDB to allocate 32-bit chunks per argument\n\
6528 64 - Force GDB to allocate 64-bit chunks per argument\n\
6529 auto - Allow GDB to determine the correct setting from the current\n\
6530 target and executable (default)",
6531 &setmipscmdlist),
6532 &showmipscmdlist);
6533
6534 /* Allow the user to override the ABI. */
6535 c = add_set_enum_cmd
6536 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6537 "Set the ABI used by this program.\n"
6538 "This option can be set to one of:\n"
6539 " auto - the default ABI associated with the current binary\n"
6540 " o32\n"
6541 " o64\n"
6542 " n32\n"
6543 " n64\n"
6544 " eabi32\n"
6545 " eabi64",
6546 &setmipscmdlist);
6547 set_cmd_sfunc (c, mips_abi_update);
6548 add_cmd ("abi", class_obscure, show_mips_abi,
6549 "Show ABI in use by MIPS target", &showmipscmdlist);
6550
6551 /* Let the user turn off floating point and set the fence post for
6552 heuristic_proc_start. */
6553
6554 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6555 "Set use of MIPS floating-point coprocessor.",
6556 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6557 add_cmd ("single", class_support, set_mipsfpu_single_command,
6558 "Select single-precision MIPS floating-point coprocessor.",
6559 &mipsfpulist);
6560 add_cmd ("double", class_support, set_mipsfpu_double_command,
6561 "Select double-precision MIPS floating-point coprocessor.",
6562 &mipsfpulist);
6563 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6564 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6565 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6566 add_cmd ("none", class_support, set_mipsfpu_none_command,
6567 "Select no MIPS floating-point coprocessor.",
6568 &mipsfpulist);
6569 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6570 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6571 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6572 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6573 "Select MIPS floating-point coprocessor automatically.",
6574 &mipsfpulist);
6575 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6576 "Show current use of MIPS floating-point coprocessor target.",
6577 &showlist);
6578
6579 /* We really would like to have both "0" and "unlimited" work, but
6580 command.c doesn't deal with that. So make it a var_zinteger
6581 because the user can always use "999999" or some such for unlimited. */
6582 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6583 (char *) &heuristic_fence_post,
6584 "\
6585 Set the distance searched for the start of a function.\n\
6586 If you are debugging a stripped executable, GDB needs to search through the\n\
6587 program for the start of a function. This command sets the distance of the\n\
6588 search. The only need to set it is when debugging a stripped executable.",
6589 &setlist);
6590 /* We need to throw away the frame cache when we set this, since it
6591 might change our ability to get backtraces. */
6592 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6593 add_show_from_set (c, &showlist);
6594
6595 /* Allow the user to control whether the upper bits of 64-bit
6596 addresses should be zeroed. */
6597 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6598 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6599 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6600 allow GDB to determine the correct value.\n", "\
6601 Show zeroing of upper 32 bits of 64-bit addresses.",
6602 NULL, show_mask_address,
6603 &setmipscmdlist, &showmipscmdlist);
6604
6605 /* Allow the user to control the size of 32 bit registers within the
6606 raw remote packet. */
6607 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6608 class_obscure,
6609 var_boolean,
6610 (char *)&mips64_transfers_32bit_regs_p, "\
6611 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6612 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6613 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6614 64 bits for others. Use \"off\" to disable compatibility mode",
6615 &setlist),
6616 &showlist);
6617
6618 /* Debug this files internals. */
6619 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6620 &mips_debug, "Set mips debugging.\n\
6621 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6622 &showdebuglist);
6623 }
This page took 0.168386 seconds and 4 git commands to generate.